|  |  | 
|  | /* YACC parser for Fortran expressions, for GDB. | 
|  | Copyright (C) 1986-2025 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Motorola.  Adapted from the C parser by Farooq Butt | 
|  | (fmbutt@engage.sps.mot.com). | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* This was blantantly ripped off the C expression parser, please | 
|  | be aware of that as you look at its basic structure -FMB */ | 
|  |  | 
|  | /* Parse a F77 expression from text in a string, | 
|  | and return the result as a  struct expression  pointer. | 
|  | That structure contains arithmetic operations in reverse polish, | 
|  | with constants represented by operations that are followed by special data. | 
|  | See expression.h for the details of the format. | 
|  | What is important here is that it can be built up sequentially | 
|  | during the process of parsing; the lower levels of the tree always | 
|  | come first in the result. | 
|  |  | 
|  | Note that malloc's and realloc's in this file are transformed to | 
|  | xmalloc and xrealloc respectively by the same sed command in the | 
|  | makefile that remaps any other malloc/realloc inserted by the parser | 
|  | generator.  Doing this with #defines and trying to control the interaction | 
|  | with include files (<malloc.h> and <stdlib.h> for example) just became | 
|  | too messy, particularly when such includes can be inserted at random | 
|  | times by the parser generator.  */ | 
|  |  | 
|  | %{ | 
|  |  | 
|  | #include "expression.h" | 
|  | #include "value.h" | 
|  | #include "parser-defs.h" | 
|  | #include "language.h" | 
|  | #include "f-lang.h" | 
|  | #include "block.h" | 
|  | #include <ctype.h> | 
|  | #include <algorithm> | 
|  | #include "type-stack.h" | 
|  | #include "f-exp.h" | 
|  |  | 
|  | #define parse_type(ps) builtin_type (ps->gdbarch ()) | 
|  | #define parse_f_type(ps) builtin_f_type (ps->gdbarch ()) | 
|  |  | 
|  | /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, | 
|  | etc).  */ | 
|  | #define GDB_YY_REMAP_PREFIX f_ | 
|  | #include "yy-remap.h" | 
|  |  | 
|  | /* The state of the parser, used internally when we are parsing the | 
|  | expression.  */ | 
|  |  | 
|  | static struct parser_state *pstate = NULL; | 
|  |  | 
|  | /* Depth of parentheses.  */ | 
|  | static int paren_depth; | 
|  |  | 
|  | /* The current type stack.  */ | 
|  | static struct type_stack *type_stack; | 
|  |  | 
|  | int yyparse (void); | 
|  |  | 
|  | static int yylex (void); | 
|  |  | 
|  | static void yyerror (const char *); | 
|  |  | 
|  | static void growbuf_by_size (int); | 
|  |  | 
|  | static int match_string_literal (void); | 
|  |  | 
|  | static void push_kind_type (LONGEST val, struct type *type); | 
|  |  | 
|  | static struct type *convert_to_kind_type (struct type *basetype, int kind); | 
|  |  | 
|  | static void wrap_unop_intrinsic (exp_opcode opcode); | 
|  |  | 
|  | static void wrap_binop_intrinsic (exp_opcode opcode); | 
|  |  | 
|  | static void wrap_ternop_intrinsic (exp_opcode opcode); | 
|  |  | 
|  | template<typename T> | 
|  | static void fortran_wrap2_kind (type *base_type); | 
|  |  | 
|  | template<typename T> | 
|  | static void fortran_wrap3_kind (type *base_type); | 
|  |  | 
|  | using namespace expr; | 
|  | %} | 
|  |  | 
|  | /* Although the yacc "value" of an expression is not used, | 
|  | since the result is stored in the structure being created, | 
|  | other node types do have values.  */ | 
|  |  | 
|  | %union | 
|  | { | 
|  | LONGEST lval; | 
|  | struct { | 
|  | LONGEST val; | 
|  | struct type *type; | 
|  | } typed_val; | 
|  | struct { | 
|  | gdb_byte val[16]; | 
|  | struct type *type; | 
|  | } typed_val_float; | 
|  | struct symbol *sym; | 
|  | struct type *tval; | 
|  | struct stoken sval; | 
|  | struct ttype tsym; | 
|  | struct symtoken ssym; | 
|  | int voidval; | 
|  | enum exp_opcode opcode; | 
|  | struct internalvar *ivar; | 
|  |  | 
|  | struct type **tvec; | 
|  | int *ivec; | 
|  | } | 
|  |  | 
|  | %{ | 
|  | /* YYSTYPE gets defined by %union */ | 
|  | static int parse_number (struct parser_state *, const char *, int, | 
|  | int, YYSTYPE *); | 
|  | %} | 
|  |  | 
|  | %type <voidval> exp  type_exp start variable | 
|  | %type <tval> type typebase | 
|  | %type <tvec> nonempty_typelist | 
|  | /* %type <bval> block */ | 
|  |  | 
|  | /* Fancy type parsing.  */ | 
|  | %type <voidval> func_mod direct_abs_decl abs_decl | 
|  | %type <tval> ptype | 
|  |  | 
|  | %token <typed_val> INT | 
|  | %token <typed_val_float> FLOAT | 
|  |  | 
|  | /* Both NAME and TYPENAME tokens represent symbols in the input, | 
|  | and both convey their data as strings. | 
|  | But a TYPENAME is a string that happens to be defined as a typedef | 
|  | or builtin type name (such as int or char) | 
|  | and a NAME is any other symbol. | 
|  | Contexts where this distinction is not important can use the | 
|  | nonterminal "name", which matches either NAME or TYPENAME.  */ | 
|  |  | 
|  | %token <sval> STRING_LITERAL | 
|  | %token <lval> BOOLEAN_LITERAL | 
|  | %token <ssym> NAME | 
|  | %token <tsym> TYPENAME | 
|  | %token <voidval> COMPLETE | 
|  | %type <sval> name | 
|  | %type <ssym> name_not_typename | 
|  |  | 
|  | /* A NAME_OR_INT is a symbol which is not known in the symbol table, | 
|  | but which would parse as a valid number in the current input radix. | 
|  | E.g. "c" when input_radix==16.  Depending on the parse, it will be | 
|  | turned into a name or into a number.  */ | 
|  |  | 
|  | %token <ssym> NAME_OR_INT | 
|  |  | 
|  | %token SIZEOF KIND | 
|  | %token ERROR | 
|  |  | 
|  | /* Special type cases, put in to allow the parser to distinguish different | 
|  | legal basetypes.  */ | 
|  | %token INT_S1_KEYWORD INT_S2_KEYWORD INT_KEYWORD INT_S4_KEYWORD INT_S8_KEYWORD | 
|  | %token LOGICAL_S1_KEYWORD LOGICAL_S2_KEYWORD LOGICAL_KEYWORD LOGICAL_S4_KEYWORD | 
|  | %token LOGICAL_S8_KEYWORD | 
|  | %token REAL_KEYWORD REAL_S4_KEYWORD REAL_S8_KEYWORD REAL_S16_KEYWORD | 
|  | %token COMPLEX_KEYWORD COMPLEX_S4_KEYWORD COMPLEX_S8_KEYWORD | 
|  | %token COMPLEX_S16_KEYWORD | 
|  | %token BOOL_AND BOOL_OR BOOL_NOT | 
|  | %token SINGLE DOUBLE PRECISION | 
|  | %token <lval> CHARACTER | 
|  |  | 
|  | %token <sval> DOLLAR_VARIABLE | 
|  |  | 
|  | %token <opcode> ASSIGN_MODIFY | 
|  | %token <opcode> UNOP_INTRINSIC BINOP_INTRINSIC | 
|  | %token <opcode> UNOP_OR_BINOP_INTRINSIC UNOP_OR_BINOP_OR_TERNOP_INTRINSIC | 
|  |  | 
|  | %left ',' | 
|  | %left ABOVE_COMMA | 
|  | %right '=' ASSIGN_MODIFY | 
|  | %right '?' | 
|  | %left BOOL_OR | 
|  | %right BOOL_NOT | 
|  | %left BOOL_AND | 
|  | %left '|' | 
|  | %left '^' | 
|  | %left '&' | 
|  | %left EQUAL NOTEQUAL | 
|  | %left LESSTHAN GREATERTHAN LEQ GEQ | 
|  | %left LSH RSH | 
|  | %left '@' | 
