| /* Definitions of Tensilica's Xtensa target machine for GNU compiler. |
| Copyright (C) 2001-2018 Free Software Foundation, Inc. |
| Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| /* Get Xtensa configuration settings */ |
| #include "xtensa-config.h" |
| |
| /* External variables defined in xtensa.c. */ |
| |
| /* Macros used in the machine description to select various Xtensa |
| configuration options. */ |
| #ifndef XCHAL_HAVE_MUL32_HIGH |
| #define XCHAL_HAVE_MUL32_HIGH 0 |
| #endif |
| #ifndef XCHAL_HAVE_RELEASE_SYNC |
| #define XCHAL_HAVE_RELEASE_SYNC 0 |
| #endif |
| #ifndef XCHAL_HAVE_S32C1I |
| #define XCHAL_HAVE_S32C1I 0 |
| #endif |
| #ifndef XCHAL_HAVE_THREADPTR |
| #define XCHAL_HAVE_THREADPTR 0 |
| #endif |
| #ifndef XCHAL_HAVE_FP_POSTINC |
| #define XCHAL_HAVE_FP_POSTINC 0 |
| #endif |
| #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE |
| #define TARGET_DENSITY XCHAL_HAVE_DENSITY |
| #define TARGET_MAC16 XCHAL_HAVE_MAC16 |
| #define TARGET_MUL16 XCHAL_HAVE_MUL16 |
| #define TARGET_MUL32 XCHAL_HAVE_MUL32 |
| #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH |
| #define TARGET_DIV32 XCHAL_HAVE_DIV32 |
| #define TARGET_NSA XCHAL_HAVE_NSA |
| #define TARGET_MINMAX XCHAL_HAVE_MINMAX |
| #define TARGET_SEXT XCHAL_HAVE_SEXT |
| #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS |
| #define TARGET_HARD_FLOAT XCHAL_HAVE_FP |
| #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV |
| #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP |
| #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT |
| #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT |
| #define TARGET_HARD_FLOAT_POSTINC XCHAL_HAVE_FP_POSTINC |
| #define TARGET_ABS XCHAL_HAVE_ABS |
| #define TARGET_ADDX XCHAL_HAVE_ADDX |
| #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC |
| #define TARGET_S32C1I XCHAL_HAVE_S32C1I |
| #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS |
| #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR |
| #define TARGET_LOOPS XCHAL_HAVE_LOOPS |
| #define TARGET_WINDOWED_ABI (XSHAL_ABI == XTHAL_ABI_WINDOWED) |
| #define TARGET_DEBUG XCHAL_HAVE_DEBUG |
| #define TARGET_L32R XCHAL_HAVE_L32R |
| |
| #define TARGET_DEFAULT (MASK_SERIALIZE_VOLATILE) |
| |
| #ifndef HAVE_AS_TLS |
| #define HAVE_AS_TLS 0 |
| #endif |
| |
| |
| /* Target CPU builtins. */ |
| #define TARGET_CPU_CPP_BUILTINS() \ |
| do { \ |
| builtin_assert ("cpu=xtensa"); \ |
| builtin_assert ("machine=xtensa"); \ |
| builtin_define ("__xtensa__"); \ |
| builtin_define ("__XTENSA__"); \ |
| builtin_define (TARGET_WINDOWED_ABI ? \ |
| "__XTENSA_WINDOWED_ABI__" : "__XTENSA_CALL0_ABI__");\ |
| builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \ |
| if (!TARGET_HARD_FLOAT) \ |
| builtin_define ("__XTENSA_SOFT_FLOAT__"); \ |
| } while (0) |
| |
| #define CPP_SPEC " %(subtarget_cpp_spec) " |
| |
| #ifndef SUBTARGET_CPP_SPEC |
| #define SUBTARGET_CPP_SPEC "" |
| #endif |
| |
| #define EXTRA_SPECS \ |
| { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, |
| |
| /* Target machine storage layout */ |
| |
| /* Define this if most significant bit is lowest numbered |
| in instructions that operate on numbered bit-fields. */ |
| #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) |
| |
| /* Define this if most significant byte of a word is the lowest numbered. */ |
| #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) |
| |
| /* Define this if most significant word of a multiword number is the lowest. */ |
| #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0) |
| |
| #define MAX_BITS_PER_WORD 32 |
| |
| /* Width of a word, in units (bytes). */ |
| #define UNITS_PER_WORD 4 |
| #define MIN_UNITS_PER_WORD 4 |
| |
| /* Width of a floating point register. */ |
| #define UNITS_PER_FPREG 4 |
| |
| /* Size in bits of various types on the target machine. */ |
| #define INT_TYPE_SIZE 32 |
| #define SHORT_TYPE_SIZE 16 |
| #define LONG_TYPE_SIZE 32 |
