blob: 327c806ae11b877e18c0d45456b4f538a3492bc9 [file] [log] [blame]
/* Warn on problematic uses of alloca and variable length arrays.
Copyright (C) 2016-2018 Free Software Foundation, Inc.
Contributed by Aldy Hernandez <aldyh@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "gimple.h"
#include "tree-pass.h"
#include "ssa.h"
#include "gimple-pretty-print.h"
#include "diagnostic-core.h"
#include "fold-const.h"
#include "gimple-iterator.h"
#include "tree-ssa.h"
#include "params.h"
#include "tree-cfg.h"
#include "calls.h"
#include "cfgloop.h"
#include "intl.h"
const pass_data pass_data_walloca = {
GIMPLE_PASS,
"walloca",
OPTGROUP_NONE,
TV_NONE,
PROP_cfg, // properties_required
0, // properties_provided
0, // properties_destroyed
0, // properties_start
0, // properties_finish
};
class pass_walloca : public gimple_opt_pass
{
public:
pass_walloca (gcc::context *ctxt)
: gimple_opt_pass(pass_data_walloca, ctxt), first_time_p (false)
{}
opt_pass *clone () { return new pass_walloca (m_ctxt); }
void set_pass_param (unsigned int n, bool param)
{
gcc_assert (n == 0);
first_time_p = param;
}
virtual bool gate (function *);
virtual unsigned int execute (function *);
private:
// Set to TRUE the first time we run this pass on a function.
bool first_time_p;
};
bool
pass_walloca::gate (function *fun ATTRIBUTE_UNUSED)
{
// The first time this pass is called, it is called before
// optimizations have been run and range information is unavailable,
// so we can only perform strict alloca checking.
if (first_time_p)
return warn_alloca != 0;
return ((unsigned HOST_WIDE_INT) warn_alloca_limit > 0
|| (unsigned HOST_WIDE_INT) warn_vla_limit > 0);
}
// Possible problematic uses of alloca.
enum alloca_type {
// Alloca argument is within known bounds that are appropriate.
ALLOCA_OK,
// Alloca argument is KNOWN to have a value that is too large.
ALLOCA_BOUND_DEFINITELY_LARGE,
// Alloca argument may be too large.
ALLOCA_BOUND_MAYBE_LARGE,
// Alloca argument is bounded but of an indeterminate size.
ALLOCA_BOUND_UNKNOWN,
// Alloca argument was casted from a signed integer.
ALLOCA_CAST_FROM_SIGNED,
// Alloca appears in a loop.
ALLOCA_IN_LOOP,
// Alloca argument is 0.
ALLOCA_ARG_IS_ZERO,
// Alloca call is unbounded. That is, there is no controlling
// predicate for its argument.
ALLOCA_UNBOUNDED
};
// Type of an alloca call with its corresponding limit, if applicable.
struct alloca_type_and_limit {
enum alloca_type type;
// For ALLOCA_BOUND_MAYBE_LARGE and ALLOCA_BOUND_DEFINITELY_LARGE
// types, this field indicates the assumed limit if known or
// integer_zero_node if unknown. For any other alloca types, this
// field is undefined.
wide_int limit;
alloca_type_and_limit ();
alloca_type_and_limit (enum alloca_type type,
wide_int i) : type(type), limit(i) { }
alloca_type_and_limit (enum alloca_type type) : type(type) { }
};
// NOTE: When we get better range info, this entire function becomes
// irrelevant, as it should be possible to get range info for an SSA
// name at any point in the program.
//
// We have a few heuristics up our sleeve to determine if a call to
// alloca() is within bounds. Try them out and return the type of
// alloca call with its assumed limit (if applicable).
//
// Given a known argument (ARG) to alloca() and an EDGE (E)
// calculating said argument, verify that the last statement in the BB
// in E->SRC is a gate comparing ARG to an acceptable bound for
// alloca(). See examples below.
//
// If set, ARG_CASTED is the possible unsigned argument to which ARG
// was casted to. This is to handle cases where the controlling
// predicate is looking at a casted value, not the argument itself.
