;; Expander definitions for vector support between altivec & vsx. No ;; instructions are in this file, this file provides the generic vector ;; expander, and the actual vector instructions will be in altivec.md and ;; vsx.md

;; Copyright (C) 2009-2018 Free Software Foundation, Inc. ;; Contributed by Michael Meissner meissner@linux.vnet.ibm.com

;; This file is part of GCC.

;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published ;; by the Free Software Foundation; either version 3, or (at your ;; option) any later version.

;; GCC is distributed in the hope that it will be useful, but WITHOUT ;; ANY WARRANTY; without even the implied warranty of MERCHANTABILITY ;; or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public ;; License for more details.

;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/.

;; Vector int modes (define_mode_iterator VEC_I [V16QI V8HI V4SI V2DI])

;; Vector int modes for parity (define_mode_iterator VEC_IP [V8HI V4SI V2DI V1TI TI])

;; Vector float modes (define_mode_iterator VEC_F [V4SF V2DF])

;; Vector arithmetic modes (define_mode_iterator VEC_A [V16QI V8HI V4SI V2DI V4SF V2DF])

;; Vector modes that need alginment via permutes (define_mode_iterator VEC_K [V16QI V8HI V4SI V4SF])

;; Vector logical modes (define_mode_iterator VEC_L [V16QI V8HI V4SI V2DI V4SF V2DF V1TI TI KF TF])

;; Vector modes for moves. Don't do TImode or TFmode here, since their ;; moves are handled elsewhere. (define_mode_iterator VEC_M [V16QI V8HI V4SI V2DI V4SF V2DF V1TI KF])

;; Vector modes for types that don't need a realignment under VSX (define_mode_iterator VEC_N [V4SI V4SF V2DI V2DF V1TI KF TF])

;; Vector comparison modes (define_mode_iterator VEC_C [V16QI V8HI V4SI V2DI V4SF V2DF])

;; Vector init/extract modes (define_mode_iterator VEC_E [V16QI V8HI V4SI V2DI V4SF V2DF])

;; Vector modes for 64-bit base types (define_mode_iterator VEC_64 [V2DI V2DF])

;; Vector integer modes (define_mode_iterator VI [V4SI V8HI V16QI])

;; Base type from vector mode (define_mode_attr VEC_base [(V16QI “QI”) (V8HI “HI”) (V4SI “SI”) (V2DI “DI”) (V4SF “SF”) (V2DF “DF”) (V1TI “TI”) (TI “TI”)])

;; As above, but in lower case (define_mode_attr VEC_base_l [(V16QI “qi”) (V8HI “hi”) (V4SI “si”) (V2DI “di”) (V4SF “sf”) (V2DF “df”) (V1TI “ti”) (TI “ti”)])

;; Same size integer type for floating point data (define_mode_attr VEC_int [(V4SF “v4si”) (V2DF “v2di”)])

(define_mode_attr VEC_INT [(V4SF “V4SI”) (V2DF “V2DI”)])

;; constants for unspec (define_c_enum “unspec” [UNSPEC_PREDICATE UNSPEC_REDUC UNSPEC_NEZ_P])

;; Vector reduction code iterators (define_code_iterator VEC_reduc [plus smin smax])

(define_code_attr VEC_reduc_name [(plus “plus”) (smin “smin”) (smax “smax”)])

(define_code_attr VEC_reduc_rtx [(plus “add”) (smin “smin”) (smax “smax”)])

;; Vector move instructions. Little-endian VSX loads and stores require ;; special handling to circumvent “element endianness.” (define_expand “mov” [(set (match_operand:VEC_M 0 “nonimmediate_operand”) (match_operand:VEC_M 1 “any_operand”))] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” { if (can_create_pseudo_p ()) { if (CONSTANT_P (operands[1])) { if (FLOAT128_VECTOR_P (mode)) { if (!easy_fp_constant (operands[1], mode)) operands[1] = force_const_mem (mode, operands[1]); } else if (!easy_vector_constant (operands[1], mode)) operands[1] = force_const_mem (mode, operands[1]); }

  if (!vlogical_operand (operands[0], <MODE>mode)
  && !vlogical_operand (operands[1], <MODE>mode))
operands[1] = force_reg (<MODE>mode, operands[1]);
}