| #define LONG_LONG_TYPE_SIZE 64 |
| #define FLOAT_TYPE_SIZE 32 |
| #define DOUBLE_TYPE_SIZE 64 |
| #define LONG_DOUBLE_TYPE_SIZE 64 |
| |
| /* Allocation boundary (in *bits*) for storing pointers in memory. */ |
| #define POINTER_BOUNDARY 32 |
| |
| /* Allocation boundary (in *bits*) for storing arguments in argument list. */ |
| #define PARM_BOUNDARY 32 |
| |
| /* Allocation boundary (in *bits*) for the code of a function. */ |
| #define FUNCTION_BOUNDARY 32 |
| |
| /* Alignment of field after 'int : 0' in a structure. */ |
| #define EMPTY_FIELD_BOUNDARY 32 |
| |
| /* Every structure's size must be a multiple of this. */ |
| #define STRUCTURE_SIZE_BOUNDARY 8 |
| |
| /* There is no point aligning anything to a rounder boundary than this. */ |
| #define BIGGEST_ALIGNMENT 128 |
| |
| /* Set this nonzero if move instructions will actually fail to work |
| when given unaligned data. */ |
| #define STRICT_ALIGNMENT 1 |
| |
| /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP |
| for QImode, because there is no 8-bit load from memory with sign |
| extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit |
| loads both with and without sign extension. */ |
| #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ |
| do { \ |
| if (GET_MODE_CLASS (MODE) == MODE_INT \ |
| && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \ |
| { \ |
| if ((MODE) == QImode) \ |
| (UNSIGNEDP) = 1; \ |
| (MODE) = SImode; \ |
| } \ |
| } while (0) |
| |
| /* Imitate the way many other C compilers handle alignment of |
| bitfields and the structures that contain them. */ |
| #define PCC_BITFIELD_TYPE_MATTERS 1 |
| |
| /* Align arrays, unions and records to at least a word boundary. |
| One use of this macro is to increase alignment of medium-size |
| data to make it all fit in fewer cache lines. Another is to |
| cause character arrays to be word-aligned so that 'strcpy' calls |
| that copy constants to character arrays can be done inline. */ |
| #undef DATA_ALIGNMENT |
| #define DATA_ALIGNMENT(TYPE, ALIGN) \ |
| (!optimize_size && (((ALIGN) < BITS_PER_WORD) \ |
| && (TREE_CODE (TYPE) == ARRAY_TYPE \ |
| || TREE_CODE (TYPE) == UNION_TYPE \ |
| || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) |
| |
| /* Operations between registers always perform the operation |
| on the full register even if a narrower mode is specified. */ |
| #define WORD_REGISTER_OPERATIONS 1 |
| |
| /* Xtensa loads are zero-extended by default. */ |
| #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND |
| |
| /* Standard register usage. */ |
| |
| /* Number of actual hardware registers. |
| The hardware registers are assigned numbers for the compiler |
| from 0 to just below FIRST_PSEUDO_REGISTER. |
| All registers that the compiler knows about must be given numbers, |
| even those that are not normally considered general registers. |
| |
| The fake frame pointer and argument pointer will never appear in |
| the generated code, since they will always be eliminated and replaced |
| by either the stack pointer or the hard frame pointer. |
| |
| 0 - 15 AR[0] - AR[15] |
| 16 FRAME_POINTER (fake = initial sp) |
| 17 ARG_POINTER (fake = initial sp + framesize) |
| 18 BR[0] for floating-point CC |
| 19 - 34 FR[0] - FR[15] |
| 35 MAC16 accumulator */ |
| |
| #define FIRST_PSEUDO_REGISTER 36 |
| |
| /* Return the stabs register number to use for REGNO. */ |
| #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO) |
| |
| /* 1 for registers that have pervasive standard uses |
| and are not available for the register allocator. */ |
| #define FIXED_REGISTERS \ |
| { \ |
| 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 1, 1, 0, \ |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \ |
| 0, \ |
| } |
| |
| /* 1 for registers not available across function calls. |
| These must include the FIXED_REGISTERS and also any |
| registers that can be used without being saved. |
