| /* Sets (bit vectors) of hard registers, and operations on them. |
| Copyright (C) 1987-2019 Free Software Foundation, Inc. |
| |
| This file is part of GCC |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_HARD_REG_SET_H |
| #define GCC_HARD_REG_SET_H |
| |
| /* Define the type of a set of hard registers. */ |
| |
| /* HARD_REG_ELT_TYPE is a typedef of the unsigned integral type which |
| will be used for hard reg sets, either alone or in an array. |
| |
| If HARD_REG_SET is a macro, its definition is HARD_REG_ELT_TYPE, |
| and it has enough bits to represent all the target machine's hard |
| registers. Otherwise, it is a typedef for a suitably sized array |
| of HARD_REG_ELT_TYPEs. HARD_REG_SET_LONGS is defined as how many. |
| |
| Note that lots of code assumes that the first part of a regset is |
| the same format as a HARD_REG_SET. To help make sure this is true, |
| we only try the widest fast integer mode (HOST_WIDEST_FAST_INT) |
| instead of all the smaller types. This approach loses only if |
| there are very few registers and then only in the few cases where |
| we have an array of HARD_REG_SETs, so it needn't be as complex as |
| it used to be. */ |
| |
| typedef unsigned HOST_WIDEST_FAST_INT HARD_REG_ELT_TYPE; |
| |
| #if FIRST_PSEUDO_REGISTER <= HOST_BITS_PER_WIDEST_FAST_INT |
| |
| #define HARD_REG_SET HARD_REG_ELT_TYPE |
| |
| #else |
| |
| #define HARD_REG_SET_LONGS \ |
| ((FIRST_PSEUDO_REGISTER + HOST_BITS_PER_WIDEST_FAST_INT - 1) \ |
| / HOST_BITS_PER_WIDEST_FAST_INT) |
| typedef HARD_REG_ELT_TYPE HARD_REG_SET[HARD_REG_SET_LONGS]; |
| |
| #endif |
| |
| /* HARD_REG_SET wrapped into a structure, to make it possible to |
| use HARD_REG_SET even in APIs that should not include |
| hard-reg-set.h. */ |
| struct hard_reg_set_container |
| { |
| HARD_REG_SET set; |
| }; |
| |
| /* HARD_CONST is used to cast a constant to the appropriate type |
| for use with a HARD_REG_SET. */ |
| |
| #define HARD_CONST(X) ((HARD_REG_ELT_TYPE) (X)) |
| |
| /* Define macros SET_HARD_REG_BIT, CLEAR_HARD_REG_BIT and TEST_HARD_REG_BIT |
| to set, clear or test one bit in a hard reg set of type HARD_REG_SET. |
| All three take two arguments: the set and the register number. |
| |
| In the case where sets are arrays of longs, the first argument |
| is actually a pointer to a long. |
| |
| Define two macros for initializing a set: |
| CLEAR_HARD_REG_SET and SET_HARD_REG_SET. |
| These take just one argument. |
| |
| Also define macros for copying hard reg sets: |
| COPY_HARD_REG_SET and COMPL_HARD_REG_SET. |
| These take two arguments TO and FROM; they read from FROM |
| and store into TO. COMPL_HARD_REG_SET complements each bit. |
| |
| Also define macros for combining hard reg sets: |
| IOR_HARD_REG_SET and AND_HARD_REG_SET. |
| These take two arguments TO and FROM; they read from FROM |
| and combine bitwise into TO. Define also two variants |
| IOR_COMPL_HARD_REG_SET and AND_COMPL_HARD_REG_SET |
| which use the complement of the set FROM. |
| |
| Also define: |
| |
| hard_reg_set_subset_p (X, Y), which returns true if X is a subset of Y. |
| hard_reg_set_equal_p (X, Y), which returns true if X and Y are equal. |
| hard_reg_set_intersect_p (X, Y), which returns true if X and Y intersect. |
| hard_reg_set_empty_p (X), which returns true if X is empty. */ |
| |
| #define UHOST_BITS_PER_WIDE_INT ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT) |
| |
| #ifdef HARD_REG_SET |
| |
| #define SET_HARD_REG_BIT(SET, BIT) \ |
| ((SET) |= HARD_CONST (1) << (BIT)) |
| #define CLEAR_HARD_REG_BIT(SET, BIT) \ |
| ((SET) &= ~(HARD_CONST (1) << (BIT))) |
| #define TEST_HARD_REG_BIT(SET, BIT) \ |
| (!!((SET) & (HARD_CONST (1) << (BIT)))) |
| |
| #define CLEAR_HARD_REG_SET(TO) ((TO) = HARD_CONST (0)) |
