| /* SparseSet implementation. |
| Copyright (C) 2007-2019 Free Software Foundation, Inc. |
| Contributed by Peter Bergner <bergner@vnet.ibm.com> |
| |
| This file is part of GCC. |
| |
| GCC is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with GCC; see the file COPYING3. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #ifndef GCC_SPARSESET_H |
| #define GCC_SPARSESET_H |
| |
| /* Implementation of the Briggs and Torczon sparse set representation. |
| The sparse set representation was first published in: |
| |
| "An Efficient Representation for Sparse Sets", |
| ACM LOPLAS, Vol. 2, Nos. 1-4, March-December 1993, Pages 59-69. |
| |
| The sparse set representation is suitable for integer sets with a |
| fixed-size universe. Two vectors are used to store the members of |
| the set. If an element I is in the set, then sparse[I] is the |
| index of I in the dense vector, and dense[sparse[I]] == I. The dense |
| vector works like a stack. The size of the stack is the cardinality |
| of the set. |
| |
| The following operations can be performed in O(1) time: |
| |
| * clear : sparseset_clear |
| * cardinality : sparseset_cardinality |
| * set_size : sparseset_size |
| * member_p : sparseset_bit_p |
| * add_member : sparseset_set_bit |
| * remove_member : sparseset_clear_bit |
| * choose_one : sparseset_pop |
| |
| Additionally, the sparse set representation supports enumeration of |
| the members in O(N) time, where n is the number of members in the set. |
| The members of the set are stored cache-friendly in the dense vector. |
| This makes it a competitive choice for iterating over relatively sparse |
| sets requiring operations: |
| |
| * forall : EXECUTE_IF_SET_IN_SPARSESET |
| * set_copy : sparseset_copy |
| * set_intersection : sparseset_and |
| * set_union : sparseset_ior |
| * set_difference : sparseset_and_compl |
| * set_disjuction : (not implemented) |
| * set_compare : sparseset_equal_p |
| |
| NB: It is OK to use remove_member during EXECUTE_IF_SET_IN_SPARSESET. |
| The iterator is updated for it. |
| |
| Based on the efficiency of these operations, this representation of |
| sparse sets will often be superior to alternatives such as simple |
| bitmaps, linked-list bitmaps, array bitmaps, balanced binary trees, |
| hash tables, linked lists, etc., if the set is sufficiently sparse. |
| In the LOPLAS paper the cut-off point where sparse sets became faster |
| than simple bitmaps (see sbitmap.h) when N / U < 64 (where U is the |
| size of the universe of the set). |
| |
| Because the set universe is fixed, the set cannot be resized. For |
| sparse sets with initially unknown size, linked-list bitmaps are a |
| better choice, see bitmap.h. |
| |
| Sparse sets storage requirements are relatively large: O(U) with a |
| larger constant than sbitmaps (if the storage requirement for an |
| sbitmap with universe U is S, then the storage required for a sparse |
| set for the same universe are 2*HOST_BITS_PER_WIDEST_FAST_INT * S). |
| Accessing the sparse vector is not very cache-friendly, but iterating |
| over the members in the set is cache-friendly because only the dense |
| vector is used. */ |
| |
| /* Data Structure used for the SparseSet representation. */ |
| |
| #define SPARSESET_ELT_BITS ((unsigned) HOST_BITS_PER_WIDEST_FAST_INT) |
| #define SPARSESET_ELT_TYPE unsigned HOST_WIDEST_FAST_INT |
| |
| typedef struct sparseset_def |
| { |
| SPARSESET_ELT_TYPE *dense; /* Dense array. */ |