| The latter must include the registers where values are returned |
| and the register where structure-value addresses are passed. |
| Aside from that, you can include as many other registers as you like. |
| |
| The value encoding is the following: |
| 1: register is used by all ABIs; |
| bit 1 is set: register is used by windowed ABI; |
| bit 2 is set: register is used by call0 ABI. |
| |
| Proper values are computed in TARGET_CONDITIONAL_REGISTER_USAGE. */ |
| |
| #define CALL_USED_REGISTERS \ |
| { \ |
| 1, 1, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 2, 2, 2, 2, \ |
| 1, 1, 1, \ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ |
| 1, \ |
| } |
| |
| /* For non-leaf procedures on Xtensa processors, the allocation order |
| is as specified below by REG_ALLOC_ORDER. For leaf procedures, we |
| want to use the lowest numbered registers first to minimize |
| register window overflows. However, local-alloc is not smart |
| enough to consider conflicts with incoming arguments. If an |
| incoming argument in a2 is live throughout the function and |
| local-alloc decides to use a2, then the incoming argument must |
| either be spilled or copied to another register. To get around |
| this, we define ADJUST_REG_ALLOC_ORDER to redefine |
| reg_alloc_order for leaf functions such that lowest numbered |
| registers are used first with the exception that the incoming |
| argument registers are not used until after other register choices |
| have been exhausted. */ |
| |
| #define REG_ALLOC_ORDER \ |
| { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \ |
| 18, \ |
| 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \ |
| 0, 1, 16, 17, \ |
| 35, \ |
| } |
| |
| #define ADJUST_REG_ALLOC_ORDER order_regs_for_local_alloc () |
| |
| /* For Xtensa, the only point of this is to prevent GCC from otherwise |
| giving preference to call-used registers. To minimize window |
| overflows for the AR registers, we want to give preference to the |
| lower-numbered AR registers. For other register files, which are |
| not windowed, we still prefer call-used registers, if there are any. */ |
| extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER]; |
| #define LEAF_REGISTERS xtensa_leaf_regs |
| |
| /* For Xtensa, no remapping is necessary, but this macro must be |
| defined if LEAF_REGISTERS is defined. */ |
| #define LEAF_REG_REMAP(REGNO) (REGNO) |
| |
| /* This must be declared if LEAF_REGISTERS is set. */ |
| extern int leaf_function; |
| |
| /* Internal macros to classify a register number. */ |
| |
| /* 16 address registers + fake registers */ |
| #define GP_REG_FIRST 0 |
| #define GP_REG_LAST 17 |
| #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1) |
| |
| /* Coprocessor registers */ |
| #define BR_REG_FIRST 18 |
| #define BR_REG_LAST 18 |
| #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1) |
| |
| /* 16 floating-point registers */ |
| #define FP_REG_FIRST 19 |
| #define FP_REG_LAST 34 |
| #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1) |
| |
| /* MAC16 accumulator */ |
| #define ACC_REG_FIRST 35 |
| #define ACC_REG_LAST 35 |
| #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1) |
| |
| #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM) |
| #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM) |
| #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM) |
| #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM) |
| |
| /* Register to use for pushing function arguments. */ |
| #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1) |
| |
| /* Base register for access to local variables of the function. */ |
| #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + \ |
| (TARGET_WINDOWED_ABI ? 7 : 15)) |
| |
| /* The register number of the frame pointer register, which is used to |
| access automatic variables in the stack frame. For Xtensa, this |
| register never appears in the output. It is always eliminated to |
