| /* Warn on problematic uses of alloca and variable length arrays. |
| Copyright (C) 2016-2018 Free Software Foundation, Inc. |
| Contributed by Aldy Hernandez <aldyh@redhat.com>. |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "tree-pass.h" |
| #include "ssa.h" |
| #include "gimple-pretty-print.h" |
| #include "diagnostic-core.h" |
| #include "fold-const.h" |
| #include "gimple-iterator.h" |
| #include "tree-ssa.h" |
| #include "params.h" |
| #include "tree-cfg.h" |
| #include "calls.h" |
| #include "cfgloop.h" |
| #include "intl.h" |
| |
| const pass_data pass_data_walloca = { |
| GIMPLE_PASS, |
| "walloca", |
| OPTGROUP_NONE, |
| TV_NONE, |
| PROP_cfg, // properties_required |
| 0, // properties_provided |
| 0, // properties_destroyed |
| 0, // properties_start |
| 0, // properties_finish |
| }; |
| |
| class pass_walloca : public gimple_opt_pass |
| { |
| public: |
| pass_walloca (gcc::context *ctxt) |
| : gimple_opt_pass(pass_data_walloca, ctxt), first_time_p (false) |
| {} |
| opt_pass *clone () { return new pass_walloca (m_ctxt); } |
| void set_pass_param (unsigned int n, bool param) |
| { |
| gcc_assert (n == 0); |
| first_time_p = param; |
| } |
| virtual bool gate (function *); |
| virtual unsigned int execute (function *); |
| |
| private: |
| // Set to TRUE the first time we run this pass on a function. |
| bool first_time_p; |
| }; |
| |
| bool |
| pass_walloca::gate (function *fun ATTRIBUTE_UNUSED) |
| { |
| // The first time this pass is called, it is called before |
| // optimizations have been run and range information is unavailable, |
| // so we can only perform strict alloca checking. |
| if (first_time_p) |
| return warn_alloca != 0; |
| |
| return ((unsigned HOST_WIDE_INT) warn_alloca_limit > 0 |
| || (unsigned HOST_WIDE_INT) warn_vla_limit > 0); |
| } |
| |
| // Possible problematic uses of alloca. |
| enum alloca_type { |
| // Alloca argument is within known bounds that are appropriate. |
| ALLOCA_OK, |
| |
| // Alloca argument is KNOWN to have a value that is too large. |
| ALLOCA_BOUND_DEFINITELY_LARGE, |
| |
| // Alloca argument may be too large. |
| ALLOCA_BOUND_MAYBE_LARGE, |
| |
| // Alloca argument is bounded but of an indeterminate size. |
| ALLOCA_BOUND_UNKNOWN, |
| |
| // Alloca argument was casted from a signed integer. |
| ALLOCA_CAST_FROM_SIGNED, |
| |
| // Alloca appears in a loop. |
| ALLOCA_IN_LOOP, |
| |
| // Alloca argument is 0. |
| ALLOCA_ARG_IS_ZERO, |
| |
| // Alloca call is unbounded. That is, there is no controlling |
| // predicate for its argument. |
| ALLOCA_UNBOUNDED |
| }; |
| |
| // Type of an alloca call with its corresponding limit, if applicable. |
| struct alloca_type_and_limit { |
| enum alloca_type type; |
| // For ALLOCA_BOUND_MAYBE_LARGE and ALLOCA_BOUND_DEFINITELY_LARGE |
| // types, this field indicates the assumed limit if known or |
| // integer_zero_node if unknown. For any other alloca types, this |
| // field is undefined. |
| wide_int limit; |
| alloca_type_and_limit (); |
| alloca_type_and_limit (enum alloca_type type, |
| wide_int i) : type(type), limit(i) { } |
| alloca_type_and_limit (enum alloca_type type) : type(type) { } |
| }; |
| |
| // NOTE: When we get better range info, this entire function becomes |
| // irrelevant, as it should be possible to get range info for an SSA |
| // name at any point in the program. |
| // |
| // We have a few heuristics up our sleeve to determine if a call to |
