| ;; Predicate definitions for IA-32 and x86-64. |
| ;; Copyright (C) 2004-2015 Free Software Foundation, Inc. |
| ;; |
| ;; This file is part of GCC. |
| ;; |
| ;; GCC is free software; you can redistribute it and/or modify |
| ;; it under the terms of the GNU General Public License as published by |
| ;; the Free Software Foundation; either version 3, or (at your option) |
| ;; any later version. |
| ;; |
| ;; GCC is distributed in the hope that it will be useful, |
| ;; but WITHOUT ANY WARRANTY; without even the implied warranty of |
| ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| ;; GNU General Public License for more details. |
| ;; |
| ;; You should have received a copy of the GNU General Public License |
| ;; along with GCC; see the file COPYING3. If not see |
| ;; <http://www.gnu.org/licenses/>. |
| |
| ;; Return true if OP is either a i387 or SSE fp register. |
| (define_predicate "any_fp_register_operand" |
| (and (match_code "reg") |
| (match_test "ANY_FP_REGNO_P (REGNO (op))"))) |
| |
| ;; Return true if OP is an i387 fp register. |
| (define_predicate "fp_register_operand" |
| (and (match_code "reg") |
| (match_test "STACK_REGNO_P (REGNO (op))"))) |
| |
| ;; Return true if OP is a non-fp register_operand. |
| (define_predicate "register_and_not_any_fp_reg_operand" |
| (and (match_code "reg") |
| (not (match_test "ANY_FP_REGNO_P (REGNO (op))")))) |
| |
| ;; True if the operand is a GENERAL class register. |
| (define_predicate "general_reg_operand" |
| (and (match_code "reg") |
| (match_test "GENERAL_REG_P (op)"))) |
| |
| ;; True if the operand is a nonimmediate operand with GENERAL class register. |
| (define_predicate "nonimmediate_gr_operand" |
| (if_then_else (match_code "reg") |
| (match_test "GENERAL_REGNO_P (REGNO (op))") |
| (match_operand 0 "nonimmediate_operand"))) |
| |
| ;; Return true if OP is a register operand other than an i387 fp register. |
| (define_predicate "register_and_not_fp_reg_operand" |
| (and (match_code "reg") |
| (not (match_test "STACK_REGNO_P (REGNO (op))")))) |
| |
| ;; True if the operand is an MMX register. |
| (define_predicate "mmx_reg_operand" |
| (and (match_code "reg") |
| (match_test "MMX_REGNO_P (REGNO (op))"))) |
| |
| ;; True if the operand is an SSE register. |
| (define_predicate "sse_reg_operand" |
| (and (match_code "reg") |
| (match_test "SSE_REGNO_P (REGNO (op))"))) |
| |
| ;; True if the operand is an AVX-512 new register. |
| (define_predicate "ext_sse_reg_operand" |
| (and (match_code "reg") |
| (match_test "EXT_REX_SSE_REGNO_P (REGNO (op))"))) |
| |
| ;; True if the operand is an AVX-512 mask register. |
| (define_predicate "mask_reg_operand" |
| (and (match_code "reg") |
| (match_test "MASK_REGNO_P (REGNO (op))"))) |
| |
| ;; True if the operand is a Q_REGS class register. |
| (define_predicate "q_regs_operand" |
| (match_operand 0 "register_operand") |
| { |
| if (GET_CODE (op) == SUBREG) |
| op = SUBREG_REG (op); |
| return ANY_QI_REG_P (op); |
| }) |
| |
| ;; Return true if OP is a memory operands that can be used in sibcalls. |
| (define_predicate "sibcall_memory_operand" |
| (and (match_operand 0 "memory_operand") |
| (match_test "CONSTANT_P (XEXP (op, 0))"))) |
| |
| ;; Match an SI or HImode register for a zero_extract. |
| (define_special_predicate "ext_register_operand" |
| (match_operand 0 "register_operand") |
| { |
| if ((!TARGET_64BIT || GET_MODE (op) != DImode) |
| && GET_MODE (op) != SImode && GET_MODE (op) != HImode) |
| return false; |
| if (GET_CODE (op) == SUBREG) |
| op = SUBREG_REG (op); |
| |
| /* Be careful to accept only registers having upper parts. */ |
| return (REG_P (op) |
| && (REGNO (op) > LAST_VIRTUAL_REGISTER || REGNO (op) <= BX_REG)); |
| }) |
| |
| ;; Match nonimmediate operands, but exclude memory operands on 64bit targets. |
| (define_predicate "nonimmediate_x64nomem_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (match_operand 0 "register_operand") |
| (match_operand 0 "nonimmediate_operand"))) |
| |
| ;; Match general operands, but exclude memory operands on 64bit targets. |
| (define_predicate "general_x64nomem_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (match_operand 0 "nonmemory_operand") |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return true if op is the AX register. |
| (define_predicate "ax_reg_operand" |
| (and (match_code "reg") |
| (match_test "REGNO (op) == AX_REG"))) |
| |
| ;; Return true if op is the flags register. |
| (define_predicate "flags_reg_operand" |
| (and (match_code "reg") |
| (match_test "REGNO (op) == FLAGS_REG"))) |
| |
| ;; Return true if op is one of QImode registers: %[abcd][hl]. |
| (define_predicate "QIreg_operand" |
| (match_test "QI_REG_P (op)")) |
| |
| ;; Return true if op is a QImode register operand other than |
| ;; %[abcd][hl]. |
| (define_predicate "ext_QIreg_operand" |
| (and (match_code "reg") |
| (match_test "TARGET_64BIT") |
| (match_test "REGNO (op) > BX_REG"))) |
| |
| ;; Return true if VALUE is symbol reference |
| (define_predicate "symbol_operand" |
| (match_code "symbol_ref")) |
| |
| ;; Return true if VALUE can be stored in a sign extended immediate field. |
| (define_predicate "x86_64_immediate_operand" |
| (match_code "const_int,symbol_ref,label_ref,const") |
| { |
| if (!TARGET_64BIT) |
| return immediate_operand (op, mode); |
| |
| switch (GET_CODE (op)) |
| { |
| case CONST_INT: |
| /* CONST_DOUBLES never match, since HOST_BITS_PER_WIDE_INT is known |
| to be at least 32 and this all acceptable constants are |
| represented as CONST_INT. */ |
| if (HOST_BITS_PER_WIDE_INT == 32) |
| return true; |
| else |
| { |
| HOST_WIDE_INT val = trunc_int_for_mode (INTVAL (op), DImode); |
| return trunc_int_for_mode (val, SImode) == val; |
| } |
| break; |
| |
| case SYMBOL_REF: |
| /* For certain code models, the symbolic references are known to fit. |