| either the stack pointer or the hard frame pointer. */ |
| #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16) |
| |
| /* Base register for access to arguments of the function. */ |
| #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17) |
| |
| /* Hard frame pointer is neither frame nor arg pointer. |
| The definitions are here because actual hard frame pointer register |
| definition is not a preprocessor constant. */ |
| #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0 |
| #define HARD_FRAME_POINTER_IS_ARG_POINTER 0 |
| |
| /* For now we don't try to use the full set of boolean registers. Without |
| software pipelining of FP operations, there's not much to gain and it's |
| a real pain to get them reloaded. */ |
| #define FPCC_REGNUM (BR_REG_FIRST + 0) |
| |
| /* It is as good or better to call a constant function address than to |
| call an address kept in a register. */ |
| #define NO_FUNCTION_CSE 1 |
| |
| /* Xtensa processors have "register windows". GCC does not currently |
| take advantage of the possibility for variable-sized windows; instead, |
| we use a fixed window size of 8. */ |
| |
| #define INCOMING_REGNO(OUT) \ |
| (TARGET_WINDOWED_ABI ? \ |
| ((GP_REG_P (OUT) && \ |
| ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \ |
| (OUT) - WINDOW_SIZE : (OUT)) : (OUT)) |
| |
| #define OUTGOING_REGNO(IN) \ |
| (TARGET_WINDOWED_ABI ? \ |
| ((GP_REG_P (IN) && \ |
| ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \ |
| (IN) + WINDOW_SIZE : (IN)) : (IN)) |
| |
| |
| /* Define the classes of registers for register constraints in the |
| machine description. */ |
| enum reg_class |
| { |
| NO_REGS, /* no registers in set */ |
| BR_REGS, /* coprocessor boolean registers */ |
| FP_REGS, /* floating point registers */ |
| ACC_REG, /* MAC16 accumulator */ |
| SP_REG, /* sp register (aka a1) */ |
| RL_REGS, /* preferred reload regs (not sp or fp) */ |
| GR_REGS, /* integer registers except sp */ |
| AR_REGS, /* all integer registers */ |
| ALL_REGS, /* all registers */ |
| LIM_REG_CLASSES /* max value + 1 */ |
| }; |
| |
| #define N_REG_CLASSES (int) LIM_REG_CLASSES |
| |
| #define GENERAL_REGS AR_REGS |
| |
| /* An initializer containing the names of the register classes as C |
| string constants. These names are used in writing some of the |
| debugging dumps. */ |
| #define REG_CLASS_NAMES \ |
| { \ |
| "NO_REGS", \ |
| "BR_REGS", \ |
| "FP_REGS", \ |
| "ACC_REG", \ |
| "SP_REG", \ |
| "RL_REGS", \ |
| "GR_REGS", \ |
| "AR_REGS", \ |
| "ALL_REGS" \ |
| } |
| |
| /* Contents of the register classes. The Nth integer specifies the |
| contents of class N. The way the integer MASK is interpreted is |
| that register R is in the class if 'MASK & (1 << R)' is 1. */ |
| #define REG_CLASS_CONTENTS \ |
| { \ |
| { 0x00000000, 0x00000000 }, /* no registers */ \ |
| { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \ |
| { 0xfff80000, 0x00000007 }, /* floating-point registers */ \ |
| { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \ |
| { 0x00000002, 0x00000000 }, /* stack pointer register */ \ |
| { 0x0000fffd, 0x00000000 }, /* preferred reload registers */ \ |
| { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \ |
| { 0x0003ffff, 0x00000000 }, /* integer registers */ \ |
| { 0xffffffff, 0x0000000f } /* all registers */ \ |
| } |
| |
| /* A C expression whose value is a register class containing hard |
| register REGNO. In general there is more that one such class; |
| choose a class which is "minimal", meaning that no smaller class |
| also contains the register. */ |
| #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class (REGNO) |
| |
| /* Use the Xtensa AR register file for base registers. |
| No index registers. */ |
| #define BASE_REG_CLASS AR_REGS |
| #define INDEX_REG_CLASS NO_REGS |
| |
| /* The small_register_classes_for_mode_p hook must always return true for |
| Xtrnase, because all of the 16 AR registers may be explicitly used in |