| // alloca() is within bounds. Try them out and return the type of |
| // alloca call with its assumed limit (if applicable). |
| // |
| // Given a known argument (ARG) to alloca() and an EDGE (E) |
| // calculating said argument, verify that the last statement in the BB |
| // in E->SRC is a gate comparing ARG to an acceptable bound for |
| // alloca(). See examples below. |
| // |
| // If set, ARG_CASTED is the possible unsigned argument to which ARG |
| // was casted to. This is to handle cases where the controlling |
| // predicate is looking at a casted value, not the argument itself. |
| // arg_casted = (size_t) arg; |
| // if (arg_casted < N) |
| // goto bb3; |
| // else |
| // goto bb5; |
| // |
| // MAX_SIZE is WARN_ALLOCA= adjusted for VLAs. It is the maximum size |
| // in bytes we allow for arg. |
| |
| static struct alloca_type_and_limit |
| alloca_call_type_by_arg (tree arg, tree arg_casted, edge e, unsigned max_size) |
| { |
| basic_block bb = e->src; |
| gimple_stmt_iterator gsi = gsi_last_bb (bb); |
| gimple *last = gsi_stmt (gsi); |
| if (!last || gimple_code (last) != GIMPLE_COND) |
| return alloca_type_and_limit (ALLOCA_UNBOUNDED); |
| |
| enum tree_code cond_code = gimple_cond_code (last); |
| if (e->flags & EDGE_TRUE_VALUE) |
| ; |
| else if (e->flags & EDGE_FALSE_VALUE) |
| cond_code = invert_tree_comparison (cond_code, false); |
| else |
| return alloca_type_and_limit (ALLOCA_UNBOUNDED); |
| |
| // Check for: |
| // if (ARG .COND. N) |
| // goto <bb 3>; |
| // else |
| // goto <bb 4>; |
| // <bb 3>: |
| // alloca(ARG); |
| if ((cond_code == LE_EXPR |
| || cond_code == LT_EXPR |
| || cond_code == GT_EXPR |
| || cond_code == GE_EXPR) |
| && (gimple_cond_lhs (last) == arg |
| || gimple_cond_lhs (last) == arg_casted)) |
| { |
| if (TREE_CODE (gimple_cond_rhs (last)) == INTEGER_CST) |
| { |
| tree rhs = gimple_cond_rhs (last); |
| int tst = wi::cmpu (wi::to_widest (rhs), max_size); |
| if ((cond_code == LT_EXPR && tst == -1) |
| || (cond_code == LE_EXPR && (tst == -1 || tst == 0))) |
| return alloca_type_and_limit (ALLOCA_OK); |
| else |
| { |
| // Let's not get too specific as to how large the limit |
| // may be. Someone's clearly an idiot when things |
| // degrade into "if (N > Y) alloca(N)". |
| if (cond_code == GT_EXPR || cond_code == GE_EXPR) |
| rhs = integer_zero_node; |
| return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, |
| wi::to_wide (rhs)); |
| } |
| } |
| else |
| return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN); |
| } |
| |
| // Similarly, but check for a comparison with an unknown LIMIT. |
| // if (LIMIT .COND. ARG) |
| // alloca(arg); |
| // |
| // Where LIMIT has a bound of unknown range. |
| // |
| // Note: All conditions of the form (ARG .COND. XXXX) where covered |
| // by the previous check above, so we only need to look for (LIMIT |
| // .COND. ARG) here. |
| tree limit = gimple_cond_lhs (last); |
| if ((gimple_cond_rhs (last) == arg |
| || gimple_cond_rhs (last) == arg_casted) |
| && TREE_CODE (limit) == SSA_NAME) |
| { |
| wide_int min, max; |
| value_range_type range_type = get_range_info (limit, &min, &max); |
| |
| if (range_type == VR_UNDEFINED || range_type == VR_VARYING) |
| return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN); |
| |
| // ?? It looks like the above `if' is unnecessary, as we never |
| // get any VR_RANGE or VR_ANTI_RANGE here. If we had a range |
