blob: 59762964c6e6355d13075e2366bc62e135a33de0 [file] [log] [blame]
/* Instruction scheduling pass. Selective scheduler and pipeliner.
Copyright (C) 2006-2018 Free Software Foundation, Inc.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "rtl.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "regs.h"
#include "cfgbuild.h"
#include "cfgcleanup.h"
#include "insn-config.h"
#include "insn-attr.h"
#include "params.h"
#include "target.h"
#include "sched-int.h"
#include "rtlhooks-def.h"
#include "ira.h"
#include "ira-int.h"
#include "rtl-iter.h"
#ifdef INSN_SCHEDULING
#include "regset.h"
#include "cfgloop.h"
#include "sel-sched-ir.h"
#include "sel-sched-dump.h"
#include "sel-sched.h"
#include "dbgcnt.h"
/* Implementation of selective scheduling approach.
The below implementation follows the original approach with the following
changes:
o the scheduler works after register allocation (but can be also tuned
to work before RA);
o some instructions are not copied or register renamed;
o conditional jumps are not moved with code duplication;
o several jumps in one parallel group are not supported;
o when pipelining outer loops, code motion through inner loops
is not supported;
o control and data speculation are supported;
o some improvements for better compile time/performance were made.
Terminology
===========
A vinsn, or virtual insn, is an insn with additional data characterizing
insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
Vinsns also act as smart pointers to save memory by reusing them in
different expressions. A vinsn is described by vinsn_t type.
An expression is a vinsn with additional data characterizing its properties
at some point in the control flow graph. The data may be its usefulness,
priority, speculative status, whether it was renamed/subsituted, etc.
An expression is described by expr_t type.
Availability set (av_set) is a set of expressions at a given control flow
point. It is represented as av_set_t. The expressions in av sets are kept
sorted in the terms of expr_greater_p function. It allows to truncate
the set while leaving the best expressions.
A fence is a point through which code motion is prohibited. On each step,
we gather a parallel group of insns at a fence. It is possible to have
multiple fences. A fence is represented via fence_t.
A boundary is the border between the fence group and the rest of the code.
Currently, we never have more than one boundary per fence, as we finalize
the fence group when a jump is scheduled. A boundary is represented
via bnd_t.
High-level overview
===================
The scheduler finds regions to schedule, schedules each one, and finalizes.
The regions are formed starting from innermost loops, so that when the inner
loop is pipelined, its prologue can be scheduled together with yet unprocessed
outer loop. The rest of acyclic regions are found using extend_rgns:
the blocks that are not yet allocated to any regions are traversed in top-down
order, and a block is added to a region to which all its predecessors belong;
otherwise, the block starts its own region.
The main scheduling loop (sel_sched_region_2) consists of just
scheduling on each fence and updating fences. For each fence,
we fill a parallel group of insns (fill_insns) until some insns can be added.
First, we compute available exprs (av-set) at the boundary of the current
group. Second, we choose the best expression from it. If the stall is
required to schedule any of the expressions, we advance the current cycle
appropriately. So, the final group does not exactly correspond to a VLIW
word. Third, we move the chosen expression to the boundary (move_op)
and update the intermediate av sets and liveness sets. We quit fill_insns
when either no insns left for scheduling or we have scheduled enough insns
so we feel like advancing a scheduling point.
Computing available expressions
===============================
The computation (compute_av_set) is a bottom-up traversal. At each insn,
we're moving the union of its successors' sets through it via
moveup_expr_set. The dependent expressions are removed. Local
transformations (substitution, speculation) are applied to move more
exprs. Then the expr corresponding to the current insn is added.
The result is saved on each basic block header.
When traversing the CFG, we're moving down for no more than max_ws insns.
Also, we do not move down to ineligible successors (is_ineligible_successor),
which include moving along a back-edge, moving to already scheduled code,
and moving to another fence. The first two restrictions are lifted during
pipelining, which allows us to move insns along a back-edge. We always have
an acyclic region for scheduling because we forbid motion through fences.
Choosing the best expression
============================
We sort the final availability set via sel_rank_for_schedule, then we remove
expressions which are not yet ready (tick_check_p) or which dest registers
cannot be used. For some of them, we choose another register via
find_best_reg. To do this, we run find_used_regs to calculate the set of
registers which cannot be used. The find_used_regs function performs
a traversal of code motion paths for an expr. We consider for renaming
only registers which are from the same regclass as the original one and
using which does not interfere with any live ranges. Finally, we convert
the resulting set to the ready list format and use max_issue and reorder*
hooks similarly to the Haifa scheduler.
Scheduling the best expression
==============================
We run the move_op routine to perform the same type of code motion paths
traversal as in find_used_regs. (These are working via the same driver,
code_motion_path_driver.) When moving down the CFG, we look for original
instruction that gave birth to a chosen expression. We undo
the transformations performed on an expression via the history saved in it.
When found, we remove the instruction or leave a reg-reg copy/speculation
check if needed. On a way up, we insert bookkeeping copies at each join
point. If a copy is not needed, it will be removed later during this
traversal. We update the saved av sets and liveness sets on the way up, too.
Finalizing the schedule
=======================
When pipelining, we reschedule the blocks from which insns were pipelined
to get a tighter schedule. On Itanium, we also perform bundling via
the same routine from ia64.c.
Dependence analysis changes
===========================
We augmented the sched-deps.c with hooks that get called when a particular
dependence is found in a particular part of an insn. Using these hooks, we
can do several actions such as: determine whether an insn can be moved through
another (has_dependence_p, moveup_expr); find out whether an insn can be
scheduled on the current cycle (tick_check_p); find out registers that
are set/used/clobbered by an insn and find out all the strange stuff that
restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
init_global_and_expr_for_insn).
Initialization changes
======================
There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
reused in all of the schedulers. We have split up the initialization of data
of such parts into different functions prefixed with scheduler type and
postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
The same splitting is done with current_sched_info structure:
dependence-related parts are in sched_deps_info, common part is in
common_sched_info, and haifa/sel/etc part is in current_sched_info.
Target contexts
===============
As we now have multiple-point scheduling, this would not work with backends
which save some of the scheduler state to use it in the target hooks.
For this purpose, we introduce a concept of target contexts, which
encapsulate such information. The backend should implement simple routines
of allocating/freeing/setting such a context. The scheduler calls these
as target hooks and handles the target context as an opaque pointer (similar
to the DFA state type, state_t).
Various speedups
================
As the correct data dependence graph is not supported during scheduling (which
is to be changed in mid-term), we cache as much of the dependence analysis
results as possible to avoid reanalyzing. This includes: bitmap caches on
each insn in stream of the region saying yes/no for a query with a pair of
UIDs; hashtables with the previously done transformations on each insn in
stream; a vector keeping a history of transformations on each expr.
Also, we try to minimize the dependence context used on each fence to check
whether the given expression is ready for scheduling by removing from it
insns that are definitely completed the execution. The results of
tick_check_p checks are also cached in a vector on each fence.
We keep a valid liveness set on each insn in a region to avoid the high
cost of recomputation on large basic blocks.
Finally, we try to minimize the number of needed updates to the availability
sets. The updates happen in two cases: when fill_insns terminates,
we advance all fences and increase the stage number to show that the region
has changed and the sets are to be recomputed; and when the next iteration
of a loop in fill_insns happens (but this one reuses the saved av sets
on bb headers.) Thus, we try to break the fill_insns loop only when
"significant" number of insns from the current scheduling window was
scheduled. This should be made a target param.
TODO: correctly support the data dependence graph at all stages and get rid
of all caches. This should speed up the scheduler.
TODO: implement moving cond jumps with bookkeeping copies on both targets.
TODO: tune the scheduler before RA so it does not create too much pseudos.
References:
S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
selective scheduling and software pipelining.
ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
for GCC. In Proceedings of GCC Developers' Summit 2006.
Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
http://rogue.colorado.edu/EPIC7/.
*/
/* True when pipelining is enabled. */
bool pipelining_p;
/* True if bookkeeping is enabled. */
bool bookkeeping_p;
/* Maximum number of insns that are eligible for renaming. */
int max_insns_to_rename;
/* Definitions of local types and macros. */
/* Represents possible outcomes of moving an expression through an insn. */
enum MOVEUP_EXPR_CODE
{
/* The expression is not changed. */
MOVEUP_EXPR_SAME,
/* Not changed, but requires a new destination register. */
MOVEUP_EXPR_AS_RHS,
/* Cannot be moved. */
MOVEUP_EXPR_NULL,
/* Changed (substituted or speculated). */
MOVEUP_EXPR_CHANGED
};
/* The container to be passed into rtx search & replace functions. */
struct rtx_search_arg
{
/* What we are searching for. */
rtx x;
/* The occurrence counter. */
int n;
};
typedef struct rtx_search_arg *rtx_search_arg_p;
/* This struct contains precomputed hard reg sets that are needed when
computing registers available for renaming. */
struct hard_regs_data
{
/* For every mode, this stores registers available for use with
that mode. */
HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
/* True when regs_for_mode[mode] is initialized. */
bool regs_for_mode_ok[NUM_MACHINE_MODES];
/* For every register, it has regs that are ok to rename into it.