| #define SET_HARD_REG_SET(TO) ((TO) = ~ HARD_CONST (0)) |
| |
| #define COPY_HARD_REG_SET(TO, FROM) ((TO) = (FROM)) |
| #define COMPL_HARD_REG_SET(TO, FROM) ((TO) = ~(FROM)) |
| |
| #define IOR_HARD_REG_SET(TO, FROM) ((TO) |= (FROM)) |
| #define IOR_COMPL_HARD_REG_SET(TO, FROM) ((TO) |= ~ (FROM)) |
| #define AND_HARD_REG_SET(TO, FROM) ((TO) &= (FROM)) |
| #define AND_COMPL_HARD_REG_SET(TO, FROM) ((TO) &= ~ (FROM)) |
| |
| static inline bool |
| hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return (x & ~y) == HARD_CONST (0); |
| } |
| |
| static inline bool |
| hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return x == y; |
| } |
| |
| static inline bool |
| hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return (x & y) != HARD_CONST (0); |
| } |
| |
| static inline bool |
| hard_reg_set_empty_p (const HARD_REG_SET x) |
| { |
| return x == HARD_CONST (0); |
| } |
| |
| #else |
| |
| #define SET_HARD_REG_BIT(SET, BIT) \ |
| ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ |
| |= HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)) |
| |
| #define CLEAR_HARD_REG_BIT(SET, BIT) \ |
| ((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ |
| &= ~(HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT))) |
| |
| #define TEST_HARD_REG_BIT(SET, BIT) \ |
| (!!((SET)[(BIT) / UHOST_BITS_PER_WIDE_INT] \ |
| & (HARD_CONST (1) << ((BIT) % UHOST_BITS_PER_WIDE_INT)))) |
| |
| #if FIRST_PSEUDO_REGISTER <= 2*HOST_BITS_PER_WIDEST_FAST_INT |
| #define CLEAR_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = 0; \ |
| scan_tp_[1] = 0; } while (0) |
| |
| #define SET_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = -1; \ |
| scan_tp_[1] = -1; } while (0) |
| |
| #define COPY_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = scan_fp_[0]; \ |
| scan_tp_[1] = scan_fp_[1]; } while (0) |
| |
| #define COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = ~ scan_fp_[0]; \ |
| scan_tp_[1] = ~ scan_fp_[1]; } while (0) |
| |
| #define AND_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= scan_fp_[0]; \ |
| scan_tp_[1] &= scan_fp_[1]; } while (0) |
| |
| #define AND_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= ~ scan_fp_[0]; \ |
| scan_tp_[1] &= ~ scan_fp_[1]; } while (0) |
| |
| #define IOR_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= scan_fp_[0]; \ |
| scan_tp_[1] |= scan_fp_[1]; } while (0) |
| |
| #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= ~ scan_fp_[0]; \ |
| scan_tp_[1] |= ~ scan_fp_[1]; } while (0) |
| |
| static inline bool |
| hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return (x[0] & ~y[0]) == 0 && (x[1] & ~y[1]) == 0; |
| } |
| |
| static inline bool |
| hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return x[0] == y[0] && x[1] == y[1]; |
| } |
| |
| static inline bool |
| hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return (x[0] & y[0]) != 0 || (x[1] & y[1]) != 0; |
| } |
| |
| static inline bool |
| hard_reg_set_empty_p (const HARD_REG_SET x) |
| { |
| return x[0] == 0 && x[1] == 0; |
| } |
| |
| #else |
| #if FIRST_PSEUDO_REGISTER <= 3*HOST_BITS_PER_WIDEST_FAST_INT |
| #define CLEAR_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = 0; \ |
| scan_tp_[1] = 0; \ |
| scan_tp_[2] = 0; } while (0) |
| |
| #define SET_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = -1; \ |
| scan_tp_[1] = -1; \ |
| scan_tp_[2] = -1; } while (0) |
| |
| #define COPY_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = scan_fp_[0]; \ |
| scan_tp_[1] = scan_fp_[1]; \ |
| scan_tp_[2] = scan_fp_[2]; } while (0) |
| |
| #define COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = ~ scan_fp_[0]; \ |
| scan_tp_[1] = ~ scan_fp_[1]; \ |
| scan_tp_[2] = ~ scan_fp_[2]; } while (0) |