| // for LIMIT, I suppose we would have taken care of it in |
| // alloca_call_type(), or handled above where we handle (ARG .COND. N). |
| // |
| // If this ever triggers, we should probably figure out why and |
| // handle it, though it is likely to be just an ALLOCA_UNBOUNDED. |
| return alloca_type_and_limit (ALLOCA_UNBOUNDED); |
| } |
| |
| return alloca_type_and_limit (ALLOCA_UNBOUNDED); |
| } |
| |
| // Return TRUE if SSA's definition is a cast from a signed type. |
| // If so, set *INVALID_CASTED_TYPE to the signed type. |
| |
| static bool |
| cast_from_signed_p (tree ssa, tree *invalid_casted_type) |
| { |
| gimple *def = SSA_NAME_DEF_STMT (ssa); |
| if (def |
| && !gimple_nop_p (def) |
| && gimple_assign_cast_p (def) |
| && !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)))) |
| { |
| *invalid_casted_type = TREE_TYPE (gimple_assign_rhs1 (def)); |
| return true; |
| } |
| return false; |
| } |
| |
| // Return TRUE if X has a maximum range of MAX, basically covering the |
| // entire domain, in which case it's no range at all. |
| |
| static bool |
| is_max (tree x, wide_int max) |
| { |
| return wi::max_value (TREE_TYPE (x)) == max; |
| } |
| |
| // Analyze the alloca call in STMT and return the alloca type with its |
| // corresponding limit (if applicable). IS_VLA is set if the alloca |
| // call was created by the gimplifier for a VLA. |
| // |
| // If the alloca call may be too large because of a cast from a signed |
| // type to an unsigned type, set *INVALID_CASTED_TYPE to the |
| // problematic signed type. |
| |
| static struct alloca_type_and_limit |
| alloca_call_type (gimple *stmt, bool is_vla, tree *invalid_casted_type) |
| { |
| gcc_assert (gimple_alloca_call_p (stmt)); |
| bool tentative_cast_from_signed = false; |
| tree len = gimple_call_arg (stmt, 0); |
| tree len_casted = NULL; |
| wide_int min, max; |
| edge_iterator ei; |
| edge e; |
| |
| gcc_assert (!is_vla || (unsigned HOST_WIDE_INT) warn_vla_limit > 0); |
| gcc_assert (is_vla || (unsigned HOST_WIDE_INT) warn_alloca_limit > 0); |
| |
| // Adjust warn_alloca_max_size for VLAs, by taking the underlying |
| // type into account. |
| unsigned HOST_WIDE_INT max_size; |
| if (is_vla) |
| max_size = (unsigned HOST_WIDE_INT) warn_vla_limit; |
| else |
| max_size = (unsigned HOST_WIDE_INT) warn_alloca_limit; |
| |
| // Check for the obviously bounded case. |
| if (TREE_CODE (len) == INTEGER_CST) |
| { |
| if (tree_to_uhwi (len) > max_size) |
| return alloca_type_and_limit (ALLOCA_BOUND_DEFINITELY_LARGE, |
| wi::to_wide (len)); |
| if (integer_zerop (len)) |
| return alloca_type_and_limit (ALLOCA_ARG_IS_ZERO); |
| |
| return alloca_type_and_limit (ALLOCA_OK); |
| } |
| |
| // Check the range info if available. |
| if (TREE_CODE (len) == SSA_NAME) |
| { |
| value_range_type range_type = get_range_info (len, &min, &max); |
| if (range_type == VR_RANGE) |
| { |
| if (wi::leu_p (max, max_size)) |
| return alloca_type_and_limit (ALLOCA_OK); |
| else |
| { |
| // A cast may have created a range we don't care |
| // about. For instance, a cast from 16-bit to |
| // 32-bit creates a range of 0..65535, even if there |
| // is not really a determinable range in the |
| // underlying code. In this case, look through the |
| // cast at the original argument, and fall through |
| // to look at other alternatives. |
| // |
| // We only look at through the cast when its from |
| // unsigned to unsigned, otherwise we may risk |
