| // output.cc -- manage the output file for gold | 
 |  | 
 | // Copyright (C) 2006-2022 Free Software Foundation, Inc. | 
 | // Written by Ian Lance Taylor <iant@google.com>. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | #include "gold.h" | 
 |  | 
 | #include <cstdlib> | 
 | #include <cstring> | 
 | #include <cerrno> | 
 | #include <fcntl.h> | 
 | #include <unistd.h> | 
 | #include <sys/stat.h> | 
 | #include <algorithm> | 
 |  | 
 | #ifdef HAVE_SYS_MMAN_H | 
 | #include <sys/mman.h> | 
 | #endif | 
 |  | 
 | #include "libiberty.h" | 
 |  | 
 | #include "dwarf.h" | 
 | #include "parameters.h" | 
 | #include "object.h" | 
 | #include "symtab.h" | 
 | #include "reloc.h" | 
 | #include "merge.h" | 
 | #include "descriptors.h" | 
 | #include "layout.h" | 
 | #include "output.h" | 
 |  | 
 | // For systems without mmap support. | 
 | #ifndef HAVE_MMAP | 
 | # define mmap gold_mmap | 
 | # define munmap gold_munmap | 
 | # define mremap gold_mremap | 
 | # ifndef MAP_FAILED | 
 | #  define MAP_FAILED (reinterpret_cast<void*>(-1)) | 
 | # endif | 
 | # ifndef PROT_READ | 
 | #  define PROT_READ 0 | 
 | # endif | 
 | # ifndef PROT_WRITE | 
 | #  define PROT_WRITE 0 | 
 | # endif | 
 | # ifndef MAP_PRIVATE | 
 | #  define MAP_PRIVATE 0 | 
 | # endif | 
 | # ifndef MAP_ANONYMOUS | 
 | #  define MAP_ANONYMOUS 0 | 
 | # endif | 
 | # ifndef MAP_SHARED | 
 | #  define MAP_SHARED 0 | 
 | # endif | 
 |  | 
 | # ifndef ENOSYS | 
 | #  define ENOSYS EINVAL | 
 | # endif | 
 |  | 
 | static void * | 
 | gold_mmap(void *, size_t, int, int, int, off_t) | 
 | { | 
 |   errno = ENOSYS; | 
 |   return MAP_FAILED; | 
 | } | 
 |  | 
 | static int | 
 | gold_munmap(void *, size_t) | 
 | { | 
 |   errno = ENOSYS; | 
 |   return -1; | 
 | } | 
 |  | 
 | static void * | 
 | gold_mremap(void *, size_t, size_t, int) | 
 | { | 
 |   errno = ENOSYS; | 
 |   return MAP_FAILED; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP) | 
 | # define mremap gold_mremap | 
 | extern "C" void *gold_mremap(void *, size_t, size_t, int); | 
 | #endif | 
 |  | 
 | // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS | 
 | #ifndef MAP_ANONYMOUS | 
 | # define MAP_ANONYMOUS  MAP_ANON | 
 | #endif | 
 |  | 
 | #ifndef MREMAP_MAYMOVE | 
 | # define MREMAP_MAYMOVE 1 | 
 | #endif | 
 |  | 
 | // Mingw does not have S_ISLNK. | 
 | #ifndef S_ISLNK | 
 | # define S_ISLNK(mode) 0 | 
 | #endif | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // A wrapper around posix_fallocate.  If we don't have posix_fallocate, | 
 | // or the --no-posix-fallocate option is set, we try the fallocate | 
 | // system call directly.  If that fails, we use ftruncate to set | 
 | // the file size and hope that there is enough disk space. | 
 |  | 
 | static int | 
 | gold_fallocate(int o, off_t offset, off_t len) | 
 | { | 
 |   if (len <= 0) | 
 |     return 0; | 
 |  | 
 | #ifdef HAVE_POSIX_FALLOCATE | 
 |   if (parameters->options().posix_fallocate()) | 
 |     { | 
 |       int err = ::posix_fallocate(o, offset, len); | 
 |       if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP) | 
 | 	return err; | 
 |     } | 
 | #endif // defined(HAVE_POSIX_FALLOCATE) | 
 |  | 
 | #ifdef HAVE_FALLOCATE | 
 |   { | 
 |     errno = 0; | 
 |     int err = ::fallocate(o, 0, offset, len); | 
 |     if (err < 0 && errno != EINVAL && errno != ENOSYS && errno != EOPNOTSUPP) | 
 |       return errno; | 
 |   } | 
 | #endif // defined(HAVE_FALLOCATE) | 
 |  | 
 |   errno = 0; | 
 |   if (::ftruncate(o, offset + len) < 0) | 
 |     return errno; | 
 |   return 0; | 
 | } | 
 |  | 
 | // Output_data variables. | 
 |  | 
 | bool Output_data::allocated_sizes_are_fixed; | 
 |  | 
 | // Output_data methods. | 
 |  | 
 | Output_data::~Output_data() | 
 | { | 
 | } | 
 |  | 
 | // Return the default alignment for the target size. | 
 |  | 
 | uint64_t | 
 | Output_data::default_alignment() | 
 | { | 
 |   return Output_data::default_alignment_for_size( | 
 |       parameters->target().get_size()); | 
 | } | 
 |  | 
 | // Return the default alignment for a size--32 or 64. | 
 |  | 
 | uint64_t | 
 | Output_data::default_alignment_for_size(int size) | 
 | { | 
 |   if (size == 32) | 
 |     return 4; | 
 |   else if (size == 64) | 
 |     return 8; | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Output_section_header methods.  This currently assumes that the | 
 | // segment and section lists are complete at construction time. | 
 |  | 
 | Output_section_headers::Output_section_headers( | 
 |     const Layout* layout, | 
 |     const Layout::Segment_list* segment_list, | 
 |     const Layout::Section_list* section_list, | 
 |     const Layout::Section_list* unattached_section_list, | 
 |     const Stringpool* secnamepool, | 
 |     const Output_section* shstrtab_section) | 
 |   : layout_(layout), | 
 |     segment_list_(segment_list), | 
 |     section_list_(section_list), | 
 |     unattached_section_list_(unattached_section_list), | 
 |     secnamepool_(secnamepool), | 
 |     shstrtab_section_(shstrtab_section) | 
 | { | 
 | } | 
 |  | 
 | // Compute the current data size. | 
 |  | 
 | off_t | 
 | Output_section_headers::do_size() const | 
 | { | 
 |   // Count all the sections.  Start with 1 for the null section. | 
 |   off_t count = 1; | 
 |   if (!parameters->options().relocatable()) | 
 |     { | 
 |       for (Layout::Segment_list::const_iterator p = | 
 | 	     this->segment_list_->begin(); | 
 | 	   p != this->segment_list_->end(); | 
 | 	   ++p) | 
 | 	if ((*p)->type() == elfcpp::PT_LOAD) | 
 | 	  count += (*p)->output_section_count(); | 
 |     } | 
 |   else | 
 |     { | 
 |       for (Layout::Section_list::const_iterator p = | 
 | 	     this->section_list_->begin(); | 
 | 	   p != this->section_list_->end(); | 
 | 	   ++p) | 
 | 	if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0) | 
 | 	  ++count; | 
 |     } | 
 |   count += this->unattached_section_list_->size(); | 
 |  | 
 |   const int size = parameters->target().get_size(); | 
 |   int shdr_size; | 
 |   if (size == 32) | 
 |     shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |   else if (size == 64) | 
 |     shdr_size = elfcpp::Elf_sizes<64>::shdr_size; | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   return count * shdr_size; | 
 | } | 
 |  | 
 | // Write out the section headers. | 
 |  | 
 | void | 
 | Output_section_headers::do_write(Output_file* of) | 
 | { | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->do_sized_write<32, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->do_sized_write<32, true>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->do_sized_write<64, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->do_sized_write<64, true>(of); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_section_headers::do_sized_write(Output_file* of) | 
 | { | 
 |   off_t all_shdrs_size = this->data_size(); | 
 |   unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size); | 
 |  | 
 |   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; | 
 |   unsigned char* v = view; | 
 |  | 
 |   { | 
 |     typename elfcpp::Shdr_write<size, big_endian> oshdr(v); | 
 |     oshdr.put_sh_name(0); | 
 |     oshdr.put_sh_type(elfcpp::SHT_NULL); | 
 |     oshdr.put_sh_flags(0); | 
 |     oshdr.put_sh_addr(0); | 
 |     oshdr.put_sh_offset(0); | 
 |  | 
 |     size_t section_count = (this->data_size() | 
 | 			    / elfcpp::Elf_sizes<size>::shdr_size); | 
 |     if (section_count < elfcpp::SHN_LORESERVE) | 
 |       oshdr.put_sh_size(0); | 
 |     else | 
 |       oshdr.put_sh_size(section_count); | 
 |  | 
 |     unsigned int shstrndx = this->shstrtab_section_->out_shndx(); | 
 |     if (shstrndx < elfcpp::SHN_LORESERVE) | 
 |       oshdr.put_sh_link(0); | 
 |     else | 
 |       oshdr.put_sh_link(shstrndx); | 
 |  | 
 |     size_t segment_count = this->segment_list_->size(); | 
 |     oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0); | 
 |  | 
 |     oshdr.put_sh_addralign(0); | 
 |     oshdr.put_sh_entsize(0); | 
 |   } | 
 |  | 
 |   v += shdr_size; | 
 |  | 
 |   unsigned int shndx = 1; | 
 |   if (!parameters->options().relocatable()) | 
 |     { | 
 |       for (Layout::Segment_list::const_iterator p = | 
 | 	     this->segment_list_->begin(); | 
 | 	   p != this->segment_list_->end(); | 
 | 	   ++p) | 
 | 	v = (*p)->write_section_headers<size, big_endian>(this->layout_, | 
 | 							  this->secnamepool_, | 
 | 							  v, | 
 | 							  &shndx); | 
 |     } | 
 |   else | 
 |     { | 
 |       for (Layout::Section_list::const_iterator p = | 
 | 	     this->section_list_->begin(); | 
 | 	   p != this->section_list_->end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  // We do unallocated sections below, except that group | 
 | 	  // sections have to come first. | 
 | 	  if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0 | 
 | 	      && (*p)->type() != elfcpp::SHT_GROUP) | 
 | 	    continue; | 
 | 	  gold_assert(shndx == (*p)->out_shndx()); | 
 | 	  elfcpp::Shdr_write<size, big_endian> oshdr(v); | 
 | 	  (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); | 
 | 	  v += shdr_size; | 
 | 	  ++shndx; | 
 | 	} | 
 |     } | 
 |  | 
 |   for (Layout::Section_list::const_iterator p = | 
 | 	 this->unattached_section_list_->begin(); | 
 |        p != this->unattached_section_list_->end(); | 
 |        ++p) | 
 |     { | 
 |       // For a relocatable link, we did unallocated group sections | 
 |       // above, since they have to come first. | 
 |       if ((*p)->type() == elfcpp::SHT_GROUP | 
 | 	  && parameters->options().relocatable()) | 
 | 	continue; | 
 |       gold_assert(shndx == (*p)->out_shndx()); | 
 |       elfcpp::Shdr_write<size, big_endian> oshdr(v); | 
 |       (*p)->write_header(this->layout_, this->secnamepool_, &oshdr); | 
 |       v += shdr_size; | 
 |       ++shndx; | 
 |     } | 
 |  | 
 |   of->write_output_view(this->offset(), all_shdrs_size, view); | 
 | } | 
 |  | 
 | // Output_segment_header methods. | 
 |  | 
 | Output_segment_headers::Output_segment_headers( | 
 |     const Layout::Segment_list& segment_list) | 
 |   : segment_list_(segment_list) | 
 | { | 
 |   this->set_current_data_size_for_child(this->do_size()); | 
 | } | 
 |  | 
 | void | 
 | Output_segment_headers::do_write(Output_file* of) | 
 | { | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->do_sized_write<32, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->do_sized_write<32, true>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->do_sized_write<64, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->do_sized_write<64, true>(of); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_segment_headers::do_sized_write(Output_file* of) | 
 | { | 
 |   const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size; | 
 |   off_t all_phdrs_size = this->segment_list_.size() * phdr_size; | 
 |   gold_assert(all_phdrs_size == this->data_size()); | 
 |   unsigned char* view = of->get_output_view(this->offset(), | 
 | 					    all_phdrs_size); | 
 |   unsigned char* v = view; | 
 |   for (Layout::Segment_list::const_iterator p = this->segment_list_.begin(); | 
 |        p != this->segment_list_.end(); | 
 |        ++p) | 
 |     { | 
 |       elfcpp::Phdr_write<size, big_endian> ophdr(v); | 
 |       (*p)->write_header(&ophdr); | 
 |       v += phdr_size; | 
 |     } | 
 |  | 
 |   gold_assert(v - view == all_phdrs_size); | 
 |  | 
 |   of->write_output_view(this->offset(), all_phdrs_size, view); | 
 | } | 
 |  | 
 | off_t | 
 | Output_segment_headers::do_size() const | 
 | { | 
 |   const int size = parameters->target().get_size(); | 
 |   int phdr_size; | 
 |   if (size == 32) | 
 |     phdr_size = elfcpp::Elf_sizes<32>::phdr_size; | 
 |   else if (size == 64) | 
 |     phdr_size = elfcpp::Elf_sizes<64>::phdr_size; | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   return this->segment_list_.size() * phdr_size; | 
 | } | 
 |  | 
 | // Output_file_header methods. | 
 |  | 
 | Output_file_header::Output_file_header(Target* target, | 
 | 				       const Symbol_table* symtab, | 
 | 				       const Output_segment_headers* osh) | 
 |   : target_(target), | 
 |     symtab_(symtab), | 
 |     segment_header_(osh), | 
 |     section_header_(NULL), | 
 |     shstrtab_(NULL) | 
 | { | 
 |   this->set_data_size(this->do_size()); | 
 | } | 
 |  | 
 | // Set the section table information for a file header. | 
 |  | 
 | void | 
 | Output_file_header::set_section_info(const Output_section_headers* shdrs, | 
 | 				     const Output_section* shstrtab) | 
 | { | 
 |   this->section_header_ = shdrs; | 
 |   this->shstrtab_ = shstrtab; | 
 | } | 
 |  | 
 | // Write out the file header. | 
 |  | 
 | void | 
 | Output_file_header::do_write(Output_file* of) | 
 | { | 
 |   gold_assert(this->offset() == 0); | 
 |  | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->do_sized_write<32, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->do_sized_write<32, true>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->do_sized_write<64, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->do_sized_write<64, true>(of); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Write out the file header with appropriate size and endianness. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_file_header::do_sized_write(Output_file* of) | 
 | { | 
 |   gold_assert(this->offset() == 0); | 
 |  | 
 |   int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size; | 
 |   unsigned char* view = of->get_output_view(0, ehdr_size); | 
 |   elfcpp::Ehdr_write<size, big_endian> oehdr(view); | 
 |  | 
 |   unsigned char e_ident[elfcpp::EI_NIDENT]; | 
 |   memset(e_ident, 0, elfcpp::EI_NIDENT); | 
 |   e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0; | 
 |   e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1; | 
 |   e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2; | 
 |   e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3; | 
 |   if (size == 32) | 
 |     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32; | 
 |   else if (size == 64) | 
 |     e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64; | 
 |   else | 
 |     gold_unreachable(); | 
 |   e_ident[elfcpp::EI_DATA] = (big_endian | 
 | 			      ? elfcpp::ELFDATA2MSB | 
 | 			      : elfcpp::ELFDATA2LSB); | 
 |   e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT; | 
 |   oehdr.put_e_ident(e_ident); | 
 |  | 
 |   elfcpp::ET e_type; | 
 |   if (parameters->options().relocatable()) | 
 |     e_type = elfcpp::ET_REL; | 
 |   else if (parameters->options().output_is_position_independent()) | 
 |     e_type = elfcpp::ET_DYN; | 
 |   else | 
 |     e_type = elfcpp::ET_EXEC; | 
 |   oehdr.put_e_type(e_type); | 
 |  | 
 |   oehdr.put_e_machine(this->target_->machine_code()); | 
 |   oehdr.put_e_version(elfcpp::EV_CURRENT); | 
 |  | 
 |   oehdr.put_e_entry(this->entry<size>()); | 
 |  | 
 |   if (this->segment_header_ == NULL) | 
 |     oehdr.put_e_phoff(0); | 
 |   else | 
 |     oehdr.put_e_phoff(this->segment_header_->offset()); | 
 |  | 
 |   oehdr.put_e_shoff(this->section_header_->offset()); | 
 |   oehdr.put_e_flags(this->target_->processor_specific_flags()); | 
 |   oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size); | 
 |  | 
 |   if (this->segment_header_ == NULL) | 
 |     { | 
 |       oehdr.put_e_phentsize(0); | 
 |       oehdr.put_e_phnum(0); | 
 |     } | 
 |   else | 
 |     { | 
 |       oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size); | 
 |       size_t phnum = (this->segment_header_->data_size() | 
 | 		      / elfcpp::Elf_sizes<size>::phdr_size); | 
 |       if (phnum > elfcpp::PN_XNUM) | 
 | 	phnum = elfcpp::PN_XNUM; | 
 |       oehdr.put_e_phnum(phnum); | 
 |     } | 
 |  | 
 |   oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size); | 
 |   size_t section_count = (this->section_header_->data_size() | 
 | 			  / elfcpp::Elf_sizes<size>::shdr_size); | 
 |  | 
 |   if (section_count < elfcpp::SHN_LORESERVE) | 
 |     oehdr.put_e_shnum(this->section_header_->data_size() | 
 | 		      / elfcpp::Elf_sizes<size>::shdr_size); | 
 |   else | 
 |     oehdr.put_e_shnum(0); | 
 |  | 
 |   unsigned int shstrndx = this->shstrtab_->out_shndx(); | 
 |   if (shstrndx < elfcpp::SHN_LORESERVE) | 
 |     oehdr.put_e_shstrndx(this->shstrtab_->out_shndx()); | 
 |   else | 
 |     oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX); | 
 |  | 
 |   // Let the target adjust the ELF header, e.g., to set EI_OSABI in | 
 |   // the e_ident field. | 
 |   this->target_->adjust_elf_header(view, ehdr_size); | 
 |  | 
 |   of->write_output_view(0, ehdr_size, view); | 
 | } | 
 |  | 
 | // Return the value to use for the entry address. | 
 |  | 
 | template<int size> | 
 | typename elfcpp::Elf_types<size>::Elf_Addr | 
 | Output_file_header::entry() | 
 | { | 
 |   const bool should_issue_warning = (parameters->options().entry() != NULL | 
 | 				     && !parameters->options().relocatable() | 
 | 				     && !parameters->options().shared()); | 
 |   const char* entry = parameters->entry(); | 
 |   Symbol* sym = this->symtab_->lookup(entry); | 
 |  | 
 |   typename Sized_symbol<size>::Value_type v; | 
 |   if (sym != NULL) | 
 |     { | 
 |       Sized_symbol<size>* ssym; | 
 |       ssym = this->symtab_->get_sized_symbol<size>(sym); | 
 |       if (!ssym->is_defined() && should_issue_warning) | 
 | 	gold_warning("entry symbol '%s' exists but is not defined", entry); | 
 |       v = ssym->value(); | 
 |     } | 
 |   else | 
 |     { | 
 |       // We couldn't find the entry symbol.  See if we can parse it as | 
 |       // a number.  This supports, e.g., -e 0x1000. | 
 |       char* endptr; | 
 |       v = strtoull(entry, &endptr, 0); | 
 |       if (*endptr != '\0') | 
 | 	{ | 
 | 	  if (should_issue_warning) | 
 | 	    gold_warning("cannot find entry symbol '%s'", entry); | 
 | 	  v = 0; | 
 | 	} | 
 |     } | 
 |  | 
 |   return v; | 
 | } | 
 |  | 
 | // Compute the current data size. | 
 |  | 
 | off_t | 
 | Output_file_header::do_size() const | 
 | { | 
 |   const int size = parameters->target().get_size(); | 
 |   if (size == 32) | 
 |     return elfcpp::Elf_sizes<32>::ehdr_size; | 
 |   else if (size == 64) | 
 |     return elfcpp::Elf_sizes<64>::ehdr_size; | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Output_data_const methods. | 
 |  | 
 | void | 
 | Output_data_const::do_write(Output_file* of) | 
 | { | 
 |   of->write(this->offset(), this->data_.data(), this->data_.size()); | 
 | } | 
 |  | 
 | // Output_data_const_buffer methods. | 
 |  | 
 | void | 
 | Output_data_const_buffer::do_write(Output_file* of) | 
 | { | 
 |   of->write(this->offset(), this->p_, this->data_size()); | 
 | } | 
 |  | 
 | // Output_section_data methods. | 
 |  | 
 | // Record the output section, and set the entry size and such. | 
 |  | 
 | void | 
 | Output_section_data::set_output_section(Output_section* os) | 
 | { | 
 |   gold_assert(this->output_section_ == NULL); | 
 |   this->output_section_ = os; | 
 |   this->do_adjust_output_section(os); | 
 | } | 
 |  | 
 | // Return the section index of the output section. | 
 |  | 
 | unsigned int | 
 | Output_section_data::do_out_shndx() const | 
 | { | 
 |   gold_assert(this->output_section_ != NULL); | 
 |   return this->output_section_->out_shndx(); | 
 | } | 
 |  | 
 | // Set the alignment, which means we may need to update the alignment | 
 | // of the output section. | 
 |  | 
 | void | 
 | Output_section_data::set_addralign(uint64_t addralign) | 
 | { | 
 |   this->addralign_ = addralign; | 
 |   if (this->output_section_ != NULL | 
 |       && this->output_section_->addralign() < addralign) | 
 |     this->output_section_->set_addralign(addralign); | 
 | } | 
 |  | 
 | // Output_data_strtab methods. | 
 |  | 
 | // Set the final data size. | 
 |  | 
 | void | 
 | Output_data_strtab::set_final_data_size() | 
 | { | 
 |   this->strtab_->set_string_offsets(); | 
 |   this->set_data_size(this->strtab_->get_strtab_size()); | 
 | } | 
 |  | 
 | // Write out a string table. | 
 |  | 
 | void | 
 | Output_data_strtab::do_write(Output_file* of) | 
 | { | 
 |   this->strtab_->write(of, this->offset()); | 
 | } | 
 |  | 
 | // Output_reloc methods. | 
 |  | 
 | // A reloc against a global symbol. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Symbol* gsym, | 
 |     unsigned int type, | 
 |     Output_data* od, | 
 |     Address address, | 
 |     bool is_relative, | 
 |     bool is_symbolless, | 
 |     bool use_plt_offset) | 
 |   : address_(address), local_sym_index_(GSYM_CODE), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_symbolless), | 
 |     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE) | 
 | { | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.gsym = gsym; | 
 |   this->u2_.od = od; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 | } | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Symbol* gsym, | 
 |     unsigned int type, | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int shndx, | 
 |     Address address, | 
 |     bool is_relative, | 
 |     bool is_symbolless, | 
 |     bool use_plt_offset) | 
 |   : address_(address), local_sym_index_(GSYM_CODE), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_symbolless), | 
 |     is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx) | 
 | { | 
 |   gold_assert(shndx != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.gsym = gsym; | 
 |   this->u2_.relobj = relobj; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 | } | 
 |  | 
 | // A reloc against a local symbol. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int local_sym_index, | 
 |     unsigned int type, | 
 |     Output_data* od, | 
 |     Address address, | 
 |     bool is_relative, | 
 |     bool is_symbolless, | 
 |     bool is_section_symbol, | 
 |     bool use_plt_offset) | 
 |   : address_(address), local_sym_index_(local_sym_index), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_symbolless), | 
 |     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), | 
 |     shndx_(INVALID_CODE) | 
 | { | 
 |   gold_assert(local_sym_index != GSYM_CODE | 
 | 	      && local_sym_index != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.relobj = relobj; | 
 |   this->u2_.od = od; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 | } | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int local_sym_index, | 
 |     unsigned int type, | 
 |     unsigned int shndx, | 
 |     Address address, | 
 |     bool is_relative, | 
 |     bool is_symbolless, | 
 |     bool is_section_symbol, | 
 |     bool use_plt_offset) | 
 |   : address_(address), local_sym_index_(local_sym_index), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_symbolless), | 
