blob: 1d2578f8c127747a74d1fc7c6088062d5d5bd484 [file] [log] [blame]
/* LRA (local register allocator) driver and LRA utilities.
Copyright (C) 2010-2019 Free Software Foundation, Inc.
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The Local Register Allocator (LRA) is a replacement of former
reload pass. It is focused to simplify code solving the reload
pass tasks, to make the code maintenance easier, and to implement new
perspective optimizations.
The major LRA design solutions are:
o division small manageable, separated sub-tasks
o reflection of all transformations and decisions in RTL as more
as possible
o insn constraints as a primary source of the info (minimizing
number of target-depended macros/hooks)
In brief LRA works by iterative insn process with the final goal is
to satisfy all insn and address constraints:
o New reload insns (in brief reloads) and reload pseudos might be
generated;
o Some pseudos might be spilled to assign hard registers to
new reload pseudos;
o Recalculating spilled pseudo values (rematerialization);
o Changing spilled pseudos to stack memory or their equivalences;
o Allocation stack memory changes the address displacement and
new iteration is needed.
Here is block diagram of LRA passes:
------------------------
--------------- | Undo inheritance for | ---------------
| Memory-memory | | spilled pseudos, | | New (and old) |
| move coalesce |<---| splits for pseudos got |<-- | pseudos |
--------------- | the same hard regs, | | assignment |
Start | | and optional reloads | ---------------
| | ------------------------ ^
V | ---------------- |
----------- V | Update virtual | |
| Remove |----> ------------>| register | |
| scratches | ^ | displacements | |
----------- | ---------------- |
| | |
| V New |
| ------------ pseudos -------------------
| |Constraints:| or insns | Inheritance/split |
| | RTL |--------->| transformations |
| | transfor- | | in EBB scope |
| substi- | mations | -------------------
| tutions ------------
| | No change
---------------- V
| Spilled pseudo | -------------------
| to memory |<----| Rematerialization |
| substitution | -------------------
----------------
| No susbtitions
V
-------------------------
| Hard regs substitution, |
| devirtalization, and |------> Finish
| restoring scratches got |
| memory |
-------------------------
To speed up the process:
o We process only insns affected by changes on previous
iterations;
o We don't use DFA-infrastructure because it results in much slower
compiler speed than a special IR described below does;
o We use a special insn representation for quick access to insn
info which is always *synchronized* with the current RTL;
o Insn IR is minimized by memory. It is divided on three parts:
o one specific for each insn in RTL (only operand locations);
o one common for all insns in RTL with the same insn code
(different operand attributes from machine descriptions);
o one oriented for maintenance of live info (list of pseudos).
o Pseudo data:
o all insns where the pseudo is referenced;
o live info (conflicting hard regs, live ranges, # of
references etc);
o data used for assigning (preferred hard regs, costs etc).
This file contains LRA driver, LRA utility functions and data, and
code for dealing with scratches. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "target.h"
#include "rtl.h"
#include "tree.h"
#include "predict.h"
#include "df.h"
#include "memmodel.h"
#include "tm_p.h"
#include "optabs.h"
#include "regs.h"
#include "ira.h"
#include "recog.h"
#include "expr.h"
#include "cfgrtl.h"
#include "cfgbuild.h"
#include "lra.h"
#include "lra-int.h"
#include "print-rtl.h"
/* Dump bitmap SET with TITLE and BB INDEX. */
void
lra_dump_bitmap_with_title (const char *title, bitmap set, int index)
{
unsigned int i;
int count;
bitmap_iterator bi;
static const int max_nums_on_line = 10;
if (bitmap_empty_p (set))
return;
fprintf (lra_dump_file, " %s %d:", title, index);
fprintf (lra_dump_file, "\n");
count = max_nums_on_line + 1;
EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
{
if (count > max_nums_on_line)
{
fprintf (lra_dump_file, "\n ");
count = 0;
}
fprintf (lra_dump_file, " %4u", i);
count++;
}
fprintf (lra_dump_file, "\n");
}
/* Hard registers currently not available for allocation. It can
changed after some hard registers become not eliminable. */
HARD_REG_SET lra_no_alloc_regs;
static int get_new_reg_value (void);
static void expand_reg_info (void);
static void invalidate_insn_recog_data (int);
static int get_insn_freq (rtx_insn *);
static void invalidate_insn_data_regno_info (lra_insn_recog_data_t,
rtx_insn *, int);
static void remove_scratches_1 (rtx_insn *);
/* Expand all regno related info needed for LRA. */
static void
expand_reg_data (int old)
{
resize_reg_info ();
expand_reg_info ();
ira_expand_reg_equiv ();
for (int i = (int) max_reg_num () - 1; i >= old; i--)
lra_change_class (i, ALL_REGS, " Set", true);
}
/* Create and return a new reg of ORIGINAL mode. If ORIGINAL is NULL
or of VOIDmode, use MD_MODE for the new reg. Initialize its
register class to RCLASS. Print message about assigning class
RCLASS containing new register name TITLE unless it is NULL. Use
attributes of ORIGINAL if it is a register. The created register
will have unique held value. */
rtx
lra_create_new_reg_with_unique_value (machine_mode md_mode, rtx original,
enum reg_class rclass, const char *title)
{
machine_mode mode;
rtx new_reg;
if (original == NULL_RTX || (mode = GET_MODE (original)) == VOIDmode)
mode = md_mode;
lra_assert (mode != VOIDmode);
new_reg = gen_reg_rtx (mode);
if (original == NULL_RTX || ! REG_P (original))
{
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating newreg=%i", REGNO (new_reg));
}
else
{
if (ORIGINAL_REGNO (original) >= FIRST_PSEUDO_REGISTER)
ORIGINAL_REGNO (new_reg) = ORIGINAL_REGNO (original);
REG_USERVAR_P (new_reg) = REG_USERVAR_P (original);
REG_POINTER (new_reg) = REG_POINTER (original);
REG_ATTRS (new_reg) = REG_ATTRS (original);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating newreg=%i from oldreg=%i",
REGNO (new_reg), REGNO (original));
}
if (lra_dump_file != NULL)
{
if (title != NULL)
fprintf (lra_dump_file, ", assigning class %s to%s%s r%d",
reg_class_names[rclass], *title == '\0' ? "" : " ",
title, REGNO (new_reg));
fprintf (lra_dump_file, "\n");
}
expand_reg_data (max_reg_num ());
setup_reg_classes (REGNO (new_reg), rclass, NO_REGS, rclass);
return new_reg;
}
/* Analogous to the previous function but also inherits value of
ORIGINAL. */
rtx
lra_create_new_reg (machine_mode md_mode, rtx original,
enum reg_class rclass, const char *title)
{
rtx new_reg;
new_reg
= lra_create_new_reg_with_unique_value (md_mode, original, rclass, title);
if (original != NULL_RTX && REG_P (original))
lra_assign_reg_val (REGNO (original), REGNO (new_reg));
return new_reg;
}
/* Set up for REGNO unique hold value. */
void
lra_set_regno_unique_value (int regno)
{
lra_reg_info[regno].val = get_new_reg_value ();
}
/* Invalidate INSN related info used by LRA. The info should never be
used after that. */
void
lra_invalidate_insn_data (rtx_insn *insn)
{
lra_invalidate_insn_regno_info (insn);
invalidate_insn_recog_data (INSN_UID (insn));
}
/* Mark INSN deleted and invalidate the insn related info used by
LRA. */
void
lra_set_insn_deleted (rtx_insn *insn)
{
lra_invalidate_insn_data (insn);
SET_INSN_DELETED (insn);
}
/* Delete an unneeded INSN and any previous insns who sole purpose is
loading data that is dead in INSN. */
void
lra_delete_dead_insn (rtx_insn *insn)
{
rtx_insn *prev = prev_real_insn (insn);
rtx prev_dest;
/* If the previous insn sets a register that dies in our insn,
delete it too. */
if (prev && GET_CODE (PATTERN (prev)) == SET
&& (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
&& reg_mentioned_p (prev_dest, PATTERN (insn))
&& find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
&& ! side_effects_p (SET_SRC (PATTERN (prev))))
lra_delete_dead_insn (prev);
lra_set_insn_deleted (insn);
}
/* Emit insn x = y + z. Return NULL if we failed to do it.
Otherwise, return the insn. We don't use gen_add3_insn as it might
clobber CC. */
static rtx_insn *
emit_add3_insn (rtx x, rtx y, rtx z)
{
rtx_insn *last;
last = get_last_insn ();
if (have_addptr3_insn (x, y, z))
{
rtx_insn *insn = gen_addptr3_insn (x, y, z);
/* If the target provides an "addptr" pattern it hopefully does
for a reason. So falling back to the normal add would be
a bug. */
lra_assert (insn != NULL_RTX);
emit_insn (insn);
return insn;
}
rtx_insn *insn = emit_insn (gen_rtx_SET (x, gen_rtx_PLUS (GET_MODE (y),
y, z)));
if (recog_memoized (insn) < 0)
{
delete_insns_since (last);
insn = NULL;
}
return insn;
}
/* Emit insn x = x + y. Return the insn. We use gen_add2_insn as the
last resort. */
static rtx_insn *
emit_add2_insn (rtx x, rtx y)
{
rtx_insn *insn = emit_add3_insn (x, x, y);
if (insn == NULL_RTX)
{
insn = gen_add2_insn (x, y);
if (insn != NULL_RTX)
emit_insn (insn);
}
return insn;
}
/* Target checks operands through operand predicates to recognize an
insn. We should have a special precaution to generate add insns
which are frequent results of elimination.