| in CM_SMALL_PIC model we know it fits if it is local to the shared |
| library. Don't count TLS SYMBOL_REFs here, since they should fit |
| only if inside of UNSPEC handled below. */ |
| /* TLS symbols are not constant. */ |
| if (SYMBOL_REF_TLS_MODEL (op)) |
| return false; |
| return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_KERNEL |
| || (ix86_cmodel == CM_MEDIUM && !SYMBOL_REF_FAR_ADDR_P (op))); |
| |
| case LABEL_REF: |
| /* For certain code models, the code is near as well. */ |
| return (ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM |
| || ix86_cmodel == CM_KERNEL); |
| |
| case CONST: |
| /* We also may accept the offsetted memory references in certain |
| special cases. */ |
| if (GET_CODE (XEXP (op, 0)) == UNSPEC) |
| switch (XINT (XEXP (op, 0), 1)) |
| { |
| case UNSPEC_GOTPCREL: |
| case UNSPEC_DTPOFF: |
| case UNSPEC_GOTNTPOFF: |
| case UNSPEC_NTPOFF: |
| return true; |
| default: |
| break; |
| } |
| |
| if (GET_CODE (XEXP (op, 0)) == PLUS) |
| { |
| rtx op1 = XEXP (XEXP (op, 0), 0); |
| rtx op2 = XEXP (XEXP (op, 0), 1); |
| HOST_WIDE_INT offset; |
| |
| if (ix86_cmodel == CM_LARGE) |
| return false; |
| if (!CONST_INT_P (op2)) |
| return false; |
| offset = trunc_int_for_mode (INTVAL (op2), DImode); |
| switch (GET_CODE (op1)) |
| { |
| case SYMBOL_REF: |
| /* TLS symbols are not constant. */ |
| if (SYMBOL_REF_TLS_MODEL (op1)) |
| return false; |
| /* For CM_SMALL assume that latest object is 16MB before |
| end of 31bits boundary. We may also accept pretty |
| large negative constants knowing that all objects are |
| in the positive half of address space. */ |
| if ((ix86_cmodel == CM_SMALL |
| || (ix86_cmodel == CM_MEDIUM |
| && !SYMBOL_REF_FAR_ADDR_P (op1))) |
| && offset < 16*1024*1024 |
| && trunc_int_for_mode (offset, SImode) == offset) |
| return true; |
| /* For CM_KERNEL we know that all object resist in the |
| negative half of 32bits address space. We may not |
| accept negative offsets, since they may be just off |
| and we may accept pretty large positive ones. */ |
| if (ix86_cmodel == CM_KERNEL |
| && offset > 0 |
| && trunc_int_for_mode (offset, SImode) == offset) |
| return true; |
| break; |
| |
| case LABEL_REF: |
| /* These conditions are similar to SYMBOL_REF ones, just the |
| constraints for code models differ. */ |
| if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM) |
| && offset < 16*1024*1024 |
| && trunc_int_for_mode (offset, SImode) == offset) |
| return true; |
| if (ix86_cmodel == CM_KERNEL |
| && offset > 0 |
| && trunc_int_for_mode (offset, SImode) == offset) |
| return true; |
| break; |
| |
| case UNSPEC: |
| switch (XINT (op1, 1)) |
| { |
| case UNSPEC_DTPOFF: |
| case UNSPEC_NTPOFF: |
| if (trunc_int_for_mode (offset, SImode) == offset) |
| return true; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| |
| return false; |
| }) |
| |
| ;; Return true if VALUE can be stored in the zero extended immediate field. |
| (define_predicate "x86_64_zext_immediate_operand" |
| (match_code "const_double,const_int,symbol_ref,label_ref,const") |
| { |
| switch (GET_CODE (op)) |
| { |
| case CONST_DOUBLE: |
| if (HOST_BITS_PER_WIDE_INT == 32) |
| return (GET_MODE (op) == VOIDmode && !CONST_DOUBLE_HIGH (op)); |
| else |
| return false; |
| |
| case CONST_INT: |
| if (HOST_BITS_PER_WIDE_INT == 32) |
| return INTVAL (op) >= 0; |
| else |
| return !(INTVAL (op) & ~(HOST_WIDE_INT) 0xffffffff); |
| |
| case SYMBOL_REF: |
| /* For certain code models, the symbolic references are known to fit. */ |
| /* TLS symbols are not constant. */ |
| if (SYMBOL_REF_TLS_MODEL (op)) |
| return false; |
| return (ix86_cmodel == CM_SMALL |
| || (ix86_cmodel == CM_MEDIUM |
| && !SYMBOL_REF_FAR_ADDR_P (op))); |
| |
| case LABEL_REF: |
| /* For certain code models, the code is near as well. */ |
| return ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM; |
| |
| case CONST: |
| /* We also may accept the offsetted memory references in certain |
| special cases. */ |
| if (GET_CODE (XEXP (op, 0)) == PLUS) |
| { |
| rtx op1 = XEXP (XEXP (op, 0), 0); |
| rtx op2 = XEXP (XEXP (op, 0), 1); |
| |
| if (ix86_cmodel == CM_LARGE) |
| return false; |
| switch (GET_CODE (op1)) |
| { |
| case SYMBOL_REF: |
| /* TLS symbols are not constant. */ |
| if (SYMBOL_REF_TLS_MODEL (op1)) |
| return false; |
| /* For small code model we may accept pretty large positive |
| offsets, since one bit is available for free. Negative |
| offsets are limited by the size of NULL pointer area |
| specified by the ABI. */ |
| if ((ix86_cmodel == CM_SMALL |
| || (ix86_cmodel == CM_MEDIUM |
| && !SYMBOL_REF_FAR_ADDR_P (op1))) |
| && CONST_INT_P (op2) |
| && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000 |
| && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2)) |
| return true; |
| /* ??? For the kernel, we may accept adjustment of |
| -0x10000000, since we know that it will just convert |
| negative address space to positive, but perhaps this |
| is not worthwhile. */ |
| break; |
| |
| case LABEL_REF: |
| /* These conditions are similar to SYMBOL_REF ones, just the |
| constraints for code models differ. */ |
| if ((ix86_cmodel == CM_SMALL || ix86_cmodel == CM_MEDIUM) |
| && CONST_INT_P (op2) |
| && trunc_int_for_mode (INTVAL (op2), DImode) > -0x10000 |
| && trunc_int_for_mode (INTVAL (op2), SImode) == INTVAL (op2)) |
| return true; |
| break; |
| |
| default: |
| return false; |
| } |
| } |
| break; |
| |
| default: |
| gcc_unreachable (); |
| } |
| return false; |
| }) |
| |
| ;; Return true if size of VALUE can be stored in a sign |
| ;; extended immediate field. |
| (define_predicate "x86_64_immediate_size_operand" |
| (and (match_code "symbol_ref") |
| (ior (not (match_test "TARGET_64BIT")) |
| (match_test "ix86_cmodel == CM_SMALL") |
| (match_test "ix86_cmodel == CM_KERNEL")))) |
| |
| ;; Return true if OP is general operand representable on x86_64. |