 |     is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset), | 
 |     shndx_(shndx) | 
 | { | 
 |   gold_assert(local_sym_index != GSYM_CODE | 
 | 	      && local_sym_index != INVALID_CODE); | 
 |   gold_assert(shndx != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.relobj = relobj; | 
 |   this->u2_.relobj = relobj; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 | } | 
 |  | 
 | // A reloc against the STT_SECTION symbol of an output section. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Output_section* os, | 
 |     unsigned int type, | 
 |     Output_data* od, | 
 |     Address address, | 
 |     bool is_relative) | 
 |   : address_(address), local_sym_index_(SECTION_CODE), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_relative), | 
 |     is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE) | 
 | { | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.os = os; | 
 |   this->u2_.od = od; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 |   else | 
 |     os->set_needs_symtab_index(); | 
 | } | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     Output_section* os, | 
 |     unsigned int type, | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int shndx, | 
 |     Address address, | 
 |     bool is_relative) | 
 |   : address_(address), local_sym_index_(SECTION_CODE), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(is_relative), | 
 |     is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx) | 
 | { | 
 |   gold_assert(shndx != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.os = os; | 
 |   this->u2_.relobj = relobj; | 
 |   if (dynamic) | 
 |     this->set_needs_dynsym_index(); | 
 |   else | 
 |     os->set_needs_symtab_index(); | 
 | } | 
 |  | 
 | // An absolute or relative relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     unsigned int type, | 
 |     Output_data* od, | 
 |     Address address, | 
 |     bool is_relative) | 
 |   : address_(address), local_sym_index_(0), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(false), | 
 |     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) | 
 | { | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.relobj = NULL; | 
 |   this->u2_.od = od; | 
 | } | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     unsigned int type, | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int shndx, | 
 |     Address address, | 
 |     bool is_relative) | 
 |   : address_(address), local_sym_index_(0), type_(type), | 
 |     is_relative_(is_relative), is_symbolless_(false), | 
 |     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) | 
 | { | 
 |   gold_assert(shndx != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.relobj = NULL; | 
 |   this->u2_.relobj = relobj; | 
 | } | 
 |  | 
 | // A target specific relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     unsigned int type, | 
 |     void* arg, | 
 |     Output_data* od, | 
 |     Address address) | 
 |   : address_(address), local_sym_index_(TARGET_CODE), type_(type), | 
 |     is_relative_(false), is_symbolless_(false), | 
 |     is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE) | 
 | { | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.arg = arg; | 
 |   this->u2_.od = od; | 
 | } | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc( | 
 |     unsigned int type, | 
 |     void* arg, | 
 |     Sized_relobj<size, big_endian>* relobj, | 
 |     unsigned int shndx, | 
 |     Address address) | 
 |   : address_(address), local_sym_index_(TARGET_CODE), type_(type), | 
 |     is_relative_(false), is_symbolless_(false), | 
 |     is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx) | 
 | { | 
 |   gold_assert(shndx != INVALID_CODE); | 
 |   // this->type_ is a bitfield; make sure TYPE fits. | 
 |   gold_assert(this->type_ == type); | 
 |   this->u1_.arg = arg; | 
 |   this->u2_.relobj = relobj; | 
 | } | 
 |  | 
 | // Record that we need a dynamic symbol index for this relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | void | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: | 
 | set_needs_dynsym_index() | 
 | { | 
 |   if (this->is_symbolless_) | 
 |     return; | 
 |   switch (this->local_sym_index_) | 
 |     { | 
 |     case INVALID_CODE: | 
 |       gold_unreachable(); | 
 |  | 
 |     case GSYM_CODE: | 
 |       this->u1_.gsym->set_needs_dynsym_entry(); | 
 |       break; | 
 |  | 
 |     case SECTION_CODE: | 
 |       this->u1_.os->set_needs_dynsym_index(); | 
 |       break; | 
 |  | 
 |     case TARGET_CODE: | 
 |       // The target must take care of this if necessary. | 
 |       break; | 
 |  | 
 |     case 0: | 
 |       break; | 
 |  | 
 |     default: | 
 |       { | 
 | 	const unsigned int lsi = this->local_sym_index_; | 
 | 	Sized_relobj_file<size, big_endian>* relobj = | 
 | 	    this->u1_.relobj->sized_relobj(); | 
 | 	gold_assert(relobj != NULL); | 
 | 	if (!this->is_section_symbol_) | 
 | 	  relobj->set_needs_output_dynsym_entry(lsi); | 
 | 	else | 
 | 	  relobj->output_section(lsi)->set_needs_dynsym_index(); | 
 |       } | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | // Get the symbol index of a relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | unsigned int | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index() | 
 |   const | 
 | { | 
 |   unsigned int index; | 
 |   if (this->is_symbolless_) | 
 |     return 0; | 
 |   switch (this->local_sym_index_) | 
 |     { | 
 |     case INVALID_CODE: | 
 |       gold_unreachable(); | 
 |  | 
 |     case GSYM_CODE: | 
 |       if (this->u1_.gsym == NULL) | 
 | 	index = 0; | 
 |       else if (dynamic) | 
 | 	index = this->u1_.gsym->dynsym_index(); | 
 |       else | 
 | 	index = this->u1_.gsym->symtab_index(); | 
 |       break; | 
 |  | 
 |     case SECTION_CODE: | 
 |       if (dynamic) | 
 | 	index = this->u1_.os->dynsym_index(); | 
 |       else | 
 | 	index = this->u1_.os->symtab_index(); | 
 |       break; | 
 |  | 
 |     case TARGET_CODE: | 
 |       index = parameters->target().reloc_symbol_index(this->u1_.arg, | 
 | 						      this->type_); | 
 |       break; | 
 |  | 
 |     case 0: | 
 |       // Relocations without symbols use a symbol index of 0. | 
 |       index = 0; | 
 |       break; | 
 |  | 
 |     default: | 
 |       { | 
 | 	const unsigned int lsi = this->local_sym_index_; | 
 | 	Sized_relobj_file<size, big_endian>* relobj = | 
 | 	    this->u1_.relobj->sized_relobj(); | 
 | 	gold_assert(relobj != NULL); | 
 | 	if (!this->is_section_symbol_) | 
 | 	  { | 
 | 	    if (dynamic) | 
 | 	      index = relobj->dynsym_index(lsi); | 
 | 	    else | 
 | 	      index = relobj->symtab_index(lsi); | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    Output_section* os = relobj->output_section(lsi); | 
 | 	    gold_assert(os != NULL); | 
 | 	    if (dynamic) | 
 | 	      index = os->dynsym_index(); | 
 | 	    else | 
 | 	      index = os->symtab_index(); | 
 | 	  } | 
 |       } | 
 |       break; | 
 |     } | 
 |   gold_assert(index != -1U); | 
 |   return index; | 
 | } | 
 |  | 
 | // For a local section symbol, get the address of the offset ADDEND | 
 | // within the input section. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | typename elfcpp::Elf_types<size>::Elf_Addr | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: | 
 |   local_section_offset(Addend addend) const | 
 | { | 
 |   gold_assert(this->local_sym_index_ != GSYM_CODE | 
 | 	      && this->local_sym_index_ != SECTION_CODE | 
 | 	      && this->local_sym_index_ != TARGET_CODE | 
 | 	      && this->local_sym_index_ != INVALID_CODE | 
 | 	      && this->local_sym_index_ != 0 | 
 | 	      && this->is_section_symbol_); | 
 |   const unsigned int lsi = this->local_sym_index_; | 
 |   Output_section* os = this->u1_.relobj->output_section(lsi); | 
 |   gold_assert(os != NULL); | 
 |   Address offset = this->u1_.relobj->get_output_section_offset(lsi); | 
 |   if (offset != invalid_address) | 
 |     return offset + addend; | 
 |   // This is a merge section. | 
 |   Sized_relobj_file<size, big_endian>* relobj = | 
 |       this->u1_.relobj->sized_relobj(); | 
 |   gold_assert(relobj != NULL); | 
 |   offset = os->output_address(relobj, lsi, addend); | 
 |   gold_assert(offset != invalid_address); | 
 |   return offset; | 
 | } | 
 |  | 
 | // Get the output address of a relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | typename elfcpp::Elf_types<size>::Elf_Addr | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const | 
 | { | 
 |   Address address = this->address_; | 
 |   if (this->shndx_ != INVALID_CODE) | 
 |     { | 
 |       Output_section* os = this->u2_.relobj->output_section(this->shndx_); | 
 |       gold_assert(os != NULL); | 
 |       Address off = this->u2_.relobj->get_output_section_offset(this->shndx_); | 
 |       if (off != invalid_address) | 
 | 	address += os->address() + off; | 
 |       else | 
 | 	{ | 
 | 	  Sized_relobj_file<size, big_endian>* relobj = | 
 | 	      this->u2_.relobj->sized_relobj(); | 
 | 	  gold_assert(relobj != NULL); | 
 | 	  address = os->output_address(relobj, this->shndx_, address); | 
 | 	  gold_assert(address != invalid_address); | 
 | 	} | 
 |     } | 
 |   else if (this->u2_.od != NULL) | 
 |     address += this->u2_.od->address(); | 
 |   return address; | 
 | } | 
 |  | 
 | // Write out the offset and info fields of a Rel or Rela relocation | 
 | // entry. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | template<typename Write_rel> | 
 | void | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel( | 
 |     Write_rel* wr) const | 
 | { | 
 |   wr->put_r_offset(this->get_address()); | 
 |   unsigned int sym_index = this->get_symbol_index(); | 
 |   wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_)); | 
 | } | 
 |  | 
 | // Write out a Rel relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | void | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write( | 
 |     unsigned char* pov) const | 
 | { | 
 |   elfcpp::Rel_write<size, big_endian> orel(pov); | 
 |   this->write_rel(&orel); | 
 | } | 
 |  | 
 | // Get the value of the symbol referred to by a Rel relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | typename elfcpp::Elf_types<size>::Elf_Addr | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value( | 
 |     Addend addend) const | 
 | { | 
 |   if (this->local_sym_index_ == GSYM_CODE) | 
 |     { | 
 |       const Sized_symbol<size>* sym; | 
 |       sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym); | 
 |       if (this->use_plt_offset_ && sym->has_plt_offset()) | 
 | 	return parameters->target().plt_address_for_global(sym); | 
 |       else | 
 | 	return sym->value() + addend; | 
 |     } | 
 |   if (this->local_sym_index_ == SECTION_CODE) | 
 |     { | 
 |       gold_assert(!this->use_plt_offset_); | 
 |       return this->u1_.os->address() + addend; | 
 |     } | 
 |   gold_assert(this->local_sym_index_ != TARGET_CODE | 
 | 	      && this->local_sym_index_ != INVALID_CODE | 
 | 	      && this->local_sym_index_ != 0 | 
 | 	      && !this->is_section_symbol_); | 
 |   const unsigned int lsi = this->local_sym_index_; | 
 |   Sized_relobj_file<size, big_endian>* relobj = | 
 |       this->u1_.relobj->sized_relobj(); | 
 |   gold_assert(relobj != NULL); | 
 |   if (this->use_plt_offset_) | 
 |     return parameters->target().plt_address_for_local(relobj, lsi); | 
 |   const Symbol_value<size>* symval = relobj->local_symbol(lsi); | 
 |   return symval->value(relobj, addend); | 
 | } | 
 |  | 
 | // Reloc comparison.  This function sorts the dynamic relocs for the | 
 | // benefit of the dynamic linker.  First we sort all relative relocs | 
 | // to the front.  Among relative relocs, we sort by output address. | 
 | // Among non-relative relocs, we sort by symbol index, then by output | 
 | // address. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | int | 
 | Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>:: | 
 |   compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2) | 
 |     const | 
 | { | 
 |   if (this->is_relative_) | 
 |     { | 
 |       if (!r2.is_relative_) | 
 | 	return -1; | 
 |       // Otherwise sort by reloc address below. | 
 |     } | 
 |   else if (r2.is_relative_) | 
 |     return 1; | 
 |   else | 
 |     { | 
 |       unsigned int sym1 = this->get_symbol_index(); | 
 |       unsigned int sym2 = r2.get_symbol_index(); | 
 |       if (sym1 < sym2) | 
 | 	return -1; | 
 |       else if (sym1 > sym2) | 
 | 	return 1; | 
 |       // Otherwise sort by reloc address. | 
 |     } | 
 |  | 
 |   section_offset_type addr1 = this->get_address(); | 
 |   section_offset_type addr2 = r2.get_address(); | 
 |   if (addr1 < addr2) | 
 |     return -1; | 
 |   else if (addr1 > addr2) | 
 |     return 1; | 
 |  | 
 |   // Final tie breaker, in order to generate the same output on any | 
 |   // host: reloc type. | 
 |   unsigned int type1 = this->type_; | 
 |   unsigned int type2 = r2.type_; | 
 |   if (type1 < type2) | 
 |     return -1; | 
 |   else if (type1 > type2) | 
 |     return 1; | 
 |  | 
 |   // These relocs appear to be exactly the same. | 
 |   return 0; | 
 | } | 
 |  | 
 | // Write out a Rela relocation. | 
 |  | 
 | template<bool dynamic, int size, bool big_endian> | 
 | void | 
 | Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write( | 
 |     unsigned char* pov) const | 
 | { | 
 |   elfcpp::Rela_write<size, big_endian> orel(pov); | 
 |   this->rel_.write_rel(&orel); | 
 |   Addend addend = this->addend_; | 
 |   if (this->rel_.is_target_specific()) | 
 |     addend = parameters->target().reloc_addend(this->rel_.target_arg(), | 
 | 					       this->rel_.type(), addend); | 
 |   else if (this->rel_.is_symbolless()) | 
 |     addend = this->rel_.symbol_value(addend); | 
 |   else if (this->rel_.is_local_section_symbol()) | 
 |     addend = this->rel_.local_section_offset(addend); | 
 |   orel.put_r_addend(addend); | 
 | } | 
 |  | 
 | // Output_data_reloc_base methods. | 
 |  | 
 | // Adjust the output section. | 
 |  | 
 | template<int sh_type, bool dynamic, int size, bool big_endian> | 
 | void | 
 | Output_data_reloc_base<sh_type, dynamic, size, big_endian> | 
 |     ::do_adjust_output_section(Output_section* os) | 
 | { | 
 |   if (sh_type == elfcpp::SHT_REL) | 
 |     os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); | 
 |   else if (sh_type == elfcpp::SHT_RELA) | 
 |     os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a | 
 |   // static link.  The backends will generate a dynamic reloc section | 
 |   // to hold this.  In that case we don't want to link to the dynsym | 
 |   // section, because there isn't one. | 
 |   if (!dynamic) | 
 |     os->set_should_link_to_symtab(); | 
 |   else if (parameters->doing_static_link()) | 
 |     ; | 
 |   else | 
 |     os->set_should_link_to_dynsym(); | 
 | } | 
 |  | 
 | // Standard relocation writer, which just calls Output_reloc::write(). | 
 |  | 
 | template<int sh_type, bool dynamic, int size, bool big_endian> | 
 | struct Output_reloc_writer | 
 | { | 
 |   typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type; | 
 |   typedef std::vector<Output_reloc_type> Relocs; | 
 |  | 
 |   static void | 
 |   write(typename Relocs::const_iterator p, unsigned char* pov) | 
 |   { p->write(pov); } | 
 | }; | 
 |  | 
 | // Write out relocation data. | 
 |  | 
 | template<int sh_type, bool dynamic, int size, bool big_endian> | 
 | void | 
 | Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write( | 
 |     Output_file* of) | 
 | { | 
 |   typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer; | 
 |   this->do_write_generic<Writer>(of); | 
 | } | 
 |  | 
 | // Class Output_relocatable_relocs. | 
 |  | 
 | template<int sh_type, int size, bool big_endian> | 
 | void | 
 | Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size() | 
 | { | 
 |   this->set_data_size(this->rr_->output_reloc_count() | 
 | 		      * Reloc_types<sh_type, size, big_endian>::reloc_size); | 
 | } | 
 |  | 
 | // class Output_data_group. | 
 |  | 
 | template<int size, bool big_endian> | 
 | Output_data_group<size, big_endian>::Output_data_group( | 
 |     Sized_relobj_file<size, big_endian>* relobj, | 
 |     section_size_type entry_count, | 
 |     elfcpp::Elf_Word flags, | 
 |     std::vector<unsigned int>* input_shndxes) | 
 |   : Output_section_data(entry_count * 4, 4, false), | 
 |     relobj_(relobj), | 
 |     flags_(flags) | 
 | { | 
 |   this->input_shndxes_.swap(*input_shndxes); | 
 | } | 
 |  | 
 | // Write out the section group, which means translating the section | 
 | // indexes to apply to the output file. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_data_group<size, big_endian>::do_write(Output_file* of) | 
 | { | 
 |   const off_t off = this->offset(); | 
 |   const section_size_type oview_size = | 
 |     convert_to_section_size_type(this->data_size()); | 
 |   unsigned char* const oview = of->get_output_view(off, oview_size); | 
 |  | 
 |   elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview); | 
 |   elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_); | 
 |   ++contents; | 
 |  | 
 |   for (std::vector<unsigned int>::const_iterator p = | 
 | 	 this->input_shndxes_.begin(); | 
 |        p != this->input_shndxes_.end(); | 
 |        ++p, ++contents) | 
 |     { | 
 |       Output_section* os = this->relobj_->output_section(*p); | 
 |  | 
 |       unsigned int output_shndx; | 
 |       if (os != NULL) | 
 | 	output_shndx = os->out_shndx(); | 
 |       else | 
 | 	{ | 
 | 	  this->relobj_->error(_("section group retained but " | 
 | 				 "group element discarded")); | 
 | 	  output_shndx = 0; | 
 | 	} | 
 |  | 
 |       elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx); | 
 |     } | 
 |  | 
 |   size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview; | 
 |   gold_assert(wrote == oview_size); | 
 |  | 
 |   of->write_output_view(off, oview_size, oview); | 
 |  | 
 |   // We no longer need this information. | 
 |   this->input_shndxes_.clear(); | 
 | } | 
 |  | 
 | // Output_data_got::Got_entry methods. | 
 |  | 
 | // Write out the entry. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::Got_entry::write( | 
 |     Output_data_got_base* got, | 
 |     unsigned int got_indx, | 
 |     unsigned char* pov) const | 
 | { | 
 |   Valtype val = 0; | 
 |  | 
 |   switch (this->local_sym_index_) | 
 |     { | 
 |     case GSYM_CODE: | 
 |       { | 
 | 	// If the symbol is resolved locally, we need to write out the | 
 | 	// link-time value, which will be relocated dynamically by a | 
 | 	// RELATIVE relocation. | 
 | 	Symbol* gsym = this->u_.gsym; | 
 | 	if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset()) | 
 | 	  val = parameters->target().plt_address_for_global(gsym); | 
 | 	else | 
 | 	  { | 
 | 	    switch (parameters->size_and_endianness()) | 
 | 	      { | 
 | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) | 
 | 	      case Parameters::TARGET_32_LITTLE: | 
 | 	      case Parameters::TARGET_32_BIG: | 
 | 		{ | 
 | 		  // This cast is ugly.  We don't want to put a | 
 | 		  // virtual method in Symbol, because we want Symbol | 
 | 		  // to be as small as possible. | 
 | 		  Sized_symbol<32>::Value_type v; | 
 | 		  v = static_cast<Sized_symbol<32>*>(gsym)->value(); | 
 | 		  val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v); | 
 | 		} | 
 | 		break; | 
 | #endif | 
 | #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) | 
 | 	      case Parameters::TARGET_64_LITTLE: | 
 | 	      case Parameters::TARGET_64_BIG: | 
 | 		{ | 
 | 		  Sized_symbol<64>::Value_type v; | 
 | 		  v = static_cast<Sized_symbol<64>*>(gsym)->value(); | 
 | 		  val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v); | 
 | 		} | 
 | 		break; | 
 | #endif | 
 | 	      default: | 
 | 		gold_unreachable(); | 
 | 	      } | 
 | 	    // If this is a GOT entry for a known value global symbol, | 
 | 	    // then the value should include the addend.  If the value | 
 | 	    // is not known leave the value as zero; The GOT entry | 
 | 	    // will be set by a dynamic relocation. | 
 | 	    if (this->addend_ && gsym->final_value_is_known()) | 
 | 	      val += this->addend_; | 
 | 	    if (this->use_plt_or_tls_offset_ | 
 | 		&& gsym->type() == elfcpp::STT_TLS) | 
 | 	      val += parameters->target().tls_offset_for_global(gsym, | 
 | 								got, got_indx, | 
 | 								this->addend_); | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case CONSTANT_CODE: | 
 |       val = this->u_.constant; | 
 |       break; | 
 |  | 
 |     case RESERVED_CODE: | 
 |       // If we're doing an incremental update, don't touch this GOT entry. | 
 |       if (parameters->incremental_update()) | 
 | 	return; | 
 |       val = this->u_.constant; | 
 |       break; | 
 |  | 
 |     default: | 
 |       { | 
 | 	const Relobj* object = this->u_.object; | 
 | 	const unsigned int lsi = this->local_sym_index_; | 
 | 	bool is_tls = object->local_is_tls(lsi); | 
 | 	if (this->use_plt_or_tls_offset_ && !is_tls) | 
 | 	  val = parameters->target().plt_address_for_local(object, lsi); | 
 | 	else | 
 | 	  { | 
 | 	    uint64_t lval = object->local_symbol_value(lsi, this->addend_); | 
 | 	    val = convert_types<Valtype, uint64_t>(lval); | 
 | 	    if (this->use_plt_or_tls_offset_ && is_tls) | 
 | 	      val += parameters->target().tls_offset_for_local(object, lsi, | 
 | 							       got, got_indx, | 
 | 							       this->addend_); | 
 | 	  } | 
 |       } | 
 |       break; | 
 |     } | 
 |  | 
 |   elfcpp::Swap<got_size, big_endian>::writeval(pov, val); | 
 | } | 
 |  | 
 | // Output_data_got methods. | 
 |  | 
 | // Add an entry for a global symbol to the GOT.  This returns true if | 
 | // this is a new GOT entry, false if the symbol already had a GOT | 
 | // entry. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | bool | 
 | Output_data_got<got_size, big_endian>::add_global(Symbol* gsym, | 
 | 						  unsigned int got_type, | 
 | 						  uint64_t addend) | 
 | { | 
 |   if (gsym->has_got_offset(got_type, addend)) | 
 |     return false; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false, addend)); | 
 |   gsym->set_got_offset(got_type, got_offset, addend); | 
 |   return true; | 
 | } | 
 |  | 
 | // Like add_global, but use the PLT offset. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | bool | 
 | Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym, | 
 | 						      unsigned int got_type, | 
 | 						      uint64_t addend) | 
 | { | 
 |   if (gsym->has_got_offset(got_type, addend)) | 
 |     return false; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true, addend)); | 