Emit insns for x = y + z. X can be used to store intermediate
values and should be not in Y and Z when we use X to store an
intermediate value. Y + Z should form [base] [+ index[ * scale]] [
+ disp] where base and index are registers, disp and scale are
constants. Y should contain base if it is present, Z should
contain disp if any. index[*scale] can be part of Y or Z. */
void
lra_emit_add (rtx x, rtx y, rtx z)
{
int old;
rtx_insn *last;
rtx a1, a2, base, index, disp, scale, index_scale;
bool ok_p;
rtx_insn *add3_insn = emit_add3_insn (x, y, z);
old = max_reg_num ();
if (add3_insn != NULL)
;
else
{
disp = a2 = NULL_RTX;
if (GET_CODE (y) == PLUS)
{
a1 = XEXP (y, 0);
a2 = XEXP (y, 1);
disp = z;
}
else
{
a1 = y;
if (CONSTANT_P (z))
disp = z;
else
a2 = z;
}
index_scale = scale = NULL_RTX;
if (GET_CODE (a1) == MULT)
{
index_scale = a1;
index = XEXP (a1, 0);
scale = XEXP (a1, 1);
base = a2;
}
else if (a2 != NULL_RTX && GET_CODE (a2) == MULT)
{
index_scale = a2;
index = XEXP (a2, 0);
scale = XEXP (a2, 1);
base = a1;
}
else
{
base = a1;
index = a2;
}
if ((base != NULL_RTX && ! (REG_P (base) || GET_CODE (base) == SUBREG))
|| (index != NULL_RTX
&& ! (REG_P (index) || GET_CODE (index) == SUBREG))
|| (disp != NULL_RTX && ! CONSTANT_P (disp))
|| (scale != NULL_RTX && ! CONSTANT_P (scale)))
{
/* Probably we have no 3 op add. Last chance is to use 2-op
add insn. To succeed, don't move Z to X as an address
segment always comes in Y. Otherwise, we might fail when
adding the address segment to register. */
lra_assert (x != y && x != z);
emit_move_insn (x, y);
rtx_insn *insn = emit_add2_insn (x, z);
lra_assert (insn != NULL_RTX);
}
else
{
if (index_scale == NULL_RTX)
index_scale = index;
if (disp == NULL_RTX)
{
/* Generate x = index_scale; x = x + base. */
lra_assert (index_scale != NULL_RTX && base != NULL_RTX);
emit_move_insn (x, index_scale);
rtx_insn *insn = emit_add2_insn (x, base);
lra_assert (insn != NULL_RTX);
}
else if (scale == NULL_RTX)
{
/* Try x = base + disp. */
lra_assert (base != NULL_RTX);
last = get_last_insn ();
rtx_insn *move_insn =
emit_move_insn (x, gen_rtx_PLUS (GET_MODE (base), base, disp));
if (recog_memoized (move_insn) < 0)
{
delete_insns_since (last);
/* Generate x = disp; x = x + base. */
emit_move_insn (x, disp);
rtx_insn *add2_insn = emit_add2_insn (x, base);
lra_assert (add2_insn != NULL_RTX);
}
/* Generate x = x + index. */
if (index != NULL_RTX)
{
rtx_insn *insn = emit_add2_insn (x, index);
lra_assert (insn != NULL_RTX);
}
}
else
{
/* Try x = index_scale; x = x + disp; x = x + base. */
last = get_last_insn ();
rtx_insn *move_insn = emit_move_insn (x, index_scale);
ok_p = false;
if (recog_memoized (move_insn) >= 0)
{
rtx_insn *insn = emit_add2_insn (x, disp);
if (insn != NULL_RTX)
{
if (base == NULL_RTX)
ok_p = true;
else
{
insn = emit_add2_insn (x, base);
if (insn != NULL_RTX)
ok_p = true;
}
}
}
if (! ok_p)
{
rtx_insn *insn;
delete_insns_since (last);
/* Generate x = disp; x = x + base; x = x + index_scale. */
emit_move_insn (x, disp);
if (base != NULL_RTX)
{
insn = emit_add2_insn (x, base);
lra_assert (insn != NULL_RTX);
}
insn = emit_add2_insn (x, index_scale);
lra_assert (insn != NULL_RTX);
}
}
}
}
/* Functions emit_... can create pseudos -- so expand the pseudo
data. */
if (old != max_reg_num ())
expand_reg_data (old);
}
/* The number of emitted reload insns so far. */
int lra_curr_reload_num;
/* Emit x := y, processing special case when y = u + v or y = u + v *
scale + w through emit_add (Y can be an address which is base +
index reg * scale + displacement in general case). X may be used
as intermediate result therefore it should be not in Y. */
void
lra_emit_move (rtx x, rtx y)
{
int old;
if (GET_CODE (y) != PLUS)
{
if (rtx_equal_p (x, y))
return;
old = max_reg_num ();
rtx_insn *insn = emit_move_insn (x, y);
/* The move pattern may require scratch registers, so convert them
into real registers now. */
if (insn != NULL_RTX)
remove_scratches_1 (insn);
if (REG_P (x))
lra_reg_info[ORIGINAL_REGNO (x)].last_reload = ++lra_curr_reload_num;
/* Function emit_move can create pseudos -- so expand the pseudo
data. */
if (old != max_reg_num ())
expand_reg_data (old);
return;
}
lra_emit_add (x, XEXP (y, 0), XEXP (y, 1));
}
/* Update insn operands which are duplication of operands whose
numbers are in array of NOPS (with end marker -1). The insn is
represented by its LRA internal representation ID. */
void
lra_update_dups (lra_insn_recog_data_t id, signed char *nops)
{
int i, j, nop;
struct lra_static_insn_data *static_id = id->insn_static_data;
for (i = 0; i < static_id->n_dups; i++)
for (j = 0; (nop = nops[j]) >= 0; j++)
if (static_id->dup_num[i] == nop)
*id->dup_loc[i] = *id->operand_loc[nop];
}
/* This page contains code dealing with info about registers in the
insns. */
/* Pools for insn reg info. */
object_allocator<lra_insn_reg> lra_insn_reg_pool ("insn regs");
/* Create LRA insn related info about a reference to REGNO in INSN
with TYPE (in/out/inout), biggest reference mode MODE, flag that it
is reference through subreg (SUBREG_P), flag that is early
clobbered in the insn (EARLY_CLOBBER), and reference to the next
insn reg info (NEXT). If REGNO can be early clobbered,
alternatives in which it can be early clobbered are given by
EARLY_CLOBBER_ALTS. CLOBBER_HIGH marks if reference is a clobber
high. */
static struct lra_insn_reg *
new_insn_reg (rtx_insn *insn, int regno, enum op_type type,
machine_mode mode,
bool subreg_p, bool early_clobber,
alternative_mask early_clobber_alts,
struct lra_insn_reg *next, bool clobber_high)
{
lra_insn_reg *ir = lra_insn_reg_pool.allocate ();
ir->type = type;
ir->biggest_mode = mode;
if (NONDEBUG_INSN_P (insn)
&& partial_subreg_p (lra_reg_info[regno].biggest_mode, mode))
lra_reg_info[regno].biggest_mode = mode;
ir->subreg_p = subreg_p;
ir->early_clobber = early_clobber;
ir->early_clobber_alts = early_clobber_alts;
ir->clobber_high = clobber_high;
ir->regno = regno;
ir->next = next;
return ir;
}
/* Free insn reg info list IR. */
static void
free_insn_regs (struct lra_insn_reg *ir)
{
struct lra_insn_reg *next_ir;
for (; ir != NULL; ir = next_ir)
{
next_ir = ir->next;
lra_insn_reg_pool.remove (ir);
}
}
/* Finish pool for insn reg info. */
static void
finish_insn_regs (void)
{
lra_insn_reg_pool.release ();
}
/* This page contains code dealing LRA insn info (or in other words
LRA internal insn representation). */
/* Map INSN_CODE -> the static insn data. This info is valid during
all translation unit. */
struct lra_static_insn_data *insn_code_data[NUM_INSN_CODES];
/* Debug insns are represented as a special insn with one input
operand which is RTL expression in var_location. */
/* The following data are used as static insn operand data for all
debug insns. If structure lra_operand_data is changed, the
initializer should be changed too. */
static struct lra_operand_data debug_operand_data =
{
NULL, /* alternative */
0, /* early_clobber_alts */
E_VOIDmode, /* We are not interesting in the operand mode. */
OP_IN,
0, 0, 0, 0
};
/* The following data are used as static insn data for all debug
bind insns. If structure lra_static_insn_data is changed, the
initializer should be changed too. */
static struct lra_static_insn_data debug_bind_static_data =
{
&debug_operand_data,
0, /* Duplication operands #. */
-1, /* Commutative operand #. */
1, /* Operands #. There is only one operand which is debug RTL
expression. */
0, /* Duplications #. */
0, /* Alternatives #. We are not interesting in alternatives
because we does not proceed debug_insns for reloads. */
NULL, /* Hard registers referenced in machine description. */
NULL /* Descriptions of operands in alternatives. */
};
/* The following data are used as static insn data for all debug
marker insns. If structure lra_static_insn_data is changed, the
initializer should be changed too. */
static struct lra_static_insn_data debug_marker_static_data =
{
&debug_operand_data,
0, /* Duplication operands #. */
-1, /* Commutative operand #. */
0, /* Operands #. There isn't any operand. */
0, /* Duplications #. */
0, /* Alternatives #. We are not interesting in alternatives
because we does not proceed debug_insns for reloads. */
NULL, /* Hard registers referenced in machine description. */
NULL /* Descriptions of operands in alternatives. */
};
/* Called once per compiler work to initialize some LRA data related
to insns. */
static void
init_insn_code_data_once (void)
{
memset (insn_code_data, 0, sizeof (insn_code_data));
}
/* Called once per compiler work to finalize some LRA data related to
insns. */
static void
finish_insn_code_data_once (void)
{
for (unsigned int i = 0; i < NUM_INSN_CODES; i++)
{
if (insn_code_data[i] != NULL)
free (insn_code_data[i]);
}
}