| (define_predicate "x86_64_general_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (ior (match_operand 0 "nonimmediate_operand") |
| (match_operand 0 "x86_64_immediate_operand")) |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return true if OP is non-VOIDmode general operand representable |
| ;; on x86_64. This predicate is used in sign-extending conversion |
| ;; operations that require non-VOIDmode immediate operands. |
| (define_predicate "x86_64_sext_operand" |
| (and (match_test "GET_MODE (op) != VOIDmode") |
| (match_operand 0 "x86_64_general_operand"))) |
| |
| ;; Return true if OP is non-VOIDmode general operand. This predicate |
| ;; is used in sign-extending conversion operations that require |
| ;; non-VOIDmode immediate operands. |
| (define_predicate "sext_operand" |
| (and (match_test "GET_MODE (op) != VOIDmode") |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return true if OP is representable on x86_64 as zero-extended operand. |
| ;; This predicate is used in zero-extending conversion operations that |
| ;; require non-VOIDmode immediate operands. |
| (define_predicate "x86_64_zext_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (ior (match_operand 0 "nonimmediate_operand") |
| (and (match_operand 0 "x86_64_zext_immediate_operand") |
| (match_test "GET_MODE (op) != VOIDmode"))) |
| (match_operand 0 "nonimmediate_operand"))) |
| |
| ;; Return true if OP is general operand representable on x86_64 |
| ;; as either sign extended or zero extended constant. |
| (define_predicate "x86_64_szext_general_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (ior (match_operand 0 "nonimmediate_operand") |
| (match_operand 0 "x86_64_immediate_operand") |
| (match_operand 0 "x86_64_zext_immediate_operand")) |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return true if OP is nonmemory operand representable on x86_64. |
| (define_predicate "x86_64_nonmemory_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (ior (match_operand 0 "register_operand") |
| (match_operand 0 "x86_64_immediate_operand")) |
| (match_operand 0 "nonmemory_operand"))) |
| |
| ;; Return true if OP is nonmemory operand representable on x86_64. |
| (define_predicate "x86_64_szext_nonmemory_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (ior (match_operand 0 "register_operand") |
| (match_operand 0 "x86_64_immediate_operand") |
| (match_operand 0 "x86_64_zext_immediate_operand")) |
| (match_operand 0 "nonmemory_operand"))) |
| |
| ;; Return true when operand is PIC expression that can be computed by lea |
| ;; operation. |
| (define_predicate "pic_32bit_operand" |
| (match_code "const,symbol_ref,label_ref") |
| { |
| if (!flag_pic) |
| return false; |
| |
| /* Rule out relocations that translate into 64bit constants. */ |
| if (TARGET_64BIT && GET_CODE (op) == CONST) |
| { |
| op = XEXP (op, 0); |
| if (GET_CODE (op) == PLUS && CONST_INT_P (XEXP (op, 1))) |
| op = XEXP (op, 0); |
| if (GET_CODE (op) == UNSPEC |
| && (XINT (op, 1) == UNSPEC_GOTOFF |
| || XINT (op, 1) == UNSPEC_GOT)) |
| return false; |
| } |
| |
| return symbolic_operand (op, mode); |
| }) |
| |
| ;; Return true if OP is nonmemory operand acceptable by movabs patterns. |
| (define_predicate "x86_64_movabs_operand" |
| (and (match_operand 0 "nonmemory_operand") |
| (not (match_operand 0 "pic_32bit_operand")))) |
| |
| ;; Return true if OP is either a symbol reference or a sum of a symbol |
| ;; reference and a constant. |
| (define_predicate "symbolic_operand" |
| (match_code "symbol_ref,label_ref,const") |
| { |
| switch (GET_CODE (op)) |
| { |
| case SYMBOL_REF: |
| case LABEL_REF: |
| return true; |
| |
| case CONST: |
| op = XEXP (op, 0); |
| if (GET_CODE (op) == SYMBOL_REF |
| || GET_CODE (op) == LABEL_REF |
| || (GET_CODE (op) == UNSPEC |
| && (XINT (op, 1) == UNSPEC_GOT |
| || XINT (op, 1) == UNSPEC_GOTOFF |
| || XINT (op, 1) == UNSPEC_PCREL |
| || XINT (op, 1) == UNSPEC_GOTPCREL))) |
| return true; |
| if (GET_CODE (op) != PLUS |
| || !CONST_INT_P (XEXP (op, 1))) |
| return false; |
| |
| op = XEXP (op, 0); |
| if (GET_CODE (op) == SYMBOL_REF |
| || GET_CODE (op) == LABEL_REF) |
| return true; |
| /* Only @GOTOFF gets offsets. */ |
| if (GET_CODE (op) != UNSPEC |
| || XINT (op, 1) != UNSPEC_GOTOFF) |
| return false; |
| |
| op = XVECEXP (op, 0, 0); |
| if (GET_CODE (op) == SYMBOL_REF |
| || GET_CODE (op) == LABEL_REF) |
| return true; |
| return false; |
| |
| default: |
| gcc_unreachable (); |
| } |
| }) |
| |
| ;; Return true if OP is a symbolic operand that resolves locally. |
| (define_predicate "local_symbolic_operand" |
| (match_code "const,label_ref,symbol_ref") |
| { |
| if (GET_CODE (op) == CONST |
| && GET_CODE (XEXP (op, 0)) == PLUS |
| && CONST_INT_P (XEXP (XEXP (op, 0), 1))) |
| op = XEXP (XEXP (op, 0), 0); |
| |
| if (GET_CODE (op) == LABEL_REF) |
| return true; |
| |
| if (GET_CODE (op) != SYMBOL_REF) |
| return false; |
| |
| if (SYMBOL_REF_TLS_MODEL (op)) |
| return false; |
| |
| /* Dll-imported symbols are always external. */ |
| if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op)) |
| return false; |
| if (SYMBOL_REF_LOCAL_P (op)) |
| return true; |
| |
| /* There is, however, a not insubstantial body of code in the rest of |
| the compiler that assumes it can just stick the results of |
| ASM_GENERATE_INTERNAL_LABEL in a symbol_ref and have done. */ |
| /* ??? This is a hack. Should update the body of the compiler to |
| always create a DECL an invoke targetm.encode_section_info. */ |
| if (strncmp (XSTR (op, 0), internal_label_prefix, |
| internal_label_prefix_len) == 0) |
| return true; |
| |
| return false; |
| }) |
| |
| ;; Test for a legitimate @GOTOFF operand. |
| ;; |
| ;; VxWorks does not impose a fixed gap between segments; the run-time |
| ;; gap can be different from the object-file gap. We therefore can't |