// arg_casted = (size_t) arg;
// if (arg_casted < N)
// goto bb3;
// else
// goto bb5;
//
// MAX_SIZE is WARN_ALLOCA= adjusted for VLAs. It is the maximum size
// in bytes we allow for arg.
static struct alloca_type_and_limit
alloca_call_type_by_arg (tree arg, tree arg_casted, edge e, unsigned max_size)
{
basic_block bb = e->src;
gimple_stmt_iterator gsi = gsi_last_bb (bb);
gimple *last = gsi_stmt (gsi);
if (!last || gimple_code (last) != GIMPLE_COND)
return alloca_type_and_limit (ALLOCA_UNBOUNDED);
enum tree_code cond_code = gimple_cond_code (last);
if (e->flags & EDGE_TRUE_VALUE)
;
else if (e->flags & EDGE_FALSE_VALUE)
cond_code = invert_tree_comparison (cond_code, false);
else
return alloca_type_and_limit (ALLOCA_UNBOUNDED);
// Check for:
// if (ARG .COND. N)
// goto <bb 3>;
// else
// goto <bb 4>;
// <bb 3>:
// alloca(ARG);
if ((cond_code == LE_EXPR
|| cond_code == LT_EXPR
|| cond_code == GT_EXPR
|| cond_code == GE_EXPR)
&& (gimple_cond_lhs (last) == arg
|| gimple_cond_lhs (last) == arg_casted))
{
if (TREE_CODE (gimple_cond_rhs (last)) == INTEGER_CST)
{
tree rhs = gimple_cond_rhs (last);
int tst = wi::cmpu (wi::to_widest (rhs), max_size);
if ((cond_code == LT_EXPR && tst == -1)
|| (cond_code == LE_EXPR && (tst == -1 || tst == 0)))
return alloca_type_and_limit (ALLOCA_OK);
else
{
// Let's not get too specific as to how large the limit
// may be. Someone's clearly an idiot when things
// degrade into "if (N > Y) alloca(N)".
if (cond_code == GT_EXPR || cond_code == GE_EXPR)
rhs = integer_zero_node;
return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE,
wi::to_wide (rhs));
}
}
else
return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
}
// Similarly, but check for a comparison with an unknown LIMIT.
// if (LIMIT .COND. ARG)
// alloca(arg);
//
// Where LIMIT has a bound of unknown range.
//
// Note: All conditions of the form (ARG .COND. XXXX) where covered
// by the previous check above, so we only need to look for (LIMIT
// .COND. ARG) here.
tree limit = gimple_cond_lhs (last);
if ((gimple_cond_rhs (last) == arg
|| gimple_cond_rhs (last) == arg_casted)
&& TREE_CODE (limit) == SSA_NAME)
{
wide_int min, max;
value_range_type range_type = get_range_info (limit, &min, &max);
if (range_type == VR_UNDEFINED || range_type == VR_VARYING)
return alloca_type_and_limit (ALLOCA_BOUND_UNKNOWN);
// ?? It looks like the above `if' is unnecessary, as we never
// get any VR_RANGE or VR_ANTI_RANGE here. If we had a range
// for LIMIT, I suppose we would have taken care of it in
// alloca_call_type(), or handled above where we handle (ARG .COND. N).
//
// If this ever triggers, we should probably figure out why and
// handle it, though it is likely to be just an ALLOCA_UNBOUNDED.
return alloca_type_and_limit (ALLOCA_UNBOUNDED);
}
return alloca_type_and_limit (ALLOCA_UNBOUNDED);
}
// Return TRUE if SSA's definition is a cast from a signed type.
// If so, set *INVALID_CASTED_TYPE to the signed type.
static bool
cast_from_signed_p (tree ssa, tree *invalid_casted_type)
{
gimple *def = SSA_NAME_DEF_STMT (ssa);
if (def
&& !gimple_nop_p (def)
&& gimple_assign_cast_p (def)
&& !TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def))))
{
*invalid_casted_type = TREE_TYPE (gimple_assign_rhs1 (def));
return true;
}
return false;
}
// Return TRUE if X has a maximum range of MAX, basically covering the
// entire domain, in which case it's no range at all.
static bool
is_max (tree x, wide_int max)
{
return wi::max_value (TREE_TYPE (x)) == max;
}
// Analyze the alloca call in STMT and return the alloca type with its
// corresponding limit (if applicable). IS_VLA is set if the alloca
// call was created by the gimplifier for a VLA.