The register in question is always set. If not, this means
that the whole set is not computed yet. */
HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
/* For every mode, this stores registers not available due to
call clobbering. */
HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
/* All registers that are used or call used. */
HARD_REG_SET regs_ever_used;
#ifdef STACK_REGS
/* Stack registers. */
HARD_REG_SET stack_regs;
#endif
};
/* Holds the results of computation of available for renaming and
unavailable hard registers. */
struct reg_rename
{
/* These are unavailable due to calls crossing, globalness, etc. */
HARD_REG_SET unavailable_hard_regs;
/* These are *available* for renaming. */
HARD_REG_SET available_for_renaming;
/* Whether this code motion path crosses a call. */
bool crosses_call;
};
/* A global structure that contains the needed information about harg
regs. */
static struct hard_regs_data sel_hrd;
/* This structure holds local data used in code_motion_path_driver hooks on
the same or adjacent levels of recursion. Here we keep those parameters
that are not used in code_motion_path_driver routine itself, but only in
its hooks. Moreover, all parameters that can be modified in hooks are
in this structure, so all other parameters passed explicitly to hooks are
read-only. */
struct cmpd_local_params
{
/* Local params used in move_op_* functions. */
/* Edges for bookkeeping generation. */
edge e1, e2;
/* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
expr_t c_expr_merged, c_expr_local;
/* Local params used in fur_* functions. */
/* Copy of the ORIGINAL_INSN list, stores the original insns already
found before entering the current level of code_motion_path_driver. */
def_list_t old_original_insns;
/* Local params used in move_op_* functions. */
/* True when we have removed last insn in the block which was
also a boundary. Do not update anything or create bookkeeping copies. */
BOOL_BITFIELD removed_last_insn : 1;
};
/* Stores the static parameters for move_op_* calls. */
struct moveop_static_params
{
/* Destination register. */
rtx dest;
/* Current C_EXPR. */
expr_t c_expr;
/* An UID of expr_vliw which is to be moved up. If we find other exprs,
they are to be removed. */
int uid;
/* This is initialized to the insn on which the driver stopped its traversal. */
insn_t failed_insn;
/* True if we scheduled an insn with different register. */
bool was_renamed;
};
/* Stores the static parameters for fur_* calls. */
struct fur_static_params
{
/* Set of registers unavailable on the code motion path. */
regset used_regs;
/* Pointer to the list of original insns definitions. */
def_list_t *original_insns;
/* True if a code motion path contains a CALL insn. */
bool crosses_call;
};
typedef struct fur_static_params *fur_static_params_p;
typedef struct cmpd_local_params *cmpd_local_params_p;
typedef struct moveop_static_params *moveop_static_params_p;
/* Set of hooks and parameters that determine behavior specific to
move_op or find_used_regs functions. */
struct code_motion_path_driver_info_def
{
/* Called on enter to the basic block. */
int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
/* Called when original expr is found. */
void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
/* Called while descending current basic block if current insn is not
the original EXPR we're searching for. */
bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
/* Function to merge C_EXPRes from different successors. */
void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
/* Function to finalize merge from different successors and possibly
deallocate temporary data structures used for merging. */
void (*after_merge_succs) (cmpd_local_params_p, void *);
/* Called on the backward stage of recursion to do moveup_expr.
Used only with move_op_*. */
void (*ascend) (insn_t, void *);
/* Called on the ascending pass, before returning from the current basic
block or from the whole traversal. */
void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
/* When processing successors in move_op we need only descend into
SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
int succ_flags;
/* The routine name to print in dumps ("move_op" of "find_used_regs"). */
const char *routine_name;
};
/* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
FUR_HOOKS. */
struct code_motion_path_driver_info_def *code_motion_path_driver_info;
/* Set of hooks for performing move_op and find_used_regs routines with
code_motion_path_driver. */
extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
/* True if/when we want to emulate Haifa scheduler in the common code.
This is used in sched_rgn_local_init and in various places in
sched-deps.c. */
int sched_emulate_haifa_p;
/* GLOBAL_LEVEL is used to discard information stored in basic block headers
av_sets. Av_set of bb header is valid if its (bb header's) level is equal
to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
scheduling window. */
int global_level;
/* Current fences. */
flist_t fences;
/* True when separable insns should be scheduled as RHSes. */
static bool enable_schedule_as_rhs_p;
/* Used in verify_target_availability to assert that target reg is reported
unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
we haven't scheduled anything on the previous fence.
if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
have more conservative value than the one returned by the
find_used_regs, thus we shouldn't assert that these values are equal. */
static bool scheduled_something_on_previous_fence;
/* All newly emitted insns will have their uids greater than this value. */
static int first_emitted_uid;
/* Set of basic blocks that are forced to start new ebbs. This is a subset
of all the ebb heads. */
static bitmap_head _forced_ebb_heads;
bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
/* Blocks that need to be rescheduled after pipelining. */
bitmap blocks_to_reschedule = NULL;
/* True when the first lv set should be ignored when updating liveness. */
static bool ignore_first = false;
/* Number of insns max_issue has initialized data structures for. */
static int max_issue_size = 0;
/* Whether we can issue more instructions. */
static int can_issue_more;
/* Maximum software lookahead window size, reduced when rescheduling after
pipelining. */
static int max_ws;
/* Number of insns scheduled in current region. */
static int num_insns_scheduled;
/* A vector of expressions is used to be able to sort them. */
static vec<expr_t> vec_av_set;
/* A vector of vinsns is used to hold temporary lists of vinsns. */
typedef vec<vinsn_t> vinsn_vec_t;
/* This vector has the exprs which may still present in av_sets, but actually
can't be moved up due to bookkeeping created during code motion to another
fence. See comment near the call to update_and_record_unavailable_insns
for the detailed explanations. */
static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
/* This vector has vinsns which are scheduled with renaming on the first fence
and then seen on the second. For expressions with such vinsns, target
availability information may be wrong. */
static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
/* Vector to store temporary nops inserted in move_op to prevent removal
of empty bbs. */
static vec<insn_t> vec_temp_moveop_nops;
/* These bitmaps record original instructions scheduled on the current
iteration and bookkeeping copies created by them. */
static bitmap current_originators = NULL;
static bitmap current_copies = NULL;
/* This bitmap marks the blocks visited by code_motion_path_driver so we don't
visit them afterwards. */
static bitmap code_motion_visited_blocks = NULL;
/* Variables to accumulate different statistics. */
/* The number of bookkeeping copies created. */
static int stat_bookkeeping_copies;
/* The number of insns that required bookkeeiping for their scheduling. */
static int stat_insns_needed_bookkeeping;
/* The number of insns that got renamed. */
static int stat_renamed_scheduled;
/* The number of substitutions made during scheduling. */
static int stat_substitutions_total;
/* Forward declarations of static functions. */
static bool rtx_ok_for_substitution_p (rtx, rtx);
static int sel_rank_for_schedule (const void *, const void *);
static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
static rtx get_dest_from_orig_ops (av_set_t);
static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
def_list_t *);
static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
cmpd_local_params_p, void *);
static void sel_sched_region_1 (void);
static void sel_sched_region_2 (int);
static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
static void debug_state (state_t);
/* Functions that work with fences. */
/* Advance one cycle on FENCE. */
static void
advance_one_cycle (fence_t fence)
{
unsigned i;
int cycle;
rtx_insn *insn;
advance_state (FENCE_STATE (fence));
cycle = ++FENCE_CYCLE (fence);
FENCE_ISSUED_INSNS (fence) = 0;
FENCE_STARTS_CYCLE_P (fence) = 1;
can_issue_more = issue_rate;
FENCE_ISSUE_MORE (fence) = can_issue_more;
for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
{
if (INSN_READY_CYCLE (insn) < cycle)
{
remove_from_deps (FENCE_DC (fence), insn);
FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
continue;
}
i++;
}
if (sched_verbose >= 2)
{
sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
debug_state (FENCE_STATE (fence));
}
}
/* Returns true when SUCC in a fallthru bb of INSN, possibly
skipping empty basic blocks. */
static bool
in_fallthru_bb_p (rtx_insn *insn, rtx succ)
{
basic_block bb = BLOCK_FOR_INSN (insn);
edge e;
if (bb == BLOCK_FOR_INSN (succ))
return true;
e = find_fallthru_edge_from (bb);
if (e)
bb = e->dest;
else
return false;
while (sel_bb_empty_p (bb))
bb = bb->next_bb;
return bb == BLOCK_FOR_INSN (succ);
}
/* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
When a successor will continue a ebb, transfer all parameters of a fence
to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
of scheduling helping to distinguish between the old and the new code. */
static void
extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
int orig_max_seqno)
{
bool was_here_p = false;
insn_t insn = NULL;
insn_t succ;
succ_iterator si;
ilist_iterator ii;
fence_t fence = FLIST_FENCE (old_fences);
basic_block bb;
/* Get the only element of FENCE_BNDS (fence). */
FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
{
gcc_assert (!was_here_p);
was_here_p = true;
}
gcc_assert (was_here_p && insn != NULL_RTX);
/* When in the "middle" of the block, just move this fence
to the new list. */
bb = BLOCK_FOR_INSN (insn);
if (! sel_bb_end_p (insn)
|| (single_succ_p (bb)
&& single_pred_p (single_succ (bb))))
{
insn_t succ;
succ = (sel_bb_end_p (insn)
? sel_bb_head (single_succ (bb))
: NEXT_INSN (insn));
if (INSN_SEQNO (succ) > 0
&& INSN_SEQNO (succ) <= orig_max_seqno
&& INSN_SCHED_TIMES (succ) <= 0)
{
FENCE_INSN (fence) = succ;
move_fence_to_fences (old_fences, new_fences);
if (sched_verbose >= 1)
sel_print ("Fence %d continues as %d[%d] (state continue)\n",
INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
}
return;
}
/* Otherwise copy fence's structures to (possibly) multiple successors. */
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
{
int seqno = INSN_SEQNO (succ);
if (seqno > 0 && seqno <= orig_max_seqno
&& (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
{
bool b = (in_same_ebb_p (insn, succ)
|| in_fallthru_bb_p (insn, succ));
if (sched_verbose >= 1)
sel_print ("Fence %d continues as %d[%d] (state %s)\n",
INSN_UID (insn), INSN_UID (succ),
BLOCK_NUM (succ), b ? "continue" : "reset");
if (b)
add_dirty_fence_to_fences (new_fences, succ, fence);
else
{
/* Mark block of the SUCC as head of the new ebb. */
bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
add_clean_fence_to_fences (new_fences, succ, fence);
}
}
}
}
/* Functions to support substitution. */
/* Returns whether INSN with dependence status DS is eligible for
substitution, i.e. it's a copy operation x := y, and RHS that is
moved up through this insn should be substituted. */
static bool
can_substitute_through_p (insn_t insn, ds_t ds)
{
/* We can substitute only true dependencies. */
if ((ds & DEP_OUTPUT)
|| (ds & DEP_ANTI)
|| ! INSN_RHS (insn)
|| ! INSN_LHS (insn))
return false;
/* Now we just need to make sure the INSN_RHS consists of only one
simple REG rtx. */
if (REG_P (INSN_LHS (insn))
&& REG_P (INSN_RHS (insn)))
return true;
return false;
}
/* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
source (if INSN is eligible for substitution). Returns TRUE if
substitution was actually performed, FALSE otherwise. Substitution might
be not performed because it's either EXPR' vinsn doesn't contain INSN's
destination or the resulting insn is invalid for the target machine.
When UNDO is true, perform unsubstitution instead (the difference is in
the part of rtx on which validate_replace_rtx is called). */
static bool
substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
{
rtx *where;
bool new_insn_valid;
vinsn_t *vi = &EXPR_VINSN (expr);
bool has_rhs = VINSN_RHS (*vi) != NULL;
rtx old, new_rtx;
/* Do not try to replace in SET_DEST. Although we'll choose new
register for the RHS, we don't want to change RHS' original reg.
