| /* Copyright (C) 2002-2018 Free Software Foundation, Inc. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| GCC is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| Under Section 7 of GPL version 3, you are granted additional |
| permissions described in the GCC Runtime Library Exception, version |
| 3.1, as published by the Free Software Foundation. |
| |
| You should have received a copy of the GNU General Public License and |
| a copy of the GCC Runtime Library Exception along with this program; |
| see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Implemented from the specification included in the Intel C++ Compiler |
| User Guide and Reference, version 9.0. */ |
| |
| #ifndef NO_WARN_X86_INTRINSICS |
| /* This header is distributed to simplify porting x86_64 code that |
| makes explicit use of Intel intrinsics to powerpc64le. |
| It is the user's responsibility to determine if the results are |
| acceptable and make additional changes as necessary. |
| Note that much code that uses Intel intrinsics can be rewritten in |
| standard C or GNU C extensions, which are more portable and better |
| optimized across multiple targets. |
| |
| In the specific case of X86 SSE (__m128) intrinsics, the PowerPC |
| VMX/VSX ISA is a good match for vector float SIMD operations. |
| However scalar float operations in vector (XMM) registers require |
| the POWER8 VSX ISA (2.07) level. Also there are important |
| differences for data format and placement of float scalars in the |
| vector register. For PowerISA Scalar floats in FPRs (left most |
| 64-bits of the low 32 VSRs) is in double format, while X86_64 SSE |
| uses the right most 32-bits of the XMM. These differences require |
| extra steps on POWER to match the SSE scalar float semantics. |
| |
| Most SSE scalar float intrinsic operations can be performed more |
| efficiently as C language float scalar operations or optimized to |
| use vector SIMD operations. We recommend this for new applications. |
| |
| Another difference is the format and details of the X86_64 MXSCR vs |
| the PowerISA FPSCR / VSCR registers. We recommend applications |
| replace direct access to the MXSCR with the more portable <fenv.h> |
| Posix APIs. */ |
| #error "Please read comment above. Use -DNO_WARN_X86_INTRINSICS to disable this error." |
| #endif |
| |
| #ifndef _XMMINTRIN_H_INCLUDED |
| #define _XMMINTRIN_H_INCLUDED |
| |
| #include <altivec.h> |
| |
| /* Avoid collisions between altivec.h and strict adherence to C++ and |
| C11 standards. This should eventually be done inside altivec.h itself, |
| but only after testing a full distro build. */ |
| #if defined(__STRICT_ANSI__) && (defined(__cplusplus) || \ |
| (defined(__STDC_VERSION__) && \ |
| __STDC_VERSION__ >= 201112L)) |
| #undef vector |
| #undef pixel |
| #undef bool |
| #endif |
| |
| #include <assert.h> |
| |
| /* We need type definitions from the MMX header file. */ |
| #include <mmintrin.h> |
| |
| /* Get _mm_malloc () and _mm_free (). */ |
| #include <mm_malloc.h> |
| |
| /* The Intel API is flexible enough that we must allow aliasing with other |
| vector types, and their scalar components. */ |
| typedef float __m128 __attribute__ ((__vector_size__ (16), __may_alias__)); |
| |
| /* Internal data types for implementing the intrinsics. */ |
| typedef float __v4sf __attribute__ ((__vector_size__ (16))); |
| |
| /* Create an undefined vector. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_undefined_ps (void) |
| { |
| __m128 __Y = __Y; |
| return __Y; |
| } |
| |
| /* Create a vector of zeros. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_setzero_ps (void) |
| { |
| return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f }; |
| } |
| |
| /* Load four SPFP values from P. The address must be 16-byte aligned. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_load_ps (float const *__P) |
| { |
| assert(((unsigned long)__P & 0xfUL) == 0UL); |
| return ((__m128)vec_ld(0, (__v4sf*)__P)); |
| } |
| |
| /* Load four SPFP values from P. The address need not be 16-byte aligned. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_loadu_ps (float const *__P) |
| { |
| return (vec_vsx_ld(0, __P)); |
| } |
| |
| /* Load four SPFP values in reverse order. The address must be aligned. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_loadr_ps (float const *__P) |
| { |
| __v4sf __tmp; |
| __m128 result; |
| static const __vector unsigned char permute_vector = |
| { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16, |
| 0x17, 0x10, 0x11, 0x12, 0x13 }; |
| |
| __tmp = vec_ld (0, (__v4sf *) __P); |
| result = (__m128) vec_perm (__tmp, __tmp, permute_vector); |
| return result; |
| } |
| |
| /* Create a vector with all four elements equal to F. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_set1_ps (float __F) |
| { |
| return __extension__ (__m128)(__v4sf){ __F, __F, __F, __F }; |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_set_ps1 (float __F) |
| { |
| return _mm_set1_ps (__F); |
| } |
| |
| /* Create the vector [Z Y X W]. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_set_ps (const float __Z, const float __Y, const float __X, const float __W) |
| { |
| return __extension__ (__m128)(__v4sf){ __W, __X, __Y, __Z }; |
| } |
| |
| /* Create the vector [W X Y Z]. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_setr_ps (float __Z, float __Y, float __X, float __W) |
| { |
| return __extension__ (__m128)(__v4sf){ __Z, __Y, __X, __W }; |
| } |
| |
| /* Store four SPFP values. The address must be 16-byte aligned. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_store_ps (float *__P, __m128 __A) |
| { |
| assert(((unsigned long)__P & 0xfUL) == 0UL); |
| vec_st((__v4sf)__A, 0, (__v4sf*)__P); |
| } |
| |
| /* Store four SPFP values. The address need not be 16-byte aligned. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_storeu_ps (float *__P, __m128 __A) |
| { |
| *(__m128 *)__P = __A; |
| } |
| |
| /* Store four SPFP values in reverse order. The address must be aligned. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_storer_ps (float *__P, __m128 __A) |
| { |
| __v4sf __tmp; |
| static const __vector unsigned char permute_vector = |
| { 0x1C, 0x1D, 0x1E, 0x1F, 0x18, 0x19, 0x1A, 0x1B, 0x14, 0x15, 0x16, |