| |
| #define AND_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= scan_fp_[0]; \ |
| scan_tp_[1] &= scan_fp_[1]; \ |
| scan_tp_[2] &= scan_fp_[2]; } while (0) |
| |
| #define AND_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= ~ scan_fp_[0]; \ |
| scan_tp_[1] &= ~ scan_fp_[1]; \ |
| scan_tp_[2] &= ~ scan_fp_[2]; } while (0) |
| |
| #define IOR_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= scan_fp_[0]; \ |
| scan_tp_[1] |= scan_fp_[1]; \ |
| scan_tp_[2] |= scan_fp_[2]; } while (0) |
| |
| #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= ~ scan_fp_[0]; \ |
| scan_tp_[1] |= ~ scan_fp_[1]; \ |
| scan_tp_[2] |= ~ scan_fp_[2]; } while (0) |
| |
| static inline bool |
| hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return ((x[0] & ~y[0]) == 0 |
| && (x[1] & ~y[1]) == 0 |
| && (x[2] & ~y[2]) == 0); |
| } |
| |
| static inline bool |
| hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return x[0] == y[0] && x[1] == y[1] && x[2] == y[2]; |
| } |
| |
| static inline bool |
| hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return ((x[0] & y[0]) != 0 |
| || (x[1] & y[1]) != 0 |
| || (x[2] & y[2]) != 0); |
| } |
| |
| static inline bool |
| hard_reg_set_empty_p (const HARD_REG_SET x) |
| { |
| return x[0] == 0 && x[1] == 0 && x[2] == 0; |
| } |
| |
| #else |
| #if FIRST_PSEUDO_REGISTER <= 4*HOST_BITS_PER_WIDEST_FAST_INT |
| #define CLEAR_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = 0; \ |
| scan_tp_[1] = 0; \ |
| scan_tp_[2] = 0; \ |
| scan_tp_[3] = 0; } while (0) |
| |
| #define SET_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| scan_tp_[0] = -1; \ |
| scan_tp_[1] = -1; \ |
| scan_tp_[2] = -1; \ |
| scan_tp_[3] = -1; } while (0) |
| |
| #define COPY_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = scan_fp_[0]; \ |
| scan_tp_[1] = scan_fp_[1]; \ |
| scan_tp_[2] = scan_fp_[2]; \ |
| scan_tp_[3] = scan_fp_[3]; } while (0) |
| |
| #define COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] = ~ scan_fp_[0]; \ |
| scan_tp_[1] = ~ scan_fp_[1]; \ |
| scan_tp_[2] = ~ scan_fp_[2]; \ |
| scan_tp_[3] = ~ scan_fp_[3]; } while (0) |
| |
| #define AND_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= scan_fp_[0]; \ |
| scan_tp_[1] &= scan_fp_[1]; \ |
| scan_tp_[2] &= scan_fp_[2]; \ |
| scan_tp_[3] &= scan_fp_[3]; } while (0) |
| |
| #define AND_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] &= ~ scan_fp_[0]; \ |
| scan_tp_[1] &= ~ scan_fp_[1]; \ |
| scan_tp_[2] &= ~ scan_fp_[2]; \ |
| scan_tp_[3] &= ~ scan_fp_[3]; } while (0) |
| |
| #define IOR_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= scan_fp_[0]; \ |
| scan_tp_[1] |= scan_fp_[1]; \ |
| scan_tp_[2] |= scan_fp_[2]; \ |
| scan_tp_[3] |= scan_fp_[3]; } while (0) |
| |
| #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| scan_tp_[0] |= ~ scan_fp_[0]; \ |
| scan_tp_[1] |= ~ scan_fp_[1]; \ |
| scan_tp_[2] |= ~ scan_fp_[2]; \ |
| scan_tp_[3] |= ~ scan_fp_[3]; } while (0) |
| |
| static inline bool |
| hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return ((x[0] & ~y[0]) == 0 |
| && (x[1] & ~y[1]) == 0 |
| && (x[2] & ~y[2]) == 0 |
| && (x[3] & ~y[3]) == 0); |
| } |
| |
| static inline bool |
| hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return x[0] == y[0] && x[1] == y[1] && x[2] == y[2] && x[3] == y[3]; |
| } |
| |
| static inline bool |
| hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| return ((x[0] & y[0]) != 0 |
| || (x[1] & y[1]) != 0 |
| || (x[2] & y[2]) != 0 |
| || (x[3] & y[3]) != 0); |
| } |
| |
| static inline bool |
| hard_reg_set_empty_p (const HARD_REG_SET x) |
| { |
| return x[0] == 0 && x[1] == 0 && x[2] == 0 && x[3] == 0; |
| } |
| |
| #else /* FIRST_PSEUDO_REGISTER > 4*HOST_BITS_PER_WIDEST_FAST_INT */ |