|  | %left '+' '-' | 
|  | %left '*' '/' | 
|  | %right STARSTAR | 
|  | %right '%' | 
|  | %right UNARY | 
|  | %right '(' | 
|  |  | 
|  |  | 
|  | %% | 
|  |  | 
|  | start   :	exp | 
|  | |	type_exp | 
|  | ; | 
|  |  | 
|  | type_exp:	type | 
|  | { pstate->push_new<type_operation> ($1); } | 
|  | ; | 
|  |  | 
|  | exp     :       '(' exp ')' | 
|  | { } | 
|  | ; | 
|  |  | 
|  | /* Expressions, not including the comma operator.  */ | 
|  | exp	:	'*' exp    %prec UNARY | 
|  | { pstate->wrap<unop_ind_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	'&' exp    %prec UNARY | 
|  | { pstate->wrap<unop_addr_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	'-' exp    %prec UNARY | 
|  | { pstate->wrap<unary_neg_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	BOOL_NOT exp    %prec UNARY | 
|  | { pstate->wrap<unary_logical_not_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	'~' exp    %prec UNARY | 
|  | { pstate->wrap<unary_complement_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	SIZEOF exp       %prec UNARY | 
|  | { pstate->wrap<unop_sizeof_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	KIND '(' exp ')'       %prec UNARY | 
|  | { pstate->wrap<fortran_kind_operation> (); } | 
|  | ; | 
|  |  | 
|  | /* No more explicit array operators, we treat everything in F77 as | 
|  | a function call.  The disambiguation as to whether we are | 
|  | doing a subscript operation or a function call is done | 
|  | later in eval.c.  */ | 
|  |  | 
|  | exp	:	exp '(' | 
|  | { pstate->start_arglist (); } | 
|  | arglist ')' | 
|  | { | 
|  | std::vector<operation_up> args | 
|  | = pstate->pop_vector (pstate->end_arglist ()); | 
|  | pstate->push_new<fortran_undetermined> | 
|  | (pstate->pop (), std::move (args)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	UNOP_INTRINSIC '(' exp ')' | 
|  | { | 
|  | wrap_unop_intrinsic ($1); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	BINOP_INTRINSIC '(' exp ',' exp ')' | 
|  | { | 
|  | wrap_binop_intrinsic ($1); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	UNOP_OR_BINOP_INTRINSIC '(' | 
|  | { pstate->start_arglist (); } | 
|  | arglist ')' | 
|  | { | 
|  | const int n = pstate->end_arglist (); | 
|  |  | 
|  | switch (n) | 
|  | { | 
|  | case 1: | 
|  | wrap_unop_intrinsic ($1); | 
|  | break; | 
|  | case 2: | 
|  | wrap_binop_intrinsic ($1); | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached | 
|  | ("wrong number of arguments for intrinsics"); | 
|  | } | 
|  | } | 
|  |  | 
|  | exp	:	UNOP_OR_BINOP_OR_TERNOP_INTRINSIC '(' | 
|  | { pstate->start_arglist (); } | 
|  | arglist ')' | 
|  | { | 
|  | const int n = pstate->end_arglist (); | 
|  |  | 
|  | switch (n) | 
|  | { | 
|  | case 1: | 
|  | wrap_unop_intrinsic ($1); | 
|  | break; | 
|  | case 2: | 
|  | wrap_binop_intrinsic ($1); | 
|  | break; | 
|  | case 3: | 
|  | wrap_ternop_intrinsic ($1); | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached | 
|  | ("wrong number of arguments for intrinsics"); | 
|  | } | 
|  | } | 
|  | ; | 
|  |  | 
|  | arglist	: | 
|  | ; | 
|  |  | 
|  | arglist	:	exp | 
|  | { pstate->arglist_len = 1; } | 
|  | ; | 
|  |  | 
|  | arglist :	subrange | 
|  | { pstate->arglist_len = 1; } | 
|  | ; | 
|  |  | 
|  | arglist	:	arglist ',' exp   %prec ABOVE_COMMA | 
|  | { pstate->arglist_len++; } | 
|  | ; | 
|  |  | 
|  | arglist	:	arglist ',' subrange   %prec ABOVE_COMMA | 
|  | { pstate->arglist_len++; } | 
|  | ; | 
|  |  | 
|  | /* There are four sorts of subrange types in F90.  */ | 
|  |  | 
|  | subrange:	exp ':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up high = pstate->pop (); | 
|  | operation_up low = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_STANDARD, std::move (low), | 
|  | std::move (high), operation_up ()); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	exp ':'	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up low = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_HIGH_BOUND_DEFAULT, std::move (low), | 
|  | operation_up (), operation_up ()); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up high = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_LOW_BOUND_DEFAULT, operation_up (), | 
|  | std::move (high), operation_up ()); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	':'	%prec ABOVE_COMMA | 
|  | { | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_LOW_BOUND_DEFAULT | 
|  | | RANGE_HIGH_BOUND_DEFAULT, | 
|  | operation_up (), operation_up (), | 
|  | operation_up ()); | 
|  | } | 
|  | ; | 
|  |  | 
|  | /* And each of the four subrange types can also have a stride.  */ | 
|  | subrange:	exp ':' exp ':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up stride = pstate->pop (); | 
|  | operation_up high = pstate->pop (); | 
|  | operation_up low = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_STANDARD | RANGE_HAS_STRIDE, | 
|  | std::move (low), std::move (high), | 
|  | std::move (stride)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	exp ':' ':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up stride = pstate->pop (); | 
|  | operation_up low = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_HIGH_BOUND_DEFAULT | 
|  | | RANGE_HAS_STRIDE, | 
|  | std::move (low), operation_up (), | 
|  | std::move (stride)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	':' exp ':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up stride = pstate->pop (); | 
|  | operation_up high = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_LOW_BOUND_DEFAULT | 
|  | | RANGE_HAS_STRIDE, | 
|  | operation_up (), std::move (high), | 
|  | std::move (stride)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | subrange:	':' ':' exp	%prec ABOVE_COMMA | 
|  | { | 
|  | operation_up stride = pstate->pop (); | 
|  | pstate->push_new<fortran_range_operation> | 
|  | (RANGE_LOW_BOUND_DEFAULT | 
|  | | RANGE_HIGH_BOUND_DEFAULT | 
|  | | RANGE_HAS_STRIDE, | 
|  | operation_up (), operation_up (), | 
|  | std::move (stride)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | complexnum:     exp ',' exp | 
|  | { } | 
|  | ; | 
|  |  | 
|  | exp	:	'(' complexnum ')' | 
|  | { | 
|  | operation_up rhs = pstate->pop (); | 
|  | operation_up lhs = pstate->pop (); | 
|  | pstate->push_new<complex_operation> | 
|  | (std::move (lhs), std::move (rhs), | 
|  | parse_f_type (pstate)->builtin_complex_s16); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	'(' type ')' exp  %prec UNARY | 
|  | { | 
|  | pstate->push_new<unop_cast_operation> | 
|  | (pstate->pop (), $2); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp     :       exp '%' name | 
|  | { | 
|  | pstate->push_new<fortran_structop_operation> | 
|  | (pstate->pop (), copy_name ($3)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp     :       exp '%' name COMPLETE | 
|  | { | 