/* Return static insn data, allocate and setup if necessary. Although
dup_num is static data (it depends only on icode), to set it up we
need to extract insn first. So recog_data should be valid for
normal insn (ICODE >= 0) before the call. */
static struct lra_static_insn_data *
get_static_insn_data (int icode, int nop, int ndup, int nalt)
{
struct lra_static_insn_data *data;
size_t n_bytes;
lra_assert (icode < (int) NUM_INSN_CODES);
if (icode >= 0 && (data = insn_code_data[icode]) != NULL)
return data;
lra_assert (nop >= 0 && ndup >= 0 && nalt >= 0);
n_bytes = sizeof (struct lra_static_insn_data)
+ sizeof (struct lra_operand_data) * nop
+ sizeof (int) * ndup;
data = XNEWVAR (struct lra_static_insn_data, n_bytes);
data->operand_alternative = NULL;
data->n_operands = nop;
data->n_dups = ndup;
data->n_alternatives = nalt;
data->operand = ((struct lra_operand_data *)
((char *) data + sizeof (struct lra_static_insn_data)));
data->dup_num = ((int *) ((char *) data->operand
+ sizeof (struct lra_operand_data) * nop));
if (icode >= 0)
{
int i;
insn_code_data[icode] = data;
for (i = 0; i < nop; i++)
{
data->operand[i].constraint
= insn_data[icode].operand[i].constraint;
data->operand[i].mode = insn_data[icode].operand[i].mode;
data->operand[i].strict_low = insn_data[icode].operand[i].strict_low;
data->operand[i].is_operator
= insn_data[icode].operand[i].is_operator;
data->operand[i].type
= (data->operand[i].constraint[0] == '=' ? OP_OUT
: data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN);
data->operand[i].is_address = false;
}
for (i = 0; i < ndup; i++)
data->dup_num[i] = recog_data.dup_num[i];
}
return data;
}
/* The current length of the following array. */
int lra_insn_recog_data_len;
/* Map INSN_UID -> the insn recog data (NULL if unknown). */
lra_insn_recog_data_t *lra_insn_recog_data;
/* Initialize LRA data about insns. */
static void
init_insn_recog_data (void)
{
lra_insn_recog_data_len = 0;
lra_insn_recog_data = NULL;
}
/* Expand, if necessary, LRA data about insns. */
static void
check_and_expand_insn_recog_data (int index)
{
int i, old;
if (lra_insn_recog_data_len > index)
return;
old = lra_insn_recog_data_len;
lra_insn_recog_data_len = index * 3 / 2 + 1;
lra_insn_recog_data = XRESIZEVEC (lra_insn_recog_data_t,
lra_insn_recog_data,
lra_insn_recog_data_len);
for (i = old; i < lra_insn_recog_data_len; i++)
lra_insn_recog_data[i] = NULL;
}
/* Finish LRA DATA about insn. */
static void
free_insn_recog_data (lra_insn_recog_data_t data)
{
if (data->operand_loc != NULL)
free (data->operand_loc);
if (data->dup_loc != NULL)
free (data->dup_loc);
if (data->arg_hard_regs != NULL)
free (data->arg_hard_regs);
if (data->icode < 0 && NONDEBUG_INSN_P (data->insn))
{
if (data->insn_static_data->operand_alternative != NULL)
free (const_cast <operand_alternative *>
(data->insn_static_data->operand_alternative));
free_insn_regs (data->insn_static_data->hard_regs);
free (data->insn_static_data);
}
free_insn_regs (data->regs);
data->regs = NULL;
free (data);
}
/* Pools for copies. */
static object_allocator<lra_copy> lra_copy_pool ("lra copies");
/* Finish LRA data about all insns. */
static void
finish_insn_recog_data (void)
{
int i;
lra_insn_recog_data_t data;
for (i = 0; i < lra_insn_recog_data_len; i++)
if ((data = lra_insn_recog_data[i]) != NULL)
free_insn_recog_data (data);
finish_insn_regs ();
lra_copy_pool.release ();
lra_insn_reg_pool.release ();
free (lra_insn_recog_data);
}
/* Setup info about operands in alternatives of LRA DATA of insn. */
static void
setup_operand_alternative (lra_insn_recog_data_t data,
const operand_alternative *op_alt)
{
int i, j, nop, nalt;
int icode = data->icode;
struct lra_static_insn_data *static_data = data->insn_static_data;
static_data->commutative = -1;
nop = static_data->n_operands;
nalt = static_data->n_alternatives;
static_data->operand_alternative = op_alt;
for (i = 0; i < nop; i++)
{
static_data->operand[i].early_clobber_alts = 0;
static_data->operand[i].early_clobber = false;
static_data->operand[i].is_address = false;
if (static_data->operand[i].constraint[0] == '%')
{
/* We currently only support one commutative pair of operands. */
if (static_data->commutative < 0)
static_data->commutative = i;
else
lra_assert (icode < 0); /* Asm */
/* The last operand should not be marked commutative. */
lra_assert (i != nop - 1);
}
}
for (j = 0; j < nalt; j++)
for (i = 0; i < nop; i++, op_alt++)
{
static_data->operand[i].early_clobber |= op_alt->earlyclobber;
if (op_alt->earlyclobber)
static_data->operand[i].early_clobber_alts |= (alternative_mask) 1 << j;
static_data->operand[i].is_address |= op_alt->is_address;
}
}
/* Recursively process X and collect info about registers, which are
not the insn operands, in X with TYPE (in/out/inout) and flag that
it is early clobbered in the insn (EARLY_CLOBBER) and add the info
to LIST. X is a part of insn given by DATA. Return the result
list. CLOBBER_HIGH marks if X is a clobber high. */
static struct lra_insn_reg *
collect_non_operand_hard_regs (rtx_insn *insn, rtx *x,
lra_insn_recog_data_t data,
struct lra_insn_reg *list,
enum op_type type, bool early_clobber,
bool clobber_high)
{
int i, j, regno, last;
bool subreg_p;
machine_mode mode;
struct lra_insn_reg *curr;
rtx op = *x;
enum rtx_code code = GET_CODE (op);
const char *fmt = GET_RTX_FORMAT (code);
for (i = 0; i < data->insn_static_data->n_operands; i++)
if (! data->insn_static_data->operand[i].is_operator
&& x == data->operand_loc[i])
/* It is an operand loc. Stop here. */
return list;
for (i = 0; i < data->insn_static_data->n_dups; i++)
if (x == data->dup_loc[i])
/* It is a dup loc. Stop here. */
return list;
mode = GET_MODE (op);
subreg_p = false;
if (code == SUBREG)
{
mode = wider_subreg_mode (op);
if (read_modify_subreg_p (op))
subreg_p = true;
op = SUBREG_REG (op);
code = GET_CODE (op);
}
if (REG_P (op))
{
if ((regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER)
return list;
/* Process all regs even unallocatable ones as we need info
about all regs for rematerialization pass. */
for (last = end_hard_regno (mode, regno); regno < last; regno++)
{
for (curr = list; curr != NULL; curr = curr->next)
if (curr->regno == regno && curr->subreg_p == subreg_p
&& curr->biggest_mode == mode)
{
if (curr->type != type)
curr->type = OP_INOUT;
if (early_clobber)
{
curr->early_clobber = true;
curr->early_clobber_alts = ALL_ALTERNATIVES;
}
break;
}
if (curr == NULL)
{
/* This is a new hard regno or the info cannot be
integrated into the found structure. */
#ifdef STACK_REGS
early_clobber
= (early_clobber
/* This clobber is to inform popping floating
point stack only. */
&& ! (FIRST_STACK_REG <= regno
&& regno <= LAST_STACK_REG));
#endif
list = new_insn_reg (data->insn, regno, type, mode, subreg_p,
early_clobber,
early_clobber ? ALL_ALTERNATIVES : 0, list,
clobber_high);
}
}
return list;
}
switch (code)
{
case SET:
list = collect_non_operand_hard_regs (insn, &SET_DEST (op), data,
list, OP_OUT, false, false);
list = collect_non_operand_hard_regs (insn, &SET_SRC (op), data,
list, OP_IN, false, false);
break;
case CLOBBER:
/* We treat clobber of non-operand hard registers as early clobber. */
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_OUT, true, false);
break;
case CLOBBER_HIGH:
/* Clobber high should always span exactly one register. */
gcc_assert (REG_NREGS (XEXP (op, 0)) == 1);
/* We treat clobber of non-operand hard registers as early clobber. */
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_OUT, true, true);
break;
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_INOUT, false, false);
break;
case PRE_MODIFY: case POST_MODIFY:
list = collect_non_operand_hard_regs (insn, &XEXP (op, 0), data,
list, OP_INOUT, false, false);
list = collect_non_operand_hard_regs (insn, &XEXP (op, 1), data,
list, OP_IN, false, false);
break;
default:
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
list = collect_non_operand_hard_regs (insn, &XEXP (op, i), data,
list, OP_IN, false, false);
else if (fmt[i] == 'E')
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
list = collect_non_operand_hard_regs (insn, &XVECEXP (op, i, j),
data, list, OP_IN, false,
false);
}
}
return list;
}
/* Set up and return info about INSN. Set up the info if it is not set up
yet. */
lra_insn_recog_data_t
lra_set_insn_recog_data (rtx_insn *insn)
{
lra_insn_recog_data_t data;
int i, n, icode;
rtx **locs;
unsigned int uid = INSN_UID (insn);
struct lra_static_insn_data *insn_static_data;
check_and_expand_insn_recog_data (uid);
if (DEBUG_INSN_P (insn))
icode = -1;
else
{
icode = INSN_CODE (insn);
if (icode < 0)
/* It might be a new simple insn which is not recognized yet. */
INSN_CODE (insn) = icode = recog_memoized (insn);
}
data = XNEW (struct lra_insn_recog_data);