| 0x17, 0x10, 0x11, 0x12, 0x13 }; |
| |
| __tmp = (__m128) vec_perm (__A, __A, permute_vector); |
| |
| _mm_store_ps (__P, __tmp); |
| } |
| |
| /* Store the lower SPFP value across four words. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_store1_ps (float *__P, __m128 __A) |
| { |
| __v4sf __va = vec_splat((__v4sf)__A, 0); |
| _mm_store_ps (__P, __va); |
| } |
| |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_store_ps1 (float *__P, __m128 __A) |
| { |
| _mm_store1_ps (__P, __A); |
| } |
| |
| /* Create a vector with element 0 as F and the rest zero. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_set_ss (float __F) |
| { |
| return __extension__ (__m128)(__v4sf){ __F, 0.0f, 0.0f, 0.0f }; |
| } |
| |
| /* Sets the low SPFP value of A from the low value of B. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_move_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| |
| return (vec_sel ((__v4sf)__A, (__v4sf)__B, mask)); |
| } |
| |
| /* Create a vector with element 0 as *P and the rest zero. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_load_ss (float const *__P) |
| { |
| return _mm_set_ss (*__P); |
| } |
| |
| /* Stores the lower SPFP value. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_store_ss (float *__P, __m128 __A) |
| { |
| *__P = ((__v4sf)__A)[0]; |
| } |
| |
| /* Perform the respective operation on the lower SPFP (single-precision |
| floating-point) values of A and B; the upper three SPFP values are |
| passed through from A. */ |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_add_ss (__m128 __A, __m128 __B) |
| { |
| #ifdef _ARCH_PWR7 |
| __m128 a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| results. So to insure we don't generate spurious exceptions |
| (from the upper double values) we splat the lower double |
| before we to the operation. */ |
| a = vec_splat (__A, 0); |
| b = vec_splat (__B, 0); |
| c = a + b; |
| /* Then we merge the lower float result with the original upper |
| float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| #else |
| __A[0] = __A[0] + __B[0]; |
| return (__A); |
| #endif |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sub_ss (__m128 __A, __m128 __B) |
| { |
| #ifdef _ARCH_PWR7 |
| __m128 a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| results. So to insure we don't generate spurious exceptions |
| (from the upper double values) we splat the lower double |
| before we to the operation. */ |
| a = vec_splat (__A, 0); |
| b = vec_splat (__B, 0); |
| c = a - b; |
| /* Then we merge the lower float result with the original upper |
| float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| #else |
| __A[0] = __A[0] - __B[0]; |
| return (__A); |
| #endif |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_mul_ss (__m128 __A, __m128 __B) |
| { |
| #ifdef _ARCH_PWR7 |
| __m128 a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| results. So to insure we don't generate spurious exceptions |
| (from the upper double values) we splat the lower double |
| before we to the operation. */ |
| a = vec_splat (__A, 0); |
| b = vec_splat (__B, 0); |
| c = a * b; |
| /* Then we merge the lower float result with the original upper |
| float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| #else |
| __A[0] = __A[0] * __B[0]; |
| return (__A); |
| #endif |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_div_ss (__m128 __A, __m128 __B) |
| { |
| #ifdef _ARCH_PWR7 |
| __m128 a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| results. So to insure we don't generate spurious exceptions |
| (from the upper double values) we splat the lower double |
| before we to the operation. */ |
| a = vec_splat (__A, 0); |
| b = vec_splat (__B, 0); |
| c = a / b; |
| /* Then we merge the lower float result with the original upper |
| float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| #else |
| __A[0] = __A[0] / __B[0]; |
| return (__A); |
| #endif |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sqrt_ss (__m128 __A) |
| { |
| __m128 a, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper double values) we splat the lower double |
| * before we to the operation. */ |
| a = vec_splat (__A, 0); |
| c = vec_sqrt (a); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| } |
| |
| /* Perform the respective operation on the four SPFP values in A and B. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_add_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) ((__v4sf)__A + (__v4sf)__B); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sub_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) ((__v4sf)__A - (__v4sf)__B); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_mul_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) ((__v4sf)__A * (__v4sf)__B); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_div_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) ((__v4sf)__A / (__v4sf)__B); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sqrt_ps (__m128 __A) |
| { |
| return (vec_sqrt ((__v4sf)__A)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_rcp_ps (__m128 __A) |
| { |
| return (vec_re ((__v4sf)__A)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_rsqrt_ps (__m128 __A) |
| { |
| return (vec_rsqrte (__A)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_rcp_ss (__m128 __A) |
| { |
| __m128 a, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper double values) we splat the lower double |
| * before we to the operation. */ |
| a = vec_splat (__A, 0); |
| c = _mm_rcp_ps (a); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_rsqrt_ss (__m128 __A) |
| { |
| __m128 a, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower double) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper double values) we splat the lower double |
| * before we to the operation. */ |
| a = vec_splat (__A, 0); |
| c = vec_rsqrte (a); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return (vec_sel (__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_min_ss (__m128 __A, __m128 __B) |
| { |
| __v4sf a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower float) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper float values) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf)__A, 0); |