|  | structop_base_operation *op | 
|  | = new fortran_structop_operation (pstate->pop (), | 
|  | copy_name ($3)); | 
|  | pstate->mark_struct_expression (op); | 
|  | pstate->push (operation_up (op)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp     :       exp '%' COMPLETE | 
|  | { | 
|  | structop_base_operation *op | 
|  | = new fortran_structop_operation (pstate->pop (), | 
|  | ""); | 
|  | pstate->mark_struct_expression (op); | 
|  | pstate->push (operation_up (op)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | /* Binary operators in order of decreasing precedence.  */ | 
|  |  | 
|  | exp	:	exp '@' exp | 
|  | { pstate->wrap2<repeat_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp STARSTAR exp | 
|  | { pstate->wrap2<exp_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '*' exp | 
|  | { pstate->wrap2<mul_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '/' exp | 
|  | { pstate->wrap2<div_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '+' exp | 
|  | { pstate->wrap2<add_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '-' exp | 
|  | { pstate->wrap2<sub_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp LSH exp | 
|  | { pstate->wrap2<lsh_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp RSH exp | 
|  | { pstate->wrap2<rsh_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp EQUAL exp | 
|  | { pstate->wrap2<equal_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp NOTEQUAL exp | 
|  | { pstate->wrap2<notequal_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp LEQ exp | 
|  | { pstate->wrap2<leq_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp GEQ exp | 
|  | { pstate->wrap2<geq_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp LESSTHAN exp | 
|  | { pstate->wrap2<less_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp GREATERTHAN exp | 
|  | { pstate->wrap2<gtr_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '&' exp | 
|  | { pstate->wrap2<bitwise_and_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '^' exp | 
|  | { pstate->wrap2<bitwise_xor_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '|' exp | 
|  | { pstate->wrap2<bitwise_ior_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp     :       exp BOOL_AND exp | 
|  | { pstate->wrap2<logical_and_operation> (); } | 
|  | ; | 
|  |  | 
|  |  | 
|  | exp	:	exp BOOL_OR exp | 
|  | { pstate->wrap2<logical_or_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp '=' exp | 
|  | { pstate->wrap2<assign_operation> (); } | 
|  | ; | 
|  |  | 
|  | exp	:	exp ASSIGN_MODIFY exp | 
|  | { | 
|  | operation_up rhs = pstate->pop (); | 
|  | operation_up lhs = pstate->pop (); | 
|  | pstate->push_new<assign_modify_operation> | 
|  | ($2, std::move (lhs), std::move (rhs)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	INT | 
|  | { | 
|  | pstate->push_new<long_const_operation> | 
|  | ($1.type, $1.val); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	NAME_OR_INT | 
|  | { YYSTYPE val; | 
|  | parse_number (pstate, $1.stoken.ptr, | 
|  | $1.stoken.length, 0, &val); | 
|  | pstate->push_new<long_const_operation> | 
|  | (val.typed_val.type, | 
|  | val.typed_val.val); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	FLOAT | 
|  | { | 
|  | float_data data; | 
|  | std::copy (std::begin ($1.val), std::end ($1.val), | 
|  | std::begin (data)); | 
|  | pstate->push_new<float_const_operation> ($1.type, data); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp	:	variable | 
|  | ; | 
|  |  | 
|  | exp	:	DOLLAR_VARIABLE | 
|  | { pstate->push_dollar ($1); } | 
|  | ; | 
|  |  | 
|  | exp	:	SIZEOF '(' type ')'	%prec UNARY | 
|  | { | 
|  | $3 = check_typedef ($3); | 
|  | pstate->push_new<long_const_operation> | 
|  | (parse_f_type (pstate)->builtin_integer, | 
|  | $3->length ()); | 
|  | } | 
|  | ; | 
|  |  | 
|  | exp     :       BOOLEAN_LITERAL | 
|  | { pstate->push_new<bool_operation> ($1); } | 
|  | ; | 
|  |  | 
|  | exp	:	STRING_LITERAL | 
|  | { | 
|  | pstate->push_new<string_operation> | 
|  | (copy_name ($1)); | 
|  | } | 
|  | ; | 
|  |  | 
|  | variable:	name_not_typename | 
|  | { struct block_symbol sym = $1.sym; | 
|  | std::string name = copy_name ($1.stoken); | 
|  | pstate->push_symbol (name.c_str (), sym); | 
|  | } | 
|  | ; | 
|  |  | 
|  |  | 
|  | type    :       ptype | 
|  | ; | 
|  |  | 
|  | ptype	:	typebase | 
|  | |	typebase abs_decl | 
|  | { | 
|  | /* This is where the interesting stuff happens.  */ | 
|  | int done = 0; | 
|  | int array_size; | 
|  | struct type *follow_type = $1; | 
|  | struct type *range_type; | 
|  |  | 
|  | while (!done) | 
|  | switch (type_stack->pop ()) | 
|  | { | 
|  | case tp_end: | 
|  | done = 1; | 
|  | break; | 
|  | case tp_pointer: | 
|  | follow_type = lookup_pointer_type (follow_type); | 
|  | break; | 
|  | case tp_reference: | 
|  | follow_type = lookup_lvalue_reference_type (follow_type); | 
|  | break; | 
|  | case tp_array: | 
|  | array_size = type_stack->pop_int (); | 
|  | if (array_size != -1) | 
|  | { | 
|  | struct type *idx_type | 
|  | = parse_f_type (pstate)->builtin_integer; | 
|  | type_allocator alloc (idx_type); | 
|  | range_type = | 
|  | create_static_range_type (alloc, idx_type, | 
|  | 0, array_size - 1); | 
|  | follow_type = create_array_type (alloc, | 
|  | follow_type, | 
|  | range_type); | 
|  | } | 
|  | else | 
|  | follow_type = lookup_pointer_type (follow_type); | 
|  | break; | 
|  | case tp_function: | 
|  | follow_type = lookup_function_type (follow_type); | 
|  | break; | 
|  | case tp_kind: | 
|  | { | 
|  | int kind_val = type_stack->pop_int (); | 
|  | follow_type | 
|  | = convert_to_kind_type (follow_type, kind_val); | 
|  | } | 
|  | break; | 
|  | } | 
|  | $$ = follow_type; | 
|  | } | 
|  | ; | 
|  |  | 
|  | abs_decl:	'*' | 
|  | { type_stack->push (tp_pointer); $$ = 0; } | 
|  | |	'*' abs_decl | 
|  | { type_stack->push (tp_pointer); $$ = $2; } | 
|  | |	'&' | 
|  | { type_stack->push (tp_reference); $$ = 0; } | 
|  | |	'&' abs_decl | 
|  | { type_stack->push (tp_reference); $$ = $2; } | 
|  | |	direct_abs_decl | 
|  | ; | 
|  |  | 
|  | direct_abs_decl: '(' abs_decl ')' | 
|  | { $$ = $2; } | 
|  | | 	'(' KIND '=' INT ')' | 
|  | { push_kind_type ($4.val, $4.type); } | 
|  | |	'*' INT | 
|  | { push_kind_type ($2.val, $2.type); } | 
|  | | 	direct_abs_decl func_mod | 
|  | { type_stack->push (tp_function); } | 
|  | |	func_mod | 
|  | { type_stack->push (tp_function); } | 
|  | ; | 
|  |  | 
|  | func_mod:	'(' ')' | 
|  | { $$ = 0; } | 
|  | |	'(' nonempty_typelist ')' | 
|  | { free ($2); $$ = 0; } | 
|  | ; | 
|  |  | 
|  | typebase  /* Implements (approximately): (type-qualifier)* type-specifier */ | 
|  | :	TYPENAME | 
|  | { $$ = $1.type; } | 
|  | |	INT_S1_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_integer_s1; } | 