//
// If the alloca call may be too large because of a cast from a signed
// type to an unsigned type, set *INVALID_CASTED_TYPE to the
// problematic signed type.
static struct alloca_type_and_limit
alloca_call_type (gimple *stmt, bool is_vla, tree *invalid_casted_type)
{
gcc_assert (gimple_alloca_call_p (stmt));
bool tentative_cast_from_signed = false;
tree len = gimple_call_arg (stmt, 0);
tree len_casted = NULL;
wide_int min, max;
edge_iterator ei;
edge e;
gcc_assert (!is_vla || (unsigned HOST_WIDE_INT) warn_vla_limit > 0);
gcc_assert (is_vla || (unsigned HOST_WIDE_INT) warn_alloca_limit > 0);
// Adjust warn_alloca_max_size for VLAs, by taking the underlying
// type into account.
unsigned HOST_WIDE_INT max_size;
if (is_vla)
max_size = (unsigned HOST_WIDE_INT) warn_vla_limit;
else
max_size = (unsigned HOST_WIDE_INT) warn_alloca_limit;
// Check for the obviously bounded case.
if (TREE_CODE (len) == INTEGER_CST)
{
if (tree_to_uhwi (len) > max_size)
return alloca_type_and_limit (ALLOCA_BOUND_DEFINITELY_LARGE,
wi::to_wide (len));
if (integer_zerop (len))
return alloca_type_and_limit (ALLOCA_ARG_IS_ZERO);
return alloca_type_and_limit (ALLOCA_OK);
}
// Check the range info if available.
if (TREE_CODE (len) == SSA_NAME)
{
value_range_type range_type = get_range_info (len, &min, &max);
if (range_type == VR_RANGE)
{
if (wi::leu_p (max, max_size))
return alloca_type_and_limit (ALLOCA_OK);
else
{
// A cast may have created a range we don't care
// about. For instance, a cast from 16-bit to
// 32-bit creates a range of 0..65535, even if there
// is not really a determinable range in the
// underlying code. In this case, look through the
// cast at the original argument, and fall through
// to look at other alternatives.
//
// We only look at through the cast when its from
// unsigned to unsigned, otherwise we may risk
// looking at SIGNED_INT < N, which is clearly not
// what we want. In this case, we'd be interested
// in a VR_RANGE of [0..N].
//
// Note: None of this is perfect, and should all go
// away with better range information. But it gets
// most of the cases.
gimple *def = SSA_NAME_DEF_STMT (len);
if (gimple_assign_cast_p (def))
{
tree rhs1 = gimple_assign_rhs1 (def);
tree rhs1type = TREE_TYPE (rhs1);
// Bail if the argument type is not valid.
if (!INTEGRAL_TYPE_P (rhs1type))
return alloca_type_and_limit (ALLOCA_OK);
if (TYPE_UNSIGNED (rhs1type))
{
len_casted = rhs1;
range_type = get_range_info (len_casted, &min, &max);
}
}
// An unknown range or a range of the entire domain is
// really no range at all.
if (range_type == VR_VARYING
|| (!len_casted && is_max (len, max))
|| (len_casted && is_max (len_casted, max)))
{
// Fall through.
}
else if (range_type == VR_ANTI_RANGE)
return alloca_type_and_limit (ALLOCA_UNBOUNDED);
else if (range_type != VR_VARYING)
return alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE, max);
}
}
else if (range_type == VR_ANTI_RANGE)
{
// There may be some wrapping around going on. Catch it
// with this heuristic. Hopefully, this VR_ANTI_RANGE
// nonsense will go away, and we won't have to catch the
// sign conversion problems with this crap.
//
// This is here to catch things like:
// void foo(signed int n) {
// if (n < 100)
// alloca(n);
// ...
// }
if (cast_from_signed_p (len, invalid_casted_type))
{
// Unfortunately this also triggers:
//
// __SIZE_TYPE__ n = (__SIZE_TYPE__)blah;
// if (n < 100)
// alloca(n);
//
// ...which is clearly bounded. So, double check that
// the paths leading up to the size definitely don't
// have a bound.
tentative_cast_from_signed = true;
}
}
// No easily determined range and try other things.
}
// If we couldn't find anything, try a few heuristics for things we
// can easily determine. Check these misc cases but only accept
// them if all predecessors have a known bound.
struct alloca_type_and_limit ret = alloca_type_and_limit (ALLOCA_OK);
FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->preds)
{
gcc_assert (!len_casted || TYPE_UNSIGNED (TREE_TYPE (len_casted)));
ret = alloca_call_type_by_arg (len, len_casted, e, max_size);
if (ret.type != ALLOCA_OK)
break;
}
if (ret.type != ALLOCA_OK && tentative_cast_from_signed)
ret = alloca_type_and_limit (ALLOCA_CAST_FROM_SIGNED);
// If we have a declared maximum size, we can take it into account.
