| /* Analysis Utilities for Loop Vectorization. |
| Copyright (C) 2006-2018 Free Software Foundation, Inc. |
| Contributed by Dorit Nuzman <dorit@il.ibm.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include "config.h" |
| #include "system.h" |
| #include "coretypes.h" |
| #include "backend.h" |
| #include "rtl.h" |
| #include "tree.h" |
| #include "gimple.h" |
| #include "ssa.h" |
| #include "expmed.h" |
| #include "optabs-tree.h" |
| #include "insn-config.h" |
| #include "recog.h" /* FIXME: for insn_data */ |
| #include "fold-const.h" |
| #include "stor-layout.h" |
| #include "tree-eh.h" |
| #include "gimplify.h" |
| #include "gimple-iterator.h" |
| #include "cfgloop.h" |
| #include "tree-vectorizer.h" |
| #include "dumpfile.h" |
| #include "builtins.h" |
| #include "internal-fn.h" |
| #include "case-cfn-macros.h" |
| #include "fold-const-call.h" |
| #include "attribs.h" |
| #include "cgraph.h" |
| #include "omp-simd-clone.h" |
| |
| /* Pattern recognition functions */ |
| static gimple *vect_recog_widen_sum_pattern (vec<gimple *> *, tree *, |
| tree *); |
| static gimple *vect_recog_widen_mult_pattern (vec<gimple *> *, tree *, |
| tree *); |
| static gimple *vect_recog_dot_prod_pattern (vec<gimple *> *, tree *, |
| tree *); |
| static gimple *vect_recog_sad_pattern (vec<gimple *> *, tree *, |
| tree *); |
| static gimple *vect_recog_pow_pattern (vec<gimple *> *, tree *, tree *); |
| static gimple *vect_recog_over_widening_pattern (vec<gimple *> *, tree *, |
| tree *); |
| static gimple *vect_recog_widen_shift_pattern (vec<gimple *> *, |
| tree *, tree *); |
| static gimple *vect_recog_rotate_pattern (vec<gimple *> *, tree *, tree *); |
| static gimple *vect_recog_vector_vector_shift_pattern (vec<gimple *> *, |
| tree *, tree *); |
| static gimple *vect_recog_divmod_pattern (vec<gimple *> *, |
| tree *, tree *); |
| |
| static gimple *vect_recog_mult_pattern (vec<gimple *> *, |
| tree *, tree *); |
| |
| static gimple *vect_recog_mixed_size_cond_pattern (vec<gimple *> *, |
| tree *, tree *); |
| static gimple *vect_recog_bool_pattern (vec<gimple *> *, tree *, tree *); |
| static gimple *vect_recog_mask_conversion_pattern (vec<gimple *> *, tree *, tree *); |
| static gimple *vect_recog_gather_scatter_pattern (vec<gimple *> *, tree *, |
| tree *); |
| |
| struct vect_recog_func |
| { |
| vect_recog_func_ptr fn; |
| const char *name; |
| }; |
| |
| /* Note that ordering matters - the first pattern matching on a stmt |
| is taken which means usually the more complex one needs to preceed |
| the less comples onex (widen_sum only after dot_prod or sad for example). */ |
| static vect_recog_func vect_vect_recog_func_ptrs[NUM_PATTERNS] = { |
| { vect_recog_widen_mult_pattern, "widen_mult" }, |
| { vect_recog_dot_prod_pattern, "dot_prod" }, |
| { vect_recog_sad_pattern, "sad" }, |
| { vect_recog_widen_sum_pattern, "widen_sum" }, |
| { vect_recog_pow_pattern, "pow" }, |
| { vect_recog_widen_shift_pattern, "widen_shift" }, |
| { vect_recog_over_widening_pattern, "over_widening" }, |
| { vect_recog_rotate_pattern, "rotate" }, |
| { vect_recog_vector_vector_shift_pattern, "vector_vector_shift" }, |
| { vect_recog_divmod_pattern, "divmod" }, |
| { vect_recog_mult_pattern, "mult" }, |
| { vect_recog_mixed_size_cond_pattern, "mixed_size_cond" }, |
| { vect_recog_bool_pattern, "bool" }, |
| /* This must come before mask conversion, and includes the parts |
| of mask conversion that are needed for gather and scatter |
| internal functions. */ |
| { vect_recog_gather_scatter_pattern, "gather_scatter" }, |
| { vect_recog_mask_conversion_pattern, "mask_conversion" } |
| }; |
| |
| static inline void |
| append_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt) |
| { |
| gimple_seq_add_stmt_without_update (&STMT_VINFO_PATTERN_DEF_SEQ (stmt_info), |
| stmt); |
| } |
| |
| static inline void |
| new_pattern_def_seq (stmt_vec_info stmt_info, gimple *stmt) |
| { |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_info) = NULL; |
| append_pattern_def_seq (stmt_info, stmt); |
| } |
| |
| /* Check whether STMT2 is in the same loop or basic block as STMT1. |
| Which of the two applies depends on whether we're currently doing |
| loop-based or basic-block-based vectorization, as determined by |
| the vinfo_for_stmt for STMT1 (which must be defined). |
| |
| If this returns true, vinfo_for_stmt for STMT2 is guaranteed |
| to be defined as well. */ |
| |
| static bool |
| vect_same_loop_or_bb_p (gimple *stmt1, gimple *stmt2) |
| { |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt1); |
| return vect_stmt_in_region_p (stmt_vinfo->vinfo, stmt2); |
| } |
| |
| /* If the LHS of DEF_STMT has a single use, and that statement is |
| in the same loop or basic block, return it. */ |
| |
| static gimple * |
| vect_single_imm_use (gimple *def_stmt) |
| { |
| tree lhs = gimple_assign_lhs (def_stmt); |
| use_operand_p use_p; |
| gimple *use_stmt; |
| |
| if (!single_imm_use (lhs, &use_p, &use_stmt)) |
| return NULL; |
| |
| if (!vect_same_loop_or_bb_p (def_stmt, use_stmt)) |
| return NULL; |
| |
| return use_stmt; |
| } |
| |
| /* Check whether NAME, an ssa-name used in USE_STMT, |
| is a result of a type promotion, such that: |
| DEF_STMT: NAME = NOP (name0) |
| If CHECK_SIGN is TRUE, check that either both types are signed or both are |
| unsigned. */ |
| |
| static bool |
| type_conversion_p (tree name, gimple *use_stmt, bool check_sign, |
| tree *orig_type, gimple **def_stmt, bool *promotion) |
| { |
| gimple *dummy_gimple; |
| stmt_vec_info stmt_vinfo; |
| tree type = TREE_TYPE (name); |
| tree oprnd0; |
| enum vect_def_type dt; |
| |
| stmt_vinfo = vinfo_for_stmt (use_stmt); |
| if (!vect_is_simple_use (name, stmt_vinfo->vinfo, def_stmt, &dt)) |
| return false; |
| |
| if (dt != vect_internal_def |
| && dt != vect_external_def && dt != vect_constant_def) |
| return false; |
| |
| if (!*def_stmt) |
| return false; |
| |
| if (dt == vect_internal_def) |
| { |
| stmt_vec_info def_vinfo = vinfo_for_stmt (*def_stmt); |
| if (STMT_VINFO_IN_PATTERN_P (def_vinfo)) |
| return false; |
| } |
| |
| if (!is_gimple_assign (*def_stmt)) |
| return false; |
| |
| if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (*def_stmt))) |
| return false; |
| |
| oprnd0 = gimple_assign_rhs1 (*def_stmt); |
| |
| *orig_type = TREE_TYPE (oprnd0); |
| if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*orig_type) |
| || ((TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*orig_type)) && check_sign)) |
| return false; |
| |
| if (TYPE_PRECISION (type) >= (TYPE_PRECISION (*orig_type) * 2)) |
| *promotion = true; |
| else |
| *promotion = false; |
| |
| if (!vect_is_simple_use (oprnd0, stmt_vinfo->vinfo, &dummy_gimple, &dt)) |
| return false; |
| |
| return true; |
| } |
| |
| /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT |
| is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */ |
| |
| static tree |
| vect_recog_temp_ssa_var (tree type, gimple *stmt) |
| { |
| return make_temp_ssa_name (type, stmt, "patt"); |
| } |
| |
| /* Return true if STMT_VINFO describes a reduction for which reassociation |
| is allowed. If STMT_INFO is part of a group, assume that it's part of |
| a reduction chain and optimistically assume that all statements |
| except the last allow reassociation. */ |
| |
| static bool |
| vect_reassociating_reduction_p (stmt_vec_info stmt_vinfo) |
| { |
| return (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def |
| ? STMT_VINFO_REDUC_TYPE (stmt_vinfo) != FOLD_LEFT_REDUCTION |
| : GROUP_FIRST_ELEMENT (stmt_vinfo) != NULL); |
| } |
| |
| /* Function vect_recog_dot_prod_pattern |
| |
| Try to find the following pattern: |
| |
| type x_t, y_t; |
| TYPE1 prod; |
| TYPE2 sum = init; |
| loop: |
| sum_0 = phi <init, sum_1> |
| S1 x_t = ... |
| S2 y_t = ... |
| S3 x_T = (TYPE1) x_t; |
| S4 y_T = (TYPE1) y_t; |
| S5 prod = x_T * y_T; |
| [S6 prod = (TYPE2) prod; #optional] |
| S7 sum_1 = prod + sum_0; |
| |
| where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the |
| same size of 'TYPE1' or bigger. This is a special case of a reduction |
| computation. |
| |
| Input: |
| |
| * STMTS: Contains a stmt from which the pattern search begins. In the |
| example, when this function is called with S7, the pattern {S3,S4,S5,S6,S7} |
| will be detected. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| WIDEN_DOT_PRODUCT <x_t, y_t, sum_0> |
| |
| Note: The dot-prod idiom is a widening reduction pattern that is |
| vectorized without preserving all the intermediate results. It |
| produces only N/2 (widened) results (by summing up pairs of |
| intermediate results) rather than all N results. Therefore, we |
| cannot allow this pattern when we want to get all the results and in |
| the correct order (as is the case when this computation is in an |
| inner-loop nested in an outer-loop that us being vectorized). */ |
| |
| static gimple * |
| vect_recog_dot_prod_pattern (vec<gimple *> *stmts, tree *type_in, |
| tree *type_out) |
| { |
| gimple *stmt, *last_stmt = (*stmts)[0]; |
| tree oprnd0, oprnd1; |
| tree oprnd00, oprnd01; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| tree type, half_type; |
| gimple *pattern_stmt; |
| tree prod_type; |
| loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo); |
| struct loop *loop; |
| tree var; |
| bool promotion; |
| |
| if (!loop_info) |
| return NULL; |
| |
| loop = LOOP_VINFO_LOOP (loop_info); |
| |
| /* We don't allow changing the order of the computation in the inner-loop |
| when doing outer-loop vectorization. */ |
| if (loop && nested_in_vect_loop_p (loop, last_stmt)) |
| return NULL; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| type = gimple_expr_type (last_stmt); |
| |
| /* Look for the following pattern |
| DX = (TYPE1) X; |
| DY = (TYPE1) Y; |
| DPROD = DX * DY; |
| DDPROD = (TYPE2) DPROD; |
| sum_1 = DDPROD + sum_0; |
| In which |
| - DX is double the size of X |
| - DY is double the size of Y |
| - DX, DY, DPROD all have the same type |
| - sum is the same size of DPROD or bigger |
| - sum has been recognized as a reduction variable. |
| |
| This is equivalent to: |
| DPROD = X w* Y; #widen mult |
| sum_1 = DPROD w+ sum_0; #widen summation |
| or |
| DPROD = X w* Y; #widen mult |
| sum_1 = DPROD + sum_0; #summation |
| */ |
| |
| /* Starting from LAST_STMT, follow the defs of its uses in search |
| of the above pattern. */ |
| |
| if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR) |
| return NULL; |
| |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| { |
| /* Has been detected as widening-summation? */ |
| |
| stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo); |
| type = gimple_expr_type (stmt); |
| if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR) |
| return NULL; |
| oprnd0 = gimple_assign_rhs1 (stmt); |
| oprnd1 = gimple_assign_rhs2 (stmt); |
| half_type = TREE_TYPE (oprnd0); |
| } |
| else |
| { |
| gimple *def_stmt; |
| |
| if (!vect_reassociating_reduction_p (stmt_vinfo)) |
| return NULL; |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (!types_compatible_p (TREE_TYPE (oprnd0), type) |
| || !types_compatible_p (TREE_TYPE (oprnd1), type)) |
| return NULL; |
| stmt = last_stmt; |
| |
| if (type_conversion_p (oprnd0, stmt, true, &half_type, &def_stmt, |
| &promotion) |
| && promotion) |
| { |
| stmt = def_stmt; |
| oprnd0 = gimple_assign_rhs1 (stmt); |
| } |
| else |
| half_type = type; |
| } |
| |
| /* So far so good. Since last_stmt was detected as a (summation) reduction, |
| we know that oprnd1 is the reduction variable (defined by a loop-header |
| phi), and oprnd0 is an ssa-name defined by a stmt in the loop body. |
| Left to check that oprnd0 is defined by a (widen_)mult_expr */ |
| if (TREE_CODE (oprnd0) != SSA_NAME) |
| return NULL; |
| |
| prod_type = half_type; |
| stmt = SSA_NAME_DEF_STMT (oprnd0); |
| |
| /* It could not be the dot_prod pattern if the stmt is outside the loop. */ |
| if (!gimple_bb (stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (stmt))) |
| return NULL; |
| |
