|  | /* Common target dependent code for GDB on ARM systems. | 
|  |  | 
|  | Copyright (C) 1988-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  |  | 
|  | #include <ctype.h> | 
|  |  | 
|  | #include "frame.h" | 
|  | #include "language.h" | 
|  | #include "inferior.h" | 
|  | #include "infrun.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "gdbcore.h" | 
|  | #include "dis-asm.h" | 
|  | #include "disasm.h" | 
|  | #include "regcache.h" | 
|  | #include "reggroups.h" | 
|  | #include "target-float.h" | 
|  | #include "value.h" | 
|  | #include "arch-utils.h" | 
|  | #include "osabi.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "objfiles.h" | 
|  | #include "dwarf2.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "prologue-value.h" | 
|  | #include "remote.h" | 
|  | #include "target-descriptions.h" | 
|  | #include "user-regs.h" | 
|  | #include "observable.h" | 
|  | #include "count-one-bits.h" | 
|  |  | 
|  | #include "arch/arm.h" | 
|  | #include "arch/arm-get-next-pcs.h" | 
|  | #include "arm-tdep.h" | 
|  | #include "sim/sim-arm.h" | 
|  |  | 
|  | #include "elf-bfd.h" | 
|  | #include "coff/internal.h" | 
|  | #include "elf/arm.h" | 
|  |  | 
|  | #include "record.h" | 
|  | #include "record-full.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | #include "producer.h" | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | #include "gdbsupport/selftest.h" | 
|  | #endif | 
|  |  | 
|  | static bool arm_debug; | 
|  |  | 
|  | /* Print an "arm" debug statement.  */ | 
|  |  | 
|  | #define arm_debug_printf(fmt, ...) \ | 
|  | debug_prefixed_printf_cond (arm_debug, "arm", fmt, ##__VA_ARGS__) | 
|  |  | 
|  | /* Macros for setting and testing a bit in a minimal symbol that marks | 
|  | it as Thumb function.  The MSB of the minimal symbol's "info" field | 
|  | is used for this purpose. | 
|  |  | 
|  | MSYMBOL_SET_SPECIAL	Actually sets the "special" bit. | 
|  | MSYMBOL_IS_SPECIAL   Tests the "special" bit in a minimal symbol.  */ | 
|  |  | 
|  | #define MSYMBOL_SET_SPECIAL(msym)				\ | 
|  | (msym)->set_target_flag_1 (true) | 
|  |  | 
|  | #define MSYMBOL_IS_SPECIAL(msym)				\ | 
|  | (msym)->target_flag_1 () | 
|  |  | 
|  | struct arm_mapping_symbol | 
|  | { | 
|  | CORE_ADDR value; | 
|  | char type; | 
|  |  | 
|  | bool operator< (const arm_mapping_symbol &other) const | 
|  | { return this->value < other.value; } | 
|  | }; | 
|  |  | 
|  | typedef std::vector<arm_mapping_symbol> arm_mapping_symbol_vec; | 
|  |  | 
|  | struct arm_per_bfd | 
|  | { | 
|  | explicit arm_per_bfd (size_t num_sections) | 
|  | : section_maps (new arm_mapping_symbol_vec[num_sections]), | 
|  | section_maps_sorted (new bool[num_sections] ()) | 
|  | {} | 
|  |  | 
|  | DISABLE_COPY_AND_ASSIGN (arm_per_bfd); | 
|  |  | 
|  | /* Information about mapping symbols ($a, $d, $t) in the objfile. | 
|  |  | 
|  | The format is an array of vectors of arm_mapping_symbols, there is one | 
|  | vector for each section of the objfile (the array is index by BFD section | 
|  | index). | 
|  |  | 
|  | For each section, the vector of arm_mapping_symbol is sorted by | 
|  | symbol value (address).  */ | 
|  | std::unique_ptr<arm_mapping_symbol_vec[]> section_maps; | 
|  |  | 
|  | /* For each corresponding element of section_maps above, is this vector | 
|  | sorted.  */ | 
|  | std::unique_ptr<bool[]> section_maps_sorted; | 
|  | }; | 
|  |  | 
|  | /* Per-bfd data used for mapping symbols.  */ | 
|  | static const registry<bfd>::key<arm_per_bfd> arm_bfd_data_key; | 
|  |  | 
|  | /* The list of available "set arm ..." and "show arm ..." commands.  */ | 
|  | static struct cmd_list_element *setarmcmdlist = NULL; | 