 |   gsym->set_got_offset(got_type, got_offset, addend); | 
 |   return true; | 
 | } | 
 |  | 
 | // Add an entry for a global symbol to the GOT, and add a dynamic | 
 | // relocation of type R_TYPE for the GOT entry. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::add_global_with_rel( | 
 |     Symbol* gsym, | 
 |     unsigned int got_type, | 
 |     Output_data_reloc_generic* rel_dyn, | 
 |     unsigned int r_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (gsym->has_got_offset(got_type, addend)) | 
 |     return; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry()); | 
 |   gsym->set_got_offset(got_type, got_offset, addend); | 
 |   rel_dyn->add_global_generic(gsym, r_type, this, got_offset, addend); | 
 | } | 
 |  | 
 | // Add a pair of entries for a global symbol to the GOT, and add | 
 | // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively. | 
 | // If R_TYPE_2 == 0, add the second entry with no relocation. | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::add_global_pair_with_rel( | 
 |     Symbol* gsym, | 
 |     unsigned int got_type, | 
 |     Output_data_reloc_generic* rel_dyn, | 
 |     unsigned int r_type_1, | 
 |     unsigned int r_type_2, | 
 |     uint64_t addend) | 
 | { | 
 |   if (gsym->has_got_offset(got_type, addend)) | 
 |     return; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry()); | 
 |   gsym->set_got_offset(got_type, got_offset, addend); | 
 |   rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, addend); | 
 |  | 
 |   if (r_type_2 != 0) | 
 |     rel_dyn->add_global_generic(gsym, r_type_2, this, | 
 | 				got_offset + got_size / 8, addend); | 
 | } | 
 |  | 
 | // Add an entry for a local symbol plus ADDEND to the GOT.  This returns | 
 | // true if this is a new GOT entry, false if the symbol already has a GOT | 
 | // entry. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | bool | 
 | Output_data_got<got_size, big_endian>::add_local( | 
 |     Relobj* object, | 
 |     unsigned int symndx, | 
 |     unsigned int got_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (object->local_has_got_offset(symndx, got_type, addend)) | 
 |     return false; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, | 
 | 							  false, addend)); | 
 |   object->set_local_got_offset(symndx, got_type, got_offset, addend); | 
 |   return true; | 
 | } | 
 |  | 
 | // Like add_local, but use the PLT offset. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | bool | 
 | Output_data_got<got_size, big_endian>::add_local_plt( | 
 |     Relobj* object, | 
 |     unsigned int symndx, | 
 |     unsigned int got_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (object->local_has_got_offset(symndx, got_type, addend)) | 
 |     return false; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx, | 
 | 							  true, addend)); | 
 |   object->set_local_got_offset(symndx, got_type, got_offset, addend); | 
 |   return true; | 
 | } | 
 |  | 
 | // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic | 
 | // relocation of type R_TYPE for the GOT entry. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::add_local_with_rel( | 
 |     Relobj* object, | 
 |     unsigned int symndx, | 
 |     unsigned int got_type, | 
 |     Output_data_reloc_generic* rel_dyn, | 
 |     unsigned int r_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (object->local_has_got_offset(symndx, got_type, addend)) | 
 |     return; | 
 |  | 
 |   unsigned int got_offset = this->add_got_entry(Got_entry()); | 
 |   object->set_local_got_offset(symndx, got_type, got_offset, addend); | 
 |   rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, | 
 |                              addend); | 
 | } | 
 |  | 
 | // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add | 
 | // a dynamic relocation of type R_TYPE using the section symbol of | 
 | // the output section to which input section SHNDX maps, on the first. | 
 | // The first got entry will have a value of zero, the second the | 
 | // value of the local symbol. | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::add_local_pair_with_rel( | 
 |     Relobj* object, | 
 |     unsigned int symndx, | 
 |     unsigned int shndx, | 
 |     unsigned int got_type, | 
 |     Output_data_reloc_generic* rel_dyn, | 
 |     unsigned int r_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (object->local_has_got_offset(symndx, got_type, addend)) | 
 |     return; | 
 |  | 
 |   unsigned int got_offset = | 
 |       this->add_got_entry_pair(Got_entry(), | 
 | 			       Got_entry(object, symndx, false, addend)); | 
 |   object->set_local_got_offset(symndx, got_type, got_offset, addend); | 
 |   Output_section* os = object->output_section(shndx); | 
 |   rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend); | 
 | } | 
 |  | 
 | // Add a pair of entries for a local symbol to the GOT, and add | 
 | // a dynamic relocation of type R_TYPE using STN_UNDEF on the first. | 
 | // The first got entry will have a value of zero, the second the | 
 | // value of the local symbol offset by Target::tls_offset_for_local. | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::add_local_tls_pair( | 
 |     Relobj* object, | 
 |     unsigned int symndx, | 
 |     unsigned int got_type, | 
 |     Output_data_reloc_generic* rel_dyn, | 
 |     unsigned int r_type, | 
 |     uint64_t addend) | 
 | { | 
 |   if (object->local_has_got_offset(symndx, got_type, addend)) | 
 |     return; | 
 |  | 
 |   unsigned int got_offset | 
 |     = this->add_got_entry_pair(Got_entry(), | 
 | 			       Got_entry(object, symndx, true, addend)); | 
 |   object->set_local_got_offset(symndx, got_type, got_offset, addend); | 
 |   rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, addend); | 
 | } | 
 |  | 
 | // Reserve a slot in the GOT for a local symbol or the second slot of a pair. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::reserve_local( | 
 |     unsigned int i, | 
 |     Relobj* object, | 
 |     unsigned int sym_index, | 
 |     unsigned int got_type, | 
 |     uint64_t addend) | 
 | { | 
 |   this->do_reserve_slot(i); | 
 |   object->set_local_got_offset(sym_index, got_type, this->got_offset(i), addend); | 
 | } | 
 |  | 
 | // Reserve a slot in the GOT for a global symbol. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::reserve_global( | 
 |     unsigned int i, | 
 |     Symbol* gsym, | 
 |     unsigned int got_type, | 
 |     uint64_t addend) | 
 | { | 
 |   this->do_reserve_slot(i); | 
 |   gsym->set_got_offset(got_type, this->got_offset(i), addend); | 
 | } | 
 |  | 
 | // Write out the GOT. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::do_write(Output_file* of) | 
 | { | 
 |   const int add = got_size / 8; | 
 |  | 
 |   const off_t off = this->offset(); | 
 |   const off_t oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(off, oview_size); | 
 |  | 
 |   unsigned char* pov = oview; | 
 |   for (unsigned int i = 0; i < this->entries_.size(); ++i) | 
 |     { | 
 |       this->entries_[i].write(this, i, pov); | 
 |       pov += add; | 
 |     } | 
 |  | 
 |   gold_assert(pov - oview == oview_size); | 
 |  | 
 |   of->write_output_view(off, oview_size, oview); | 
 |  | 
 |   // We no longer need the GOT entries. | 
 |   this->entries_.clear(); | 
 | } | 
 |  | 
 | // Create a new GOT entry and return its offset. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | unsigned int | 
 | Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry) | 
 | { | 
 |   if (!this->is_data_size_valid()) | 
 |     { | 
 |       this->entries_.push_back(got_entry); | 
 |       this->set_got_size(); | 
 |       return this->last_got_offset(); | 
 |     } | 
 |   else | 
 |     { | 
 |       // For an incremental update, find an available slot. | 
 |       off_t got_offset = this->free_list_.allocate(got_size / 8, | 
 | 						   got_size / 8, 0); | 
 |       if (got_offset == -1) | 
 | 	gold_fallback(_("out of patch space (GOT);" | 
 | 			" relink with --incremental-full")); | 
 |       unsigned int got_index = got_offset / (got_size / 8); | 
 |       gold_assert(got_index < this->entries_.size()); | 
 |       this->entries_[got_index] = got_entry; | 
 |       return static_cast<unsigned int>(got_offset); | 
 |     } | 
 | } | 
 |  | 
 | // Create a pair of new GOT entries and return the offset of the first. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | unsigned int | 
 | Output_data_got<got_size, big_endian>::add_got_entry_pair( | 
 |     Got_entry got_entry_1, | 
 |     Got_entry got_entry_2) | 
 | { | 
 |   if (!this->is_data_size_valid()) | 
 |     { | 
 |       unsigned int got_offset; | 
 |       this->entries_.push_back(got_entry_1); | 
 |       got_offset = this->last_got_offset(); | 
 |       this->entries_.push_back(got_entry_2); | 
 |       this->set_got_size(); | 
 |       return got_offset; | 
 |     } | 
 |   else | 
 |     { | 
 |       // For an incremental update, find an available pair of slots. | 
 |       off_t got_offset = this->free_list_.allocate(2 * got_size / 8, | 
 | 						   got_size / 8, 0); | 
 |       if (got_offset == -1) | 
 | 	gold_fallback(_("out of patch space (GOT);" | 
 | 			" relink with --incremental-full")); | 
 |       unsigned int got_index = got_offset / (got_size / 8); | 
 |       gold_assert(got_index < this->entries_.size()); | 
 |       this->entries_[got_index] = got_entry_1; | 
 |       this->entries_[got_index + 1] = got_entry_2; | 
 |       return static_cast<unsigned int>(got_offset); | 
 |     } | 
 | } | 
 |  | 
 | // Replace GOT entry I with a new value. | 
 |  | 
 | template<int got_size, bool big_endian> | 
 | void | 
 | Output_data_got<got_size, big_endian>::replace_got_entry( | 
 |     unsigned int i, | 
 |     Got_entry got_entry) | 
 | { | 
 |   gold_assert(i < this->entries_.size()); | 
 |   this->entries_[i] = got_entry; | 
 | } | 
 |  | 
 | // Output_data_dynamic::Dynamic_entry methods. | 
 |  | 
 | // Write out the entry. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_data_dynamic::Dynamic_entry::write( | 
 |     unsigned char* pov, | 
 |     const Stringpool* pool) const | 
 | { | 
 |   typename elfcpp::Elf_types<size>::Elf_WXword val; | 
 |   switch (this->offset_) | 
 |     { | 
 |     case DYNAMIC_NUMBER: | 
 |       val = this->u_.val; | 
 |       break; | 
 |  | 
 |     case DYNAMIC_SECTION_SIZE: | 
 |       val = this->u_.od->data_size(); | 
 |       if (this->od2 != NULL) | 
 | 	val += this->od2->data_size(); | 
 |       break; | 
 |  | 
 |     case DYNAMIC_SYMBOL: | 
 |       { | 
 | 	const Sized_symbol<size>* s = | 
 | 	  static_cast<const Sized_symbol<size>*>(this->u_.sym); | 
 | 	val = s->value(); | 
 |       } | 
 |       break; | 
 |  | 
 |     case DYNAMIC_STRING: | 
 |       val = pool->get_offset(this->u_.str); | 
 |       break; | 
 |  | 
 |     case DYNAMIC_CUSTOM: | 
 |       val = parameters->target().dynamic_tag_custom_value(this->tag_); | 
 |       break; | 
 |  | 
 |     default: | 
 |       val = this->u_.od->address() + this->offset_; | 
 |       break; | 
 |     } | 
 |  | 
 |   elfcpp::Dyn_write<size, big_endian> dw(pov); | 
 |   dw.put_d_tag(this->tag_); | 
 |   dw.put_d_val(val); | 
 | } | 
 |  | 
 | // Output_data_dynamic methods. | 
 |  | 
 | // Adjust the output section to set the entry size. | 
 |  | 
 | void | 
 | Output_data_dynamic::do_adjust_output_section(Output_section* os) | 
 | { | 
 |   if (parameters->target().get_size() == 32) | 
 |     os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size); | 
 |   else if (parameters->target().get_size() == 64) | 
 |     os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size); | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Get a dynamic entry offset. | 
 |  | 
 | unsigned int | 
 | Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const | 
 | { | 
 |   int dyn_size; | 
 |  | 
 |   if (parameters->target().get_size() == 32) | 
 |     dyn_size = elfcpp::Elf_sizes<32>::dyn_size; | 
 |   else if (parameters->target().get_size() == 64) | 
 |     dyn_size = elfcpp::Elf_sizes<64>::dyn_size; | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   for (size_t i = 0; i < entries_.size(); ++i) | 
 |     if (entries_[i].tag() == tag) | 
 |       return i * dyn_size; | 
 |  | 
 |   return -1U; | 
 | } | 
 |  | 
 | // Set the final data size. | 
 |  | 
 | void | 
 | Output_data_dynamic::set_final_data_size() | 
 | { | 
 |   // Add the terminating entry if it hasn't been added. | 
 |   // Because of relaxation, we can run this multiple times. | 
 |   if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL) | 
 |     { | 
 |       int extra = parameters->options().spare_dynamic_tags(); | 
 |       for (int i = 0; i < extra; ++i) | 
 | 	this->add_constant(elfcpp::DT_NULL, 0); | 
 |       this->add_constant(elfcpp::DT_NULL, 0); | 
 |     } | 
 |  | 
 |   int dyn_size; | 
 |   if (parameters->target().get_size() == 32) | 
 |     dyn_size = elfcpp::Elf_sizes<32>::dyn_size; | 
 |   else if (parameters->target().get_size() == 64) | 
 |     dyn_size = elfcpp::Elf_sizes<64>::dyn_size; | 
 |   else | 
 |     gold_unreachable(); | 
 |   this->set_data_size(this->entries_.size() * dyn_size); | 
 | } | 
 |  | 
 | // Write out the dynamic entries. | 
 |  | 
 | void | 
 | Output_data_dynamic::do_write(Output_file* of) | 
 | { | 
 |   switch (parameters->size_and_endianness()) | 
 |     { | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 |     case Parameters::TARGET_32_LITTLE: | 
 |       this->sized_write<32, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_32_BIG | 
 |     case Parameters::TARGET_32_BIG: | 
 |       this->sized_write<32, true>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 |     case Parameters::TARGET_64_LITTLE: | 
 |       this->sized_write<64, false>(of); | 
 |       break; | 
 | #endif | 
 | #ifdef HAVE_TARGET_64_BIG | 
 |     case Parameters::TARGET_64_BIG: | 
 |       this->sized_write<64, true>(of); | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_data_dynamic::sized_write(Output_file* of) | 
 | { | 
 |   const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size; | 
 |  | 
 |   const off_t offset = this->offset(); | 
 |   const off_t oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   unsigned char* pov = oview; | 
 |   for (typename Dynamic_entries::const_iterator p = this->entries_.begin(); | 
 |        p != this->entries_.end(); | 
 |        ++p) | 
 |     { | 
 |       p->write<size, big_endian>(pov, this->pool_); | 
 |       pov += dyn_size; | 
 |     } | 
 |  | 
 |   gold_assert(pov - oview == oview_size); | 
 |  | 
 |   of->write_output_view(offset, oview_size, oview); | 
 |  | 
 |   // We no longer need the dynamic entries. | 
 |   this->entries_.clear(); | 
 | } | 
 |  | 
 | // Class Output_symtab_xindex. | 
 |  | 
 | void | 
 | Output_symtab_xindex::do_write(Output_file* of) | 
 | { | 
 |   const off_t offset = this->offset(); | 
 |   const off_t oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   memset(oview, 0, oview_size); | 
 |  | 
 |   if (parameters->target().is_big_endian()) | 
 |     this->endian_do_write<true>(oview); | 
 |   else | 
 |     this->endian_do_write<false>(oview); | 
 |  | 
 |   of->write_output_view(offset, oview_size, oview); | 
 |  | 
 |   // We no longer need the data. | 
 |   this->entries_.clear(); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_symtab_xindex::endian_do_write(unsigned char* const oview) | 
 | { | 
 |   for (Xindex_entries::const_iterator p = this->entries_.begin(); | 
 |        p != this->entries_.end(); | 
 |        ++p) | 
 |     { | 
 |       unsigned int symndx = p->first; | 
 |       gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size()); | 
 |       elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second); | 
 |     } | 
 | } | 
 |  | 
 | // Output_fill_debug_info methods. | 
 |  | 
 | // Return the minimum size needed for a dummy compilation unit header. | 
 |  | 
 | size_t | 
 | Output_fill_debug_info::do_minimum_hole_size() const | 
 | { | 
 |   // Compile unit header fields: unit_length, version, debug_abbrev_offset, | 
 |   // address_size. | 
 |   const size_t len = 4 + 2 + 4 + 1; | 
 |   // For type units, add type_signature, type_offset. | 
 |   if (this->is_debug_types_) | 
 |     return len + 8 + 4; | 
 |   return len; | 
 | } | 
 |  | 
 | // Write a dummy compilation unit header to fill a hole in the | 
 | // .debug_info or .debug_types section. | 
 |  | 
 | void | 
 | Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const | 
 | { | 
 |   gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)", | 
 | 	     static_cast<long>(off), static_cast<long>(len)); | 
 |  | 
 |   gold_assert(len >= this->do_minimum_hole_size()); | 
 |  | 
 |   unsigned char* const oview = of->get_output_view(off, len); | 
 |   unsigned char* pov = oview; | 
 |  | 
 |   // Write header fields: unit_length, version, debug_abbrev_offset, | 
 |   // address_size. | 
 |   if (this->is_big_endian()) | 
 |     { | 
 |       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); | 
 |       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); | 
 |       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0); | 
 |     } | 
 |   else | 
 |     { | 
 |       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); | 
 |       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); | 
 |       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0); | 
 |     } | 
 |   pov += 4 + 2 + 4; | 
 |   *pov++ = 4; | 
 |  | 
 |   // For type units, the additional header fields -- type_signature, | 
 |   // type_offset -- can be filled with zeroes. | 
 |  | 
 |   // Fill the remainder of the free space with zeroes.  The first | 
 |   // zero should tell the consumer there are no DIEs to read in this | 
 |   // compilation unit. | 
 |   if (pov < oview + len) | 
 |     memset(pov, 0, oview + len - pov); | 
 |  | 
 |   of->write_output_view(off, len, oview); | 
 | } | 
 |  | 
 | // Output_fill_debug_line methods. | 
 |  | 
 | // Return the minimum size needed for a dummy line number program header. | 
 |  | 
 | size_t | 
 | Output_fill_debug_line::do_minimum_hole_size() const | 
 | { | 
 |   // Line number program header fields: unit_length, version, header_length, | 
 |   // minimum_instruction_length, default_is_stmt, line_base, line_range, | 
 |   // opcode_base, standard_opcode_lengths[], include_directories, filenames. | 
 |   const size_t len = 4 + 2 + 4 + this->header_length; | 
 |   return len; | 
 | } | 
 |  | 
 | // Write a dummy line number program header to fill a hole in the | 
 | // .debug_line section. | 
 |  | 
 | void | 
 | Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const | 
 | { | 
 |   gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)", | 
 | 	     static_cast<long>(off), static_cast<long>(len)); | 
 |  | 
 |   gold_assert(len >= this->do_minimum_hole_size()); | 
 |  | 
 |   unsigned char* const oview = of->get_output_view(off, len); | 
 |   unsigned char* pov = oview; | 
 |  | 
 |   // Write header fields: unit_length, version, header_length, | 
 |   // minimum_instruction_length, default_is_stmt, line_base, line_range, | 
 |   // opcode_base, standard_opcode_lengths[], include_directories, filenames. | 
 |   // We set the header_length field to cover the entire hole, so the | 
 |   // line number program is empty. | 
 |   if (this->is_big_endian()) | 
 |     { | 
 |       elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4); | 
 |       elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version); | 
 |       elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4)); | 
 |     } | 
 |   else | 
 |     { | 
 |       elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4); | 
 |       elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version); | 
 |       elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4)); | 
 |     } | 
 |   pov += 4 + 2 + 4; | 
 |   *pov++ = 1;	// minimum_instruction_length | 
 |   *pov++ = 0;	// default_is_stmt | 
 |   *pov++ = 0;	// line_base | 
 |   *pov++ = 5;	// line_range | 
 |   *pov++ = 13;	// opcode_base | 
 |   *pov++ = 0;	// standard_opcode_lengths[1] | 
 |   *pov++ = 1;	// standard_opcode_lengths[2] | 
 |   *pov++ = 1;	// standard_opcode_lengths[3] | 
 |   *pov++ = 1;	// standard_opcode_lengths[4] | 
 |   *pov++ = 1;	// standard_opcode_lengths[5] | 
 |   *pov++ = 0;	// standard_opcode_lengths[6] | 
 |   *pov++ = 0;	// standard_opcode_lengths[7] | 
 |   *pov++ = 0;	// standard_opcode_lengths[8] | 
 |   *pov++ = 1;	// standard_opcode_lengths[9] | 
 |   *pov++ = 0;	// standard_opcode_lengths[10] | 
 |   *pov++ = 0;	// standard_opcode_lengths[11] | 
 |   *pov++ = 1;	// standard_opcode_lengths[12] | 
 |   *pov++ = 0;	// include_directories (empty) | 
 |   *pov++ = 0;	// filenames (empty) | 
 |  | 
 |   // Some consumers don't check the header_length field, and simply | 
 |   // start reading the line number program immediately following the | 
 |   // header.  For those consumers, we fill the remainder of the free | 
 |   // space with DW_LNS_set_basic_block opcodes.  These are effectively | 
 |   // no-ops: the resulting line table program will not create any rows. | 
 |   if (pov < oview + len) | 
 |     memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov); | 
 |  | 
 |   of->write_output_view(off, len, oview); | 
 | } | 
 |  | 
 | // Output_section::Input_section methods. | 
 |  | 
 | // Return the current data size.  For an input section we store the size here. | 
 | // For an Output_section_data, we have to ask it for the size. | 
 |  | 
 | off_t | 
 | Output_section::Input_section::current_data_size() const | 
 | { | 
 |   if (this->is_input_section()) | 
 |     return this->u1_.data_size; | 
 |   else | 
 |     { | 
 |       this->u2_.posd->pre_finalize_data_size(); | 
 |       return this->u2_.posd->current_data_size(); | 
 |     } | 
 | } | 
 |  | 
 | // Return the data size.  For an input section we store the size here. | 
 | // For an Output_section_data, we have to ask it for the size. | 
 |  | 
 | off_t | 
 | Output_section::Input_section::data_size() const | 
 | { | 
 |   if (this->is_input_section()) | 
 |     return this->u1_.data_size; | 
 |   else | 
 |     return this->u2_.posd->data_size(); | 
 | } | 
 |  | 
 | // Return the object for an input section. | 
 |  | 
 | Relobj* | 
 | Output_section::Input_section::relobj() const | 
 | { | 
 |   if (this->is_input_section()) | 
 |     return this->u2_.object; | 
 |   else if (this->is_merge_section()) | 
 |     { | 
 |       gold_assert(this->u2_.pomb->first_relobj() != NULL); | 
 |       return this->u2_.pomb->first_relobj(); | 
