| //===-- sanitizer_stoptheworld_linux_libcdep.cc ---------------------------===// |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // See sanitizer_stoptheworld.h for details. |
| // This implementation was inspired by Markus Gutschke's linuxthreads.cc. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_platform.h" |
| |
| #if SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__) || \ |
| defined(__aarch64__) || defined(__powerpc64__) || \ |
| defined(__s390__) || defined(__i386__) || \ |
| defined(__arm__)) |
| |
| #include "sanitizer_stoptheworld.h" |
| |
| #include "sanitizer_platform_limits_posix.h" |
| #include "sanitizer_atomic.h" |
| |
| #include <errno.h> |
| #include <sched.h> // for CLONE_* definitions |
| #include <stddef.h> |
| #include <sys/prctl.h> // for PR_* definitions |
| #include <sys/ptrace.h> // for PTRACE_* definitions |
| #include <sys/types.h> // for pid_t |
| #include <sys/uio.h> // for iovec |
| #include <elf.h> // for NT_PRSTATUS |
| #if defined(__aarch64__) && !SANITIZER_ANDROID |
| // GLIBC 2.20+ sys/user does not include asm/ptrace.h |
| # include <asm/ptrace.h> |
| #endif |
| #include <sys/user.h> // for user_regs_struct |
| #if SANITIZER_ANDROID && SANITIZER_MIPS |
| # include <asm/reg.h> // for mips SP register in sys/user.h |
| #endif |
| #include <sys/wait.h> // for signal-related stuff |
| |
| #ifdef sa_handler |
| # undef sa_handler |
| #endif |
| |
| #ifdef sa_sigaction |
| # undef sa_sigaction |
| #endif |
| |
| #include "sanitizer_common.h" |
| #include "sanitizer_flags.h" |
| #include "sanitizer_libc.h" |
| #include "sanitizer_linux.h" |
| #include "sanitizer_mutex.h" |
| #include "sanitizer_placement_new.h" |
| |
| // This module works by spawning a Linux task which then attaches to every |
| // thread in the caller process with ptrace. This suspends the threads, and |
| // PTRACE_GETREGS can then be used to obtain their register state. The callback |
| // supplied to StopTheWorld() is run in the tracer task while the threads are |
| // suspended. |
| // The tracer task must be placed in a different thread group for ptrace to |
| // work, so it cannot be spawned as a pthread. Instead, we use the low-level |
| // clone() interface (we want to share the address space with the caller |
| // process, so we prefer clone() over fork()). |
| // |
| // We don't use any libc functions, relying instead on direct syscalls. There |
| // are two reasons for this: |
| // 1. calling a library function while threads are suspended could cause a |
| // deadlock, if one of the treads happens to be holding a libc lock; |
| // 2. it's generally not safe to call libc functions from the tracer task, |
| // because clone() does not set up a thread-local storage for it. Any |
| // thread-local variables used by libc will be shared between the tracer task |
| // and the thread which spawned it. |
| |
| namespace __sanitizer { |
| |
| class SuspendedThreadsListLinux : public SuspendedThreadsList { |
| public: |
| SuspendedThreadsListLinux() : thread_ids_(1024) {} |
| |
| tid_t GetThreadID(uptr index) const; |
| uptr ThreadCount() const; |
| bool ContainsTid(tid_t thread_id) const; |
| void Append(tid_t tid); |
| |
| PtraceRegistersStatus GetRegistersAndSP(uptr index, uptr *buffer, |
| uptr *sp) const; |
| uptr RegisterCount() const; |
| |
| private: |
| InternalMmapVector<tid_t> thread_ids_; |
| }; |
| |
| // Structure for passing arguments into the tracer thread. |
| struct TracerThreadArgument { |
| StopTheWorldCallback callback; |
| void *callback_argument; |