If the insn is not SET, we may still be able to substitute something
in it, and if we're here (don't have deps), it doesn't write INSN's
dest. */
where = (has_rhs
? &VINSN_RHS (*vi)
: &PATTERN (VINSN_INSN_RTX (*vi)));
old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
/* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
if (rtx_ok_for_substitution_p (old, *where))
{
rtx_insn *new_insn;
rtx *where_replace;
/* We should copy these rtxes before substitution. */
new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
/* Where we'll replace.
WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
used instead of SET_SRC. */
where_replace = (has_rhs
? &SET_SRC (PATTERN (new_insn))
: &PATTERN (new_insn));
new_insn_valid
= validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
new_insn);
/* ??? Actually, constrain_operands result depends upon choice of
destination register. E.g. if we allow single register to be an rhs,
and if we try to move dx=ax(as rhs) through ax=dx, we'll result
in invalid insn dx=dx, so we'll loose this rhs here.
Just can't come up with significant testcase for this, so just
leaving it for now. */
if (new_insn_valid)
{
change_vinsn_in_expr (expr,
create_vinsn_from_insn_rtx (new_insn, false));
/* Do not allow clobbering the address register of speculative
insns. */
if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
&& register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
expr_dest_reg (expr)))
EXPR_TARGET_AVAILABLE (expr) = false;
return true;
}
else
return false;
}
else
return false;
}
/* Return the number of places WHAT appears within WHERE.
Bail out when we found a reference occupying several hard registers. */
static int
count_occurrences_equiv (const_rtx what, const_rtx where)
{
int count = 0;
subrtx_iterator::array_type array;
FOR_EACH_SUBRTX (iter, array, where, NONCONST)
{
const_rtx x = *iter;
if (REG_P (x) && REGNO (x) == REGNO (what))
{
/* Bail out if mode is different or more than one register is
used. */
if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
return 0;
count += 1;
}
else if (GET_CODE (x) == SUBREG
&& (!REG_P (SUBREG_REG (x))
|| REGNO (SUBREG_REG (x)) == REGNO (what)))
/* ??? Do not support substituting regs inside subregs. In that case,
simplify_subreg will be called by validate_replace_rtx, and
unsubstitution will fail later. */
return 0;
}
return count;
}
/* Returns TRUE if WHAT is found in WHERE rtx tree. */
static bool
rtx_ok_for_substitution_p (rtx what, rtx where)
{
return (count_occurrences_equiv (what, where) > 0);
}
/* Functions to support register renaming. */
/* Substitute VI's set source with REGNO. Returns newly created pattern
that has REGNO as its source. */
static rtx_insn *
create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
{
rtx lhs_rtx;
rtx pattern;
rtx_insn *insn_rtx;
lhs_rtx = copy_rtx (VINSN_LHS (vi));
pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
return insn_rtx;
}
/* Returns whether INSN's src can be replaced with register number
NEW_SRC_REG. E.g. the following insn is valid for i386:
(insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
(set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
(reg:SI 0 ax [orig:770 c1 ] [770]))
(const_int 288 [0x120])) [0 str S1 A8])
(const_int 0 [0x0])) 43 {*movqi_1} (nil)
(nil))
But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
because of operand constraints:
(define_insn "*movqi_1"
[(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
(match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
)]
So do constrain_operands here, before choosing NEW_SRC_REG as best
reg for rhs. */
static bool
replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
{
vinsn_t vi = INSN_VINSN (insn);
machine_mode mode;
rtx dst_loc;
bool res;
gcc_assert (VINSN_SEPARABLE_P (vi));
get_dest_and_mode (insn, &dst_loc, &mode);
gcc_assert (mode == GET_MODE (new_src_reg));
if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
return true;
/* See whether SET_SRC can be replaced with this register. */
validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
res = verify_changes (0);
cancel_changes (0);
return res;
}
/* Returns whether INSN still be valid after replacing it's DEST with
register NEW_REG. */
static bool
replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
{
vinsn_t vi = INSN_VINSN (insn);
bool res;
/* We should deal here only with separable insns. */
gcc_assert (VINSN_SEPARABLE_P (vi));
gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
/* See whether SET_DEST can be replaced with this register. */
validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
res = verify_changes (0);
cancel_changes (0);
return res;
}
/* Create a pattern with rhs of VI and lhs of LHS_RTX. */
static rtx_insn *
create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
{
rtx rhs_rtx;
rtx pattern;
rtx_insn *insn_rtx;
rhs_rtx = copy_rtx (VINSN_RHS (vi));
pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
return insn_rtx;
}
/* Substitute lhs in the given expression EXPR for the register with number
NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
static void
replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
{
rtx_insn *insn_rtx;
vinsn_t vinsn;
insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
change_vinsn_in_expr (expr, vinsn);
EXPR_WAS_RENAMED (expr) = 1;
EXPR_TARGET_AVAILABLE (expr) = 1;
}
/* Returns whether VI writes either one of the USED_REGS registers or,
if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
static bool
vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
HARD_REG_SET unavailable_hard_regs)
{
unsigned regno;
reg_set_iterator rsi;
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
{
if (REGNO_REG_SET_P (used_regs, regno))
return true;
if (HARD_REGISTER_NUM_P (regno)
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
return true;
}
EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
{
if (REGNO_REG_SET_P (used_regs, regno))
return true;
if (HARD_REGISTER_NUM_P (regno)
&& TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
return true;
}
return false;
}
/* Returns register class of the output register in INSN.
Returns NO_REGS for call insns because some targets have constraints on
destination register of a call insn.
Code adopted from regrename.c::build_def_use. */
static enum reg_class
get_reg_class (rtx_insn *insn)
{
int i, n_ops;
extract_constrain_insn (insn);
preprocess_constraints (insn);
n_ops = recog_data.n_operands;
const operand_alternative *op_alt = which_op_alt ();
if (asm_noperands (PATTERN (insn)) > 0)
{
for (i = 0; i < n_ops; i++)
if (recog_data.operand_type[i] == OP_OUT)
{
rtx *loc = recog_data.operand_loc[i];
rtx op = *loc;
enum reg_class cl = alternative_class (op_alt, i);
if (REG_P (op)
&& REGNO (op) == ORIGINAL_REGNO (op))
continue;
return cl;
}
}
else if (!CALL_P (insn))
{
for (i = 0; i < n_ops + recog_data.n_dups; i++)
{
int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
enum reg_class cl = alternative_class (op_alt, opn);
if (recog_data.operand_type[opn] == OP_OUT ||
recog_data.operand_type[opn] == OP_INOUT)
return cl;
}
}
/* Insns like
(insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
may result in returning NO_REGS, cause flags is written implicitly through
CMP insn, which has no OP_OUT | OP_INOUT operands. */
return NO_REGS;
}
/* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
static void
init_hard_regno_rename (int regno)
{
int cur_reg;
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
{
/* We are not interested in renaming in other regs. */
if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
continue;
if (HARD_REGNO_RENAME_OK (regno, cur_reg))
SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
}
}
/* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
data first. */
static inline bool
sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
{
/* Check whether this is all calculated. */
if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
init_hard_regno_rename (from);
return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
}
/* Calculate set of registers that are capable of holding MODE. */
static void
init_regs_for_mode (machine_mode mode)
{
int cur_reg;
CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
{
int nregs;
int i;
/* See whether it accepts all modes that occur in
original insns. */
if (!targetm.hard_regno_mode_ok (cur_reg, mode))
continue;
nregs = hard_regno_nregs (cur_reg, mode);
for (i = nregs - 1; i >= 0; --i)
if (fixed_regs[cur_reg + i]
|| global_regs[cur_reg + i]
/* Can't use regs which aren't saved by
the prologue. */
|| !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
/* Can't use regs with non-null REG_BASE_VALUE, because adjusting
it affects aliasing globally and invalidates all AV sets. */
|| get_reg_base_value (cur_reg + i)
#ifdef LEAF_REGISTERS
/* We can't use a non-leaf register if we're in a
leaf function. */
|| (crtl->is_leaf
&& !LEAF_REGISTERS[cur_reg + i])
#endif
)
break;
if (i >= 0)
continue;
if (targetm.hard_regno_call_part_clobbered (cur_reg, mode))
SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
cur_reg);
/* If the CUR_REG passed all the checks above,
then it's ok. */
SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
}
sel_hrd.regs_for_mode_ok[mode] = true;
}
/* Init all register sets gathered in HRD. */
static void
init_hard_regs_data (void)
{
int cur_reg = 0;
int cur_mode = 0;
CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
/* Initialize registers that are valid based on mode when this is
really needed. */
for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
sel_hrd.regs_for_mode_ok[cur_mode] = false;
/* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
#ifdef STACK_REGS
CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
#endif
}
/* Mark hardware regs in REG_RENAME_P that are not suitable
for renaming rhs in INSN due to hardware restrictions (register class,
modes compatibility etc). This doesn't affect original insn's dest reg,
if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
Registers that are in used_regs are always marked in
unavailable_hard_regs as well. */
static void
mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
regset used_regs ATTRIBUTE_UNUSED)
{
machine_mode mode;
enum reg_class cl = NO_REGS;
rtx orig_dest;
unsigned cur_reg, regno;
hard_reg_set_iterator hrsi;
gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
gcc_assert (reg_rename_p);
orig_dest = SET_DEST (PATTERN (def->orig_insn));
/* We have decided not to rename 'mem = something;' insns, as 'something'
is usually a register. */
if (!REG_P (orig_dest))
return;
regno = REGNO (orig_dest);
/* If before reload, don't try to work with pseudos. */
if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
return;
if (reload_completed)
cl = get_reg_class (def->orig_insn);
/* Stop if the original register is one of the fixed_regs, global_regs or
frame pointer, or we could not discover its class. */
if (fixed_regs[regno]
|| global_regs[regno]
|| (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
&& regno == HARD_FRAME_POINTER_REGNUM)
|| (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
&& regno == FRAME_POINTER_REGNUM)
|| (reload_completed && cl == NO_REGS))
{
SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
/* Give a chance for original register, if it isn't in used_regs. */
if (!def->crosses_call)
CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
return;
}
/* If something allocated on stack in this function, mark frame pointer
register unavailable, considering also modes.
FIXME: it is enough to do this once per all original defs. */
if (frame_pointer_needed)
{
add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
Pmode, FRAME_POINTER_REGNUM);
if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
Pmode, HARD_FRAME_POINTER_REGNUM);
}
#ifdef STACK_REGS
/* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
is equivalent to as if all stack regs were in this set.
I.e. no stack register can be renamed, and even if it's an original
register here we make sure it won't be lifted over it's previous def
(it's previous def will appear as if it's a FIRST_STACK_REG def.