 |     } | 
 |   else if (this->is_relaxed_input_section()) | 
 |     return this->u2_.poris->relobj(); | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Return the input section index for an input section. | 
 |  | 
 | unsigned int | 
 | Output_section::Input_section::shndx() const | 
 | { | 
 |   if (this->is_input_section()) | 
 |     return this->shndx_; | 
 |   else if (this->is_merge_section()) | 
 |     { | 
 |       gold_assert(this->u2_.pomb->first_relobj() != NULL); | 
 |       return this->u2_.pomb->first_shndx(); | 
 |     } | 
 |   else if (this->is_relaxed_input_section()) | 
 |     return this->u2_.poris->shndx(); | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Set the address and file offset. | 
 |  | 
 | void | 
 | Output_section::Input_section::set_address_and_file_offset( | 
 |     uint64_t address, | 
 |     off_t file_offset, | 
 |     off_t section_file_offset) | 
 | { | 
 |   if (this->is_input_section()) | 
 |     this->u2_.object->set_section_offset(this->shndx_, | 
 | 					 file_offset - section_file_offset); | 
 |   else | 
 |     this->u2_.posd->set_address_and_file_offset(address, file_offset); | 
 | } | 
 |  | 
 | // Reset the address and file offset. | 
 |  | 
 | void | 
 | Output_section::Input_section::reset_address_and_file_offset() | 
 | { | 
 |   if (!this->is_input_section()) | 
 |     this->u2_.posd->reset_address_and_file_offset(); | 
 | } | 
 |  | 
 | // Finalize the data size. | 
 |  | 
 | void | 
 | Output_section::Input_section::finalize_data_size() | 
 | { | 
 |   if (!this->is_input_section()) | 
 |     this->u2_.posd->finalize_data_size(); | 
 | } | 
 |  | 
 | // Try to turn an input offset into an output offset.  We want to | 
 | // return the output offset relative to the start of this | 
 | // Input_section in the output section. | 
 |  | 
 | inline bool | 
 | Output_section::Input_section::output_offset( | 
 |     const Relobj* object, | 
 |     unsigned int shndx, | 
 |     section_offset_type offset, | 
 |     section_offset_type* poutput) const | 
 | { | 
 |   if (!this->is_input_section()) | 
 |     return this->u2_.posd->output_offset(object, shndx, offset, poutput); | 
 |   else | 
 |     { | 
 |       if (this->shndx_ != shndx || this->u2_.object != object) | 
 | 	return false; | 
 |       *poutput = offset; | 
 |       return true; | 
 |     } | 
 | } | 
 |  | 
 | // Write out the data.  We don't have to do anything for an input | 
 | // section--they are handled via Object::relocate--but this is where | 
 | // we write out the data for an Output_section_data. | 
 |  | 
 | void | 
 | Output_section::Input_section::write(Output_file* of) | 
 | { | 
 |   if (!this->is_input_section()) | 
 |     this->u2_.posd->write(of); | 
 | } | 
 |  | 
 | // Write the data to a buffer.  As for write(), we don't have to do | 
 | // anything for an input section. | 
 |  | 
 | void | 
 | Output_section::Input_section::write_to_buffer(unsigned char* buffer) | 
 | { | 
 |   if (!this->is_input_section()) | 
 |     this->u2_.posd->write_to_buffer(buffer); | 
 | } | 
 |  | 
 | // Print to a map file. | 
 |  | 
 | void | 
 | Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const | 
 | { | 
 |   switch (this->shndx_) | 
 |     { | 
 |     case OUTPUT_SECTION_CODE: | 
 |     case MERGE_DATA_SECTION_CODE: | 
 |     case MERGE_STRING_SECTION_CODE: | 
 |       this->u2_.posd->print_to_mapfile(mapfile); | 
 |       break; | 
 |  | 
 |     case RELAXED_INPUT_SECTION_CODE: | 
 |       { | 
 | 	Output_relaxed_input_section* relaxed_section = | 
 | 	  this->relaxed_input_section(); | 
 | 	mapfile->print_input_section(relaxed_section->relobj(), | 
 | 				     relaxed_section->shndx()); | 
 |       } | 
 |       break; | 
 |     default: | 
 |       mapfile->print_input_section(this->u2_.object, this->shndx_); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | // Output_section methods. | 
 |  | 
 | // Construct an Output_section.  NAME will point into a Stringpool. | 
 |  | 
 | Output_section::Output_section(const char* name, elfcpp::Elf_Word type, | 
 | 			       elfcpp::Elf_Xword flags) | 
 |   : name_(name), | 
 |     addralign_(0), | 
 |     entsize_(0), | 
 |     load_address_(0), | 
 |     link_section_(NULL), | 
 |     link_(0), | 
 |     info_section_(NULL), | 
 |     info_symndx_(NULL), | 
 |     info_(0), | 
 |     type_(type), | 
 |     flags_(flags), | 
 |     order_(ORDER_INVALID), | 
 |     out_shndx_(-1U), | 
 |     symtab_index_(0), | 
 |     dynsym_index_(0), | 
 |     input_sections_(), | 
 |     first_input_offset_(0), | 
 |     fills_(), | 
 |     postprocessing_buffer_(NULL), | 
 |     needs_symtab_index_(false), | 
 |     needs_dynsym_index_(false), | 
 |     should_link_to_symtab_(false), | 
 |     should_link_to_dynsym_(false), | 
 |     after_input_sections_(false), | 
 |     requires_postprocessing_(false), | 
 |     found_in_sections_clause_(false), | 
 |     has_load_address_(false), | 
 |     info_uses_section_index_(false), | 
 |     input_section_order_specified_(false), | 
 |     may_sort_attached_input_sections_(false), | 
 |     must_sort_attached_input_sections_(false), | 
 |     attached_input_sections_are_sorted_(false), | 
 |     is_relro_(false), | 
 |     is_small_section_(false), | 
 |     is_large_section_(false), | 
 |     generate_code_fills_at_write_(false), | 
 |     is_entsize_zero_(false), | 
 |     section_offsets_need_adjustment_(false), | 
 |     is_noload_(false), | 
 |     always_keeps_input_sections_(false), | 
 |     has_fixed_layout_(false), | 
 |     is_patch_space_allowed_(false), | 
 |     is_unique_segment_(false), | 
 |     tls_offset_(0), | 
 |     extra_segment_flags_(0), | 
 |     segment_alignment_(0), | 
 |     checkpoint_(NULL), | 
 |     lookup_maps_(new Output_section_lookup_maps), | 
 |     free_list_(), | 
 |     free_space_fill_(NULL), | 
 |     patch_space_(0), | 
 |     reloc_section_(NULL) | 
 | { | 
 |   // An unallocated section has no address.  Forcing this means that | 
 |   // we don't need special treatment for symbols defined in debug | 
 |   // sections. | 
 |   if ((flags & elfcpp::SHF_ALLOC) == 0) | 
 |     this->set_address(0); | 
 | } | 
 |  | 
 | Output_section::~Output_section() | 
 | { | 
 |   delete this->checkpoint_; | 
 | } | 
 |  | 
 | // Set the entry size. | 
 |  | 
 | void | 
 | Output_section::set_entsize(uint64_t v) | 
 | { | 
 |   if (this->is_entsize_zero_) | 
 |     ; | 
 |   else if (this->entsize_ == 0) | 
 |     this->entsize_ = v; | 
 |   else if (this->entsize_ != v) | 
 |     { | 
 |       this->entsize_ = 0; | 
 |       this->is_entsize_zero_ = 1; | 
 |     } | 
 | } | 
 |  | 
 | // Add the input section SHNDX, with header SHDR, named SECNAME, in | 
 | // OBJECT, to the Output_section.  RELOC_SHNDX is the index of a | 
 | // relocation section which applies to this section, or 0 if none, or | 
 | // -1U if more than one.  Return the offset of the input section | 
 | // within the output section.  Return -1 if the input section will | 
 | // receive special handling.  In the normal case we don't always keep | 
 | // track of input sections for an Output_section.  Instead, each | 
 | // Object keeps track of the Output_section for each of its input | 
 | // sections.  However, if HAVE_SECTIONS_SCRIPT is true, we do keep | 
 | // track of input sections here; this is used when SECTIONS appears in | 
 | // a linker script. | 
 |  | 
 | template<int size, bool big_endian> | 
 | off_t | 
 | Output_section::add_input_section(Layout* layout, | 
 | 				  Sized_relobj_file<size, big_endian>* object, | 
 | 				  unsigned int shndx, | 
 | 				  const char* secname, | 
 | 				  const elfcpp::Shdr<size, big_endian>& shdr, | 
 | 				  unsigned int reloc_shndx, | 
 | 				  bool have_sections_script) | 
 | { | 
 |   section_size_type input_section_size = shdr.get_sh_size(); | 
 |   section_size_type uncompressed_size; | 
 |   elfcpp::Elf_Xword addralign = shdr.get_sh_addralign(); | 
 |   if (object->section_is_compressed(shndx, &uncompressed_size, | 
 | 				    &addralign)) | 
 |     input_section_size = uncompressed_size; | 
 |  | 
 |   if ((addralign & (addralign - 1)) != 0) | 
 |     { | 
 |       object->error(_("invalid alignment %lu for section \"%s\""), | 
 | 		    static_cast<unsigned long>(addralign), secname); | 
 |       addralign = 1; | 
 |     } | 
 |  | 
 |   if (addralign > this->addralign_) | 
 |     this->addralign_ = addralign; | 
 |  | 
 |   typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags(); | 
 |   uint64_t entsize = shdr.get_sh_entsize(); | 
 |  | 
 |   // .debug_str is a mergeable string section, but is not always so | 
 |   // marked by compilers.  Mark manually here so we can optimize. | 
 |   if (strcmp(secname, ".debug_str") == 0) | 
 |     { | 
 |       sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS); | 
 |       entsize = 1; | 
 |     } | 
 |  | 
 |   this->update_flags_for_input_section(sh_flags); | 
 |   this->set_entsize(entsize); | 
 |  | 
 |   // If this is a SHF_MERGE section, we pass all the input sections to | 
 |   // a Output_data_merge.  We don't try to handle relocations for such | 
 |   // a section.  We don't try to handle empty merge sections--they | 
 |   // mess up the mappings, and are useless anyhow. | 
 |   // FIXME: Need to handle merge sections during incremental update. | 
 |   if ((sh_flags & elfcpp::SHF_MERGE) != 0 | 
 |       && reloc_shndx == 0 | 
 |       && shdr.get_sh_size() > 0 | 
 |       && !parameters->incremental()) | 
 |     { | 
 |       // Keep information about merged input sections for rebuilding fast | 
 |       // lookup maps if we have sections-script or we do relaxation. | 
 |       bool keeps_input_sections = (this->always_keeps_input_sections_ | 
 | 				   || have_sections_script | 
 | 				   || parameters->target().may_relax()); | 
 |  | 
 |       if (this->add_merge_input_section(object, shndx, sh_flags, entsize, | 
 | 					addralign, keeps_input_sections)) | 
 | 	{ | 
 | 	  // Tell the relocation routines that they need to call the | 
 | 	  // output_offset method to determine the final address. | 
 | 	  return -1; | 
 | 	} | 
 |     } | 
 |  | 
 |   off_t offset_in_section; | 
 |  | 
 |   if (this->has_fixed_layout()) | 
 |     { | 
 |       // For incremental updates, find a chunk of unused space in the section. | 
 |       offset_in_section = this->free_list_.allocate(input_section_size, | 
 | 						    addralign, 0); | 
 |       if (offset_in_section == -1) | 
 | 	gold_fallback(_("out of patch space in section %s; " | 
 | 			"relink with --incremental-full"), | 
 | 		      this->name()); | 
 |       return offset_in_section; | 
 |     } | 
 |  | 
 |   offset_in_section = this->current_data_size_for_child(); | 
 |   off_t aligned_offset_in_section = align_address(offset_in_section, | 
 | 						  addralign); | 
 |   this->set_current_data_size_for_child(aligned_offset_in_section | 
 | 					+ input_section_size); | 
 |  | 
 |   // Determine if we want to delay code-fill generation until the output | 
 |   // section is written.  When the target is relaxing, we want to delay fill | 
 |   // generating to avoid adjusting them during relaxation.  Also, if we are | 
 |   // sorting input sections we must delay fill generation. | 
 |   if (!this->generate_code_fills_at_write_ | 
 |       && !have_sections_script | 
 |       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 | 
 |       && parameters->target().has_code_fill() | 
 |       && (parameters->target().may_relax() | 
 | 	  || layout->is_section_ordering_specified())) | 
 |     { | 
 |       gold_assert(this->fills_.empty()); | 
 |       this->generate_code_fills_at_write_ = true; | 
 |     } | 
 |  | 
 |   if (aligned_offset_in_section > offset_in_section | 
 |       && !this->generate_code_fills_at_write_ | 
 |       && !have_sections_script | 
 |       && (sh_flags & elfcpp::SHF_EXECINSTR) != 0 | 
 |       && parameters->target().has_code_fill()) | 
 |     { | 
 |       // We need to add some fill data.  Using fill_list_ when | 
 |       // possible is an optimization, since we will often have fill | 
 |       // sections without input sections. | 
 |       off_t fill_len = aligned_offset_in_section - offset_in_section; | 
 |       if (this->input_sections_.empty()) | 
 | 	this->fills_.push_back(Fill(offset_in_section, fill_len)); | 
 |       else | 
 | 	{ | 
 | 	  std::string fill_data(parameters->target().code_fill(fill_len)); | 
 | 	  Output_data_const* odc = new Output_data_const(fill_data, 1); | 
 | 	  this->input_sections_.push_back(Input_section(odc)); | 
 | 	} | 
 |     } | 
 |  | 
 |   // We need to keep track of this section if we are already keeping | 
 |   // track of sections, or if we are relaxing.  Also, if this is a | 
 |   // section which requires sorting, or which may require sorting in | 
 |   // the future, we keep track of the sections.  If the | 
 |   // --section-ordering-file option is used to specify the order of | 
 |   // sections, we need to keep track of sections. | 
 |   if (this->always_keeps_input_sections_ | 
 |       || have_sections_script | 
 |       || !this->input_sections_.empty() | 
 |       || this->may_sort_attached_input_sections() | 
 |       || this->must_sort_attached_input_sections() | 
 |       || parameters->options().user_set_Map() | 
 |       || parameters->target().may_relax() | 
 |       || layout->is_section_ordering_specified()) | 
 |     { | 
 |       Input_section isecn(object, shndx, input_section_size, addralign); | 
 |       /* If section ordering is requested by specifying a ordering file, | 
 | 	 using --section-ordering-file, match the section name with | 
 | 	 a pattern.  */ | 
 |       if (parameters->options().section_ordering_file()) | 
 | 	{ | 
 | 	  unsigned int section_order_index = | 
 | 	    layout->find_section_order_index(std::string(secname)); | 
 | 	  if (section_order_index != 0) | 
 | 	    { | 
 | 	      isecn.set_section_order_index(section_order_index); | 
 | 	      this->set_input_section_order_specified(); | 
 | 	    } | 
 | 	} | 
 |       this->input_sections_.push_back(isecn); | 
 |     } | 
 |  | 
 |   return aligned_offset_in_section; | 
 | } | 
 |  | 
 | // Add arbitrary data to an output section. | 
 |  | 
 | void | 
 | Output_section::add_output_section_data(Output_section_data* posd) | 
 | { | 
 |   Input_section inp(posd); | 
 |   this->add_output_section_data(&inp); | 
 |  | 
 |   if (posd->is_data_size_valid()) | 
 |     { | 
 |       off_t offset_in_section; | 
 |       if (this->has_fixed_layout()) | 
 | 	{ | 
 | 	  // For incremental updates, find a chunk of unused space. | 
 | 	  offset_in_section = this->free_list_.allocate(posd->data_size(), | 
 | 							posd->addralign(), 0); | 
 | 	  if (offset_in_section == -1) | 
 | 	    gold_fallback(_("out of patch space in section %s; " | 
 | 			    "relink with --incremental-full"), | 
 | 			  this->name()); | 
 | 	  // Finalize the address and offset now. | 
 | 	  uint64_t addr = this->address(); | 
 | 	  off_t offset = this->offset(); | 
 | 	  posd->set_address_and_file_offset(addr + offset_in_section, | 
 | 					    offset + offset_in_section); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  offset_in_section = this->current_data_size_for_child(); | 
 | 	  off_t aligned_offset_in_section = align_address(offset_in_section, | 
 | 							  posd->addralign()); | 
 | 	  this->set_current_data_size_for_child(aligned_offset_in_section | 
 | 						+ posd->data_size()); | 
 | 	} | 
 |     } | 
 |   else if (this->has_fixed_layout()) | 
 |     { | 
 |       // For incremental updates, arrange for the data to have a fixed layout. | 
 |       // This will mean that additions to the data must be allocated from | 
 |       // free space within the containing output section. | 
 |       uint64_t addr = this->address(); | 
 |       posd->set_address(addr); | 
 |       posd->set_file_offset(0); | 
 |       // FIXME: This should eventually be unreachable. | 
 |       // gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Add a relaxed input section. | 
 |  | 
 | void | 
 | Output_section::add_relaxed_input_section(Layout* layout, | 
 | 					  Output_relaxed_input_section* poris, | 
 | 					  const std::string& name) | 
 | { | 
 |   Input_section inp(poris); | 
 |  | 
 |   // If the --section-ordering-file option is used to specify the order of | 
 |   // sections, we need to keep track of sections. | 
 |   if (layout->is_section_ordering_specified()) | 
 |     { | 
 |       unsigned int section_order_index = | 
 | 	layout->find_section_order_index(name); | 
 |       if (section_order_index != 0) | 
 | 	{ | 
 | 	  inp.set_section_order_index(section_order_index); | 
 | 	  this->set_input_section_order_specified(); | 
 | 	} | 
 |     } | 
 |  | 
 |   this->add_output_section_data(&inp); | 
 |   if (this->lookup_maps_->is_valid()) | 
 |     this->lookup_maps_->add_relaxed_input_section(poris->relobj(), | 
 | 						  poris->shndx(), poris); | 
 |  | 
 |   // For a relaxed section, we use the current data size.  Linker scripts | 
 |   // get all the input sections, including relaxed one from an output | 
 |   // section and add them back to the same output section to compute the | 
 |   // output section size.  If we do not account for sizes of relaxed input | 
 |   // sections, an output section would be incorrectly sized. | 
 |   off_t offset_in_section = this->current_data_size_for_child(); | 
 |   off_t aligned_offset_in_section = align_address(offset_in_section, | 
 | 						  poris->addralign()); | 
 |   this->set_current_data_size_for_child(aligned_offset_in_section | 
 | 					+ poris->current_data_size()); | 
 | } | 
 |  | 
 | // Add arbitrary data to an output section by Input_section. | 
 |  | 
 | void | 
 | Output_section::add_output_section_data(Input_section* inp) | 
 | { | 
 |   if (this->input_sections_.empty()) | 
 |     this->first_input_offset_ = this->current_data_size_for_child(); | 
 |  | 
 |   this->input_sections_.push_back(*inp); | 
 |  | 
 |   uint64_t addralign = inp->addralign(); | 
 |   if (addralign > this->addralign_) | 
 |     this->addralign_ = addralign; | 
 |  | 
 |   inp->set_output_section(this); | 
 | } | 
 |  | 
 | // Add a merge section to an output section. | 
 |  | 
 | void | 
 | Output_section::add_output_merge_section(Output_section_data* posd, | 
 | 					 bool is_string, uint64_t entsize) | 
 | { | 
 |   Input_section inp(posd, is_string, entsize); | 
 |   this->add_output_section_data(&inp); | 
 | } | 
 |  | 
 | // Add an input section to a SHF_MERGE section. | 
 |  | 
 | bool | 
 | Output_section::add_merge_input_section(Relobj* object, unsigned int shndx, | 
 | 					uint64_t flags, uint64_t entsize, | 
 | 					uint64_t addralign, | 
 | 					bool keeps_input_sections) | 
 | { | 
 |   // We cannot merge sections with entsize == 0. | 
 |   if (entsize == 0) | 
 |     return false; | 
 |  | 
 |   bool is_string = (flags & elfcpp::SHF_STRINGS) != 0; | 
 |  | 
 |   // We cannot restore merged input section states. | 
 |   gold_assert(this->checkpoint_ == NULL); | 
 |  | 
 |   // Look up merge sections by required properties. | 
 |   // Currently, we only invalidate the lookup maps in script processing | 
 |   // and relaxation.  We should not have done either when we reach here. | 
 |   // So we assume that the lookup maps are valid to simply code. | 
 |   gold_assert(this->lookup_maps_->is_valid()); | 
 |   Merge_section_properties msp(is_string, entsize, addralign); | 
 |   Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp); | 
 |   bool is_new = false; | 
 |   if (pomb != NULL) | 
 |     { | 
 |       gold_assert(pomb->is_string() == is_string | 
 | 		  && pomb->entsize() == entsize | 
 | 		  && pomb->addralign() == addralign); | 
 |     } | 
 |   else | 
 |     { | 
 |       // Create a new Output_merge_data or Output_merge_string_data. | 
 |       if (!is_string) | 
 | 	pomb = new Output_merge_data(entsize, addralign); | 
 |       else | 
 | 	{ | 
 | 	  switch (entsize) | 
 | 	    { | 
 | 	    case 1: | 
 | 	      pomb = new Output_merge_string<char>(addralign); | 
 | 	      break; | 
 | 	    case 2: | 
 | 	      pomb = new Output_merge_string<uint16_t>(addralign); | 
 | 	      break; | 
 | 	    case 4: | 
 | 	      pomb = new Output_merge_string<uint32_t>(addralign); | 
 | 	      break; | 
 | 	    default: | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |       // If we need to do script processing or relaxation, we need to keep | 
 |       // the original input sections to rebuild the fast lookup maps. | 
 |       if (keeps_input_sections) | 
 | 	pomb->set_keeps_input_sections(); | 
 |       is_new = true; | 
 |     } | 
 |  | 
 |   if (pomb->add_input_section(object, shndx)) | 
 |     { | 
 |       // Add new merge section to this output section and link merge | 
 |       // section properties to new merge section in map. | 
 |       if (is_new) | 
 | 	{ | 
 | 	  this->add_output_merge_section(pomb, is_string, entsize); | 
 | 	  this->lookup_maps_->add_merge_section(msp, pomb); | 
 | 	} | 
 |  | 
 |       return true; | 
 |     } | 
 |   else | 
 |     { | 
 |       // If add_input_section failed, delete new merge section to avoid | 
 |       // exporting empty merge sections in Output_section::get_input_section. | 
 |       if (is_new) | 
 | 	delete pomb; | 
 |       return false; | 
 |     } | 
 | } | 
 |  | 
 | // Build a relaxation map to speed up relaxation of existing input sections. | 
 | // Look up to the first LIMIT elements in INPUT_SECTIONS. | 
 |  | 
 | void | 
 | Output_section::build_relaxation_map( | 
 |   const Input_section_list& input_sections, | 
 |   size_t limit, | 
 |   Relaxation_map* relaxation_map) const | 
 | { | 
 |   for (size_t i = 0; i < limit; ++i) | 
 |     { | 
 |       const Input_section& is(input_sections[i]); | 
 |       if (is.is_input_section() || is.is_relaxed_input_section()) | 
 | 	{ | 
 | 	  Section_id sid(is.relobj(), is.shndx()); | 
 | 	  (*relaxation_map)[sid] = i; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Convert regular input sections in INPUT_SECTIONS into relaxed input | 
 | // sections in RELAXED_SECTIONS.  MAP is a prebuilt map from section id | 
 | // indices of INPUT_SECTIONS. | 
 |  | 
 | void | 
 | Output_section::convert_input_sections_in_list_to_relaxed_sections( | 
 |   const std::vector<Output_relaxed_input_section*>& relaxed_sections, | 
 |   const Relaxation_map& map, | 
 |   Input_section_list* input_sections) | 
 | { | 
 |   for (size_t i = 0; i < relaxed_sections.size(); ++i) | 
 |     { | 
 |       Output_relaxed_input_section* poris = relaxed_sections[i]; | 
 |       Section_id sid(poris->relobj(), poris->shndx()); | 