| SPARSESET_ELT_TYPE *sparse; /* Sparse array. */ |
| SPARSESET_ELT_TYPE members; /* Number of elements. */ |
| SPARSESET_ELT_TYPE size; /* Maximum number of elements. */ |
| SPARSESET_ELT_TYPE iter; /* Iterator index. */ |
| unsigned char iter_inc; /* Iteration increment amount. */ |
| bool iterating; |
| SPARSESET_ELT_TYPE elms[2]; /* Combined dense and sparse arrays. */ |
| } *sparseset; |
| |
| #define sparseset_free(MAP) free(MAP) |
| extern sparseset sparseset_alloc (SPARSESET_ELT_TYPE n_elms); |
| extern void sparseset_clear_bit (sparseset, SPARSESET_ELT_TYPE); |
| extern void sparseset_copy (sparseset, sparseset); |
| extern void sparseset_and (sparseset, sparseset, sparseset); |
| extern void sparseset_and_compl (sparseset, sparseset, sparseset); |
| extern void sparseset_ior (sparseset, sparseset, sparseset); |
| extern bool sparseset_equal_p (sparseset, sparseset); |
| |
| /* Operation: S = {} |
| Clear the set of all elements. */ |
| |
| static inline void |
| sparseset_clear (sparseset s) |
| { |
| s->members = 0; |
| s->iterating = false; |
| } |
| |
| /* Return the number of elements currently in the set. */ |
| |
| static inline SPARSESET_ELT_TYPE |
| sparseset_cardinality (sparseset s) |
| { |
| return s->members; |
| } |
| |
| /* Return the maximum number of elements this set can hold. */ |
| |
| static inline SPARSESET_ELT_TYPE |
| sparseset_size (sparseset s) |
| { |
| return s->size; |
| } |
| |
| /* Return true if e is a member of the set S, otherwise return false. */ |
| |
| static inline bool |
| sparseset_bit_p (sparseset s, SPARSESET_ELT_TYPE e) |
| { |
| SPARSESET_ELT_TYPE idx; |
| |
| gcc_checking_assert (e < s->size); |
| |
| idx = s->sparse[e]; |
| |
| return idx < s->members && s->dense[idx] == e; |
| } |
| |
| /* Low level insertion routine not meant for use outside of sparseset.[ch]. |
| Assumes E is valid and not already a member of the set S. */ |
| |
| static inline void |
| sparseset_insert_bit (sparseset s, SPARSESET_ELT_TYPE e, SPARSESET_ELT_TYPE idx) |
| { |
| s->sparse[e] = idx; |
| s->dense[idx] = e; |
| } |
| |
| /* Operation: S = S + {e} |
| Insert E into the set S, if it isn't already a member. */ |
| |
| static inline void |
| sparseset_set_bit (sparseset s, SPARSESET_ELT_TYPE e) |
| { |
| if (!sparseset_bit_p (s, e)) |
| sparseset_insert_bit (s, e, s->members++); |
| } |
| |
| /* Return and remove the last member added to the set S. */ |
| |
| static inline SPARSESET_ELT_TYPE |
| sparseset_pop (sparseset s) |
| { |
| SPARSESET_ELT_TYPE mem = s->members; |
| |
| gcc_checking_assert (mem != 0); |
| |
| s->members = mem - 1; |
| return s->dense[s->members]; |
| } |
| |
| static inline void |
| sparseset_iter_init (sparseset s) |
| { |
| s->iter = 0; |
| s->iter_inc = 1; |
| s->iterating = true; |
| } |
| |
| static inline bool |
| sparseset_iter_p (sparseset s) |
| { |
| if (s->iterating && s->iter < s->members) |
| return true; |
| else |
| return s->iterating = false; |
| } |
| |
| static inline SPARSESET_ELT_TYPE |
| sparseset_iter_elm (sparseset s) |
| { |
| return s->dense[s->iter]; |
| } |
| |
| static inline void |
| sparseset_iter_next (sparseset s) |
| { |
| s->iter += s->iter_inc; |
| s->iter_inc = 1; |
| } |
| |
| #define EXECUTE_IF_SET_IN_SPARSESET(SPARSESET, ITER) \ |
| for (sparseset_iter_init (SPARSESET); \ |
| sparseset_iter_p (SPARSESET) \ |
| && (((ITER) = sparseset_iter_elm (SPARSESET)) || 1); \ |
| sparseset_iter_next (SPARSESET)) |
| |
| #endif /* GCC_SPARSESET_H */ |