The HARD_REGNO_RENAME_OK covers other cases in condition below. */
if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
&& REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
sel_hrd.stack_regs);
#endif
/* If there's a call on this path, make regs from call_used_reg_set
unavailable. */
if (def->crosses_call)
IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
call_used_reg_set);
/* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
but not register classes. */
if (!reload_completed)
return;
/* Leave regs as 'available' only from the current
register class. */
COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
reg_class_contents[cl]);
mode = GET_MODE (orig_dest);
/* Leave only registers available for this mode. */
if (!sel_hrd.regs_for_mode_ok[mode])
init_regs_for_mode (mode);
AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
sel_hrd.regs_for_mode[mode]);
/* Exclude registers that are partially call clobbered. */
if (def->crosses_call
&& !targetm.hard_regno_call_part_clobbered (regno, mode))
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
sel_hrd.regs_for_call_clobbered[mode]);
/* Leave only those that are ok to rename. */
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
0, cur_reg, hrsi)
{
int nregs;
int i;
nregs = hard_regno_nregs (cur_reg, mode);
gcc_assert (nregs > 0);
for (i = nregs - 1; i >= 0; --i)
if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
break;
if (i >= 0)
CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
cur_reg);
}
AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
reg_rename_p->unavailable_hard_regs);
/* Regno is always ok from the renaming part of view, but it really
could be in *unavailable_hard_regs already, so set it here instead
of there. */
SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
}
/* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
best register more recently than REG2. */
static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
/* Indicates the number of times renaming happened before the current one. */
static int reg_rename_this_tick;
/* Choose the register among free, that is suitable for storing
the rhs value.
ORIGINAL_INSNS is the list of insns where the operation (rhs)
originally appears. There could be multiple original operations
for single rhs since we moving it up and merging along different
paths.
Some code is adapted from regrename.c (regrename_optimize).
If original register is available, function returns it.
Otherwise it performs the checks, so the new register should
comply with the following:
- it should not violate any live ranges (such registers are in
REG_RENAME_P->available_for_renaming set);
- it should not be in the HARD_REGS_USED regset;
- it should be in the class compatible with original uses;
- it should not be clobbered through reference with different mode;
- if we're in the leaf function, then the new register should
not be in the LEAF_REGISTERS;
- etc.
If several registers meet the conditions, the register with smallest
tick is returned to achieve more even register allocation.
If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
If no register satisfies the above conditions, NULL_RTX is returned. */
static rtx
choose_best_reg_1 (HARD_REG_SET hard_regs_used,
struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
int best_new_reg;
unsigned cur_reg;
machine_mode mode = VOIDmode;
unsigned regno, i, n;
hard_reg_set_iterator hrsi;
def_list_iterator di;
def_t def;
/* If original register is available, return it. */
*is_orig_reg_p_ptr = true;
FOR_EACH_DEF (def, di, original_insns)
{
rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
gcc_assert (REG_P (orig_dest));
/* Check that all original operations have the same mode.
This is done for the next loop; if we'd return from this
loop, we'd check only part of them, but in this case
it doesn't matter. */
if (mode == VOIDmode)
mode = GET_MODE (orig_dest);
gcc_assert (mode == GET_MODE (orig_dest));
regno = REGNO (orig_dest);
for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
break;
/* All hard registers are available. */
if (i == n)
{
gcc_assert (mode != VOIDmode);
/* Hard registers should not be shared. */
return gen_rtx_REG (mode, regno);
}
}
*is_orig_reg_p_ptr = false;
best_new_reg = -1;
/* Among all available regs choose the register that was
allocated earliest. */
EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
0, cur_reg, hrsi)
if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
{
/* Check that all hard regs for mode are available. */
for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
|| !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
cur_reg + i))
break;
if (i < n)
continue;
/* All hard registers are available. */
if (best_new_reg < 0
|| reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
{
best_new_reg = cur_reg;
/* Return immediately when we know there's no better reg. */
if (! reg_rename_tick[best_new_reg])
break;
}
}
if (best_new_reg >= 0)
{
/* Use the check from the above loop. */
gcc_assert (mode != VOIDmode);
return gen_rtx_REG (mode, best_new_reg);
}
return NULL_RTX;
}
/* A wrapper around choose_best_reg_1 () to verify that we make correct
assumptions about available registers in the function. */
static rtx
choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
original_insns, is_orig_reg_p_ptr);
/* FIXME loop over hard_regno_nregs here. */
gcc_assert (best_reg == NULL_RTX
|| TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
return best_reg;
}
/* Choose the pseudo register for storing rhs value. As this is supposed
to work before reload, we return either the original register or make
the new one. The parameters are the same that in choose_nest_reg_1
functions, except that USED_REGS may contain pseudos.
If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
TODO: take into account register pressure while doing this. Up to this
moment, this function would never return NULL for pseudos, but we should
not rely on this. */
static rtx
choose_best_pseudo_reg (regset used_regs,
struct reg_rename *reg_rename_p,
def_list_t original_insns, bool *is_orig_reg_p_ptr)
{
def_list_iterator i;
def_t def;
machine_mode mode = VOIDmode;
bool bad_hard_regs = false;
/* We should not use this after reload. */
gcc_assert (!reload_completed);
/* If original register is available, return it. */
*is_orig_reg_p_ptr = true;
FOR_EACH_DEF (def, i, original_insns)
{
rtx dest = SET_DEST (PATTERN (def->orig_insn));
int orig_regno;
gcc_assert (REG_P (dest));
/* Check that all original operations have the same mode. */
if (mode == VOIDmode)
mode = GET_MODE (dest);
else
gcc_assert (mode == GET_MODE (dest));
orig_regno = REGNO (dest);
/* Check that nothing in used_regs intersects with orig_regno. When
we have a hard reg here, still loop over hard_regno_nregs. */
if (HARD_REGISTER_NUM_P (orig_regno))
{
int j, n;
for (j = 0, n = REG_NREGS (dest); j < n; j++)
if (REGNO_REG_SET_P (used_regs, orig_regno + j))
break;
if (j < n)
continue;
}
else
{
if (REGNO_REG_SET_P (used_regs, orig_regno))
continue;
}
if (HARD_REGISTER_NUM_P (orig_regno))
{
gcc_assert (df_regs_ever_live_p (orig_regno));
/* For hard registers, we have to check hardware imposed
limitations (frame/stack registers, calls crossed). */
if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
orig_regno))
{
/* Don't let register cross a call if it doesn't already
cross one. This condition is written in accordance with
that in sched-deps.c sched_analyze_reg(). */
if (!reg_rename_p->crosses_call
|| REG_N_CALLS_CROSSED (orig_regno) > 0)
return gen_rtx_REG (mode, orig_regno);
}
bad_hard_regs = true;
}
else
return dest;
}
*is_orig_reg_p_ptr = false;
/* We had some original hard registers that couldn't be used.
Those were likely special. Don't try to create a pseudo. */
if (bad_hard_regs)
return NULL_RTX;
/* We haven't found a register from original operations. Get a new one.
FIXME: control register pressure somehow. */
{
rtx new_reg = gen_reg_rtx (mode);
gcc_assert (mode != VOIDmode);
max_regno = max_reg_num ();
maybe_extend_reg_info_p ();
REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
return new_reg;
}
}
/* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
static void
verify_target_availability (expr_t expr, regset used_regs,
struct reg_rename *reg_rename_p)
{
unsigned n, i, regno;
machine_mode mode;
bool target_available, live_available, hard_available;
if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
return;
regno = expr_dest_regno (expr);
mode = GET_MODE (EXPR_LHS (expr));
target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
live_available = hard_available = true;
for (i = 0; i < n; i++)
{
if (bitmap_bit_p (used_regs, regno + i))
live_available = false;
if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
hard_available = false;
}
/* When target is not available, it may be due to hard register
restrictions, e.g. crosses calls, so we check hard_available too. */
if (target_available)
gcc_assert (live_available);
else
/* Check only if we haven't scheduled something on the previous fence,
cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
and having more than one fence, we may end having targ_un in a block
in which successors target register is actually available.
The last condition handles the case when a dependence from a call insn
was created in sched-deps.c for insns with destination registers that
never crossed a call before, but do cross one after our code motion.
FIXME: in the latter case, we just uselessly called find_used_regs,
because we can't move this expression with any other register
as well. */
gcc_assert (scheduled_something_on_previous_fence || !live_available
|| !hard_available
|| (!reload_completed && reg_rename_p->crosses_call
&& REG_N_CALLS_CROSSED (regno) == 0));
}
/* Collect unavailable registers due to liveness for EXPR from BNDS
into USED_REGS. Save additional information about available
registers and unavailable due to hardware restriction registers
into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
list. */
static void
collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
struct reg_rename *reg_rename_p,
def_list_t *original_insns)
{
for (; bnds; bnds = BLIST_NEXT (bnds))
{
bool res;
av_set_t orig_ops = NULL;
bnd_t bnd = BLIST_BND (bnds);
/* If the chosen best expr doesn't belong to current boundary,
skip it. */
if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
continue;
/* Put in ORIG_OPS all exprs from this boundary that became
RES on top. */
orig_ops = find_sequential_best_exprs (bnd, expr, false);
/* Compute used regs and OR it into the USED_REGS. */
res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
reg_rename_p, original_insns);
/* FIXME: the assert is true until we'd have several boundaries. */
gcc_assert (res);
av_set_clear (&orig_ops);
}
}
/* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
If BEST_REG is valid, replace LHS of EXPR with it. */
static bool
try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
{
/* Try whether we'll be able to generate the insn
'dest := best_reg' at the place of the original operation. */
for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
{
insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
&& (! replace_src_with_reg_ok_p (orig_insn, best_reg)
|| ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
return false;
}
/* Make sure that EXPR has the right destination
register. */
if (expr_dest_regno (expr) != REGNO (best_reg))
replace_dest_with_reg_in_expr (expr, best_reg);
else
EXPR_TARGET_AVAILABLE (expr) = 1;
return true;
}
/* Select and assign best register to EXPR searching from BNDS.
Set *IS_ORIG_REG_P to TRUE if original register was selected.