 |       Relaxation_map::const_iterator p = map.find(sid); | 
 |       gold_assert(p != map.end()); | 
 |       gold_assert((*input_sections)[p->second].is_input_section()); | 
 |  | 
 |       // Remember section order index of original input section | 
 |       // if it is set.  Copy it to the relaxed input section. | 
 |       unsigned int soi = | 
 | 	(*input_sections)[p->second].section_order_index(); | 
 |       (*input_sections)[p->second] = Input_section(poris); | 
 |       (*input_sections)[p->second].set_section_order_index(soi); | 
 |     } | 
 | } | 
 |  | 
 | // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS | 
 | // is a vector of pointers to Output_relaxed_input_section or its derived | 
 | // classes.  The relaxed sections must correspond to existing input sections. | 
 |  | 
 | void | 
 | Output_section::convert_input_sections_to_relaxed_sections( | 
 |   const std::vector<Output_relaxed_input_section*>& relaxed_sections) | 
 | { | 
 |   gold_assert(parameters->target().may_relax()); | 
 |  | 
 |   // We want to make sure that restore_states does not undo the effect of | 
 |   // this.  If there is no checkpoint active, just search the current | 
 |   // input section list and replace the sections there.  If there is | 
 |   // a checkpoint, also replace the sections there. | 
 |  | 
 |   // By default, we look at the whole list. | 
 |   size_t limit = this->input_sections_.size(); | 
 |  | 
 |   if (this->checkpoint_ != NULL) | 
 |     { | 
 |       // Replace input sections with relaxed input section in the saved | 
 |       // copy of the input section list. | 
 |       if (this->checkpoint_->input_sections_saved()) | 
 | 	{ | 
 | 	  Relaxation_map map; | 
 | 	  this->build_relaxation_map( | 
 | 		    *(this->checkpoint_->input_sections()), | 
 | 		    this->checkpoint_->input_sections()->size(), | 
 | 		    &map); | 
 | 	  this->convert_input_sections_in_list_to_relaxed_sections( | 
 | 		    relaxed_sections, | 
 | 		    map, | 
 | 		    this->checkpoint_->input_sections()); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // We have not copied the input section list yet.  Instead, just | 
 | 	  // look at the portion that would be saved. | 
 | 	  limit = this->checkpoint_->input_sections_size(); | 
 | 	} | 
 |     } | 
 |  | 
 |   // Convert input sections in input_section_list. | 
 |   Relaxation_map map; | 
 |   this->build_relaxation_map(this->input_sections_, limit, &map); | 
 |   this->convert_input_sections_in_list_to_relaxed_sections( | 
 | 	    relaxed_sections, | 
 | 	    map, | 
 | 	    &this->input_sections_); | 
 |  | 
 |   // Update fast look-up map. | 
 |   if (this->lookup_maps_->is_valid()) | 
 |     for (size_t i = 0; i < relaxed_sections.size(); ++i) | 
 |       { | 
 | 	Output_relaxed_input_section* poris = relaxed_sections[i]; | 
 | 	this->lookup_maps_->add_relaxed_input_section(poris->relobj(), | 
 | 						      poris->shndx(), poris); | 
 |       } | 
 | } | 
 |  | 
 | // Update the output section flags based on input section flags. | 
 |  | 
 | void | 
 | Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags) | 
 | { | 
 |   // If we created the section with SHF_ALLOC clear, we set the | 
 |   // address.  If we are now setting the SHF_ALLOC flag, we need to | 
 |   // undo that. | 
 |   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0 | 
 |       && (flags & elfcpp::SHF_ALLOC) != 0) | 
 |     this->mark_address_invalid(); | 
 |  | 
 |   this->flags_ |= (flags | 
 | 		   & (elfcpp::SHF_WRITE | 
 | 		      | elfcpp::SHF_ALLOC | 
 | 		      | elfcpp::SHF_EXECINSTR)); | 
 |  | 
 |   if ((flags & elfcpp::SHF_MERGE) == 0) | 
 |     this->flags_ &=~ elfcpp::SHF_MERGE; | 
 |   else | 
 |     { | 
 |       if (this->current_data_size_for_child() == 0) | 
 | 	this->flags_ |= elfcpp::SHF_MERGE; | 
 |     } | 
 |  | 
 |   if ((flags & elfcpp::SHF_STRINGS) == 0) | 
 |     this->flags_ &=~ elfcpp::SHF_STRINGS; | 
 |   else | 
 |     { | 
 |       if (this->current_data_size_for_child() == 0) | 
 | 	this->flags_ |= elfcpp::SHF_STRINGS; | 
 |     } | 
 | } | 
 |  | 
 | // Find the merge section into which an input section with index SHNDX in | 
 | // OBJECT has been added.  Return NULL if none found. | 
 |  | 
 | const Output_section_data* | 
 | Output_section::find_merge_section(const Relobj* object, | 
 | 				   unsigned int shndx) const | 
 | { | 
 |   return object->find_merge_section(shndx); | 
 | } | 
 |  | 
 | // Build the lookup maps for relaxed sections.  This needs | 
 | // to be declared as a const method so that it is callable with a const | 
 | // Output_section pointer.  The method only updates states of the maps. | 
 |  | 
 | void | 
 | Output_section::build_lookup_maps() const | 
 | { | 
 |   this->lookup_maps_->clear(); | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (p->is_relaxed_input_section()) | 
 | 	{ | 
 | 	  Output_relaxed_input_section* poris = p->relaxed_input_section(); | 
 | 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(), | 
 | 							poris->shndx(), poris); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Find an relaxed input section corresponding to an input section | 
 | // in OBJECT with index SHNDX. | 
 |  | 
 | const Output_relaxed_input_section* | 
 | Output_section::find_relaxed_input_section(const Relobj* object, | 
 | 					   unsigned int shndx) const | 
 | { | 
 |   if (!this->lookup_maps_->is_valid()) | 
 |     this->build_lookup_maps(); | 
 |   return this->lookup_maps_->find_relaxed_input_section(object, shndx); | 
 | } | 
 |  | 
 | // Given an address OFFSET relative to the start of input section | 
 | // SHNDX in OBJECT, return whether this address is being included in | 
 | // the final link.  This should only be called if SHNDX in OBJECT has | 
 | // a special mapping. | 
 |  | 
 | bool | 
 | Output_section::is_input_address_mapped(const Relobj* object, | 
 | 					unsigned int shndx, | 
 | 					off_t offset) const | 
 | { | 
 |   // Look at the Output_section_data_maps first. | 
 |   const Output_section_data* posd = this->find_merge_section(object, shndx); | 
 |   if (posd == NULL) | 
 |     posd = this->find_relaxed_input_section(object, shndx); | 
 |  | 
 |   if (posd != NULL) | 
 |     { | 
 |       section_offset_type output_offset; | 
 |       bool found = posd->output_offset(object, shndx, offset, &output_offset); | 
 |       // By default we assume that the address is mapped. See comment at the | 
 |       // end. | 
 |       if (!found) | 
 |         return true; | 
 |       return output_offset != -1; | 
 |     } | 
 |  | 
 |   // Fall back to the slow look-up. | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       section_offset_type output_offset; | 
 |       if (p->output_offset(object, shndx, offset, &output_offset)) | 
 | 	return output_offset != -1; | 
 |     } | 
 |  | 
 |   // By default we assume that the address is mapped.  This should | 
 |   // only be called after we have passed all sections to Layout.  At | 
 |   // that point we should know what we are discarding. | 
 |   return true; | 
 | } | 
 |  | 
 | // Given an address OFFSET relative to the start of input section | 
 | // SHNDX in object OBJECT, return the output offset relative to the | 
 | // start of the input section in the output section.  This should only | 
 | // be called if SHNDX in OBJECT has a special mapping. | 
 |  | 
 | section_offset_type | 
 | Output_section::output_offset(const Relobj* object, unsigned int shndx, | 
 | 			      section_offset_type offset) const | 
 | { | 
 |   // This can only be called meaningfully when we know the data size | 
 |   // of this. | 
 |   gold_assert(this->is_data_size_valid()); | 
 |  | 
 |   // Look at the Output_section_data_maps first. | 
 |   const Output_section_data* posd = this->find_merge_section(object, shndx); | 
 |   if (posd == NULL) | 
 |     posd = this->find_relaxed_input_section(object, shndx); | 
 |   if (posd != NULL) | 
 |     { | 
 |       section_offset_type output_offset; | 
 |       bool found = posd->output_offset(object, shndx, offset, &output_offset); | 
 |       gold_assert(found); | 
 |       return output_offset; | 
 |     } | 
 |  | 
 |   // Fall back to the slow look-up. | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       section_offset_type output_offset; | 
 |       if (p->output_offset(object, shndx, offset, &output_offset)) | 
 | 	return output_offset; | 
 |     } | 
 |   gold_unreachable(); | 
 | } | 
 |  | 
 | // Return the output virtual address of OFFSET relative to the start | 
 | // of input section SHNDX in object OBJECT. | 
 |  | 
 | uint64_t | 
 | Output_section::output_address(const Relobj* object, unsigned int shndx, | 
 | 			       off_t offset) const | 
 | { | 
 |   uint64_t addr = this->address() + this->first_input_offset_; | 
 |  | 
 |   // Look at the Output_section_data_maps first. | 
 |   const Output_section_data* posd = this->find_merge_section(object, shndx); | 
 |   if (posd == NULL) | 
 |     posd = this->find_relaxed_input_section(object, shndx); | 
 |   if (posd != NULL && posd->is_address_valid()) | 
 |     { | 
 |       section_offset_type output_offset; | 
 |       bool found = posd->output_offset(object, shndx, offset, &output_offset); | 
 |       gold_assert(found); | 
 |       return posd->address() + output_offset; | 
 |     } | 
 |  | 
 |   // Fall back to the slow look-up. | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       addr = align_address(addr, p->addralign()); | 
 |       section_offset_type output_offset; | 
 |       if (p->output_offset(object, shndx, offset, &output_offset)) | 
 | 	{ | 
 | 	  if (output_offset == -1) | 
 | 	    return -1ULL; | 
 | 	  return addr + output_offset; | 
 | 	} | 
 |       addr += p->data_size(); | 
 |     } | 
 |  | 
 |   // If we get here, it means that we don't know the mapping for this | 
 |   // input section.  This might happen in principle if | 
 |   // add_input_section were called before add_output_section_data. | 
 |   // But it should never actually happen. | 
 |  | 
 |   gold_unreachable(); | 
 | } | 
 |  | 
 | // Find the output address of the start of the merged section for | 
 | // input section SHNDX in object OBJECT. | 
 |  | 
 | bool | 
 | Output_section::find_starting_output_address(const Relobj* object, | 
 | 					     unsigned int shndx, | 
 | 					     uint64_t* paddr) const | 
 | { | 
 |   const Output_section_data* data = this->find_merge_section(object, shndx); | 
 |   if (data == NULL) | 
 |     return false; | 
 |  | 
 |   // FIXME: This becomes a bottle-neck if we have many relaxed sections. | 
 |   // Looking up the merge section map does not always work as we sometimes | 
 |   // find a merge section without its address set. | 
 |   uint64_t addr = this->address() + this->first_input_offset_; | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       addr = align_address(addr, p->addralign()); | 
 |  | 
 |       // It would be nice if we could use the existing output_offset | 
 |       // method to get the output offset of input offset 0. | 
 |       // Unfortunately we don't know for sure that input offset 0 is | 
 |       // mapped at all. | 
 |       if (!p->is_input_section() && p->output_section_data() == data) | 
 | 	{ | 
 | 	  *paddr = addr; | 
 | 	  return true; | 
 | 	} | 
 |  | 
 |       addr += p->data_size(); | 
 |     } | 
 |  | 
 |   // We couldn't find a merge output section for this input section. | 
 |   return false; | 
 | } | 
 |  | 
 | // Update the data size of an Output_section. | 
 |  | 
 | void | 
 | Output_section::update_data_size() | 
 | { | 
 |   if (this->input_sections_.empty()) | 
 |       return; | 
 |  | 
 |   if (this->must_sort_attached_input_sections() | 
 |       || this->input_section_order_specified()) | 
 |     this->sort_attached_input_sections(); | 
 |  | 
 |   off_t off = this->first_input_offset_; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       off = align_address(off, p->addralign()); | 
 |       off += p->current_data_size(); | 
 |     } | 
 |  | 
 |   this->set_current_data_size_for_child(off); | 
 | } | 
 |  | 
 | // Set the data size of an Output_section.  This is where we handle | 
 | // setting the addresses of any Output_section_data objects. | 
 |  | 
 | void | 
 | Output_section::set_final_data_size() | 
 | { | 
 |   off_t data_size; | 
 |  | 
 |   if (this->input_sections_.empty()) | 
 |     data_size = this->current_data_size_for_child(); | 
 |   else | 
 |     { | 
 |       if (this->must_sort_attached_input_sections() | 
 | 	  || this->input_section_order_specified()) | 
 | 	this->sort_attached_input_sections(); | 
 |  | 
 |       uint64_t address = this->address(); | 
 |       off_t startoff = this->offset(); | 
 |       off_t off = this->first_input_offset_; | 
 |       for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 | 	   p != this->input_sections_.end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  off = align_address(off, p->addralign()); | 
 | 	  p->set_address_and_file_offset(address + off, startoff + off, | 
 | 					 startoff); | 
 | 	  off += p->data_size(); | 
 | 	} | 
 |       data_size = off; | 
 |     } | 
 |  | 
 |   // For full incremental links, we want to allocate some patch space | 
 |   // in most sections for subsequent incremental updates. | 
 |   if (this->is_patch_space_allowed_ && parameters->incremental_full()) | 
 |     { | 
 |       double pct = parameters->options().incremental_patch(); | 
 |       size_t extra = static_cast<size_t>(data_size * pct); | 
 |       if (this->free_space_fill_ != NULL | 
 | 	  && this->free_space_fill_->minimum_hole_size() > extra) | 
 | 	extra = this->free_space_fill_->minimum_hole_size(); | 
 |       off_t new_size = align_address(data_size + extra, this->addralign()); | 
 |       this->patch_space_ = new_size - data_size; | 
 |       gold_debug(DEBUG_INCREMENTAL, | 
 | 		 "set_final_data_size: %08lx + %08lx: section %s", | 
 | 		 static_cast<long>(data_size), | 
 | 		 static_cast<long>(this->patch_space_), | 
 | 		 this->name()); | 
 |       data_size = new_size; | 
 |     } | 
 |  | 
 |   this->set_data_size(data_size); | 
 | } | 
 |  | 
 | // Reset the address and file offset. | 
 |  | 
 | void | 
 | Output_section::do_reset_address_and_file_offset() | 
 | { | 
 |   // An unallocated section has no address.  Forcing this means that | 
 |   // we don't need special treatment for symbols defined in debug | 
 |   // sections.  We do the same in the constructor.  This does not | 
 |   // apply to NOLOAD sections though. | 
 |   if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_) | 
 |      this->set_address(0); | 
 |  | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     p->reset_address_and_file_offset(); | 
 |  | 
 |   // Remove any patch space that was added in set_final_data_size. | 
 |   if (this->patch_space_ > 0) | 
 |     { | 
 |       this->set_current_data_size_for_child(this->current_data_size_for_child() | 
 | 					    - this->patch_space_); | 
 |       this->patch_space_ = 0; | 
 |     } | 
 | } | 
 |  | 
 | // Return true if address and file offset have the values after reset. | 
 |  | 
 | bool | 
 | Output_section::do_address_and_file_offset_have_reset_values() const | 
 | { | 
 |   if (this->is_offset_valid()) | 
 |     return false; | 
 |  | 
 |   // An unallocated section has address 0 after its construction or a reset. | 
 |   if ((this->flags_ & elfcpp::SHF_ALLOC) == 0) | 
 |     return this->is_address_valid() && this->address() == 0; | 
 |   else | 
 |     return !this->is_address_valid(); | 
 | } | 
 |  | 
 | // Set the TLS offset.  Called only for SHT_TLS sections. | 
 |  | 
 | void | 
 | Output_section::do_set_tls_offset(uint64_t tls_base) | 
 | { | 
 |   this->tls_offset_ = this->address() - tls_base; | 
 | } | 
 |  | 
 | // In a few cases we need to sort the input sections attached to an | 
 | // output section.  This is used to implement the type of constructor | 
 | // priority ordering implemented by the GNU linker, in which the | 
 | // priority becomes part of the section name and the sections are | 
 | // sorted by name.  We only do this for an output section if we see an | 
 | // attached input section matching ".ctors.*", ".dtors.*", | 
 | // ".init_array.*" or ".fini_array.*". | 
 |  | 
 | class Output_section::Input_section_sort_entry | 
 | { | 
 |  public: | 
 |   Input_section_sort_entry() | 
 |     : input_section_(), index_(-1U), section_name_() | 
 |   { } | 
 |  | 
 |   Input_section_sort_entry(const Input_section& input_section, | 
 | 			   unsigned int index, | 
 | 			   bool must_sort_attached_input_sections, | 
 | 			   const char* output_section_name) | 
 |     : input_section_(input_section), index_(index), section_name_() | 
 |   { | 
 |     if ((input_section.is_input_section() | 
 | 	 || input_section.is_relaxed_input_section()) | 
 | 	&& must_sort_attached_input_sections) | 
 |       { | 
 | 	// This is only called single-threaded from Layout::finalize, | 
 | 	// so it is OK to lock.  Unfortunately we have no way to pass | 
 | 	// in a Task token. | 
 | 	const Task* dummy_task = reinterpret_cast<const Task*>(-1); | 
 | 	Object* obj = (input_section.is_input_section() | 
 | 		       ? input_section.relobj() | 
 | 		       : input_section.relaxed_input_section()->relobj()); | 
 | 	Task_lock_obj<Object> tl(dummy_task, obj); | 
 |  | 
 | 	// This is a slow operation, which should be cached in | 
 | 	// Layout::layout if this becomes a speed problem. | 
 | 	this->section_name_ = obj->section_name(input_section.shndx()); | 
 |       } | 
 |     else if (input_section.is_output_section_data() | 
 |     	     && must_sort_attached_input_sections) | 
 |       { | 
 | 	// For linker-generated sections, use the output section name. | 
 | 	this->section_name_.assign(output_section_name); | 
 |       } | 
 |   } | 
 |  | 
 |   // Return the Input_section. | 
 |   const Input_section& | 
 |   input_section() const | 
 |   { | 
 |     gold_assert(this->index_ != -1U); | 
 |     return this->input_section_; | 
 |   } | 
 |  | 
 |   // The index of this entry in the original list.  This is used to | 
 |   // make the sort stable. | 
 |   unsigned int | 
 |   index() const | 
 |   { | 
 |     gold_assert(this->index_ != -1U); | 
 |     return this->index_; | 
 |   } | 
 |  | 
 |   // The section name. | 
 |   const std::string& | 
 |   section_name() const | 
 |   { | 
 |     return this->section_name_; | 
 |   } | 
 |  | 
 |   // Return true if the section name has a priority.  This is assumed | 
 |   // to be true if it has a dot after the initial dot. | 
 |   bool | 
 |   has_priority() const | 
 |   { | 
 |     return this->section_name_.find('.', 1) != std::string::npos; | 
 |   } | 
 |  | 
 |   // Return the priority.  Believe it or not, gcc encodes the priority | 
 |   // differently for .ctors/.dtors and .init_array/.fini_array | 
 |   // sections. | 
 |   unsigned int | 
 |   get_priority() const | 
 |   { | 
 |     bool is_ctors; | 
 |     if (is_prefix_of(".ctors.", this->section_name_.c_str()) | 
 | 	|| is_prefix_of(".dtors.", this->section_name_.c_str())) | 
 |       is_ctors = true; | 
 |     else if (is_prefix_of(".init_array.", this->section_name_.c_str()) | 
 | 	     || is_prefix_of(".fini_array.", this->section_name_.c_str())) | 
 |       is_ctors = false; | 
 |     else | 
 |       return 0; | 
 |     char* end; | 
 |     unsigned long prio = strtoul((this->section_name_.c_str() | 
 | 				  + (is_ctors ? 7 : 12)), | 
 | 				 &end, 10); | 
 |     if (*end != '\0') | 
 |       return 0; | 
 |     else if (is_ctors) | 
 |       return 65535 - prio; | 
 |     else | 
 |       return prio; | 
 |   } | 
 |  | 
 |   // Return true if this an input file whose base name matches | 
 |   // FILE_NAME.  The base name must have an extension of ".o", and | 
 |   // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o". | 
 |   // This is to match crtbegin.o as well as crtbeginS.o without | 
 |   // getting confused by other possibilities.  Overall matching the | 
 |   // file name this way is a dreadful hack, but the GNU linker does it | 
 |   // in order to better support gcc, and we need to be compatible. | 
 |   bool | 
 |   match_file_name(const char* file_name) const | 
 |   { | 
 |     if (this->input_section_.is_output_section_data()) | 
 |       return false; | 
 |     return Layout::match_file_name(this->input_section_.relobj(), file_name); | 
 |   } | 
 |  | 
 |   // Returns 1 if THIS should appear before S in section order, -1 if S | 
 |   // appears before THIS and 0 if they are not comparable. | 
 |   int | 
 |   compare_section_ordering(const Input_section_sort_entry& s) const | 
 |   { | 
 |     unsigned int this_secn_index = this->input_section_.section_order_index(); | 
 |     unsigned int s_secn_index = s.input_section().section_order_index(); | 
 |     if (this_secn_index > 0 && s_secn_index > 0) | 
 |       { | 
 | 	if (this_secn_index < s_secn_index) | 
 | 	  return 1; | 
 | 	else if (this_secn_index > s_secn_index) | 
 | 	  return -1; | 
 |       } | 
 |     return 0; | 
 |   } | 
 |  | 
 |  private: | 
 |   // The Input_section we are sorting. | 
 |   Input_section input_section_; | 
 |   // The index of this Input_section in the original list. | 
 |   unsigned int index_; | 
 |   // The section name if there is one. | 
 |   std::string section_name_; | 
 | }; | 
 |  | 
 | // Return true if S1 should come before S2 in the output section. | 
 |  | 
 | bool | 
 | Output_section::Input_section_sort_compare::operator()( | 
 |     const Output_section::Input_section_sort_entry& s1, | 
 |     const Output_section::Input_section_sort_entry& s2) const | 
 | { | 
 |   // crtbegin.o must come first. | 
 |   bool s1_begin = s1.match_file_name("crtbegin"); | 
 |   bool s2_begin = s2.match_file_name("crtbegin"); | 
 |   if (s1_begin || s2_begin) | 
 |     { | 
 |       if (!s1_begin) | 
 | 	return false; | 
 |       if (!s2_begin) | 
 | 	return true; | 
 |       return s1.index() < s2.index(); | 
 |     } | 
 |  | 
 |   // crtend.o must come last. | 
 |   bool s1_end = s1.match_file_name("crtend"); | 
 |   bool s2_end = s2.match_file_name("crtend"); | 
 |   if (s1_end || s2_end) | 
 |     { | 
 |       if (!s1_end) | 
 | 	return true; | 
 |       if (!s2_end) | 
 | 	return false; | 
 |       return s1.index() < s2.index(); | 
 |     } | 
 |  | 
 |   // A section with a priority follows a section without a priority. | 
 |   bool s1_has_priority = s1.has_priority(); | 
 |   bool s2_has_priority = s2.has_priority(); | 
 |   if (s1_has_priority && !s2_has_priority) | 
 |     return false; | 