| /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi |
| inside the loop (in case we are analyzing an outer-loop). */ |
| if (!is_gimple_assign (stmt)) |
| return NULL; |
| stmt_vinfo = vinfo_for_stmt (stmt); |
| gcc_assert (stmt_vinfo); |
| if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def) |
| return NULL; |
| if (gimple_assign_rhs_code (stmt) != MULT_EXPR) |
| return NULL; |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| { |
| /* Has been detected as a widening multiplication? */ |
| |
| stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo); |
| if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR) |
| return NULL; |
| stmt_vinfo = vinfo_for_stmt (stmt); |
| gcc_assert (stmt_vinfo); |
| gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def); |
| oprnd00 = gimple_assign_rhs1 (stmt); |
| oprnd01 = gimple_assign_rhs2 (stmt); |
| STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (last_stmt)) |
| = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo); |
| } |
| else |
| { |
| tree half_type0, half_type1; |
| gimple *def_stmt; |
| tree oprnd0, oprnd1; |
| |
| oprnd0 = gimple_assign_rhs1 (stmt); |
| oprnd1 = gimple_assign_rhs2 (stmt); |
| if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type) |
| || !types_compatible_p (TREE_TYPE (oprnd1), prod_type)) |
| return NULL; |
| if (!type_conversion_p (oprnd0, stmt, true, &half_type0, &def_stmt, |
| &promotion) |
| || !promotion) |
| return NULL; |
| oprnd00 = gimple_assign_rhs1 (def_stmt); |
| if (!type_conversion_p (oprnd1, stmt, true, &half_type1, &def_stmt, |
| &promotion) |
| || !promotion) |
| return NULL; |
| oprnd01 = gimple_assign_rhs1 (def_stmt); |
| if (!types_compatible_p (half_type0, half_type1)) |
| return NULL; |
| if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2) |
| return NULL; |
| } |
| |
| half_type = TREE_TYPE (oprnd00); |
| *type_in = half_type; |
| *type_out = type; |
| |
| /* Pattern detected. Create a stmt to be used to replace the pattern: */ |
| var = vect_recog_temp_ssa_var (type, NULL); |
| pattern_stmt = gimple_build_assign (var, DOT_PROD_EXPR, |
| oprnd00, oprnd01, oprnd1); |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_dot_prod_pattern: detected: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| return pattern_stmt; |
| } |
| |
| |
| /* Function vect_recog_sad_pattern |
| |
| Try to find the following Sum of Absolute Difference (SAD) pattern: |
| |
| type x_t, y_t; |
| signed TYPE1 diff, abs_diff; |
| TYPE2 sum = init; |
| loop: |
| sum_0 = phi <init, sum_1> |
| S1 x_t = ... |
| S2 y_t = ... |
| S3 x_T = (TYPE1) x_t; |
| S4 y_T = (TYPE1) y_t; |
| S5 diff = x_T - y_T; |
| S6 abs_diff = ABS_EXPR <diff>; |
| [S7 abs_diff = (TYPE2) abs_diff; #optional] |
| S8 sum_1 = abs_diff + sum_0; |
| |
| where 'TYPE1' is at least double the size of type 'type', and 'TYPE2' is the |
| same size of 'TYPE1' or bigger. This is a special case of a reduction |
| computation. |
| |
| Input: |
| |
| * STMTS: Contains a stmt from which the pattern search begins. In the |
| example, when this function is called with S8, the pattern |
| {S3,S4,S5,S6,S7,S8} will be detected. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| SAD_EXPR <x_t, y_t, sum_0> |
| */ |
| |
| static gimple * |
| vect_recog_sad_pattern (vec<gimple *> *stmts, tree *type_in, |
| tree *type_out) |
| { |
| gimple *last_stmt = (*stmts)[0]; |
| tree sad_oprnd0, sad_oprnd1; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| tree half_type; |
| loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo); |
| struct loop *loop; |
| bool promotion; |
| |
| if (!loop_info) |
| return NULL; |
| |
| loop = LOOP_VINFO_LOOP (loop_info); |
| |
| /* We don't allow changing the order of the computation in the inner-loop |
| when doing outer-loop vectorization. */ |
| if (loop && nested_in_vect_loop_p (loop, last_stmt)) |
| return NULL; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| tree sum_type = gimple_expr_type (last_stmt); |
| |
| /* Look for the following pattern |
| DX = (TYPE1) X; |
| DY = (TYPE1) Y; |
| DDIFF = DX - DY; |
| DAD = ABS_EXPR <DDIFF>; |
| DDPROD = (TYPE2) DPROD; |
| sum_1 = DAD + sum_0; |
| In which |
| - DX is at least double the size of X |
| - DY is at least double the size of Y |
| - DX, DY, DDIFF, DAD all have the same type |
| - sum is the same size of DAD or bigger |
| - sum has been recognized as a reduction variable. |
| |
| This is equivalent to: |
| DDIFF = X w- Y; #widen sub |
| DAD = ABS_EXPR <DDIFF>; |
| sum_1 = DAD w+ sum_0; #widen summation |
| or |
| DDIFF = X w- Y; #widen sub |
| DAD = ABS_EXPR <DDIFF>; |
| sum_1 = DAD + sum_0; #summation |
| */ |
| |
| /* Starting from LAST_STMT, follow the defs of its uses in search |
| of the above pattern. */ |
| |
| if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR) |
| return NULL; |
| |
| tree plus_oprnd0, plus_oprnd1; |
| |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| { |
| /* Has been detected as widening-summation? */ |
| |
| gimple *stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo); |
| sum_type = gimple_expr_type (stmt); |
| if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR) |
| return NULL; |
| plus_oprnd0 = gimple_assign_rhs1 (stmt); |
| plus_oprnd1 = gimple_assign_rhs2 (stmt); |
| half_type = TREE_TYPE (plus_oprnd0); |
| } |
| else |
| { |
| gimple *def_stmt; |
| |
| if (!vect_reassociating_reduction_p (stmt_vinfo)) |
| return NULL; |
| plus_oprnd0 = gimple_assign_rhs1 (last_stmt); |
| plus_oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (!types_compatible_p (TREE_TYPE (plus_oprnd0), sum_type) |
| || !types_compatible_p (TREE_TYPE (plus_oprnd1), sum_type)) |
| return NULL; |
| |
| /* The type conversion could be promotion, demotion, |
| or just signed -> unsigned. */ |
| if (type_conversion_p (plus_oprnd0, last_stmt, false, |
| &half_type, &def_stmt, &promotion)) |
| plus_oprnd0 = gimple_assign_rhs1 (def_stmt); |
| else |
| half_type = sum_type; |
| } |
| |
| /* So far so good. Since last_stmt was detected as a (summation) reduction, |
| we know that plus_oprnd1 is the reduction variable (defined by a loop-header |
| phi), and plus_oprnd0 is an ssa-name defined by a stmt in the loop body. |
| Then check that plus_oprnd0 is defined by an abs_expr. */ |
| |
| if (TREE_CODE (plus_oprnd0) != SSA_NAME) |
| return NULL; |
| |
| tree abs_type = half_type; |
| gimple *abs_stmt = SSA_NAME_DEF_STMT (plus_oprnd0); |
| |
| /* It could not be the sad pattern if the abs_stmt is outside the loop. */ |
| if (!gimple_bb (abs_stmt) || !flow_bb_inside_loop_p (loop, gimple_bb (abs_stmt))) |
| return NULL; |
| |
| /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi |
| inside the loop (in case we are analyzing an outer-loop). */ |
| if (!is_gimple_assign (abs_stmt)) |
| return NULL; |
| |
| stmt_vec_info abs_stmt_vinfo = vinfo_for_stmt (abs_stmt); |
| gcc_assert (abs_stmt_vinfo); |
| if (STMT_VINFO_DEF_TYPE (abs_stmt_vinfo) != vect_internal_def) |
| return NULL; |
| if (gimple_assign_rhs_code (abs_stmt) != ABS_EXPR) |
| return NULL; |
| |
| tree abs_oprnd = gimple_assign_rhs1 (abs_stmt); |
| if (!types_compatible_p (TREE_TYPE (abs_oprnd), abs_type)) |
| return NULL; |
| if (TYPE_UNSIGNED (abs_type)) |
| return NULL; |
| |
| /* We then detect if the operand of abs_expr is defined by a minus_expr. */ |
| |
| if (TREE_CODE (abs_oprnd) != SSA_NAME) |
| return NULL; |
| |
| gimple *diff_stmt = SSA_NAME_DEF_STMT (abs_oprnd); |
| |
| /* It could not be the sad pattern if the diff_stmt is outside the loop. */ |
| if (!gimple_bb (diff_stmt) |
| || !flow_bb_inside_loop_p (loop, gimple_bb (diff_stmt))) |
| return NULL; |
| |
| /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi |
| inside the loop (in case we are analyzing an outer-loop). */ |
| if (!is_gimple_assign (diff_stmt)) |
| return NULL; |
| |
| stmt_vec_info diff_stmt_vinfo = vinfo_for_stmt (diff_stmt); |
| gcc_assert (diff_stmt_vinfo); |
| if (STMT_VINFO_DEF_TYPE (diff_stmt_vinfo) != vect_internal_def) |
| return NULL; |
| if (gimple_assign_rhs_code (diff_stmt) != MINUS_EXPR) |
| return NULL; |
| |
| tree half_type0, half_type1; |
| gimple *def_stmt; |
| |
| tree minus_oprnd0 = gimple_assign_rhs1 (diff_stmt); |
| tree minus_oprnd1 = gimple_assign_rhs2 (diff_stmt); |
| |
| if (!types_compatible_p (TREE_TYPE (minus_oprnd0), abs_type) |
| || !types_compatible_p (TREE_TYPE (minus_oprnd1), abs_type)) |
| return NULL; |
| if (!type_conversion_p (minus_oprnd0, diff_stmt, false, |
| &half_type0, &def_stmt, &promotion) |
| || !promotion) |
| return NULL; |
| sad_oprnd0 = gimple_assign_rhs1 (def_stmt); |
| |
| if (!type_conversion_p (minus_oprnd1, diff_stmt, false, |
| &half_type1, &def_stmt, &promotion) |
| || !promotion) |
| return NULL; |
| sad_oprnd1 = gimple_assign_rhs1 (def_stmt); |
| |
| if (!types_compatible_p (half_type0, half_type1)) |
| return NULL; |
| if (TYPE_PRECISION (abs_type) < TYPE_PRECISION (half_type0) * 2 |
| || TYPE_PRECISION (sum_type) < TYPE_PRECISION (half_type0) * 2) |
| return NULL; |
| |
| *type_in = TREE_TYPE (sad_oprnd0); |
| *type_out = sum_type; |
| |
| /* Pattern detected. Create a stmt to be used to replace the pattern: */ |
| tree var = vect_recog_temp_ssa_var (sum_type, NULL); |
| gimple *pattern_stmt = gimple_build_assign (var, SAD_EXPR, sad_oprnd0, |
| sad_oprnd1, plus_oprnd1); |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_sad_pattern: detected: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| return pattern_stmt; |
| } |
| |
| |
| /* Handle widening operation by a constant. At the moment we support MULT_EXPR |
| and LSHIFT_EXPR. |
| |
| For MULT_EXPR we check that CONST_OPRND fits HALF_TYPE, and for LSHIFT_EXPR |
| we check that CONST_OPRND is less or equal to the size of HALF_TYPE. |
| |
| Otherwise, if the type of the result (TYPE) is at least 4 times bigger than |
| HALF_TYPE, and there is an intermediate type (2 times smaller than TYPE) |
| that satisfies the above restrictions, we can perform a widening opeartion |
| from the intermediate type to TYPE and replace a_T = (TYPE) a_t; |
| with a_it = (interm_type) a_t; Store such operation in *WSTMT. */ |
| |
| static bool |
| vect_handle_widen_op_by_const (gimple *stmt, enum tree_code code, |
| tree const_oprnd, tree *oprnd, |
| gimple **wstmt, tree type, |
| tree *half_type, gimple *def_stmt) |
| { |
| tree new_type, new_oprnd; |
| |
| if (code != MULT_EXPR && code != LSHIFT_EXPR) |
| return false; |
| |
| if (((code == MULT_EXPR && int_fits_type_p (const_oprnd, *half_type)) |
| || (code == LSHIFT_EXPR |
| && compare_tree_int (const_oprnd, TYPE_PRECISION (*half_type)) |
| != 1)) |
| && TYPE_PRECISION (type) == (TYPE_PRECISION (*half_type) * 2)) |
| { |
| /* CONST_OPRND is a constant of HALF_TYPE. */ |
| *oprnd = gimple_assign_rhs1 (def_stmt); |
| return true; |
| } |
| |
| if (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 4)) |
| return false; |
| |
| if (!vect_same_loop_or_bb_p (stmt, def_stmt)) |
| return false; |
| |
| /* TYPE is 4 times bigger than HALF_TYPE, try widening operation for |
| a type 2 times bigger than HALF_TYPE. */ |
| new_type = build_nonstandard_integer_type (TYPE_PRECISION (type) / 2, |
| TYPE_UNSIGNED (type)); |
| if ((code == MULT_EXPR && !int_fits_type_p (const_oprnd, new_type)) |
| || (code == LSHIFT_EXPR |
| && compare_tree_int (const_oprnd, TYPE_PRECISION (new_type)) == 1)) |
| return false; |
| |
| /* Use NEW_TYPE for widening operation and create a_T = (NEW_TYPE) a_t; */ |
| *oprnd = gimple_assign_rhs1 (def_stmt); |
| new_oprnd = make_ssa_name (new_type); |
| *wstmt = gimple_build_assign (new_oprnd, NOP_EXPR, *oprnd); |
| *oprnd = new_oprnd; |
| |
| *half_type = new_type; |
| return true; |
| } |
| |
| |
| /* Function vect_recog_widen_mult_pattern |
| |
| Try to find the following pattern: |
| |
| type1 a_t; |
| type2 b_t; |
| TYPE a_T, b_T, prod_T; |
| |
| S1 a_t = ; |
| S2 b_t = ; |
| S3 a_T = (TYPE) a_t; |
| S4 b_T = (TYPE) b_t; |
| S5 prod_T = a_T * b_T; |
| |
| where type 'TYPE' is at least double the size of type 'type1' and 'type2'. |
| |
| Also detect unsigned cases: |