if (ret.type != ALLOCA_OK
&& gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
{
tree arg = gimple_call_arg (stmt, 2);
if (compare_tree_int (arg, max_size) <= 0)
ret = alloca_type_and_limit (ALLOCA_OK);
else
ret = alloca_type_and_limit (ALLOCA_BOUND_MAYBE_LARGE,
wi::to_wide (arg));
}
return ret;
}
// Return TRUE if STMT is in a loop, otherwise return FALSE.
static bool
in_loop_p (gimple *stmt)
{
basic_block bb = gimple_bb (stmt);
return
bb->loop_father && bb->loop_father->header != ENTRY_BLOCK_PTR_FOR_FN (cfun);
}
unsigned int
pass_walloca::execute (function *fun)
{
basic_block bb;
FOR_EACH_BB_FN (bb, fun)
{
for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
gsi_next (&si))
{
gimple *stmt = gsi_stmt (si);
location_t loc = gimple_location (stmt);
if (!gimple_alloca_call_p (stmt))
continue;
const bool is_vla
= gimple_call_alloca_for_var_p (as_a <gcall *> (stmt));
// Strict mode whining for VLAs is handled by the front-end,
// so we can safely ignore this case. Also, ignore VLAs if
// the user doesn't care about them.
if (is_vla
&& (warn_vla > 0 || !warn_vla_limit))
continue;
if (!is_vla && (warn_alloca || !warn_alloca_limit))
{
if (warn_alloca)
warning_at (loc, OPT_Walloca, G_("use of %<alloca%>"));
continue;
}
tree invalid_casted_type = NULL;
struct alloca_type_and_limit t
= alloca_call_type (stmt, is_vla, &invalid_casted_type);
// Even if we think the alloca call is OK, make sure it's not in a
// loop, except for a VLA, since VLAs are guaranteed to be cleaned
// up when they go out of scope, including in a loop.
if (t.type == ALLOCA_OK && !is_vla && in_loop_p (stmt))
t = alloca_type_and_limit (ALLOCA_IN_LOOP);
enum opt_code wcode
= is_vla ? OPT_Wvla_larger_than_ : OPT_Walloca_larger_than_;
char buff[WIDE_INT_MAX_PRECISION / 4 + 4];
switch (t.type)
{
case ALLOCA_OK:
break;
case ALLOCA_BOUND_MAYBE_LARGE:
if (warning_at (loc, wcode,
is_vla ? G_("argument to variable-length array "
"may be too large")
: G_("argument to %<alloca%> may be too large"))
&& t.limit != 0)
{
print_decu (t.limit, buff);
inform (loc, G_("limit is %u bytes, but argument "
"may be as large as %s"),
is_vla ? warn_vla_limit : warn_alloca_limit, buff);
}
break;
case ALLOCA_BOUND_DEFINITELY_LARGE:
if (warning_at (loc, wcode,
is_vla ? G_("argument to variable-length array "
"is too large")
: G_("argument to %<alloca%> is too large"))
&& t.limit != 0)
{
print_decu (t.limit, buff);
inform (loc, G_("limit is %u bytes, but argument is %s"),
is_vla ? warn_vla_limit : warn_alloca_limit, buff);
}
break;
case ALLOCA_BOUND_UNKNOWN:
warning_at (loc, wcode,
is_vla ? G_("variable-length array bound is unknown")
: G_("%<alloca%> bound is unknown"));
break;
case ALLOCA_UNBOUNDED:
warning_at (loc, wcode,
is_vla ? G_("unbounded use of variable-length array")
: G_("unbounded use of %<alloca%>"));
break;
case ALLOCA_IN_LOOP:
gcc_assert (!is_vla);
warning_at (loc, wcode, G_("use of %<alloca%> within a loop"));
break;
case ALLOCA_CAST_FROM_SIGNED:
gcc_assert (invalid_casted_type != NULL_TREE);
warning_at (loc, wcode,
is_vla ? G_("argument to variable-length array "
"may be too large due to "
"conversion from %qT to %qT")
: G_("argument to %<alloca%> may be too large "
"due to conversion from %qT to %qT"),
invalid_casted_type, size_type_node);
break;
case ALLOCA_ARG_IS_ZERO:
warning_at (loc, wcode,
is_vla ? G_("argument to variable-length array "
"is zero")
: G_("argument to %<alloca%> is zero"));
break;
default:
gcc_unreachable ();
}
}
}
return 0;
}
gimple_opt_pass *
make_pass_walloca (gcc::context *ctxt)
{
return new pass_walloca (ctxt);
}