|  | |	INT_S2_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_integer_s2; } | 
|  | |	INT_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_integer; } | 
|  | |	INT_S4_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_integer; } | 
|  | |	INT_S8_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_integer_s8; } | 
|  | |	CHARACTER | 
|  | { $$ = parse_f_type (pstate)->builtin_character; } | 
|  | |	LOGICAL_S1_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_logical_s1; } | 
|  | |	LOGICAL_S2_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_logical_s2; } | 
|  | |	LOGICAL_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_logical; } | 
|  | |	LOGICAL_S4_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_logical; } | 
|  | |	LOGICAL_S8_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_logical_s8; } | 
|  | |	REAL_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_real; } | 
|  | |	REAL_S4_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_real; } | 
|  | |       REAL_S8_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_real_s8; } | 
|  | |	REAL_S16_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_real_s16; | 
|  | if ($$->code () == TYPE_CODE_ERROR) | 
|  | error (_("unsupported type %s"), | 
|  | TYPE_SAFE_NAME ($$)); | 
|  | } | 
|  | |	COMPLEX_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex; } | 
|  | |	COMPLEX_S4_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex; } | 
|  | |	COMPLEX_S8_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex_s8; } | 
|  | |	COMPLEX_S16_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex_s16; | 
|  | if ($$->code () == TYPE_CODE_ERROR) | 
|  | error (_("unsupported type %s"), | 
|  | TYPE_SAFE_NAME ($$)); | 
|  | } | 
|  | |	SINGLE PRECISION | 
|  | { $$ = parse_f_type (pstate)->builtin_real;} | 
|  | |	DOUBLE PRECISION | 
|  | { $$ = parse_f_type (pstate)->builtin_real_s8;} | 
|  | |	SINGLE COMPLEX_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex;} | 
|  | |	DOUBLE COMPLEX_KEYWORD | 
|  | { $$ = parse_f_type (pstate)->builtin_complex_s8;} | 
|  | ; | 
|  |  | 
|  | nonempty_typelist | 
|  | :	type | 
|  | { $$ = (struct type **) malloc (sizeof (struct type *) * 2); | 
|  | $<ivec>$[0] = 1;	/* Number of types in vector */ | 
|  | $$[1] = $1; | 
|  | } | 
|  | |	nonempty_typelist ',' type | 
|  | { int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1); | 
|  | $$ = (struct type **) realloc ((char *) $1, len); | 
|  | $$[$<ivec>$[0]] = $3; | 
|  | } | 
|  | ; | 
|  |  | 
|  | name | 
|  | :	NAME | 
|  | { $$ = $1.stoken; } | 
|  | |	TYPENAME | 
|  | { $$ = $1.stoken; } | 
|  | ; | 
|  |  | 
|  | name_not_typename :	NAME | 
|  | /* These would be useful if name_not_typename was useful, but it is just | 
|  | a fake for "variable", so these cause reduce/reduce conflicts because | 
|  | the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable, | 
|  | =exp) or just an exp.  If name_not_typename was ever used in an lvalue | 
|  | context where only a name could occur, this might be useful. | 
|  | |	NAME_OR_INT | 
|  | */ | 
|  | ; | 
|  |  | 
|  | %% | 
|  |  | 
|  | /* Called to match intrinsic function calls with one argument to their | 
|  | respective implementation and push the operation.  */ | 
|  |  | 
|  | static void | 
|  | wrap_unop_intrinsic (exp_opcode code) | 
|  | { | 
|  | switch (code) | 
|  | { | 
|  | case UNOP_ABS: | 
|  | pstate->wrap<fortran_abs_operation> (); | 
|  | break; | 
|  | case FORTRAN_FLOOR: | 
|  | pstate->wrap<fortran_floor_operation_1arg> (); | 
|  | break; | 
|  | case FORTRAN_CEILING: | 
|  | pstate->wrap<fortran_ceil_operation_1arg> (); | 
|  | break; | 
|  | case UNOP_FORTRAN_ALLOCATED: | 
|  | pstate->wrap<fortran_allocated_operation> (); | 
|  | break; | 
|  | case UNOP_FORTRAN_RANK: | 
|  | pstate->wrap<fortran_rank_operation> (); | 
|  | break; | 
|  | case UNOP_FORTRAN_SHAPE: | 
|  | pstate->wrap<fortran_array_shape_operation> (); | 
|  | break; | 
|  | case UNOP_FORTRAN_LOC: | 
|  | pstate->wrap<fortran_loc_operation> (); | 
|  | break; | 
|  | case FORTRAN_ASSOCIATED: | 
|  | pstate->wrap<fortran_associated_1arg> (); | 
|  | break; | 
|  | case FORTRAN_ARRAY_SIZE: | 
|  | pstate->wrap<fortran_array_size_1arg> (); | 
|  | break; | 
|  | case FORTRAN_CMPLX: | 
|  | pstate->wrap<fortran_cmplx_operation_1arg> (); | 
|  | break; | 
|  | case FORTRAN_LBOUND: | 
|  | case FORTRAN_UBOUND: | 
|  | pstate->push_new<fortran_bound_1arg> (code, pstate->pop ()); | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("unhandled intrinsic"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called to match intrinsic function calls with two arguments to their | 
|  | respective implementation and push the operation.  */ | 
|  |  | 
|  | static void | 
|  | wrap_binop_intrinsic (exp_opcode code) | 
|  | { | 
|  | switch (code) | 
|  | { | 
|  | case FORTRAN_FLOOR: | 
|  | fortran_wrap2_kind<fortran_floor_operation_2arg> | 
|  | (parse_f_type (pstate)->builtin_integer); | 
|  | break; | 
|  | case FORTRAN_CEILING: | 
|  | fortran_wrap2_kind<fortran_ceil_operation_2arg> | 
|  | (parse_f_type (pstate)->builtin_integer); | 
|  | break; | 
|  | case BINOP_MOD: | 
|  | pstate->wrap2<fortran_mod_operation> (); | 
|  | break; | 
|  | case BINOP_FORTRAN_MODULO: | 
|  | pstate->wrap2<fortran_modulo_operation> (); | 
|  | break; | 
|  | case FORTRAN_CMPLX: | 
|  | pstate->wrap2<fortran_cmplx_operation_2arg> (); | 
|  | break; | 
|  | case FORTRAN_ASSOCIATED: | 
|  | pstate->wrap2<fortran_associated_2arg> (); | 
|  | break; | 
|  | case FORTRAN_ARRAY_SIZE: | 
|  | pstate->wrap2<fortran_array_size_2arg> (); | 
|  | break; | 
|  | case FORTRAN_LBOUND: | 
|  | case FORTRAN_UBOUND: | 
|  | { | 
|  | operation_up arg2 = pstate->pop (); | 
|  | operation_up arg1 = pstate->pop (); | 
|  | pstate->push_new<fortran_bound_2arg> (code, std::move (arg1), | 
|  | std::move (arg2)); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("unhandled intrinsic"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Called to match intrinsic function calls with three arguments to their | 
|  | respective implementation and push the operation.  */ | 
|  |  | 
|  | static void | 
|  | wrap_ternop_intrinsic (exp_opcode code) | 
|  | { | 
|  | switch (code) | 
|  | { | 
|  | case FORTRAN_LBOUND: | 
|  | case FORTRAN_UBOUND: | 
|  | { | 
|  | operation_up kind_arg = pstate->pop (); | 
|  | operation_up arg2 = pstate->pop (); | 
|  | operation_up arg1 = pstate->pop (); | 
|  |  | 
|  | value *val = kind_arg->evaluate (nullptr, pstate->expout.get (), | 
|  | EVAL_AVOID_SIDE_EFFECTS); | 
|  | gdb_assert (val != nullptr); | 
|  |  | 
|  | type *follow_type | 
|  | = convert_to_kind_type (parse_f_type (pstate)->builtin_integer, | 
|  | value_as_long (val)); | 
|  |  | 