|  | static struct cmd_list_element *showarmcmdlist = NULL; | 
|  |  | 
|  | /* The type of floating-point to use.  Keep this in sync with enum | 
|  | arm_float_model, and the help string in _initialize_arm_tdep.  */ | 
|  | static const char *const fp_model_strings[] = | 
|  | { | 
|  | "auto", | 
|  | "softfpa", | 
|  | "fpa", | 
|  | "softvfp", | 
|  | "vfp", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* A variable that can be configured by the user.  */ | 
|  | static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO; | 
|  | static const char *current_fp_model = "auto"; | 
|  |  | 
|  | /* The ABI to use.  Keep this in sync with arm_abi_kind.  */ | 
|  | static const char *const arm_abi_strings[] = | 
|  | { | 
|  | "auto", | 
|  | "APCS", | 
|  | "AAPCS", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* A variable that can be configured by the user.  */ | 
|  | static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO; | 
|  | static const char *arm_abi_string = "auto"; | 
|  |  | 
|  | /* The execution mode to assume.  */ | 
|  | static const char *const arm_mode_strings[] = | 
|  | { | 
|  | "auto", | 
|  | "arm", | 
|  | "thumb", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const char *arm_fallback_mode_string = "auto"; | 
|  | static const char *arm_force_mode_string = "auto"; | 
|  |  | 
|  | /* The standard register names, and all the valid aliases for them.  Note | 
|  | that `fp', `sp' and `pc' are not added in this alias list, because they | 
|  | have been added as builtin user registers in | 
|  | std-regs.c:_initialize_frame_reg.  */ | 
|  | static const struct | 
|  | { | 
|  | const char *name; | 
|  | int regnum; | 
|  | } arm_register_aliases[] = { | 
|  | /* Basic register numbers.  */ | 
|  | { "r0", 0 }, | 
|  | { "r1", 1 }, | 
|  | { "r2", 2 }, | 
|  | { "r3", 3 }, | 
|  | { "r4", 4 }, | 
|  | { "r5", 5 }, | 
|  | { "r6", 6 }, | 
|  | { "r7", 7 }, | 
|  | { "r8", 8 }, | 
|  | { "r9", 9 }, | 
|  | { "r10", 10 }, | 
|  | { "r11", 11 }, | 
|  | { "r12", 12 }, | 
|  | { "r13", 13 }, | 
|  | { "r14", 14 }, | 
|  | { "r15", 15 }, | 
|  | /* Synonyms (argument and variable registers).  */ | 
|  | { "a1", 0 }, | 
|  | { "a2", 1 }, | 
|  | { "a3", 2 }, | 
|  | { "a4", 3 }, | 
|  | { "v1", 4 }, | 
|  | { "v2", 5 }, | 
|  | { "v3", 6 }, | 
|  | { "v4", 7 }, | 
|  | { "v5", 8 }, | 
|  | { "v6", 9 }, | 
|  | { "v7", 10 }, | 
|  | { "v8", 11 }, | 
|  | /* Other platform-specific names for r9.  */ | 
|  | { "sb", 9 }, | 
|  | { "tr", 9 }, | 
|  | /* Special names.  */ | 
|  | { "ip", 12 }, | 
|  | { "lr", 14 }, | 
|  | /* Names used by GCC (not listed in the ARM EABI).  */ | 
|  | { "sl", 10 }, | 
|  | /* A special name from the older ATPCS.  */ | 
|  | { "wr", 7 }, | 
|  | }; | 
|  |  | 
|  | static const char *const arm_register_names[] = | 
|  | {"r0",  "r1",  "r2",  "r3",	/*  0  1  2  3 */ | 
|  | "r4",  "r5",  "r6",  "r7",	/*  4  5  6  7 */ | 
|  | "r8",  "r9",  "r10", "r11",	/*  8  9 10 11 */ | 
|  | "r12", "sp",  "lr",  "pc",	/* 12 13 14 15 */ | 
|  | "f0",  "f1",  "f2",  "f3",	/* 16 17 18 19 */ | 
|  | "f4",  "f5",  "f6",  "f7",	/* 20 21 22 23 */ | 
|  | "fps", "cpsr" };		/* 24 25       */ | 
|  |  | 
|  | /* Holds the current set of options to be passed to the disassembler.  */ | 
|  | static char *arm_disassembler_options; | 
|  |  | 
|  | /* Valid register name styles.  */ | 
|  | static const char **valid_disassembly_styles; | 
|  |  | 
|  | /* Disassembly style to use. Default to "std" register names.  */ | 
|  | static const char *disassembly_style; | 
|  |  | 
|  | /* All possible arm target descriptors.  */ | 
|  | static struct target_desc *tdesc_arm_list[ARM_FP_TYPE_INVALID][2]; | 