Return FALSE if no register can be chosen, which could happen when:
* EXPR_SEPARABLE_P is true but we were unable to find suitable register;
* EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
that are used on the moving path. */
static bool
find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
{
static struct reg_rename reg_rename_data;
regset used_regs;
def_list_t original_insns = NULL;
bool reg_ok;
*is_orig_reg_p = false;
/* Don't bother to do anything if this insn doesn't set any registers. */
if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
&& bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
return true;
used_regs = get_clear_regset_from_pool ();
CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
&original_insns);
/* If after reload, make sure we're working with hard regs here. */
if (flag_checking && reload_completed)
{
reg_set_iterator rsi;
unsigned i;
EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
gcc_unreachable ();
}
if (EXPR_SEPARABLE_P (expr))
{
rtx best_reg = NULL_RTX;
/* Check that we have computed availability of a target register
correctly. */
verify_target_availability (expr, used_regs, &reg_rename_data);
/* Turn everything in hard regs after reload. */
if (reload_completed)
{
HARD_REG_SET hard_regs_used;
REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
/* Join hard registers unavailable due to register class
restrictions and live range intersection. */
IOR_HARD_REG_SET (hard_regs_used,
reg_rename_data.unavailable_hard_regs);
best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
original_insns, is_orig_reg_p);
}
else
best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
original_insns, is_orig_reg_p);
if (!best_reg)
reg_ok = false;
else if (*is_orig_reg_p)
{
/* In case of unification BEST_REG may be different from EXPR's LHS
when EXPR's LHS is unavailable, and there is another LHS among
ORIGINAL_INSNS. */
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
}
else
{
/* Forbid renaming of low-cost insns. */
if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
reg_ok = false;
else
reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
}
}
else
{
/* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
any of the HARD_REGS_USED set. */
if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
reg_rename_data.unavailable_hard_regs))
{
reg_ok = false;
gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
}
else
{
reg_ok = true;
gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
}
}
ilist_clear (&original_insns);
return_regset_to_pool (used_regs);
return reg_ok;
}
/* Return true if dependence described by DS can be overcomed. */
static bool
can_speculate_dep_p (ds_t ds)
{
if (spec_info == NULL)
return false;
/* Leave only speculative data. */
ds &= SPECULATIVE;
if (ds == 0)
return false;
{
/* FIXME: make sched-deps.c produce only those non-hard dependencies,
that we can overcome. */
ds_t spec_mask = spec_info->mask;
if ((ds & spec_mask) != ds)
return false;
}
if (ds_weak (ds) < spec_info->data_weakness_cutoff)
return false;
return true;
}
/* Get a speculation check instruction.
C_EXPR is a speculative expression,
CHECK_DS describes speculations that should be checked,
ORIG_INSN is the original non-speculative insn in the stream. */
static insn_t
create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
{
rtx check_pattern;
rtx_insn *insn_rtx;
insn_t insn;
basic_block recovery_block;
rtx_insn *label;
/* Create a recovery block if target is going to emit branchy check, or if
ORIG_INSN was speculative already. */
if (targetm.sched.needs_block_p (check_ds)
|| EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
{
recovery_block = sel_create_recovery_block (orig_insn);
label = BB_HEAD (recovery_block);
}
else
{
recovery_block = NULL;
label = NULL;
}
/* Get pattern of the check. */
check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
check_ds);
gcc_assert (check_pattern != NULL);
/* Emit check. */
insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
INSN_SEQNO (orig_insn), orig_insn);
/* Make check to be non-speculative. */
EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
INSN_SPEC_CHECKED_DS (insn) = check_ds;
/* Decrease priority of check by difference of load/check instruction
latencies. */
EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
- sel_vinsn_cost (INSN_VINSN (insn)));
/* Emit copy of original insn (though with replaced target register,
if needed) to the recovery block. */
if (recovery_block != NULL)
{
rtx twin_rtx;
twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
sel_gen_recovery_insn_from_rtx_after (twin_rtx,
INSN_EXPR (orig_insn),
INSN_SEQNO (insn),
bb_note (recovery_block));
}
/* If we've generated a data speculation check, make sure
that all the bookkeeping instruction we'll create during
this move_op () will allocate an ALAT entry so that the
check won't fail.
In case of control speculation we must convert C_EXPR to control
speculative mode, because failing to do so will bring us an exception
thrown by the non-control-speculative load. */
check_ds = ds_get_max_dep_weak (check_ds);
speculate_expr (c_expr, check_ds);
return insn;
}
/* True when INSN is a "regN = regN" copy. */
static bool
identical_copy_p (rtx_insn *insn)
{
rtx lhs, rhs, pat;
pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
return false;
lhs = SET_DEST (pat);
if (!REG_P (lhs))
return false;
rhs = SET_SRC (pat);
if (!REG_P (rhs))
return false;
return REGNO (lhs) == REGNO (rhs);
}
/* Undo all transformations on *AV_PTR that were done when
moving through INSN. */
static void
undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
{
av_set_iterator av_iter;
expr_t expr;
av_set_t new_set = NULL;
/* First, kill any EXPR that uses registers set by an insn. This is
required for correctness. */
FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
&& bitmap_intersect_p (INSN_REG_SETS (insn),
VINSN_REG_USES (EXPR_VINSN (expr)))
/* When an insn looks like 'r1 = r1', we could substitute through
it, but the above condition will still hold. This happened with
gcc.c-torture/execute/961125-1.c. */
&& !identical_copy_p (insn))
{
if (sched_verbose >= 6)
sel_print ("Expr %d removed due to use/set conflict\n",
INSN_UID (EXPR_INSN_RTX (expr)));
av_set_iter_remove (&av_iter);
}
/* Undo transformations looking at the history vector. */
FOR_EACH_EXPR (expr, av_iter, *av_ptr)
{
int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
insn, EXPR_VINSN (expr), true);
if (index >= 0)
{
expr_history_def *phist;
phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
switch (phist->type)
{
case TRANS_SPECULATION:
{
ds_t old_ds, new_ds;
/* Compute the difference between old and new speculative
statuses: that's what we need to check.
Earlier we used to assert that the status will really
change. This no longer works because only the probability
bits in the status may have changed during compute_av_set,
and in the case of merging different probabilities of the
same speculative status along different paths we do not
record this in the history vector. */
old_ds = phist->spec_ds;
new_ds = EXPR_SPEC_DONE_DS (expr);
old_ds &= SPECULATIVE;
new_ds &= SPECULATIVE;
new_ds &= ~old_ds;
EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
break;
}
case TRANS_SUBSTITUTION:
{
expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
vinsn_t new_vi;
bool add = true;
new_vi = phist->old_expr_vinsn;
gcc_assert (VINSN_SEPARABLE_P (new_vi)
== EXPR_SEPARABLE_P (expr));
copy_expr (tmp_expr, expr);
if (vinsn_equal_p (phist->new_expr_vinsn,
EXPR_VINSN (tmp_expr)))
change_vinsn_in_expr (tmp_expr, new_vi);
else
/* This happens when we're unsubstituting on a bookkeeping
copy, which was in turn substituted. The history is wrong
in this case. Do it the hard way. */
add = substitute_reg_in_expr (tmp_expr, insn, true);
if (add)
av_set_add (&new_set, tmp_expr);
clear_expr (tmp_expr);
break;
}
default:
gcc_unreachable ();
}
}
}
av_set_union_and_clear (av_ptr, &new_set, NULL);
}
/* Moveup_* helpers for code motion and computing av sets. */
/* Propagates EXPR inside an insn group through THROUGH_INSN.
The difference from the below function is that only substitution is
performed. */
static enum MOVEUP_EXPR_CODE
moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
{
vinsn_t vi = EXPR_VINSN (expr);
ds_t *has_dep_p;
ds_t full_ds;
/* Do this only inside insn group. */
gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
if (full_ds == 0)
return MOVEUP_EXPR_SAME;
/* Substitution is the possible choice in this case. */
if (has_dep_p[DEPS_IN_RHS])
{
/* Can't substitute UNIQUE VINSNs. */
gcc_assert (!VINSN_UNIQUE_P (vi));
if (can_substitute_through_p (through_insn,
has_dep_p[DEPS_IN_RHS])
&& substitute_reg_in_expr (expr, through_insn, false))
{
EXPR_WAS_SUBSTITUTED (expr) = true;
return MOVEUP_EXPR_CHANGED;
}
/* Don't care about this, as even true dependencies may be allowed
in an insn group. */
return MOVEUP_EXPR_SAME;
}
/* This can catch output dependencies in COND_EXECs. */
if (has_dep_p[DEPS_IN_INSN])
return MOVEUP_EXPR_NULL;
/* This is either an output or an anti dependence, which usually have
a zero latency. Allow this here, if we'd be wrong, tick_check_p
will fix this. */
gcc_assert (has_dep_p[DEPS_IN_LHS]);
return MOVEUP_EXPR_AS_RHS;
}
/* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
#define CANT_MOVE_TRAPPING(expr, through_insn) \
(VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
&& !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
&& !sel_insn_is_speculation_check (through_insn))
/* True when a conflict on a target register was found during moveup_expr. */
static bool was_target_conflict = false;
/* Return true when moving a debug INSN across THROUGH_INSN will
create a bookkeeping block. We don't want to create such blocks,
for they would cause codegen differences between compilations with
and without debug info. */
static bool
moving_insn_creates_bookkeeping_block_p (insn_t insn,
insn_t through_insn)
{
basic_block bbi, bbt;
edge e1, e2;
edge_iterator ei1, ei2;
if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
{
if (sched_verbose >= 9)
sel_print ("no bookkeeping required: ");
return FALSE;
}
bbi = BLOCK_FOR_INSN (insn);
if (EDGE_COUNT (bbi->preds) == 1)
{
if (sched_verbose >= 9)
sel_print ("only one pred edge: ");
return TRUE;
}
bbt = BLOCK_FOR_INSN (through_insn);
FOR_EACH_EDGE (e1, ei1, bbt->succs)
{
FOR_EACH_EDGE (e2, ei2, bbi->preds)
{
if (find_block_for_bookkeeping (e1, e2, TRUE))
{
if (sched_verbose >= 9)
sel_print ("found existing block: ");
return FALSE;
}
}
}
if (sched_verbose >= 9)
sel_print ("would create bookkeeping block: ");
return TRUE;
}
/* Return true when the conflict with newly created implicit clobbers
between EXPR and THROUGH_INSN is found because of renaming. */
static bool
implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
{
HARD_REG_SET temp;
rtx_insn *insn;
rtx reg, rhs, pat;
hard_reg_set_iterator hrsi;
unsigned regno;
bool valid;
/* Make a new pseudo register. */
reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
max_regno = max_reg_num ();
maybe_extend_reg_info_p ();
/* Validate a change and bail out early. */
insn = EXPR_INSN_RTX (expr);
validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
valid = verify_changes (0);
cancel_changes (0);
if (!valid)
{
if (sched_verbose >= 6)
sel_print ("implicit clobbers failed validation, ");
return true;
}
/* Make a new insn with it. */
rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
pat = gen_rtx_SET (reg, rhs);
start_sequence ();
insn = emit_insn (pat);
end_sequence ();
/* Calculate implicit clobbers. */
extract_insn (insn);
preprocess_constraints (insn);
alternative_mask prefrred = get_preferred_alternatives (insn);
ira_implicitly_set_insn_hard_regs (&temp, prefrred);
AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
/* If any implicit clobber registers intersect with regular ones in
through_insn, we have a dependency and thus bail out. */
EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
{
vinsn_t vi = INSN_VINSN (through_insn);
if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
|| bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
|| bitmap_bit_p (VINSN_REG_USES (vi), regno))
return true;
}
return false;
}
/* Modifies EXPR so it can be moved through the THROUGH_INSN,
performing necessary transformations. Record the type of transformation
made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
permit all dependencies except true ones, and try to remove those
too via forward substitution. All cases when a non-eliminable
non-zero cost dependency exists inside an insn group will be fixed
in tick_check_p instead. */
static enum MOVEUP_EXPR_CODE
moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
enum local_trans_type *ptrans_type)
{
vinsn_t vi = EXPR_VINSN (expr);
insn_t insn = VINSN_INSN_RTX (vi);
bool was_changed = false;
bool as_rhs = false;
ds_t *has_dep_p;
ds_t full_ds;
/* ??? We use dependencies of non-debug insns on debug insns to
indicate that the debug insns need to be reset if the non-debug
insn is pulled ahead of it. It's hard to figure out how to
introduce such a notion in sel-sched, but it already fails to
support debug insns in other ways, so we just go ahead and
let the deug insns go corrupt for now. */
if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
return MOVEUP_EXPR_SAME;
/* When inside_insn_group, delegate to the helper. */
if (inside_insn_group)
return moveup_expr_inside_insn_group (expr, through_insn);
/* Deal with unique insns and control dependencies. */
if (VINSN_UNIQUE_P (vi))
{
/* We can move jumps without side-effects or jumps that are
mutually exclusive with instruction THROUGH_INSN (all in cases
dependencies allow to do so and jump is not speculative). */
if (control_flow_insn_p (insn))
{
basic_block fallthru_bb;
/* Do not move checks and do not move jumps through other
jumps. */
if (control_flow_insn_p (through_insn)
|| sel_insn_is_speculation_check (insn))
return MOVEUP_EXPR_NULL;
/* Don't move jumps through CFG joins. */
if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
return MOVEUP_EXPR_NULL;
/* The jump should have a clear fallthru block, and
this block should be in the current region. */
if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
|| ! in_current_region_p (fallthru_bb))
return MOVEUP_EXPR_NULL;
/* And it should be mutually exclusive with through_insn. */
if (! sched_insns_conditions_mutex_p (insn, through_insn)
&& ! DEBUG_INSN_P (through_insn))
return MOVEUP_EXPR_NULL;
}
/* Don't move what we can't move. */
if (EXPR_CANT_MOVE (expr)
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
return MOVEUP_EXPR_NULL;
/* Don't move SCHED_GROUP instruction through anything.