/* When generating load/store instructions to/from VSX registers on pre-power9 hardware in little endian mode, we need to emit register permute instructions to byte swap the contents, since the VSX load/store instructions do not include a byte swap as part of their operation. Altivec loads and stores have no such problem, so we skip them below. */ if (!BYTES_BIG_ENDIAN && VECTOR_MEM_VSX_P (mode) && !TARGET_P9_VECTOR && !gpr_or_gpr_p (operands[0], operands[1]) && ((memory_operand (operands[0], mode) && !altivec_indexed_or_indirect_operand(operands[0], mode)) ^ (memory_operand (operands[1], mode) && !altivec_indexed_or_indirect_operand(operands[1], mode)))) { rs6000_emit_le_vsx_move (operands[0], operands[1], mode); DONE; } })

;; Generic vector floating point load/store instructions. These will match ;; insns defined in vsx.md or altivec.md depending on the switches. (define_expand “vector_load_” [(set (match_operand:VEC_M 0 “vfloat_operand”) (match_operand:VEC_M 1 “memory_operand”))] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_store_” [(set (match_operand:VEC_M 0 “memory_operand”) (match_operand:VEC_M 1 “vfloat_operand”))] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” "")

;; Splits if a GPR register was chosen for the move (define_split [(set (match_operand:VEC_L 0 “nonimmediate_operand”) (match_operand:VEC_L 1 “input_operand”))] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode) && reload_completed && gpr_or_gpr_p (operands[0], operands[1]) && !direct_move_p (operands[0], operands[1]) && !quad_load_store_p (operands[0], operands[1])” [(pc)] { rs6000_split_multireg_move (operands[0], operands[1]); DONE; })

;; Generic floating point vector arithmetic support (define_expand “add3” [(set (match_operand:VEC_F 0 “vfloat_operand”) (plus:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “sub3” [(set (match_operand:VEC_F 0 “vfloat_operand”) (minus:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “mul3” [(set (match_operand:VEC_F 0 “vfloat_operand”) (mult:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_mulv4sf3 (operands[0], operands[1], operands[2])); DONE; } })

(define_expand “div3” [(set (match_operand:VEC_F 0 “vfloat_operand”) (div:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_VSX_P (mode)” { if (RS6000_RECIP_AUTO_RE_P (mode) && can_create_pseudo_p () && flag_finite_math_only && !flag_trapping_math && flag_reciprocal_math) { rs6000_emit_swdiv (operands[0], operands[1], operands[2], true); DONE; } })

(define_expand “neg2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (neg:VEC_F (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_negv4sf2 (operands[0], operands[1])); DONE; } })

(define_expand “abs2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (abs:VEC_F (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_absv4sf2 (operands[0], operands[1])); DONE; } })

(define_expand “smin3” [(set (match_operand:VEC_F 0 “register_operand”) (smin:VEC_F (match_operand:VEC_F 1 “register_operand”) (match_operand:VEC_F 2 “register_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “smax3” [(set (match_operand:VEC_F 0 “register_operand”) (smax:VEC_F (match_operand:VEC_F 1 “register_operand”) (match_operand:VEC_F 2 “register_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “sqrt2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (sqrt:VEC_F (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_VSX_P (mode)” { if (mode == V4SFmode && !optimize_function_for_size_p (cfun) && flag_finite_math_only && !flag_trapping_math && flag_unsafe_math_optimizations) { rs6000_emit_swsqrt (operands[0], operands[1], 0); DONE; } })

(define_expand “rsqrte2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unspec:VEC_F [(match_operand:VEC_F 1 “vfloat_operand”)] UNSPEC_RSQRT))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “re2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unspec:VEC_F [(match_operand:VEC_F 1 “vfloat_operand”)] UNSPEC_FRES))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “ftrunc2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (fix:VEC_F (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_ceil2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unspec:VEC_F [(match_operand:VEC_F 1 “vfloat_operand”)] UNSPEC_FRIP))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_floor2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unspec:VEC_F [(match_operand:VEC_F 1 “vfloat_operand”)] UNSPEC_FRIM))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_btrunc2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (fix:VEC_F (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_copysign3” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unspec:VEC_F [(match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)] UNSPEC_COPYSIGN))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_copysign_v4sf3 (operands[0], operands[1], operands[2])); DONE; } })