|  | pstate->push_new<fortran_bound_3arg> (code, std::move (arg1), | 
|  | std::move (arg2), follow_type); | 
|  | } | 
|  | break; | 
|  | case FORTRAN_ARRAY_SIZE: | 
|  | fortran_wrap3_kind<fortran_array_size_3arg> | 
|  | (parse_f_type (pstate)->builtin_integer); | 
|  | break; | 
|  | case FORTRAN_CMPLX: | 
|  | fortran_wrap3_kind<fortran_cmplx_operation_3arg> | 
|  | (parse_f_type (pstate)->builtin_complex); | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("unhandled intrinsic"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* A helper that pops two operations (similar to wrap2), evaluates the last one | 
|  | assuming it is a kind parameter, and wraps them in some other operation | 
|  | pushing it to the stack.  */ | 
|  |  | 
|  | template<typename T> | 
|  | static void | 
|  | fortran_wrap2_kind (type *base_type) | 
|  | { | 
|  | operation_up kind_arg = pstate->pop (); | 
|  | operation_up arg = pstate->pop (); | 
|  |  | 
|  | value *val = kind_arg->evaluate (nullptr, pstate->expout.get (), | 
|  | EVAL_AVOID_SIDE_EFFECTS); | 
|  | gdb_assert (val != nullptr); | 
|  |  | 
|  | type *follow_type = convert_to_kind_type (base_type, value_as_long (val)); | 
|  |  | 
|  | pstate->push_new<T> (std::move (arg), follow_type); | 
|  | } | 
|  |  | 
|  | /* A helper that pops three operations, evaluates the last one assuming it is a | 
|  | kind parameter, and wraps them in some other operation pushing it to the | 
|  | stack.  */ | 
|  |  | 
|  | template<typename T> | 
|  | static void | 
|  | fortran_wrap3_kind (type *base_type) | 
|  | { | 
|  | operation_up kind_arg = pstate->pop (); | 
|  | operation_up arg2 = pstate->pop (); | 
|  | operation_up arg1 = pstate->pop (); | 
|  |  | 
|  | value *val = kind_arg->evaluate (nullptr, pstate->expout.get (), | 
|  | EVAL_AVOID_SIDE_EFFECTS); | 
|  | gdb_assert (val != nullptr); | 
|  |  | 
|  | type *follow_type = convert_to_kind_type (base_type, value_as_long (val)); | 
|  |  | 
|  | pstate->push_new<T> (std::move (arg1), std::move (arg2), follow_type); | 
|  | } | 
|  |  | 
|  | /* Take care of parsing a number (anything that starts with a digit). | 
|  | Set yylval and return the token type; update lexptr. | 
|  | LEN is the number of characters in it.  */ | 
|  |  | 
|  | /*** Needs some error checking for the float case ***/ | 
|  |  | 
|  | static int | 
|  | parse_number (struct parser_state *par_state, | 
|  | const char *p, int len, int parsed_float, YYSTYPE *putithere) | 
|  | { | 
|  | ULONGEST n = 0; | 
|  | ULONGEST prevn = 0; | 
|  | int c; | 
|  | int base = input_radix; | 
|  | int unsigned_p = 0; | 
|  | int long_p = 0; | 
|  | ULONGEST high_bit; | 
|  | struct type *signed_type; | 
|  | struct type *unsigned_type; | 
|  |  | 
|  | if (parsed_float) | 
|  | { | 
|  | /* It's a float since it contains a point or an exponent.  */ | 
|  | /* [dD] is not understood as an exponent by parse_float, | 
|  | change it to 'e'.  */ | 
|  | char *tmp, *tmp2; | 
|  |  | 
|  | tmp = xstrdup (p); | 
|  | for (tmp2 = tmp; *tmp2; ++tmp2) | 
|  | if (*tmp2 == 'd' || *tmp2 == 'D') | 
|  | *tmp2 = 'e'; | 
|  |  | 
|  | /* FIXME: Should this use different types?  */ | 
|  | putithere->typed_val_float.type = parse_f_type (pstate)->builtin_real_s8; | 
|  | bool parsed = parse_float (tmp, len, | 
|  | putithere->typed_val_float.type, | 
|  | putithere->typed_val_float.val); | 
|  | free (tmp); | 
|  | return parsed? FLOAT : ERROR; | 
|  | } | 
|  |  | 
|  | /* Handle base-switching prefixes 0x, 0t, 0d, 0 */ | 
|  | if (p[0] == '0' && len > 1) | 
|  | switch (p[1]) | 
|  | { | 
|  | case 'x': | 
|  | case 'X': | 
|  | if (len >= 3) | 
|  | { | 
|  | p += 2; | 
|  | base = 16; | 
|  | len -= 2; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 't': | 
|  | case 'T': | 
|  | case 'd': | 
|  | case 'D': | 
|  | if (len >= 3) | 
|  | { | 
|  | p += 2; | 
|  | base = 10; | 
|  | len -= 2; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | base = 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | while (len-- > 0) | 
|  | { | 
|  | c = *p++; | 
|  | if (isupper (c)) | 
|  | c = tolower (c); | 
|  | if (len == 0 && c == 'l') | 
|  | long_p = 1; | 
|  | else if (len == 0 && c == 'u') | 
|  | unsigned_p = 1; | 
|  | else | 
|  | { | 
|  | int i; | 
|  | if (c >= '0' && c <= '9') | 
|  | i = c - '0'; | 
|  | else if (c >= 'a' && c <= 'f') | 
|  | i = c - 'a' + 10; | 
|  | else | 
|  | return ERROR;	/* Char not a digit */ | 
|  | if (i >= base) | 
|  | return ERROR;		/* Invalid digit in this base */ | 
|  | n *= base; | 
|  | n += i; | 
|  | } | 
|  | /* Test for overflow.  */ | 
|  | if (prevn == 0 && n == 0) | 
|  | ; | 
|  | else if (RANGE_CHECK && prevn >= n) | 
|  | range_error (_("Overflow on numeric constant.")); | 
|  | prevn = n; | 
|  | } | 
|  |  | 
|  | /* If the number is too big to be an int, or it's got an l suffix | 
|  | then it's a long.  Work out if this has to be a long by | 
|  | shifting right and seeing if anything remains, and the | 
|  | target int size is different to the target long size. | 
|  |  | 
|  | In the expression below, we could have tested | 
|  | (n >> gdbarch_int_bit (parse_gdbarch)) | 
|  | to see if it was zero, | 
|  | but too many compilers warn about that, when ints and longs | 
|  | are the same size.  So we shift it twice, with fewer bits | 
|  | each time, for the same result.  */ | 
|  |  | 
|  | int bits_available; | 
|  | if ((gdbarch_int_bit (par_state->gdbarch ()) | 
|  | != gdbarch_long_bit (par_state->gdbarch ()) | 
|  | && ((n >> 2) | 
|  | >> (gdbarch_int_bit (par_state->gdbarch ())-2))) /* Avoid | 
|  | shift warning */ | 
|  | || long_p) | 
|  | { | 
|  | bits_available = gdbarch_long_bit (par_state->gdbarch ()); | 
|  | unsigned_type = parse_type (par_state)->builtin_unsigned_long; | 
|  | signed_type = parse_type (par_state)->builtin_long; | 
|  | } | 
|  | else | 
|  | { | 
|  | bits_available = gdbarch_int_bit (par_state->gdbarch ()); | 
|  | unsigned_type = parse_type (par_state)->builtin_unsigned_int; | 
|  | signed_type = parse_type (par_state)->builtin_int; | 
|  | } | 
|  | high_bit = ((ULONGEST)1) << (bits_available - 1); | 
|  |  | 
|  | if (RANGE_CHECK | 
|  | && ((n >> 2) >> (bits_available - 2))) | 
|  | range_error (_("Overflow on numeric constant.")); | 
|  |  | 
|  | putithere->typed_val.val = n; | 
|  |  | 
|  | /* If the high bit of the worked out type is set then this number | 
|  | has to be unsigned.  */ | 
|  |  | 
|  | if (unsigned_p || (n & high_bit)) | 
|  | putithere->typed_val.type = unsigned_type; | 
|  | else | 
|  | putithere->typed_val.type = signed_type; | 
|  |  | 
|  | return INT; | 
|  | } | 
|  |  | 
|  | /* Called to setup the type stack when we encounter a '(kind=N)' type | 
|  | modifier, performs some bounds checking on 'N' and then pushes this to | 