lra_insn_recog_data[uid] = data;
data->insn = insn;
data->used_insn_alternative = LRA_UNKNOWN_ALT;
data->icode = icode;
data->regs = NULL;
if (DEBUG_INSN_P (insn))
{
data->dup_loc = NULL;
data->arg_hard_regs = NULL;
data->preferred_alternatives = ALL_ALTERNATIVES;
if (DEBUG_BIND_INSN_P (insn))
{
data->insn_static_data = &debug_bind_static_data;
data->operand_loc = XNEWVEC (rtx *, 1);
data->operand_loc[0] = &INSN_VAR_LOCATION_LOC (insn);
}
else if (DEBUG_MARKER_INSN_P (insn))
{
data->insn_static_data = &debug_marker_static_data;
data->operand_loc = NULL;
}
return data;
}
if (icode < 0)
{
int nop, nalt;
machine_mode operand_mode[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
nop = asm_noperands (PATTERN (insn));
data->operand_loc = data->dup_loc = NULL;
nalt = 1;
if (nop < 0)
{
/* It is a special insn like USE or CLOBBER. We should
recognize any regular insn otherwise LRA can do nothing
with this insn. */
gcc_assert (GET_CODE (PATTERN (insn)) == USE
|| GET_CODE (PATTERN (insn)) == CLOBBER
|| GET_CODE (PATTERN (insn)) == ASM_INPUT);
data->insn_static_data = insn_static_data
= get_static_insn_data (-1, 0, 0, nalt);
}
else
{
/* expand_asm_operands makes sure there aren't too many
operands. */
lra_assert (nop <= MAX_RECOG_OPERANDS);
if (nop != 0)
data->operand_loc = XNEWVEC (rtx *, nop);
/* Now get the operand values and constraints out of the
insn. */
decode_asm_operands (PATTERN (insn), NULL,
data->operand_loc,
constraints, operand_mode, NULL);
if (nop > 0)
{
const char *p = recog_data.constraints[0];
for (p = constraints[0]; *p; p++)
nalt += *p == ',';
}
data->insn_static_data = insn_static_data
= get_static_insn_data (-1, nop, 0, nalt);
for (i = 0; i < nop; i++)
{
insn_static_data->operand[i].mode = operand_mode[i];
insn_static_data->operand[i].constraint = constraints[i];
insn_static_data->operand[i].strict_low = false;
insn_static_data->operand[i].is_operator = false;
insn_static_data->operand[i].is_address = false;
}
}
for (i = 0; i < insn_static_data->n_operands; i++)
insn_static_data->operand[i].type
= (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
: insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN);
data->preferred_alternatives = ALL_ALTERNATIVES;
if (nop > 0)
{
operand_alternative *op_alt = XCNEWVEC (operand_alternative,
nalt * nop);
preprocess_constraints (nop, nalt, constraints, op_alt,
data->operand_loc);
setup_operand_alternative (data, op_alt);
}
}
else
{
insn_extract (insn);
data->insn_static_data = insn_static_data
= get_static_insn_data (icode, insn_data[icode].n_operands,
insn_data[icode].n_dups,
insn_data[icode].n_alternatives);
n = insn_static_data->n_operands;
if (n == 0)
locs = NULL;
else
{
locs = XNEWVEC (rtx *, n);
memcpy (locs, recog_data.operand_loc, n * sizeof (rtx *));
}
data->operand_loc = locs;
n = insn_static_data->n_dups;
if (n == 0)
locs = NULL;
else
{
locs = XNEWVEC (rtx *, n);
memcpy (locs, recog_data.dup_loc, n * sizeof (rtx *));
}
data->dup_loc = locs;
data->preferred_alternatives = get_preferred_alternatives (insn);
const operand_alternative *op_alt = preprocess_insn_constraints (icode);
if (!insn_static_data->operand_alternative)
setup_operand_alternative (data, op_alt);
else if (op_alt != insn_static_data->operand_alternative)
insn_static_data->operand_alternative = op_alt;
}
if (GET_CODE (PATTERN (insn)) == CLOBBER || GET_CODE (PATTERN (insn)) == USE)
insn_static_data->hard_regs = NULL;
else
insn_static_data->hard_regs
= collect_non_operand_hard_regs (insn, &PATTERN (insn), data,
NULL, OP_IN, false, false);
data->arg_hard_regs = NULL;
if (CALL_P (insn))
{
bool use_p;
rtx link;
int n_hard_regs, regno, arg_hard_regs[FIRST_PSEUDO_REGISTER];
n_hard_regs = 0;
/* Finding implicit hard register usage. We believe it will be
not changed whatever transformations are used. Call insns
are such example. */
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link != NULL_RTX;
link = XEXP (link, 1))
if (((use_p = GET_CODE (XEXP (link, 0)) == USE)
|| GET_CODE (XEXP (link, 0)) == CLOBBER)
&& REG_P (XEXP (XEXP (link, 0), 0)))
{
regno = REGNO (XEXP (XEXP (link, 0), 0));
lra_assert (regno < FIRST_PSEUDO_REGISTER);
/* It is an argument register. */
for (i = REG_NREGS (XEXP (XEXP (link, 0), 0)) - 1; i >= 0; i--)
arg_hard_regs[n_hard_regs++]
= regno + i + (use_p ? 0 : FIRST_PSEUDO_REGISTER);
}
else if (GET_CODE (XEXP (link, 0)) == CLOBBER_HIGH)
/* We could support CLOBBER_HIGH and treat it in the same way as
HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that yet. */
gcc_unreachable ();
if (n_hard_regs != 0)
{
arg_hard_regs[n_hard_regs++] = -1;
data->arg_hard_regs = XNEWVEC (int, n_hard_regs);
memcpy (data->arg_hard_regs, arg_hard_regs,
sizeof (int) * n_hard_regs);
}
}
/* Some output operand can be recognized only from the context not
from the constraints which are empty in this case. Call insn may
contain a hard register in set destination with empty constraint
and extract_insn treats them as an input. */
for (i = 0; i < insn_static_data->n_operands; i++)
{
int j;
rtx pat, set;
struct lra_operand_data *operand = &insn_static_data->operand[i];
/* ??? Should we treat 'X' the same way. It looks to me that
'X' means anything and empty constraint means we do not
care. */
if (operand->type != OP_IN || *operand->constraint != '\0'
|| operand->is_operator)
continue;
pat = PATTERN (insn);
if (GET_CODE (pat) == SET)
{
if (data->operand_loc[i] != &SET_DEST (pat))
continue;
}
else if (GET_CODE (pat) == PARALLEL)
{
for (j = XVECLEN (pat, 0) - 1; j >= 0; j--)
{
set = XVECEXP (PATTERN (insn), 0, j);
if (GET_CODE (set) == SET
&& &SET_DEST (set) == data->operand_loc[i])
break;
}
if (j < 0)
continue;
}
else
continue;
operand->type = OP_OUT;
}
return data;
}
/* Return info about insn give by UID. The info should be already set
up. */
static lra_insn_recog_data_t
get_insn_recog_data_by_uid (int uid)
{
lra_insn_recog_data_t data;
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
return data;
}
/* Invalidate all info about insn given by its UID. */
static void
invalidate_insn_recog_data (int uid)
{
lra_insn_recog_data_t data;
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
free_insn_recog_data (data);
lra_insn_recog_data[uid] = NULL;
}
/* Update all the insn info about INSN. It is usually called when
something in the insn was changed. Return the updated info. */
lra_insn_recog_data_t
lra_update_insn_recog_data (rtx_insn *insn)
{
lra_insn_recog_data_t data;
int n;
unsigned int uid = INSN_UID (insn);
struct lra_static_insn_data *insn_static_data;
poly_int64 sp_offset = 0;
check_and_expand_insn_recog_data (uid);
if ((data = lra_insn_recog_data[uid]) != NULL
&& data->icode != INSN_CODE (insn))
{
sp_offset = data->sp_offset;
invalidate_insn_data_regno_info (data, insn, get_insn_freq (insn));
invalidate_insn_recog_data (uid);
data = NULL;
}
if (data == NULL)
{
data = lra_get_insn_recog_data (insn);
/* Initiate or restore SP offset. */
data->sp_offset = sp_offset;
return data;
}
insn_static_data = data->insn_static_data;
data->used_insn_alternative = LRA_UNKNOWN_ALT;
if (DEBUG_INSN_P (insn))
return data;
if (data->icode < 0)
{
int nop;
machine_mode operand_mode[MAX_RECOG_OPERANDS];
const char *constraints[MAX_RECOG_OPERANDS];
nop = asm_noperands (PATTERN (insn));
if (nop >= 0)
{
lra_assert (nop == data->insn_static_data->n_operands);
/* Now get the operand values and constraints out of the
insn. */
decode_asm_operands (PATTERN (insn), NULL,
data->operand_loc,
constraints, operand_mode, NULL);
if (flag_checking)
for (int i = 0; i < nop; i++)
lra_assert
(insn_static_data->operand[i].mode == operand_mode[i]
&& insn_static_data->operand[i].constraint == constraints[i]
&& ! insn_static_data->operand[i].is_operator);
}
if (flag_checking)
for (int i = 0; i < insn_static_data->n_operands; i++)
lra_assert
(insn_static_data->operand[i].type
== (insn_static_data->operand[i].constraint[0] == '=' ? OP_OUT
: insn_static_data->operand[i].constraint[0] == '+' ? OP_INOUT
: OP_IN));
}
else
{
insn_extract (insn);
n = insn_static_data->n_operands;
if (n != 0)
memcpy (data->operand_loc, recog_data.operand_loc, n * sizeof (rtx *));
n = insn_static_data->n_dups;
if (n != 0)
memcpy (data->dup_loc, recog_data.dup_loc, n * sizeof (rtx *));
lra_assert (check_bool_attrs (insn));
}
return data;
}
/* Set up that INSN is using alternative ALT now. */
void
lra_set_used_insn_alternative (rtx_insn *insn, int alt)
{
lra_insn_recog_data_t data;
data = lra_get_insn_recog_data (insn);
data->used_insn_alternative = alt;
}
/* Set up that insn with UID is using alternative ALT now. The insn
info should be already set up. */
void
lra_set_used_insn_alternative_by_uid (int uid, int alt)
{
lra_insn_recog_data_t data;
check_and_expand_insn_recog_data (uid);
data = lra_insn_recog_data[uid];