| |
| #define CLEAR_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ = 0; } while (0) |
| |
| #define SET_HARD_REG_SET(TO) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ = -1; } while (0) |
| |
| #define COPY_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ = *scan_fp_++; } while (0) |
| |
| #define COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ = ~ *scan_fp_++; } while (0) |
| |
| #define AND_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ &= *scan_fp_++; } while (0) |
| |
| #define AND_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ &= ~ *scan_fp_++; } while (0) |
| |
| #define IOR_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ |= *scan_fp_++; } while (0) |
| |
| #define IOR_COMPL_HARD_REG_SET(TO, FROM) \ |
| do { HARD_REG_ELT_TYPE *scan_tp_ = (TO); \ |
| const HARD_REG_ELT_TYPE *scan_fp_ = (FROM); \ |
| int i; \ |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) \ |
| *scan_tp_++ |= ~ *scan_fp_++; } while (0) |
| |
| static inline bool |
| hard_reg_set_subset_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| int i; |
| |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) |
| if ((x[i] & ~y[i]) != 0) |
| return false; |
| return true; |
| } |
| |
| static inline bool |
| hard_reg_set_equal_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| int i; |
| |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) |
| if (x[i] != y[i]) |
| return false; |
| return true; |
| } |
| |
| static inline bool |
| hard_reg_set_intersect_p (const HARD_REG_SET x, const HARD_REG_SET y) |
| { |
| int i; |
| |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) |
| if ((x[i] & y[i]) != 0) |
| return true; |
| return false; |
| } |
| |
| static inline bool |
| hard_reg_set_empty_p (const HARD_REG_SET x) |
| { |
| int i; |
| |
| for (i = 0; i < HARD_REG_SET_LONGS; i++) |
| if (x[i] != 0) |
| return false; |
| return true; |
| } |
| |
| #endif |
| #endif |
| #endif |
| #endif |
| |
| /* Iterator for hard register sets. */ |
| |
| struct hard_reg_set_iterator |
| { |
| /* Pointer to the current element. */ |
| HARD_REG_ELT_TYPE *pelt; |
| |
| /* The length of the set. */ |
| unsigned short length; |
| |
| /* Word within the current element. */ |
| unsigned short word_no; |
| |
| /* Contents of the actually processed word. When finding next bit |
| it is shifted right, so that the actual bit is always the least |
| significant bit of ACTUAL. */ |
| HARD_REG_ELT_TYPE bits; |
| }; |
| |
| #define HARD_REG_ELT_BITS UHOST_BITS_PER_WIDE_INT |
| |
| /* The implementation of the iterator functions is fully analogous to |
| the bitmap iterators. */ |
| static inline void |
| hard_reg_set_iter_init (hard_reg_set_iterator *iter, HARD_REG_SET set, |
| unsigned min, unsigned *regno) |
| { |
| #ifdef HARD_REG_SET_LONGS |
| iter->pelt = set; |
| iter->length = HARD_REG_SET_LONGS; |
| #else |
| iter->pelt = &set; |
| iter->length = 1; |
| #endif |
| iter->word_no = min / HARD_REG_ELT_BITS; |
| if (iter->word_no < iter->length) |
| { |
| iter->bits = iter->pelt[iter->word_no]; |
| iter->bits >>= min % HARD_REG_ELT_BITS; |
| |
| /* This is required for correct search of the next bit. */ |
| min += !iter->bits; |
| } |
| *regno = min; |
| } |
| |
| static inline bool |
| hard_reg_set_iter_set (hard_reg_set_iterator *iter, unsigned *regno) |
| { |
| while (1) |
| { |
| /* Return false when we're advanced past the end of the set. */ |
| if (iter->word_no >= iter->length) |
| return false; |
| |
| if (iter->bits) |
| { |
| /* Find the correct bit and return it. */ |
| while (!(iter->bits & 1)) |
| { |
| iter->bits >>= 1; |
| *regno += 1; |
| } |
| return (*regno < FIRST_PSEUDO_REGISTER); |
| } |
| |
| /* Round to the beginning of the next word. */ |