| b = vec_splat ((__v4sf)__B, 0); |
| c = vec_min (a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return (vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_max_ss (__m128 __A, __m128 __B) |
| { |
| __v4sf a, b, c; |
| static const __vector unsigned int mask = {0xffffffff, 0, 0, 0}; |
| /* PowerISA VSX does not allow partial (for just lower float) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper float values) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat (__A, 0); |
| b = vec_splat (__B, 0); |
| c = vec_max (a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return (vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_min_ps (__m128 __A, __m128 __B) |
| { |
| __m128 m = (__m128) vec_vcmpgtfp ((__v4sf) __B, (__v4sf) __A); |
| return vec_sel (__B, __A, m); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_max_ps (__m128 __A, __m128 __B) |
| { |
| __m128 m = (__m128) vec_vcmpgtfp ((__v4sf) __A, (__v4sf) __B); |
| return vec_sel (__B, __A, m); |
| } |
| |
| /* Perform logical bit-wise operations on 128-bit values. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_and_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_and ((__v4sf)__A, (__v4sf)__B)); |
| // return __builtin_ia32_andps (__A, __B); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_andnot_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_andc ((__v4sf)__B, (__v4sf)__A)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_or_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_or ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_xor_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_xor ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| /* Perform a comparison on the four SPFP values of A and B. For each |
| element, if the comparison is true, place a mask of all ones in the |
| result, otherwise a mask of zeros. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpeq_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmpeq ((__v4sf)__A,(__v4sf) __B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmplt_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmple_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpgt_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpge_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpneq_ps (__m128 __A, __m128 __B) |
| { |
| __v4sf temp = (__v4sf ) vec_cmpeq ((__v4sf) __A, (__v4sf)__B); |
| return ((__m128)vec_nor (temp, temp)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnlt_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmpge ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnle_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmpgt ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpngt_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmple ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnge_ps (__m128 __A, __m128 __B) |
| { |
| return ((__m128)vec_cmplt ((__v4sf)__A, (__v4sf)__B)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpord_ps (__m128 __A, __m128 __B) |
| { |
| __vector unsigned int a, b; |
| __vector unsigned int c, d; |
| static const __vector unsigned int float_exp_mask = |
| { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; |
| |
| a = (__vector unsigned int) vec_abs ((__v4sf)__A); |
| b = (__vector unsigned int) vec_abs ((__v4sf)__B); |
| c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a); |
| d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b); |
| return ((__m128 ) vec_and (c, d)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpunord_ps (__m128 __A, __m128 __B) |
| { |
| __vector unsigned int a, b; |
| __vector unsigned int c, d; |
| static const __vector unsigned int float_exp_mask = |
| { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; |
| |
| a = (__vector unsigned int) vec_abs ((__v4sf)__A); |
| b = (__vector unsigned int) vec_abs ((__v4sf)__B); |
| c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask); |
| d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask); |
| return ((__m128 ) vec_or (c, d)); |
| } |
| |
| /* Perform a comparison on the lower SPFP values of A and B. If the |
| comparison is true, place a mask of all ones in the result, otherwise a |
| mask of zeros. The upper three SPFP values are passed through from A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpeq_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpeq(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmplt_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmplt(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmple_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmple(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpgt_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpgt(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpge_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpge(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpneq_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpeq(a, b); |
| c = vec_nor (c, c); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnlt_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpge(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnle_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmpgt(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpngt_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we to the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmple(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpnge_ss (__m128 __A, __m128 __B) |
| { |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| __v4sf a, b, c; |
| /* PowerISA VMX does not allow partial (for just element 0) |
| * results. So to insure we don't generate spurious exceptions |
| * (from the upper elements) we splat the lower float |
| * before we do the operation. */ |
| a = vec_splat ((__v4sf) __A, 0); |
| b = vec_splat ((__v4sf) __B, 0); |
| c = (__v4sf) vec_cmplt(a, b); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpord_ss (__m128 __A, __m128 __B) |
| { |
| __vector unsigned int a, b; |
| __vector unsigned int c, d; |
| static const __vector unsigned int float_exp_mask = |
| { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| |
| a = (__vector unsigned int) vec_abs ((__v4sf)__A); |
| b = (__vector unsigned int) vec_abs ((__v4sf)__B); |