| |
| unsigned type1 a_t; |
| unsigned type2 b_t; |
| unsigned TYPE u_prod_T; |
| TYPE a_T, b_T, prod_T; |
| |
| S1 a_t = ; |
| S2 b_t = ; |
| S3 a_T = (TYPE) a_t; |
| S4 b_T = (TYPE) b_t; |
| S5 prod_T = a_T * b_T; |
| S6 u_prod_T = (unsigned TYPE) prod_T; |
| |
| and multiplication by constants: |
| |
| type a_t; |
| TYPE a_T, prod_T; |
| |
| S1 a_t = ; |
| S3 a_T = (TYPE) a_t; |
| S5 prod_T = a_T * CONST; |
| |
| A special case of multiplication by constants is when 'TYPE' is 4 times |
| bigger than 'type', but CONST fits an intermediate type 2 times smaller |
| than 'TYPE'. In that case we create an additional pattern stmt for S3 |
| to create a variable of the intermediate type, and perform widen-mult |
| on the intermediate type as well: |
| |
| type a_t; |
| interm_type a_it; |
| TYPE a_T, prod_T, prod_T'; |
| |
| S1 a_t = ; |
| S3 a_T = (TYPE) a_t; |
| '--> a_it = (interm_type) a_t; |
| S5 prod_T = a_T * CONST; |
| '--> prod_T' = a_it w* CONST; |
| |
| Input/Output: |
| |
| * STMTS: Contains a stmt from which the pattern search begins. In the |
| example, when this function is called with S5, the pattern {S3,S4,S5,(S6)} |
| is detected. In case of unsigned widen-mult, the original stmt (S5) is |
| replaced with S6 in STMTS. In case of multiplication by a constant |
| of an intermediate type (the last case above), STMTS also contains S3 |
| (inserted before S5). |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| WIDEN_MULT <a_t, b_t> |
| If the result of WIDEN_MULT needs to be converted to a larger type, the |
| returned stmt will be this type conversion stmt. |
| */ |
| |
| static gimple * |
| vect_recog_widen_mult_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| gimple *def_stmt0, *def_stmt1; |
| tree oprnd0, oprnd1; |
| tree type, half_type0, half_type1; |
| gimple *new_stmt = NULL, *pattern_stmt = NULL; |
| tree vectype, vecitype; |
| tree var; |
| enum tree_code dummy_code; |
| int dummy_int; |
| vec<tree> dummy_vec; |
| bool op1_ok; |
| bool promotion; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| type = gimple_expr_type (last_stmt); |
| |
| /* Starting from LAST_STMT, follow the defs of its uses in search |
| of the above pattern. */ |
| |
| if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (!types_compatible_p (TREE_TYPE (oprnd0), type) |
| || !types_compatible_p (TREE_TYPE (oprnd1), type)) |
| return NULL; |
| |
| /* Check argument 0. */ |
| if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0, |
| &promotion) |
| || !promotion) |
| return NULL; |
| /* Check argument 1. */ |
| op1_ok = type_conversion_p (oprnd1, last_stmt, false, &half_type1, |
| &def_stmt1, &promotion); |
| |
| if (op1_ok && promotion) |
| { |
| oprnd0 = gimple_assign_rhs1 (def_stmt0); |
| oprnd1 = gimple_assign_rhs1 (def_stmt1); |
| } |
| else |
| { |
| if (TREE_CODE (oprnd1) == INTEGER_CST |
| && TREE_CODE (half_type0) == INTEGER_TYPE |
| && vect_handle_widen_op_by_const (last_stmt, MULT_EXPR, oprnd1, |
| &oprnd0, &new_stmt, type, |
| &half_type0, def_stmt0)) |
| { |
| half_type1 = half_type0; |
| oprnd1 = fold_convert (half_type1, oprnd1); |
| } |
| else |
| return NULL; |
| } |
| |
| /* If the two arguments have different sizes, convert the one with |
| the smaller type into the larger type. */ |
| if (TYPE_PRECISION (half_type0) != TYPE_PRECISION (half_type1)) |
| { |
| /* If we already used up the single-stmt slot give up. */ |
| if (new_stmt) |
| return NULL; |
| |
| tree* oprnd = NULL; |
| gimple *def_stmt = NULL; |
| |
| if (TYPE_PRECISION (half_type0) < TYPE_PRECISION (half_type1)) |
| { |
| def_stmt = def_stmt0; |
| half_type0 = half_type1; |
| oprnd = &oprnd0; |
| } |
| else |
| { |
| def_stmt = def_stmt1; |
| half_type1 = half_type0; |
| oprnd = &oprnd1; |
| } |
| |
| tree old_oprnd = gimple_assign_rhs1 (def_stmt); |
| tree new_oprnd = make_ssa_name (half_type0); |
| new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, old_oprnd); |
| *oprnd = new_oprnd; |
| } |
| |
| /* Handle unsigned case. Look for |
| S6 u_prod_T = (unsigned TYPE) prod_T; |
| Use unsigned TYPE as the type for WIDEN_MULT_EXPR. */ |
| if (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (half_type0)) |
| { |
| gimple *use_stmt; |
| tree use_lhs; |
| tree use_type; |
| |
| if (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (half_type1)) |
| return NULL; |
| |
| use_stmt = vect_single_imm_use (last_stmt); |
| if (!use_stmt || !is_gimple_assign (use_stmt) |
| || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))) |
| return NULL; |
| |
| use_lhs = gimple_assign_lhs (use_stmt); |
| use_type = TREE_TYPE (use_lhs); |
| if (!INTEGRAL_TYPE_P (use_type) |
| || (TYPE_UNSIGNED (type) == TYPE_UNSIGNED (use_type)) |
| || (TYPE_PRECISION (type) != TYPE_PRECISION (use_type))) |
| return NULL; |
| |
| type = use_type; |
| last_stmt = use_stmt; |
| } |
| |
| if (!types_compatible_p (half_type0, half_type1)) |
| return NULL; |
| |
| /* If TYPE is more than twice larger than HALF_TYPE, we use WIDEN_MULT |
| to get an intermediate result of type ITYPE. In this case we need |
| to build a statement to convert this intermediate result to type TYPE. */ |
| tree itype = type; |
| if (TYPE_PRECISION (type) > TYPE_PRECISION (half_type0) * 2) |
| itype = build_nonstandard_integer_type |
| (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (half_type0)) * 2, |
| TYPE_UNSIGNED (type)); |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_widen_mult_pattern: detected:\n"); |
| |
| /* Check target support */ |
| vectype = get_vectype_for_scalar_type (half_type0); |
| vecitype = get_vectype_for_scalar_type (itype); |
| if (!vectype |
| || !vecitype |
| || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, |
| vecitype, vectype, |
| &dummy_code, &dummy_code, |
| &dummy_int, &dummy_vec)) |
| return NULL; |
| |
| *type_in = vectype; |
| *type_out = get_vectype_for_scalar_type (type); |
| |
| /* Pattern supported. Create a stmt to be used to replace the pattern: */ |
| var = vect_recog_temp_ssa_var (itype, NULL); |
| pattern_stmt = gimple_build_assign (var, WIDEN_MULT_EXPR, oprnd0, oprnd1); |
| |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL; |
| |
| /* If the original two operands have different sizes, we may need to convert |
| the smaller one into the larget type. If this is the case, at this point |
| the new stmt is already built. */ |
| if (new_stmt) |
| { |
| append_pattern_def_seq (stmt_vinfo, new_stmt); |
| stmt_vec_info new_stmt_info |
| = new_stmt_vec_info (new_stmt, stmt_vinfo->vinfo); |
| set_vinfo_for_stmt (new_stmt, new_stmt_info); |
| STMT_VINFO_VECTYPE (new_stmt_info) = vectype; |
| } |
| |
| /* If ITYPE is not TYPE, we need to build a type convertion stmt to convert |
| the result of the widen-mult operation into type TYPE. */ |
| if (itype != type) |
| { |
| append_pattern_def_seq (stmt_vinfo, pattern_stmt); |
| stmt_vec_info pattern_stmt_info |
| = new_stmt_vec_info (pattern_stmt, stmt_vinfo->vinfo); |
| set_vinfo_for_stmt (pattern_stmt, pattern_stmt_info); |
| STMT_VINFO_VECTYPE (pattern_stmt_info) = vecitype; |
| pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL), |
| NOP_EXPR, |
| gimple_assign_lhs (pattern_stmt)); |
| } |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0); |
| |
| stmts->safe_push (last_stmt); |
| return pattern_stmt; |
| } |
| |
| |
| /* Function vect_recog_pow_pattern |
| |
| Try to find the following pattern: |
| |
| x = POW (y, N); |
| |
| with POW being one of pow, powf, powi, powif and N being |
| either 2 or 0.5. |
| |
| Input: |
| |
| * LAST_STMT: A stmt from which the pattern search begins. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| x = x * x |
| or |
| x = sqrt (x) |
| */ |
| |
| static gimple * |
| vect_recog_pow_pattern (vec<gimple *> *stmts, tree *type_in, |
| tree *type_out) |
| { |
| gimple *last_stmt = (*stmts)[0]; |
| tree base, exp; |
| gimple *stmt; |
| tree var; |
| |
| if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL) |
| return NULL; |
| |
| switch (gimple_call_combined_fn (last_stmt)) |
| { |
| CASE_CFN_POW: |
| CASE_CFN_POWI: |
| break; |
| |
| default: |
| return NULL; |
| } |
| |
| base = gimple_call_arg (last_stmt, 0); |
| exp = gimple_call_arg (last_stmt, 1); |
| if (TREE_CODE (exp) != REAL_CST |
| && TREE_CODE (exp) != INTEGER_CST) |
| { |
| if (flag_unsafe_math_optimizations |
| && TREE_CODE (base) == REAL_CST |
| && !gimple_call_internal_p (last_stmt)) |
| { |
| combined_fn log_cfn; |
| built_in_function exp_bfn; |
| switch (DECL_FUNCTION_CODE (gimple_call_fndecl (last_stmt))) |
| { |
| case BUILT_IN_POW: |
| log_cfn = CFN_BUILT_IN_LOG; |
| exp_bfn = BUILT_IN_EXP; |
| break; |
| case BUILT_IN_POWF: |
| log_cfn = CFN_BUILT_IN_LOGF; |
| exp_bfn = BUILT_IN_EXPF; |
| break; |
| case BUILT_IN_POWL: |
| log_cfn = CFN_BUILT_IN_LOGL; |
| exp_bfn = BUILT_IN_EXPL; |
| break; |
| default: |
| return NULL; |
| } |
| tree logc = fold_const_call (log_cfn, TREE_TYPE (base), base); |
| tree exp_decl = builtin_decl_implicit (exp_bfn); |
| /* Optimize pow (C, x) as exp (log (C) * x). Normally match.pd |
| does that, but if C is a power of 2, we want to use |
| exp2 (log2 (C) * x) in the non-vectorized version, but for |
| vectorization we don't have vectorized exp2. */ |
| if (logc |
| && TREE_CODE (logc) == REAL_CST |
| && exp_decl |
| && lookup_attribute ("omp declare simd", |
| DECL_ATTRIBUTES (exp_decl))) |
| { |
| cgraph_node *node = cgraph_node::get_create (exp_decl); |
| if (node->simd_clones == NULL) |
| { |
| if (targetm.simd_clone.compute_vecsize_and_simdlen == NULL |
| || node->definition) |
| return NULL; |
| expand_simd_clones (node); |
| if (node->simd_clones == NULL) |
| return NULL; |
| } |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| tree def = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL); |
| gimple *g = gimple_build_assign (def, MULT_EXPR, exp, logc); |
| new_pattern_def_seq (stmt_vinfo, g); |
| *type_in = TREE_TYPE (base); |
| *type_out = NULL_TREE; |
| tree res = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL); |
| g = gimple_build_call (exp_decl, 1, def); |
| gimple_call_set_lhs (g, res); |
| return g; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* We now have a pow or powi builtin function call with a constant |
| exponent. */ |
| |
| *type_out = NULL_TREE; |
| |
| /* Catch squaring. */ |
| if ((tree_fits_shwi_p (exp) |
| && tree_to_shwi (exp) == 2) |
| || (TREE_CODE (exp) == REAL_CST |
| && real_equal (&TREE_REAL_CST (exp), &dconst2))) |
| { |
| *type_in = TREE_TYPE (base); |
| |
| var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL); |
| stmt = gimple_build_assign (var, MULT_EXPR, base, base); |
| return stmt; |
| } |
| |
| /* Catch square root. */ |
| if (TREE_CODE (exp) == REAL_CST |
| && real_equal (&TREE_REAL_CST (exp), &dconsthalf)) |
| { |
| *type_in = get_vectype_for_scalar_type (TREE_TYPE (base)); |
| if (*type_in |
| && direct_internal_fn_supported_p (IFN_SQRT, *type_in, |
| OPTIMIZE_FOR_SPEED)) |
| { |
| gcall *stmt = gimple_build_call_internal (IFN_SQRT, 1, base); |
| var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt); |
| gimple_call_set_lhs (stmt, var); |
| gimple_call_set_nothrow (stmt, true); |
| return stmt; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| |
| /* Function vect_recog_widen_sum_pattern |
| |
| Try to find the following pattern: |
| |
| type x_t; |
| TYPE x_T, sum = init; |
| loop: |
| sum_0 = phi <init, sum_1> |
| S1 x_t = *p; |
| S2 x_T = (TYPE) x_t; |
| S3 sum_1 = x_T + sum_0; |
| |
| where type 'TYPE' is at least double the size of type 'type', i.e - we're |
| summing elements of type 'type' into an accumulator of type 'TYPE'. This is |
| a special case of a reduction computation. |
| |
| Input: |
| |
| * LAST_STMT: A stmt from which the pattern search begins. In the example, |
| when this function is called with S3, the pattern {S2,S3} will be detected. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| WIDEN_SUM <x_t, sum_0> |
| |
| Note: The widening-sum idiom is a widening reduction pattern that is |