|  | static struct target_desc *tdesc_arm_mprofile_list[ARM_M_TYPE_INVALID]; | 
|  |  | 
|  | /* This is used to keep the bfd arch_info in sync with the disassembly | 
|  | style.  */ | 
|  | static void set_disassembly_style_sfunc (const char *, int, | 
|  | struct cmd_list_element *); | 
|  | static void show_disassembly_style_sfunc (struct ui_file *, int, | 
|  | struct cmd_list_element *, | 
|  | const char *); | 
|  |  | 
|  | static enum register_status arm_neon_quad_read (struct gdbarch *gdbarch, | 
|  | readable_regcache *regcache, | 
|  | int regnum, gdb_byte *buf); | 
|  | static void arm_neon_quad_write (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, | 
|  | int regnum, const gdb_byte *buf); | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self); | 
|  |  | 
|  |  | 
|  | /* get_next_pcs operations.  */ | 
|  | static struct arm_get_next_pcs_ops arm_get_next_pcs_ops = { | 
|  | arm_get_next_pcs_read_memory_unsigned_integer, | 
|  | arm_get_next_pcs_syscall_next_pc, | 
|  | arm_get_next_pcs_addr_bits_remove, | 
|  | arm_get_next_pcs_is_thumb, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | struct arm_prologue_cache | 
|  | { | 
|  | /* The stack pointer at the time this frame was created; i.e. the | 
|  | caller's stack pointer when this function was called.  It is used | 
|  | to identify this frame.  */ | 
|  | CORE_ADDR sp; | 
|  |  | 
|  | /* Additional stack pointers used by M-profile with Security extension.  */ | 
|  | /* Use msp_s / psp_s to hold the values of msp / psp when there is | 
|  | no Security extension.  */ | 
|  | CORE_ADDR msp_s; | 
|  | CORE_ADDR msp_ns; | 
|  | CORE_ADDR psp_s; | 
|  | CORE_ADDR psp_ns; | 
|  |  | 
|  | /* Active stack pointer.  */ | 
|  | int active_sp_regnum; | 
|  | int active_msp_regnum; | 
|  | int active_psp_regnum; | 
|  |  | 
|  | /* The frame base for this frame is just prev_sp - frame size. | 
|  | FRAMESIZE is the distance from the frame pointer to the | 
|  | initial stack pointer.  */ | 
|  |  | 
|  | int framesize; | 
|  |  | 
|  | /* The register used to hold the frame pointer for this frame.  */ | 
|  | int framereg; | 
|  |  | 
|  | /* True if the return address is signed, false otherwise.  */ | 
|  | std::optional<bool> ra_signed_state; | 
|  |  | 
|  | /* Saved register offsets.  */ | 
|  | trad_frame_saved_reg *saved_regs; | 
|  |  | 
|  | arm_prologue_cache() = default; | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Reconstruct T bit in program status register from LR value.  */ | 
|  |  | 
|  | static inline ULONGEST | 
|  | reconstruct_t_bit(struct gdbarch *gdbarch, CORE_ADDR lr, ULONGEST psr) | 
|  | { | 
|  | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); | 
|  | if (IS_THUMB_ADDR (lr)) | 
|  | psr |= t_bit; | 
|  | else | 
|  | psr &= ~t_bit; | 
|  |  | 
|  | return psr; | 
|  | } | 
|  |  | 
|  | /* Initialize CACHE fields for which zero is not adequate (CACHE is | 
|  | expected to have been ZALLOC'ed before calling this function).  */ | 
|  |  | 
|  | static void | 
|  | arm_cache_init (struct arm_prologue_cache *cache, struct gdbarch *gdbarch) | 
|  | { | 
|  | cache->active_sp_regnum = ARM_SP_REGNUM; | 
|  |  | 
|  | cache->saved_regs = trad_frame_alloc_saved_regs (gdbarch); | 
|  | } | 
|  |  | 
|  | /* Similar to the previous function, but extracts GDBARCH from FRAME.  */ | 
|  |  | 
|  | static void | 
|  | arm_cache_init (struct arm_prologue_cache *cache, frame_info_ptr frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | arm_cache_init (cache, gdbarch); | 
|  | cache->sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM); | 