| the RTL, as either incoming or outgoing arguments. */ |
| #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P hook_bool_mode_true |
| |
| /* Stack layout; function entry, exit and calling. */ |
| |
| #define STACK_GROWS_DOWNWARD 1 |
| |
| #define FRAME_GROWS_DOWNWARD (flag_stack_protect \ |
| || (flag_sanitize & SANITIZE_ADDRESS) != 0) |
| |
| /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so |
| they are eliminated to either the stack pointer or hard frame pointer. */ |
| #define ELIMINABLE_REGS \ |
| {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \ |
| { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ |
| { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}} |
| |
| /* Specify the initial difference between the specified pair of registers. */ |
| #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ |
| (OFFSET) = xtensa_initial_elimination_offset ((FROM), (TO)) |
| |
| /* If defined, the maximum amount of space required for outgoing |
| arguments will be computed and placed into the variable |
| 'crtl->outgoing_args_size'. No space will be pushed |
| onto the stack for each call; instead, the function prologue |
| should increase the stack frame size by this amount. */ |
| #define ACCUMULATE_OUTGOING_ARGS 1 |
| |
| /* Offset from the argument pointer register to the first argument's |
| address. On some machines it may depend on the data type of the |
| function. If 'ARGS_GROW_DOWNWARD', this is the offset to the |
| location above the first argument's address. */ |
| #define FIRST_PARM_OFFSET(FNDECL) 0 |
| |
| /* Align stack frames on 128 bits for Xtensa. This is necessary for |
| 128-bit datatypes defined in TIE (e.g., for Vectra). */ |
| #define STACK_BOUNDARY 128 |
| |
| /* Use a fixed register window size of 8. */ |
| #define WINDOW_SIZE (TARGET_WINDOWED_ABI ? 8 : 0) |
| |
| /* Symbolic macros for the registers used to return integer, floating |
| point, and values of coprocessor and user-defined modes. */ |
| #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE) |
| #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2) |
| |
| /* Symbolic macros for the first/last argument registers. */ |
| #define GP_ARG_FIRST (GP_REG_FIRST + 2) |
| #define GP_ARG_LAST (GP_REG_FIRST + 7) |
| #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE) |
| #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE) |
| |
| #define MAX_ARGS_IN_REGISTERS 6 |
| |
| /* Don't worry about compatibility with PCC. */ |
| #define DEFAULT_PCC_STRUCT_RETURN 0 |
| |
| /* A C expression that is nonzero if REGNO is the number of a hard |
| register in which function arguments are sometimes passed. This |
| does *not* include implicit arguments such as the static chain and |
| the structure-value address. On many machines, no registers can be |
| used for this purpose since all function arguments are pushed on |
| the stack. */ |
| #define FUNCTION_ARG_REGNO_P(N) \ |
| ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST) |
| |
| /* Record the number of argument words seen so far, along with a flag to |
| indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG |
| is used for both incoming and outgoing args, so a separate flag is |
| needed. */ |
| typedef struct xtensa_args |
| { |
| int arg_words; |
| int incoming; |
| } CUMULATIVE_ARGS; |
| |
| #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \ |
| init_cumulative_args (&CUM, 0) |
| |
| #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \ |
| init_cumulative_args (&CUM, 1) |
| |
| /* Profiling Xtensa code is typically done with the built-in profiling |
| feature of Tensilica's instruction set simulator, which does not |
| require any compiler support. Profiling code on a real (i.e., |
| non-simulated) Xtensa processor is currently only supported by |
| GNU/Linux with glibc. The glibc version of _mcount doesn't require |
| counter variables. The _mcount function needs the current PC and |