|  | the type stack followed by the 'tp_kind' marker.  */ | 
|  | static void | 
|  | push_kind_type (LONGEST val, struct type *type) | 
|  | { | 
|  | int ival; | 
|  |  | 
|  | if (type->is_unsigned ()) | 
|  | { | 
|  | ULONGEST uval = static_cast <ULONGEST> (val); | 
|  | if (uval > INT_MAX) | 
|  | error (_("kind value out of range")); | 
|  | ival = static_cast <int> (uval); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (val > INT_MAX || val < 0) | 
|  | error (_("kind value out of range")); | 
|  | ival = static_cast <int> (val); | 
|  | } | 
|  |  | 
|  | type_stack->push (ival); | 
|  | type_stack->push (tp_kind); | 
|  | } | 
|  |  | 
|  | /* Helper function for convert_to_kind_type.  */ | 
|  | static struct type * | 
|  | convert_to_kind_type_1 (struct type *basetype, int kind) | 
|  | { | 
|  | if (basetype == parse_f_type (pstate)->builtin_character) | 
|  | { | 
|  | /* Character of kind 1 is a special case, this is the same as the | 
|  | base character type.  */ | 
|  | if (kind == 1) | 
|  | return parse_f_type (pstate)->builtin_character; | 
|  | } | 
|  | else if (basetype == parse_f_type (pstate)->builtin_complex) | 
|  | { | 
|  | if (kind == 4) | 
|  | return parse_f_type (pstate)->builtin_complex; | 
|  | else if (kind == 8) | 
|  | return parse_f_type (pstate)->builtin_complex_s8; | 
|  | else if (kind == 16) | 
|  | return parse_f_type (pstate)->builtin_complex_s16; | 
|  | } | 
|  | else if (basetype == parse_f_type (pstate)->builtin_real) | 
|  | { | 
|  | if (kind == 4) | 
|  | return parse_f_type (pstate)->builtin_real; | 
|  | else if (kind == 8) | 
|  | return parse_f_type (pstate)->builtin_real_s8; | 
|  | else if (kind == 16) | 
|  | return parse_f_type (pstate)->builtin_real_s16; | 
|  | } | 
|  | else if (basetype == parse_f_type (pstate)->builtin_logical) | 
|  | { | 
|  | if (kind == 1) | 
|  | return parse_f_type (pstate)->builtin_logical_s1; | 
|  | else if (kind == 2) | 
|  | return parse_f_type (pstate)->builtin_logical_s2; | 
|  | else if (kind == 4) | 
|  | return parse_f_type (pstate)->builtin_logical; | 
|  | else if (kind == 8) | 
|  | return parse_f_type (pstate)->builtin_logical_s8; | 
|  | } | 
|  | else if (basetype == parse_f_type (pstate)->builtin_integer) | 
|  | { | 
|  | if (kind == 1) | 
|  | return parse_f_type (pstate)->builtin_integer_s1; | 
|  | else if (kind == 2) | 
|  | return parse_f_type (pstate)->builtin_integer_s2; | 
|  | else if (kind == 4) | 
|  | return parse_f_type (pstate)->builtin_integer; | 
|  | else if (kind == 8) | 
|  | return parse_f_type (pstate)->builtin_integer_s8; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /* Called when a type has a '(kind=N)' modifier after it, for example | 
|  | 'character(kind=1)'.  The BASETYPE is the type described by 'character' | 
|  | in our example, and KIND is the integer '1'.  This function returns a | 
|  | new type that represents the basetype of a specific kind.  */ | 
|  | static struct type * | 
|  | convert_to_kind_type (struct type *basetype, int kind) | 
|  | { | 
|  | struct type *res = convert_to_kind_type_1 (basetype, kind); | 
|  |  | 
|  | if (res == nullptr || res->code () == TYPE_CODE_ERROR) | 
|  | error (_("unsupported kind %d for type %s"), | 
|  | kind, TYPE_SAFE_NAME (basetype)); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | struct f_token | 
|  | { | 
|  | /* The string to match against.  */ | 
|  | const char *oper; | 
|  |  | 
|  | /* The lexer token to return.  */ | 
|  | int token; | 
|  |  | 
|  | /* The expression opcode to embed within the token.  */ | 
|  | enum exp_opcode opcode; | 
|  |  | 
|  | /* When this is true the string in OPER is matched exactly including | 
|  | case, when this is false OPER is matched case insensitively.  */ | 
|  | bool case_sensitive; | 
|  | }; | 
|  |  | 
|  | /* List of Fortran operators.  */ | 
|  |  | 
|  | static const struct f_token fortran_operators[] = | 
|  | { | 
|  | { ".and.", BOOL_AND, OP_NULL, false }, | 
|  | { ".or.", BOOL_OR, OP_NULL, false }, | 
|  | { ".not.", BOOL_NOT, OP_NULL, false }, | 
|  | { ".eq.", EQUAL, OP_NULL, false }, | 
|  | { ".eqv.", EQUAL, OP_NULL, false }, | 
|  | { ".neqv.", NOTEQUAL, OP_NULL, false }, | 
|  | { ".xor.", NOTEQUAL, OP_NULL, false }, | 
|  | { "==", EQUAL, OP_NULL, false }, | 
|  | { ".ne.", NOTEQUAL, OP_NULL, false }, | 
|  | { "/=", NOTEQUAL, OP_NULL, false }, | 
|  | { ".le.", LEQ, OP_NULL, false }, | 
|  | { "<=", LEQ, OP_NULL, false }, | 
|  | { ".ge.", GEQ, OP_NULL, false }, | 
|  | { ">=", GEQ, OP_NULL, false }, | 
|  | { ".gt.", GREATERTHAN, OP_NULL, false }, | 
|  | { ">", GREATERTHAN, OP_NULL, false }, | 
|  | { ".lt.", LESSTHAN, OP_NULL, false }, | 
|  | { "<", LESSTHAN, OP_NULL, false }, | 
|  | { "**", STARSTAR, BINOP_EXP, false }, | 
|  | }; | 
|  |  | 
|  | /* Holds the Fortran representation of a boolean, and the integer value we | 
|  | substitute in when one of the matching strings is parsed.  */ | 
|  | struct f77_boolean_val | 
|  | { | 
|  | /* The string representing a Fortran boolean.  */ | 
|  | const char *name; | 
|  |  | 
|  | /* The integer value to replace it with.  */ | 
|  | int value; | 
|  | }; | 
|  |  | 
|  | /* The set of Fortran booleans.  These are matched case insensitively.  */ | 
|  | static const struct f77_boolean_val boolean_values[]  = | 
|  | { | 
|  | { ".true.", 1 }, | 
|  | { ".false.", 0 } | 
|  | }; | 
|  |  | 
|  | static const struct f_token f_intrinsics[] = | 
|  | { | 
|  | /* The following correspond to actual functions in Fortran and are case | 
|  | insensitive.  */ | 
|  | { "kind", KIND, OP_NULL, false }, | 
|  | { "abs", UNOP_INTRINSIC, UNOP_ABS, false }, | 
|  | { "mod", BINOP_INTRINSIC, BINOP_MOD, false }, | 
|  | { "floor", UNOP_OR_BINOP_INTRINSIC, FORTRAN_FLOOR, false }, | 
|  | { "ceiling", UNOP_OR_BINOP_INTRINSIC, FORTRAN_CEILING, false }, | 
|  | { "modulo", BINOP_INTRINSIC, BINOP_FORTRAN_MODULO, false }, | 
|  | { "cmplx", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_CMPLX, false }, | 
|  | { "lbound", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_LBOUND, false }, | 
|  | { "ubound", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_UBOUND, false }, | 
|  | { "allocated", UNOP_INTRINSIC, UNOP_FORTRAN_ALLOCATED, false }, | 
|  | { "associated", UNOP_OR_BINOP_INTRINSIC, FORTRAN_ASSOCIATED, false }, | 
|  | { "rank", UNOP_INTRINSIC, UNOP_FORTRAN_RANK, false }, | 
|  | { "size", UNOP_OR_BINOP_OR_TERNOP_INTRINSIC, FORTRAN_ARRAY_SIZE, false }, | 
|  | { "shape", UNOP_INTRINSIC, UNOP_FORTRAN_SHAPE, false }, | 
|  | { "loc", UNOP_INTRINSIC, UNOP_FORTRAN_LOC, false }, | 
|  | { "sizeof", SIZEOF, OP_NULL, false }, | 
|  | }; | 
|  |  | 
|  | static const f_token f_keywords[] = | 
|  | { | 
|  | /* Historically these have always been lowercase only in GDB.  */ | 
|  | { "character", CHARACTER, OP_NULL, true }, | 