If we don't force this, then it will be possible to start
scheduling a sched_group before all its dependencies are
resolved.
??? Haifa deals with this issue by delaying the SCHED_GROUP
as late as possible through rank_for_schedule. */
if (SCHED_GROUP_P (insn))
return MOVEUP_EXPR_NULL;
}
else
gcc_assert (!control_flow_insn_p (insn));
/* Don't move debug insns if this would require bookkeeping. */
if (DEBUG_INSN_P (insn)
&& BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
&& moving_insn_creates_bookkeeping_block_p (insn, through_insn))
return MOVEUP_EXPR_NULL;
/* Deal with data dependencies. */
was_target_conflict = false;
full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
if (full_ds == 0)
{
if (!CANT_MOVE_TRAPPING (expr, through_insn))
return MOVEUP_EXPR_SAME;
}
else
{
/* We can move UNIQUE insn up only as a whole and unchanged,
so it shouldn't have any dependencies. */
if (VINSN_UNIQUE_P (vi))
return MOVEUP_EXPR_NULL;
}
if (full_ds != 0 && can_speculate_dep_p (full_ds))
{
int res;
res = speculate_expr (expr, full_ds);
if (res >= 0)
{
/* Speculation was successful. */
full_ds = 0;
was_changed = (res > 0);
if (res == 2)
was_target_conflict = true;
if (ptrans_type)
*ptrans_type = TRANS_SPECULATION;
sel_clear_has_dependence ();
}
}
if (has_dep_p[DEPS_IN_INSN])
/* We have some dependency that cannot be discarded. */
return MOVEUP_EXPR_NULL;
if (has_dep_p[DEPS_IN_LHS])
{
/* Only separable insns can be moved up with the new register.
Anyways, we should mark that the original register is
unavailable. */
if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
return MOVEUP_EXPR_NULL;
/* When renaming a hard register to a pseudo before reload, extra
dependencies can occur from the implicit clobbers of the insn.
Filter out such cases here. */
if (!reload_completed && REG_P (EXPR_LHS (expr))
&& HARD_REGISTER_P (EXPR_LHS (expr))
&& implicit_clobber_conflict_p (through_insn, expr))
{
if (sched_verbose >= 6)
sel_print ("implicit clobbers conflict detected, ");
return MOVEUP_EXPR_NULL;
}
EXPR_TARGET_AVAILABLE (expr) = false;
was_target_conflict = true;
as_rhs = true;
}
/* At this point we have either separable insns, that will be lifted
up only as RHSes, or non-separable insns with no dependency in lhs.
If dependency is in RHS, then try to perform substitution and move up
substituted RHS:
Ex. 1: Ex.2
y = x; y = x;
z = y*2; y = y*2;
In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
moved above y=x assignment as z=x*2.
In Ex.2 y*2 also can be substituted for x*2, but only the right hand
side can be moved because of the output dependency. The operation was
cropped to its rhs above. */
if (has_dep_p[DEPS_IN_RHS])
{
ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
/* Can't substitute UNIQUE VINSNs. */
gcc_assert (!VINSN_UNIQUE_P (vi));
if (can_speculate_dep_p (*rhs_dsp))
{
int res;
res = speculate_expr (expr, *rhs_dsp);
if (res >= 0)
{
/* Speculation was successful. */
*rhs_dsp = 0;
was_changed = (res > 0);
if (res == 2)
was_target_conflict = true;
if (ptrans_type)
*ptrans_type = TRANS_SPECULATION;
}
else
return MOVEUP_EXPR_NULL;
}
else if (can_substitute_through_p (through_insn,
*rhs_dsp)
&& substitute_reg_in_expr (expr, through_insn, false))
{
/* ??? We cannot perform substitution AND speculation on the same
insn. */
gcc_assert (!was_changed);
was_changed = true;
if (ptrans_type)
*ptrans_type = TRANS_SUBSTITUTION;
EXPR_WAS_SUBSTITUTED (expr) = true;
}
else
return MOVEUP_EXPR_NULL;
}
/* Don't move trapping insns through jumps.
This check should be at the end to give a chance to control speculation
to perform its duties. */
if (CANT_MOVE_TRAPPING (expr, through_insn))
return MOVEUP_EXPR_NULL;
return (was_changed
? MOVEUP_EXPR_CHANGED
: (as_rhs
? MOVEUP_EXPR_AS_RHS
: MOVEUP_EXPR_SAME));
}
/* Try to look at bitmap caches for EXPR and INSN pair, return true
if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
that can exist within a parallel group. Write to RES the resulting
code for moveup_expr. */
static bool
try_bitmap_cache (expr_t expr, insn_t insn,
bool inside_insn_group,
enum MOVEUP_EXPR_CODE *res)
{
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
/* First check whether we've analyzed this situation already. */
if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
{
if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
{
if (sched_verbose >= 6)
sel_print ("removed (cached)\n");
*res = MOVEUP_EXPR_NULL;
return true;
}
else
{
if (sched_verbose >= 6)
sel_print ("unchanged (cached)\n");
*res = MOVEUP_EXPR_SAME;
return true;
}
}
else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
{
if (inside_insn_group)
{
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS, cached, inside insn group)\n");
*res = MOVEUP_EXPR_SAME;
return true;
}
else
EXPR_TARGET_AVAILABLE (expr) = false;
/* This is the only case when propagation result can change over time,
as we can dynamically switch off scheduling as RHS. In this case,
just check the flag to reach the correct decision. */
if (enable_schedule_as_rhs_p)
{
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS, cached)\n");
*res = MOVEUP_EXPR_AS_RHS;
return true;
}
else
{
if (sched_verbose >= 6)
sel_print ("removed (cached as RHS, but renaming"
" is now disabled)\n");
*res = MOVEUP_EXPR_NULL;
return true;
}
}
return false;
}
/* Try to look at bitmap caches for EXPR and INSN pair, return true
if successful. Write to RES the resulting code for moveup_expr. */
static bool
try_transformation_cache (expr_t expr, insn_t insn,
enum MOVEUP_EXPR_CODE *res)
{
struct transformed_insns *pti
= (struct transformed_insns *)
htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
&EXPR_VINSN (expr),
VINSN_HASH_RTX (EXPR_VINSN (expr)));
if (pti)
{
/* This EXPR was already moved through this insn and was
changed as a result. Fetch the proper data from
the hashtable. */
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
INSN_UID (insn), pti->type,
pti->vinsn_old, pti->vinsn_new,
EXPR_SPEC_DONE_DS (expr));
if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
change_vinsn_in_expr (expr, pti->vinsn_new);
if (pti->was_target_conflict)
EXPR_TARGET_AVAILABLE (expr) = false;
if (pti->type == TRANS_SPECULATION)
{
EXPR_SPEC_DONE_DS (expr) = pti->ds;
EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
}
if (sched_verbose >= 6)
{
sel_print ("changed (cached): ");
dump_expr (expr);
sel_print ("\n");
}
*res = MOVEUP_EXPR_CHANGED;
return true;
}
return false;
}
/* Update bitmap caches on INSN with result RES of propagating EXPR. */
static void
update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
enum MOVEUP_EXPR_CODE res)
{
int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
/* Do not cache result of propagating jumps through an insn group,
as it is always true, which is not useful outside the group. */
if (inside_insn_group)
return;
if (res == MOVEUP_EXPR_NULL)
{
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else if (res == MOVEUP_EXPR_SAME)
{
bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else if (res == MOVEUP_EXPR_AS_RHS)
{
bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
}
else
gcc_unreachable ();
}
/* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
and transformation type TRANS_TYPE. */
static void
update_transformation_cache (expr_t expr, insn_t insn,
bool inside_insn_group,
enum local_trans_type trans_type,
vinsn_t expr_old_vinsn)
{
struct transformed_insns *pti;
if (inside_insn_group)
return;
pti = XNEW (struct transformed_insns);
pti->vinsn_old = expr_old_vinsn;
pti->vinsn_new = EXPR_VINSN (expr);
pti->type = trans_type;
pti->was_target_conflict = was_target_conflict;
pti->ds = EXPR_SPEC_DONE_DS (expr);
pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
vinsn_attach (pti->vinsn_old);
vinsn_attach (pti->vinsn_new);
*((struct transformed_insns **)
htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
pti, VINSN_HASH_RTX (expr_old_vinsn),
INSERT)) = pti;
}
/* Same as moveup_expr, but first looks up the result of
transformation in caches. */
static enum MOVEUP_EXPR_CODE
moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
{
enum MOVEUP_EXPR_CODE res;
bool got_answer = false;
if (sched_verbose >= 6)
{
sel_print ("Moving ");
dump_expr (expr);
sel_print (" through %d: ", INSN_UID (insn));
}
if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
&& BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
&& (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
== EXPR_INSN_RTX (expr)))
/* Don't use cached information for debug insns that are heads of
basic blocks. */;
else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
/* When inside insn group, we do not want remove stores conflicting
with previosly issued loads. */
got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
else if (try_transformation_cache (expr, insn, &res))
got_answer = true;
if (! got_answer)
{
/* Invoke moveup_expr and record the results. */
vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
enum local_trans_type trans_type = TRANS_SUBSTITUTION;
/* ??? Invent something better than this. We can't allow old_vinsn
to go, we need it for the history vector. */
vinsn_attach (expr_old_vinsn);
res = moveup_expr (expr, insn, inside_insn_group,
&trans_type);
switch (res)
{
case MOVEUP_EXPR_NULL:
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("removed\n");
break;
case MOVEUP_EXPR_SAME:
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("unchanged\n");
break;
case MOVEUP_EXPR_AS_RHS:
gcc_assert (!unique_p || inside_insn_group);
update_bitmap_cache (expr, insn, inside_insn_group, res);
if (sched_verbose >= 6)
sel_print ("unchanged (as RHS)\n");
break;
case MOVEUP_EXPR_CHANGED:
gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
|| EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
INSN_UID (insn), trans_type,
expr_old_vinsn, EXPR_VINSN (expr),
expr_old_spec_ds);
update_transformation_cache (expr, insn, inside_insn_group,
trans_type, expr_old_vinsn);
if (sched_verbose >= 6)
{
sel_print ("changed: ");
dump_expr (expr);
sel_print ("\n");
}
break;
default:
gcc_unreachable ();
}
vinsn_detach (expr_old_vinsn);
}
return res;
}
/* Moves an av set AVP up through INSN, performing necessary
transformations. */
static void
moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
{
av_set_iterator i;
expr_t expr;
FOR_EACH_EXPR_1 (expr, i, avp)
{
switch (moveup_expr_cached (expr, insn, inside_insn_group))