| the current return address to identify an arc in the call graph. |
| Pass the current return address as the first argument; the current |
| PC is available as a0 in _mcount's register window. Both of these |
| values contain window size information in the two most significant |
| bits; we assume that _mcount will mask off those bits. The call to |
| _mcount uses a window size of 8 to make sure that it doesn't clobber |
| any incoming argument values. */ |
| |
| #define NO_PROFILE_COUNTERS 1 |
| |
| #define FUNCTION_PROFILER(FILE, LABELNO) \ |
| do { \ |
| fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \ |
| if (flag_pic) \ |
| { \ |
| fprintf (FILE, "\tmovi\ta%d, _mcount@PLT\n", WINDOW_SIZE); \ |
| fprintf (FILE, "\tcallx%d\ta%d\n", WINDOW_SIZE, WINDOW_SIZE); \ |
| } \ |
| else \ |
| fprintf (FILE, "\tcall%d\t_mcount\n", WINDOW_SIZE); \ |
| } while (0) |
| |
| /* Stack pointer value doesn't matter at exit. */ |
| #define EXIT_IGNORE_STACK 1 |
| |
| /* Size in bytes of the trampoline, as an integer. Make sure this is |
| a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */ |
| #define TRAMPOLINE_SIZE (TARGET_WINDOWED_ABI ? \ |
| (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \ |
| 60 : 52) : \ |
| (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? \ |
| 32 : 24)) |
| |
| /* Alignment required for trampolines, in bits. */ |
| #define TRAMPOLINE_ALIGNMENT 32 |
| |
| /* If defined, a C expression that produces the machine-specific code |
| to setup the stack so that arbitrary frames can be accessed. |
| |
| On Xtensa, a stack back-trace must always begin from the stack pointer, |
| so that the register overflow save area can be located. However, the |
| stack-walking code in GCC always begins from the hard_frame_pointer |
| register, not the stack pointer. The frame pointer is usually equal |
| to the stack pointer, but the __builtin_return_address and |
| __builtin_frame_address functions will not work if count > 0 and |
| they are called from a routine that uses alloca. These functions |
| are not guaranteed to work at all if count > 0 so maybe that is OK. |
| |
| A nicer solution would be to allow the architecture-specific files to |
| specify whether to start from the stack pointer or frame pointer. That |
| would also allow us to skip the machine->accesses_prev_frame stuff that |
| we currently need to ensure that there is a frame pointer when these |
| builtin functions are used. */ |
| |
| #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses |
| |
| /* A C expression whose value is RTL representing the address in a |
| stack frame where the pointer to the caller's frame is stored. |
| Assume that FRAMEADDR is an RTL expression for the address of the |
| stack frame itself. |
| |
| For Xtensa, there is no easy way to get the frame pointer if it is |
| not equivalent to the stack pointer. Moreover, the result of this |
| macro is used for continuing to walk back up the stack, so it must |
| return the stack pointer address. Thus, there is some inconsistency |
| here in that __builtin_frame_address will return the frame pointer |
| when count == 0 and the stack pointer when count > 0. */ |
| |
| #define DYNAMIC_CHAIN_ADDRESS(frame) \ |
| gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD)) |
| |
| /* Define this if the return address of a particular stack frame is |
| accessed from the frame pointer of the previous stack frame. */ |
| #define RETURN_ADDR_IN_PREVIOUS_FRAME TARGET_WINDOWED_ABI |
| |
| /* A C expression whose value is RTL representing the value of the |
| return address for the frame COUNT steps up from the current |
| frame, after the prologue. */ |
| #define RETURN_ADDR_RTX xtensa_return_addr |
| |
| /* Addressing modes, and classification of registers for them. */ |
| |
| /* C expressions which are nonzero if register number NUM is suitable |