| // looking at SIGNED_INT < N, which is clearly not |
| // what we want. In this case, we'd be interested |
| // in a VR_RANGE of [0..N]. |
| // |
| // Note: None of this is perfect, and should all go |
| // away with better range information. But it gets |
| // most of the cases. |
| gimple *def = SSA_NAME_DEF_STMT (len); |
| if (gimple_assign_cast_p (def)) |
| { |
| tree rhs1 = gimple_assign_rhs1 (def); |
| tree rhs1type = TREE_TYPE (rhs1); |
| |
| // Bail if the argument type is not valid. |
| if (!INTEGRAL_TYPE_P (rhs1type)) |
| return alloca_type_and_limit (ALLOCA_OK); |
| |
| if (TYPE_UNSIGNED (rhs1type)) |
| { |
| len_casted = rhs1; |
| range_type = get_range_info (len_casted, &min, &max); |
| } |
| } |
| // An unknown range or a range of the entire domain is |
| // really no range at all. |
| if (range_type == VR_VARYING |
| || (!len_casted && is_max (len, max)) |
| || (len_casted && is_max (len_casted, max))) |
| { |
| // Fall through. |
| } |
| else if (range_type == VR_ANTI_RANGE) |
| return alloca_type_and_limit (ALLOCA_UNBOUNDED); |
| else if (range_type != VR_VARYING) |
| return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, max); |
| } |
| } |
| else if (range_type == VR_ANTI_RANGE) |
| { |
| // There may be some wrapping around going on. Catch it |
| // with this heuristic. Hopefully, this VR_ANTI_RANGE |
| // nonsense will go away, and we won't have to catch the |
| // sign conversion problems with this crap. |
| // |
| // This is here to catch things like: |
| // void foo(signed int n) { |
| // if (n < 100) |
| // alloca(n); |
| // ... |
| // } |
| if (cast_from_signed_p (len, invalid_casted_type)) |
| { |
| // Unfortunately this also triggers: |
| // |
| // __SIZE_TYPE__ n = (__SIZE_TYPE__)blah; |
| // if (n < 100) |
| // alloca(n); |
| // |
| // ...which is clearly bounded. So, double check that |
| // the paths leading up to the size definitely don't |
| // have a bound. |
| tentative_cast_from_signed = true; |
| } |
| } |
| // No easily determined range and try other things. |
| } |
| |
| // If we couldn't find anything, try a few heuristics for things we |
| // can easily determine. Check these misc cases but only accept |
| // them if all predecessors have a known bound. |
| struct alloca_type_and_limit ret = alloca_type_and_limit (ALLOCA_OK); |
| FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds) |
| { |
| gcc_assert (!len_casted || TYPE_UNSIGNED (TREE_TYPE (len_casted))); |
| ret = alloca_call_type_by_arg (len, len_casted, e, max_size); |
| if (ret.type != ALLOCA_OK) |
| break; |
| } |
| |
| if (ret.type != ALLOCA_OK && tentative_cast_from_signed) |
| ret = alloca_type_and_limit (ALLOCA_CAST_FROM_SIGNED); |
| |
| // If we have a declared maximum size, we can take it into account. |
| if (ret.type != ALLOCA_OK |
| && gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX)) |
| { |
| tree arg = gimple_call_arg (stmt, 2); |
| if (compare_tree_int (arg, max_size) <= 0) |
| ret = alloca_type_and_limit (ALLOCA_OK); |
| else |
| ret = alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, |
| wi::to_wide (arg)); |
| } |
| |
| return ret; |
| } |
| |
| // Return TRUE if STMT is in a loop, otherwise return FALSE. |
| |
| static bool |
| in_loop_p (gimple *stmt) |
| { |
| basic_block bb = gimple_bb (stmt); |
| return |
| bb->loop_father && bb->loop_father->header != ENTRY_BLOCK_PTR_FOR_FN (cfun); |
| } |
| |
| unsigned int |