| *regno = (*regno + HARD_REG_ELT_BITS - 1); |
| *regno -= *regno % HARD_REG_ELT_BITS; |
| |
| /* Find the next non-zero word. */ |
| while (++iter->word_no < iter->length) |
| { |
| iter->bits = iter->pelt[iter->word_no]; |
| if (iter->bits) |
| break; |
| *regno += HARD_REG_ELT_BITS; |
| } |
| } |
| } |
| |
| static inline void |
| hard_reg_set_iter_next (hard_reg_set_iterator *iter, unsigned *regno) |
| { |
| iter->bits >>= 1; |
| *regno += 1; |
| } |
| |
| #define EXECUTE_IF_SET_IN_HARD_REG_SET(SET, MIN, REGNUM, ITER) \ |
| for (hard_reg_set_iter_init (&(ITER), (SET), (MIN), &(REGNUM)); \ |
| hard_reg_set_iter_set (&(ITER), &(REGNUM)); \ |
| hard_reg_set_iter_next (&(ITER), &(REGNUM))) |
| |
| |
| /* Define some standard sets of registers. */ |
| |
| /* Indexed by hard register number, contains 1 for registers |
| that are being used for global register decls. |
| These must be exempt from ordinary flow analysis |
| and are also considered fixed. */ |
| |
| extern char global_regs[FIRST_PSEUDO_REGISTER]; |
| |
| struct simplifiable_subreg; |
| struct subreg_shape; |
| |
| struct simplifiable_subregs_hasher : nofree_ptr_hash <simplifiable_subreg> |
| { |
| typedef const subreg_shape *compare_type; |
| |
| static inline hashval_t hash (const simplifiable_subreg *); |
| static inline bool equal (const simplifiable_subreg *, const subreg_shape *); |
| }; |
| |
| struct target_hard_regs { |
| void finalize (); |
| |
| /* The set of registers that actually exist on the current target. */ |
| HARD_REG_SET x_accessible_reg_set; |
| |
| /* The set of registers that should be considered to be register |
| operands. It is a subset of x_accessible_reg_set. */ |
| HARD_REG_SET x_operand_reg_set; |
| |
| /* Indexed by hard register number, contains 1 for registers |
| that are fixed use (stack pointer, pc, frame pointer, etc.;. |
| These are the registers that cannot be used to allocate |
| a pseudo reg whose life does not cross calls. */ |
| char x_fixed_regs[FIRST_PSEUDO_REGISTER]; |
| |
| /* The same info as a HARD_REG_SET. */ |
| HARD_REG_SET x_fixed_reg_set; |
| |
| /* Indexed by hard register number, contains 1 for registers |
| that are fixed use or are clobbered by function calls. |
| These are the registers that cannot be used to allocate |
| a pseudo reg whose life crosses calls. */ |
| char x_call_used_regs[FIRST_PSEUDO_REGISTER]; |
| |
| char x_call_really_used_regs[FIRST_PSEUDO_REGISTER]; |
| |
| /* The same info as a HARD_REG_SET. */ |
| HARD_REG_SET x_call_used_reg_set; |
| |
| /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- or |
| a function value return register or TARGET_STRUCT_VALUE_RTX or |
| STATIC_CHAIN_REGNUM. These are the registers that cannot hold quantities |
| across calls even if we are willing to save and restore them. */ |
| HARD_REG_SET x_call_fixed_reg_set; |
| |
| /* Contains registers that are fixed use -- i.e. in fixed_reg_set -- but |
| only if they are not merely part of that set because they are global |
| regs. Global regs that are not otherwise fixed can still take part |
| in register allocation. */ |
| HARD_REG_SET x_fixed_nonglobal_reg_set; |
| |
| /* Contains 1 for registers that are set or clobbered by calls. */ |
| /* ??? Ideally, this would be just call_used_regs plus global_regs, but |
| for someone's bright idea to have call_used_regs strictly include |
| fixed_regs. Which leaves us guessing as to the set of fixed_regs |
| that are actually preserved. We know for sure that those associated |
| with the local stack frame are safe, but scant others. */ |
| HARD_REG_SET x_regs_invalidated_by_call; |
| |
| /* Call used hard registers which cannot be saved because there is no |
| insn for this. */ |
| HARD_REG_SET x_no_caller_save_reg_set; |