;; Vector comparisons (define_expand “vcond” [(set (match_operand:VEC_F 0 “vfloat_operand”) (if_then_else:VEC_F (match_operator 3 “comparison_operator” [(match_operand:VEC_F 4 “vfloat_operand”) (match_operand:VEC_F 5 “vfloat_operand”)]) (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcond” [(set (match_operand:VEC_I 0 “vint_operand”) (if_then_else:VEC_I (match_operator 3 “comparison_operator” [(match_operand:VEC_I 4 “vint_operand”) (match_operand:VEC_I 5 “vint_operand”)]) (match_operand:VEC_I 1 “vector_int_reg_or_same_bit”) (match_operand:VEC_I 2 “vector_int_reg_or_same_bit”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcondv4sfv4si” [(set (match_operand:V4SF 0 “vfloat_operand”) (if_then_else:V4SF (match_operator 3 “comparison_operator” [(match_operand:V4SI 4 “vint_operand”) (match_operand:V4SI 5 “vint_operand”)]) (match_operand:V4SF 1 “vfloat_operand”) (match_operand:V4SF 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcondv4siv4sf” [(set (match_operand:V4SI 0 “vint_operand”) (if_then_else:V4SI (match_operator 3 “comparison_operator” [(match_operand:V4SF 4 “vfloat_operand”) (match_operand:V4SF 5 “vfloat_operand”)]) (match_operand:V4SI 1 “vint_operand”) (match_operand:V4SI 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcondv2dfv2di” [(set (match_operand:V2DF 0 “vfloat_operand”) (if_then_else:V2DF (match_operator 3 “comparison_operator” [(match_operand:V2DI 4 “vint_operand”) (match_operand:V2DI 5 “vint_operand”)]) (match_operand:V2DF 1 “vfloat_operand”) (match_operand:V2DF 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcondv2div2df” [(set (match_operand:V2DI 0 “vint_operand”) (if_then_else:V2DI (match_operator 3 “comparison_operator” [(match_operand:V2DF 4 “vfloat_operand”) (match_operand:V2DF 5 “vfloat_operand”)]) (match_operand:V2DI 1 “vint_operand”) (match_operand:V2DI 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vcondu” [(set (match_operand:VEC_I 0 “vint_operand”) (if_then_else:VEC_I (match_operator 3 “comparison_operator” [(match_operand:VEC_I 4 “vint_operand”) (match_operand:VEC_I 5 “vint_operand”)]) (match_operand:VEC_I 1 “vector_int_reg_or_same_bit”) (match_operand:VEC_I 2 “vector_int_reg_or_same_bit”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vconduv4sfv4si” [(set (match_operand:V4SF 0 “vfloat_operand”) (if_then_else:V4SF (match_operator 3 “comparison_operator” [(match_operand:V4SI 4 “vint_operand”) (match_operand:V4SI 5 “vint_operand”)]) (match_operand:V4SF 1 “vfloat_operand”) (match_operand:V4SF 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode) && VECTOR_UNIT_ALTIVEC_P (V4SImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vconduv2dfv2di” [(set (match_operand:V2DF 0 “vfloat_operand”) (if_then_else:V2DF (match_operator 3 “comparison_operator” [(match_operand:V2DI 4 “vint_operand”) (match_operand:V2DI 5 “vint_operand”)]) (match_operand:V2DF 1 “vfloat_operand”) (match_operand:V2DF 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V2DImode)” { if (rs6000_emit_vector_cond_expr (operands[0], operands[1], operands[2], operands[3], operands[4], operands[5])) DONE; else FAIL; })

(define_expand “vector_eq” [(set (match_operand:VEC_C 0 “vlogical_operand”) (eq:VEC_C (match_operand:VEC_C 1 “vlogical_operand”) (match_operand:VEC_C 2 “vlogical_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_gt” [(set (match_operand:VEC_C 0 “vlogical_operand”) (gt:VEC_C (match_operand:VEC_C 1 “vlogical_operand”) (match_operand:VEC_C 2 “vlogical_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_ge” [(set (match_operand:VEC_F 0 “vlogical_operand”) (ge:VEC_F (match_operand:VEC_F 1 “vlogical_operand”) (match_operand:VEC_F 2 “vlogical_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

; >= for integer vectors: swap operands and apply not-greater-than (define_expand “vector_nlt” [(set (match_operand:VEC_I 3 “vlogical_operand”) (gt:VEC_I (match_operand:VEC_I 2 “vlogical_operand”) (match_operand:VEC_I 1 “vlogical_operand”))) (set (match_operand:VEC_I 0 “vlogical_operand”) (not:VEC_I (match_dup 3)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { operands[3] = gen_reg_rtx_and_attrs (operands[0]); })