| for use as a base or index register in operand addresses. */ |
| |
| #define REGNO_OK_FOR_INDEX_P(NUM) 0 |
| #define REGNO_OK_FOR_BASE_P(NUM) \ |
| (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM])) |
| |
| /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is |
| valid for use as a base or index register. */ |
| |
| #ifdef REG_OK_STRICT |
| #define REG_OK_STRICT_FLAG 1 |
| #else |
| #define REG_OK_STRICT_FLAG 0 |
| #endif |
| |
| #define BASE_REG_P(X, STRICT) \ |
| ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \ |
| || REGNO_OK_FOR_BASE_P (REGNO (X))) |
| |
| #define REG_OK_FOR_INDEX_P(X) 0 |
| #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG) |
| |
| /* Maximum number of registers that can appear in a valid memory address. */ |
| #define MAX_REGS_PER_ADDRESS 1 |
| |
| /* A C expression that is 1 if the RTX X is a constant which is a |
| valid address. This is defined to be the same as 'CONSTANT_P (X)', |
| but rejecting CONST_DOUBLE. */ |
| #define CONSTANT_ADDRESS_P(X) \ |
| ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \ |
| || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \ |
| || (GET_CODE (X) == CONST))) |
| |
| /* A C expression that is nonzero if X is a legitimate immediate |
| operand on the target machine when generating position independent |
| code. */ |
| #define LEGITIMATE_PIC_OPERAND_P(X) \ |
| ((GET_CODE (X) != SYMBOL_REF \ |
| || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \ |
| && GET_CODE (X) != LABEL_REF \ |
| && GET_CODE (X) != CONST) |
| |
| /* Specify the machine mode that this machine uses |
| for the index in the tablejump instruction. */ |
| #define CASE_VECTOR_MODE (SImode) |
| |
| /* Define this as 1 if 'char' should by default be signed; else as 0. */ |
| #define DEFAULT_SIGNED_CHAR 0 |
| |
| /* Max number of bytes we can move from memory to memory |
| in one reasonably fast instruction. */ |
| #define MOVE_MAX 4 |
| #define MAX_MOVE_MAX 4 |
| |
| /* Prefer word-sized loads. */ |
| #define SLOW_BYTE_ACCESS 1 |
| |
| /* Shift instructions ignore all but the low-order few bits. */ |
| #define SHIFT_COUNT_TRUNCATED 1 |
| |
| #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1) |
| #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1) |
| |
| /* Specify the machine mode that pointers have. |
| After generation of rtl, the compiler makes no further distinction |
| between pointers and any other objects of this machine mode. */ |
| #define Pmode SImode |
| |
| /* A function address in a call instruction is a word address (for |
| indexing purposes) so give the MEM rtx a words's mode. */ |
| #define FUNCTION_MODE SImode |
| |
| #define BRANCH_COST(speed_p, predictable_p) 3 |
| |
| /* How to refer to registers in assembler output. |
| This sequence is indexed by compiler's hard-register-number (see above). */ |
| #define REGISTER_NAMES \ |
| { \ |
| "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \ |
| "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \ |
| "fp", "argp", "b0", \ |
| "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \ |
| "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \ |
| "acc" \ |
| } |
| |
| /* If defined, a C initializer for an array of structures containing a |
| name and a register number. This macro defines additional names |
| for hard registers, thus allowing the 'asm' option in declarations |
| to refer to registers using alternate names. */ |
| #define ADDITIONAL_REGISTER_NAMES \ |
| { \ |
| { "a1", 1 + GP_REG_FIRST } \ |
| } |
| |
| #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE) |
| #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR) |
| |
| /* Globalizing directive for a label. */ |
| #define GLOBAL_ASM_OP "\t.global\t" |
| |
| /* Declare an uninitialized external linkage data object. */ |
| #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \ |
| asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN) |
| |