 |   if (!s1_has_priority && s2_has_priority) | 
 |     return true; | 
 |  | 
 |   // Check if a section order exists for these sections through a section | 
 |   // ordering file.  If sequence_num is 0, an order does not exist. | 
 |   int sequence_num = s1.compare_section_ordering(s2); | 
 |   if (sequence_num != 0) | 
 |     return sequence_num == 1; | 
 |  | 
 |   // Otherwise we sort by name. | 
 |   int compare = s1.section_name().compare(s2.section_name()); | 
 |   if (compare != 0) | 
 |     return compare < 0; | 
 |  | 
 |   // Otherwise we keep the input order. | 
 |   return s1.index() < s2.index(); | 
 | } | 
 |  | 
 | // Return true if S1 should come before S2 in an .init_array or .fini_array | 
 | // output section. | 
 |  | 
 | bool | 
 | Output_section::Input_section_sort_init_fini_compare::operator()( | 
 |     const Output_section::Input_section_sort_entry& s1, | 
 |     const Output_section::Input_section_sort_entry& s2) const | 
 | { | 
 |   // A section without a priority follows a section with a priority. | 
 |   // This is the reverse of .ctors and .dtors sections. | 
 |   bool s1_has_priority = s1.has_priority(); | 
 |   bool s2_has_priority = s2.has_priority(); | 
 |   if (s1_has_priority && !s2_has_priority) | 
 |     return true; | 
 |   if (!s1_has_priority && s2_has_priority) | 
 |     return false; | 
 |  | 
 |   // .ctors and .dtors sections without priority come after | 
 |   // .init_array and .fini_array sections without priority. | 
 |   if (!s1_has_priority | 
 |       && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors") | 
 |       && s1.section_name() != s2.section_name()) | 
 |     return false; | 
 |   if (!s2_has_priority | 
 |       && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors") | 
 |       && s2.section_name() != s1.section_name()) | 
 |     return true; | 
 |  | 
 |   // Sort by priority if we can. | 
 |   if (s1_has_priority) | 
 |     { | 
 |       unsigned int s1_prio = s1.get_priority(); | 
 |       unsigned int s2_prio = s2.get_priority(); | 
 |       if (s1_prio < s2_prio) | 
 | 	return true; | 
 |       else if (s1_prio > s2_prio) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   // Check if a section order exists for these sections through a section | 
 |   // ordering file.  If sequence_num is 0, an order does not exist. | 
 |   int sequence_num = s1.compare_section_ordering(s2); | 
 |   if (sequence_num != 0) | 
 |     return sequence_num == 1; | 
 |  | 
 |   // Otherwise we sort by name. | 
 |   int compare = s1.section_name().compare(s2.section_name()); | 
 |   if (compare != 0) | 
 |     return compare < 0; | 
 |  | 
 |   // Otherwise we keep the input order. | 
 |   return s1.index() < s2.index(); | 
 | } | 
 |  | 
 | // Return true if S1 should come before S2.  Sections that do not match | 
 | // any pattern in the section ordering file are placed ahead of the sections | 
 | // that match some pattern. | 
 |  | 
 | bool | 
 | Output_section::Input_section_sort_section_order_index_compare::operator()( | 
 |     const Output_section::Input_section_sort_entry& s1, | 
 |     const Output_section::Input_section_sort_entry& s2) const | 
 | { | 
 |   unsigned int s1_secn_index = s1.input_section().section_order_index(); | 
 |   unsigned int s2_secn_index = s2.input_section().section_order_index(); | 
 |  | 
 |   // Keep input order if section ordering cannot determine order. | 
 |   if (s1_secn_index == s2_secn_index) | 
 |     return s1.index() < s2.index(); | 
 |  | 
 |   return s1_secn_index < s2_secn_index; | 
 | } | 
 |  | 
 | // Return true if S1 should come before S2.  This is the sort comparison | 
 | // function for .text to sort sections with prefixes | 
 | // .text.{unlikely,exit,startup,hot} before other sections. | 
 |  | 
 | bool | 
 | Output_section::Input_section_sort_section_prefix_special_ordering_compare | 
 |   ::operator()( | 
 |     const Output_section::Input_section_sort_entry& s1, | 
 |     const Output_section::Input_section_sort_entry& s2) const | 
 | { | 
 |   // Some input section names have special ordering requirements. | 
 |   const char *s1_section_name = s1.section_name().c_str(); | 
 |   const char *s2_section_name = s2.section_name().c_str(); | 
 |   int o1 = Layout::special_ordering_of_input_section(s1_section_name); | 
 |   int o2 = Layout::special_ordering_of_input_section(s2_section_name); | 
 |   if (o1 != o2) | 
 |     { | 
 |       if (o1 < 0) | 
 | 	return false; | 
 |       else if (o2 < 0) | 
 | 	return true; | 
 |       else | 
 | 	return o1 < o2; | 
 |     } | 
 |   else if (is_prefix_of(".text.sorted", s1_section_name)) | 
 |     return strcmp(s1_section_name, s2_section_name) <= 0; | 
 |  | 
 |   // Keep input order otherwise. | 
 |   return s1.index() < s2.index(); | 
 | } | 
 |  | 
 | // Return true if S1 should come before S2.  This is the sort comparison | 
 | // function for sections to sort them by name. | 
 |  | 
 | bool | 
 | Output_section::Input_section_sort_section_name_compare | 
 |   ::operator()( | 
 |     const Output_section::Input_section_sort_entry& s1, | 
 |     const Output_section::Input_section_sort_entry& s2) const | 
 | { | 
 |   // We sort by name. | 
 |   int compare = s1.section_name().compare(s2.section_name()); | 
 |   if (compare != 0) | 
 |     return compare < 0; | 
 |  | 
 |   // Keep input order otherwise. | 
 |   return s1.index() < s2.index(); | 
 | } | 
 |  | 
 | // This updates the section order index of input sections according to the | 
 | // the order specified in the mapping from Section id to order index. | 
 |  | 
 | void | 
 | Output_section::update_section_layout( | 
 |   const Section_layout_order* order_map) | 
 | { | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (p->is_input_section() | 
 | 	  || p->is_relaxed_input_section()) | 
 | 	{ | 
 | 	  Relobj* obj = (p->is_input_section() | 
 | 			 ? p->relobj() | 
 | 			 : p->relaxed_input_section()->relobj()); | 
 | 	  unsigned int shndx = p->shndx(); | 
 | 	  Section_layout_order::const_iterator it | 
 | 	    = order_map->find(Section_id(obj, shndx)); | 
 | 	  if (it == order_map->end()) | 
 | 	    continue; | 
 | 	  unsigned int section_order_index = it->second; | 
 | 	  if (section_order_index != 0) | 
 | 	    { | 
 | 	      p->set_section_order_index(section_order_index); | 
 | 	      this->set_input_section_order_specified(); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Sort the input sections attached to an output section. | 
 |  | 
 | void | 
 | Output_section::sort_attached_input_sections() | 
 | { | 
 |   if (this->attached_input_sections_are_sorted_) | 
 |     return; | 
 |  | 
 |   if (this->checkpoint_ != NULL | 
 |       && !this->checkpoint_->input_sections_saved()) | 
 |     this->checkpoint_->save_input_sections(); | 
 |  | 
 |   // The only thing we know about an input section is the object and | 
 |   // the section index.  We need the section name.  Recomputing this | 
 |   // is slow but this is an unusual case.  If this becomes a speed | 
 |   // problem we can cache the names as required in Layout::layout. | 
 |  | 
 |   // We start by building a larger vector holding a copy of each | 
 |   // Input_section, plus its current index in the list and its name. | 
 |   std::vector<Input_section_sort_entry> sort_list; | 
 |  | 
 |   unsigned int i = 0; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p, ++i) | 
 |       sort_list.push_back(Input_section_sort_entry(*p, i, | 
 | 			    this->must_sort_attached_input_sections(), | 
 | 			    this->name())); | 
 |  | 
 |   // Sort the input sections. | 
 |   if (this->must_sort_attached_input_sections()) | 
 |     { | 
 |       if (this->type() == elfcpp::SHT_PREINIT_ARRAY | 
 | 	  || this->type() == elfcpp::SHT_INIT_ARRAY | 
 | 	  || this->type() == elfcpp::SHT_FINI_ARRAY) | 
 | 	std::sort(sort_list.begin(), sort_list.end(), | 
 | 		  Input_section_sort_init_fini_compare()); | 
 |       else if (strcmp(parameters->options().sort_section(), "name") == 0) | 
 | 	std::sort(sort_list.begin(), sort_list.end(), | 
 | 		  Input_section_sort_section_name_compare()); | 
 |       else if (strcmp(this->name(), ".text") == 0) | 
 | 	std::sort(sort_list.begin(), sort_list.end(), | 
 | 		  Input_section_sort_section_prefix_special_ordering_compare()); | 
 |       else | 
 | 	std::sort(sort_list.begin(), sort_list.end(), | 
 | 		  Input_section_sort_compare()); | 
 |     } | 
 |   else | 
 |     { | 
 |       gold_assert(this->input_section_order_specified()); | 
 |       std::sort(sort_list.begin(), sort_list.end(), | 
 | 		Input_section_sort_section_order_index_compare()); | 
 |     } | 
 |  | 
 |   // Copy the sorted input sections back to our list. | 
 |   this->input_sections_.clear(); | 
 |   for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin(); | 
 |        p != sort_list.end(); | 
 |        ++p) | 
 |     this->input_sections_.push_back(p->input_section()); | 
 |   sort_list.clear(); | 
 |  | 
 |   // Remember that we sorted the input sections, since we might get | 
 |   // called again. | 
 |   this->attached_input_sections_are_sorted_ = true; | 
 | } | 
 |  | 
 | // Write the section header to *OSHDR. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_section::write_header(const Layout* layout, | 
 | 			     const Stringpool* secnamepool, | 
 | 			     elfcpp::Shdr_write<size, big_endian>* oshdr) const | 
 | { | 
 |   oshdr->put_sh_name(secnamepool->get_offset(this->name_)); | 
 |   oshdr->put_sh_type(this->type_); | 
 |  | 
 |   elfcpp::Elf_Xword flags = this->flags_; | 
 |   if (this->info_section_ != NULL && this->info_uses_section_index_) | 
 |     flags |= elfcpp::SHF_INFO_LINK; | 
 |   oshdr->put_sh_flags(flags); | 
 |  | 
 |   oshdr->put_sh_addr(this->address()); | 
 |   oshdr->put_sh_offset(this->offset()); | 
 |   oshdr->put_sh_size(this->data_size()); | 
 |   if (this->link_section_ != NULL) | 
 |     oshdr->put_sh_link(this->link_section_->out_shndx()); | 
 |   else if (this->should_link_to_symtab_) | 
 |     oshdr->put_sh_link(layout->symtab_section_shndx()); | 
 |   else if (this->should_link_to_dynsym_) | 
 |     oshdr->put_sh_link(layout->dynsym_section()->out_shndx()); | 
 |   else | 
 |     oshdr->put_sh_link(this->link_); | 
 |  | 
 |   elfcpp::Elf_Word info; | 
 |   if (this->info_section_ != NULL) | 
 |     { | 
 |       if (this->info_uses_section_index_) | 
 | 	info = this->info_section_->out_shndx(); | 
 |       else | 
 | 	info = this->info_section_->symtab_index(); | 
 |     } | 
 |   else if (this->info_symndx_ != NULL) | 
 |     info = this->info_symndx_->symtab_index(); | 
 |   else | 
 |     info = this->info_; | 
 |   oshdr->put_sh_info(info); | 
 |  | 
 |   oshdr->put_sh_addralign(this->addralign_); | 
 |   oshdr->put_sh_entsize(this->entsize_); | 
 | } | 
 |  | 
 | // Write out the data.  For input sections the data is written out by | 
 | // Object::relocate, but we have to handle Output_section_data objects | 
 | // here. | 
 |  | 
 | void | 
 | Output_section::do_write(Output_file* of) | 
 | { | 
 |   gold_assert(!this->requires_postprocessing()); | 
 |  | 
 |   // If the target performs relaxation, we delay filler generation until now. | 
 |   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); | 
 |  | 
 |   off_t output_section_file_offset = this->offset(); | 
 |   for (Fill_list::iterator p = this->fills_.begin(); | 
 |        p != this->fills_.end(); | 
 |        ++p) | 
 |     { | 
 |       std::string fill_data(parameters->target().code_fill(p->length())); | 
 |       of->write(output_section_file_offset + p->section_offset(), | 
 | 		fill_data.data(), fill_data.size()); | 
 |     } | 
 |  | 
 |   off_t off = this->offset() + this->first_input_offset_; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       off_t aligned_off = align_address(off, p->addralign()); | 
 |       if (this->generate_code_fills_at_write_ && (off != aligned_off)) | 
 | 	{ | 
 | 	  size_t fill_len = aligned_off - off; | 
 | 	  std::string fill_data(parameters->target().code_fill(fill_len)); | 
 | 	  of->write(off, fill_data.data(), fill_data.size()); | 
 | 	} | 
 |  | 
 |       p->write(of); | 
 |       off = aligned_off + p->data_size(); | 
 |     } | 
 |  | 
 |   // For incremental links, fill in unused chunks in debug sections | 
 |   // with dummy compilation unit headers. | 
 |   if (this->free_space_fill_ != NULL) | 
 |     { | 
 |       for (Free_list::Const_iterator p = this->free_list_.begin(); | 
 | 	   p != this->free_list_.end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  off_t off = p->start_; | 
 | 	  size_t len = p->end_ - off; | 
 | 	  this->free_space_fill_->write(of, this->offset() + off, len); | 
 | 	} | 
 |       if (this->patch_space_ > 0) | 
 | 	{ | 
 | 	  off_t off = this->current_data_size_for_child() - this->patch_space_; | 
 | 	  this->free_space_fill_->write(of, this->offset() + off, | 
 | 					this->patch_space_); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // If a section requires postprocessing, create the buffer to use. | 
 |  | 
 | void | 
 | Output_section::create_postprocessing_buffer() | 
 | { | 
 |   gold_assert(this->requires_postprocessing()); | 
 |  | 
 |   if (this->postprocessing_buffer_ != NULL) | 
 |     return; | 
 |  | 
 |   if (!this->input_sections_.empty()) | 
 |     { | 
 |       off_t off = this->first_input_offset_; | 
 |       for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 | 	   p != this->input_sections_.end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  off = align_address(off, p->addralign()); | 
 | 	  p->finalize_data_size(); | 
 | 	  off += p->data_size(); | 
 | 	} | 
 |       this->set_current_data_size_for_child(off); | 
 |     } | 
 |  | 
 |   off_t buffer_size = this->current_data_size_for_child(); | 
 |   this->postprocessing_buffer_ = new unsigned char[buffer_size]; | 
 | } | 
 |  | 
 | // Write all the data of an Output_section into the postprocessing | 
 | // buffer.  This is used for sections which require postprocessing, | 
 | // such as compression.  Input sections are handled by | 
 | // Object::Relocate. | 
 |  | 
 | void | 
 | Output_section::write_to_postprocessing_buffer() | 
 | { | 
 |   gold_assert(this->requires_postprocessing()); | 
 |  | 
 |   // If the target performs relaxation, we delay filler generation until now. | 
 |   gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty()); | 
 |  | 
 |   unsigned char* buffer = this->postprocessing_buffer(); | 
 |   for (Fill_list::iterator p = this->fills_.begin(); | 
 |        p != this->fills_.end(); | 
 |        ++p) | 
 |     { | 
 |       std::string fill_data(parameters->target().code_fill(p->length())); | 
 |       memcpy(buffer + p->section_offset(), fill_data.data(), | 
 | 	     fill_data.size()); | 
 |     } | 
 |  | 
 |   off_t off = this->first_input_offset_; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       off_t aligned_off = align_address(off, p->addralign()); | 
 |       if (this->generate_code_fills_at_write_ && (off != aligned_off)) | 
 | 	{ | 
 | 	  size_t fill_len = aligned_off - off; | 
 | 	  std::string fill_data(parameters->target().code_fill(fill_len)); | 
 | 	  memcpy(buffer + off, fill_data.data(), fill_data.size()); | 
 | 	} | 
 |  | 
 |       p->write_to_buffer(buffer + aligned_off); | 
 |       off = aligned_off + p->data_size(); | 
 |     } | 
 | } | 
 |  | 
 | // Get the input sections for linker script processing.  We leave | 
 | // behind the Output_section_data entries.  Note that this may be | 
 | // slightly incorrect for merge sections.  We will leave them behind, | 
 | // but it is possible that the script says that they should follow | 
 | // some other input sections, as in: | 
 | //    .rodata { *(.rodata) *(.rodata.cst*) } | 
 | // For that matter, we don't handle this correctly: | 
 | //    .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) } | 
 | // With luck this will never matter. | 
 |  | 
 | uint64_t | 
 | Output_section::get_input_sections( | 
 |     uint64_t address, | 
 |     const std::string& fill, | 
 |     std::list<Input_section>* input_sections) | 
 | { | 
 |   if (this->checkpoint_ != NULL | 
 |       && !this->checkpoint_->input_sections_saved()) | 
 |     this->checkpoint_->save_input_sections(); | 
 |  | 
 |   // Invalidate fast look-up maps. | 
 |   this->lookup_maps_->invalidate(); | 
 |  | 
 |   uint64_t orig_address = address; | 
 |  | 
 |   address = align_address(address, this->addralign()); | 
 |  | 
 |   Input_section_list remaining; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (p->is_input_section() | 
 | 	  || p->is_relaxed_input_section() | 
 | 	  || p->is_merge_section()) | 
 | 	input_sections->push_back(*p); | 
 |       else | 
 | 	{ | 
 | 	  uint64_t aligned_address = align_address(address, p->addralign()); | 
 | 	  if (aligned_address != address && !fill.empty()) | 
 | 	    { | 
 | 	      section_size_type length = | 
 | 		convert_to_section_size_type(aligned_address - address); | 
 | 	      std::string this_fill; | 
 | 	      this_fill.reserve(length); | 
 | 	      while (this_fill.length() + fill.length() <= length) | 
 | 		this_fill += fill; | 
 | 	      if (this_fill.length() < length) | 
 | 		this_fill.append(fill, 0, length - this_fill.length()); | 
 |  | 
 | 	      Output_section_data* posd = new Output_data_const(this_fill, 0); | 
 | 	      remaining.push_back(Input_section(posd)); | 
 | 	    } | 
 | 	  address = aligned_address; | 
 |  | 
 | 	  remaining.push_back(*p); | 
 |  | 
 | 	  p->finalize_data_size(); | 
 | 	  address += p->data_size(); | 
 | 	} | 
 |     } | 
 |  | 
 |   this->input_sections_.swap(remaining); | 
 |   this->first_input_offset_ = 0; | 
 |  | 
 |   uint64_t data_size = address - orig_address; | 
 |   this->set_current_data_size_for_child(data_size); | 
 |   return data_size; | 
 | } | 
 |  | 
 | // Add a script input section.  SIS is an Output_section::Input_section, | 
 | // which can be either a plain input section or a special input section like | 
 | // a relaxed input section.  For a special input section, its size must be | 
 | // finalized. | 
 |  | 
 | void | 
 | Output_section::add_script_input_section(const Input_section& sis) | 
 | { | 
 |   uint64_t data_size = sis.data_size(); | 
 |   uint64_t addralign = sis.addralign(); | 
 |   if (addralign > this->addralign_) | 
 |     this->addralign_ = addralign; | 
 |  | 
 |   off_t offset_in_section = this->current_data_size_for_child(); | 
 |   off_t aligned_offset_in_section = align_address(offset_in_section, | 
 | 						  addralign); | 
 |  | 
 |   this->set_current_data_size_for_child(aligned_offset_in_section | 
 | 					+ data_size); | 
 |  | 
 |   this->input_sections_.push_back(sis); | 
 |  | 
 |   // Update fast lookup maps if necessary. | 
 |   if (this->lookup_maps_->is_valid()) | 
 |     { | 
 |       if (sis.is_relaxed_input_section()) | 
 | 	{ | 
 | 	  Output_relaxed_input_section* poris = sis.relaxed_input_section(); | 
 | 	  this->lookup_maps_->add_relaxed_input_section(poris->relobj(), | 
 | 							poris->shndx(), poris); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Save states for relaxation. | 
 |  | 
 | void | 
 | Output_section::save_states() | 
 | { | 
 |   gold_assert(this->checkpoint_ == NULL); | 
 |   Checkpoint_output_section* checkpoint = | 
 |     new Checkpoint_output_section(this->addralign_, this->flags_, | 
 | 				  this->input_sections_, | 
 | 				  this->first_input_offset_, | 
 | 				  this->attached_input_sections_are_sorted_); | 
 |   this->checkpoint_ = checkpoint; | 
 |   gold_assert(this->fills_.empty()); | 
 | } | 
 |  | 
 | void | 
 | Output_section::discard_states() | 
 | { | 
 |   gold_assert(this->checkpoint_ != NULL); | 
 |   delete this->checkpoint_; | 
 |   this->checkpoint_ = NULL; | 
 |   gold_assert(this->fills_.empty()); | 
 |  | 
 |   // Simply invalidate the fast lookup maps since we do not keep | 
 |   // track of them. | 
 |   this->lookup_maps_->invalidate(); | 
 | } | 
 |  | 
 | void | 
 | Output_section::restore_states() | 
 | { | 
 |   gold_assert(this->checkpoint_ != NULL); | 
 |   Checkpoint_output_section* checkpoint = this->checkpoint_; | 
 |  | 
 |   this->addralign_ = checkpoint->addralign(); | 
 |   this->flags_ = checkpoint->flags(); | 
 |   this->first_input_offset_ = checkpoint->first_input_offset(); | 
 |  | 
 |   if (!checkpoint->input_sections_saved()) | 
 |     { | 
 |       // If we have not copied the input sections, just resize it. | 
 |       size_t old_size = checkpoint->input_sections_size(); | 
 |       gold_assert(this->input_sections_.size() >= old_size); | 
 |       this->input_sections_.resize(old_size); | 
 |     } | 
 |   else | 
 |     { | 
 |       // We need to copy the whole list.  This is not efficient for | 
 |       // extremely large output with hundreads of thousands of input | 
 |       // objects.  We may need to re-think how we should pass sections | 
 |       // to scripts. | 
 |       this->input_sections_ = *checkpoint->input_sections(); | 
 |     } | 
 |  | 
 |   this->attached_input_sections_are_sorted_ = | 
 |     checkpoint->attached_input_sections_are_sorted(); | 
 |  | 
 |   // Simply invalidate the fast lookup maps since we do not keep | 
 |   // track of them. | 
 |   this->lookup_maps_->invalidate(); | 
 | } | 
 |  | 
 | // Update the section offsets of input sections in this.  This is required if | 
 | // relaxation causes some input sections to change sizes. | 
 |  | 
 | void | 
 | Output_section::adjust_section_offsets() | 
 | { | 
 |   if (!this->section_offsets_need_adjustment_) | 
 |     return; | 
 |  | 
 |   off_t off = 0; | 
 |   for (Input_section_list::iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     { | 
 |       off = align_address(off, p->addralign()); | 
 |       if (p->is_input_section()) | 
 | 	p->relobj()->set_section_offset(p->shndx(), off); | 
 |       off += p->data_size(); | 
 |     } | 
 |  | 
 |   this->section_offsets_need_adjustment_ = false; | 
 | } | 
 |  | 
 | // Print to the map file. | 
 |  | 
 | void | 
 | Output_section::do_print_to_mapfile(Mapfile* mapfile) const | 
 | { | 
 |   mapfile->print_output_section(this); | 
 |  | 
 |   for (Input_section_list::const_iterator p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     p->print_to_mapfile(mapfile); | 
 | } | 
 |  | 
 | // Print stats for merge sections to stderr. | 
 |  | 
 | void | 
 | Output_section::print_merge_stats() | 
 | { | 
 |   Input_section_list::iterator p; | 
 |   for (p = this->input_sections_.begin(); | 
 |        p != this->input_sections_.end(); | 
 |        ++p) | 
 |     p->print_merge_stats(this->name_); | 
 | } | 
 |  | 