(define_expand “vector_gtu” [(set (match_operand:VEC_I 0 “vint_operand”) (gtu:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

; >= for integer vectors: swap operands and apply not-greater-than (define_expand “vector_nltu” [(set (match_operand:VEC_I 3 “vlogical_operand”) (gtu:VEC_I (match_operand:VEC_I 2 “vlogical_operand”) (match_operand:VEC_I 1 “vlogical_operand”))) (set (match_operand:VEC_I 0 “vlogical_operand”) (not:VEC_I (match_dup 3)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { operands[3] = gen_reg_rtx_and_attrs (operands[0]); })

(define_expand “vector_geu” [(set (match_operand:VEC_I 0 “vint_operand”) (geu:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

; <= for integer vectors: apply not-greater-than (define_expand “vector_ngt” [(set (match_operand:VEC_I 3 “vlogical_operand”) (gt:VEC_I (match_operand:VEC_I 1 “vlogical_operand”) (match_operand:VEC_I 2 “vlogical_operand”))) (set (match_operand:VEC_I 0 “vlogical_operand”) (not:VEC_I (match_dup 3)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { operands[3] = gen_reg_rtx_and_attrs (operands[0]); })

(define_expand “vector_ngtu” [(set (match_operand:VEC_I 3 “vlogical_operand”) (gtu:VEC_I (match_operand:VEC_I 1 “vlogical_operand”) (match_operand:VEC_I 2 “vlogical_operand”))) (set (match_operand:VEC_I 0 “vlogical_operand”) (not:VEC_I (match_dup 3)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { operands[3] = gen_reg_rtx_and_attrs (operands[0]); })

(define_insn_and_split “*vector_uneq” [(set (match_operand:VEC_F 0 “vfloat_operand”) (uneq:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “#” "" [(set (match_dup 3) (gt:VEC_F (match_dup 1) (match_dup 2))) (set (match_dup 4) (gt:VEC_F (match_dup 2) (match_dup 1))) (set (match_dup 0) (and:VEC_F (not:VEC_F (match_dup 3)) (not:VEC_F (match_dup 4))))] { operands[3] = gen_reg_rtx (mode); operands[4] = gen_reg_rtx (mode); })

(define_insn_and_split “*vector_ltgt” [(set (match_operand:VEC_F 0 “vfloat_operand”) (ltgt:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “#” "" [(set (match_dup 3) (gt:VEC_F (match_dup 1) (match_dup 2))) (set (match_dup 4) (gt:VEC_F (match_dup 2) (match_dup 1))) (set (match_dup 0) (ior:VEC_F (match_dup 3) (match_dup 4)))] { operands[3] = gen_reg_rtx (mode); operands[4] = gen_reg_rtx (mode); })

(define_insn_and_split “*vector_ordered” [(set (match_operand:VEC_F 0 “vfloat_operand”) (ordered:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “#” "" [(set (match_dup 3) (ge:VEC_F (match_dup 1) (match_dup 2))) (set (match_dup 4) (ge:VEC_F (match_dup 2) (match_dup 1))) (set (match_dup 0) (ior:VEC_F (match_dup 3) (match_dup 4)))] { operands[3] = gen_reg_rtx (mode); operands[4] = gen_reg_rtx (mode); })

(define_insn_and_split “*vector_unordered” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unordered:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “#” "" [(set (match_dup 3) (ge:VEC_F (match_dup 1) (match_dup 2))) (set (match_dup 4) (ge:VEC_F (match_dup 2) (match_dup 1))) (set (match_dup 0) (and:VEC_F (not:VEC_F (match_dup 3)) (not:VEC_F (match_dup 4))))] { operands[3] = gen_reg_rtx (mode); operands[4] = gen_reg_rtx (mode); })

;; Note the arguments for _builtin_altivec_vsel are op2, op1, mask ;; which is in the reverse order that we want (define_expand "vector_select" [(set (match_operand:VEC_L 0 “vlogical_operand”) (if_then_else:VEC_L (ne:CC (match_operand:VEC_L 3 “vlogical_operand”) (match_dup 4)) (match_operand:VEC_L 2 “vlogical_operand”) (match_operand:VEC_L 1 “vlogical_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “operands[4] = CONST0_RTX (mode);”)