{
case MOVEUP_EXPR_SAME:
case MOVEUP_EXPR_AS_RHS:
break;
case MOVEUP_EXPR_NULL:
av_set_iter_remove (&i);
break;
case MOVEUP_EXPR_CHANGED:
expr = merge_with_other_exprs (avp, &i, expr);
break;
default:
gcc_unreachable ();
}
}
}
/* Moves AVP set along PATH. */
static void
moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
{
int last_cycle;
if (sched_verbose >= 6)
sel_print ("Moving expressions up in the insn group...\n");
if (! path)
return;
last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
while (path
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
{
moveup_set_expr (avp, ILIST_INSN (path), true);
path = ILIST_NEXT (path);
}
}
/* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
static bool
equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
{
expr_def _tmp, *tmp = &_tmp;
int last_cycle;
bool res = true;
copy_expr_onside (tmp, expr);
last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
while (path
&& res
&& INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
{
res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
!= MOVEUP_EXPR_NULL);
path = ILIST_NEXT (path);
}
if (res)
{
vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
if (tmp_vinsn != expr_vliw_vinsn)
res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
}
clear_expr (tmp);
return res;
}
/* Functions that compute av and lv sets. */
/* Returns true if INSN is not a downward continuation of the given path P in
the current stage. */
static bool
is_ineligible_successor (insn_t insn, ilist_t p)
{
insn_t prev_insn;
/* Check if insn is not deleted. */
if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
gcc_unreachable ();
else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
gcc_unreachable ();
/* If it's the first insn visited, then the successor is ok. */
if (!p)
return false;
prev_insn = ILIST_INSN (p);
if (/* a backward edge. */
INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
/* is already visited. */
|| (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
&& (ilist_is_in_p (p, insn)
/* We can reach another fence here and still seqno of insn
would be equal to seqno of prev_insn. This is possible
when prev_insn is a previously created bookkeeping copy.
In that case it'd get a seqno of insn. Thus, check here
whether insn is in current fence too. */
|| IN_CURRENT_FENCE_P (insn)))
/* Was already scheduled on this round. */
|| (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
&& IN_CURRENT_FENCE_P (insn))
/* An insn from another fence could also be
scheduled earlier even if this insn is not in
a fence list right now. Check INSN_SCHED_CYCLE instead. */
|| (!pipelining_p
&& INSN_SCHED_TIMES (insn) > 0))
return true;
else
return false;
}
/* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
of handling multiple successors and properly merging its av_sets. P is
the current path traversed. WS is the size of lookahead window.
Return the av set computed. */
static av_set_t
compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
{
struct succs_info *sinfo;
av_set_t expr_in_all_succ_branches = NULL;
int is;
insn_t succ, zero_succ = NULL;
av_set_t av1 = NULL;
gcc_assert (sel_bb_end_p (insn));
/* Find different kind of successors needed for correct computing of
SPEC and TARGET_AVAILABLE attributes. */
sinfo = compute_succs_info (insn, SUCCS_NORMAL);
/* Debug output. */
if (sched_verbose >= 6)
{
sel_print ("successors of bb end (%d): ", INSN_UID (insn));
dump_insn_vector (sinfo->succs_ok);
sel_print ("\n");
if (sinfo->succs_ok_n != sinfo->all_succs_n)
sel_print ("real successors num: %d\n", sinfo->all_succs_n);
}
/* Add insn to the tail of current path. */
ilist_add (&p, insn);
FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
{
av_set_t succ_set;
/* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
succ_set = compute_av_set_inside_bb (succ, p, ws, true);
av_set_split_usefulness (succ_set,
sinfo->probs_ok[is],
sinfo->all_prob);
if (sinfo->all_succs_n > 1)
{
/* Find EXPR'es that came from *all* successors and save them
into expr_in_all_succ_branches. This set will be used later
for calculating speculation attributes of EXPR'es. */
if (is == 0)
{
expr_in_all_succ_branches = av_set_copy (succ_set);
/* Remember the first successor for later. */
zero_succ = succ;
}
else
{
av_set_iterator i;
expr_t expr;
FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
av_set_iter_remove (&i);
}
}
/* Union the av_sets. Check liveness restrictions on target registers
in special case of two successors. */
if (sinfo->succs_ok_n == 2 && is == 1)
{
basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
basic_block bb1 = BLOCK_FOR_INSN (succ);
gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
av_set_union_and_live (&av1, &succ_set,
BB_LV_SET (bb0),
BB_LV_SET (bb1),
insn);
}
else
av_set_union_and_clear (&av1, &succ_set, insn);
}
/* Check liveness restrictions via hard way when there are more than
two successors. */
if (sinfo->succs_ok_n > 2)
FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
{
basic_block succ_bb = BLOCK_FOR_INSN (succ);
gcc_assert (BB_LV_SET_VALID_P (succ_bb));
mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
BB_LV_SET (succ_bb));
}
/* Finally, check liveness restrictions on paths leaving the region. */
if (sinfo->all_succs_n > sinfo->succs_ok_n)
FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
mark_unavailable_targets
(av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
if (sinfo->all_succs_n > 1)
{
av_set_iterator i;
expr_t expr;
/* Increase the spec attribute of all EXPR'es that didn't come
from all successors. */
FOR_EACH_EXPR (expr, i, av1)
if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
EXPR_SPEC (expr)++;
av_set_clear (&expr_in_all_succ_branches);
/* Do not move conditional branches through other
conditional branches. So, remove all conditional
branches from av_set if current operator is a conditional
branch. */
av_set_substract_cond_branches (&av1);
}
ilist_remove (&p);
free_succs_info (sinfo);
if (sched_verbose >= 6)
{
sel_print ("av_succs (%d): ", INSN_UID (insn));
dump_av_set (av1);
sel_print ("\n");
}
return av1;
}
/* This function computes av_set for the FIRST_INSN by dragging valid
av_set through all basic block insns either from the end of basic block
(computed using compute_av_set_at_bb_end) or from the insn on which
MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
below the basic block and handling conditional branches.
FIRST_INSN - the basic block head, P - path consisting of the insns
traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
and bb ends are added to the path), WS - current window size,
NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
static av_set_t
compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
bool need_copy_p)
{
insn_t cur_insn;
int end_ws = ws;
insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
insn_t after_bb_end = NEXT_INSN (bb_end);
insn_t last_insn;
av_set_t av = NULL;
basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
/* Return NULL if insn is not on the legitimate downward path. */
if (is_ineligible_successor (first_insn, p))
{
if (sched_verbose >= 6)
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
return NULL;
}
/* If insn already has valid av(insn) computed, just return it. */
if (AV_SET_VALID_P (first_insn))
{
av_set_t av_set;
if (sel_bb_head_p (first_insn))
av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
else
av_set = NULL;
if (sched_verbose >= 6)
{
sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
dump_av_set (av_set);
sel_print ("\n");
}
return need_copy_p ? av_set_copy (av_set) : av_set;
}
ilist_add (&p, first_insn);
/* As the result after this loop have completed, in LAST_INSN we'll
have the insn which has valid av_set to start backward computation
from: it either will be NULL because on it the window size was exceeded
or other valid av_set as returned by compute_av_set for the last insn
of the basic block. */
for (last_insn = first_insn; last_insn != after_bb_end;
last_insn = NEXT_INSN (last_insn))
{
/* We may encounter valid av_set not only on bb_head, but also on
those insns on which previously MAX_WS was exceeded. */
if (AV_SET_VALID_P (last_insn))
{
if (sched_verbose >= 6)
sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
break;
}
/* The special case: the last insn of the BB may be an
ineligible_successor due to its SEQ_NO that was set on
it as a bookkeeping. */
if (last_insn != first_insn
&& is_ineligible_successor (last_insn, p))
{
if (sched_verbose >= 6)
sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
break;
}
if (DEBUG_INSN_P (last_insn))
continue;
if (end_ws > max_ws)
{
/* We can reach max lookahead size at bb_header, so clean av_set
first. */
INSN_WS_LEVEL (last_insn) = global_level;
if (sched_verbose >= 6)
sel_print ("Insn %d is beyond the software lookahead window size\n",
INSN_UID (last_insn));
break;
}
end_ws++;
}
/* Get the valid av_set into AV above the LAST_INSN to start backward
computation from. It either will be empty av_set or av_set computed from
the successors on the last insn of the current bb. */
if (last_insn != after_bb_end)
{
av = NULL;
/* This is needed only to obtain av_sets that are identical to
those computed by the old compute_av_set version. */
if (last_insn == first_insn && !INSN_NOP_P (last_insn))
av_set_add (&av, INSN_EXPR (last_insn));
}
else
/* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
av = compute_av_set_at_bb_end (bb_end, p, end_ws);
/* Compute av_set in AV starting from below the LAST_INSN up to
location above the FIRST_INSN. */
for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
cur_insn = PREV_INSN (cur_insn))
if (!INSN_NOP_P (cur_insn))
{
expr_t expr;
moveup_set_expr (&av, cur_insn, false);
/* If the expression for CUR_INSN is already in the set,
replace it by the new one. */
expr = av_set_lookup (av, INSN_VINSN (cur_insn));
if (expr != NULL)
{
clear_expr (expr);
copy_expr (expr, INSN_EXPR (cur_insn));
}
else
av_set_add (&av, INSN_EXPR (cur_insn));
}
/* Clear stale bb_av_set. */
if (sel_bb_head_p (first_insn))
{
av_set_clear (&BB_AV_SET (cur_bb));
BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
BB_AV_LEVEL (cur_bb) = global_level;
}
if (sched_verbose >= 6)
{
sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
dump_av_set (av);
sel_print ("\n");
}
ilist_remove (&p);
return av;
}
/* Compute av set before INSN.