| c = (__vector unsigned int) vec_cmpgt (float_exp_mask, a); |
| d = (__vector unsigned int) vec_cmpgt (float_exp_mask, b); |
| c = vec_and (c, d); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask)); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cmpunord_ss (__m128 __A, __m128 __B) |
| { |
| __vector unsigned int a, b; |
| __vector unsigned int c, d; |
| static const __vector unsigned int float_exp_mask = |
| { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; |
| static const __vector unsigned int mask = |
| { 0xffffffff, 0, 0, 0 }; |
| |
| a = (__vector unsigned int) vec_abs ((__v4sf)__A); |
| b = (__vector unsigned int) vec_abs ((__v4sf)__B); |
| c = (__vector unsigned int) vec_cmpgt (a, float_exp_mask); |
| d = (__vector unsigned int) vec_cmpgt (b, float_exp_mask); |
| c = vec_or (c, d); |
| /* Then we merge the lower float result with the original upper |
| * float elements from __A. */ |
| return ((__m128)vec_sel ((__v4sf)__A, (__v4sf)c, mask)); |
| } |
| |
| /* Compare the lower SPFP values of A and B and return 1 if true |
| and 0 if false. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comieq_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] == __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comilt_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] < __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comile_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] <= __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comigt_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] > __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comige_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] >= __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_comineq_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] != __B[0]); |
| } |
| |
| /* FIXME |
| * The __mm_ucomi??_ss implementations below are exactly the same as |
| * __mm_comi??_ss because GCC for PowerPC only generates unordered |
| * compares (scalar and vector). |
| * Technically __mm_comieq_ss et al should be using the ordered |
| * compare and signal for QNaNs. |
| * The __mm_ucomieq_sd et all should be OK, as is. |
| */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomieq_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] == __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomilt_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] < __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomile_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] <= __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomigt_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] > __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomige_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] >= __B[0]); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_ucomineq_ss (__m128 __A, __m128 __B) |
| { |
| return (__A[0] != __B[0]); |
| } |
| |
| extern __inline float __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtss_f32 (__m128 __A) |
| { |
| return ((__v4sf)__A)[0]; |
| } |
| |
| /* Convert the lower SPFP value to a 32-bit integer according to the current |
| rounding mode. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtss_si32 (__m128 __A) |
| { |
| __m64 res = 0; |
| #ifdef _ARCH_PWR8 |
| __m128 vtmp; |
| __asm__( |
| "xxsldwi %x1,%x2,%x2,3;\n" |
| "xscvspdp %x1,%x1;\n" |
| "fctiw %1,%1;\n" |
| "mfvsrd %0,%x1;\n" |
| : "=r" (res), |
| "=&wi" (vtmp) |
| : "wa" (__A) |
| : ); |
| #else |
| res = __builtin_rint(__A[0]); |
| #endif |
| return (res); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvt_ss2si (__m128 __A) |
| { |
| return _mm_cvtss_si32 (__A); |
| } |
| |
| /* Convert the lower SPFP value to a 32-bit integer according to the |
| current rounding mode. */ |
| |
| /* Intel intrinsic. */ |
| extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtss_si64 (__m128 __A) |
| { |
| __m64 res = 0; |
| #ifdef _ARCH_PWR8 |
| __m128 vtmp; |
| __asm__( |
| "xxsldwi %x1,%x2,%x2,3;\n" |
| "xscvspdp %x1,%x1;\n" |
| "fctid %1,%1;\n" |
| "mfvsrd %0,%x1;\n" |
| : "=r" (res), |
| "=&wi" (vtmp) |
| : "wa" (__A) |
| : ); |
| #else |
| res = __builtin_llrint(__A[0]); |
| #endif |
| return (res); |
| } |
| |
| /* Microsoft intrinsic. */ |
| extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtss_si64x (__m128 __A) |
| { |
| return _mm_cvtss_si64 ((__v4sf) __A); |
| } |
| |
| /* Constants for use with _mm_prefetch. */ |
| enum _mm_hint |
| { |
| /* _MM_HINT_ET is _MM_HINT_T with set 3rd bit. */ |
| _MM_HINT_ET0 = 7, |
| _MM_HINT_ET1 = 6, |
| _MM_HINT_T0 = 3, |
| _MM_HINT_T1 = 2, |
| _MM_HINT_T2 = 1, |
| _MM_HINT_NTA = 0 |
| }; |
| |
| /* Loads one cache line from address P to a location "closer" to the |
| processor. The selector I specifies the type of prefetch operation. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_prefetch (const void *__P, enum _mm_hint __I) |
| { |
| /* Current PowerPC will ignores the hint parameters. */ |
| __builtin_prefetch (__P); |
| } |
| |
| /* Convert the two lower SPFP values to 32-bit integers according to the |
| current rounding mode. Return the integers in packed form. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtps_pi32 (__m128 __A) |
| { |
| /* Splat two lower SPFP values to both halves. */ |
| __v4sf temp, rounded; |
| __vector __m64 result; |
| |
| /* Splat two lower SPFP values to both halves. */ |
| temp = (__v4sf) vec_splat ((__vector long long)__A, 0); |
| rounded = vec_rint(temp); |
| result = (__vector __m64) vec_cts (rounded, 0); |
| |
| return ((__m64) __builtin_unpack_vector_int128 ((__vector __int128)result, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvt_ps2pi (__m128 __A) |
| { |
| return _mm_cvtps_pi32 (__A); |
| } |
| |
| /* Truncate the lower SPFP value to a 32-bit integer. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvttss_si32 (__m128 __A) |
| { |
| /* Extract the lower float element. */ |
| float temp = __A[0]; |
| /* truncate to 32-bit integer and return. */ |
| return temp; |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtt_ss2si (__m128 __A) |
| { |
| return _mm_cvttss_si32 (__A); |
| } |
| |
| /* Intel intrinsic. */ |
| extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvttss_si64 (__m128 __A) |
| { |
| /* Extract the lower float element. */ |