| ;; use @GOTOFF unless we are absolutely sure that the symbol is in the |
| ;; same segment as the GOT. Unfortunately, the flexibility of linker |
| ;; scripts means that we can't be sure of that in general, so assume |
| ;; that @GOTOFF is never valid on VxWorks. |
| (define_predicate "gotoff_operand" |
| (and (not (match_test "TARGET_VXWORKS_RTP")) |
| (match_operand 0 "local_symbolic_operand"))) |
| |
| ;; Test for various thread-local symbols. |
| (define_special_predicate "tls_symbolic_operand" |
| (and (match_code "symbol_ref") |
| (match_test "SYMBOL_REF_TLS_MODEL (op)"))) |
| |
| (define_special_predicate "tls_modbase_operand" |
| (and (match_code "symbol_ref") |
| (match_test "op == ix86_tls_module_base ()"))) |
| |
| ;; Test for a pc-relative call operand |
| (define_predicate "constant_call_address_operand" |
| (match_code "symbol_ref") |
| { |
| if (ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC) |
| return false; |
| if (TARGET_DLLIMPORT_DECL_ATTRIBUTES && SYMBOL_REF_DLLIMPORT_P (op)) |
| return false; |
| return true; |
| }) |
| |
| ;; P6 processors will jump to the address after the decrement when %esp |
| ;; is used as a call operand, so they will execute return address as a code. |
| ;; See Pentium Pro errata 70, Pentium 2 errata A33 and Pentium 3 errata E17. |
| |
| (define_predicate "call_register_no_elim_operand" |
| (match_operand 0 "register_operand") |
| { |
| if (GET_CODE (op) == SUBREG) |
| op = SUBREG_REG (op); |
| |
| if (!TARGET_64BIT && op == stack_pointer_rtx) |
| return false; |
| |
| return register_no_elim_operand (op, mode); |
| }) |
| |
| ;; True for any non-virtual or eliminable register. Used in places where |
| ;; instantiation of such a register may cause the pattern to not be recognized. |
| (define_predicate "register_no_elim_operand" |
| (match_operand 0 "register_operand") |
| { |
| if (GET_CODE (op) == SUBREG) |
| op = SUBREG_REG (op); |
| return !(op == arg_pointer_rtx |
| || op == frame_pointer_rtx |
| || IN_RANGE (REGNO (op), |
| FIRST_PSEUDO_REGISTER, LAST_VIRTUAL_REGISTER)); |
| }) |
| |
| ;; Similarly, but include the stack pointer. This is used to prevent esp |
| ;; from being used as an index reg. |
| (define_predicate "index_register_operand" |
| (match_operand 0 "register_operand") |
| { |
| if (GET_CODE (op) == SUBREG) |
| op = SUBREG_REG (op); |
| if (reload_in_progress || reload_completed) |
| return REG_OK_FOR_INDEX_STRICT_P (op); |
| else |
| return REG_OK_FOR_INDEX_NONSTRICT_P (op); |
| }) |
| |
| ;; Return false if this is any eliminable register. Otherwise general_operand. |
| (define_predicate "general_no_elim_operand" |
| (if_then_else (match_code "reg,subreg") |
| (match_operand 0 "register_no_elim_operand") |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return false if this is any eliminable register. Otherwise |
| ;; register_operand or a constant. |
| (define_predicate "nonmemory_no_elim_operand" |
| (ior (match_operand 0 "register_no_elim_operand") |
| (match_operand 0 "immediate_operand"))) |
| |
| ;; Test for a valid operand for indirect branch. |
| (define_predicate "indirect_branch_operand" |
| (ior (match_operand 0 "register_operand") |
| (and (not (match_test "TARGET_X32")) |
| (match_operand 0 "memory_operand")))) |
| |
| ;; Test for a valid operand for a call instruction. |
| ;; Allow constant call address operands in Pmode only. |
| (define_special_predicate "call_insn_operand" |
| (ior (match_test "constant_call_address_operand |
| (op, mode == VOIDmode ? mode : Pmode)") |
| (match_operand 0 "call_register_no_elim_operand") |
| (and (not (match_test "TARGET_X32")) |
| (match_operand 0 "memory_operand")))) |
| |
| ;; Similarly, but for tail calls, in which we cannot allow memory references. |
| (define_special_predicate "sibcall_insn_operand" |
| (ior (match_test "constant_call_address_operand |
| (op, mode == VOIDmode ? mode : Pmode)") |
| (match_operand 0 "register_no_elim_operand") |
| (and (not (match_test "TARGET_X32")) |
| (match_operand 0 "sibcall_memory_operand")))) |
| |
| ;; Match exactly zero. |
| (define_predicate "const0_operand" |
| (match_code "const_int,const_double,const_vector") |
| { |
| if (mode == VOIDmode) |
| mode = GET_MODE (op); |
| return op == CONST0_RTX (mode); |
| }) |
| |
| ;; Match -1. |
| (define_predicate "constm1_operand" |
| (match_code "const_int,const_double,const_vector") |
| { |
| if (mode == VOIDmode) |
| mode = GET_MODE (op); |
| return op == CONSTM1_RTX (mode); |
| }) |
| |
| ;; Match one or vector filled with ones. |
| (define_predicate "const1_operand" |
| (match_code "const_int,const_double,const_vector") |
| { |
| if (mode == VOIDmode) |
| mode = GET_MODE (op); |
| return op == CONST1_RTX (mode); |
| }) |
| |
| ;; Match exactly eight. |
| (define_predicate "const8_operand" |
| (and (match_code "const_int") |
| (match_test "INTVAL (op) == 8"))) |
| |
| ;; Match exactly 128. |
| (define_predicate "const128_operand" |
| (and (match_code "const_int") |
| (match_test "INTVAL (op) == 128"))) |
| |
| ;; Match exactly 0x0FFFFFFFF in anddi as a zero-extension operation |
| (define_predicate "const_32bit_mask" |
| (and (match_code "const_int") |
| (match_test "trunc_int_for_mode (INTVAL (op), DImode) |
| == (HOST_WIDE_INT) 0xffffffff"))) |
| |
| ;; Match 2, 4, or 8. Used for leal multiplicands. |
| (define_predicate "const248_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 2 || i == 4 || i == 8; |
| }) |
| |
| ;; Match 2, 3, 6, or 7 |
| (define_predicate "const2367_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 2 || i == 3 || i == 6 || i == 7; |
| }) |
| |
| ;; Match 1, 2, 4, or 8 |
| (define_predicate "const1248_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 1 || i == 2 || i == 4 || i == 8; |
| }) |
| |
| ;; Match 3, 5, or 9. Used for leal multiplicands. |