INSN - the current operation (actual rtx INSN)
P - the current path, which is list of insns visited so far
WS - software lookahead window size.
UNIQUE_P - TRUE, if returned av_set will be changed, hence
if we want to save computed av_set in s_i_d, we should make a copy of it.
In the resulting set we will have only expressions that don't have delay
stalls and nonsubstitutable dependences. */
static av_set_t
compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
{
return compute_av_set_inside_bb (insn, p, ws, unique_p);
}
/* Propagate a liveness set LV through INSN. */
static void
propagate_lv_set (regset lv, insn_t insn)
{
gcc_assert (INSN_P (insn));
if (INSN_NOP_P (insn))
return;
df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
}
/* Return livness set at the end of BB. */
static regset
compute_live_after_bb (basic_block bb)
{
edge e;
edge_iterator ei;
regset lv = get_clear_regset_from_pool ();
gcc_assert (!ignore_first);
FOR_EACH_EDGE (e, ei, bb->succs)
if (sel_bb_empty_p (e->dest))
{
if (! BB_LV_SET_VALID_P (e->dest))
{
gcc_unreachable ();
gcc_assert (BB_LV_SET (e->dest) == NULL);
BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
BB_LV_SET_VALID_P (e->dest) = true;
}
IOR_REG_SET (lv, BB_LV_SET (e->dest));
}
else
IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
return lv;
}
/* Compute the set of all live registers at the point before INSN and save
it at INSN if INSN is bb header. */
regset
compute_live (insn_t insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
insn_t final, temp;
regset lv;
/* Return the valid set if we're already on it. */
if (!ignore_first)
{
regset src = NULL;
if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
src = BB_LV_SET (bb);
else
{
gcc_assert (in_current_region_p (bb));
if (INSN_LIVE_VALID_P (insn))
src = INSN_LIVE (insn);
}
if (src)
{
lv = get_regset_from_pool ();
COPY_REG_SET (lv, src);
if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
{
COPY_REG_SET (BB_LV_SET (bb), lv);
BB_LV_SET_VALID_P (bb) = true;
}
return_regset_to_pool (lv);
return lv;
}
}
/* We've skipped the wrong lv_set. Don't skip the right one. */
ignore_first = false;
gcc_assert (in_current_region_p (bb));
/* Find a valid LV set in this block or below, if needed.
Start searching from the next insn: either ignore_first is true, or
INSN doesn't have a correct live set. */
temp = NEXT_INSN (insn);
final = NEXT_INSN (BB_END (bb));
while (temp != final && ! INSN_LIVE_VALID_P (temp))
temp = NEXT_INSN (temp);
if (temp == final)
{
lv = compute_live_after_bb (bb);
temp = PREV_INSN (temp);
}
else
{
lv = get_regset_from_pool ();
COPY_REG_SET (lv, INSN_LIVE (temp));
}
/* Put correct lv sets on the insns which have bad sets. */
final = PREV_INSN (insn);
while (temp != final)
{
propagate_lv_set (lv, temp);
COPY_REG_SET (INSN_LIVE (temp), lv);
INSN_LIVE_VALID_P (temp) = true;
temp = PREV_INSN (temp);
}
/* Also put it in a BB. */
if (sel_bb_head_p (insn))
{
basic_block bb = BLOCK_FOR_INSN (insn);
COPY_REG_SET (BB_LV_SET (bb), lv);
BB_LV_SET_VALID_P (bb) = true;
}
/* We return LV to the pool, but will not clear it there. Thus we can
legimatelly use LV till the next use of regset_pool_get (). */
return_regset_to_pool (lv);
return lv;
}
/* Update liveness sets for INSN. */
static inline void
update_liveness_on_insn (rtx_insn *insn)
{
ignore_first = true;
compute_live (insn);
}
/* Compute liveness below INSN and write it into REGS. */
static inline void
compute_live_below_insn (rtx_insn *insn, regset regs)
{
rtx_insn *succ;
succ_iterator si;
FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
IOR_REG_SET (regs, compute_live (succ));
}
/* Update the data gathered in av and lv sets starting from INSN. */
static void
update_data_sets (rtx_insn *insn)
{
update_liveness_on_insn (insn);
if (sel_bb_head_p (insn))
{
gcc_assert (AV_LEVEL (insn) != 0);
BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
compute_av_set (insn, NULL, 0, 0);
}
}
/* Helper for move_op () and find_used_regs ().
Return speculation type for which a check should be created on the place
of INSN. EXPR is one of the original ops we are searching for. */
static ds_t
get_spec_check_type_for_insn (insn_t insn, expr_t expr)
{
ds_t to_check_ds;
ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
if (targetm.sched.get_insn_checked_ds)
already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
if (spec_info != NULL
&& (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
already_checked_ds |= BEGIN_CONTROL;
already_checked_ds = ds_get_speculation_types (already_checked_ds);
to_check_ds &= ~already_checked_ds;
return to_check_ds;
}
/* Find the set of registers that are unavailable for storing expres
while moving ORIG_OPS up on the path starting from INSN due to
liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
All the original operations found during the traversal are saved in the
ORIGINAL_INSNS list.
REG_RENAME_P denotes the set of hardware registers that
can not be used with renaming due to the register class restrictions,
mode restrictions and other (the register we'll choose should be
compatible class with the original uses, shouldn't be in call_used_regs,
should be HARD_REGNO_RENAME_OK etc).
Returns TRUE if we've found all original insns, FALSE otherwise.
This function utilizes code_motion_path_driver (formerly find_used_regs_1)
to traverse the code motion paths. This helper function finds registers
that are not available for storing expres while moving ORIG_OPS up on the
path starting from INSN. A register considered as used on the moving path,
if one of the following conditions is not satisfied:
(1) a register not set or read on any path from xi to an instance of
the original operation,
(2) not among the live registers of the point immediately following the
first original operation on a given downward path, except for the
original target register of the operation,
(3) not live on the other path of any conditional branch that is passed
by the operation, in case original operations are not present on
both paths of the conditional branch.
All the original operations found during the traversal are saved in the
ORIGINAL_INSNS list.
REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
from INSN to original insn. In this case CALL_USED_REG_SET will be added
to unavailable hard regs at the point original operation is found. */
static bool
find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
struct reg_rename *reg_rename_p, def_list_t *original_insns)
{
def_list_iterator i;
def_t def;
int res;
bool needs_spec_check_p = false;
expr_t expr;
av_set_iterator expr_iter;
struct fur_static_params sparams;
struct cmpd_local_params lparams;
/* We haven't visited any blocks yet. */
bitmap_clear (code_motion_visited_blocks);
/* Init parameters for code_motion_path_driver. */
sparams.crosses_call = false;
sparams.original_insns = original_insns;
sparams.used_regs = used_regs;
/* Set the appropriate hooks and data. */
code_motion_path_driver_info = &fur_hooks;
res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
reg_rename_p->crosses_call |= sparams.crosses_call;
gcc_assert (res == 1);
gcc_assert (original_insns && *original_insns);
/* ??? We calculate whether an expression needs a check when computing
av sets. This information is not as precise as it could be due to
merging this bit in merge_expr. We can do better in find_used_regs,
but we want to avoid multiple traversals of the same code motion
paths. */
FOR_EACH_EXPR (expr, expr_iter, orig_ops)
needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
/* Mark hardware regs in REG_RENAME_P that are not suitable
for renaming expr in INSN due to hardware restrictions (register class,
modes compatibility etc). */
FOR_EACH_DEF (def, i, *original_insns)
{
vinsn_t vinsn = INSN_VINSN (def->orig_insn);
if (VINSN_SEPARABLE_P (vinsn))
mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
/* Do not allow clobbering of ld.[sa] address in case some of the
original operations need a check. */
if (needs_spec_check_p)
IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
}
return true;
}
/* Functions to choose the best insn from available ones. */
/* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
static int
sel_target_adjust_priority (expr_t expr)
{
int priority = EXPR_PRIORITY (expr);
int new_priority;
if (targetm.sched.adjust_priority)
new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
else
new_priority = priority;
/* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
if (sched_verbose >= 4)
sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
EXPR_PRIORITY_ADJ (expr), new_priority);
return new_priority;
}
/* Rank two available exprs for schedule. Never return 0 here. */
static int
sel_rank_for_schedule (const void *x, const void *y)
{
expr_t tmp = *(const expr_t *) y;
expr_t tmp2 = *(const expr_t *) x;
insn_t tmp_insn, tmp2_insn;
vinsn_t tmp_vinsn, tmp2_vinsn;
int val;
tmp_vinsn = EXPR_VINSN (tmp);
tmp2_vinsn = EXPR_VINSN (tmp2);
tmp_insn = EXPR_INSN_RTX (tmp);
tmp2_insn = EXPR_INSN_RTX (tmp2);
/* Schedule debug insns as early as possible. */
if (DEBUG_INSN_P (tmp_insn) &&