lra_assert (data != NULL);
data->used_insn_alternative = alt;
}
/* This page contains code dealing with common register info and
pseudo copies. */
/* The size of the following array. */
static int reg_info_size;
/* Common info about each register. */
struct lra_reg *lra_reg_info;
HARD_REG_SET hard_regs_spilled_into;
/* Last register value. */
static int last_reg_value;
/* Return new register value. */
static int
get_new_reg_value (void)
{
return ++last_reg_value;
}
/* Vec referring to pseudo copies. */
static vec<lra_copy_t> copy_vec;
/* Initialize I-th element of lra_reg_info. */
static inline void
initialize_lra_reg_info_element (int i)
{
bitmap_initialize (&lra_reg_info[i].insn_bitmap, &reg_obstack);
#ifdef STACK_REGS
lra_reg_info[i].no_stack_p = false;
#endif
CLEAR_HARD_REG_SET (lra_reg_info[i].conflict_hard_regs);
CLEAR_HARD_REG_SET (lra_reg_info[i].actual_call_used_reg_set);
lra_reg_info[i].preferred_hard_regno1 = -1;
lra_reg_info[i].preferred_hard_regno2 = -1;
lra_reg_info[i].preferred_hard_regno_profit1 = 0;
lra_reg_info[i].preferred_hard_regno_profit2 = 0;
lra_reg_info[i].biggest_mode = VOIDmode;
lra_reg_info[i].live_ranges = NULL;
lra_reg_info[i].nrefs = lra_reg_info[i].freq = 0;
lra_reg_info[i].last_reload = 0;
lra_reg_info[i].restore_rtx = NULL_RTX;
lra_reg_info[i].val = get_new_reg_value ();
lra_reg_info[i].offset = 0;
lra_reg_info[i].copies = NULL;
lra_reg_info[i].call_insn = NULL;
}
/* Initialize common reg info and copies. */
static void
init_reg_info (void)
{
int i;
last_reg_value = 0;
reg_info_size = max_reg_num () * 3 / 2 + 1;
lra_reg_info = XNEWVEC (struct lra_reg, reg_info_size);
for (i = 0; i < reg_info_size; i++)
initialize_lra_reg_info_element (i);
copy_vec.truncate (0);
CLEAR_HARD_REG_SET (hard_regs_spilled_into);
}
/* Finish common reg info and copies. */
static void
finish_reg_info (void)
{
int i;
for (i = 0; i < reg_info_size; i++)
bitmap_clear (&lra_reg_info[i].insn_bitmap);
free (lra_reg_info);
reg_info_size = 0;
}
/* Expand common reg info if it is necessary. */
static void
expand_reg_info (void)
{
int i, old = reg_info_size;
if (reg_info_size > max_reg_num ())
return;
reg_info_size = max_reg_num () * 3 / 2 + 1;
lra_reg_info = XRESIZEVEC (struct lra_reg, lra_reg_info, reg_info_size);
for (i = old; i < reg_info_size; i++)
initialize_lra_reg_info_element (i);
}
/* Free all copies. */
void
lra_free_copies (void)
{
lra_copy_t cp;
while (copy_vec.length () != 0)
{
cp = copy_vec.pop ();
lra_reg_info[cp->regno1].copies = lra_reg_info[cp->regno2].copies = NULL;
lra_copy_pool.remove (cp);
}
}
/* Create copy of two pseudos REGNO1 and REGNO2. The copy execution
frequency is FREQ. */
void
lra_create_copy (int regno1, int regno2, int freq)
{
bool regno1_dest_p;
lra_copy_t cp;
lra_assert (regno1 != regno2);
regno1_dest_p = true;
if (regno1 > regno2)
{
std::swap (regno1, regno2);
regno1_dest_p = false;
}
cp = lra_copy_pool.allocate ();
copy_vec.safe_push (cp);
cp->regno1_dest_p = regno1_dest_p;
cp->freq = freq;
cp->regno1 = regno1;
cp->regno2 = regno2;
cp->regno1_next = lra_reg_info[regno1].copies;
lra_reg_info[regno1].copies = cp;
cp->regno2_next = lra_reg_info[regno2].copies;
lra_reg_info[regno2].copies = cp;
if (lra_dump_file != NULL)
fprintf (lra_dump_file, " Creating copy r%d%sr%d@%d\n",
regno1, regno1_dest_p ? "<-" : "->", regno2, freq);
}
/* Return N-th (0, 1, ...) copy. If there is no copy, return
NULL. */
lra_copy_t
lra_get_copy (int n)
{
if (n >= (int) copy_vec.length ())
return NULL;
return copy_vec[n];
}
/* This page contains code dealing with info about registers in
insns. */
/* Process X of INSN recursively and add info (operand type is
given by TYPE, flag of that it is early clobber is EARLY_CLOBBER)
about registers in X to the insn DATA. If X can be early clobbered,
alternatives in which it can be early clobbered are given by
EARLY_CLOBBER_ALTS. */
static void
add_regs_to_insn_regno_info (lra_insn_recog_data_t data, rtx x,
rtx_insn *insn,
enum op_type type, bool early_clobber,
alternative_mask early_clobber_alts)
{
int i, j, regno;
bool subreg_p;
machine_mode mode;
const char *fmt;
enum rtx_code code;
struct lra_insn_reg *curr;
code = GET_CODE (x);
mode = GET_MODE (x);
subreg_p = false;
if (GET_CODE (x) == SUBREG)
{
mode = wider_subreg_mode (x);
if (read_modify_subreg_p (x))
subreg_p = true;
x = SUBREG_REG (x);
code = GET_CODE (x);
}
if (REG_P (x))
{
regno = REGNO (x);
/* Process all regs even unallocatable ones as we need info about
all regs for rematerialization pass. */
expand_reg_info ();
if (bitmap_set_bit (&lra_reg_info[regno].insn_bitmap, INSN_UID (insn)))
{
data->regs = new_insn_reg (data->insn, regno, type, mode, subreg_p,
early_clobber, early_clobber_alts,
data->regs, false);
return;
}
else
{
for (curr = data->regs; curr != NULL; curr = curr->next)
if (curr->regno == regno)
{
if (curr->subreg_p != subreg_p || curr->biggest_mode != mode)
/* The info cannot be integrated into the found
structure. */
data->regs = new_insn_reg (data->insn, regno, type, mode,
subreg_p, early_clobber,
early_clobber_alts, data->regs,
false);
else
{
if (curr->type != type)
curr->type = OP_INOUT;
if (curr->early_clobber != early_clobber)
curr->early_clobber = true;
curr->early_clobber_alts |= early_clobber_alts;
}
return;
}
gcc_unreachable ();
}
}
switch (code)
{
case SET:
add_regs_to_insn_regno_info (data, SET_DEST (x), insn, OP_OUT, false, 0);
add_regs_to_insn_regno_info (data, SET_SRC (x), insn, OP_IN, false, 0);
break;
case CLOBBER:
/* We treat clobber of non-operand hard registers as early
clobber. */
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_OUT,
true, ALL_ALTERNATIVES);
break;
case CLOBBER_HIGH:
gcc_unreachable ();
case PRE_INC: case PRE_DEC: case POST_INC: case POST_DEC:
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, false, 0);
break;
case PRE_MODIFY: case POST_MODIFY:
add_regs_to_insn_regno_info (data, XEXP (x, 0), insn, OP_INOUT, false, 0);
add_regs_to_insn_regno_info (data, XEXP (x, 1), insn, OP_IN, false, 0);
break;
default:
if ((code != PARALLEL && code != EXPR_LIST) || type != OP_OUT)
/* Some targets place small structures in registers for return
values of functions, and those registers are wrapped in
PARALLEL that we may see as the destination of a SET. Here
is an example:
(call_insn 13 12 14 2 (set (parallel:BLK [
(expr_list:REG_DEP_TRUE (reg:DI 0 ax)
(const_int 0 [0]))
(expr_list:REG_DEP_TRUE (reg:DI 1 dx)
(const_int 8 [0x8]))
])
(call (mem:QI (symbol_ref:DI (... */
type = OP_IN;
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_regs_to_insn_regno_info (data, XEXP (x, i), insn, type, false, 0);
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_regs_to_insn_regno_info (data, XVECEXP (x, i, j), insn,
type, false, 0);
}
}
}
}
/* Return execution frequency of INSN. */
static int
get_insn_freq (rtx_insn *insn)
{
basic_block bb = BLOCK_FOR_INSN (insn);
gcc_checking_assert (bb != NULL);
return REG_FREQ_FROM_BB (bb);
}
/* Invalidate all reg info of INSN with DATA and execution frequency
FREQ. Update common info about the invalidated registers. */
static void
invalidate_insn_data_regno_info (lra_insn_recog_data_t data, rtx_insn *insn,
int freq)
{
int uid;
bool debug_p;
unsigned int i;
struct lra_insn_reg *ir, *next_ir;
uid = INSN_UID (insn);
debug_p = DEBUG_INSN_P (insn);
for (ir = data->regs; ir != NULL; ir = next_ir)
{
i = ir->regno;
next_ir = ir->next;
lra_insn_reg_pool.remove (ir);
bitmap_clear_bit (&lra_reg_info[i].insn_bitmap, uid);
if (i >= FIRST_PSEUDO_REGISTER && ! debug_p)
{
lra_reg_info[i].nrefs--;
lra_reg_info[i].freq -= freq;
lra_assert (lra_reg_info[i].nrefs >= 0 && lra_reg_info[i].freq >= 0);
}
}
data->regs = NULL;
}
/* Invalidate all reg info of INSN. Update common info about the
invalidated registers. */
void
lra_invalidate_insn_regno_info (rtx_insn *insn)
{
invalidate_insn_data_regno_info (lra_get_insn_recog_data (insn), insn,
get_insn_freq (insn));
}
/* Update common reg info from reg info of insn given by its DATA and
execution frequency FREQ. */
static void
setup_insn_reg_info (lra_insn_recog_data_t data, int freq)
{
unsigned int i;
struct lra_insn_reg *ir;
for (ir = data->regs; ir != NULL; ir = ir->next)
if ((i = ir->regno) >= FIRST_PSEUDO_REGISTER)
{
lra_reg_info[i].nrefs++;
lra_reg_info[i].freq += freq;
}
}
/* Set up insn reg info of INSN. Update common reg info from reg info
of INSN. */
void
lra_update_insn_regno_info (rtx_insn *insn)
{
int i, freq;
lra_insn_recog_data_t data;
struct lra_static_insn_data *static_data;
enum rtx_code code;
rtx link;
if (! INSN_P (insn))
return;
data = lra_get_insn_recog_data (insn);
static_data = data->insn_static_data;
freq = NONDEBUG_INSN_P (insn) ? get_insn_freq (insn) : 0;
invalidate_insn_data_regno_info (data, insn, freq);