| vectorized without preserving all the intermediate results. It |
| produces only N/2 (widened) results (by summing up pairs of |
| intermediate results) rather than all N results. Therefore, we |
| cannot allow this pattern when we want to get all the results and in |
| the correct order (as is the case when this computation is in an |
| inner-loop nested in an outer-loop that us being vectorized). */ |
| |
| static gimple * |
| vect_recog_widen_sum_pattern (vec<gimple *> *stmts, tree *type_in, |
| tree *type_out) |
| { |
| gimple *stmt, *last_stmt = (*stmts)[0]; |
| tree oprnd0, oprnd1; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| tree type, half_type; |
| gimple *pattern_stmt; |
| loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo); |
| struct loop *loop; |
| tree var; |
| bool promotion; |
| |
| if (!loop_info) |
| return NULL; |
| |
| loop = LOOP_VINFO_LOOP (loop_info); |
| |
| /* We don't allow changing the order of the computation in the inner-loop |
| when doing outer-loop vectorization. */ |
| if (loop && nested_in_vect_loop_p (loop, last_stmt)) |
| return NULL; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| type = gimple_expr_type (last_stmt); |
| |
| /* Look for the following pattern |
| DX = (TYPE) X; |
| sum_1 = DX + sum_0; |
| In which DX is at least double the size of X, and sum_1 has been |
| recognized as a reduction variable. |
| */ |
| |
| /* Starting from LAST_STMT, follow the defs of its uses in search |
| of the above pattern. */ |
| |
| if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR) |
| return NULL; |
| |
| if (!vect_reassociating_reduction_p (stmt_vinfo)) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (!types_compatible_p (TREE_TYPE (oprnd0), type) |
| || !types_compatible_p (TREE_TYPE (oprnd1), type)) |
| return NULL; |
| |
| /* So far so good. Since last_stmt was detected as a (summation) reduction, |
| we know that oprnd1 is the reduction variable (defined by a loop-header |
| phi), and oprnd0 is an ssa-name defined by a stmt in the loop body. |
| Left to check that oprnd0 is defined by a cast from type 'type' to type |
| 'TYPE'. */ |
| |
| if (!type_conversion_p (oprnd0, last_stmt, true, &half_type, &stmt, |
| &promotion) |
| || !promotion) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (stmt); |
| *type_in = half_type; |
| *type_out = type; |
| |
| /* Pattern detected. Create a stmt to be used to replace the pattern: */ |
| var = vect_recog_temp_ssa_var (type, NULL); |
| pattern_stmt = gimple_build_assign (var, WIDEN_SUM_EXPR, oprnd0, oprnd1); |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_widen_sum_pattern: detected: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| return pattern_stmt; |
| } |
| |
| |
| /* Return TRUE if the operation in STMT can be performed on a smaller type. |
| |
| Input: |
| STMT - a statement to check. |
| DEF - we support operations with two operands, one of which is constant. |
| The other operand can be defined by a demotion operation, or by a |
| previous statement in a sequence of over-promoted operations. In the |
| later case DEF is used to replace that operand. (It is defined by a |
| pattern statement we created for the previous statement in the |
| sequence). |
| |
| Input/output: |
| NEW_TYPE - Output: a smaller type that we are trying to use. Input: if not |
| NULL, it's the type of DEF. |
| STMTS - additional pattern statements. If a pattern statement (type |
| conversion) is created in this function, its original statement is |
| added to STMTS. |
| |
| Output: |
| OP0, OP1 - if the operation fits a smaller type, OP0 and OP1 are the new |
| operands to use in the new pattern statement for STMT (will be created |
| in vect_recog_over_widening_pattern ()). |
| NEW_DEF_STMT - in case DEF has to be promoted, we create two pattern |
| statements for STMT: the first one is a type promotion and the second |
| one is the operation itself. We return the type promotion statement |
| in NEW_DEF_STMT and further store it in STMT_VINFO_PATTERN_DEF_SEQ of |
| the second pattern statement. */ |
| |
| static bool |
| vect_operation_fits_smaller_type (gimple *stmt, tree def, tree *new_type, |
| tree *op0, tree *op1, gimple **new_def_stmt, |
| vec<gimple *> *stmts) |
| { |
| enum tree_code code; |
| tree const_oprnd, oprnd; |
| tree interm_type = NULL_TREE, half_type, new_oprnd, type; |
| gimple *def_stmt, *new_stmt; |
| bool first = false; |
| bool promotion; |
| |
| *op0 = NULL_TREE; |
| *op1 = NULL_TREE; |
| *new_def_stmt = NULL; |
| |
| if (!is_gimple_assign (stmt)) |
| return false; |
| |
| code = gimple_assign_rhs_code (stmt); |
| if (code != LSHIFT_EXPR && code != RSHIFT_EXPR |
| && code != BIT_IOR_EXPR && code != BIT_XOR_EXPR && code != BIT_AND_EXPR) |
| return false; |
| |
| oprnd = gimple_assign_rhs1 (stmt); |
| const_oprnd = gimple_assign_rhs2 (stmt); |
| type = gimple_expr_type (stmt); |
| |
| if (TREE_CODE (oprnd) != SSA_NAME |
| || TREE_CODE (const_oprnd) != INTEGER_CST) |
| return false; |
| |
| /* If oprnd has other uses besides that in stmt we cannot mark it |
| as being part of a pattern only. */ |
| if (!has_single_use (oprnd)) |
| return false; |
| |
| /* If we are in the middle of a sequence, we use DEF from a previous |
| statement. Otherwise, OPRND has to be a result of type promotion. */ |
| if (*new_type) |
| { |
| half_type = *new_type; |
| oprnd = def; |
| } |
| else |
| { |
| first = true; |
| if (!type_conversion_p (oprnd, stmt, false, &half_type, &def_stmt, |
| &promotion) |
| || !promotion |
| || !vect_same_loop_or_bb_p (stmt, def_stmt)) |
| return false; |
| } |
| |
| /* Can we perform the operation on a smaller type? */ |
| switch (code) |
| { |
| case BIT_IOR_EXPR: |
| case BIT_XOR_EXPR: |
| case BIT_AND_EXPR: |
| if (!int_fits_type_p (const_oprnd, half_type)) |
| { |
| /* HALF_TYPE is not enough. Try a bigger type if possible. */ |
| if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) |
| return false; |
| |
| interm_type = build_nonstandard_integer_type ( |
| TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); |
| if (!int_fits_type_p (const_oprnd, interm_type)) |
| return false; |
| } |
| |
| break; |
| |
| case LSHIFT_EXPR: |
| /* Try intermediate type - HALF_TYPE is not enough for sure. */ |
| if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) |
| return false; |
| |
| /* Check that HALF_TYPE size + shift amount <= INTERM_TYPE size. |
| (e.g., if the original value was char, the shift amount is at most 8 |
| if we want to use short). */ |
| if (compare_tree_int (const_oprnd, TYPE_PRECISION (half_type)) == 1) |
| return false; |
| |
| interm_type = build_nonstandard_integer_type ( |
| TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); |
| |
| if (!vect_supportable_shift (code, interm_type)) |
| return false; |
| |
| break; |
| |
| case RSHIFT_EXPR: |
| if (vect_supportable_shift (code, half_type)) |
| break; |
| |
| /* Try intermediate type - HALF_TYPE is not supported. */ |
| if (TYPE_PRECISION (type) < (TYPE_PRECISION (half_type) * 4)) |
| return false; |
| |
| interm_type = build_nonstandard_integer_type ( |
| TYPE_PRECISION (half_type) * 2, TYPE_UNSIGNED (type)); |
| |
| if (!vect_supportable_shift (code, interm_type)) |
| return false; |
| |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| /* There are four possible cases: |
| 1. OPRND is defined by a type promotion (in that case FIRST is TRUE, it's |
| the first statement in the sequence) |
| a. The original, HALF_TYPE, is not enough - we replace the promotion |
| from HALF_TYPE to TYPE with a promotion to INTERM_TYPE. |
| b. HALF_TYPE is sufficient, OPRND is set as the RHS of the original |
| promotion. |
| 2. OPRND is defined by a pattern statement we created. |
| a. Its type is not sufficient for the operation, we create a new stmt: |
| a type conversion for OPRND from HALF_TYPE to INTERM_TYPE. We store |
| this statement in NEW_DEF_STMT, and it is later put in |
| STMT_VINFO_PATTERN_DEF_SEQ of the pattern statement for STMT. |
| b. OPRND is good to use in the new statement. */ |
| if (first) |
| { |
| if (interm_type) |
| { |
| /* Replace the original type conversion HALF_TYPE->TYPE with |
| HALF_TYPE->INTERM_TYPE. */ |
| if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt))) |
| { |
| new_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)); |
| /* Check if the already created pattern stmt is what we need. */ |
| if (!is_gimple_assign (new_stmt) |
| || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (new_stmt)) |
| || TREE_TYPE (gimple_assign_lhs (new_stmt)) != interm_type) |
| return false; |
| |
| stmts->safe_push (def_stmt); |
| oprnd = gimple_assign_lhs (new_stmt); |
| } |
| else |
| { |
| /* Create NEW_OPRND = (INTERM_TYPE) OPRND. */ |
| oprnd = gimple_assign_rhs1 (def_stmt); |
| new_oprnd = make_ssa_name (interm_type); |
| new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd); |
| STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt)) = new_stmt; |
| stmts->safe_push (def_stmt); |
| oprnd = new_oprnd; |
| } |
| } |
| else |
| { |
| /* Retrieve the operand before the type promotion. */ |
| oprnd = gimple_assign_rhs1 (def_stmt); |
| } |
| } |
| else |
| { |
| if (interm_type) |
| { |
| /* Create a type conversion HALF_TYPE->INTERM_TYPE. */ |
| new_oprnd = make_ssa_name (interm_type); |
| new_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, oprnd); |
| oprnd = new_oprnd; |
| *new_def_stmt = new_stmt; |
| } |
| |
| /* Otherwise, OPRND is already set. */ |
| } |
| |
| if (interm_type) |
| *new_type = interm_type; |
| else |
| *new_type = half_type; |
| |
| *op0 = oprnd; |
| *op1 = fold_convert (*new_type, const_oprnd); |
| |
| return true; |
| } |
| |
| |
| /* Try to find a statement or a sequence of statements that can be performed |
| on a smaller type: |
| |
| type x_t; |
| TYPE x_T, res0_T, res1_T; |
| loop: |
| S1 x_t = *p; |
| S2 x_T = (TYPE) x_t; |
| S3 res0_T = op (x_T, C0); |
| S4 res1_T = op (res0_T, C1); |
| S5 ... = () res1_T; - type demotion |
| |
| where type 'TYPE' is at least double the size of type 'type', C0 and C1 are |
| constants. |
| Check if S3 and S4 can be done on a smaller type than 'TYPE', it can either |
| be 'type' or some intermediate type. For now, we expect S5 to be a type |
| demotion operation. We also check that S3 and S4 have only one use. */ |
| |
| static gimple * |
| vect_recog_over_widening_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *stmt = stmts->pop (); |
| gimple *pattern_stmt = NULL, *new_def_stmt, *prev_stmt = NULL, |
| *use_stmt = NULL; |
| tree op0, op1, vectype = NULL_TREE, use_lhs, use_type; |
| tree var = NULL_TREE, new_type = NULL_TREE, new_oprnd; |
| bool first; |
| tree type = NULL; |
| |
| first = true; |
| while (1) |
| { |
| if (!vinfo_for_stmt (stmt) |
| || STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (stmt))) |
| return NULL; |
| |
| new_def_stmt = NULL; |
| if (!vect_operation_fits_smaller_type (stmt, var, &new_type, |
| &op0, &op1, &new_def_stmt, |
| stmts)) |
| { |
| if (first) |
| return NULL; |
| else |
| break; |
| } |
| |
| /* STMT can be performed on a smaller type. Check its uses. */ |
| use_stmt = vect_single_imm_use (stmt); |
| if (!use_stmt || !is_gimple_assign (use_stmt)) |
| return NULL; |
| |
| /* Create pattern statement for STMT. */ |
| vectype = get_vectype_for_scalar_type (new_type); |
| if (!vectype) |
| return NULL; |
| |
| /* We want to collect all the statements for which we create pattern |
| statetments, except for the case when the last statement in the |
| sequence doesn't have a corresponding pattern statement. In such |
| case we associate the last pattern statement with the last statement |
| in the sequence. Therefore, we only add the original statement to |
| the list if we know that it is not the last. */ |
| if (prev_stmt) |
| stmts->safe_push (prev_stmt); |
| |
| var = vect_recog_temp_ssa_var (new_type, NULL); |
| pattern_stmt |
| = gimple_build_assign (var, gimple_assign_rhs_code (stmt), op0, op1); |
| STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt)) = pattern_stmt; |