(define_expand “vector_select__uns” [(set (match_operand:VEC_L 0 “vlogical_operand”) (if_then_else:VEC_L (ne:CCUNS (match_operand:VEC_L 3 “vlogical_operand”) (match_dup 4)) (match_operand:VEC_L 2 “vlogical_operand”) (match_operand:VEC_L 1 “vlogical_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” “operands[4] = CONST0_RTX (mode);”)

;; Expansions that compare vectors producing a vector result and a predicate, ;; setting CR6 to indicate a combined status (define_expand “vector_eq__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_A 1 “vlogical_operand”) (match_operand:VEC_A 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_operand:VEC_A 0 “vlogical_operand”) (eq:VEC_A (match_dup 1) (match_dup 2)))])] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_all_ne built-in functions on Power9. (define_expand “vector_ne__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ne:CC (match_operand:VI 1 “vlogical_operand”) (match_operand:VI 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (ne:VI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (lt:SI (reg:CC CR6_REGNO) (const_int 0)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (mode); })

;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_any_eq built-in functions on Power9. (define_expand “vector_ae__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ne:CC (match_operand:VI 1 “vlogical_operand”) (match_operand:VI 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (ne:VI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (lt:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (mode); })

;; This expansion handles the V16QI, V8HI, and V4SI modes in the ;; implementation of the vec_all_nez and vec_any_eqz built-in ;; functions on Power9. (define_expand “vector_nez__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(unspec:VI [(match_operand:VI 1 “vlogical_operand”) (match_operand:VI 2 “vlogical_operand”)] UNSPEC_NEZ_P)] UNSPEC_PREDICATE)) (set (match_operand:VI 0 “vlogical_operand”) (unspec:VI [(match_dup 1) (match_dup 2)] UNSPEC_NEZ_P))])] “TARGET_P9_VECTOR” "")

;; This expansion handles the V2DI mode in the implementation of the ;; vec_all_ne built-in function on Power9. ;; ;; Since the Power9 “xvcmpne.” instruction does not support DImode, ;; this expands into the same rtl that would be used for the Power8 ;; architecture. (define_expand “vector_ne_v2di_p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V2DI 1 “vlogical_operand”) (match_operand:V2DI 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V2DI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (V2DImode); })

;; This expansion handles the V2DI mode in the implementation of the ;; vec_any_eq built-in function on Power9. ;; ;; Since the Power9 “xvcmpne.” instruction does not support DImode, ;; this expands into the same rtl that would be used for the Power8 ;; architecture. (define_expand “vector_ae_v2di_p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:V2DI 1 “vlogical_operand”) (match_operand:V2DI 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:V2DI (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (V2DImode); })

;; This expansion handles the V4SF and V2DF modes in the Power9 ;; implementation of the vec_all_ne built-in functions. Note that the ;; expansions for this pattern with these modes makes no use of power9- ;; specific instructions since there are no new power9 instructions ;; for vector compare not equal with floating point arguments. (define_expand “vector_ne__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_F 1 “vlogical_operand”) (match_operand:VEC_F 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:VEC_F (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (mode); })

;; This expansion handles the V4SF and V2DF modes in the Power9 ;; implementation of the vec_any_eq built-in functions. Note that the ;; expansions for this pattern with these modes makes no use of power9- ;; specific instructions since there are no new power9 instructions ;; for vector compare not equal with floating point arguments. (define_expand “vector_ae__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(eq:CC (match_operand:VEC_F 1 “vlogical_operand”) (match_operand:VEC_F 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_dup 3) (eq:VEC_F (match_dup 1) (match_dup 2)))]) (set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] “TARGET_P9_VECTOR” { operands[3] = gen_reg_rtx (mode); })

(define_expand “vector_gt__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(gt:CC (match_operand:VEC_A 1 “vlogical_operand”) (match_operand:VEC_A 2 “vlogical_operand”))] UNSPEC_PREDICATE)) (set (match_operand:VEC_A 0 “vlogical_operand”) (gt:VEC_A (match_dup 1) (match_dup 2)))])] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_ge__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(ge:CC (match_operand:VEC_F 1 “vfloat_operand”) (match_operand:VEC_F 2 “vfloat_operand”))] UNSPEC_PREDICATE)) (set (match_operand:VEC_F 0 “vfloat_operand”) (ge:VEC_F (match_dup 1) (match_dup 2)))])] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

(define_expand “vector_gtu__p” [(parallel [(set (reg:CC CR6_REGNO) (unspec:CC [(gtu:CC (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”))] UNSPEC_PREDICATE)) (set (match_operand:VEC_I 0 “vlogical_operand”) (gtu:VEC_I (match_dup 1) (match_dup 2)))])] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

;; AltiVec/VSX predicates.