| // The tracer thread waits on this mutex while the parent finishes its |
| // preparations. |
| BlockingMutex mutex; |
| // Tracer thread signals its completion by setting done. |
| atomic_uintptr_t done; |
| uptr parent_pid; |
| }; |
| |
| // This class handles thread suspending/unsuspending in the tracer thread. |
| class ThreadSuspender { |
| public: |
| explicit ThreadSuspender(pid_t pid, TracerThreadArgument *arg) |
| : arg(arg) |
| , pid_(pid) { |
| CHECK_GE(pid, 0); |
| } |
| bool SuspendAllThreads(); |
| void ResumeAllThreads(); |
| void KillAllThreads(); |
| SuspendedThreadsListLinux &suspended_threads_list() { |
| return suspended_threads_list_; |
| } |
| TracerThreadArgument *arg; |
| private: |
| SuspendedThreadsListLinux suspended_threads_list_; |
| pid_t pid_; |
| bool SuspendThread(tid_t thread_id); |
| }; |
| |
| bool ThreadSuspender::SuspendThread(tid_t tid) { |
| // Are we already attached to this thread? |
| // Currently this check takes linear time, however the number of threads is |
| // usually small. |
| if (suspended_threads_list_.ContainsTid(tid)) return false; |
| int pterrno; |
| if (internal_iserror(internal_ptrace(PTRACE_ATTACH, tid, nullptr, nullptr), |
| &pterrno)) { |
| // Either the thread is dead, or something prevented us from attaching. |
| // Log this event and move on. |
| VReport(1, "Could not attach to thread %zu (errno %d).\n", (uptr)tid, |
| pterrno); |
| return false; |
| } else { |
| VReport(2, "Attached to thread %zu.\n", (uptr)tid); |
| // The thread is not guaranteed to stop before ptrace returns, so we must |
| // wait on it. Note: if the thread receives a signal concurrently, |
| // we can get notification about the signal before notification about stop. |
| // In such case we need to forward the signal to the thread, otherwise |
| // the signal will be missed (as we do PTRACE_DETACH with arg=0) and |
| // any logic relying on signals will break. After forwarding we need to |
| // continue to wait for stopping, because the thread is not stopped yet. |
| // We do ignore delivery of SIGSTOP, because we want to make stop-the-world |
| // as invisible as possible. |
| for (;;) { |
| int status; |
| uptr waitpid_status; |
| HANDLE_EINTR(waitpid_status, internal_waitpid(tid, &status, __WALL)); |
| int wperrno; |
| if (internal_iserror(waitpid_status, &wperrno)) { |
| // Got a ECHILD error. I don't think this situation is possible, but it |
| // doesn't hurt to report it. |
| VReport(1, "Waiting on thread %zu failed, detaching (errno %d).\n", |
| (uptr)tid, wperrno); |
| internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr); |
| return false; |
| } |
| if (WIFSTOPPED(status) && WSTOPSIG(status) != SIGSTOP) { |
| internal_ptrace(PTRACE_CONT, tid, nullptr, |
| (void*)(uptr)WSTOPSIG(status)); |
| continue; |
| } |
| break; |
| } |
| suspended_threads_list_.Append(tid); |
| return true; |
| } |
| } |
| |
| void ThreadSuspender::ResumeAllThreads() { |
| for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) { |
| pid_t tid = suspended_threads_list_.GetThreadID(i); |
| int pterrno; |
| if (!internal_iserror(internal_ptrace(PTRACE_DETACH, tid, nullptr, nullptr), |
| &pterrno)) { |
| VReport(2, "Detached from thread %d.\n", tid); |
| } else { |
| // Either the thread is dead, or we are already detached. |
| // The latter case is possible, for instance, if this function was called |
| // from a signal handler. |
| VReport(1, "Could not detach from thread %d (errno %d).\n", tid, pterrno); |
| } |
| } |
| } |
| |