for (i = static_data->n_operands - 1; i >= 0; i--)
add_regs_to_insn_regno_info (data, *data->operand_loc[i], insn,
static_data->operand[i].type,
static_data->operand[i].early_clobber,
static_data->operand[i].early_clobber_alts);
if ((code = GET_CODE (PATTERN (insn))) == CLOBBER || code == USE)
add_regs_to_insn_regno_info (data, XEXP (PATTERN (insn), 0), insn,
code == USE ? OP_IN : OP_OUT, false, 0);
if (CALL_P (insn))
/* On some targets call insns can refer to pseudos in memory in
CALL_INSN_FUNCTION_USAGE list. Process them in order to
consider their occurrences in calls for different
transformations (e.g. inheritance) with given pseudos. */
for (link = CALL_INSN_FUNCTION_USAGE (insn);
link != NULL_RTX;
link = XEXP (link, 1))
{
code = GET_CODE (XEXP (link, 0));
/* We could support CLOBBER_HIGH and treat it in the same way as
HARD_REGNO_CALL_PART_CLOBBERED, but no port needs that yet. */
gcc_assert (code != CLOBBER_HIGH);
if ((code == USE || code == CLOBBER)
&& MEM_P (XEXP (XEXP (link, 0), 0)))
add_regs_to_insn_regno_info (data, XEXP (XEXP (link, 0), 0), insn,
code == USE ? OP_IN : OP_OUT, false, 0);
}
if (NONDEBUG_INSN_P (insn))
setup_insn_reg_info (data, freq);
}
/* Return reg info of insn given by it UID. */
struct lra_insn_reg *
lra_get_insn_regs (int uid)
{
lra_insn_recog_data_t data;
data = get_insn_recog_data_by_uid (uid);
return data->regs;
}
/* Recursive hash function for RTL X. */
hashval_t
lra_rtx_hash (rtx x)
{
int i, j;
enum rtx_code code;
const char *fmt;
hashval_t val = 0;
if (x == 0)
return val;
code = GET_CODE (x);
val += (int) code + 4095;
/* Some RTL can be compared nonrecursively. */
switch (code)
{
case REG:
return val + REGNO (x);
case LABEL_REF:
return iterative_hash_object (XEXP (x, 0), val);
case SYMBOL_REF:
return iterative_hash_object (XSTR (x, 0), val);
case SCRATCH:
case CONST_DOUBLE:
case CONST_VECTOR:
return val;
case CONST_INT:
return val + UINTVAL (x);
default:
break;
}
/* Hash the elements. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
switch (fmt[i])
{
case 'w':
val += XWINT (x, i);
break;
case 'n':
case 'i':
val += XINT (x, i);
break;
case 'V':
case 'E':
val += XVECLEN (x, i);
for (j = 0; j < XVECLEN (x, i); j++)
val += lra_rtx_hash (XVECEXP (x, i, j));
break;
case 'e':
val += lra_rtx_hash (XEXP (x, i));
break;
case 'S':
case 's':
val += htab_hash_string (XSTR (x, i));
break;
case 'u':
case '0':
case 't':
break;
/* It is believed that rtx's at this level will never
contain anything but integers and other rtx's, except for
within LABEL_REFs and SYMBOL_REFs. */
default:
abort ();
}
}
return val;
}
/* This page contains code dealing with stack of the insns which
should be processed by the next constraint pass. */
/* Bitmap used to put an insn on the stack only in one exemplar. */
static sbitmap lra_constraint_insn_stack_bitmap;
/* The stack itself. */
vec<rtx_insn *> lra_constraint_insn_stack;
/* Put INSN on the stack. If ALWAYS_UPDATE is true, always update the reg
info for INSN, otherwise only update it if INSN is not already on the
stack. */
static inline void
lra_push_insn_1 (rtx_insn *insn, bool always_update)
{
unsigned int uid = INSN_UID (insn);
if (always_update)
lra_update_insn_regno_info (insn);
if (uid >= SBITMAP_SIZE (lra_constraint_insn_stack_bitmap))
lra_constraint_insn_stack_bitmap =
sbitmap_resize (lra_constraint_insn_stack_bitmap, 3 * uid / 2, 0);
if (bitmap_bit_p (lra_constraint_insn_stack_bitmap, uid))
return;
bitmap_set_bit (lra_constraint_insn_stack_bitmap, uid);
if (! always_update)
lra_update_insn_regno_info (insn);
lra_constraint_insn_stack.safe_push (insn);
}
/* Put INSN on the stack. */
void
lra_push_insn (rtx_insn *insn)
{
lra_push_insn_1 (insn, false);
}
/* Put INSN on the stack and update its reg info. */
void
lra_push_insn_and_update_insn_regno_info (rtx_insn *insn)
{
lra_push_insn_1 (insn, true);
}
/* Put insn with UID on the stack. */
void
lra_push_insn_by_uid (unsigned int uid)
{
lra_push_insn (lra_insn_recog_data[uid]->insn);
}
/* Take the last-inserted insns off the stack and return it. */
rtx_insn *
lra_pop_insn (void)
{
rtx_insn *insn = lra_constraint_insn_stack.pop ();
bitmap_clear_bit (lra_constraint_insn_stack_bitmap, INSN_UID (insn));
return insn;
}
/* Return the current size of the insn stack. */
unsigned int
lra_insn_stack_length (void)
{
return lra_constraint_insn_stack.length ();
}
/* Push insns FROM to TO (excluding it) going in reverse order. */
static void
push_insns (rtx_insn *from, rtx_insn *to)
{
rtx_insn *insn;
if (from == NULL_RTX)
return;
for (insn = from; insn != to; insn = PREV_INSN (insn))
if (INSN_P (insn))
lra_push_insn (insn);
}
/* Set up sp offset for insn in range [FROM, LAST]. The offset is
taken from the next BB insn after LAST or zero if there in such
insn. */
static void
setup_sp_offset (rtx_insn *from, rtx_insn *last)
{
rtx_insn *before = next_nonnote_nondebug_insn_bb (last);
poly_int64 offset = (before == NULL_RTX || ! INSN_P (before)
? 0 : lra_get_insn_recog_data (before)->sp_offset);
for (rtx_insn *insn = from; insn != NEXT_INSN (last); insn = NEXT_INSN (insn))
lra_get_insn_recog_data (insn)->sp_offset = offset;
}
/* Emit insns BEFORE before INSN and insns AFTER after INSN. Put the
insns onto the stack. Print about emitting the insns with
TITLE. */
void
lra_process_new_insns (rtx_insn *insn, rtx_insn *before, rtx_insn *after,
const char *title)
{
rtx_insn *last;
if (before == NULL_RTX && after == NULL_RTX)
return;
if (lra_dump_file != NULL)
{
dump_insn_slim (lra_dump_file, insn);
if (before != NULL_RTX)
{
fprintf (lra_dump_file," %s before:\n", title);
dump_rtl_slim (lra_dump_file, before, NULL, -1, 0);
}
if (after != NULL_RTX)
{
fprintf (lra_dump_file, " %s after:\n", title);
dump_rtl_slim (lra_dump_file, after, NULL, -1, 0);
}
fprintf (lra_dump_file, "\n");
}
if (before != NULL_RTX)
{
if (cfun->can_throw_non_call_exceptions)
copy_reg_eh_region_note_forward (insn, before, NULL);
emit_insn_before (before, insn);
push_insns (PREV_INSN (insn), PREV_INSN (before));
setup_sp_offset (before, PREV_INSN (insn));
}
if (after != NULL_RTX)
{
if (cfun->can_throw_non_call_exceptions)
copy_reg_eh_region_note_forward (insn, after, NULL);
for (last = after; NEXT_INSN (last) != NULL_RTX; last = NEXT_INSN (last))
;
emit_insn_after (after, insn);
push_insns (last, insn);
setup_sp_offset (after, last);
}
if (cfun->can_throw_non_call_exceptions)
{
rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
if (note && !insn_could_throw_p (insn))
remove_note (insn, note);
}
}
/* Replace all references to register OLD_REGNO in *LOC with pseudo
register NEW_REG. Try to simplify subreg of constant if SUBREG_P.
DEBUG_P is if LOC is within a DEBUG_INSN. Return true if any
change was made. */
bool
lra_substitute_pseudo (rtx *loc, int old_regno, rtx new_reg, bool subreg_p,
bool debug_p)
{
rtx x = *loc;
bool result = false;
enum rtx_code code;
const char *fmt;
int i, j;
if (x == NULL_RTX)
return false;
code = GET_CODE (x);
if (code == SUBREG && subreg_p)
{
rtx subst, inner = SUBREG_REG (x);
/* Transform subreg of constant while we still have inner mode
of the subreg. The subreg internal should not be an insn
operand. */
if (REG_P (inner) && (int) REGNO (inner) == old_regno
&& CONSTANT_P (new_reg)
&& (subst = simplify_subreg (GET_MODE (x), new_reg, GET_MODE (inner),
SUBREG_BYTE (x))) != NULL_RTX)
{
*loc = subst;
return true;
}
}
else if (code == REG && (int) REGNO (x) == old_regno)
{
machine_mode mode = GET_MODE (x);
machine_mode inner_mode = GET_MODE (new_reg);
if (mode != inner_mode
&& ! (CONST_SCALAR_INT_P (new_reg) && SCALAR_INT_MODE_P (mode)))
{
poly_uint64 offset = 0;
if (partial_subreg_p (mode, inner_mode)
&& SCALAR_INT_MODE_P (inner_mode))
offset = subreg_lowpart_offset (mode, inner_mode);
if (debug_p)
new_reg = gen_rtx_raw_SUBREG (mode, new_reg, offset);
else
new_reg = gen_rtx_SUBREG (mode, new_reg, offset);
}
*loc = new_reg;
return true;
}
/* Scan all the operand sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
{
if (lra_substitute_pseudo (&XEXP (x, i), old_regno,
new_reg, subreg_p, debug_p))
result = true;
}
else if (fmt[i] == 'E')
{
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
if (lra_substitute_pseudo (&XVECEXP (x, i, j), old_regno,
new_reg, subreg_p, debug_p))
result = true;
}
}
return result;
}
/* Call lra_substitute_pseudo within an insn. Try to simplify subreg
of constant if SUBREG_P. This won't update the insn ptr, just the
contents of the insn. */
bool
lra_substitute_pseudo_within_insn (rtx_insn *insn, int old_regno,
rtx new_reg, bool subreg_p)
{
rtx loc = insn;
return lra_substitute_pseudo (&loc, old_regno, new_reg, subreg_p,
DEBUG_INSN_P (insn));
}
/* This page contains code dealing with scratches (changing them onto
pseudos and restoring them from the pseudos).