 | // Set a fixed layout for the section.  Used for incremental update links. | 
 |  | 
 | void | 
 | Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset, | 
 | 				 off_t sh_size, uint64_t sh_addralign) | 
 | { | 
 |   this->addralign_ = sh_addralign; | 
 |   this->set_current_data_size(sh_size); | 
 |   if ((this->flags_ & elfcpp::SHF_ALLOC) != 0) | 
 |     this->set_address(sh_addr); | 
 |   this->set_file_offset(sh_offset); | 
 |   this->finalize_data_size(); | 
 |   this->free_list_.init(sh_size, false); | 
 |   this->has_fixed_layout_ = true; | 
 | } | 
 |  | 
 | // Reserve space within the fixed layout for the section.  Used for | 
 | // incremental update links. | 
 |  | 
 | void | 
 | Output_section::reserve(uint64_t sh_offset, uint64_t sh_size) | 
 | { | 
 |   this->free_list_.remove(sh_offset, sh_offset + sh_size); | 
 | } | 
 |  | 
 | // Allocate space from the free list for the section.  Used for | 
 | // incremental update links. | 
 |  | 
 | off_t | 
 | Output_section::allocate(off_t len, uint64_t addralign) | 
 | { | 
 |   return this->free_list_.allocate(len, addralign, 0); | 
 | } | 
 |  | 
 | // Output segment methods. | 
 |  | 
 | Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags) | 
 |   : vaddr_(0), | 
 |     paddr_(0), | 
 |     memsz_(0), | 
 |     align_(0), | 
 |     max_align_(0), | 
 |     min_p_align_(0), | 
 |     offset_(0), | 
 |     filesz_(0), | 
 |     type_(type), | 
 |     flags_(flags), | 
 |     is_max_align_known_(false), | 
 |     are_addresses_set_(false), | 
 |     is_large_data_segment_(false), | 
 |     is_unique_segment_(false) | 
 | { | 
 |   // The ELF ABI specifies that a PT_TLS segment always has PF_R as | 
 |   // the flags. | 
 |   if (type == elfcpp::PT_TLS) | 
 |     this->flags_ = elfcpp::PF_R; | 
 | } | 
 |  | 
 | // Add an Output_section to a PT_LOAD Output_segment. | 
 |  | 
 | void | 
 | Output_segment::add_output_section_to_load(Layout* layout, | 
 | 					   Output_section* os, | 
 | 					   elfcpp::Elf_Word seg_flags) | 
 | { | 
 |   gold_assert(this->type() == elfcpp::PT_LOAD); | 
 |   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); | 
 |   gold_assert(!this->is_max_align_known_); | 
 |   gold_assert(os->is_large_data_section() == this->is_large_data_segment()); | 
 |  | 
 |   this->update_flags_for_output_section(seg_flags); | 
 |  | 
 |   // We don't want to change the ordering if we have a linker script | 
 |   // with a SECTIONS clause. | 
 |   Output_section_order order = os->order(); | 
 |   if (layout->script_options()->saw_sections_clause()) | 
 |     order = static_cast<Output_section_order>(0); | 
 |   else | 
 |     gold_assert(order != ORDER_INVALID); | 
 |  | 
 |   this->output_lists_[order].push_back(os); | 
 | } | 
 |  | 
 | // Add an Output_section to a non-PT_LOAD Output_segment. | 
 |  | 
 | void | 
 | Output_segment::add_output_section_to_nonload(Output_section* os, | 
 | 					      elfcpp::Elf_Word seg_flags) | 
 | { | 
 |   gold_assert(this->type() != elfcpp::PT_LOAD); | 
 |   gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); | 
 |   gold_assert(!this->is_max_align_known_); | 
 |  | 
 |   this->update_flags_for_output_section(seg_flags); | 
 |  | 
 |   this->output_lists_[0].push_back(os); | 
 | } | 
 |  | 
 | // Remove an Output_section from this segment.  It is an error if it | 
 | // is not present. | 
 |  | 
 | void | 
 | Output_segment::remove_output_section(Output_section* os) | 
 | { | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       Output_data_list* pdl = &this->output_lists_[i]; | 
 |       for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p) | 
 | 	{ | 
 | 	  if (*p == os) | 
 | 	    { | 
 | 	      pdl->erase(p); | 
 | 	      return; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   gold_unreachable(); | 
 | } | 
 |  | 
 | // Add an Output_data (which need not be an Output_section) to the | 
 | // start of a segment. | 
 |  | 
 | void | 
 | Output_segment::add_initial_output_data(Output_data* od) | 
 | { | 
 |   gold_assert(!this->is_max_align_known_); | 
 |   Output_data_list::iterator p = this->output_lists_[0].begin(); | 
 |   this->output_lists_[0].insert(p, od); | 
 | } | 
 |  | 
 | // Return true if this segment has any sections which hold actual | 
 | // data, rather than being a BSS section. | 
 |  | 
 | bool | 
 | Output_segment::has_any_data_sections() const | 
 | { | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       const Output_data_list* pdl = &this->output_lists_[i]; | 
 |       for (Output_data_list::const_iterator p = pdl->begin(); | 
 | 	   p != pdl->end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  if (!(*p)->is_section()) | 
 | 	    return true; | 
 | 	  if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS) | 
 | 	    return true; | 
 | 	} | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Return whether the first data section (not counting TLS sections) | 
 | // is a relro section. | 
 |  | 
 | bool | 
 | Output_segment::is_first_section_relro() const | 
 | { | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       if (i == static_cast<int>(ORDER_TLS_BSS)) | 
 | 	continue; | 
 |       const Output_data_list* pdl = &this->output_lists_[i]; | 
 |       if (!pdl->empty()) | 
 | 	{ | 
 | 	  Output_data* p = pdl->front(); | 
 | 	  return p->is_section() && p->output_section()->is_relro(); | 
 | 	} | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Return the maximum alignment of the Output_data in Output_segment. | 
 |  | 
 | uint64_t | 
 | Output_segment::maximum_alignment() | 
 | { | 
 |   if (!this->is_max_align_known_) | 
 |     { | 
 |       for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 | 	{ | 
 | 	  const Output_data_list* pdl = &this->output_lists_[i]; | 
 | 	  uint64_t addralign = Output_segment::maximum_alignment_list(pdl); | 
 | 	  if (addralign > this->max_align_) | 
 | 	    this->max_align_ = addralign; | 
 | 	} | 
 |       this->is_max_align_known_ = true; | 
 |     } | 
 |  | 
 |   return this->max_align_; | 
 | } | 
 |  | 
 | // Return the maximum alignment of a list of Output_data. | 
 |  | 
 | uint64_t | 
 | Output_segment::maximum_alignment_list(const Output_data_list* pdl) | 
 | { | 
 |   uint64_t ret = 0; | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       uint64_t addralign = (*p)->addralign(); | 
 |       if (addralign > ret) | 
 | 	ret = addralign; | 
 |     } | 
 |   return ret; | 
 | } | 
 |  | 
 | // Return whether this segment has any dynamic relocs. | 
 |  | 
 | bool | 
 | Output_segment::has_dynamic_reloc() const | 
 | { | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     if (this->has_dynamic_reloc_list(&this->output_lists_[i])) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | // Return whether this Output_data_list has any dynamic relocs. | 
 |  | 
 | bool | 
 | Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const | 
 | { | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     if ((*p)->has_dynamic_reloc()) | 
 |       return true; | 
 |   return false; | 
 | } | 
 |  | 
 | // Set the section addresses for an Output_segment.  If RESET is true, | 
 | // reset the addresses first.  ADDR is the address and *POFF is the | 
 | // file offset.  Set the section indexes starting with *PSHNDX. | 
 | // INCREASE_RELRO is the size of the portion of the first non-relro | 
 | // section that should be included in the PT_GNU_RELRO segment. | 
 | // If this segment has relro sections, and has been aligned for | 
 | // that purpose, set *HAS_RELRO to TRUE.  Return the address of | 
 | // the immediately following segment.  Update *HAS_RELRO, *POFF, | 
 | // and *PSHNDX. | 
 |  | 
 | uint64_t | 
 | Output_segment::set_section_addresses(const Target* target, | 
 | 				      Layout* layout, bool reset, | 
 | 				      uint64_t addr, | 
 | 				      unsigned int* increase_relro, | 
 | 				      bool* has_relro, | 
 | 				      off_t* poff, | 
 | 				      unsigned int* pshndx) | 
 | { | 
 |   gold_assert(this->type_ == elfcpp::PT_LOAD); | 
 |  | 
 |   uint64_t last_relro_pad = 0; | 
 |   off_t orig_off = *poff; | 
 |  | 
 |   bool in_tls = false; | 
 |  | 
 |   // If we have relro sections, we need to pad forward now so that the | 
 |   // relro sections plus INCREASE_RELRO end on an abi page boundary. | 
 |   if (parameters->options().relro() | 
 |       && this->is_first_section_relro() | 
 |       && (!this->are_addresses_set_ || reset)) | 
 |     { | 
 |       uint64_t relro_size = 0; | 
 |       off_t off = *poff; | 
 |       uint64_t max_align = 0; | 
 |       for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i) | 
 | 	{ | 
 | 	  Output_data_list* pdl = &this->output_lists_[i]; | 
 | 	  Output_data_list::iterator p; | 
 | 	  for (p = pdl->begin(); p != pdl->end(); ++p) | 
 | 	    { | 
 | 	      if (!(*p)->is_section()) | 
 | 		break; | 
 | 	      uint64_t align = (*p)->addralign(); | 
 | 	      if (align > max_align) | 
 | 		max_align = align; | 
 | 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)) | 
 | 		in_tls = true; | 
 | 	      else if (in_tls) | 
 | 		{ | 
 | 		  // Align the first non-TLS section to the alignment | 
 | 		  // of the TLS segment. | 
 | 		  align = max_align; | 
 | 		  in_tls = false; | 
 | 		} | 
 | 	      // Ignore the size of the .tbss section. | 
 | 	      if ((*p)->is_section_flag_set(elfcpp::SHF_TLS) | 
 | 		  && (*p)->is_section_type(elfcpp::SHT_NOBITS)) | 
 | 		continue; | 
 | 	      relro_size = align_address(relro_size, align); | 
 | 	      if ((*p)->is_address_valid()) | 
 | 		relro_size += (*p)->data_size(); | 
 | 	      else | 
 | 		{ | 
 | 		  // FIXME: This could be faster. | 
 | 		  (*p)->set_address_and_file_offset(relro_size, | 
 | 						    relro_size); | 
 | 		  relro_size += (*p)->data_size(); | 
 | 		  (*p)->reset_address_and_file_offset(); | 
 | 		} | 
 | 	    } | 
 | 	  if (p != pdl->end()) | 
 | 	    break; | 
 | 	} | 
 |       relro_size += *increase_relro; | 
 |       // Pad the total relro size to a multiple of the maximum | 
 |       // section alignment seen. | 
 |       uint64_t aligned_size = align_address(relro_size, max_align); | 
 |       // Note the amount of padding added after the last relro section. | 
 |       last_relro_pad = aligned_size - relro_size; | 
 |       *has_relro = true; | 
 |  | 
 |       uint64_t page_align = parameters->target().abi_pagesize(); | 
 |  | 
 |       // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0. | 
 |       uint64_t desired_align = page_align - (aligned_size % page_align); | 
 |       if (desired_align < off % page_align) | 
 | 	off += page_align; | 
 |       off += desired_align - off % page_align; | 
 |       addr += off - orig_off; | 
 |       orig_off = off; | 
 |       *poff = off; | 
 |     } | 
 |  | 
 |   if (!reset && this->are_addresses_set_) | 
 |     { | 
 |       gold_assert(this->paddr_ == addr); | 
 |       addr = this->vaddr_; | 
 |     } | 
 |   else | 
 |     { | 
 |       this->vaddr_ = addr; | 
 |       this->paddr_ = addr; | 
 |       this->are_addresses_set_ = true; | 
 |     } | 
 |  | 
 |   in_tls = false; | 
 |  | 
 |   this->offset_ = orig_off; | 
 |  | 
 |   off_t off = 0; | 
 |   off_t foff = *poff; | 
 |   uint64_t ret = 0; | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       if (i == static_cast<int>(ORDER_RELRO_LAST)) | 
 | 	{ | 
 | 	  *poff += last_relro_pad; | 
 | 	  foff += last_relro_pad; | 
 | 	  addr += last_relro_pad; | 
 | 	  if (this->output_lists_[i].empty()) | 
 | 	    { | 
 | 	      // If there is nothing in the ORDER_RELRO_LAST list, | 
 | 	      // the padding will occur at the end of the relro | 
 | 	      // segment, and we need to add it to *INCREASE_RELRO. | 
 | 	      *increase_relro += last_relro_pad; | 
 | 	    } | 
 | 	} | 
 |       addr = this->set_section_list_addresses(layout, reset, | 
 | 					      &this->output_lists_[i], | 
 | 					      addr, poff, &foff, pshndx, | 
 | 					      &in_tls); | 
 |  | 
 |       // FOFF tracks the last offset used for the file image, | 
 |       // and *POFF tracks the last offset used for the memory image. | 
 |       // When not using a linker script, bss sections should all | 
 |       // be processed in the ORDER_SMALL_BSS and later buckets. | 
 |       gold_assert(*poff == foff | 
 | 		  || i == static_cast<int>(ORDER_TLS_BSS) | 
 | 		  || i >= static_cast<int>(ORDER_SMALL_BSS) | 
 | 		  || layout->script_options()->saw_sections_clause()); | 
 |  | 
 |       this->filesz_ = foff - orig_off; | 
 |       off = foff; | 
 |  | 
 |       ret = addr; | 
 |     } | 
 |  | 
 |   // If the last section was a TLS section, align upward to the | 
 |   // alignment of the TLS segment, so that the overall size of the TLS | 
 |   // segment is aligned. | 
 |   if (in_tls) | 
 |     { | 
 |       uint64_t segment_align = layout->tls_segment()->maximum_alignment(); | 
 |       *poff = align_address(*poff, segment_align); | 
 |     } | 
 |  | 
 |   this->memsz_ = *poff - orig_off; | 
 |  | 
 |   // Ignore the file offset adjustments made by the BSS Output_data | 
 |   // objects. | 
 |   *poff = off; | 
 |  | 
 |   // If code segments must contain only code, and this code segment is | 
 |   // page-aligned in the file, then fill it out to a whole page with | 
 |   // code fill (the tail of the segment will not be within any section). | 
 |   // Thus the entire code segment can be mapped from the file as whole | 
 |   // pages and that mapping will contain only valid instructions. | 
 |   if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0) | 
 |     { | 
 |       uint64_t abi_pagesize = target->abi_pagesize(); | 
 |       if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0) | 
 | 	{ | 
 | 	  size_t fill_size = abi_pagesize - (off % abi_pagesize); | 
 |  | 
 | 	  std::string fill_data; | 
 | 	  if (target->has_code_fill()) | 
 | 	    fill_data = target->code_fill(fill_size); | 
 | 	  else | 
 | 	    fill_data.resize(fill_size); // Zero fill. | 
 |  | 
 | 	  Output_data_const* fill = new Output_data_const(fill_data, 0); | 
 | 	  fill->set_address(this->vaddr_ + this->memsz_); | 
 | 	  fill->set_file_offset(off); | 
 | 	  layout->add_relax_output(fill); | 
 |  | 
 | 	  off += fill_size; | 
 | 	  gold_assert(off % abi_pagesize == 0); | 
 | 	  ret += fill_size; | 
 | 	  gold_assert(ret % abi_pagesize == 0); | 
 |  | 
 | 	  gold_assert((uint64_t) this->filesz_ == this->memsz_); | 
 | 	  this->memsz_ = this->filesz_ += fill_size; | 
 |  | 
 | 	  *poff = off; | 
 | 	} | 
 |     } | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | // Set the addresses and file offsets in a list of Output_data | 
 | // structures. | 
 |  | 
 | uint64_t | 
 | Output_segment::set_section_list_addresses(Layout* layout, bool reset, | 
 | 					   Output_data_list* pdl, | 
 | 					   uint64_t addr, off_t* poff, | 
 | 					   off_t* pfoff, | 
 | 					   unsigned int* pshndx, | 
 | 					   bool* in_tls) | 
 | { | 
 |   off_t startoff = *poff; | 
 |   // For incremental updates, we may allocate non-fixed sections from | 
 |   // free space in the file.  This keeps track of the high-water mark. | 
 |   off_t maxoff = startoff; | 
 |  | 
 |   off_t off = startoff; | 
 |   off_t foff = *pfoff; | 
 |   for (Output_data_list::iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS); | 
 |       bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS); | 
 |  | 
 |       if (reset) | 
 | 	(*p)->reset_address_and_file_offset(); | 
 |  | 
 |       // When doing an incremental update or when using a linker script, | 
 |       // the section will most likely already have an address. | 
 |       if (!(*p)->is_address_valid()) | 
 | 	{ | 
 | 	  uint64_t align = (*p)->addralign(); | 
 |  | 
 | 	  if (is_tls) | 
 | 	    { | 
 | 	      // Give the first TLS section the alignment of the | 
 | 	      // entire TLS segment.  Otherwise the TLS segment as a | 
 | 	      // whole may be misaligned. | 
 | 	      if (!*in_tls) | 
 | 		{ | 
 | 		  Output_segment* tls_segment = layout->tls_segment(); | 
 | 		  gold_assert(tls_segment != NULL); | 
 | 		  uint64_t segment_align = tls_segment->maximum_alignment(); | 
 | 		  gold_assert(segment_align >= align); | 
 | 		  align = segment_align; | 
 |  | 
 | 		  *in_tls = true; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // If this is the first section after the TLS segment, | 
 | 	      // align it to at least the alignment of the TLS | 
 | 	      // segment, so that the size of the overall TLS segment | 
 | 	      // is aligned. | 
 | 	      if (*in_tls) | 
 | 		{ | 
 | 		  uint64_t segment_align = | 
 | 		      layout->tls_segment()->maximum_alignment(); | 
 | 		  if (segment_align > align) | 
 | 		    align = segment_align; | 
 |  | 
 | 		  *in_tls = false; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (!parameters->incremental_update()) | 
 | 	    { | 
 | 	      gold_assert(off == foff || is_bss); | 
 | 	      off = align_address(off, align); | 
 | 	      if (is_tls || !is_bss) | 
 | 		foff = off; | 
 | 	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // Incremental update: allocate file space from free list. | 
 | 	      (*p)->pre_finalize_data_size(); | 
 | 	      off_t current_size = (*p)->current_data_size(); | 
 | 	      off = layout->allocate(current_size, align, startoff); | 
 | 	      foff = off; | 
 | 	      if (off == -1) | 
 | 		{ | 
 | 		  gold_assert((*p)->output_section() != NULL); | 
 | 		  gold_fallback(_("out of patch space for section %s; " | 
 | 				  "relink with --incremental-full"), | 
 | 				(*p)->output_section()->name()); | 
 | 		} | 
 | 	      (*p)->set_address_and_file_offset(addr + (off - startoff), foff); | 
 | 	      if ((*p)->data_size() > current_size) | 
 | 		{ | 
 | 		  gold_assert((*p)->output_section() != NULL); | 
 | 		  gold_fallback(_("%s: section changed size; " | 
 | 				  "relink with --incremental-full"), | 
 | 				(*p)->output_section()->name()); | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |       else if (parameters->incremental_update()) | 
 | 	{ | 
 | 	  // For incremental updates, use the fixed offset for the | 
 | 	  // high-water mark computation. | 
 | 	  off = (*p)->offset(); | 
 | 	  foff = off; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // The script may have inserted a skip forward, but it | 
 | 	  // better not have moved backward. | 
 | 	  if ((*p)->address() >= addr + (off - startoff)) | 
 | 	    { | 
 | 	      if (!is_bss && off > foff) | 
 | 	        gold_warning(_("script places BSS section in the middle " | 
 | 			       "of a LOAD segment; space will be allocated " | 
 | 			       "in the file")); | 
 | 	      off += (*p)->address() - (addr + (off - startoff)); | 
 | 	      if (is_tls || !is_bss) | 
 | 		foff = off; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (!layout->script_options()->saw_sections_clause()) | 
 | 		gold_unreachable(); | 
 | 	      else | 
 | 		{ | 
 | 		  Output_section* os = (*p)->output_section(); | 
 |  | 
 | 		  // Cast to unsigned long long to avoid format warnings. | 
 | 		  unsigned long long previous_dot = | 
 | 		    static_cast<unsigned long long>(addr + (off - startoff)); | 
 | 		  unsigned long long dot = | 
 | 		    static_cast<unsigned long long>((*p)->address()); | 
 |  | 
 | 		  if (os == NULL) | 
 | 		    gold_error(_("dot moves backward in linker script " | 
 | 				 "from 0x%llx to 0x%llx"), previous_dot, dot); | 
 | 		  else | 
 | 		    gold_error(_("address of section '%s' moves backward " | 
 | 				 "from 0x%llx to 0x%llx"), | 
 | 			       os->name(), previous_dot, dot); | 
 | 		} | 
 | 	    } | 
 | 	  (*p)->set_file_offset(foff); | 
 | 	  (*p)->finalize_data_size(); | 
 | 	} | 
 |  | 
 |       if (parameters->incremental_update()) | 
 | 	gold_debug(DEBUG_INCREMENTAL, | 
 | 		   "set_section_list_addresses: %08lx %08lx %s", | 
 | 		   static_cast<long>(off), | 
 | 		   static_cast<long>((*p)->data_size()), | 
 | 		   ((*p)->output_section() != NULL | 
 | 		    ? (*p)->output_section()->name() : "(special)")); | 
 |  | 
 |       // We want to ignore the size of a SHF_TLS SHT_NOBITS | 
 |       // section.  Such a section does not affect the size of a | 
 |       // PT_LOAD segment. | 
 |       if (!is_tls || !is_bss) | 
 | 	off += (*p)->data_size(); | 
 |  | 
 |       // We don't allocate space in the file for SHT_NOBITS sections, | 
 |       // unless a script has force-placed one in the middle of a segment. | 
 |       if (!is_bss) | 
 | 	foff = off; | 
 |  | 
 |       if (off > maxoff) | 
 | 	maxoff = off; | 
 |  | 
 |       if ((*p)->is_section()) | 
 | 	{ | 
 | 	  (*p)->set_out_shndx(*pshndx); | 
 | 	  ++*pshndx; | 
 | 	} | 
 |     } | 
 |  | 
 |   *poff = maxoff; | 
 |   *pfoff = foff; | 
 |   return addr + (maxoff - startoff); | 
 | } | 
 |  | 
 | // For a non-PT_LOAD segment, set the offset from the sections, if | 
 | // any.  Add INCREASE to the file size and the memory size. | 
 |  | 
 | void | 
 | Output_segment::set_offset(unsigned int increase) | 
 | { | 
 |   gold_assert(this->type_ != elfcpp::PT_LOAD); | 
 |  | 
 |   gold_assert(!this->are_addresses_set_); | 
 |  | 
 |   // A non-load section only uses output_lists_[0]. | 
 |  | 
 |   Output_data_list* pdl = &this->output_lists_[0]; | 
 |  | 
 |   if (pdl->empty()) | 
 |     { | 
 |       gold_assert(increase == 0); | 
 |       this->vaddr_ = 0; | 
 |       this->paddr_ = 0; | 
 |       this->are_addresses_set_ = true; | 
 |       this->memsz_ = 0; | 
 |       this->min_p_align_ = 0; | 
 |       this->offset_ = 0; | 
 |       this->filesz_ = 0; | 
 |       return; | 
 |     } | 
 |  | 
 |   // Find the first and last section by address. | 
 |   const Output_data* first = NULL; | 
 |   const Output_data* last_data = NULL; | 
 |   const Output_data* last_bss = NULL; | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       if (first == NULL | 
 | 	  || (*p)->address() < first->address() | 
 | 	  || ((*p)->address() == first->address() | 
 | 	      && (*p)->data_size() < first->data_size())) | 
 | 	first = *p; | 
 |       const Output_data** plast; | 
 |       if ((*p)->is_section() | 
 | 	  && (*p)->output_section()->type() == elfcpp::SHT_NOBITS) | 
 | 	plast = &last_bss; | 
 |       else | 
 | 	plast = &last_data; | 
 |       if (*plast == NULL | 
 | 	  || (*p)->address() > (*plast)->address() | 
 | 	  || ((*p)->address() == (*plast)->address() | 
 | 	      && (*p)->data_size() > (*plast)->data_size())) | 
 | 	*plast = *p; | 
 |     } | 
 |  | 
 |   this->vaddr_ = first->address(); | 
 |   this->paddr_ = (first->has_load_address() | 
 | 		  ? first->load_address() | 
 | 		  : this->vaddr_); | 
 |   this->are_addresses_set_ = true; | 
 |   this->offset_ = first->offset(); | 
 |  | 
 |   if (last_data == NULL) | 