| void ThreadSuspender::KillAllThreads() { |
| for (uptr i = 0; i < suspended_threads_list_.ThreadCount(); i++) |
| internal_ptrace(PTRACE_KILL, suspended_threads_list_.GetThreadID(i), |
| nullptr, nullptr); |
| } |
| |
| bool ThreadSuspender::SuspendAllThreads() { |
| ThreadLister thread_lister(pid_); |
| bool added_threads; |
| bool first_iteration = true; |
| do { |
| // Run through the directory entries once. |
| added_threads = false; |
| pid_t tid = thread_lister.GetNextTID(); |
| while (tid >= 0) { |
| if (SuspendThread(tid)) |
| added_threads = true; |
| tid = thread_lister.GetNextTID(); |
| } |
| if (thread_lister.error() || (first_iteration && !added_threads)) { |
| // Detach threads and fail. |
| ResumeAllThreads(); |
| return false; |
| } |
| thread_lister.Reset(); |
| first_iteration = false; |
| } while (added_threads); |
| return true; |
| } |
| |
| // Pointer to the ThreadSuspender instance for use in signal handler. |
| static ThreadSuspender *thread_suspender_instance = nullptr; |
| |
| // Synchronous signals that should not be blocked. |
| static const int kSyncSignals[] = { SIGABRT, SIGILL, SIGFPE, SIGSEGV, SIGBUS, |
| SIGXCPU, SIGXFSZ }; |
| |
| static void TracerThreadDieCallback() { |
| // Generally a call to Die() in the tracer thread should be fatal to the |
| // parent process as well, because they share the address space. |
| // This really only works correctly if all the threads are suspended at this |
| // point. So we correctly handle calls to Die() from within the callback, but |
| // not those that happen before or after the callback. Hopefully there aren't |
| // a lot of opportunities for that to happen... |
| ThreadSuspender *inst = thread_suspender_instance; |
| if (inst && stoptheworld_tracer_pid == internal_getpid()) { |
| inst->KillAllThreads(); |
| thread_suspender_instance = nullptr; |
| } |
| } |
| |
| // Signal handler to wake up suspended threads when the tracer thread dies. |
| static void TracerThreadSignalHandler(int signum, void *siginfo, void *uctx) { |
| SignalContext ctx(siginfo, uctx); |
| Printf("Tracer caught signal %d: addr=0x%zx pc=0x%zx sp=0x%zx\n", signum, |
| ctx.addr, ctx.pc, ctx.sp); |
| ThreadSuspender *inst = thread_suspender_instance; |
| if (inst) { |
| if (signum == SIGABRT) |
| inst->KillAllThreads(); |
| else |
| inst->ResumeAllThreads(); |
| RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback)); |
| thread_suspender_instance = nullptr; |
| atomic_store(&inst->arg->done, 1, memory_order_relaxed); |
| } |
| internal__exit((signum == SIGABRT) ? 1 : 2); |
| } |
| |
| // Size of alternative stack for signal handlers in the tracer thread. |
| static const int kHandlerStackSize = 8192; |
| |
| // This function will be run as a cloned task. |
| static int TracerThread(void* argument) { |
| TracerThreadArgument *tracer_thread_argument = |
| (TracerThreadArgument *)argument; |
| |
| internal_prctl(PR_SET_PDEATHSIG, SIGKILL, 0, 0, 0); |
| // Check if parent is already dead. |
| if (internal_getppid() != tracer_thread_argument->parent_pid) |
| internal__exit(4); |
| |
| // Wait for the parent thread to finish preparations. |
| tracer_thread_argument->mutex.Lock(); |
| tracer_thread_argument->mutex.Unlock(); |
| |
| RAW_CHECK(AddDieCallback(TracerThreadDieCallback)); |
| |
| ThreadSuspender thread_suspender(internal_getppid(), tracer_thread_argument); |
| // Global pointer for the signal handler. |
| thread_suspender_instance = &thread_suspender; |
| |
| // Alternate stack for signal handling. |
| InternalScopedBuffer<char> handler_stack_memory(kHandlerStackSize); |