| (define_predicate "const359_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 3 || i == 5 || i == 9; |
| }) |
| |
| ;; Match 4 or 8 to 11. Used for embeded rounding. |
| (define_predicate "const_4_or_8_to_11_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 4 || (i >= 8 && i <= 11); |
| }) |
| |
| ;; Match 4 or 8. Used for SAE. |
| (define_predicate "const48_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT i = INTVAL (op); |
| return i == 4 || i == 8; |
| }) |
| |
| ;; Match 0 or 1. |
| (define_predicate "const_0_to_1_operand" |
| (and (match_code "const_int") |
| (ior (match_test "op == const0_rtx") |
| (match_test "op == const1_rtx")))) |
| |
| ;; Match 0 to 3. |
| (define_predicate "const_0_to_3_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 3)"))) |
| |
| ;; Match 0 to 4. |
| (define_predicate "const_0_to_4_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 4)"))) |
| |
| ;; Match 0 to 5. |
| (define_predicate "const_0_to_5_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 5)"))) |
| |
| ;; Match 0 to 7. |
| (define_predicate "const_0_to_7_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 7)"))) |
| |
| ;; Match 0 to 15. |
| (define_predicate "const_0_to_15_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 15)"))) |
| |
| ;; Match 0 to 31. |
| (define_predicate "const_0_to_31_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 31)"))) |
| |
| ;; Match 0 to 63. |
| (define_predicate "const_0_to_63_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 63)"))) |
| |
| ;; Match 0 to 255. |
| (define_predicate "const_0_to_255_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 0, 255)"))) |
| |
| ;; Match (0 to 255) * 8 |
| (define_predicate "const_0_to_255_mul_8_operand" |
| (match_code "const_int") |
| { |
| unsigned HOST_WIDE_INT val = INTVAL (op); |
| return val <= 255*8 && val % 8 == 0; |
| }) |
| |
| ;; Return true if OP is CONST_INT >= 1 and <= 31 (a valid operand |
| ;; for shift & compare patterns, as shifting by 0 does not change flags). |
| (define_predicate "const_1_to_31_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 1, 31)"))) |
| |
| ;; Return true if OP is CONST_INT >= 1 and <= 63 (a valid operand |
| ;; for 64bit shift & compare patterns, as shifting by 0 does not change flags). |
| (define_predicate "const_1_to_63_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 1, 63)"))) |
| |
| ;; Match 2 or 3. |
| (define_predicate "const_2_to_3_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 2, 3)"))) |
| |
| ;; Match 4 to 5. |
| (define_predicate "const_4_to_5_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 4, 5)"))) |
| |
| ;; Match 4 to 7. |
| (define_predicate "const_4_to_7_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 4, 7)"))) |
| |
| ;; Match 6 to 7. |
| (define_predicate "const_6_to_7_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 6, 7)"))) |
| |
| ;; Match 8 to 9. |
| (define_predicate "const_8_to_9_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 8, 9)"))) |
| |
| ;; Match 8 to 11. |
| (define_predicate "const_8_to_11_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 8, 11)"))) |
| |
| ;; Match 8 to 15. |
| (define_predicate "const_8_to_15_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 8, 15)"))) |
| |
| ;; Match 10 to 11. |
| (define_predicate "const_10_to_11_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 10, 11)"))) |
| |
| ;; Match 12 to 13. |
| (define_predicate "const_12_to_13_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 12, 13)"))) |
| |
| ;; Match 12 to 15. |
| (define_predicate "const_12_to_15_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 12, 15)"))) |
| |
| ;; Match 14 to 15. |
| (define_predicate "const_14_to_15_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 14, 15)"))) |
| |
| ;; Match 16 to 19. |
| (define_predicate "const_16_to_19_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 16, 19)"))) |
| |
| ;; Match 16 to 31. |
| (define_predicate "const_16_to_31_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 16, 31)"))) |
| |
| ;; Match 20 to 23. |
| (define_predicate "const_20_to_23_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 20, 23)"))) |
| |
| ;; Match 24 to 27. |
| (define_predicate "const_24_to_27_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 24, 27)"))) |
| |
| ;; Match 28 to 31. |
| (define_predicate "const_28_to_31_operand" |
| (and (match_code "const_int") |
| (match_test "IN_RANGE (INTVAL (op), 28, 31)"))) |
| |
| ;; True if this is a constant appropriate for an increment or decrement. |
| (define_predicate "incdec_operand" |
| (match_code "const_int") |
| { |
| /* On Pentium4, the inc and dec operations causes extra dependency on flag |
| registers, since carry flag is not set. */ |
| if (!TARGET_USE_INCDEC && !optimize_insn_for_size_p ()) |
| return false; |
| return op == const1_rtx || op == constm1_rtx; |
| }) |
| |
| ;; True for registers, or 1 or -1. Used to optimize double-word shifts. |
| (define_predicate "reg_or_pm1_operand" |
| (ior (match_operand 0 "register_operand") |
| (and (match_code "const_int") |
| (ior (match_test "op == const1_rtx") |
| (match_test "op == constm1_rtx"))))) |
| |
| ;; True if OP is acceptable as operand of DImode shift expander. |
| (define_predicate "shiftdi_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (match_operand 0 "nonimmediate_operand") |
| (match_operand 0 "register_operand"))) |
| |
| (define_predicate "ashldi_input_operand" |
| (if_then_else (match_test "TARGET_64BIT") |
| (match_operand 0 "nonimmediate_operand") |
| (match_operand 0 "reg_or_pm1_operand"))) |
| |
| ;; Return true if OP is a vector load from the constant pool with just |
| ;; the first element nonzero. |
| (define_predicate "zero_extended_scalar_load_operand" |
| (match_code "mem") |
| { |
| unsigned n_elts; |
| op = maybe_get_pool_constant (op); |
| |