 |     this->filesz_ = 0; | 
 |   else | 
 |     this->filesz_ = (last_data->address() | 
 | 		     + last_data->data_size() | 
 | 		     - this->vaddr_); | 
 |  | 
 |   const Output_data* last = last_bss != NULL ? last_bss : last_data; | 
 |   this->memsz_ = (last->address() | 
 | 		  + last->data_size() | 
 | 		  - this->vaddr_); | 
 |  | 
 |   this->filesz_ += increase; | 
 |   this->memsz_ += increase; | 
 |  | 
 |   // If this is a RELRO segment, verify that the segment ends at a | 
 |   // page boundary. | 
 |   if (this->type_ == elfcpp::PT_GNU_RELRO) | 
 |     { | 
 |       uint64_t page_align = parameters->target().abi_pagesize(); | 
 |       uint64_t segment_end = this->vaddr_ + this->memsz_; | 
 |       if (parameters->incremental_update()) | 
 | 	{ | 
 | 	  // The INCREASE_RELRO calculation is bypassed for an incremental | 
 | 	  // update, so we need to adjust the segment size manually here. | 
 | 	  segment_end = align_address(segment_end, page_align); | 
 | 	  this->memsz_ = segment_end - this->vaddr_; | 
 | 	} | 
 |       else | 
 | 	gold_assert(segment_end == align_address(segment_end, page_align)); | 
 |     } | 
 |  | 
 |   // If this is a TLS segment, align the memory size.  The code in | 
 |   // set_section_list ensures that the section after the TLS segment | 
 |   // is aligned to give us room. | 
 |   if (this->type_ == elfcpp::PT_TLS) | 
 |     { | 
 |       uint64_t segment_align = this->maximum_alignment(); | 
 |       gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align)); | 
 |       this->memsz_ = align_address(this->memsz_, segment_align); | 
 |     } | 
 | } | 
 |  | 
 | // Set the TLS offsets of the sections in the PT_TLS segment. | 
 |  | 
 | void | 
 | Output_segment::set_tls_offsets() | 
 | { | 
 |   gold_assert(this->type_ == elfcpp::PT_TLS); | 
 |  | 
 |   for (Output_data_list::iterator p = this->output_lists_[0].begin(); | 
 |        p != this->output_lists_[0].end(); | 
 |        ++p) | 
 |     (*p)->set_tls_offset(this->vaddr_); | 
 | } | 
 |  | 
 | // Return the first section. | 
 |  | 
 | Output_section* | 
 | Output_segment::first_section() const | 
 | { | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       const Output_data_list* pdl = &this->output_lists_[i]; | 
 |       for (Output_data_list::const_iterator p = pdl->begin(); | 
 | 	   p != pdl->end(); | 
 | 	   ++p) | 
 | 	{ | 
 | 	  if ((*p)->is_section()) | 
 | 	    return (*p)->output_section(); | 
 | 	} | 
 |     } | 
 |   return NULL; | 
 | } | 
 |  | 
 | // Return the number of Output_sections in an Output_segment. | 
 |  | 
 | unsigned int | 
 | Output_segment::output_section_count() const | 
 | { | 
 |   unsigned int ret = 0; | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     ret += this->output_section_count_list(&this->output_lists_[i]); | 
 |   return ret; | 
 | } | 
 |  | 
 | // Return the number of Output_sections in an Output_data_list. | 
 |  | 
 | unsigned int | 
 | Output_segment::output_section_count_list(const Output_data_list* pdl) const | 
 | { | 
 |   unsigned int count = 0; | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       if ((*p)->is_section()) | 
 | 	++count; | 
 |     } | 
 |   return count; | 
 | } | 
 |  | 
 | // Return the section attached to the list segment with the lowest | 
 | // load address.  This is used when handling a PHDRS clause in a | 
 | // linker script. | 
 |  | 
 | Output_section* | 
 | Output_segment::section_with_lowest_load_address() const | 
 | { | 
 |   Output_section* found = NULL; | 
 |   uint64_t found_lma = 0; | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     this->lowest_load_address_in_list(&this->output_lists_[i], &found, | 
 | 				      &found_lma); | 
 |   return found; | 
 | } | 
 |  | 
 | // Look through a list for a section with a lower load address. | 
 |  | 
 | void | 
 | Output_segment::lowest_load_address_in_list(const Output_data_list* pdl, | 
 | 					    Output_section** found, | 
 | 					    uint64_t* found_lma) const | 
 | { | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       if (!(*p)->is_section()) | 
 | 	continue; | 
 |       Output_section* os = static_cast<Output_section*>(*p); | 
 |       uint64_t lma = (os->has_load_address() | 
 | 		      ? os->load_address() | 
 | 		      : os->address()); | 
 |       if (*found == NULL || lma < *found_lma) | 
 | 	{ | 
 | 	  *found = os; | 
 | 	  *found_lma = lma; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Write the segment data into *OPHDR. | 
 |  | 
 | template<int size, bool big_endian> | 
 | void | 
 | Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr) | 
 | { | 
 |   ophdr->put_p_type(this->type_); | 
 |   ophdr->put_p_offset(this->offset_); | 
 |   ophdr->put_p_vaddr(this->vaddr_); | 
 |   ophdr->put_p_paddr(this->paddr_); | 
 |   ophdr->put_p_filesz(this->filesz_); | 
 |   ophdr->put_p_memsz(this->memsz_); | 
 |   ophdr->put_p_flags(this->flags_); | 
 |   ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment())); | 
 | } | 
 |  | 
 | // Write the section headers into V. | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned char* | 
 | Output_segment::write_section_headers(const Layout* layout, | 
 | 				      const Stringpool* secnamepool, | 
 | 				      unsigned char* v, | 
 | 				      unsigned int* pshndx) const | 
 | { | 
 |   // Every section that is attached to a segment must be attached to a | 
 |   // PT_LOAD segment, so we only write out section headers for PT_LOAD | 
 |   // segments. | 
 |   if (this->type_ != elfcpp::PT_LOAD) | 
 |     return v; | 
 |  | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     { | 
 |       const Output_data_list* pdl = &this->output_lists_[i]; | 
 |       v = this->write_section_headers_list<size, big_endian>(layout, | 
 | 							     secnamepool, | 
 | 							     pdl, | 
 | 							     v, pshndx); | 
 |     } | 
 |  | 
 |   return v; | 
 | } | 
 |  | 
 | template<int size, bool big_endian> | 
 | unsigned char* | 
 | Output_segment::write_section_headers_list(const Layout* layout, | 
 | 					   const Stringpool* secnamepool, | 
 | 					   const Output_data_list* pdl, | 
 | 					   unsigned char* v, | 
 | 					   unsigned int* pshndx) const | 
 | { | 
 |   const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size; | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     { | 
 |       if ((*p)->is_section()) | 
 | 	{ | 
 | 	  const Output_section* ps = static_cast<const Output_section*>(*p); | 
 | 	  gold_assert(*pshndx == ps->out_shndx()); | 
 | 	  elfcpp::Shdr_write<size, big_endian> oshdr(v); | 
 | 	  ps->write_header(layout, secnamepool, &oshdr); | 
 | 	  v += shdr_size; | 
 | 	  ++*pshndx; | 
 | 	} | 
 |     } | 
 |   return v; | 
 | } | 
 |  | 
 | // Print the output sections to the map file. | 
 |  | 
 | void | 
 | Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const | 
 | { | 
 |   if (this->type() != elfcpp::PT_LOAD) | 
 |     return; | 
 |   for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i) | 
 |     this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]); | 
 | } | 
 |  | 
 | // Print an output section list to the map file. | 
 |  | 
 | void | 
 | Output_segment::print_section_list_to_mapfile(Mapfile* mapfile, | 
 | 					      const Output_data_list* pdl) const | 
 | { | 
 |   for (Output_data_list::const_iterator p = pdl->begin(); | 
 |        p != pdl->end(); | 
 |        ++p) | 
 |     (*p)->print_to_mapfile(mapfile); | 
 | } | 
 |  | 
 | // Output_file methods. | 
 |  | 
 | Output_file::Output_file(const char* name) | 
 |   : name_(name), | 
 |     o_(-1), | 
 |     file_size_(0), | 
 |     base_(NULL), | 
 |     map_is_anonymous_(false), | 
 |     map_is_allocated_(false), | 
 |     is_temporary_(false) | 
 | { | 
 | } | 
 |  | 
 | // Try to open an existing file.  Returns false if the file doesn't | 
 | // exist, has a size of 0 or can't be mmapped.  If BASE_NAME is not | 
 | // NULL, open that file as the base for incremental linking, and | 
 | // copy its contents to the new output file.  This routine can | 
 | // be called for incremental updates, in which case WRITABLE should | 
 | // be true, or by the incremental-dump utility, in which case | 
 | // WRITABLE should be false. | 
 |  | 
 | bool | 
 | Output_file::open_base_file(const char* base_name, bool writable) | 
 | { | 
 |   // The name "-" means "stdout". | 
 |   if (strcmp(this->name_, "-") == 0) | 
 |     return false; | 
 |  | 
 |   bool use_base_file = base_name != NULL; | 
 |   if (!use_base_file) | 
 |     base_name = this->name_; | 
 |   else if (strcmp(base_name, this->name_) == 0) | 
 |     gold_fatal(_("%s: incremental base and output file name are the same"), | 
 | 	       base_name); | 
 |  | 
 |   // Don't bother opening files with a size of zero. | 
 |   struct stat s; | 
 |   if (::stat(base_name, &s) != 0) | 
 |     { | 
 |       gold_info(_("%s: stat: %s"), base_name, strerror(errno)); | 
 |       return false; | 
 |     } | 
 |   if (s.st_size == 0) | 
 |     { | 
 |       gold_info(_("%s: incremental base file is empty"), base_name); | 
 |       return false; | 
 |     } | 
 |  | 
 |   // If we're using a base file, we want to open it read-only. | 
 |   if (use_base_file) | 
 |     writable = false; | 
 |  | 
 |   int oflags = writable ? O_RDWR : O_RDONLY; | 
 |   int o = open_descriptor(-1, base_name, oflags, 0); | 
 |   if (o < 0) | 
 |     { | 
 |       gold_info(_("%s: open: %s"), base_name, strerror(errno)); | 
 |       return false; | 
 |     } | 
 |  | 
 |   // If the base file and the output file are different, open a | 
 |   // new output file and read the contents from the base file into | 
 |   // the newly-mapped region. | 
 |   if (use_base_file) | 
 |     { | 
 |       this->open(s.st_size); | 
 |       ssize_t bytes_to_read = s.st_size; | 
 |       unsigned char* p = this->base_; | 
 |       while (bytes_to_read > 0) | 
 | 	{ | 
 | 	  ssize_t len = ::read(o, p, bytes_to_read); | 
 | 	  if (len < 0) | 
 | 	    { | 
 | 	      gold_info(_("%s: read failed: %s"), base_name, strerror(errno)); | 
 | 	      return false; | 
 | 	    } | 
 | 	  if (len == 0) | 
 | 	    { | 
 | 	      gold_info(_("%s: file too short: read only %lld of %lld bytes"), | 
 | 			base_name, | 
 | 			static_cast<long long>(s.st_size - bytes_to_read), | 
 | 			static_cast<long long>(s.st_size)); | 
 | 	      return false; | 
 | 	    } | 
 | 	  p += len; | 
 | 	  bytes_to_read -= len; | 
 | 	} | 
 |       ::close(o); | 
 |       return true; | 
 |     } | 
 |  | 
 |   this->o_ = o; | 
 |   this->file_size_ = s.st_size; | 
 |  | 
 |   if (!this->map_no_anonymous(writable)) | 
 |     { | 
 |       release_descriptor(o, true); | 
 |       this->o_ = -1; | 
 |       this->file_size_ = 0; | 
 |       return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Open the output file. | 
 |  | 
 | void | 
 | Output_file::open(off_t file_size) | 
 | { | 
 |   this->file_size_ = file_size; | 
 |  | 
 |   // Unlink the file first; otherwise the open() may fail if the file | 
 |   // is busy (e.g. it's an executable that's currently being executed). | 
 |   // | 
 |   // However, the linker may be part of a system where a zero-length | 
 |   // file is created for it to write to, with tight permissions (gcc | 
 |   // 2.95 did something like this).  Unlinking the file would work | 
 |   // around those permission controls, so we only unlink if the file | 
 |   // has a non-zero size.  We also unlink only regular files to avoid | 
 |   // trouble with directories/etc. | 
 |   // | 
 |   // If we fail, continue; this command is merely a best-effort attempt | 
 |   // to improve the odds for open(). | 
 |  | 
 |   // We let the name "-" mean "stdout" | 
 |   if (!this->is_temporary_) | 
 |     { | 
 |       if (strcmp(this->name_, "-") == 0) | 
 | 	this->o_ = STDOUT_FILENO; | 
 |       else | 
 | 	{ | 
 | 	  struct stat s; | 
 | 	  if (::stat(this->name_, &s) == 0 | 
 | 	      && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode))) | 
 | 	    { | 
 | 	      if (s.st_size != 0) | 
 | 		::unlink(this->name_); | 
 | 	      else if (!parameters->options().relocatable()) | 
 | 		{ | 
 | 		  // If we don't unlink the existing file, add execute | 
 | 		  // permission where read permissions already exist | 
 | 		  // and where the umask permits. | 
 | 		  int mask = ::umask(0); | 
 | 		  ::umask(mask); | 
 | 		  s.st_mode |= (s.st_mode & 0444) >> 2; | 
 | 		  ::chmod(this->name_, s.st_mode & ~mask); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  int mode = parameters->options().relocatable() ? 0666 : 0777; | 
 | 	  int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC, | 
 | 				  mode); | 
 | 	  if (o < 0) | 
 | 	    gold_fatal(_("%s: open: %s"), this->name_, strerror(errno)); | 
 | 	  this->o_ = o; | 
 | 	} | 
 |     } | 
 |  | 
 |   this->map(); | 
 | } | 
 |  | 
 | // Resize the output file. | 
 |  | 
 | void | 
 | Output_file::resize(off_t file_size) | 
 | { | 
 |   // If the mmap is mapping an anonymous memory buffer, this is easy: | 
 |   // just mremap to the new size.  If it's mapping to a file, we want | 
 |   // to unmap to flush to the file, then remap after growing the file. | 
 |   if (this->map_is_anonymous_) | 
 |     { | 
 |       void* base; | 
 |       if (!this->map_is_allocated_) | 
 | 	{ | 
 | 	  base = ::mremap(this->base_, this->file_size_, file_size, | 
 | 			  MREMAP_MAYMOVE); | 
 | 	  if (base == MAP_FAILED) | 
 | 	    gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno)); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  base = realloc(this->base_, file_size); | 
 | 	  if (base == NULL) | 
 | 	    gold_nomem(); | 
 | 	  if (file_size > this->file_size_) | 
 | 	    memset(static_cast<char*>(base) + this->file_size_, 0, | 
 | 		   file_size - this->file_size_); | 
 | 	} | 
 |       this->base_ = static_cast<unsigned char*>(base); | 
 |       this->file_size_ = file_size; | 
 |     } | 
 |   else | 
 |     { | 
 |       this->unmap(); | 
 |       this->file_size_ = file_size; | 
 |       if (!this->map_no_anonymous(true)) | 
 | 	gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno)); | 
 |     } | 
 | } | 
 |  | 
 | // Map an anonymous block of memory which will later be written to the | 
 | // file.  Return whether the map succeeded. | 
 |  | 
 | bool | 
 | Output_file::map_anonymous() | 
 | { | 
 |   void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE, | 
 | 		      MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); | 
 |   if (base == MAP_FAILED) | 
 |     { | 
 |       base = malloc(this->file_size_); | 
 |       if (base == NULL) | 
 | 	return false; | 
 |       memset(base, 0, this->file_size_); | 
 |       this->map_is_allocated_ = true; | 
 |     } | 
 |   this->base_ = static_cast<unsigned char*>(base); | 
 |   this->map_is_anonymous_ = true; | 
 |   return true; | 
 | } | 
 |  | 
 | // Map the file into memory.  Return whether the mapping succeeded. | 
 | // If WRITABLE is true, map with write access. | 
 |  | 
 | bool | 
 | Output_file::map_no_anonymous(bool writable) | 
 | { | 
 |   const int o = this->o_; | 
 |  | 
 |   // If the output file is not a regular file, don't try to mmap it; | 
 |   // instead, we'll mmap a block of memory (an anonymous buffer), and | 
 |   // then later write the buffer to the file. | 
 |   void* base; | 
 |   struct stat statbuf; | 
 |   if (o == STDOUT_FILENO || o == STDERR_FILENO | 
 |       || ::fstat(o, &statbuf) != 0 | 
 |       || !S_ISREG(statbuf.st_mode) | 
 |       || this->is_temporary_) | 
 |     return false; | 
 |  | 
 |   // Ensure that we have disk space available for the file.  If we | 
 |   // don't do this, it is possible that we will call munmap, close, | 
 |   // and exit with dirty buffers still in the cache with no assigned | 
 |   // disk blocks.  If the disk is out of space at that point, the | 
 |   // output file will wind up incomplete, but we will have already | 
 |   // exited.  The alternative to fallocate would be to use fdatasync, | 
 |   // but that would be a more significant performance hit. | 
 |   if (writable) | 
 |     { | 
 |       int err = gold_fallocate(o, 0, this->file_size_); | 
 |       if (err != 0) | 
 |        gold_fatal(_("%s: %s"), this->name_, strerror(err)); | 
 |     } | 
 |  | 
 |   // Map the file into memory. | 
 |   int prot = PROT_READ; | 
 |   if (writable) | 
 |     prot |= PROT_WRITE; | 
 |   base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0); | 
 |  | 
 |   // The mmap call might fail because of file system issues: the file | 
 |   // system might not support mmap at all, or it might not support | 
 |   // mmap with PROT_WRITE. | 
 |   if (base == MAP_FAILED) | 
 |     return false; | 
 |  | 
 |   this->map_is_anonymous_ = false; | 
 |   this->base_ = static_cast<unsigned char*>(base); | 
 |   return true; | 
 | } | 
 |  | 
 | // Map the file into memory. | 
 |  | 
 | void | 
 | Output_file::map() | 
 | { | 
 |   if (parameters->options().mmap_output_file() | 
 |       && this->map_no_anonymous(true)) | 
 |     return; | 
 |  | 
 |   // The mmap call might fail because of file system issues: the file | 
 |   // system might not support mmap at all, or it might not support | 
 |   // mmap with PROT_WRITE.  I'm not sure which errno values we will | 
 |   // see in all cases, so if the mmap fails for any reason and we | 
 |   // don't care about file contents, try for an anonymous map. | 
 |   if (this->map_anonymous()) | 
 |     return; | 
 |  | 
 |   gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"), | 
 | 	     this->name_, static_cast<unsigned long>(this->file_size_), | 
 | 	     strerror(errno)); | 
 | } | 
 |  | 
 | // Unmap the file from memory. | 
 |  | 
 | void | 
 | Output_file::unmap() | 
 | { | 
 |   if (this->map_is_anonymous_) | 
 |     { | 
 |       // We've already written out the data, so there is no reason to | 
 |       // waste time unmapping or freeing the memory. | 
 |     } | 
 |   else | 
 |     { | 
 |       if (::munmap(this->base_, this->file_size_) < 0) | 
 | 	gold_error(_("%s: munmap: %s"), this->name_, strerror(errno)); | 
 |     } | 
 |   this->base_ = NULL; | 
 | } | 
 |  | 
 | // Close the output file. | 
 |  | 
 | void | 
 | Output_file::close() | 
 | { | 
 |   // If the map isn't file-backed, we need to write it now. | 
 |   if (this->map_is_anonymous_ && !this->is_temporary_) | 
 |     { | 
 |       size_t bytes_to_write = this->file_size_; | 
 |       size_t offset = 0; | 
 |       while (bytes_to_write > 0) | 
 | 	{ | 
 | 	  ssize_t bytes_written = ::write(this->o_, this->base_ + offset, | 
 | 					  bytes_to_write); | 
 | 	  if (bytes_written == 0) | 
 | 	    gold_error(_("%s: write: unexpected 0 return-value"), this->name_); | 
 | 	  else if (bytes_written < 0) | 
 | 	    gold_error(_("%s: write: %s"), this->name_, strerror(errno)); | 
 | 	  else | 
 | 	    { | 
 | 	      bytes_to_write -= bytes_written; | 
 | 	      offset += bytes_written; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   this->unmap(); | 
 |  | 
 |   // We don't close stdout or stderr | 
 |   if (this->o_ != STDOUT_FILENO | 
 |       && this->o_ != STDERR_FILENO | 
 |       && !this->is_temporary_) | 
 |     if (::close(this->o_) < 0) | 
 |       gold_error(_("%s: close: %s"), this->name_, strerror(errno)); | 
 |   this->o_ = -1; | 
 | } | 
 |  | 
 | // Instantiate the templates we need.  We could use the configure | 
 | // script to restrict this to only the ones for implemented targets. | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | off_t | 
 | Output_section::add_input_section<32, false>( | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, false>* object, | 
 |     unsigned int shndx, | 
 |     const char* secname, | 
 |     const elfcpp::Shdr<32, false>& shdr, | 
 |     unsigned int reloc_shndx, | 
 |     bool have_sections_script); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | off_t | 
 | Output_section::add_input_section<32, true>( | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, true>* object, | 
 |     unsigned int shndx, | 
 |     const char* secname, | 
 |     const elfcpp::Shdr<32, true>& shdr, | 
 |     unsigned int reloc_shndx, | 
 |     bool have_sections_script); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | off_t | 
 | Output_section::add_input_section<64, false>( | 
 |     Layout* layout, | 
 |     Sized_relobj_file<64, false>* object, | 
 |     unsigned int shndx, | 
 |     const char* secname, | 
 |     const elfcpp::Shdr<64, false>& shdr, | 
 |     unsigned int reloc_shndx, | 
 |     bool have_sections_script); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | off_t | 
 | Output_section::add_input_section<64, true>( | 
 |     Layout* layout, | 
 |     Sized_relobj_file<64, true>* object, | 
 |     unsigned int shndx, | 
 |     const char* secname, | 
 |     const elfcpp::Shdr<64, true>& shdr, | 
 |     unsigned int reloc_shndx, | 
 |     bool have_sections_script); | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, false, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, false, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, false, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, false, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, true, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, true, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, true, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_REL, true, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, false, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, false, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, false, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, false, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, true, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, true, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, true, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_reloc<elfcpp::SHT_RELA, true, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_LITTLE | 
 | template | 
 | class Output_data_group<32, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_32_BIG | 
 | template | 
 | class Output_data_group<32, true>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_LITTLE | 
 | template | 
 | class Output_data_group<64, false>; | 
 | #endif | 
 |  | 
 | #ifdef HAVE_TARGET_64_BIG | 
 | template | 
 | class Output_data_group<64, true>; | 
 | #endif | 
 |  | 
 | template | 
 | class Output_data_got<32, false>; | 
 |  | 
 | template | 
 | class Output_data_got<32, true>; | 
 |  | 
 | template | 
 | class Output_data_got<64, false>; | 
 |  | 
 | template | 
 | class Output_data_got<64, true>; | 
 |  | 
 | } // End namespace gold. |