| stack_t handler_stack; |
| internal_memset(&handler_stack, 0, sizeof(handler_stack)); |
| handler_stack.ss_sp = handler_stack_memory.data(); |
| handler_stack.ss_size = kHandlerStackSize; |
| internal_sigaltstack(&handler_stack, nullptr); |
| |
| // Install our handler for synchronous signals. Other signals should be |
| // blocked by the mask we inherited from the parent thread. |
| for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) { |
| __sanitizer_sigaction act; |
| internal_memset(&act, 0, sizeof(act)); |
| act.sigaction = TracerThreadSignalHandler; |
| act.sa_flags = SA_ONSTACK | SA_SIGINFO; |
| internal_sigaction_norestorer(kSyncSignals[i], &act, 0); |
| } |
| |
| int exit_code = 0; |
| if (!thread_suspender.SuspendAllThreads()) { |
| VReport(1, "Failed suspending threads.\n"); |
| exit_code = 3; |
| } else { |
| tracer_thread_argument->callback(thread_suspender.suspended_threads_list(), |
| tracer_thread_argument->callback_argument); |
| thread_suspender.ResumeAllThreads(); |
| exit_code = 0; |
| } |
| RAW_CHECK(RemoveDieCallback(TracerThreadDieCallback)); |
| thread_suspender_instance = nullptr; |
| atomic_store(&tracer_thread_argument->done, 1, memory_order_relaxed); |
| return exit_code; |
| } |
| |
| class ScopedStackSpaceWithGuard { |
| public: |
| explicit ScopedStackSpaceWithGuard(uptr stack_size) { |
| stack_size_ = stack_size; |
| guard_size_ = GetPageSizeCached(); |
| // FIXME: Omitting MAP_STACK here works in current kernels but might break |
| // in the future. |
| guard_start_ = (uptr)MmapOrDie(stack_size_ + guard_size_, |
| "ScopedStackWithGuard"); |
| CHECK(MprotectNoAccess((uptr)guard_start_, guard_size_)); |
| } |
| ~ScopedStackSpaceWithGuard() { |
| UnmapOrDie((void *)guard_start_, stack_size_ + guard_size_); |
| } |
| void *Bottom() const { |
| return (void *)(guard_start_ + stack_size_ + guard_size_); |
| } |
| |
| private: |
| uptr stack_size_; |
| uptr guard_size_; |
| uptr guard_start_; |
| }; |
| |
| // We have a limitation on the stack frame size, so some stuff had to be moved |
| // into globals. |
| static __sanitizer_sigset_t blocked_sigset; |
| static __sanitizer_sigset_t old_sigset; |
| |
| class StopTheWorldScope { |
| public: |
| StopTheWorldScope() { |
| // Make this process dumpable. Processes that are not dumpable cannot be |
| // attached to. |
| process_was_dumpable_ = internal_prctl(PR_GET_DUMPABLE, 0, 0, 0, 0); |
| if (!process_was_dumpable_) |
| internal_prctl(PR_SET_DUMPABLE, 1, 0, 0, 0); |
| } |
| |
| ~StopTheWorldScope() { |
| // Restore the dumpable flag. |
| if (!process_was_dumpable_) |
| internal_prctl(PR_SET_DUMPABLE, 0, 0, 0, 0); |
| } |
| |
| private: |
| int process_was_dumpable_; |
| }; |
| |
| // When sanitizer output is being redirected to file (i.e. by using log_path), |
| // the tracer should write to the parent's log instead of trying to open a new |
| // file. Alert the logging code to the fact that we have a tracer. |
| struct ScopedSetTracerPID { |
| explicit ScopedSetTracerPID(uptr tracer_pid) { |
| stoptheworld_tracer_pid = tracer_pid; |
| stoptheworld_tracer_ppid = internal_getpid(); |
| } |
| ~ScopedSetTracerPID() { |
| stoptheworld_tracer_pid = 0; |
| stoptheworld_tracer_ppid = 0; |
| } |
| }; |
| |
| void StopTheWorld(StopTheWorldCallback callback, void *argument) { |
| StopTheWorldScope in_stoptheworld; |
| // Prepare the arguments for TracerThread. |
| struct TracerThreadArgument tracer_thread_argument; |
| tracer_thread_argument.callback = callback; |