;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals zero (aka __CR6_EQ in altivec.h). (define_expand “cr6_test_for_zero” [(set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0)))] “TARGET_ALTIVEC || TARGET_VSX” "")

;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals one (aka __CR6_EQ_REV in altivec.h). (define_expand “cr6_test_for_zero_reverse” [(set (match_operand:SI 0 “register_operand” “=r”) (eq:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] “TARGET_ALTIVEC || TARGET_VSX” "")

;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals two (aka __CR6_LT in altivec.h). (define_expand “cr6_test_for_lt” [(set (match_operand:SI 0 “register_operand” “=r”) (lt:SI (reg:CC CR6_REGNO) (const_int 0)))] “TARGET_ALTIVEC || TARGET_VSX” "")

;; This expansion is triggered during expansion of predicate built-in ;; functions (built-ins defined with the RS6000_BUILTIN_P macro) by the ;; altivec_expand_predicate_builtin() function when the value of the ;; integer constant first argument equals three ;; (aka __CR6_LT_REV in altivec.h). (define_expand “cr6_test_for_lt_reverse” [(set (match_operand:SI 0 “register_operand” “=r”) (lt:SI (reg:CC CR6_REGNO) (const_int 0))) (set (match_dup 0) (xor:SI (match_dup 0) (const_int 1)))] “TARGET_ALTIVEC || TARGET_VSX” "")

;; Vector count leading zeros (define_expand “clz2” [(set (match_operand:VEC_I 0 “register_operand”) (clz:VEC_I (match_operand:VEC_I 1 “register_operand”)))] “TARGET_P8_VECTOR”)

;; Vector count trailing zeros (define_expand “ctz2” [(set (match_operand:VEC_I 0 “register_operand”) (ctz:VEC_I (match_operand:VEC_I 1 “register_operand”)))] “TARGET_P9_VECTOR”)

;; Vector population count (define_expand “popcount2” [(set (match_operand:VEC_I 0 “register_operand”) (popcount:VEC_I (match_operand:VEC_I 1 “register_operand”)))] “TARGET_P8_VECTOR”)

;; Vector parity (define_expand “parity2” [(set (match_operand:VEC_IP 0 “register_operand”) (parity:VEC_IP (match_operand:VEC_IP 1 “register_operand”)))] “TARGET_P9_VECTOR”)

;; Same size conversions (define_expand “float<VEC_int>2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (float:VEC_F (match_operand:<VEC_INT> 1 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vcfsx (operands[0], operands[1], const0_rtx)); DONE; } })

(define_expand “floatuns<VEC_int>2” [(set (match_operand:VEC_F 0 “vfloat_operand”) (unsigned_float:VEC_F (match_operand:<VEC_INT> 1 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vcfux (operands[0], operands[1], const0_rtx)); DONE; } })

(define_expand “fix_trunc<VEC_int>2” [(set (match_operand:<VEC_INT> 0 “vint_operand”) (fix:<VEC_INT> (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vctsxs (operands[0], operands[1], const0_rtx)); DONE; } })

(define_expand “fixuns_trunc<VEC_int>2” [(set (match_operand:<VEC_INT> 0 “vint_operand”) (unsigned_fix:<VEC_INT> (match_operand:VEC_F 1 “vfloat_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” { if (mode == V4SFmode && VECTOR_UNIT_ALTIVEC_P (mode)) { emit_insn (gen_altivec_vctuxs (operands[0], operands[1], const0_rtx)); DONE; } })

;; Vector initialization, set, extract (define_expand “vec_init<VEC_base_l>” [(match_operand:VEC_E 0 “vlogical_operand”) (match_operand:VEC_E 1 "")] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” { rs6000_expand_vector_init (operands[0], operands[1]); DONE; })

(define_expand “vec_set” [(match_operand:VEC_E 0 “vlogical_operand”) (match_operand:<VEC_base> 1 “register_operand”) (match_operand 2 “const_int_operand”)] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” { rs6000_expand_vector_set (operands[0], operands[1], INTVAL (operands[2])); DONE; })