| if (!(op && GET_CODE (op) == CONST_VECTOR)) |
| return false; |
| |
| n_elts = CONST_VECTOR_NUNITS (op); |
| |
| for (n_elts--; n_elts > 0; n_elts--) |
| { |
| rtx elt = CONST_VECTOR_ELT (op, n_elts); |
| if (elt != CONST0_RTX (GET_MODE_INNER (GET_MODE (op)))) |
| return false; |
| } |
| return true; |
| }) |
| |
| /* Return true if operand is a vector constant that is all ones. */ |
| (define_predicate "vector_all_ones_operand" |
| (match_code "const_vector") |
| { |
| int nunits = GET_MODE_NUNITS (mode); |
| |
| if (GET_CODE (op) == CONST_VECTOR |
| && CONST_VECTOR_NUNITS (op) == nunits) |
| { |
| int i; |
| for (i = 0; i < nunits; ++i) |
| { |
| rtx x = CONST_VECTOR_ELT (op, i); |
| if (x != constm1_rtx) |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| }) |
| |
| ; Return true when OP is operand acceptable for standard SSE move. |
| (define_predicate "vector_move_operand" |
| (ior (match_operand 0 "nonimmediate_operand") |
| (match_operand 0 "const0_operand"))) |
| |
| ;; Return true when OP is either nonimmediate operand, or any |
| ;; CONST_VECTOR. |
| (define_predicate "nonimmediate_or_const_vector_operand" |
| (ior (match_operand 0 "nonimmediate_operand") |
| (match_code "const_vector"))) |
| |
| ;; Return true when OP is nonimmediate or standard SSE constant. |
| (define_predicate "nonimmediate_or_sse_const_operand" |
| (match_operand 0 "general_operand") |
| { |
| if (nonimmediate_operand (op, mode)) |
| return true; |
| if (standard_sse_constant_p (op) > 0) |
| return true; |
| return false; |
| }) |
| |
| ;; Return true if OP is a register or a zero. |
| (define_predicate "reg_or_0_operand" |
| (ior (match_operand 0 "register_operand") |
| (match_operand 0 "const0_operand"))) |
| |
| ;; Return true for RTX codes that force SImode address. |
| (define_predicate "SImode_address_operand" |
| (match_code "subreg,zero_extend,and")) |
| |
| ;; Return true if op if a valid address for LEA, and does not contain |
| ;; a segment override. Defined as a special predicate to allow |
| ;; mode-less const_int operands pass to address_operand. |
| (define_special_predicate "address_no_seg_operand" |
| (match_test "address_operand (op, VOIDmode)") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| if (!CONST_INT_P (op) |
| && mode != VOIDmode |
| && GET_MODE (op) != mode) |
| return false; |
| |
| ok = ix86_decompose_address (op, &parts); |
| gcc_assert (ok); |
| return parts.seg == SEG_DEFAULT; |
| }) |
| |
| ;; Return true if op if a valid base register, displacement or |
| ;; sum of base register and displacement for VSIB addressing. |
| (define_predicate "vsib_address_operand" |
| (match_test "address_operand (op, VOIDmode)") |
| { |
| struct ix86_address parts; |
| int ok; |
| rtx disp; |
| |
| ok = ix86_decompose_address (op, &parts); |
| gcc_assert (ok); |
| if (parts.index || parts.seg != SEG_DEFAULT) |
| return false; |
| |
| /* VSIB addressing doesn't support (%rip). */ |
| if (parts.disp) |
| { |
| disp = parts.disp; |
| if (GET_CODE (disp) == CONST) |
| { |
| disp = XEXP (disp, 0); |
| if (GET_CODE (disp) == PLUS) |
| disp = XEXP (disp, 0); |
| if (GET_CODE (disp) == UNSPEC) |
| switch (XINT (disp, 1)) |
| { |
| case UNSPEC_GOTPCREL: |
| case UNSPEC_PCREL: |
| case UNSPEC_GOTNTPOFF: |
| return false; |
| } |
| } |
| if (TARGET_64BIT |
| && flag_pic |
| && (GET_CODE (disp) == SYMBOL_REF |
| || GET_CODE (disp) == LABEL_REF)) |
| return false; |
| } |
| |
| return true; |
| }) |
| |
| ;; Return true if op is valid MPX address operand without base |
| (define_predicate "address_mpx_no_base_operand" |
| (match_test "address_operand (op, VOIDmode)") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| ok = ix86_decompose_address (op, &parts); |
| gcc_assert (ok); |
| |
| if (parts.index && parts.base) |
| return false; |
| |
| if (parts.seg != SEG_DEFAULT) |
| return false; |
| |
| /* Do not support (%rip). */ |
| if (parts.disp && flag_pic && TARGET_64BIT |
| && SYMBOLIC_CONST (parts.disp)) |
| { |
| if (GET_CODE (parts.disp) != CONST |
| || GET_CODE (XEXP (parts.disp, 0)) != PLUS |
| || GET_CODE (XEXP (XEXP (parts.disp, 0), 0)) != UNSPEC |
| || !CONST_INT_P (XEXP (XEXP (parts.disp, 0), 1)) |
| || (XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_DTPOFF |
| && XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_NTPOFF)) |
| return false; |
| } |
| |
| return true; |
| }) |
| |
| ;; Return true if op is valid MPX address operand without index |
| (define_predicate "address_mpx_no_index_operand" |
| (match_test "address_operand (op, VOIDmode)") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| ok = ix86_decompose_address (op, &parts); |
| gcc_assert (ok); |
| |
| if (parts.index) |
| return false; |
| |
| if (parts.seg != SEG_DEFAULT) |
| return false; |
| |
| /* Do not support (%rip). */ |
| if (parts.disp && flag_pic && TARGET_64BIT |
| && SYMBOLIC_CONST (parts.disp) |
| && (GET_CODE (parts.disp) != CONST |
| || GET_CODE (XEXP (parts.disp, 0)) != PLUS |
| || GET_CODE (XEXP (XEXP (parts.disp, 0), 0)) != UNSPEC |
| || !CONST_INT_P (XEXP (XEXP (parts.disp, 0), 1)) |
| || (XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_DTPOFF |
| && XINT (XEXP (XEXP (parts.disp, 0), 0), 1) != UNSPEC_NTPOFF))) |
| return false; |
| |
| return true; |
| }) |
| |
| (define_predicate "vsib_mem_operator" |
| (match_code "mem")) |
| |
| (define_predicate "bnd_mem_operator" |
| (match_code "mem")) |
| |
| ;; Return true if the rtx is known to be at least 32 bits aligned. |
| (define_predicate "aligned_operand" |
| (match_operand 0 "general_operand") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| /* Registers and immediate operands are always "aligned". */ |
| if (!MEM_P (op)) |
| return true; |
| |
| /* All patterns using aligned_operand on memory operands ends up |
| in promoting memory operand to 64bit and thus causing memory mismatch. */ |