|  |  | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | const CORE_ADDR msp_val | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_msp_regnum); | 
|  | const CORE_ADDR psp_val | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_psp_regnum); | 
|  |  | 
|  | cache->msp_s | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_msp_s_regnum); | 
|  | cache->msp_ns | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_msp_ns_regnum); | 
|  | cache->psp_s | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_psp_s_regnum); | 
|  | cache->psp_ns | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_psp_ns_regnum); | 
|  |  | 
|  | /* Identify what msp is alias for (msp_s or msp_ns).  */ | 
|  | if (msp_val == cache->msp_s) | 
|  | cache->active_msp_regnum = tdep->m_profile_msp_s_regnum; | 
|  | else if (msp_val == cache->msp_ns) | 
|  | cache->active_msp_regnum = tdep->m_profile_msp_ns_regnum; | 
|  | else | 
|  | { | 
|  | warning (_("Invalid state, unable to determine msp alias, assuming " | 
|  | "msp_s.")); | 
|  | cache->active_msp_regnum = tdep->m_profile_msp_s_regnum; | 
|  | } | 
|  |  | 
|  | /* Identify what psp is alias for (psp_s or psp_ns).  */ | 
|  | if (psp_val == cache->psp_s) | 
|  | cache->active_psp_regnum = tdep->m_profile_psp_s_regnum; | 
|  | else if (psp_val == cache->psp_ns) | 
|  | cache->active_psp_regnum = tdep->m_profile_psp_ns_regnum; | 
|  | else | 
|  | { | 
|  | warning (_("Invalid state, unable to determine psp alias, assuming " | 
|  | "psp_s.")); | 
|  | cache->active_psp_regnum = tdep->m_profile_psp_s_regnum; | 
|  | } | 
|  |  | 
|  | /* Identify what sp is alias for (msp_s, msp_ns, psp_s or psp_ns).  */ | 
|  | if (msp_val == cache->sp) | 
|  | cache->active_sp_regnum = cache->active_msp_regnum; | 
|  | else if (psp_val == cache->sp) | 
|  | cache->active_sp_regnum = cache->active_psp_regnum; | 
|  | else | 
|  | { | 
|  | warning (_("Invalid state, unable to determine sp alias, assuming " | 
|  | "msp.")); | 
|  | cache->active_sp_regnum = cache->active_msp_regnum; | 
|  | } | 
|  | } | 
|  | else if (tdep->is_m) | 
|  | { | 
|  | cache->msp_s | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_msp_regnum); | 
|  | cache->psp_s | 
|  | = get_frame_register_unsigned (frame, tdep->m_profile_psp_regnum); | 
|  |  | 
|  | /* Identify what sp is alias for (msp or psp).  */ | 
|  | if (cache->msp_s == cache->sp) | 
|  | cache->active_sp_regnum = tdep->m_profile_msp_regnum; | 
|  | else if (cache->psp_s == cache->sp) | 
|  | cache->active_sp_regnum = tdep->m_profile_psp_regnum; | 
|  | else | 
|  | { | 
|  | warning (_("Invalid state, unable to determine sp alias, assuming " | 
|  | "msp.")); | 
|  | cache->active_sp_regnum = tdep->m_profile_msp_regnum; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | cache->msp_s | 
|  | = get_frame_register_unsigned (frame, ARM_SP_REGNUM); | 
|  |  | 
|  | cache->active_sp_regnum = ARM_SP_REGNUM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the requested stack pointer value (in REGNUM), taking into | 
|  | account whether we have a Security extension or an M-profile | 
|  | CPU.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_cache_get_sp_register (struct arm_prologue_cache *cache, | 
|  | arm_gdbarch_tdep *tdep, int regnum) | 
|  | { | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | if (regnum == tdep->m_profile_msp_s_regnum) | 
|  | return cache->msp_s; | 
|  | if (regnum == tdep->m_profile_msp_ns_regnum) | 
|  | return cache->msp_ns; | 
|  | if (regnum == tdep->m_profile_psp_s_regnum) | 
|  | return cache->psp_s; | 
|  | if (regnum == tdep->m_profile_psp_ns_regnum) | 
|  | return cache->psp_ns; | 
|  | if (regnum == tdep->m_profile_msp_regnum) | 
|  | return arm_cache_get_sp_register (cache, tdep, cache->active_msp_regnum); | 