(define_expand “vec_extract<VEC_base_l>” [(match_operand:<VEC_base> 0 “register_operand”) (match_operand:VEC_E 1 “vlogical_operand”) (match_operand 2 “const_int_operand”)] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” { rs6000_expand_vector_extract (operands[0], operands[1], operands[2]); DONE; }) ;; Convert double word types to single word types (define_expand “vec_pack_trunc_v2df” [(match_operand:V4SF 0 “vfloat_operand”) (match_operand:V2DF 1 “vfloat_operand”) (match_operand:V2DF 2 “vfloat_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC” { rtx r1 = gen_reg_rtx (V4SFmode); rtx r2 = gen_reg_rtx (V4SFmode);

emit_insn (gen_vsx_xvcvdpsp (r1, operands[1])); emit_insn (gen_vsx_xvcvdpsp (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; })

(define_expand “vec_pack_sfix_trunc_v2df” [(match_operand:V4SI 0 “vint_operand”) (match_operand:V2DF 1 “vfloat_operand”) (match_operand:V2DF 2 “vfloat_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC” { rtx r1 = gen_reg_rtx (V4SImode); rtx r2 = gen_reg_rtx (V4SImode);

emit_insn (gen_vsx_xvcvdpsxws (r1, operands[1])); emit_insn (gen_vsx_xvcvdpsxws (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; })

(define_expand “vec_pack_ufix_trunc_v2df” [(match_operand:V4SI 0 “vint_operand”) (match_operand:V2DF 1 “vfloat_operand”) (match_operand:V2DF 2 “vfloat_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && TARGET_ALTIVEC” { rtx r1 = gen_reg_rtx (V4SImode); rtx r2 = gen_reg_rtx (V4SImode);

emit_insn (gen_vsx_xvcvdpuxws (r1, operands[1])); emit_insn (gen_vsx_xvcvdpuxws (r2, operands[2])); rs6000_expand_extract_even (operands[0], r1, r2); DONE; })

;; Convert single word types to double word (define_expand “vec_unpacks_hi_v4sf” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SF 1 “vfloat_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)” { rtx reg = gen_reg_rtx (V4SFmode);

rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvspdp (operands[0], reg)); DONE; })

(define_expand “vec_unpacks_lo_v4sf” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SF 1 “vfloat_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SFmode)” { rtx reg = gen_reg_rtx (V4SFmode);

rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvspdp (operands[0], reg)); DONE; })

(define_expand “vec_unpacks_float_hi_v4si” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SI 1 “vint_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)” { rtx reg = gen_reg_rtx (V4SImode);

rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvsxwdp (operands[0], reg)); DONE; })

(define_expand “vec_unpacks_float_lo_v4si” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SI 1 “vint_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)” { rtx reg = gen_reg_rtx (V4SImode);

rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvsxwdp (operands[0], reg)); DONE; })

(define_expand “vec_unpacku_float_hi_v4si” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SI 1 “vint_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)” { rtx reg = gen_reg_rtx (V4SImode);

rs6000_expand_interleave (reg, operands[1], operands[1], BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvuxwdp (operands[0], reg)); DONE; })

(define_expand “vec_unpacku_float_lo_v4si” [(match_operand:V2DF 0 “vfloat_operand”) (match_operand:V4SI 1 “vint_operand”)] “VECTOR_UNIT_VSX_P (V2DFmode) && VECTOR_UNIT_ALTIVEC_OR_VSX_P (V4SImode)” { rtx reg = gen_reg_rtx (V4SImode);

rs6000_expand_interleave (reg, operands[1], operands[1], !BYTES_BIG_ENDIAN); emit_insn (gen_vsx_xvcvuxwdp (operands[0], reg)); DONE; })

;; Align vector loads with a permute. (define_expand “vec_realign_load_” [(match_operand:VEC_K 0 “vlogical_operand”) (match_operand:VEC_K 1 “vlogical_operand”) (match_operand:VEC_K 2 “vlogical_operand”) (match_operand:V16QI 3 “vlogical_operand”)] “VECTOR_MEM_ALTIVEC_OR_VSX_P (mode)” { if (BYTES_BIG_ENDIAN) emit_insn (gen_altivec_vperm_ (operands[0], operands[1], operands[2], operands[3])); else { /* We have changed lvsr to lvsl, so to complete the transformation of vperm for LE, we must swap the inputs. */ rtx unspec = gen_rtx_UNSPEC (mode, gen_rtvec (3, operands[2], operands[1], operands[3]), UNSPEC_VPERM); emit_move_insn (operands[0], unspec); } DONE; })