| if (TARGET_MEMORY_MISMATCH_STALL && !optimize_insn_for_size_p ()) |
| return false; |
| |
| /* Don't even try to do any aligned optimizations with volatiles. */ |
| if (MEM_VOLATILE_P (op)) |
| return false; |
| |
| if (MEM_ALIGN (op) >= 32) |
| return true; |
| |
| op = XEXP (op, 0); |
| |
| /* Pushes and pops are only valid on the stack pointer. */ |
| if (GET_CODE (op) == PRE_DEC |
| || GET_CODE (op) == POST_INC) |
| return true; |
| |
| /* Decode the address. */ |
| ok = ix86_decompose_address (op, &parts); |
| gcc_assert (ok); |
| |
| if (parts.base && GET_CODE (parts.base) == SUBREG) |
| parts.base = SUBREG_REG (parts.base); |
| if (parts.index && GET_CODE (parts.index) == SUBREG) |
| parts.index = SUBREG_REG (parts.index); |
| |
| /* Look for some component that isn't known to be aligned. */ |
| if (parts.index) |
| { |
| if (REGNO_POINTER_ALIGN (REGNO (parts.index)) * parts.scale < 32) |
| return false; |
| } |
| if (parts.base) |
| { |
| if (REGNO_POINTER_ALIGN (REGNO (parts.base)) < 32) |
| return false; |
| } |
| if (parts.disp) |
| { |
| if (!CONST_INT_P (parts.disp) |
| || (INTVAL (parts.disp) & 3)) |
| return false; |
| } |
| |
| /* Didn't find one -- this must be an aligned address. */ |
| return true; |
| }) |
| |
| ;; Return true if OP is memory operand with a displacement. |
| (define_predicate "memory_displacement_operand" |
| (match_operand 0 "memory_operand") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| ok = ix86_decompose_address (XEXP (op, 0), &parts); |
| gcc_assert (ok); |
| return parts.disp != NULL_RTX; |
| }) |
| |
| ;; Return true if OP is memory operand with a displacement only. |
| (define_predicate "memory_displacement_only_operand" |
| (match_operand 0 "memory_operand") |
| { |
| struct ix86_address parts; |
| int ok; |
| |
| if (TARGET_64BIT) |
| return false; |
| |
| ok = ix86_decompose_address (XEXP (op, 0), &parts); |
| gcc_assert (ok); |
| |
| if (parts.base || parts.index) |
| return false; |
| |
| return parts.disp != NULL_RTX; |
| }) |
| |
| ;; Return true if OP is memory operand that cannot be represented |
| ;; by the modRM array. |
| (define_predicate "long_memory_operand" |
| (and (match_operand 0 "memory_operand") |
| (match_test "memory_address_length (op, false)"))) |
| |
| ;; Return true if OP is a comparison operator that can be issued by fcmov. |
| (define_predicate "fcmov_comparison_operator" |
| (match_operand 0 "comparison_operator") |
| { |
| machine_mode inmode = GET_MODE (XEXP (op, 0)); |
| enum rtx_code code = GET_CODE (op); |
| |
| if (inmode == CCFPmode || inmode == CCFPUmode) |
| { |
| if (!ix86_trivial_fp_comparison_operator (op, mode)) |
| return false; |
| code = ix86_fp_compare_code_to_integer (code); |
| } |
| /* i387 supports just limited amount of conditional codes. */ |
| switch (code) |
| { |
| case LTU: case GTU: case LEU: case GEU: |
| if (inmode == CCmode || inmode == CCFPmode || inmode == CCFPUmode |
| || inmode == CCCmode) |
| return true; |
| return false; |
| case ORDERED: case UNORDERED: |
| case EQ: case NE: |
| return true; |
| default: |
| return false; |
| } |
| }) |
| |
| ;; Return true if OP is a comparison that can be used in the CMPSS/CMPPS insns. |
| ;; The first set are supported directly; the second set can't be done with |
| ;; full IEEE support, i.e. NaNs. |
| |
| (define_predicate "sse_comparison_operator" |
| (ior (match_code "eq,ne,lt,le,unordered,unge,ungt,ordered") |
| (and (match_test "TARGET_AVX") |
| (match_code "ge,gt,uneq,unle,unlt,ltgt")))) |
| |
| (define_predicate "ix86_comparison_int_operator" |
| (match_code "ne,eq,ge,gt,le,lt")) |
| |
| (define_predicate "ix86_comparison_uns_operator" |
| (match_code "ne,eq,geu,gtu,leu,ltu")) |
| |
| (define_predicate "bt_comparison_operator" |
| (match_code "ne,eq")) |
| |
| ;; Return true if OP is a valid comparison operator in valid mode. |
| (define_predicate "ix86_comparison_operator" |
| (match_operand 0 "comparison_operator") |
| { |
| machine_mode inmode = GET_MODE (XEXP (op, 0)); |
| enum rtx_code code = GET_CODE (op); |
| |
| if (inmode == CCFPmode || inmode == CCFPUmode) |
| return ix86_trivial_fp_comparison_operator (op, mode); |
| |
| switch (code) |
| { |
| case EQ: case NE: |
| return true; |
| case LT: case GE: |
| if (inmode == CCmode || inmode == CCGCmode |
| || inmode == CCGOCmode || inmode == CCNOmode) |
| return true; |
| return false; |
| case LTU: case GTU: case LEU: case GEU: |
| if (inmode == CCmode || inmode == CCCmode) |
| return true; |
| return false; |
| case ORDERED: case UNORDERED: |
| if (inmode == CCmode) |
| return true; |
| return false; |
| case GT: case LE: |
| if (inmode == CCmode || inmode == CCGCmode || inmode == CCNOmode) |
| return true; |
| return false; |
| default: |
| return false; |
| } |
| }) |
| |
| ;; Return true if OP is a valid comparison operator |
| ;; testing carry flag to be set. |
| (define_predicate "ix86_carry_flag_operator" |
| (match_code "ltu,lt,unlt,gtu,gt,ungt,le,unle,ge,unge,ltgt,uneq") |
| { |
| machine_mode inmode = GET_MODE (XEXP (op, 0)); |
| enum rtx_code code = GET_CODE (op); |
| |
| if (inmode == CCFPmode || inmode == CCFPUmode) |
| { |
| if (!ix86_trivial_fp_comparison_operator (op, mode)) |
| return false; |
| code = ix86_fp_compare_code_to_integer (code); |
| } |
| else if (inmode == CCCmode) |
| return code == LTU || code == GTU; |
| else if (inmode != CCmode) |
| return false; |
| |
| return code == LTU; |
| }) |
| |
| ;; Return true if this comparison only requires testing one flag bit. |
| (define_predicate "ix86_trivial_fp_comparison_operator" |
| (match_code "gt,ge,unlt,unle,uneq,ltgt,ordered,unordered")) |
| |
| ;; Return true if we know how to do this comparison. Others require |
| ;; testing more than one flag bit, and we let the generic middle-end |
| ;; code do that. |
| (define_predicate "ix86_fp_comparison_operator" |