| float temp = __A[0]; |
| /* truncate to 32-bit integer and return. */ |
| return temp; |
| } |
| |
| /* Microsoft intrinsic. */ |
| extern __inline long long __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvttss_si64x (__m128 __A) |
| { |
| /* Extract the lower float element. */ |
| float temp = __A[0]; |
| /* truncate to 32-bit integer and return. */ |
| return temp; |
| } |
| |
| /* Truncate the two lower SPFP values to 32-bit integers. Return the |
| integers in packed form. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvttps_pi32 (__m128 __A) |
| { |
| __v4sf temp; |
| __vector __m64 result; |
| |
| /* Splat two lower SPFP values to both halves. */ |
| temp = (__v4sf) vec_splat ((__vector long long)__A, 0); |
| result = (__vector __m64) vec_cts (temp, 0); |
| |
| return ((__m64) __builtin_unpack_vector_int128 ((__vector __int128)result, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtt_ps2pi (__m128 __A) |
| { |
| return _mm_cvttps_pi32 (__A); |
| } |
| |
| /* Convert B to a SPFP value and insert it as element zero in A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtsi32_ss (__m128 __A, int __B) |
| { |
| float temp = __B; |
| __A[0] = temp; |
| |
| return __A; |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvt_si2ss (__m128 __A, int __B) |
| { |
| return _mm_cvtsi32_ss (__A, __B); |
| } |
| |
| /* Convert B to a SPFP value and insert it as element zero in A. */ |
| /* Intel intrinsic. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtsi64_ss (__m128 __A, long long __B) |
| { |
| float temp = __B; |
| __A[0] = temp; |
| |
| return __A; |
| } |
| |
| /* Microsoft intrinsic. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtsi64x_ss (__m128 __A, long long __B) |
| { |
| return _mm_cvtsi64_ss (__A, __B); |
| } |
| |
| /* Convert the two 32-bit values in B to SPFP form and insert them |
| as the two lower elements in A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtpi32_ps (__m128 __A, __m64 __B) |
| { |
| __vector signed int vm1; |
| __vector float vf1; |
| |
| vm1 = (__vector signed int) __builtin_pack_vector_int128 (__B, __B); |
| vf1 = (__vector float) vec_ctf (vm1, 0); |
| |
| return ((__m128) (__vector __m64) |
| { ((__vector __m64)vf1) [0], ((__vector __m64)__A) [1]}); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvt_pi2ps (__m128 __A, __m64 __B) |
| { |
| return _mm_cvtpi32_ps (__A, __B); |
| } |
| |
| /* Convert the four signed 16-bit values in A to SPFP form. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtpi16_ps (__m64 __A) |
| { |
| __vector signed short vs8; |
| __vector signed int vi4; |
| __vector float vf1; |
| |
| vs8 = (__vector signed short) __builtin_pack_vector_int128 (__A, __A); |
| vi4 = vec_vupklsh (vs8); |
| vf1 = (__vector float) vec_ctf (vi4, 0); |
| |
| return (__m128) vf1; |
| } |
| |
| /* Convert the four unsigned 16-bit values in A to SPFP form. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtpu16_ps (__m64 __A) |
| { |
| const __vector unsigned short zero = |
| { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| __vector unsigned short vs8; |
| __vector unsigned int vi4; |
| __vector float vf1; |
| |
| vs8 = (__vector unsigned short) __builtin_pack_vector_int128 (__A, __A); |
| vi4 = (__vector unsigned int) vec_vmrglh (vs8, zero); |
| vf1 = (__vector float) vec_ctf (vi4, 0); |
| |
| return (__m128) vf1; |
| } |
| |
| /* Convert the low four signed 8-bit values in A to SPFP form. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtpi8_ps (__m64 __A) |
| { |
| __vector signed char vc16; |
| __vector signed short vs8; |
| __vector signed int vi4; |
| __vector float vf1; |
| |
| vc16 = (__vector signed char) __builtin_pack_vector_int128 (__A, __A); |
| vs8 = vec_vupkhsb (vc16); |
| vi4 = vec_vupkhsh (vs8); |
| vf1 = (__vector float) vec_ctf (vi4, 0); |
| |
| return (__m128) vf1; |
| } |
| |
| /* Convert the low four unsigned 8-bit values in A to SPFP form. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| |
| _mm_cvtpu8_ps (__m64 __A) |
| { |
| const __vector unsigned char zero = |
| { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| __vector unsigned char vc16; |
| __vector unsigned short vs8; |
| __vector unsigned int vi4; |
| __vector float vf1; |
| |
| vc16 = (__vector unsigned char) __builtin_pack_vector_int128 (__A, __A); |
| vs8 = (__vector unsigned short) vec_vmrglb (vc16, zero); |
| vi4 = (__vector unsigned int) vec_vmrghh (vs8, |
| (__vector unsigned short) zero); |
| vf1 = (__vector float) vec_ctf (vi4, 0); |
| |
| return (__m128) vf1; |
| } |
| |
| /* Convert the four signed 32-bit values in A and B to SPFP form. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtpi32x2_ps(__m64 __A, __m64 __B) |
| { |
| __vector signed int vi4; |
| __vector float vf4; |
| |
| vi4 = (__vector signed int) __builtin_pack_vector_int128 (__B, __A); |
| vf4 = (__vector float) vec_ctf (vi4, 0); |
| return (__m128) vf4; |
| } |
| |
| /* Convert the four SPFP values in A to four signed 16-bit integers. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtps_pi16(__m128 __A) |
| { |
| __v4sf rounded; |
| __vector signed int temp; |
| __vector __m64 result; |
| |
| rounded = vec_rint(__A); |
| temp = vec_cts (rounded, 0); |
| result = (__vector __m64) vec_pack (temp, temp); |
| |
| return ((__m64) __builtin_unpack_vector_int128 ((__vector __int128)result, 0)); |
| } |
| |
| /* Convert the four SPFP values in A to four signed 8-bit integers. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_cvtps_pi8(__m128 __A) |
| { |
| __v4sf rounded; |
| __vector signed int tmp_i; |
| static const __vector signed int zero = {0, 0, 0, 0}; |
| __vector signed short tmp_s; |
| __vector signed char res_v; |
| __m64 result; |
| |
| rounded = vec_rint(__A); |
| tmp_i = vec_cts (rounded, 0); |
| tmp_s = vec_pack (tmp_i, zero); |
| res_v = vec_pack (tmp_s, tmp_s); |
| result = (__m64) __builtin_unpack_vector_int128 ((__vector __int128)res_v, 0); |
| |
| return (result); |
| } |
| |
| /* Selects four specific SPFP values from A and B based on MASK. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| |
| _mm_shuffle_ps (__m128 __A, __m128 __B, int const __mask) |
| { |
| unsigned long element_selector_10 = __mask & 0x03; |
| unsigned long element_selector_32 = (__mask >> 2) & 0x03; |