| new_pattern_def_seq (vinfo_for_stmt (stmt), new_def_stmt); |
| |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "created pattern stmt: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| type = gimple_expr_type (stmt); |
| prev_stmt = stmt; |
| stmt = use_stmt; |
| |
| first = false; |
| } |
| |
| /* We got a sequence. We expect it to end with a type demotion operation. |
| Otherwise, we quit (for now). There are three possible cases: the |
| conversion is to NEW_TYPE (we don't do anything), the conversion is to |
| a type bigger than NEW_TYPE and/or the signedness of USE_TYPE and |
| NEW_TYPE differs (we create a new conversion statement). */ |
| if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt))) |
| { |
| use_lhs = gimple_assign_lhs (use_stmt); |
| use_type = TREE_TYPE (use_lhs); |
| /* Support only type demotion or signedess change. */ |
| if (!INTEGRAL_TYPE_P (use_type) |
| || TYPE_PRECISION (type) <= TYPE_PRECISION (use_type)) |
| return NULL; |
| |
| /* Check that NEW_TYPE is not bigger than the conversion result. */ |
| if (TYPE_PRECISION (new_type) > TYPE_PRECISION (use_type)) |
| return NULL; |
| |
| if (TYPE_UNSIGNED (new_type) != TYPE_UNSIGNED (use_type) |
| || TYPE_PRECISION (new_type) != TYPE_PRECISION (use_type)) |
| { |
| /* Create NEW_TYPE->USE_TYPE conversion. */ |
| new_oprnd = make_ssa_name (use_type); |
| pattern_stmt = gimple_build_assign (new_oprnd, NOP_EXPR, var); |
| STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use_stmt)) = pattern_stmt; |
| |
| *type_in = get_vectype_for_scalar_type (new_type); |
| *type_out = get_vectype_for_scalar_type (use_type); |
| |
| /* We created a pattern statement for the last statement in the |
| sequence, so we don't need to associate it with the pattern |
| statement created for PREV_STMT. Therefore, we add PREV_STMT |
| to the list in order to mark it later in vect_pattern_recog_1. */ |
| if (prev_stmt) |
| stmts->safe_push (prev_stmt); |
| } |
| else |
| { |
| if (prev_stmt) |
| STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (use_stmt)) |
| = STMT_VINFO_PATTERN_DEF_SEQ (vinfo_for_stmt (prev_stmt)); |
| |
| *type_in = vectype; |
| *type_out = NULL_TREE; |
| } |
| |
| stmts->safe_push (use_stmt); |
| } |
| else |
| /* TODO: support general case, create a conversion to the correct type. */ |
| return NULL; |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_over_widening_pattern: detected: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| return pattern_stmt; |
| } |
| |
| /* Detect widening shift pattern: |
| |
| type a_t; |
| TYPE a_T, res_T; |
| |
| S1 a_t = ; |
| S2 a_T = (TYPE) a_t; |
| S3 res_T = a_T << CONST; |
| |
| where type 'TYPE' is at least double the size of type 'type'. |
| |
| Also detect cases where the shift result is immediately converted |
| to another type 'result_type' that is no larger in size than 'TYPE'. |
| In those cases we perform a widen-shift that directly results in |
| 'result_type', to avoid a possible over-widening situation: |
| |
| type a_t; |
| TYPE a_T, res_T; |
| result_type res_result; |
| |
| S1 a_t = ; |
| S2 a_T = (TYPE) a_t; |
| S3 res_T = a_T << CONST; |
| S4 res_result = (result_type) res_T; |
| '--> res_result' = a_t w<< CONST; |
| |
| And a case when 'TYPE' is 4 times bigger than 'type'. In that case we |
| create an additional pattern stmt for S2 to create a variable of an |
| intermediate type, and perform widen-shift on the intermediate type: |
| |
| type a_t; |
| interm_type a_it; |
| TYPE a_T, res_T, res_T'; |
| |
| S1 a_t = ; |
| S2 a_T = (TYPE) a_t; |
| '--> a_it = (interm_type) a_t; |
| S3 res_T = a_T << CONST; |
| '--> res_T' = a_it <<* CONST; |
| |
| Input/Output: |
| |
| * STMTS: Contains a stmt from which the pattern search begins. |
| In case of unsigned widen-shift, the original stmt (S3) is replaced with S4 |
| in STMTS. When an intermediate type is used and a pattern statement is |
| created for S2, we also put S2 here (before S3). |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the sequence of |
| stmts that constitute the pattern. In this case it will be: |
| WIDEN_LSHIFT_EXPR <a_t, CONST>. */ |
| |
| static gimple * |
| vect_recog_widen_shift_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| gimple *def_stmt0; |
| tree oprnd0, oprnd1; |
| tree type, half_type0; |
| gimple *pattern_stmt; |
| tree vectype, vectype_out = NULL_TREE; |
| tree var; |
| enum tree_code dummy_code; |
| int dummy_int; |
| vec<tree> dummy_vec; |
| gimple *use_stmt; |
| bool promotion; |
| |
| if (!is_gimple_assign (last_stmt) || !vinfo_for_stmt (last_stmt)) |
| return NULL; |
| |
| if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (last_stmt))) |
| return NULL; |
| |
| if (gimple_assign_rhs_code (last_stmt) != LSHIFT_EXPR) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (TREE_CODE (oprnd0) != SSA_NAME || TREE_CODE (oprnd1) != INTEGER_CST) |
| return NULL; |
| |
| /* Check operand 0: it has to be defined by a type promotion. */ |
| if (!type_conversion_p (oprnd0, last_stmt, false, &half_type0, &def_stmt0, |
| &promotion) |
| || !promotion) |
| return NULL; |
| |
| /* Check operand 1: has to be positive. We check that it fits the type |
| in vect_handle_widen_op_by_const (). */ |
| if (tree_int_cst_compare (oprnd1, size_zero_node) <= 0) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (def_stmt0); |
| type = gimple_expr_type (last_stmt); |
| |
| /* Check for subsequent conversion to another type. */ |
| use_stmt = vect_single_imm_use (last_stmt); |
| if (use_stmt && is_gimple_assign (use_stmt) |
| && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (use_stmt)) |
| && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt))) |
| { |
| tree use_lhs = gimple_assign_lhs (use_stmt); |
| tree use_type = TREE_TYPE (use_lhs); |
| |
| if (INTEGRAL_TYPE_P (use_type) |
| && TYPE_PRECISION (use_type) <= TYPE_PRECISION (type)) |
| { |
| last_stmt = use_stmt; |
| type = use_type; |
| } |
| } |
| |
| /* Check if this a widening operation. */ |
| gimple *wstmt = NULL; |
| if (!vect_handle_widen_op_by_const (last_stmt, LSHIFT_EXPR, oprnd1, |
| &oprnd0, &wstmt, |
| type, &half_type0, def_stmt0)) |
| return NULL; |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_widen_shift_pattern: detected:\n"); |
| |
| /* Check target support. */ |
| vectype = get_vectype_for_scalar_type (half_type0); |
| vectype_out = get_vectype_for_scalar_type (type); |
| |
| if (!vectype |
| || !vectype_out |
| || !supportable_widening_operation (WIDEN_LSHIFT_EXPR, last_stmt, |
| vectype_out, vectype, |
| &dummy_code, &dummy_code, |
| &dummy_int, &dummy_vec)) |
| return NULL; |
| |
| *type_in = vectype; |
| *type_out = vectype_out; |
| |
| /* Pattern supported. Create a stmt to be used to replace the pattern. */ |
| var = vect_recog_temp_ssa_var (type, NULL); |
| pattern_stmt |
| = gimple_build_assign (var, WIDEN_LSHIFT_EXPR, oprnd0, oprnd1); |
| if (wstmt) |
| { |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| new_pattern_def_seq (stmt_vinfo, wstmt); |
| stmt_vec_info new_stmt_info |
| = new_stmt_vec_info (wstmt, stmt_vinfo->vinfo); |
| set_vinfo_for_stmt (wstmt, new_stmt_info); |
| STMT_VINFO_VECTYPE (new_stmt_info) = vectype; |
| } |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0); |
| |
| stmts->safe_push (last_stmt); |
| return pattern_stmt; |
| } |
| |
| /* Detect a rotate pattern wouldn't be otherwise vectorized: |
| |
| type a_t, b_t, c_t; |
| |
| S0 a_t = b_t r<< c_t; |
| |
| Input/Output: |
| |
| * STMTS: Contains a stmt from which the pattern search begins, |
| i.e. the shift/rotate stmt. The original stmt (S0) is replaced |
| with a sequence: |
| |
| S1 d_t = -c_t; |
| S2 e_t = d_t & (B - 1); |
| S3 f_t = b_t << c_t; |
| S4 g_t = b_t >> e_t; |
| S0 a_t = f_t | g_t; |
| |
| where B is element bitsize of type. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the rotate |
| S0 stmt. */ |
| |
| static gimple * |
| vect_recog_rotate_pattern (vec<gimple *> *stmts, tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| tree oprnd0, oprnd1, lhs, var, var1, var2, vectype, type, stype, def, def2; |
| gimple *pattern_stmt, *def_stmt; |
| enum tree_code rhs_code; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| vec_info *vinfo = stmt_vinfo->vinfo; |
| enum vect_def_type dt; |
| optab optab1, optab2; |
| edge ext_def = NULL; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| rhs_code = gimple_assign_rhs_code (last_stmt); |
| switch (rhs_code) |
| { |
| case LROTATE_EXPR: |
| case RROTATE_EXPR: |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| return NULL; |
| |
| lhs = gimple_assign_lhs (last_stmt); |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| type = TREE_TYPE (oprnd0); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (TREE_CODE (oprnd0) != SSA_NAME |
| || TYPE_PRECISION (TREE_TYPE (lhs)) != TYPE_PRECISION (type) |
| || !INTEGRAL_TYPE_P (type) |
| || !TYPE_UNSIGNED (type)) |
| return NULL; |
| |
| if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt)) |
| return NULL; |
| |
| if (dt != vect_internal_def |
| && dt != vect_constant_def |
| && dt != vect_external_def) |
| return NULL; |
| |
| vectype = get_vectype_for_scalar_type (type); |
| if (vectype == NULL_TREE) |
| return NULL; |
| |
| /* If vector/vector or vector/scalar rotate is supported by the target, |
| don't do anything here. */ |
| optab1 = optab_for_tree_code (rhs_code, vectype, optab_vector); |
| if (optab1 |
| && optab_handler (optab1, TYPE_MODE (vectype)) != CODE_FOR_nothing) |
| return NULL; |
| |
| if (is_a <bb_vec_info> (vinfo) || dt != vect_internal_def) |
| { |
| optab2 = optab_for_tree_code (rhs_code, vectype, optab_scalar); |
| if (optab2 |
| && optab_handler (optab2, TYPE_MODE (vectype)) != CODE_FOR_nothing) |
| return NULL; |
| } |
| |
| /* If vector/vector or vector/scalar shifts aren't supported by the target, |
| don't do anything here either. */ |
| optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_vector); |
| optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_vector); |
| if (!optab1 |
| || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing |
| || !optab2 |
| || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing) |
| { |
| if (! is_a <bb_vec_info> (vinfo) && dt == vect_internal_def) |
| return NULL; |
| optab1 = optab_for_tree_code (LSHIFT_EXPR, vectype, optab_scalar); |
| optab2 = optab_for_tree_code (RSHIFT_EXPR, vectype, optab_scalar); |
| if (!optab1 |
| || optab_handler (optab1, TYPE_MODE (vectype)) == CODE_FOR_nothing |
| || !optab2 |
| || optab_handler (optab2, TYPE_MODE (vectype)) == CODE_FOR_nothing) |
| return NULL; |
| } |
| |
| *type_in = vectype; |
| *type_out = vectype; |
| if (*type_in == NULL_TREE) |
| return NULL; |
| |
| if (dt == vect_external_def |
| && TREE_CODE (oprnd1) == SSA_NAME |
| && is_a <loop_vec_info> (vinfo)) |
| { |
| struct loop *loop = as_a <loop_vec_info> (vinfo)->loop; |
| ext_def = loop_preheader_edge (loop); |
| if (!SSA_NAME_IS_DEFAULT_DEF (oprnd1)) |
| { |
| basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (oprnd1)); |
| if (bb == NULL |
| || !dominated_by_p (CDI_DOMINATORS, ext_def->dest, bb)) |
| ext_def = NULL; |
| } |
| } |
| |
| def = NULL_TREE; |
| scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type); |
| if (TREE_CODE (oprnd1) == INTEGER_CST |
| || TYPE_MODE (TREE_TYPE (oprnd1)) == mode) |
| def = oprnd1; |
| else if (def_stmt && gimple_assign_cast_p (def_stmt)) |
| { |
| tree rhs1 = gimple_assign_rhs1 (def_stmt); |
| if (TYPE_MODE (TREE_TYPE (rhs1)) == mode |
| && TYPE_PRECISION (TREE_TYPE (rhs1)) |
| == TYPE_PRECISION (type)) |
| def = rhs1; |
| } |
| |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL; |
| if (def == NULL_TREE) |
| { |
| def = vect_recog_temp_ssa_var (type, NULL); |
| def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1); |
| if (ext_def) |
| { |
| basic_block new_bb |
| = gsi_insert_on_edge_immediate (ext_def, def_stmt); |
| gcc_assert (!new_bb); |
| } |
| else |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| stype = TREE_TYPE (def); |