| (if_then_else (match_test "ix86_fp_comparison_strategy (GET_CODE (op)) |
| == IX86_FPCMP_ARITH") |
| (match_operand 0 "comparison_operator") |
| (match_operand 0 "ix86_trivial_fp_comparison_operator"))) |
| |
| ;; Same as above, but for swapped comparison used in *jcc<fp>_<int>_i387. |
| (define_predicate "ix86_swapped_fp_comparison_operator" |
| (match_operand 0 "comparison_operator") |
| { |
| enum rtx_code code = GET_CODE (op); |
| bool ret; |
| |
| PUT_CODE (op, swap_condition (code)); |
| ret = ix86_fp_comparison_operator (op, mode); |
| PUT_CODE (op, code); |
| return ret; |
| }) |
| |
| ;; Nearly general operand, but accept any const_double, since we wish |
| ;; to be able to drop them into memory rather than have them get pulled |
| ;; into registers. |
| (define_predicate "cmp_fp_expander_operand" |
| (ior (match_code "const_double") |
| (match_operand 0 "general_operand"))) |
| |
| ;; Return true if this is a valid binary floating-point operation. |
| (define_predicate "binary_fp_operator" |
| (match_code "plus,minus,mult,div")) |
| |
| ;; Return true if this is a multiply operation. |
| (define_predicate "mult_operator" |
| (match_code "mult")) |
| |
| ;; Return true if this is a division operation. |
| (define_predicate "div_operator" |
| (match_code "div")) |
| |
| ;; Return true if this is a plus, minus, and, ior or xor operation. |
| (define_predicate "plusminuslogic_operator" |
| (match_code "plus,minus,and,ior,xor")) |
| |
| ;; Return true if this is a float extend operation. |
| (define_predicate "float_operator" |
| (match_code "float")) |
| |
| ;; Return true for ARITHMETIC_P. |
| (define_predicate "arith_or_logical_operator" |
| (match_code "plus,mult,and,ior,xor,smin,smax,umin,umax,compare,minus,div, |
| mod,udiv,umod,ashift,rotate,ashiftrt,lshiftrt,rotatert")) |
| |
| ;; Return true for COMMUTATIVE_P. |
| (define_predicate "commutative_operator" |
| (match_code "plus,mult,and,ior,xor,smin,smax,umin,umax")) |
| |
| ;; Return true if OP is a binary operator that can be promoted to wider mode. |
| (define_predicate "promotable_binary_operator" |
| (ior (match_code "plus,minus,and,ior,xor,ashift") |
| (and (match_code "mult") |
| (match_test "TARGET_TUNE_PROMOTE_HIMODE_IMUL")))) |
| |
| (define_predicate "compare_operator" |
| (match_code "compare")) |
| |
| (define_predicate "absneg_operator" |
| (match_code "abs,neg")) |
| |
| ;; Return true if OP is misaligned memory operand |
| (define_predicate "misaligned_operand" |
| (and (match_code "mem") |
| (match_test "MEM_ALIGN (op) < GET_MODE_ALIGNMENT (mode)"))) |
| |
| ;; Return true if OP is a emms operation, known to be a PARALLEL. |
| (define_predicate "emms_operation" |
| (match_code "parallel") |
| { |
| unsigned i; |
| |
| if (XVECLEN (op, 0) != 17) |
| return false; |
| |
| for (i = 0; i < 8; i++) |
| { |
| rtx elt = XVECEXP (op, 0, i+1); |
| |
| if (GET_CODE (elt) != CLOBBER |
| || GET_CODE (SET_DEST (elt)) != REG |
| || GET_MODE (SET_DEST (elt)) != XFmode |
| || REGNO (SET_DEST (elt)) != FIRST_STACK_REG + i) |
| return false; |
| |
| elt = XVECEXP (op, 0, i+9); |
| |
| if (GET_CODE (elt) != CLOBBER |
| || GET_CODE (SET_DEST (elt)) != REG |
| || GET_MODE (SET_DEST (elt)) != DImode |
| || REGNO (SET_DEST (elt)) != FIRST_MMX_REG + i) |
| return false; |
| } |
| return true; |
| }) |
| |
| ;; Return true if OP is a vzeroall operation, known to be a PARALLEL. |
| (define_predicate "vzeroall_operation" |
| (match_code "parallel") |
| { |
| unsigned i, nregs = TARGET_64BIT ? 16 : 8; |
| |
| if ((unsigned) XVECLEN (op, 0) != 1 + nregs) |
| return false; |
| |
| for (i = 0; i < nregs; i++) |
| { |
| rtx elt = XVECEXP (op, 0, i+1); |
| |
| if (GET_CODE (elt) != SET |
| || GET_CODE (SET_DEST (elt)) != REG |
| || GET_MODE (SET_DEST (elt)) != V8SImode |
| || REGNO (SET_DEST (elt)) != SSE_REGNO (i) |
| || SET_SRC (elt) != CONST0_RTX (V8SImode)) |
| return false; |
| } |
| return true; |
| }) |
| |
| ;; return true if OP is a vzeroupper operation. |
| (define_predicate "vzeroupper_operation" |
| (and (match_code "unspec_volatile") |
| (match_test "XINT (op, 1) == UNSPECV_VZEROUPPER"))) |
| |
| ;; Return true if OP is a parallel for a vbroadcast permute. |
| |
| (define_predicate "avx_vbroadcast_operand" |
| (and (match_code "parallel") |
| (match_code "const_int" "a")) |
| { |
| rtx elt = XVECEXP (op, 0, 0); |
| int i, nelt = XVECLEN (op, 0); |
| |
| /* Don't bother checking there are the right number of operands, |
| merely that they're all identical. */ |
| for (i = 1; i < nelt; ++i) |
| if (XVECEXP (op, 0, i) != elt) |
| return false; |
| return true; |
| }) |
| |
| ;; Return true if OP is a parallel for a palignr permute. |
| (define_predicate "palignr_operand" |
| (and (match_code "parallel") |
| (match_code "const_int" "a")) |
| { |
| int elt = INTVAL (XVECEXP (op, 0, 0)); |
| int i, nelt = XVECLEN (op, 0); |
| |
| /* Check that an order in the permutation is suitable for palignr. |
| For example, {5 6 7 0 1 2 3 4} is "palignr 5, xmm, xmm". */ |
| for (i = 1; i < nelt; ++i) |
| if (INTVAL (XVECEXP (op, 0, i)) != ((elt + i) % nelt)) |
| return false; |
| return true; |
| }) |
| |
| ;; Return true if OP is a proper third operand to vpblendw256. |
| (define_predicate "avx2_pblendw_operand" |
| (match_code "const_int") |
| { |
| HOST_WIDE_INT val = INTVAL (op); |
| HOST_WIDE_INT low = val & 0xff; |
| return val == ((low << 8) | low); |
| }) |
| |
| ;; Return true if OP is nonimmediate_operand or CONST_VECTOR. |
| (define_predicate "general_vector_operand" |
| (ior (match_operand 0 "nonimmediate_operand") |
| (match_code "const_vector"))) |
| |
| ;; Return true if OP is either -1 constant or stored in register. |
| (define_predicate "register_or_constm1_operand" |
| (ior (match_operand 0 "register_operand") |
| (and (match_code "const_int") |
| (match_test "op == constm1_rtx")))) |