;; Pipeline descriptions of Andes NDS32 cpu for GNU compiler ;; Copyright (C) 2012-2018 Free Software Foundation, Inc. ;; Contributed by Andes Technology Corporation. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version. ;; ;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; ------------------------------------------------------------------------ ;; Define E8 pipeline settings. ;; ------------------------------------------------------------------------

(define_automaton “nds32_e8_machine”)

;; ------------------------------------------------------------------------ ;; Pipeline Stages ;; ------------------------------------------------------------------------ ;; IF - Instruction Fetch ;; II - Instruction Issue / Address Generation ;; EX - Instruction Execution ;; EXD - Psuedo Stage / Load Data Completion

(define_cpu_unit “e8_ii” “nds32_e8_machine”) (define_cpu_unit “e8_ex” “nds32_e8_machine”)

(define_insn_reservation “nds_e8_unknown” 1 (and (eq_attr “type” “unknown”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_misc” 1 (and (eq_attr “type” “misc”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_alu” 1 (and (eq_attr “type” “alu”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_load” 1 (and (match_test “nds32::load_single_p (insn)”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_store” 1 (and (match_test “nds32::store_single_p (insn)”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_1” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “1”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_2” 1 (and (ior (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “2”)) (match_test “nds32::load_double_p (insn)”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ii+e8_ex, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_3” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “3”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*2, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_4” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “4”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*3, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_5” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “5”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*4, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_6” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “6”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*5, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_7” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “7”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*6, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_8” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “8”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*7, e8_ex”)

(define_insn_reservation “nds_e8_load_multiple_12” 1 (and (and (eq_attr “type” “load_multiple”) (eq_attr “combo” “12”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*11, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_1” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “1”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_2” 1 (and (ior (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “2”)) (match_test “nds32::store_double_p (insn)”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ii+e8_ex, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_3” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “3”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*2, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_4” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “4”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*3, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_5” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “5”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*4, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_6” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “6”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*5, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_7” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “7”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*6, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_8” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “8”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*7, e8_ex”)

(define_insn_reservation “nds_e8_store_multiple_12” 1 (and (and (eq_attr “type” “store_multiple”) (eq_attr “combo” “12”)) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*11, e8_ex”)

(define_insn_reservation “nds_e8_mul_fast” 1 (and (match_test “nds32_mul_config != MUL_TYPE_SLOW”) (and (eq_attr “type” “mul”) (eq_attr “pipeline_model” “e8”))) “e8_ii, e8_ex”)

(define_insn_reservation “nds_e8_mul_slow” 1 (and (match_test “nds32_mul_config == MUL_TYPE_SLOW”) (and (eq_attr “type” “mul”) (eq_attr “pipeline_model” “e8”))) “e8_ii, e8_ex*16”)

(define_insn_reservation “nds_e8_mac_fast” 1 (and (match_test “nds32_mul_config != MUL_TYPE_SLOW”) (and (eq_attr “type” “mac”) (eq_attr “pipeline_model” “e8”))) “e8_ii, e8_ii+e8_ex, e8_ex”)

(define_insn_reservation “nds_e8_mac_slow” 1 (and (match_test “nds32_mul_config == MUL_TYPE_SLOW”) (and (eq_attr “type” “mac”) (eq_attr “pipeline_model” “e8”))) “e8_ii, (e8_ii+e8_ex)*16, e8_ex”)

(define_insn_reservation “nds_e8_div” 1 (and (eq_attr “type” “div”) (eq_attr “pipeline_model” “e8”)) “e8_ii, (e8_ii+e8_ex)*36, e8_ex”)

(define_insn_reservation “nds_e8_branch” 1 (and (eq_attr “type” “branch”) (eq_attr “pipeline_model” “e8”)) “e8_ii, e8_ex”)

;; ------------------------------------------------------------------------ ;; Comment Notations and Bypass Rules ;; ------------------------------------------------------------------------ ;; Producers (LHS) ;; LD ;; Load data from the memory and produce the loaded data. The result is ;; ready at EXD. ;; LMW(N, M) ;; There are N micro-operations within an instruction that loads multiple ;; words. The result produced by the M-th micro-operation is sent to ;; consumers. The result is ready at EXD. ;; ADDR_OUT ;; Most load/store instructions can produce an address output if updating ;; the base register is required. The result is ready at EX, which is ;; produced by ALU. ;; ALU, MOVD44, MUL, MAC ;; The result is ready at EX. ;; DIV_Rs ;; A division instruction saves the quotient result to Rt and saves the ;; remainder result to Rs. The instruction is separated into two micro- ;; operations. The first micro-operation writes to Rt, and the seconde ;; one writes to Rs. Each of the results is ready at EX. ;; ;; Consumers (RHS) ;; ALU, MUL, DIV ;; Require operands at EX. ;; ADDR_IN_MOP(N) ;; N denotes the address input is required by the N-th micro-operation. ;; Such operand is required at II. ;; ST ;; A store instruction requires its data at EX. ;; SMW(N, M) ;; There are N micro-operations within an instruction that stores multiple ;; words. Each M-th micro-operation requires its data at EX. ;; BR_COND ;; If a branch instruction is conditional, its input data is required at EX.

;; LD -> ADDR_IN_MOP(1) (define_bypass 2 “nds_e8_load” “nds_e8_branch,
nds_e8_load, nds_e8_store,
nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds32_e8_load_to_ii_p” )

;; LD -> ALU, MUL, MAC, DIV, BR_COND, ST, SMW(N, 1) (define_bypass 2 “nds_e8_load” “nds_e8_alu, nds_e8_mul_fast, nds_e8_mul_slow,
nds_e8_mac_fast, nds_e8_mac_slow,
nds_e8_div,
nds_e8_branch,
nds_e8_store,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds32_e8_load_to_ex_p” )

;; ALU, MOVD44, MUL, MAC, DIV_Rs, LD_bi, ADDR_OUT -> ADDR_IN_MOP(1) (define_bypass 2 “nds_e8_alu, nds_e8_mul_fast, nds_e8_mul_slow,
nds_e8_mac_fast, nds_e8_mac_slow,
nds_e8_div,
nds_e8_load, nds_e8_store,
nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds_e8_branch,
nds_e8_load, nds_e8_store,
nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds32_e8_ex_to_ii_p” )

;; LMW(N, N) -> ADDR_IN_MOP(1) (define_bypass 2 “nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12” “nds_e8_branch,
nds_e8_load, nds_e8_store,
nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds32_e8_last_load_to_ii_p” )

;; LMW(N, N) -> ALU, MUL, MAC, DIV, BR_COND, ST, SMW(N, 1) (define_bypass 2 “nds_e8_load_multiple_1,nds_e8_load_multiple_2, nds_e8_load_multiple_3,
nds_e8_load_multiple_4,nds_e8_load_multiple_5, nds_e8_load_multiple_6,
nds_e8_load_multiple_7,nds_e8_load_multiple_8, nds_e8_load_multiple_12” “nds_e8_alu, nds_e8_mul_fast, nds_e8_mul_slow,
nds_e8_mac_fast, nds_e8_mac_slow,
nds_e8_div,
nds_e8_branch,
nds_e8_store,
nds_e8_store_multiple_1,nds_e8_store_multiple_2, nds_e8_store_multiple_3,
nds_e8_store_multiple_4,nds_e8_store_multiple_5, nds_e8_store_multiple_6,
nds_e8_store_multiple_7,nds_e8_store_multiple_8, nds_e8_store_multiple_12” “nds32_e8_last_load_to_ex_p” )