| unsigned long element_selector_54 = (__mask >> 4) & 0x03; |
| unsigned long element_selector_76 = (__mask >> 6) & 0x03; |
| static const unsigned int permute_selectors[4] = |
| { |
| #ifdef __LITTLE_ENDIAN__ |
| 0x03020100, 0x07060504, 0x0B0A0908, 0x0F0E0D0C |
| #elif __BIG_ENDIAN__ |
| 0x0C0D0E0F, 0x08090A0B, 0x04050607, 0x00010203 |
| #endif |
| }; |
| __vector unsigned int t; |
| |
| #ifdef __LITTLE_ENDIAN__ |
| t[0] = permute_selectors[element_selector_10]; |
| t[1] = permute_selectors[element_selector_32]; |
| t[2] = permute_selectors[element_selector_54] + 0x10101010; |
| t[3] = permute_selectors[element_selector_76] + 0x10101010; |
| #elif __BIG_ENDIAN__ |
| t[3] = permute_selectors[element_selector_10] + 0x10101010; |
| t[2] = permute_selectors[element_selector_32] + 0x10101010; |
| t[1] = permute_selectors[element_selector_54]; |
| t[0] = permute_selectors[element_selector_76]; |
| #endif |
| return vec_perm ((__v4sf) __A, (__v4sf)__B, (__vector unsigned char)t); |
| } |
| |
| /* Selects and interleaves the upper two SPFP values from A and B. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_unpackhi_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) vec_vmrglw ((__v4sf) __A, (__v4sf)__B); |
| } |
| |
| /* Selects and interleaves the lower two SPFP values from A and B. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_unpacklo_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) vec_vmrghw ((__v4sf) __A, (__v4sf)__B); |
| } |
| |
| /* Sets the upper two SPFP values with 64-bits of data loaded from P; |
| the lower two values are passed through from A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_loadh_pi (__m128 __A, __m64 const *__P) |
| { |
| __vector __m64 __a = (__vector __m64)__A; |
| __vector __m64 __p = vec_splats(*__P); |
| __a [1] = __p [1]; |
| |
| return (__m128)__a; |
| } |
| |
| /* Stores the upper two SPFP values of A into P. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_storeh_pi (__m64 *__P, __m128 __A) |
| { |
| __vector __m64 __a = (__vector __m64) __A; |
| |
| *__P = __a[1]; |
| } |
| |
| /* Moves the upper two values of B into the lower two values of A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_movehl_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) vec_mergel ((__vector __m64)__B, (__vector __m64)__A); |
| } |
| |
| /* Moves the lower two values of B into the upper two values of A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_movelh_ps (__m128 __A, __m128 __B) |
| { |
| return (__m128) vec_mergeh ((__vector __m64)__A, (__vector __m64)__B); |
| } |
| |
| /* Sets the lower two SPFP values with 64-bits of data loaded from P; |
| the upper two values are passed through from A. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_loadl_pi (__m128 __A, __m64 const *__P) |
| { |
| __vector __m64 __a = (__vector __m64)__A; |
| __vector __m64 __p = vec_splats(*__P); |
| __a [0] = __p [0]; |
| |
| return (__m128)__a; |
| } |
| |
| /* Stores the lower two SPFP values of A into P. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_storel_pi (__m64 *__P, __m128 __A) |
| { |
| __vector __m64 __a = (__vector __m64) __A; |
| |
| *__P = __a[0]; |
| } |
| |
| #ifdef _ARCH_PWR8 |
| /* Intrinsic functions that require PowerISA 2.07 minimum. */ |
| |
| /* Creates a 4-bit mask from the most significant bits of the SPFP values. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_movemask_ps (__m128 __A) |
| { |
| __vector __m64 result; |
| static const __vector unsigned int perm_mask = |
| { |
| #ifdef __LITTLE_ENDIAN__ |
| 0x00204060, 0x80808080, 0x80808080, 0x80808080 |
| #elif __BIG_ENDIAN__ |
| 0x80808080, 0x80808080, 0x80808080, 0x00204060 |
| #endif |
| }; |
| |
| result = (__vector __m64) vec_vbpermq ((__vector unsigned char) __A, |
| (__vector unsigned char) perm_mask); |
| |
| #ifdef __LITTLE_ENDIAN__ |
| return result[1]; |
| #elif __BIG_ENDIAN__ |
| return result[0]; |
| #endif |
| } |
| #endif /* _ARCH_PWR8 */ |
| |
| /* Create a vector with all four elements equal to *P. */ |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_load1_ps (float const *__P) |
| { |
| return _mm_set1_ps (*__P); |
| } |
| |
| extern __inline __m128 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_load_ps1 (float const *__P) |
| { |
| return _mm_load1_ps (__P); |
| } |
| |
| /* Extracts one of the four words of A. The selector N must be immediate. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_extract_pi16 (__m64 const __A, int const __N) |
| { |
| const int shiftr = (__N & 3) * 16; |
| |
| return ((__A >> shiftr) & 0xffff); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pextrw (__m64 const __A, int const __N) |
| { |
| return _mm_extract_pi16 (__A, __N); |
| } |
| |
| /* Inserts word D into one of four words of A. The selector N must be |
| immediate. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_insert_pi16 (__m64 const __A, int const __D, int const __N) |
| { |
| const int shiftl = (__N & 3) * 16; |
| const __m64 shiftD = (const __m64) __D << shiftl; |
| const __m64 mask = 0xffffUL << shiftl; |
| __m64 result = (__A & (~mask)) | (shiftD & mask); |
| |
| return (result); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pinsrw (__m64 const __A, int const __D, int const __N) |
| { |
| return _mm_insert_pi16 (__A, __D, __N); |
| } |
| |
| /* Compute the element-wise maximum of signed 16-bit values. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| |
| _mm_max_pi16 (__m64 __A, __m64 __B) |
| { |
| #if _ARCH_PWR8 |
| __vector signed short a, b, r; |
| __vector __bool short c; |
| |
| a = (__vector signed short)vec_splats (__A); |
| b = (__vector signed short)vec_splats (__B); |
| c = (__vector __bool short)vec_cmpgt (a, b); |
| r = vec_sel (b, a, c); |
| return (__builtin_unpack_vector_int128 ((__vector __int128_t)r, 0)); |
| #else |
| __m64_union m1, m2, res; |
| |
| m1.as_m64 = __A; |
| m2.as_m64 = __B; |
| |
| res.as_short[0] = |
| (m1.as_short[0] > m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0]; |
| res.as_short[1] = |
| (m1.as_short[1] > m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1]; |
| res.as_short[2] = |
| (m1.as_short[2] > m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2]; |
| res.as_short[3] = |