| tracer_thread_argument.callback_argument = argument; |
| tracer_thread_argument.parent_pid = internal_getpid(); |
| atomic_store(&tracer_thread_argument.done, 0, memory_order_relaxed); |
| const uptr kTracerStackSize = 2 * 1024 * 1024; |
| ScopedStackSpaceWithGuard tracer_stack(kTracerStackSize); |
| // Block the execution of TracerThread until after we have set ptrace |
| // permissions. |
| tracer_thread_argument.mutex.Lock(); |
| // Signal handling story. |
| // We don't want async signals to be delivered to the tracer thread, |
| // so we block all async signals before creating the thread. An async signal |
| // handler can temporary modify errno, which is shared with this thread. |
| // We ought to use pthread_sigmask here, because sigprocmask has undefined |
| // behavior in multithreaded programs. However, on linux sigprocmask is |
| // equivalent to pthread_sigmask with the exception that pthread_sigmask |
| // does not allow to block some signals used internally in pthread |
| // implementation. We are fine with blocking them here, we are really not |
| // going to pthread_cancel the thread. |
| // The tracer thread should not raise any synchronous signals. But in case it |
| // does, we setup a special handler for sync signals that properly kills the |
| // parent as well. Note: we don't pass CLONE_SIGHAND to clone, so handlers |
| // in the tracer thread won't interfere with user program. Double note: if a |
| // user does something along the lines of 'kill -11 pid', that can kill the |
| // process even if user setup own handler for SEGV. |
| // Thing to watch out for: this code should not change behavior of user code |
| // in any observable way. In particular it should not override user signal |
| // handlers. |
| internal_sigfillset(&blocked_sigset); |
| for (uptr i = 0; i < ARRAY_SIZE(kSyncSignals); i++) |
| internal_sigdelset(&blocked_sigset, kSyncSignals[i]); |
| int rv = internal_sigprocmask(SIG_BLOCK, &blocked_sigset, &old_sigset); |
| CHECK_EQ(rv, 0); |
| uptr tracer_pid = internal_clone( |
| TracerThread, tracer_stack.Bottom(), |
| CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_UNTRACED, |
| &tracer_thread_argument, nullptr /* parent_tidptr */, |
| nullptr /* newtls */, nullptr /* child_tidptr */); |
| internal_sigprocmask(SIG_SETMASK, &old_sigset, 0); |
| int local_errno = 0; |
| if (internal_iserror(tracer_pid, &local_errno)) { |
| VReport(1, "Failed spawning a tracer thread (errno %d).\n", local_errno); |
| tracer_thread_argument.mutex.Unlock(); |
| } else { |
| ScopedSetTracerPID scoped_set_tracer_pid(tracer_pid); |
| // On some systems we have to explicitly declare that we want to be traced |
| // by the tracer thread. |
| #ifdef PR_SET_PTRACER |
| internal_prctl(PR_SET_PTRACER, tracer_pid, 0, 0, 0); |
| #endif |
| // Allow the tracer thread to start. |
| tracer_thread_argument.mutex.Unlock(); |
| // NOTE: errno is shared between this thread and the tracer thread. |
| // internal_waitpid() may call syscall() which can access/spoil errno, |
| // so we can't call it now. Instead we for the tracer thread to finish using |
| // the spin loop below. Man page for sched_yield() says "In the Linux |
| // implementation, sched_yield() always succeeds", so let's hope it does not |
| // spoil errno. Note that this spin loop runs only for brief periods before |
| // the tracer thread has suspended us and when it starts unblocking threads. |
| while (atomic_load(&tracer_thread_argument.done, memory_order_relaxed) == 0) |
| sched_yield(); |