We change scratches into pseudos at the beginning of LRA to
simplify dealing with them (conflicts, hard register assignments).
If the pseudo denoting scratch was spilled it means that we do need
a hard register for it. Such pseudos are transformed back to
scratches at the end of LRA. */
/* Description of location of a former scratch operand. */
struct sloc
{
rtx_insn *insn; /* Insn where the scratch was. */
int nop; /* Number of the operand which was a scratch. */
int icode; /* Original icode from which scratch was removed. */
};
typedef struct sloc *sloc_t;
/* Locations of the former scratches. */
static vec<sloc_t> scratches;
/* Bitmap of scratch regnos. */
static bitmap_head scratch_bitmap;
/* Bitmap of scratch operands. */
static bitmap_head scratch_operand_bitmap;
/* Return true if pseudo REGNO is made of SCRATCH. */
bool
lra_former_scratch_p (int regno)
{
return bitmap_bit_p (&scratch_bitmap, regno);
}
/* Return true if the operand NOP of INSN is a former scratch. */
bool
lra_former_scratch_operand_p (rtx_insn *insn, int nop)
{
return bitmap_bit_p (&scratch_operand_bitmap,
INSN_UID (insn) * MAX_RECOG_OPERANDS + nop) != 0;
}
/* Register operand NOP in INSN as a former scratch. It will be
changed to scratch back, if it is necessary, at the LRA end. */
void
lra_register_new_scratch_op (rtx_insn *insn, int nop, int icode)
{
lra_insn_recog_data_t id = lra_get_insn_recog_data (insn);
rtx op = *id->operand_loc[nop];
sloc_t loc = XNEW (struct sloc);
lra_assert (REG_P (op));
loc->insn = insn;
loc->nop = nop;
loc->icode = icode;
scratches.safe_push (loc);
bitmap_set_bit (&scratch_bitmap, REGNO (op));
bitmap_set_bit (&scratch_operand_bitmap,
INSN_UID (insn) * MAX_RECOG_OPERANDS + nop);
add_reg_note (insn, REG_UNUSED, op);
}
/* Change INSN's scratches into pseudos and save their location. */
static void
remove_scratches_1 (rtx_insn *insn)
{
int i;
bool insn_changed_p;
rtx reg;
lra_insn_recog_data_t id;
struct lra_static_insn_data *static_id;
id = lra_get_insn_recog_data (insn);
static_id = id->insn_static_data;
insn_changed_p = false;
for (i = 0; i < static_id->n_operands; i++)
if (GET_CODE (*id->operand_loc[i]) == SCRATCH
&& GET_MODE (*id->operand_loc[i]) != VOIDmode)
{
insn_changed_p = true;
*id->operand_loc[i] = reg
= lra_create_new_reg (static_id->operand[i].mode,
*id->operand_loc[i], ALL_REGS, NULL);
lra_register_new_scratch_op (insn, i, id->icode);
if (lra_dump_file != NULL)
fprintf (lra_dump_file,
"Removing SCRATCH in insn #%u (nop %d)\n",
INSN_UID (insn), i);
}
if (insn_changed_p)
/* Because we might use DF right after caller-saves sub-pass
we need to keep DF info up to date. */
df_insn_rescan (insn);
}
/* Change scratches into pseudos and save their location. */
static void
remove_scratches (void)
{
basic_block bb;
rtx_insn *insn;
scratches.create (get_max_uid ());
bitmap_initialize (&scratch_bitmap, &reg_obstack);
bitmap_initialize (&scratch_operand_bitmap, &reg_obstack);
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (INSN_P (insn))
remove_scratches_1 (insn);
}
/* Changes pseudos created by function remove_scratches onto scratches. */
static void
restore_scratches (void)
{
int regno;
unsigned i;
sloc_t loc;
rtx_insn *last = NULL;
lra_insn_recog_data_t id = NULL;
for (i = 0; scratches.iterate (i, &loc); i++)
{
/* Ignore already deleted insns. */
if (NOTE_P (loc->insn)
&& NOTE_KIND (loc->insn) == NOTE_INSN_DELETED)
continue;
if (last != loc->insn)
{
last = loc->insn;
id = lra_get_insn_recog_data (last);
}
if (loc->icode != id->icode)
{
/* The icode doesn't match, which means the insn has been modified
(e.g. register elimination). The scratch cannot be restored. */
continue;
}
if (REG_P (*id->operand_loc[loc->nop])
&& ((regno = REGNO (*id->operand_loc[loc->nop]))
>= FIRST_PSEUDO_REGISTER)
&& lra_get_regno_hard_regno (regno) < 0)
{
/* It should be only case when scratch register with chosen
constraint 'X' did not get memory or hard register. */
lra_assert (lra_former_scratch_p (regno));
*id->operand_loc[loc->nop]
= gen_rtx_SCRATCH (GET_MODE (*id->operand_loc[loc->nop]));
lra_update_dup (id, loc->nop);
if (lra_dump_file != NULL)
fprintf (lra_dump_file, "Restoring SCRATCH in insn #%u(nop %d)\n",
INSN_UID (loc->insn), loc->nop);
}
}
for (i = 0; scratches.iterate (i, &loc); i++)
free (loc);
scratches.release ();
bitmap_clear (&scratch_bitmap);
bitmap_clear (&scratch_operand_bitmap);
}
/* Function checks RTL for correctness. If FINAL_P is true, it is
done at the end of LRA and the check is more rigorous. */
static void
check_rtl (bool final_p)
{
basic_block bb;
rtx_insn *insn;
lra_assert (! final_p || reload_completed);
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn)
&& GET_CODE (PATTERN (insn)) != USE
&& GET_CODE (PATTERN (insn)) != CLOBBER
&& GET_CODE (PATTERN (insn)) != ASM_INPUT)
{
if (final_p)
{
extract_constrain_insn (insn);
continue;
}
/* LRA code is based on assumption that all addresses can be
correctly decomposed. LRA can generate reloads for
decomposable addresses. The decomposition code checks the
correctness of the addresses. So we don't need to check
the addresses here. Don't call insn_invalid_p here, it can
change the code at this stage. */
if (recog_memoized (insn) < 0 && asm_noperands (PATTERN (insn)) < 0)
fatal_insn_not_found (insn);
}
}
/* Determine if the current function has an exception receiver block
that reaches the exit block via non-exceptional edges */
static bool
has_nonexceptional_receiver (void)
{
edge e;
edge_iterator ei;
basic_block *tos, *worklist, bb;
/* If we're not optimizing, then just err on the safe side. */
if (!optimize)
return true;
/* First determine which blocks can reach exit via normal paths. */
tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
FOR_EACH_BB_FN (bb, cfun)
bb->flags &= ~BB_REACHABLE;
/* Place the exit block on our worklist. */
EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
*tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
/* Iterate: find everything reachable from what we've already seen. */
while (tos != worklist)
{
bb = *--tos;
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->flags & EDGE_ABNORMAL)
{
free (worklist);
return true;
}
else
{
basic_block src = e->src;
if (!(src->flags & BB_REACHABLE))
{
src->flags |= BB_REACHABLE;
*tos++ = src;
}
}
}
free (worklist);
/* No exceptional block reached exit unexceptionally. */
return false;
}
/* Process recursively X of INSN and add REG_INC notes if necessary. */
static void
add_auto_inc_notes (rtx_insn *insn, rtx x)
{
enum rtx_code code = GET_CODE (x);
const char *fmt;
int i, j;
if (code == MEM && auto_inc_p (XEXP (x, 0)))
{
add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
return;
}
/* Scan all X sub-expressions. */
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'e')
add_auto_inc_notes (insn, XEXP (x, i));
else if (fmt[i] == 'E')
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
add_auto_inc_notes (insn, XVECEXP (x, i, j));
}
}
/* Remove all REG_DEAD and REG_UNUSED notes and regenerate REG_INC.