|  | { "complex", COMPLEX_KEYWORD, OP_NULL, true }, | 
|  | { "complex_4", COMPLEX_S4_KEYWORD, OP_NULL, true }, | 
|  | { "complex_8", COMPLEX_S8_KEYWORD, OP_NULL, true }, | 
|  | { "complex_16", COMPLEX_S16_KEYWORD, OP_NULL, true }, | 
|  | { "integer_1", INT_S1_KEYWORD, OP_NULL, true }, | 
|  | { "integer_2", INT_S2_KEYWORD, OP_NULL, true }, | 
|  | { "integer_4", INT_S4_KEYWORD, OP_NULL, true }, | 
|  | { "integer", INT_KEYWORD, OP_NULL, true }, | 
|  | { "integer_8", INT_S8_KEYWORD, OP_NULL, true }, | 
|  | { "logical_1", LOGICAL_S1_KEYWORD, OP_NULL, true }, | 
|  | { "logical_2", LOGICAL_S2_KEYWORD, OP_NULL, true }, | 
|  | { "logical", LOGICAL_KEYWORD, OP_NULL, true }, | 
|  | { "logical_4", LOGICAL_S4_KEYWORD, OP_NULL, true }, | 
|  | { "logical_8", LOGICAL_S8_KEYWORD, OP_NULL, true }, | 
|  | { "real", REAL_KEYWORD, OP_NULL, true }, | 
|  | { "real_4", REAL_S4_KEYWORD, OP_NULL, true }, | 
|  | { "real_8", REAL_S8_KEYWORD, OP_NULL, true }, | 
|  | { "real_16", REAL_S16_KEYWORD, OP_NULL, true }, | 
|  | { "single", SINGLE, OP_NULL, true }, | 
|  | { "double", DOUBLE, OP_NULL, true }, | 
|  | { "precision", PRECISION, OP_NULL, true }, | 
|  | }; | 
|  |  | 
|  | /* Implementation of a dynamically expandable buffer for processing input | 
|  | characters acquired through lexptr and building a value to return in | 
|  | yylval.  Ripped off from ch-exp.y */ | 
|  |  | 
|  | static char *tempbuf;		/* Current buffer contents */ | 
|  | static int tempbufsize;		/* Size of allocated buffer */ | 
|  | static int tempbufindex;	/* Current index into buffer */ | 
|  |  | 
|  | #define GROWBY_MIN_SIZE 64	/* Minimum amount to grow buffer by */ | 
|  |  | 
|  | #define CHECKBUF(size) \ | 
|  | do { \ | 
|  | if (tempbufindex + (size) >= tempbufsize) \ | 
|  | { \ | 
|  | growbuf_by_size (size); \ | 
|  | } \ | 
|  | } while (0); | 
|  |  | 
|  |  | 
|  | /* Grow the static temp buffer if necessary, including allocating the | 
|  | first one on demand.  */ | 
|  |  | 
|  | static void | 
|  | growbuf_by_size (int count) | 
|  | { | 
|  | int growby; | 
|  |  | 
|  | growby = std::max (count, GROWBY_MIN_SIZE); | 
|  | tempbufsize += growby; | 
|  | if (tempbuf == NULL) | 
|  | tempbuf = (char *) malloc (tempbufsize); | 
|  | else | 
|  | tempbuf = (char *) realloc (tempbuf, tempbufsize); | 
|  | } | 
|  |  | 
|  | /* Blatantly ripped off from ch-exp.y. This routine recognizes F77 | 
|  | string-literals. | 
|  |  | 
|  | Recognize a string literal.  A string literal is a nonzero sequence | 
|  | of characters enclosed in matching single quotes, except that | 
|  | a single character inside single quotes is a character literal, which | 
|  | we reject as a string literal.  To embed the terminator character inside | 
|  | a string, it is simply doubled (I.E. 'this''is''one''string') */ | 
|  |  | 
|  | static int | 
|  | match_string_literal (void) | 
|  | { | 
|  | const char *tokptr = pstate->lexptr; | 
|  |  | 
|  | for (tempbufindex = 0, tokptr++; *tokptr != '\0'; tokptr++) | 
|  | { | 
|  | CHECKBUF (1); | 
|  | if (*tokptr == *pstate->lexptr) | 
|  | { | 
|  | if (*(tokptr + 1) == *pstate->lexptr) | 
|  | tokptr++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | tempbuf[tempbufindex++] = *tokptr; | 
|  | } | 
|  | if (*tokptr == '\0'					/* no terminator */ | 
|  | || tempbufindex == 0)				/* no string */ | 
|  | return 0; | 
|  | else | 
|  | { | 
|  | tempbuf[tempbufindex] = '\0'; | 
|  | yylval.sval.ptr = tempbuf; | 
|  | yylval.sval.length = tempbufindex; | 
|  | pstate->lexptr = ++tokptr; | 
|  | return STRING_LITERAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This is set if a NAME token appeared at the very end of the input | 
|  | string, with no whitespace separating the name from the EOF.  This | 
|  | is used only when parsing to do field name completion.  */ | 
|  | static bool saw_name_at_eof; | 
|  |  | 
|  | /* This is set if the previously-returned token was a structure | 
|  | operator '%'.  */ | 
|  | static bool last_was_structop; | 
|  |  | 
|  | /* Read one token, getting characters through lexptr.  */ | 
|  |  | 
|  | static int | 
|  | yylex (void) | 
|  | { | 
|  | int c; | 
|  | int namelen; | 
|  | unsigned int token; | 
|  | const char *tokstart; | 
|  | bool saw_structop = last_was_structop; | 
|  |  | 
|  | last_was_structop = false; | 
|  |  | 
|  | retry: | 
|  |  | 
|  | pstate->prev_lexptr = pstate->lexptr; | 
|  |  | 
|  | tokstart = pstate->lexptr; | 
|  |  | 
|  | /* First of all, let us make sure we are not dealing with the | 
|  | special tokens .true. and .false. which evaluate to 1 and 0.  */ | 
|  |  | 
|  | if (*pstate->lexptr == '.') | 
|  | { | 
|  | for (const auto &candidate : boolean_values) | 
|  | { | 
|  | if (strncasecmp (tokstart, candidate.name, | 
|  | strlen (candidate.name)) == 0) | 
|  | { | 
|  | pstate->lexptr += strlen (candidate.name); | 
|  | yylval.lval = candidate.value; | 
|  | return BOOLEAN_LITERAL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* See if it is a Fortran operator.  */ | 
|  | for (const auto &candidate : fortran_operators) | 
|  | if (strncasecmp (tokstart, candidate.oper, | 
|  | strlen (candidate.oper)) == 0) | 
|  | { | 
|  | gdb_assert (!candidate.case_sensitive); | 
|  | pstate->lexptr += strlen (candidate.oper); | 
|  | yylval.opcode = candidate.opcode; | 
|  | return candidate.token; | 
|  | } | 
|  |  | 
|  | switch (c = *tokstart) | 
|  | { | 
|  | case 0: | 
|  | if (saw_name_at_eof) | 
|  | { | 
|  | saw_name_at_eof = false; | 
|  | return COMPLETE; | 
|  | } | 
|  | else if (pstate->parse_completion && saw_structop) | 
|  | return COMPLETE; | 
|  | return 0; | 
|  |  | 
|  | case ' ': | 
|  | case '\t': | 
|  | case '\n': | 
|  | pstate->lexptr++; | 
|  | goto retry; | 
|  |  | 
|  | case '\'': | 
|  | token = match_string_literal (); | 
|  | if (token != 0) | 
|  | return (token); | 
|  | break; | 
|  |  | 
|  | case '(': | 
|  | paren_depth++; | 
|  | pstate->lexptr++; | 
|  | return c; | 
|  |  | 
|  | case ')': | 
|  | if (paren_depth == 0) | 
|  | return 0; | 
|  | paren_depth--; | 
|  | pstate->lexptr++; | 
|  | return c; | 
|  |  | 
|  | case ',': | 
|  | if (pstate->comma_terminates && paren_depth == 0) | 
|  | return 0; | 
|  | pstate->lexptr++; | 
|  | return c; | 
|  |  | 
|  | case '.': | 
|  | /* Might be a floating point number.  */ | 
|  | if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9') | 
|  | goto symbol;		/* Nope, must be a symbol.  */ | 
|  | [[fallthrough]]; | 
|  |  | 
|  | case '0': | 
|  | case '1': | 
|  | case '2': | 
|  | case '3': | 
|  | case '4': | 
|  | case '5': | 
|  | case '6': | 
|  | case '7': | 
|  | case '8': | 
|  | case '9': | 
|  | { | 
|  | /* It's a number.  */ | 
|  | int got_dot = 0, got_e = 0, got_d = 0, toktype; | 