| /* This is how to output an element of a case-vector that is absolute. */ |
| #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \ |
| fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \ |
| LOCAL_LABEL_PREFIX, VALUE) |
| |
| /* This is how to output an element of a case-vector that is relative. |
| This is used for pc-relative code. */ |
| #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \ |
| do { \ |
| fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \ |
| LOCAL_LABEL_PREFIX, (VALUE), \ |
| LOCAL_LABEL_PREFIX, (REL)); \ |
| } while (0) |
| |
| /* This is how to output an assembler line that says to advance the |
| location counter to a multiple of 2**LOG bytes. */ |
| #define ASM_OUTPUT_ALIGN(STREAM, LOG) \ |
| do { \ |
| if ((LOG) != 0) \ |
| fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \ |
| } while (0) |
| |
| /* Indicate that jump tables go in the text section. This is |
| necessary when compiling PIC code. */ |
| #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic) |
| |
| |
| /* Define the strings to put out for each section in the object file. */ |
| #define TEXT_SECTION_ASM_OP "\t.text" |
| #define DATA_SECTION_ASM_OP "\t.data" |
| #define BSS_SECTION_ASM_OP "\t.section\t.bss" |
| |
| |
| /* Define output to appear before the constant pool. */ |
| #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \ |
| do { \ |
| if ((SIZE) > 0 || !TARGET_WINDOWED_ABI) \ |
| { \ |
| resolve_unique_section ((FUNDECL), 0, flag_function_sections); \ |
| switch_to_section (function_section (FUNDECL)); \ |
| fprintf (FILE, "\t.literal_position\n"); \ |
| } \ |
| } while (0) |
| |
| |
| /* A C statement (with or without semicolon) to output a constant in |
| the constant pool, if it needs special treatment. */ |
| #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \ |
| do { \ |
| xtensa_output_literal (FILE, X, MODE, LABELNO); \ |
| goto JUMPTO; \ |
| } while (0) |
| |
| /* How to start an assembler comment. */ |
| #define ASM_COMMENT_START "#" |
| |
| /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding |
| machinery, but the variable size register window save areas are too |
| complicated to efficiently describe with CFI entries. The CFA must |
| still be specified in DWARF so that DW_AT_frame_base is set correctly |
| for debugging. */ |
| #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0) |
| #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0) |
| #define DWARF_ALT_FRAME_RETURN_COLUMN 16 |
| #define DWARF_FRAME_REGISTERS (DWARF_ALT_FRAME_RETURN_COLUMN \ |
| + (TARGET_WINDOWED_ABI ? 0 : 1)) |
| #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM) |
| #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \ |
| (flag_pic \ |
| ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \ |
| | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \ |
| : DW_EH_PE_absptr) |
| |
| #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, GP_REG_FIRST + 10) |
| |
| /* Emit a PC-relative relocation. */ |
| #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \ |
| do { \ |
| fputs (integer_asm_op (SIZE, FALSE), FILE); \ |
| assemble_name (FILE, LABEL); \ |
| fputs ("@pcrel", FILE); \ |
| } while (0) |
| |
| /* Xtensa constant pool breaks the devices in crtstuff.c to control |
| section in where code resides. We have to write it as asm code. Use |
| a MOVI and let the assembler relax it -- for the .init and .fini |
| sections, the assembler knows to put the literal in the right |
| place. */ |
| #if defined(__XTENSA_WINDOWED_ABI__) |
| #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ |
| asm (SECTION_OP "\n\ |
| movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\ |
| callx8\ta8\n" \ |
| TEXT_SECTION_ASM_OP); |
| #elif defined(__XTENSA_CALL0_ABI__) |
| #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \ |
| asm (SECTION_OP "\n\ |
| movi\ta0, " USER_LABEL_PREFIX #FUNC "\n\ |
| callx0\ta0\n" \ |
| TEXT_SECTION_ASM_OP); |
| #endif |