| scalar_int_mode smode = SCALAR_INT_TYPE_MODE (stype); |
| |
| if (TREE_CODE (def) == INTEGER_CST) |
| { |
| if (!tree_fits_uhwi_p (def) |
| || tree_to_uhwi (def) >= GET_MODE_PRECISION (mode) |
| || integer_zerop (def)) |
| return NULL; |
| def2 = build_int_cst (stype, |
| GET_MODE_PRECISION (mode) - tree_to_uhwi (def)); |
| } |
| else |
| { |
| tree vecstype = get_vectype_for_scalar_type (stype); |
| stmt_vec_info def_stmt_vinfo; |
| |
| if (vecstype == NULL_TREE) |
| return NULL; |
| def2 = vect_recog_temp_ssa_var (stype, NULL); |
| def_stmt = gimple_build_assign (def2, NEGATE_EXPR, def); |
| if (ext_def) |
| { |
| basic_block new_bb |
| = gsi_insert_on_edge_immediate (ext_def, def_stmt); |
| gcc_assert (!new_bb); |
| } |
| else |
| { |
| def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo); |
| set_vinfo_for_stmt (def_stmt, def_stmt_vinfo); |
| STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype; |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| |
| def2 = vect_recog_temp_ssa_var (stype, NULL); |
| tree mask = build_int_cst (stype, GET_MODE_PRECISION (smode) - 1); |
| def_stmt = gimple_build_assign (def2, BIT_AND_EXPR, |
| gimple_assign_lhs (def_stmt), mask); |
| if (ext_def) |
| { |
| basic_block new_bb |
| = gsi_insert_on_edge_immediate (ext_def, def_stmt); |
| gcc_assert (!new_bb); |
| } |
| else |
| { |
| def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo); |
| set_vinfo_for_stmt (def_stmt, def_stmt_vinfo); |
| STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecstype; |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| } |
| |
| var1 = vect_recog_temp_ssa_var (type, NULL); |
| def_stmt = gimple_build_assign (var1, rhs_code == LROTATE_EXPR |
| ? LSHIFT_EXPR : RSHIFT_EXPR, |
| oprnd0, def); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| var2 = vect_recog_temp_ssa_var (type, NULL); |
| def_stmt = gimple_build_assign (var2, rhs_code == LROTATE_EXPR |
| ? RSHIFT_EXPR : LSHIFT_EXPR, |
| oprnd0, def2); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_rotate_pattern: detected:\n"); |
| |
| /* Pattern supported. Create a stmt to be used to replace the pattern. */ |
| var = vect_recog_temp_ssa_var (type, NULL); |
| pattern_stmt = gimple_build_assign (var, BIT_IOR_EXPR, var1, var2); |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0); |
| |
| stmts->safe_push (last_stmt); |
| return pattern_stmt; |
| } |
| |
| /* Detect a vector by vector shift pattern that wouldn't be otherwise |
| vectorized: |
| |
| type a_t; |
| TYPE b_T, res_T; |
| |
| S1 a_t = ; |
| S2 b_T = ; |
| S3 res_T = b_T op a_t; |
| |
| where type 'TYPE' is a type with different size than 'type', |
| and op is <<, >> or rotate. |
| |
| Also detect cases: |
| |
| type a_t; |
| TYPE b_T, c_T, res_T; |
| |
| S0 c_T = ; |
| S1 a_t = (type) c_T; |
| S2 b_T = ; |
| S3 res_T = b_T op a_t; |
| |
| Input/Output: |
| |
| * STMTS: Contains a stmt from which the pattern search begins, |
| i.e. the shift/rotate stmt. The original stmt (S3) is replaced |
| with a shift/rotate which has same type on both operands, in the |
| second case just b_T op c_T, in the first case with added cast |
| from a_t to c_T in STMT_VINFO_PATTERN_DEF_SEQ. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the shift/rotate |
| S3 stmt. */ |
| |
| static gimple * |
| vect_recog_vector_vector_shift_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| tree oprnd0, oprnd1, lhs, var; |
| gimple *pattern_stmt, *def_stmt; |
| enum tree_code rhs_code; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| vec_info *vinfo = stmt_vinfo->vinfo; |
| enum vect_def_type dt; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| rhs_code = gimple_assign_rhs_code (last_stmt); |
| switch (rhs_code) |
| { |
| case LSHIFT_EXPR: |
| case RSHIFT_EXPR: |
| case LROTATE_EXPR: |
| case RROTATE_EXPR: |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| return NULL; |
| |
| lhs = gimple_assign_lhs (last_stmt); |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| if (TREE_CODE (oprnd0) != SSA_NAME |
| || TREE_CODE (oprnd1) != SSA_NAME |
| || TYPE_MODE (TREE_TYPE (oprnd0)) == TYPE_MODE (TREE_TYPE (oprnd1)) |
| || !type_has_mode_precision_p (TREE_TYPE (oprnd1)) |
| || TYPE_PRECISION (TREE_TYPE (lhs)) |
| != TYPE_PRECISION (TREE_TYPE (oprnd0))) |
| return NULL; |
| |
| if (!vect_is_simple_use (oprnd1, vinfo, &def_stmt, &dt)) |
| return NULL; |
| |
| if (dt != vect_internal_def) |
| return NULL; |
| |
| *type_in = get_vectype_for_scalar_type (TREE_TYPE (oprnd0)); |
| *type_out = *type_in; |
| if (*type_in == NULL_TREE) |
| return NULL; |
| |
| tree def = NULL_TREE; |
| stmt_vec_info def_vinfo = vinfo_for_stmt (def_stmt); |
| if (!STMT_VINFO_IN_PATTERN_P (def_vinfo) && gimple_assign_cast_p (def_stmt)) |
| { |
| tree rhs1 = gimple_assign_rhs1 (def_stmt); |
| if (TYPE_MODE (TREE_TYPE (rhs1)) == TYPE_MODE (TREE_TYPE (oprnd0)) |
| && TYPE_PRECISION (TREE_TYPE (rhs1)) |
| == TYPE_PRECISION (TREE_TYPE (oprnd0))) |
| { |
| if (TYPE_PRECISION (TREE_TYPE (oprnd1)) |
| >= TYPE_PRECISION (TREE_TYPE (rhs1))) |
| def = rhs1; |
| else |
| { |
| tree mask |
| = build_low_bits_mask (TREE_TYPE (rhs1), |
| TYPE_PRECISION (TREE_TYPE (oprnd1))); |
| def = vect_recog_temp_ssa_var (TREE_TYPE (rhs1), NULL); |
| def_stmt = gimple_build_assign (def, BIT_AND_EXPR, rhs1, mask); |
| new_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| } |
| } |
| |
| if (def == NULL_TREE) |
| { |
| def = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL); |
| def_stmt = gimple_build_assign (def, NOP_EXPR, oprnd1); |
| new_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_vector_vector_shift_pattern: detected:\n"); |
| |
| /* Pattern supported. Create a stmt to be used to replace the pattern. */ |
| var = vect_recog_temp_ssa_var (TREE_TYPE (oprnd0), NULL); |
| pattern_stmt = gimple_build_assign (var, rhs_code, oprnd0, def); |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, 0); |
| |
| stmts->safe_push (last_stmt); |
| return pattern_stmt; |
| } |
| |
| /* Return true iff the target has a vector optab implementing the operation |
| CODE on type VECTYPE. */ |
| |
| static bool |
| target_has_vecop_for_code (tree_code code, tree vectype) |
| { |
| optab voptab = optab_for_tree_code (code, vectype, optab_vector); |
| return voptab |
| && optab_handler (voptab, TYPE_MODE (vectype)) != CODE_FOR_nothing; |
| } |
| |
| /* Verify that the target has optabs of VECTYPE to perform all the steps |
| needed by the multiplication-by-immediate synthesis algorithm described by |
| ALG and VAR. If SYNTH_SHIFT_P is true ensure that vector addition is |
| present. Return true iff the target supports all the steps. */ |
| |
| static bool |
| target_supports_mult_synth_alg (struct algorithm *alg, mult_variant var, |
| tree vectype, bool synth_shift_p) |
| { |
| if (alg->op[0] != alg_zero && alg->op[0] != alg_m) |
| return false; |
| |
| bool supports_vminus = target_has_vecop_for_code (MINUS_EXPR, vectype); |
| bool supports_vplus = target_has_vecop_for_code (PLUS_EXPR, vectype); |
| |
| if (var == negate_variant |
| && !target_has_vecop_for_code (NEGATE_EXPR, vectype)) |
| return false; |
| |
| /* If we must synthesize shifts with additions make sure that vector |
| addition is available. */ |
| if ((var == add_variant || synth_shift_p) && !supports_vplus) |
| return false; |
| |
| for (int i = 1; i < alg->ops; i++) |
| { |
| switch (alg->op[i]) |
| { |
| case alg_shift: |
| break; |
| case alg_add_t_m2: |
| case alg_add_t2_m: |
| case alg_add_factor: |
| if (!supports_vplus) |
| return false; |
| break; |
| case alg_sub_t_m2: |
| case alg_sub_t2_m: |
| case alg_sub_factor: |
| if (!supports_vminus) |
| return false; |
| break; |
| case alg_unknown: |
| case alg_m: |
| case alg_zero: |
| case alg_impossible: |
| return false; |
| default: |
| gcc_unreachable (); |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Synthesize a left shift of OP by AMNT bits using a series of additions and |
| putting the final result in DEST. Append all statements but the last into |
| VINFO. Return the last statement. */ |
| |
| static gimple * |
| synth_lshift_by_additions (tree dest, tree op, HOST_WIDE_INT amnt, |
| stmt_vec_info vinfo) |
| { |
| HOST_WIDE_INT i; |
| tree itype = TREE_TYPE (op); |
| tree prev_res = op; |
| gcc_assert (amnt >= 0); |
| for (i = 0; i < amnt; i++) |
| { |
| tree tmp_var = (i < amnt - 1) ? vect_recog_temp_ssa_var (itype, NULL) |
| : dest; |
| gimple *stmt |
| = gimple_build_assign (tmp_var, PLUS_EXPR, prev_res, prev_res); |
| prev_res = tmp_var; |
| if (i < amnt - 1) |
| append_pattern_def_seq (vinfo, stmt); |
| else |
| return stmt; |
| } |
| gcc_unreachable (); |
| return NULL; |
| } |
| |
| /* Helper for vect_synth_mult_by_constant. Apply a binary operation |
| CODE to operands OP1 and OP2, creating a new temporary SSA var in |
| the process if necessary. Append the resulting assignment statements |
| to the sequence in STMT_VINFO. Return the SSA variable that holds the |
| result of the binary operation. If SYNTH_SHIFT_P is true synthesize |
| left shifts using additions. */ |
| |
| static tree |
| apply_binop_and_append_stmt (tree_code code, tree op1, tree op2, |
| stmt_vec_info stmt_vinfo, bool synth_shift_p) |
| { |
| if (integer_zerop (op2) |
| && (code == LSHIFT_EXPR |
| || code == PLUS_EXPR)) |
| { |
| gcc_assert (TREE_CODE (op1) == SSA_NAME); |
| return op1; |
| } |
| |
| gimple *stmt; |
| tree itype = TREE_TYPE (op1); |
| tree tmp_var = vect_recog_temp_ssa_var (itype, NULL); |
| |
| if (code == LSHIFT_EXPR |
| && synth_shift_p) |
| { |
| stmt = synth_lshift_by_additions (tmp_var, op1, TREE_INT_CST_LOW (op2), |
| stmt_vinfo); |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| return tmp_var; |
| } |
| |
| stmt = gimple_build_assign (tmp_var, code, op1, op2); |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| return tmp_var; |
| } |
| |
| /* Synthesize a multiplication of OP by an INTEGER_CST VAL using shifts |
| and simple arithmetic operations to be vectorized. Record the statements |
| produced in STMT_VINFO and return the last statement in the sequence or |
| NULL if it's not possible to synthesize such a multiplication. |
| This function mirrors the behavior of expand_mult_const in expmed.c but |
| works on tree-ssa form. */ |
| |
| static gimple * |
| vect_synth_mult_by_constant (tree op, tree val, |
| stmt_vec_info stmt_vinfo) |
| { |
| tree itype = TREE_TYPE (op); |
| machine_mode mode = TYPE_MODE (itype); |
| struct algorithm alg; |
| mult_variant variant; |
| if (!tree_fits_shwi_p (val)) |
| return NULL; |
| |
| /* Multiplication synthesis by shifts, adds and subs can introduce |
| signed overflow where the original operation didn't. Perform the |
| operations on an unsigned type and cast back to avoid this. |
| In the future we may want to relax this for synthesis algorithms |
| that we can prove do not cause unexpected overflow. */ |
| bool cast_to_unsigned_p = !TYPE_OVERFLOW_WRAPS (itype); |
| |
| tree multtype = cast_to_unsigned_p ? unsigned_type_for (itype) : itype; |
| |
| /* Targets that don't support vector shifts but support vector additions |
| can synthesize shifts that way. */ |
| bool synth_shift_p = !vect_supportable_shift (LSHIFT_EXPR, multtype); |
| |
| HOST_WIDE_INT hwval = tree_to_shwi (val); |
| /* Use MAX_COST here as we don't want to limit the sequence on rtx costs. |
| The vectorizer's benefit analysis will decide whether it's beneficial |
| to do this. */ |
| bool possible = choose_mult_variant (mode, hwval, &alg, |
| &variant, MAX_COST); |
| if (!possible) |
| return NULL; |
| |
| tree vectype = get_vectype_for_scalar_type (multtype); |
| |
| if (!vectype |
| || !target_supports_mult_synth_alg (&alg, variant, |
| vectype, synth_shift_p)) |
| return NULL; |
| |
| tree accumulator; |
| |
| /* Clear out the sequence of statements so we can populate it below. */ |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL; |
| gimple *stmt = NULL; |
| |
| if (cast_to_unsigned_p) |
| { |
| tree tmp_op = vect_recog_temp_ssa_var (multtype, NULL); |