| pass_walloca::execute (function *fun) |
| { |
| basic_block bb; |
| FOR_EACH_BB_FN (bb, fun) |
| { |
| for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si); |
| gsi_next (&si)) |
| { |
| gimple *stmt = gsi_stmt (si); |
| location_t loc = gimple_location (stmt); |
| |
| if (!gimple_alloca_call_p (stmt)) |
| continue; |
| |
| const bool is_vla |
| = gimple_call_alloca_for_var_p (as_a <gcall *> (stmt)); |
| |
| // Strict mode whining for VLAs is handled by the front-end, |
| // so we can safely ignore this case. Also, ignore VLAs if |
| // the user doesn't care about them. |
| if (is_vla |
| && (warn_vla > 0 || !warn_vla_limit)) |
| continue; |
| |
| if (!is_vla && (warn_alloca || !warn_alloca_limit)) |
| { |
| if (warn_alloca) |
| warning_at (loc, OPT_Walloca, G_("use of %<alloca%>")); |
| continue; |
| } |
| |
| tree invalid_casted_type = NULL; |
| struct alloca_type_and_limit t |
| = alloca_call_type (stmt, is_vla, &invalid_casted_type); |
| |
| // Even if we think the alloca call is OK, make sure it's not in a |
| // loop, except for a VLA, since VLAs are guaranteed to be cleaned |
| // up when they go out of scope, including in a loop. |
| if (t.type == ALLOCA_OK && !is_vla && in_loop_p (stmt)) |
| t = alloca_type_and_limit (ALLOCA_IN_LOOP); |
| |
| enum opt_code wcode |
| = is_vla ? OPT_Wvla_larger_than_ : OPT_Walloca_larger_than_; |
| char buff[WIDE_INT_MAX_PRECISION / 4 + 4]; |
| switch (t.type) |
| { |
| case ALLOCA_OK: |
| break; |
| case ALLOCA_BOUND_MAYBE_LARGE: |
| if (warning_at (loc, wcode, |
| is_vla ? G_("argument to variable-length array " |
| "may be too large") |
| : G_("argument to %<alloca%> may be too large")) |
| && t.limit != 0) |
| { |
| print_decu (t.limit, buff); |
| inform (loc, G_("limit is %u bytes, but argument " |
| "may be as large as %s"), |
| is_vla ? warn_vla_limit : warn_alloca_limit, buff); |
| } |
| break; |
| case ALLOCA_BOUND_DEFINITELY_LARGE: |
| if (warning_at (loc, wcode, |
| is_vla ? G_("argument to variable-length array " |
| "is too large") |
| : G_("argument to %<alloca%> is too large")) |
| && t.limit != 0) |
| { |
| print_decu (t.limit, buff); |
| inform (loc, G_("limit is %u bytes, but argument is %s"), |
| is_vla ? warn_vla_limit : warn_alloca_limit, buff); |
| } |
| break; |
| case ALLOCA_BOUND_UNKNOWN: |
| warning_at (loc, wcode, |
| is_vla ? G_("variable-length array bound is unknown") |
| : G_("%<alloca%> bound is unknown")); |
| break; |
| case ALLOCA_UNBOUNDED: |
| warning_at (loc, wcode, |
| is_vla ? G_("unbounded use of variable-length array") |
| : G_("unbounded use of %<alloca%>")); |
| break; |
| case ALLOCA_IN_LOOP: |
| gcc_assert (!is_vla); |
| warning_at (loc, wcode, G_("use of %<alloca%> within a loop")); |
| break; |
| case ALLOCA_CAST_FROM_SIGNED: |
| gcc_assert (invalid_casted_type != NULL_TREE); |
| warning_at (loc, wcode, |
| is_vla ? G_("argument to variable-length array " |
| "may be too large due to " |
| "conversion from %qT to %qT") |
| : G_("argument to %<alloca%> may be too large " |
| "due to conversion from %qT to %qT"), |
| invalid_casted_type, size_type_node); |
| break; |
| case ALLOCA_ARG_IS_ZERO: |
| warning_at (loc, wcode, |
| is_vla ? G_("argument to variable-length array " |
| "is zero") |
| : G_("argument to %<alloca%> is zero")); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| gimple_opt_pass * |
| make_pass_walloca (gcc::context *ctxt) |
| { |
| return new pass_walloca (ctxt); |
| } |