| (m1.as_short[3] > m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3]; |
| |
| return (__m64) res.as_m64; |
| #endif |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pmaxsw (__m64 __A, __m64 __B) |
| { |
| return _mm_max_pi16 (__A, __B); |
| } |
| |
| /* Compute the element-wise maximum of unsigned 8-bit values. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_max_pu8 (__m64 __A, __m64 __B) |
| { |
| #if _ARCH_PWR8 |
| __vector unsigned char a, b, r; |
| __vector __bool char c; |
| |
| a = (__vector unsigned char)vec_splats (__A); |
| b = (__vector unsigned char)vec_splats (__B); |
| c = (__vector __bool char)vec_cmpgt (a, b); |
| r = vec_sel (b, a, c); |
| return (__builtin_unpack_vector_int128 ((__vector __int128_t)r, 0)); |
| #else |
| __m64_union m1, m2, res; |
| long i; |
| |
| m1.as_m64 = __A; |
| m2.as_m64 = __B; |
| |
| |
| for (i = 0; i < 8; i++) |
| res.as_char[i] = |
| ((unsigned char) m1.as_char[i] > (unsigned char) m2.as_char[i]) ? |
| m1.as_char[i] : m2.as_char[i]; |
| |
| return (__m64) res.as_m64; |
| #endif |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pmaxub (__m64 __A, __m64 __B) |
| { |
| return _mm_max_pu8 (__A, __B); |
| } |
| |
| /* Compute the element-wise minimum of signed 16-bit values. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_min_pi16 (__m64 __A, __m64 __B) |
| { |
| #if _ARCH_PWR8 |
| __vector signed short a, b, r; |
| __vector __bool short c; |
| |
| a = (__vector signed short)vec_splats (__A); |
| b = (__vector signed short)vec_splats (__B); |
| c = (__vector __bool short)vec_cmplt (a, b); |
| r = vec_sel (b, a, c); |
| return (__builtin_unpack_vector_int128 ((__vector __int128_t)r, 0)); |
| #else |
| __m64_union m1, m2, res; |
| |
| m1.as_m64 = __A; |
| m2.as_m64 = __B; |
| |
| res.as_short[0] = |
| (m1.as_short[0] < m2.as_short[0]) ? m1.as_short[0] : m2.as_short[0]; |
| res.as_short[1] = |
| (m1.as_short[1] < m2.as_short[1]) ? m1.as_short[1] : m2.as_short[1]; |
| res.as_short[2] = |
| (m1.as_short[2] < m2.as_short[2]) ? m1.as_short[2] : m2.as_short[2]; |
| res.as_short[3] = |
| (m1.as_short[3] < m2.as_short[3]) ? m1.as_short[3] : m2.as_short[3]; |
| |
| return (__m64) res.as_m64; |
| #endif |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pminsw (__m64 __A, __m64 __B) |
| { |
| return _mm_min_pi16 (__A, __B); |
| } |
| |
| /* Compute the element-wise minimum of unsigned 8-bit values. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_min_pu8 (__m64 __A, __m64 __B) |
| { |
| #if _ARCH_PWR8 |
| __vector unsigned char a, b, r; |
| __vector __bool char c; |
| |
| a = (__vector unsigned char)vec_splats (__A); |
| b = (__vector unsigned char)vec_splats (__B); |
| c = (__vector __bool char)vec_cmplt (a, b); |
| r = vec_sel (b, a, c); |
| return (__builtin_unpack_vector_int128 ((__vector __int128_t)r, 0)); |
| #else |
| __m64_union m1, m2, res; |
| long i; |
| |
| m1.as_m64 = __A; |
| m2.as_m64 = __B; |
| |
| |
| for (i = 0; i < 8; i++) |
| res.as_char[i] = |
| ((unsigned char) m1.as_char[i] < (unsigned char) m2.as_char[i]) ? |
| m1.as_char[i] : m2.as_char[i]; |
| |
| return (__m64) res.as_m64; |
| #endif |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pminub (__m64 __A, __m64 __B) |
| { |
| return _mm_min_pu8 (__A, __B); |
| } |
| |
| /* Create an 8-bit mask of the signs of 8-bit values. */ |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_movemask_pi8 (__m64 __A) |
| { |
| unsigned long p = 0x0008101820283038UL; // permute control for sign bits |
| |
| return __builtin_bpermd (p, __A); |
| } |
| |
| extern __inline int __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pmovmskb (__m64 __A) |
| { |
| return _mm_movemask_pi8 (__A); |
| } |
| |
| /* Multiply four unsigned 16-bit values in A by four unsigned 16-bit values |
| in B and produce the high 16 bits of the 32-bit results. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_mulhi_pu16 (__m64 __A, __m64 __B) |
| { |
| __vector unsigned short a, b; |
| __vector unsigned short c; |
| __vector unsigned int w0, w1; |
| __vector unsigned char xform1 = { |
| 0x02, 0x03, 0x12, 0x13, 0x06, 0x07, 0x16, 0x17, |
| 0x0A, 0x0B, 0x1A, 0x1B, 0x0E, 0x0F, 0x1E, 0x1F |
| }; |
| |
| a = (__vector unsigned short)vec_splats (__A); |
| b = (__vector unsigned short)vec_splats (__B); |
| |
| w0 = vec_vmuleuh (a, b); |
| w1 = vec_vmulouh (a, b); |
| c = (__vector unsigned short)vec_perm (w0, w1, xform1); |
| |
| return (__builtin_unpack_vector_int128 ((__vector __int128)c, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pmulhuw (__m64 __A, __m64 __B) |
| { |
| return _mm_mulhi_pu16 (__A, __B); |
| } |
| |
| /* Return a combination of the four 16-bit values in A. The selector |
| must be an immediate. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_shuffle_pi16 (__m64 __A, int const __N) |
| { |
| unsigned long element_selector_10 = __N & 0x03; |
| unsigned long element_selector_32 = (__N >> 2) & 0x03; |
| unsigned long element_selector_54 = (__N >> 4) & 0x03; |
| unsigned long element_selector_76 = (__N >> 6) & 0x03; |
| static const unsigned short permute_selectors[4] = |
| { |
| #ifdef __LITTLE_ENDIAN__ |
| 0x0908, 0x0B0A, 0x0D0C, 0x0F0E |
| #elif __BIG_ENDIAN__ |
| 0x0607, 0x0405, 0x0203, 0x0001 |
| #endif |
| }; |
| __m64_union t; |
| __vector __m64 a, p, r; |
| |
| #ifdef __LITTLE_ENDIAN__ |
| t.as_short[0] = permute_selectors[element_selector_10]; |
| t.as_short[1] = permute_selectors[element_selector_32]; |
| t.as_short[2] = permute_selectors[element_selector_54]; |
| t.as_short[3] = permute_selectors[element_selector_76]; |
| #elif __BIG_ENDIAN__ |
| t.as_short[3] = permute_selectors[element_selector_10]; |
| t.as_short[2] = permute_selectors[element_selector_32]; |
| t.as_short[1] = permute_selectors[element_selector_54]; |
| t.as_short[0] = permute_selectors[element_selector_76]; |
| #endif |
| p = vec_splats (t.as_m64); |
| a = vec_splats (__A); |
| r = vec_perm (a, a, (__vector unsigned char)p); |
| return (__builtin_unpack_vector_int128 ((__vector __int128)r, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pshufw (__m64 __A, int const __N) |
| { |
| return _mm_shuffle_pi16 (__A, __N); |
| } |
| |
| /* Conditionally store byte elements of A into P. The high bit of each |
| byte in the selector N determines whether the corresponding byte from |