| stmt = gimple_build_assign (tmp_op, CONVERT_EXPR, op); |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| op = tmp_op; |
| } |
| |
| if (alg.op[0] == alg_zero) |
| accumulator = build_int_cst (multtype, 0); |
| else |
| accumulator = op; |
| |
| bool needs_fixup = (variant == negate_variant) |
| || (variant == add_variant); |
| |
| for (int i = 1; i < alg.ops; i++) |
| { |
| tree shft_log = build_int_cst (multtype, alg.log[i]); |
| tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL); |
| tree tmp_var = NULL_TREE; |
| |
| switch (alg.op[i]) |
| { |
| case alg_shift: |
| if (synth_shift_p) |
| stmt |
| = synth_lshift_by_additions (accum_tmp, accumulator, alg.log[i], |
| stmt_vinfo); |
| else |
| stmt = gimple_build_assign (accum_tmp, LSHIFT_EXPR, accumulator, |
| shft_log); |
| break; |
| case alg_add_t_m2: |
| tmp_var |
| = apply_binop_and_append_stmt (LSHIFT_EXPR, op, shft_log, |
| stmt_vinfo, synth_shift_p); |
| stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, |
| tmp_var); |
| break; |
| case alg_sub_t_m2: |
| tmp_var = apply_binop_and_append_stmt (LSHIFT_EXPR, op, |
| shft_log, stmt_vinfo, |
| synth_shift_p); |
| /* In some algorithms the first step involves zeroing the |
| accumulator. If subtracting from such an accumulator |
| just emit the negation directly. */ |
| if (integer_zerop (accumulator)) |
| stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, tmp_var); |
| else |
| stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, accumulator, |
| tmp_var); |
| break; |
| case alg_add_t2_m: |
| tmp_var |
| = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log, |
| stmt_vinfo, synth_shift_p); |
| stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, tmp_var, op); |
| break; |
| case alg_sub_t2_m: |
| tmp_var |
| = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log, |
| stmt_vinfo, synth_shift_p); |
| stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var, op); |
| break; |
| case alg_add_factor: |
| tmp_var |
| = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log, |
| stmt_vinfo, synth_shift_p); |
| stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, |
| tmp_var); |
| break; |
| case alg_sub_factor: |
| tmp_var |
| = apply_binop_and_append_stmt (LSHIFT_EXPR, accumulator, shft_log, |
| stmt_vinfo, synth_shift_p); |
| stmt = gimple_build_assign (accum_tmp, MINUS_EXPR, tmp_var, |
| accumulator); |
| break; |
| default: |
| gcc_unreachable (); |
| } |
| /* We don't want to append the last stmt in the sequence to stmt_vinfo |
| but rather return it directly. */ |
| |
| if ((i < alg.ops - 1) || needs_fixup || cast_to_unsigned_p) |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| accumulator = accum_tmp; |
| } |
| if (variant == negate_variant) |
| { |
| tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL); |
| stmt = gimple_build_assign (accum_tmp, NEGATE_EXPR, accumulator); |
| accumulator = accum_tmp; |
| if (cast_to_unsigned_p) |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| } |
| else if (variant == add_variant) |
| { |
| tree accum_tmp = vect_recog_temp_ssa_var (multtype, NULL); |
| stmt = gimple_build_assign (accum_tmp, PLUS_EXPR, accumulator, op); |
| accumulator = accum_tmp; |
| if (cast_to_unsigned_p) |
| append_pattern_def_seq (stmt_vinfo, stmt); |
| } |
| /* Move back to a signed if needed. */ |
| if (cast_to_unsigned_p) |
| { |
| tree accum_tmp = vect_recog_temp_ssa_var (itype, NULL); |
| stmt = gimple_build_assign (accum_tmp, CONVERT_EXPR, accumulator); |
| } |
| |
| return stmt; |
| } |
| |
| /* Detect multiplication by constant and convert it into a sequence of |
| shifts and additions, subtractions, negations. We reuse the |
| choose_mult_variant algorithms from expmed.c |
| |
| Input/Output: |
| |
| STMTS: Contains a stmt from which the pattern search begins, |
| i.e. the mult stmt. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace |
| the multiplication. */ |
| |
| static gimple * |
| vect_recog_mult_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| tree oprnd0, oprnd1, vectype, itype; |
| gimple *pattern_stmt; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| itype = TREE_TYPE (oprnd0); |
| |
| if (TREE_CODE (oprnd0) != SSA_NAME |
| || TREE_CODE (oprnd1) != INTEGER_CST |
| || !INTEGRAL_TYPE_P (itype) |
| || !type_has_mode_precision_p (itype)) |
| return NULL; |
| |
| vectype = get_vectype_for_scalar_type (itype); |
| if (vectype == NULL_TREE) |
| return NULL; |
| |
| /* If the target can handle vectorized multiplication natively, |
| don't attempt to optimize this. */ |
| optab mul_optab = optab_for_tree_code (MULT_EXPR, vectype, optab_default); |
| if (mul_optab != unknown_optab) |
| { |
| machine_mode vec_mode = TYPE_MODE (vectype); |
| int icode = (int) optab_handler (mul_optab, vec_mode); |
| if (icode != CODE_FOR_nothing) |
| return NULL; |
| } |
| |
| pattern_stmt = vect_synth_mult_by_constant (oprnd0, oprnd1, stmt_vinfo); |
| if (!pattern_stmt) |
| return NULL; |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_mult_pattern: detected:\n"); |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, |
| pattern_stmt,0); |
| |
| stmts->safe_push (last_stmt); |
| *type_in = vectype; |
| *type_out = vectype; |
| |
| return pattern_stmt; |
| } |
| |
| /* Detect a signed division by a constant that wouldn't be |
| otherwise vectorized: |
| |
| type a_t, b_t; |
| |
| S1 a_t = b_t / N; |
| |
| where type 'type' is an integral type and N is a constant. |
| |
| Similarly handle modulo by a constant: |
| |
| S4 a_t = b_t % N; |
| |
| Input/Output: |
| |
| * STMTS: Contains a stmt from which the pattern search begins, |
| i.e. the division stmt. S1 is replaced by if N is a power |
| of two constant and type is signed: |
| S3 y_t = b_t < 0 ? N - 1 : 0; |
| S2 x_t = b_t + y_t; |
| S1' a_t = x_t >> log2 (N); |
| |
| S4 is replaced if N is a power of two constant and |
| type is signed by (where *_T temporaries have unsigned type): |
| S9 y_T = b_t < 0 ? -1U : 0U; |
| S8 z_T = y_T >> (sizeof (type_t) * CHAR_BIT - log2 (N)); |
| S7 z_t = (type) z_T; |
| S6 w_t = b_t + z_t; |
| S5 x_t = w_t & (N - 1); |
| S4' a_t = x_t - z_t; |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the division |
| S1 or modulo S4 stmt. */ |
| |
| static gimple * |
| vect_recog_divmod_pattern (vec<gimple *> *stmts, |
| tree *type_in, tree *type_out) |
| { |
| gimple *last_stmt = stmts->pop (); |
| tree oprnd0, oprnd1, vectype, itype, cond; |
| gimple *pattern_stmt, *def_stmt; |
| enum tree_code rhs_code; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt); |
| vec_info *vinfo = stmt_vinfo->vinfo; |
| optab optab; |
| tree q; |
| int dummy_int, prec; |
| stmt_vec_info def_stmt_vinfo; |
| |
| if (!is_gimple_assign (last_stmt)) |
| return NULL; |
| |
| rhs_code = gimple_assign_rhs_code (last_stmt); |
| switch (rhs_code) |
| { |
| case TRUNC_DIV_EXPR: |
| case TRUNC_MOD_EXPR: |
| break; |
| default: |
| return NULL; |
| } |
| |
| if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo)) |
| return NULL; |
| |
| oprnd0 = gimple_assign_rhs1 (last_stmt); |
| oprnd1 = gimple_assign_rhs2 (last_stmt); |
| itype = TREE_TYPE (oprnd0); |
| if (TREE_CODE (oprnd0) != SSA_NAME |
| || TREE_CODE (oprnd1) != INTEGER_CST |
| || TREE_CODE (itype) != INTEGER_TYPE |
| || !type_has_mode_precision_p (itype)) |
| return NULL; |
| |
| scalar_int_mode itype_mode = SCALAR_INT_TYPE_MODE (itype); |
| vectype = get_vectype_for_scalar_type (itype); |
| if (vectype == NULL_TREE) |
| return NULL; |
| |
| /* If the target can handle vectorized division or modulo natively, |
| don't attempt to optimize this. */ |
| optab = optab_for_tree_code (rhs_code, vectype, optab_default); |
| if (optab != unknown_optab) |
| { |
| machine_mode vec_mode = TYPE_MODE (vectype); |
| int icode = (int) optab_handler (optab, vec_mode); |
| if (icode != CODE_FOR_nothing) |
| return NULL; |
| } |
| |
| prec = TYPE_PRECISION (itype); |
| if (integer_pow2p (oprnd1)) |
| { |
| if (TYPE_UNSIGNED (itype) || tree_int_cst_sgn (oprnd1) != 1) |
| return NULL; |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_divmod_pattern: detected:\n"); |
| |
| cond = build2 (LT_EXPR, boolean_type_node, oprnd0, |
| build_int_cst (itype, 0)); |
| if (rhs_code == TRUNC_DIV_EXPR) |
| { |
| tree var = vect_recog_temp_ssa_var (itype, NULL); |
| tree shift; |
| def_stmt |
| = gimple_build_assign (var, COND_EXPR, cond, |
| fold_build2 (MINUS_EXPR, itype, oprnd1, |
| build_int_cst (itype, 1)), |
| build_int_cst (itype, 0)); |
| new_pattern_def_seq (stmt_vinfo, def_stmt); |
| var = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (var, PLUS_EXPR, oprnd0, |
| gimple_assign_lhs (def_stmt)); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| shift = build_int_cst (itype, tree_log2 (oprnd1)); |
| pattern_stmt |
| = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL), |
| RSHIFT_EXPR, var, shift); |
| } |
| else |
| { |
| tree signmask; |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL; |
| if (compare_tree_int (oprnd1, 2) == 0) |
| { |
| signmask = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (signmask, COND_EXPR, cond, |
| build_int_cst (itype, 1), |
| build_int_cst (itype, 0)); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| else |
| { |
| tree utype |
| = build_nonstandard_integer_type (prec, 1); |
| tree vecutype = get_vectype_for_scalar_type (utype); |
| tree shift |
| = build_int_cst (utype, GET_MODE_BITSIZE (itype_mode) |
| - tree_log2 (oprnd1)); |
| tree var = vect_recog_temp_ssa_var (utype, NULL); |
| |
| def_stmt = gimple_build_assign (var, COND_EXPR, cond, |
| build_int_cst (utype, -1), |
| build_int_cst (utype, 0)); |
| def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo); |
| set_vinfo_for_stmt (def_stmt, def_stmt_vinfo); |
| STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype; |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| var = vect_recog_temp_ssa_var (utype, NULL); |
| def_stmt = gimple_build_assign (var, RSHIFT_EXPR, |
| gimple_assign_lhs (def_stmt), |
| shift); |
| def_stmt_vinfo = new_stmt_vec_info (def_stmt, vinfo); |
| set_vinfo_for_stmt (def_stmt, def_stmt_vinfo); |
| STMT_VINFO_VECTYPE (def_stmt_vinfo) = vecutype; |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| signmask = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (signmask, NOP_EXPR, var); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| def_stmt |
| = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL), |
| PLUS_EXPR, oprnd0, signmask); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| def_stmt |
| = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL), |
| BIT_AND_EXPR, gimple_assign_lhs (def_stmt), |
| fold_build2 (MINUS_EXPR, itype, oprnd1, |
| build_int_cst (itype, 1))); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| pattern_stmt |
| = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL), |
| MINUS_EXPR, gimple_assign_lhs (def_stmt), |
| signmask); |
| } |
| |
| if (dump_enabled_p ()) |
| dump_gimple_stmt_loc (MSG_NOTE, vect_location, TDF_SLIM, pattern_stmt, |
| 0); |
| |
| stmts->safe_push (last_stmt); |
| |
| *type_in = vectype; |
| *type_out = vectype; |
| return pattern_stmt; |
| } |
| |
| if (prec > HOST_BITS_PER_WIDE_INT |
| || integer_zerop (oprnd1)) |
| return NULL; |
| |
| if (!can_mult_highpart_p (TYPE_MODE (vectype), TYPE_UNSIGNED (itype))) |
| return NULL; |
| |
| STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) = NULL; |
| |
| if (TYPE_UNSIGNED (itype)) |
| { |
| unsigned HOST_WIDE_INT mh, ml; |
| int pre_shift, post_shift; |
| unsigned HOST_WIDE_INT d = (TREE_INT_CST_LOW (oprnd1) |
| & GET_MODE_MASK (itype_mode)); |
| tree t1, t2, t3, t4; |
| |
| if (d >= (HOST_WIDE_INT_1U << (prec - 1))) |
| /* FIXME: Can transform this into oprnd0 >= oprnd1 ? 1 : 0. */ |
| return NULL; |
| |
| /* Find a suitable multiplier and right shift count |
| instead of multiplying with D. */ |
| mh = choose_multiplier (d, prec, prec, &ml, &post_shift, &dummy_int); |
| |
| /* If the suggested multiplier is more than SIZE bits, we can do better |