|  | const char *p = tokstart; | 
|  | int hex = input_radix > 10; | 
|  |  | 
|  | if (c == '0' && (p[1] == 'x' || p[1] == 'X')) | 
|  | { | 
|  | p += 2; | 
|  | hex = 1; | 
|  | } | 
|  | else if (c == '0' && (p[1]=='t' || p[1]=='T' | 
|  | || p[1]=='d' || p[1]=='D')) | 
|  | { | 
|  | p += 2; | 
|  | hex = 0; | 
|  | } | 
|  |  | 
|  | for (;; ++p) | 
|  | { | 
|  | if (!hex && !got_e && (*p == 'e' || *p == 'E')) | 
|  | got_dot = got_e = 1; | 
|  | else if (!hex && !got_d && (*p == 'd' || *p == 'D')) | 
|  | got_dot = got_d = 1; | 
|  | else if (!hex && !got_dot && *p == '.') | 
|  | got_dot = 1; | 
|  | else if (((got_e && (p[-1] == 'e' || p[-1] == 'E')) | 
|  | || (got_d && (p[-1] == 'd' || p[-1] == 'D'))) | 
|  | && (*p == '-' || *p == '+')) | 
|  | /* This is the sign of the exponent, not the end of the | 
|  | number.  */ | 
|  | continue; | 
|  | /* We will take any letters or digits.  parse_number will | 
|  | complain if past the radix, or if L or U are not final.  */ | 
|  | else if ((*p < '0' || *p > '9') | 
|  | && ((*p < 'a' || *p > 'z') | 
|  | && (*p < 'A' || *p > 'Z'))) | 
|  | break; | 
|  | } | 
|  | toktype = parse_number (pstate, tokstart, p - tokstart, | 
|  | got_dot|got_e|got_d, | 
|  | &yylval); | 
|  | if (toktype == ERROR) | 
|  | error (_("Invalid number \"%.*s\"."), (int) (p - tokstart), | 
|  | tokstart); | 
|  | pstate->lexptr = p; | 
|  | return toktype; | 
|  | } | 
|  |  | 
|  | case '%': | 
|  | last_was_structop = true; | 
|  | [[fallthrough]]; | 
|  | case '+': | 
|  | case '-': | 
|  | case '*': | 
|  | case '/': | 
|  | case '|': | 
|  | case '&': | 
|  | case '^': | 
|  | case '~': | 
|  | case '!': | 
|  | case '@': | 
|  | case '<': | 
|  | case '>': | 
|  | case '[': | 
|  | case ']': | 
|  | case '?': | 
|  | case ':': | 
|  | case '=': | 
|  | case '{': | 
|  | case '}': | 
|  | symbol: | 
|  | pstate->lexptr++; | 
|  | return c; | 
|  | } | 
|  |  | 
|  | if (!(c == '_' || c == '$' || c ==':' | 
|  | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'))) | 
|  | /* We must have come across a bad character (e.g. ';').  */ | 
|  | error (_("Invalid character '%c' in expression."), c); | 
|  |  | 
|  | namelen = 0; | 
|  | for (c = tokstart[namelen]; | 
|  | (c == '_' || c == '$' || c == ':' || (c >= '0' && c <= '9') | 
|  | || (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')); | 
|  | c = tokstart[++namelen]); | 
|  |  | 
|  | /* The token "if" terminates the expression and is NOT | 
|  | removed from the input stream.  */ | 
|  |  | 
|  | if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f') | 
|  | return 0; | 
|  |  | 
|  | pstate->lexptr += namelen; | 
|  |  | 
|  | /* Catch specific keywords.  */ | 
|  |  | 
|  | for (const auto &keyword : f_keywords) | 
|  | if (strlen (keyword.oper) == namelen | 
|  | && ((!keyword.case_sensitive | 
|  | && strncasecmp (tokstart, keyword.oper, namelen) == 0) | 
|  | || (keyword.case_sensitive | 
|  | && strncmp (tokstart, keyword.oper, namelen) == 0))) | 
|  | { | 
|  | yylval.opcode = keyword.opcode; | 
|  | return keyword.token; | 
|  | } | 
|  |  | 
|  | yylval.sval.ptr = tokstart; | 
|  | yylval.sval.length = namelen; | 
|  |  | 
|  | if (*tokstart == '$') | 
|  | return DOLLAR_VARIABLE; | 
|  |  | 
|  | /* Use token-type TYPENAME for symbols that happen to be defined | 
|  | currently as names of types; NAME for other symbols. | 
|  | The caller is not constrained to care about the distinction.  */ | 
|  | { | 
|  | std::string tmp = copy_name (yylval.sval); | 
|  | struct block_symbol result; | 
|  | const domain_search_flags lookup_domains[] = | 
|  | { | 
|  | SEARCH_STRUCT_DOMAIN, | 
|  | SEARCH_VFT, | 
|  | SEARCH_MODULE_DOMAIN | 
|  | }; | 
|  | int hextype; | 
|  |  | 
|  | for (const auto &domain : lookup_domains) | 
|  | { | 
|  | result = lookup_symbol (tmp.c_str (), pstate->expression_context_block, | 
|  | domain, NULL); | 
|  | if (result.symbol && result.symbol->aclass () == LOC_TYPEDEF) | 
|  | { | 
|  | yylval.tsym.type = result.symbol->type (); | 
|  | return TYPENAME; | 
|  | } | 
|  |  | 
|  | if (result.symbol) | 
|  | break; | 
|  | } | 
|  |  | 
|  | yylval.tsym.type | 
|  | = language_lookup_primitive_type (pstate->language (), | 
|  | pstate->gdbarch (), tmp.c_str ()); | 
|  | if (yylval.tsym.type != NULL) | 
|  | return TYPENAME; | 
|  |  | 
|  | /* This is post the symbol search as symbols can hide intrinsics.  Also, | 
|  | give Fortran intrinsics priority over C symbols.  This prevents | 
|  | non-Fortran symbols from hiding intrinsics, for example abs.  */ | 
|  | if (!result.symbol || result.symbol->language () != language_fortran) | 
|  | for (const auto &intrinsic : f_intrinsics) | 
|  | { | 
|  | gdb_assert (!intrinsic.case_sensitive); | 
|  | if (strlen (intrinsic.oper) == namelen | 
|  | && strncasecmp (tokstart, intrinsic.oper, namelen) == 0) | 
|  | { | 
|  | yylval.opcode = intrinsic.opcode; | 
|  | return intrinsic.token; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Input names that aren't symbols but ARE valid hex numbers, | 
|  | when the input radix permits them, can be names or numbers | 
|  | depending on the parse.  Note we support radixes > 16 here.  */ | 
|  | if (!result.symbol | 
|  | && ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) | 
|  | || (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10))) | 
|  | { | 
|  | YYSTYPE newlval;	/* Its value is ignored.  */ | 
|  | hextype = parse_number (pstate, tokstart, namelen, 0, &newlval); | 
|  | if (hextype == INT) | 
|  | { | 
|  | yylval.ssym.sym = result; | 
|  | yylval.ssym.is_a_field_of_this = false; | 
|  | return NAME_OR_INT; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (pstate->parse_completion && *pstate->lexptr == '\0') | 
|  | saw_name_at_eof = true; | 
|  |  | 
|  | /* Any other kind of symbol */ | 
|  | yylval.ssym.sym = result; | 
|  | yylval.ssym.is_a_field_of_this = false; | 
|  | return NAME; | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | f_language::parser (struct parser_state *par_state) const | 
|  | { | 
|  | /* Setting up the parser state.  */ | 
|  | scoped_restore pstate_restore = make_scoped_restore (&pstate); | 
|  | scoped_restore restore_yydebug = make_scoped_restore (&yydebug, | 
|  | par_state->debug); | 
|  | gdb_assert (par_state != NULL); | 
|  | pstate = par_state; | 
|  | last_was_structop = false; | 
|  | saw_name_at_eof = false; | 
|  | paren_depth = 0; | 
|  |  | 
|  | struct type_stack stack; | 
|  | scoped_restore restore_type_stack = make_scoped_restore (&type_stack, | 
|  | &stack); | 
|  |  | 
|  | int result = yyparse (); | 
|  | if (!result) | 
|  | pstate->set_operation (pstate->pop ()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void | 
|  | yyerror (const char *msg) | 
|  | { | 
|  | pstate->parse_error (msg); | 
|  | } |