| A is stored. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_maskmove_si64 (__m64 __A, __m64 __N, char *__P) |
| { |
| __m64 hibit = 0x8080808080808080UL; |
| __m64 mask, tmp; |
| __m64 *p = (__m64*)__P; |
| |
| tmp = *p; |
| mask = _mm_cmpeq_pi8 ((__N & hibit), hibit); |
| tmp = (tmp & (~mask)) | (__A & mask); |
| *p = tmp; |
| } |
| |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_maskmovq (__m64 __A, __m64 __N, char *__P) |
| { |
| _mm_maskmove_si64 (__A, __N, __P); |
| } |
| |
| /* Compute the rounded averages of the unsigned 8-bit values in A and B. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_avg_pu8 (__m64 __A, __m64 __B) |
| { |
| __vector unsigned char a, b, c; |
| |
| a = (__vector unsigned char)vec_splats (__A); |
| b = (__vector unsigned char)vec_splats (__B); |
| c = vec_avg (a, b); |
| return (__builtin_unpack_vector_int128 ((__vector __int128)c, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pavgb (__m64 __A, __m64 __B) |
| { |
| return _mm_avg_pu8 (__A, __B); |
| } |
| |
| /* Compute the rounded averages of the unsigned 16-bit values in A and B. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_avg_pu16 (__m64 __A, __m64 __B) |
| { |
| __vector unsigned short a, b, c; |
| |
| a = (__vector unsigned short)vec_splats (__A); |
| b = (__vector unsigned short)vec_splats (__B); |
| c = vec_avg (a, b); |
| return (__builtin_unpack_vector_int128 ((__vector __int128)c, 0)); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_pavgw (__m64 __A, __m64 __B) |
| { |
| return _mm_avg_pu16 (__A, __B); |
| } |
| |
| /* Compute the sum of the absolute differences of the unsigned 8-bit |
| values in A and B. Return the value in the lower 16-bit word; the |
| upper words are cleared. */ |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sad_pu8 (__m64 __A, __m64 __B) |
| { |
| __vector unsigned char a, b; |
| __vector unsigned char vmin, vmax, vabsdiff; |
| __vector signed int vsum; |
| const __vector unsigned int zero = |
| { 0, 0, 0, 0 }; |
| unsigned short result; |
| |
| a = (__vector unsigned char) __builtin_pack_vector_int128 (0UL, __A); |
| b = (__vector unsigned char) __builtin_pack_vector_int128 (0UL, __B); |
| vmin = vec_min (a, b); |
| vmax = vec_max (a, b); |
| vabsdiff = vec_sub (vmax, vmin); |
| /* Sum four groups of bytes into integers. */ |
| vsum = (__vector signed int) vec_sum4s (vabsdiff, zero); |
| /* Sum across four integers with integer result. */ |
| vsum = vec_sums (vsum, (__vector signed int) zero); |
| /* The sum is in the right most 32-bits of the vector result. |
| Transfer to a GPR and truncate to 16 bits. */ |
| result = vsum[3]; |
| return (result); |
| } |
| |
| extern __inline __m64 __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _m_psadbw (__m64 __A, __m64 __B) |
| { |
| return _mm_sad_pu8 (__A, __B); |
| } |
| |
| /* Stores the data in A to the address P without polluting the caches. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_stream_pi (__m64 *__P, __m64 __A) |
| { |
| /* Use the data cache block touch for store transient. */ |
| __asm__ ( |
| " dcbtstt 0,%0" |
| : |
| : "b" (__P) |
| : "memory" |
| ); |
| *__P = __A; |
| } |
| |
| /* Likewise. The address must be 16-byte aligned. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_stream_ps (float *__P, __m128 __A) |
| { |
| /* Use the data cache block touch for store transient. */ |
| __asm__ ( |
| " dcbtstt 0,%0" |
| : |
| : "b" (__P) |
| : "memory" |
| ); |
| _mm_store_ps (__P, __A); |
| } |
| |
| /* Guarantees that every preceding store is globally visible before |
| any subsequent store. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_sfence (void) |
| { |
| /* Generate a light weight sync. */ |
| __atomic_thread_fence (__ATOMIC_RELEASE); |
| } |
| |
| /* The execution of the next instruction is delayed by an implementation |
| specific amount of time. The instruction does not modify the |
| architectural state. This is after the pop_options pragma because |
| it does not require SSE support in the processor--the encoding is a |
| nop on processors that do not support it. */ |
| extern __inline void __attribute__((__gnu_inline__, __always_inline__, __artificial__)) |
| _mm_pause (void) |
| { |
| /* There is no exact match with this construct, but the following is |
| close to the desired effect. */ |
| #if _ARCH_PWR8 |
| /* On power8 and later processors we can depend on Program Priority |
| (PRI) and associated "very low" PPI setting. Since we don't know |
| what PPI this thread is running at we: 1) save the current PRI |
| from the PPR SPR into a local GRP, 2) set the PRI to "very low* |
| via the special or 31,31,31 encoding. 3) issue an "isync" to |
| insure the PRI change takes effect before we execute any more |
| instructions. |
| Now we can execute a lwsync (release barrier) while we execute |
| this thread at "very low" PRI. Finally we restore the original |
| PRI and continue execution. */ |
| unsigned long __PPR; |
| |
| __asm__ volatile ( |
| " mfppr %0;" |
| " or 31,31,31;" |
| " isync;" |
| " lwsync;" |
| " isync;" |
| " mtppr %0;" |
| : "=r" (__PPR) |
| : |
| : "memory" |
| ); |
| #else |
| /* For older processor where we may not even have Program Priority |
| controls we can only depend on Heavy Weight Sync. */ |
| __atomic_thread_fence (__ATOMIC_SEQ_CST); |
| #endif |
| } |
| |
| /* Transpose the 4x4 matrix composed of row[0-3]. */ |
| #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ |
| do { \ |
| __v4sf __r0 = (row0), __r1 = (row1), __r2 = (row2), __r3 = (row3); \ |
| __v4sf __t0 = vec_vmrghw (__r0, __r1); \ |
| __v4sf __t1 = vec_vmrghw (__r2, __r3); \ |
| __v4sf __t2 = vec_vmrglw (__r0, __r1); \ |
| __v4sf __t3 = vec_vmrglw (__r2, __r3); \ |
| (row0) = (__v4sf)vec_mergeh ((__vector long long)__t0, \ |
| (__vector long long)__t1); \ |
| (row1) = (__v4sf)vec_mergel ((__vector long long)__t0, \ |
| (__vector long long)__t1); \ |
| (row2) = (__v4sf)vec_mergeh ((__vector long long)__t2, \ |
| (__vector long long)__t3); \ |
| (row3) = (__v4sf)vec_mergel ((__vector long long)__t2, \ |
| (__vector long long)__t3); \ |
| } while (0) |
| |
| /* For backward source compatibility. */ |
| //# include <emmintrin.h> |
| |
| #endif /* _XMMINTRIN_H_INCLUDED */ |