;; Under VSX, vectors of 4/8 byte alignments do not need to be aligned ;; since the load already handles it. (define_expand “movmisalign” [(set (match_operand:VEC_N 0 “nonimmediate_operand”) (match_operand:VEC_N 1 “any_operand”))] “VECTOR_MEM_VSX_P (mode) && TARGET_ALLOW_MOVMISALIGN” "")

;; Vector shift right in bits. Currently supported ony for shift ;; amounts that can be expressed as byte shifts (divisible by 8). ;; General shift amounts can be supported using vsro + vsr. We're ;; not expecting to see these yet (the vectorizer currently ;; generates only shifts by a whole number of vector elements). ;; Note that the vec_shr operation is actually defined as ;; ‘shift toward element 0’ so is a shr for LE and shl for BE. (define_expand “vec_shr_” [(match_operand:VEC_L 0 “vlogical_operand”) (match_operand:VEC_L 1 “vlogical_operand”) (match_operand:QI 2 “reg_or_short_operand”)] “TARGET_ALTIVEC” { rtx bitshift = operands[2]; rtx shift; rtx insn; rtx zero_reg, op1, op2; HOST_WIDE_INT bitshift_val; HOST_WIDE_INT byteshift_val;

if (! CONSTANT_P (bitshift)) FAIL; bitshift_val = INTVAL (bitshift); if (bitshift_val & 0x7) FAIL; byteshift_val = (bitshift_val >> 3); zero_reg = gen_reg_rtx (mode); emit_move_insn (zero_reg, CONST0_RTX (mode)); if (!BYTES_BIG_ENDIAN) { byteshift_val = 16 - byteshift_val; op1 = zero_reg; op2 = operands[1]; } else { op1 = operands[1]; op2 = zero_reg; }

if (TARGET_VSX && (byteshift_val & 0x3) == 0) { shift = gen_rtx_CONST_INT (QImode, byteshift_val >> 2); insn = gen_vsx_xxsldwi_ (operands[0], op1, op2, shift); } else { shift = gen_rtx_CONST_INT (QImode, byteshift_val); insn = gen_altivec_vsldoi_ (operands[0], op1, op2, shift); }

emit_insn (insn); DONE; })

;; Expanders for rotate each element in a vector (define_expand “vrotl3” [(set (match_operand:VEC_I 0 “vint_operand”) (rotate:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

;; Expanders for arithmetic shift left on each vector element (define_expand “vashl3” [(set (match_operand:VEC_I 0 “vint_operand”) (ashift:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

;; Expanders for logical shift right on each vector element (define_expand “vlshr3” [(set (match_operand:VEC_I 0 “vint_operand”) (lshiftrt:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "")

;; Expanders for arithmetic shift right on each vector element (define_expand “vashr3” [(set (match_operand:VEC_I 0 “vint_operand”) (ashiftrt:VEC_I (match_operand:VEC_I 1 “vint_operand”) (match_operand:VEC_I 2 “vint_operand”)))] “VECTOR_UNIT_ALTIVEC_OR_VSX_P (mode)” "") ;; Vector reduction expanders for VSX ; The (VEC_reduc:... ; (op1) ; (unspec:... [(const_int 0)] UNSPEC_REDUC)) ; ; is to allow us to use a code iterator, but not completely list all of the ; vector rotates, etc. to prevent canonicalization

(define_expand “reduc_<VEC_reduc:VEC_reduc_name>scal<VEC_F:mode>” [(match_operand:<VEC_base> 0 “register_operand”) (VEC_reduc:VEC_F (match_operand:VEC_F 1 “vfloat_operand”) (unspec:VEC_F [(const_int 0)] UNSPEC_REDUC))] “VECTOR_UNIT_VSX_P (<VEC_F:MODE>mode)” { rtx vec = gen_reg_rtx (<VEC_F:MODE>mode); rtx elt = BYTES_BIG_ENDIAN ? gen_int_mode (GET_MODE_NUNITS (<VEC_F:MODE>mode) - 1, QImode) : const0_rtx; emit_insn (gen_vsx_reduc_<VEC_reduc:VEC_reduc_name><VEC_F:mode> (vec, operand1)); emit_insn (gen_vsx_extract<VEC_F:mode> (operand0, vec, elt)); DONE; })