| // Now the tracer thread is about to exit and does not touch errno, |
| // wait for it. |
| for (;;) { |
| uptr waitpid_status = internal_waitpid(tracer_pid, nullptr, __WALL); |
| if (!internal_iserror(waitpid_status, &local_errno)) |
| break; |
| if (local_errno == EINTR) |
| continue; |
| VReport(1, "Waiting on the tracer thread failed (errno %d).\n", |
| local_errno); |
| break; |
| } |
| } |
| } |
| |
| // Platform-specific methods from SuspendedThreadsList. |
| #if SANITIZER_ANDROID && defined(__arm__) |
| typedef pt_regs regs_struct; |
| #define REG_SP ARM_sp |
| |
| #elif SANITIZER_LINUX && defined(__arm__) |
| typedef user_regs regs_struct; |
| #define REG_SP uregs[13] |
| |
| #elif defined(__i386__) || defined(__x86_64__) |
| typedef user_regs_struct regs_struct; |
| #if defined(__i386__) |
| #define REG_SP esp |
| #else |
| #define REG_SP rsp |
| #endif |
| |
| #elif defined(__powerpc__) || defined(__powerpc64__) |
| typedef pt_regs regs_struct; |
| #define REG_SP gpr[PT_R1] |
| |
| #elif defined(__mips__) |
| typedef struct user regs_struct; |
| # if SANITIZER_ANDROID |
| # define REG_SP regs[EF_R29] |
| # else |
| # define REG_SP regs[EF_REG29] |
| # endif |
| |
| #elif defined(__aarch64__) |
| typedef struct user_pt_regs regs_struct; |
| #define REG_SP sp |
| #define ARCH_IOVEC_FOR_GETREGSET |
| |
| #elif defined(__s390__) |
| typedef _user_regs_struct regs_struct; |
| #define REG_SP gprs[15] |
| #define ARCH_IOVEC_FOR_GETREGSET |
| |
| #else |
| #error "Unsupported architecture" |
| #endif // SANITIZER_ANDROID && defined(__arm__) |
| |
| tid_t SuspendedThreadsListLinux::GetThreadID(uptr index) const { |
| CHECK_LT(index, thread_ids_.size()); |
| return thread_ids_[index]; |
| } |
| |
| uptr SuspendedThreadsListLinux::ThreadCount() const { |
| return thread_ids_.size(); |
| } |
| |
| bool SuspendedThreadsListLinux::ContainsTid(tid_t thread_id) const { |
| for (uptr i = 0; i < thread_ids_.size(); i++) { |
| if (thread_ids_[i] == thread_id) return true; |
| } |
| return false; |
| } |
| |
| void SuspendedThreadsListLinux::Append(tid_t tid) { |
| thread_ids_.push_back(tid); |
| } |
| |
| PtraceRegistersStatus SuspendedThreadsListLinux::GetRegistersAndSP( |
| uptr index, uptr *buffer, uptr *sp) const { |
| pid_t tid = GetThreadID(index); |
| regs_struct regs; |
| int pterrno; |
| #ifdef ARCH_IOVEC_FOR_GETREGSET |
| struct iovec regset_io; |
| regset_io.iov_base = ®s; |
| regset_io.iov_len = sizeof(regs_struct); |
| bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGSET, tid, |
| (void*)NT_PRSTATUS, (void*)®set_io), |
| &pterrno); |
| #else |
| bool isErr = internal_iserror(internal_ptrace(PTRACE_GETREGS, tid, nullptr, |
| ®s), &pterrno); |
| #endif |
| if (isErr) { |
| VReport(1, "Could not get registers from thread %d (errno %d).\n", tid, |
| pterrno); |
| // ESRCH means that the given thread is not suspended or already dead. |
| // Therefore it's unsafe to inspect its data (e.g. walk through stack) and |
| // we should notify caller about this. |
| return pterrno == ESRCH ? REGISTERS_UNAVAILABLE_FATAL |
| : REGISTERS_UNAVAILABLE; |
| } |
| |
| *sp = regs.REG_SP; |
| internal_memcpy(buffer, ®s, sizeof(regs)); |
| return REGISTERS_AVAILABLE; |
| } |
| |
| uptr SuspendedThreadsListLinux::RegisterCount() const { |
| return sizeof(regs_struct) / sizeof(uptr); |
| } |
| } // namespace __sanitizer |
| |
| #endif // SANITIZER_LINUX && (defined(__x86_64__) || defined(__mips__) |
| // || defined(__aarch64__) || defined(__powerpc64__) |
| // || defined(__s390__) || defined(__i386__) || defined(__arm__) |