We change pseudos by hard registers without notification of DF and
that can make the notes obsolete. DF-infrastructure does not deal
with REG_INC notes -- so we should regenerate them here. */
static void
update_inc_notes (void)
{
rtx *pnote;
basic_block bb;
rtx_insn *insn;
FOR_EACH_BB_FN (bb, cfun)
FOR_BB_INSNS (bb, insn)
if (NONDEBUG_INSN_P (insn))
{
pnote = &REG_NOTES (insn);
while (*pnote != 0)
{
if (REG_NOTE_KIND (*pnote) == REG_DEAD
|| REG_NOTE_KIND (*pnote) == REG_UNUSED
|| REG_NOTE_KIND (*pnote) == REG_INC)
*pnote = XEXP (*pnote, 1);
else
pnote = &XEXP (*pnote, 1);
}
if (AUTO_INC_DEC)
add_auto_inc_notes (insn, PATTERN (insn));
}
}
/* Set to 1 while in lra. */
int lra_in_progress;
/* Start of pseudo regnos before the LRA. */
int lra_new_regno_start;
/* Start of reload pseudo regnos before the new spill pass. */
int lra_constraint_new_regno_start;
/* Avoid spilling pseudos with regno more than the following value if
it is possible. */
int lra_bad_spill_regno_start;
/* Inheritance pseudo regnos before the new spill pass. */
bitmap_head lra_inheritance_pseudos;
/* Split regnos before the new spill pass. */
bitmap_head lra_split_regs;
/* Reload pseudo regnos before the new assignment pass which still can
be spilled after the assignment pass as memory is also accepted in
insns for the reload pseudos. */
bitmap_head lra_optional_reload_pseudos;
/* Pseudo regnos used for subreg reloads before the new assignment
pass. Such pseudos still can be spilled after the assignment
pass. */
bitmap_head lra_subreg_reload_pseudos;
/* File used for output of LRA debug information. */
FILE *lra_dump_file;
/* True if we found an asm error. */
bool lra_asm_error_p;
/* True if we should try spill into registers of different classes
instead of memory. */
bool lra_reg_spill_p;
/* Set up value LRA_REG_SPILL_P. */
static void
setup_reg_spill_flag (void)
{
int cl, mode;
if (targetm.spill_class != NULL)
for (cl = 0; cl < (int) LIM_REG_CLASSES; cl++)
for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
if (targetm.spill_class ((enum reg_class) cl,
(machine_mode) mode) != NO_REGS)
{
lra_reg_spill_p = true;
return;
}
lra_reg_spill_p = false;
}
/* True if the current function is too big to use regular algorithms
in LRA. In other words, we should use simpler and faster algorithms
in LRA. It also means we should not worry about generation code
for caller saves. The value is set up in IRA. */
bool lra_simple_p;
/* Major LRA entry function. F is a file should be used to dump LRA
debug info. */
void
lra (FILE *f)
{
int i;
bool live_p, inserted_p;
lra_dump_file = f;
lra_asm_error_p = false;
timevar_push (TV_LRA);
/* Make sure that the last insn is a note. Some subsequent passes
need it. */
emit_note (NOTE_INSN_DELETED);
COPY_HARD_REG_SET (lra_no_alloc_regs, ira_no_alloc_regs);
init_reg_info ();
expand_reg_info ();
init_insn_recog_data ();
/* Some quick check on RTL generated by previous passes. */
if (flag_checking)
check_rtl (false);
lra_in_progress = 1;
lra_live_range_iter = lra_coalesce_iter = lra_constraint_iter = 0;
lra_assignment_iter = lra_assignment_iter_after_spill = 0;
lra_inheritance_iter = lra_undo_inheritance_iter = 0;
lra_rematerialization_iter = 0;
setup_reg_spill_flag ();
/* Function remove_scratches can creates new pseudos for clobbers --
so set up lra_constraint_new_regno_start before its call to
permit changing reg classes for pseudos created by this
simplification. */
lra_constraint_new_regno_start = lra_new_regno_start = max_reg_num ();
lra_bad_spill_regno_start = INT_MAX;
remove_scratches ();
/* A function that has a non-local label that can reach the exit
block via non-exceptional paths must save all call-saved
registers. */
if (cfun->has_nonlocal_label && has_nonexceptional_receiver ())
crtl->saves_all_registers = 1;
if (crtl->saves_all_registers)
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
df_set_regs_ever_live (i, true);
/* We don't DF from now and avoid its using because it is to
expensive when a lot of RTL changes are made. */
df_set_flags (DF_NO_INSN_RESCAN);
lra_constraint_insn_stack.create (get_max_uid ());
lra_constraint_insn_stack_bitmap = sbitmap_alloc (get_max_uid ());
bitmap_clear (lra_constraint_insn_stack_bitmap);
lra_live_ranges_init ();
lra_constraints_init ();
lra_curr_reload_num = 0;
push_insns (get_last_insn (), NULL);
/* It is needed for the 1st coalescing. */
bitmap_initialize (&lra_inheritance_pseudos, &reg_obstack);
bitmap_initialize (&lra_split_regs, &reg_obstack);
bitmap_initialize (&lra_optional_reload_pseudos, &reg_obstack);
bitmap_initialize (&lra_subreg_reload_pseudos, &reg_obstack);
live_p = false;
if (maybe_ne (get_frame_size (), 0) && crtl->stack_alignment_needed)
/* If we have a stack frame, we must align it now. The stack size
may be a part of the offset computation for register
elimination. */
assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
lra_init_equiv ();
for (;;)
{
for (;;)
{
bool reloads_p = lra_constraints (lra_constraint_iter == 0);
/* Constraint transformations may result in that eliminable
hard regs become uneliminable and pseudos which use them
should be spilled. It is better to do it before pseudo
assignments.
For example, rs6000 can make
RS6000_PIC_OFFSET_TABLE_REGNUM uneliminable if we started
to use a constant pool. */
lra_eliminate (false, false);
/* We should try to assign hard registers to scratches even
if there were no RTL transformations in lra_constraints.
Also we should check IRA assignments on the first
iteration as they can be wrong because of early clobbers
operands which are ignored in IRA. */
if (! reloads_p && lra_constraint_iter > 1)
{
/* Stack is not empty here only when there are changes
during the elimination sub-pass. */
if (bitmap_empty_p (lra_constraint_insn_stack_bitmap))
break;
else
/* If there are no reloads but changing due
elimination, restart the constraint sub-pass
first. */
continue;
}
/* Do inheritance only for regular algorithms. */
if (! lra_simple_p)
{
if (flag_ipa_ra)
{
if (live_p)
lra_clear_live_ranges ();
/* As a side-effect of lra_create_live_ranges, we calculate
actual_call_used_reg_set, which is needed during
lra_inheritance. */
lra_create_live_ranges (true, true);
live_p = true;
}
lra_inheritance ();
}
if (live_p)
lra_clear_live_ranges ();
bool fails_p;
do
{
/* We need live ranges for lra_assign -- so build them.
But don't remove dead insns or change global live
info as we can undo inheritance transformations after
inheritance pseudo assigning. */
lra_create_live_ranges (true, false);
live_p = true;
/* If we don't spill non-reload and non-inheritance
pseudos, there is no sense to run memory-memory move
coalescing. If inheritance pseudos were spilled, the
memory-memory moves involving them will be removed by
pass undoing inheritance. */
if (lra_simple_p)
lra_assign (fails_p);
else
{
bool spill_p = !lra_assign (fails_p);
if (lra_undo_inheritance ())
live_p = false;
if (spill_p && ! fails_p)
{
if (! live_p)
{
lra_create_live_ranges (true, true);
live_p = true;
}
if (lra_coalesce ())
live_p = false;
}
if (! live_p)
lra_clear_live_ranges ();
}
if (fails_p)
{
/* It is a very rare case. It is the last hope to
split a hard regno live range for a reload
pseudo. */
if (live_p)
lra_clear_live_ranges ();
live_p = false;
if (! lra_split_hard_reg_for ())
break;
}
}
while (fails_p);
}
/* Don't clear optional reloads bitmap until all constraints are
satisfied as we need to differ them from regular reloads. */
bitmap_clear (&lra_optional_reload_pseudos);
bitmap_clear (&lra_subreg_reload_pseudos);
bitmap_clear (&lra_inheritance_pseudos);
bitmap_clear (&lra_split_regs);
if (! live_p)
{
/* We need full live info for spilling pseudos into
registers instead of memory. */
lra_create_live_ranges (lra_reg_spill_p, true);
live_p = true;
}
/* We should check necessity for spilling here as the above live
range pass can remove spilled pseudos. */
if (! lra_need_for_spills_p ())
break;
/* Now we know what pseudos should be spilled. Try to
rematerialize them first. */
if (lra_remat ())
{
/* We need full live info -- see the comment above. */
lra_create_live_ranges (lra_reg_spill_p, true);
live_p = true;
if (! lra_need_for_spills_p ())
{
if (lra_need_for_scratch_reg_p ())
continue;
break;
}
}
lra_spill ();
/* Assignment of stack slots changes elimination offsets for
some eliminations. So update the offsets here. */
lra_eliminate (false, false);
lra_constraint_new_regno_start = max_reg_num ();
if (lra_bad_spill_regno_start == INT_MAX
&& lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES
&& lra_rematerialization_iter > LRA_MAX_REMATERIALIZATION_PASSES)
/* After switching off inheritance and rematerialization
passes, avoid spilling reload pseudos will be created to
prevent LRA cycling in some complicated cases. */
lra_bad_spill_regno_start = lra_constraint_new_regno_start;
lra_assignment_iter_after_spill = 0;
}
restore_scratches ();
lra_eliminate (true, false);
lra_final_code_change ();
lra_in_progress = 0;
if (live_p)
lra_clear_live_ranges ();
lra_live_ranges_finish ();
lra_constraints_finish ();
finish_reg_info ();
sbitmap_free (lra_constraint_insn_stack_bitmap);
lra_constraint_insn_stack.release ();
finish_insn_recog_data ();
regstat_free_n_sets_and_refs ();
regstat_free_ri ();
reload_completed = 1;
update_inc_notes ();
inserted_p = fixup_abnormal_edges ();
/* We've possibly turned single trapping insn into multiple ones. */
if (cfun->can_throw_non_call_exceptions)
{
auto_sbitmap blocks (last_basic_block_for_fn (cfun));
bitmap_ones (blocks);
find_many_sub_basic_blocks (blocks);
}
if (inserted_p)
commit_edge_insertions ();
/* Replacing pseudos with their memory equivalents might have
created shared rtx. Subsequent passes would get confused
by this, so unshare everything here. */
unshare_all_rtl_again (get_insns ());
if (flag_checking)
check_rtl (true);
timevar_pop (TV_LRA);
}
/* Called once per compiler to initialize LRA data once. */
void
lra_init_once (void)
{
init_insn_code_data_once ();
}
/* Called once per compiler to finish LRA data which are initialize
once. */
void
lra_finish_once (void)
{
finish_insn_code_data_once ();
}