| for even divisors, using an initial right shift. */ |
| if (mh != 0 && (d & 1) == 0) |
| { |
| pre_shift = ctz_or_zero (d); |
| mh = choose_multiplier (d >> pre_shift, prec, prec - pre_shift, |
| &ml, &post_shift, &dummy_int); |
| gcc_assert (!mh); |
| } |
| else |
| pre_shift = 0; |
| |
| if (mh != 0) |
| { |
| if (post_shift - 1 >= prec) |
| return NULL; |
| |
| /* t1 = oprnd0 h* ml; |
| t2 = oprnd0 - t1; |
| t3 = t2 >> 1; |
| t4 = t1 + t3; |
| q = t4 >> (post_shift - 1); */ |
| t1 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0, |
| build_int_cst (itype, ml)); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| t2 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (t2, MINUS_EXPR, oprnd0, t1); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| t3 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (t3, RSHIFT_EXPR, t2, integer_one_node); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| t4 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (t4, PLUS_EXPR, t1, t3); |
| |
| if (post_shift != 1) |
| { |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| q = vect_recog_temp_ssa_var (itype, NULL); |
| pattern_stmt |
| = gimple_build_assign (q, RSHIFT_EXPR, t4, |
| build_int_cst (itype, post_shift - 1)); |
| } |
| else |
| { |
| q = t4; |
| pattern_stmt = def_stmt; |
| } |
| } |
| else |
| { |
| if (pre_shift >= prec || post_shift >= prec) |
| return NULL; |
| |
| /* t1 = oprnd0 >> pre_shift; |
| t2 = t1 h* ml; |
| q = t2 >> post_shift; */ |
| if (pre_shift) |
| { |
| t1 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (t1, RSHIFT_EXPR, oprnd0, |
| build_int_cst (NULL, pre_shift)); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| } |
| else |
| t1 = oprnd0; |
| |
| t2 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t2, MULT_HIGHPART_EXPR, t1, |
| build_int_cst (itype, ml)); |
| |
| if (post_shift) |
| { |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| q = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt |
| = gimple_build_assign (q, RSHIFT_EXPR, t2, |
| build_int_cst (itype, post_shift)); |
| } |
| else |
| q = t2; |
| |
| pattern_stmt = def_stmt; |
| } |
| } |
| else |
| { |
| unsigned HOST_WIDE_INT ml; |
| int post_shift; |
| HOST_WIDE_INT d = TREE_INT_CST_LOW (oprnd1); |
| unsigned HOST_WIDE_INT abs_d; |
| bool add = false; |
| tree t1, t2, t3, t4; |
| |
| /* Give up for -1. */ |
| if (d == -1) |
| return NULL; |
| |
| /* Since d might be INT_MIN, we have to cast to |
| unsigned HOST_WIDE_INT before negating to avoid |
| undefined signed overflow. */ |
| abs_d = (d >= 0 |
| ? (unsigned HOST_WIDE_INT) d |
| : - (unsigned HOST_WIDE_INT) d); |
| |
| /* n rem d = n rem -d */ |
| if (rhs_code == TRUNC_MOD_EXPR && d < 0) |
| { |
| d = abs_d; |
| oprnd1 = build_int_cst (itype, abs_d); |
| } |
| else if (HOST_BITS_PER_WIDE_INT >= prec |
| && abs_d == HOST_WIDE_INT_1U << (prec - 1)) |
| /* This case is not handled correctly below. */ |
| return NULL; |
| |
| choose_multiplier (abs_d, prec, prec - 1, &ml, &post_shift, &dummy_int); |
| if (ml >= HOST_WIDE_INT_1U << (prec - 1)) |
| { |
| add = true; |
| ml |= HOST_WIDE_INT_M1U << (prec - 1); |
| } |
| if (post_shift >= prec) |
| return NULL; |
| |
| /* t1 = oprnd0 h* ml; */ |
| t1 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t1, MULT_HIGHPART_EXPR, oprnd0, |
| build_int_cst (itype, ml)); |
| |
| if (add) |
| { |
| /* t2 = t1 + oprnd0; */ |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| t2 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t2, PLUS_EXPR, t1, oprnd0); |
| } |
| else |
| t2 = t1; |
| |
| if (post_shift) |
| { |
| /* t3 = t2 >> post_shift; */ |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| t3 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t3, RSHIFT_EXPR, t2, |
| build_int_cst (itype, post_shift)); |
| } |
| else |
| t3 = t2; |
| |
| wide_int oprnd0_min, oprnd0_max; |
| int msb = 1; |
| if (get_range_info (oprnd0, &oprnd0_min, &oprnd0_max) == VR_RANGE) |
| { |
| if (!wi::neg_p (oprnd0_min, TYPE_SIGN (itype))) |
| msb = 0; |
| else if (wi::neg_p (oprnd0_max, TYPE_SIGN (itype))) |
| msb = -1; |
| } |
| |
| if (msb == 0 && d >= 0) |
| { |
| /* q = t3; */ |
| q = t3; |
| pattern_stmt = def_stmt; |
| } |
| else |
| { |
| /* t4 = oprnd0 >> (prec - 1); |
| or if we know from VRP that oprnd0 >= 0 |
| t4 = 0; |
| or if we know from VRP that oprnd0 < 0 |
| t4 = -1; */ |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| t4 = vect_recog_temp_ssa_var (itype, NULL); |
| if (msb != 1) |
| def_stmt = gimple_build_assign (t4, INTEGER_CST, |
| build_int_cst (itype, msb)); |
| else |
| def_stmt = gimple_build_assign (t4, RSHIFT_EXPR, oprnd0, |
| build_int_cst (itype, prec - 1)); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| /* q = t3 - t4; or q = t4 - t3; */ |
| q = vect_recog_temp_ssa_var (itype, NULL); |
| pattern_stmt = gimple_build_assign (q, MINUS_EXPR, d < 0 ? t4 : t3, |
| d < 0 ? t3 : t4); |
| } |
| } |
| |
| if (rhs_code == TRUNC_MOD_EXPR) |
| { |
| tree r, t1; |
| |
| /* We divided. Now finish by: |
| t1 = q * oprnd1; |
| r = oprnd0 - t1; */ |
| append_pattern_def_seq (stmt_vinfo, pattern_stmt); |
| |
| t1 = vect_recog_temp_ssa_var (itype, NULL); |
| def_stmt = gimple_build_assign (t1, MULT_EXPR, q, oprnd1); |
| append_pattern_def_seq (stmt_vinfo, def_stmt); |
| |
| r = vect_recog_temp_ssa_var (itype, NULL); |
| pattern_stmt = gimple_build_assign (r, MINUS_EXPR, oprnd0, t1); |
| } |
| |
| /* Pattern detected. */ |
| if (dump_enabled_p ()) |
| { |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_divmod_pattern: detected: "); |
| dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_stmt, 0); |
| } |
| |
| stmts->safe_push (last_stmt); |
| |
| *type_in = vectype; |
| *type_out = vectype; |
| return pattern_stmt; |
| } |
| |
| /* Function vect_recog_mixed_size_cond_pattern |
| |
| Try to find the following pattern: |
| |
| type x_t, y_t; |
| TYPE a_T, b_T, c_T; |
| loop: |
| S1 a_T = x_t CMP y_t ? b_T : c_T; |
| |
| where type 'TYPE' is an integral type which has different size |
| from 'type'. b_T and c_T are either constants (and if 'TYPE' is wider |
| than 'type', the constants need to fit into an integer type |
| with the same width as 'type') or results of conversion from 'type'. |
| |
| Input: |
| |
| * LAST_STMT: A stmt from which the pattern search begins. |
| |
| Output: |
| |
| * TYPE_IN: The type of the input arguments to the pattern. |
| |
| * TYPE_OUT: The type of the output of this pattern. |
| |
| * Return value: A new stmt that will be used to replace the pattern. |
| Additionally a def_stmt is added. |
| |
| a_it = x_t CMP y_t ? b_it : c_it; |
| a_T = (TYPE) a_it; */ |
| |
| static gimple * |
| vect_recog_mixed_size_cond_pattern (vec<gimple *> *stmts, tree *type_in, |
| tree *type_out) |
| { |
| gimple *last_stmt = (*stmts)[0]; |
| tree cond_expr, then_clause, else_clause; |
| stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt), def_stmt_info; |
| tree type, vectype, comp_vectype, itype = NULL_TREE, vecitype; |
| gimple *pattern_stmt, *def_stmt; |
| vec_info *vinfo = stmt_vinfo->vinfo; |
| tree orig_type0 = NULL_TREE, orig_type1 = NULL_TREE; |
| gimple *def_stmt0 = NULL, *def_stmt1 = NULL; |
| bool promotion; |
| tree comp_scalar_type; |
| |
| if (!is_gimple_assign (last_stmt) |
| || gimple_assign_rhs_code (last_stmt) != COND_EXPR |
| || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def) |
| return NULL; |
| |
| cond_expr = gimple_assign_rhs1 (last_stmt); |
| then_clause = gimple_assign_rhs2 (last_stmt); |
| else_clause = gimple_assign_rhs3 (last_stmt); |
| |
| if (!COMPARISON_CLASS_P (cond_expr)) |
| return NULL; |
| |
| comp_scalar_type = TREE_TYPE (TREE_OPERAND (cond_expr, 0)); |
| comp_vectype = get_vectype_for_scalar_type (comp_scalar_type); |
| if (comp_vectype == NULL_TREE) |
| return NULL; |
| |
| type = gimple_expr_type (last_stmt); |
| if (types_compatible_p (type, comp_scalar_type) |
| || ((TREE_CODE (then_clause) != INTEGER_CST |
| || TREE_CODE (else_clause) != INTEGER_CST) |
| && !INTEGRAL_TYPE_P (comp_scalar_type)) |
| || !INTEGRAL_TYPE_P (type)) |
| return NULL; |
| |
| if ((TREE_CODE (then_clause) != INTEGER_CST |
| && !type_conversion_p (then_clause, last_stmt, false, &orig_type0, |
| &def_stmt0, &promotion)) |
| || (TREE_CODE (else_clause) != INTEGER_CST |
| && !type_conversion_p (else_clause, last_stmt, false, &orig_type1, |
| &def_stmt1, &promotion))) |
| return NULL; |
| |
| if (orig_type0 && orig_type1 |
| && !types_compatible_p (orig_type0, orig_type1)) |
| return NULL; |
| |
| if (orig_type0) |
| { |
| if (!types_compatible_p (orig_type0, comp_scalar_type)) |
| return NULL; |
| then_clause = gimple_assign_rhs1 (def_stmt0); |
| itype = orig_type0; |
| } |
| |
| if (orig_type1) |
| { |
| if (!types_compatible_p (orig_type1, comp_scalar_type)) |
| return NULL; |
| else_clause = gimple_assign_rhs1 (def_stmt1); |
| itype = orig_type1; |
| } |
| |
| |
| HOST_WIDE_INT cmp_mode_size |
| = GET_MODE_UNIT_BITSIZE (TYPE_MODE (comp_vectype)); |
| |
| scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type); |
| if (GET_MODE_BITSIZE (type_mode) == cmp_mode_size) |
| return NULL; |
| |
| vectype = get_vectype_for_scalar_type (type); |
| if (vectype == NULL_TREE) |
| return NULL; |
| |
| if (expand_vec_cond_expr_p (vectype, comp_vectype, TREE_CODE (cond_expr))) |
| return NULL; |
| |
| if (itype == NULL_TREE) |
| itype = build_nonstandard_integer_type (cmp_mode_size, |
| TYPE_UNSIGNED (type)); |
| |
| if (itype == NULL_TREE |
| || GET_MODE_BITSIZE (SCALAR_TYPE_MODE (itype)) != cmp_mode_size) |
| return NULL; |
| |
| vecitype = get_vectype_for_scalar_type (itype); |
| if (vecitype == NULL_TREE) |
| return NULL; |
| |
| if (!expand_vec_cond_expr_p (vecitype, comp_vectype, TREE_CODE (cond_expr))) |
| return NULL; |
| |
| if (GET_MODE_BITSIZE (type_mode) > cmp_mode_size) |
| { |
| if ((TREE_CODE (then_clause) == INTEGER_CST |
| && !int_fits_type_p (then_clause, itype)) |
| || (TREE_CODE (else_clause) == INTEGER_CST |
| && !int_fits_type_p (else_clause, itype))) |
| return NULL; |
| } |
| |
| def_stmt = gimple_build_assign (vect_recog_temp_ssa_var (itype, NULL), |
| COND_EXPR, unshare_expr (cond_expr), |
| fold_convert (itype, then_clause), |
| fold_convert (itype, else_clause)); |
| pattern_stmt = gimple_build_assign (vect_recog_temp_ssa_var (type, NULL), |
| NOP_EXPR, gimple_assign_lhs (def_stmt)); |
| |
| new_pattern_def_seq (stmt_vinfo, def_stmt); |
| def_stmt_info = new_stmt_vec_info (def_stmt, vinfo); |
| set_vinfo_for_stmt (def_stmt, def_stmt_info); |
| STMT_VINFO_VECTYPE (def_stmt_info) = vecitype; |
| *type_in = vecitype; |
| *type_out = vectype; |
| |
| if (dump_enabled_p ()) |
| dump_printf_loc (MSG_NOTE, vect_location, |
| "vect_recog_mixed_size_cond_pattern: detected:\n"); |
| |
| return pattern_stmt; |
| } |
| |
| |
| /* Helper function of vect_recog_bool_pattern. Called recursively, return |
| true if bool VAR can and should be optimized that way. Assume it shouldn't |
| in case it's a result of a comparison which can be directly vectorized into |
| a vector comparison. Fills in STMTS with all stmts visited during the |
| walk. */ |
| |
| static bool |
| check_bool_pattern (tree var, vec_info *vinfo, hash_set<gimple *> &stmts) |
| { |
| gimple *def_stmt; |
| enum vect_def_type dt; |
| tree rhs1; |
| enum tree_code rhs_code; |
| |
| if (!vect_is_simple_use (var, vinfo, &def_stmt, &dt)) |
| return false; |
| |
| if (dt != vect_internal_def) |
| return false; |
| |
| if (!is_gimple_assign (def_stmt)) |
| return false; |
| |
| if (stmts.contains (def_stmt)) |
| return true; |
| |
| rhs1 = gimple_assign_rhs1 (def_stmt); |
| rhs_code = gimple_assign_rhs_code (def_stmt); |
| switch (rhs_code) |
| { |
| case SSA_NAME: |
| if (! check_bool_pattern (rhs1, vinfo, stmts)) |
| return false; |
| break; |
| |
| CASE_CONVERT: |
| if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (rhs1))) |
| return false; |
| if (! check_bool_pattern (rhs1, vinfo, stmts)) |
| return false; |
| break; |
| |
| case BIT_NOT_EXPR: |
| if (! check_bool_pattern (rhs1, vinfo
|