| |
| /* Table of register numbers in the order in which to try to use them. */ |
| int x_reg_alloc_order[FIRST_PSEUDO_REGISTER]; |
| |
| /* The inverse of reg_alloc_order. */ |
| int x_inv_reg_alloc_order[FIRST_PSEUDO_REGISTER]; |
| |
| /* For each reg class, a HARD_REG_SET saying which registers are in it. */ |
| HARD_REG_SET x_reg_class_contents[N_REG_CLASSES]; |
| |
| /* For each reg class, a boolean saying whether the class contains only |
| fixed registers. */ |
| bool x_class_only_fixed_regs[N_REG_CLASSES]; |
| |
| /* For each reg class, number of regs it contains. */ |
| unsigned int x_reg_class_size[N_REG_CLASSES]; |
| |
| /* For each reg class, table listing all the classes contained in it. */ |
| enum reg_class x_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* For each pair of reg classes, |
| a largest reg class contained in their union. */ |
| enum reg_class x_reg_class_subunion[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* For each pair of reg classes, |
| the smallest reg class that contains their union. */ |
| enum reg_class x_reg_class_superunion[N_REG_CLASSES][N_REG_CLASSES]; |
| |
| /* Vector indexed by hardware reg giving its name. */ |
| const char *x_reg_names[FIRST_PSEUDO_REGISTER]; |
| |
| /* Records which registers can form a particular subreg, with the subreg |
| being identified by its outer mode, inner mode and offset. */ |
| hash_table <simplifiable_subregs_hasher> *x_simplifiable_subregs; |
| }; |
| |
| extern struct target_hard_regs default_target_hard_regs; |
| #if SWITCHABLE_TARGET |
| extern struct target_hard_regs *this_target_hard_regs; |
| #else |
| #define this_target_hard_regs (&default_target_hard_regs) |
| #endif |
| |
| #define accessible_reg_set \ |
| (this_target_hard_regs->x_accessible_reg_set) |
| #define operand_reg_set \ |
| (this_target_hard_regs->x_operand_reg_set) |
| #define fixed_regs \ |
| (this_target_hard_regs->x_fixed_regs) |
| #define fixed_reg_set \ |
| (this_target_hard_regs->x_fixed_reg_set) |
| #define fixed_nonglobal_reg_set \ |
| (this_target_hard_regs->x_fixed_nonglobal_reg_set) |
| #define call_used_regs \ |
| (this_target_hard_regs->x_call_used_regs) |
| #define call_really_used_regs \ |
| (this_target_hard_regs->x_call_really_used_regs) |
| #define call_used_reg_set \ |
| (this_target_hard_regs->x_call_used_reg_set) |
| #define call_fixed_reg_set \ |
| (this_target_hard_regs->x_call_fixed_reg_set) |
| #define regs_invalidated_by_call \ |
| (this_target_hard_regs->x_regs_invalidated_by_call) |
| #define no_caller_save_reg_set \ |
| (this_target_hard_regs->x_no_caller_save_reg_set) |
| #define reg_alloc_order \ |
| (this_target_hard_regs->x_reg_alloc_order) |
| #define inv_reg_alloc_order \ |
| (this_target_hard_regs->x_inv_reg_alloc_order) |
| #define reg_class_contents \ |
| (this_target_hard_regs->x_reg_class_contents) |
| #define class_only_fixed_regs \ |
| (this_target_hard_regs->x_class_only_fixed_regs) |
| #define reg_class_size \ |
| (this_target_hard_regs->x_reg_class_size) |
| #define reg_class_subclasses \ |
| (this_target_hard_regs->x_reg_class_subclasses) |
| #define reg_class_subunion \ |
| (this_target_hard_regs->x_reg_class_subunion) |
| #define reg_class_superunion \ |
| (this_target_hard_regs->x_reg_class_superunion) |
| #define reg_names \ |
| (this_target_hard_regs->x_reg_names) |
| |
| /* Vector indexed by reg class giving its name. */ |
| |
| extern const char * reg_class_names[]; |
| |
| /* Given a hard REGN a FROM mode and a TO mode, return true if |
| REGN can change from mode FROM to mode TO. */ |
| #define REG_CAN_CHANGE_MODE_P(REGN, FROM, TO) \ |
| (targetm.can_change_mode_class (FROM, TO, REGNO_REG_CLASS (REGN))) |
| |
| #endif /* ! GCC_HARD_REG_SET_H */ |