|  | if (regnum == tdep->m_profile_psp_regnum) | 
|  | return arm_cache_get_sp_register (cache, tdep, cache->active_psp_regnum); | 
|  | if (regnum == ARM_SP_REGNUM) | 
|  | return arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum); | 
|  | } | 
|  | else if (tdep->is_m) | 
|  | { | 
|  | if (regnum == tdep->m_profile_msp_regnum) | 
|  | return cache->msp_s; | 
|  | if (regnum == tdep->m_profile_psp_regnum) | 
|  | return cache->psp_s; | 
|  | if (regnum == ARM_SP_REGNUM) | 
|  | return arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum); | 
|  | } | 
|  | else if (regnum == ARM_SP_REGNUM) | 
|  | return cache->sp; | 
|  |  | 
|  | gdb_assert_not_reached ("Invalid SP selection"); | 
|  | } | 
|  |  | 
|  | /* Return the previous stack address, depending on which SP register | 
|  | is active.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_cache_get_prev_sp_value (struct arm_prologue_cache *cache, arm_gdbarch_tdep *tdep) | 
|  | { | 
|  | CORE_ADDR val = arm_cache_get_sp_register (cache, tdep, cache->active_sp_regnum); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Set the active stack pointer to VAL.  */ | 
|  |  | 
|  | static void | 
|  | arm_cache_set_active_sp_value (struct arm_prologue_cache *cache, | 
|  | arm_gdbarch_tdep *tdep, CORE_ADDR val) | 
|  | { | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | if (cache->active_sp_regnum == tdep->m_profile_msp_s_regnum) | 
|  | cache->msp_s = val; | 
|  | else if (cache->active_sp_regnum == tdep->m_profile_msp_ns_regnum) | 
|  | cache->msp_ns = val; | 
|  | else if (cache->active_sp_regnum == tdep->m_profile_psp_s_regnum) | 
|  | cache->psp_s = val; | 
|  | else if (cache->active_sp_regnum == tdep->m_profile_psp_ns_regnum) | 
|  | cache->psp_ns = val; | 
|  |  | 
|  | return; | 
|  | } | 
|  | else if (tdep->is_m) | 
|  | { | 
|  | if (cache->active_sp_regnum == tdep->m_profile_msp_regnum) | 
|  | cache->msp_s = val; | 
|  | else if (cache->active_sp_regnum == tdep->m_profile_psp_regnum) | 
|  | cache->psp_s = val; | 
|  |  | 
|  | return; | 
|  | } | 
|  | else if (cache->active_sp_regnum == ARM_SP_REGNUM) | 
|  | { | 
|  | cache->sp = val; | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb_assert_not_reached ("Invalid SP selection"); | 
|  | } | 
|  |  | 
|  | /* Return true if REGNUM is one of the alternative stack pointers.  */ | 
|  |  | 
|  | static bool | 
|  | arm_is_alternative_sp_register (arm_gdbarch_tdep *tdep, int regnum) | 
|  | { | 
|  | if ((regnum == tdep->m_profile_msp_regnum) | 
|  | || (regnum == tdep->m_profile_msp_s_regnum) | 
|  | || (regnum == tdep->m_profile_msp_ns_regnum) | 
|  | || (regnum == tdep->m_profile_psp_regnum) | 
|  | || (regnum == tdep->m_profile_psp_s_regnum) | 
|  | || (regnum == tdep->m_profile_psp_ns_regnum)) | 
|  | return true; | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Set the active stack pointer to SP_REGNUM.  */ | 
|  |  | 
|  | static void | 
|  | arm_cache_switch_prev_sp (struct arm_prologue_cache *cache, | 
|  | arm_gdbarch_tdep *tdep, int sp_regnum) | 
|  | { | 
|  | gdb_assert (arm_is_alternative_sp_register (tdep, sp_regnum)); | 
|  |  | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | gdb_assert (sp_regnum != tdep->m_profile_msp_regnum | 
|  | && sp_regnum != tdep->m_profile_psp_regnum); | 
|  |  | 
|  | if (sp_regnum == tdep->m_profile_msp_s_regnum | 
|  | || sp_regnum == tdep->m_profile_psp_s_regnum) | 
|  | { | 
|  | cache->active_msp_regnum = tdep->m_profile_msp_s_regnum; | 
|  | cache->active_psp_regnum = tdep->m_profile_psp_s_regnum; | 
|  | } | 
|  | else if (sp_regnum == tdep->m_profile_msp_ns_regnum | 
|  | || sp_regnum == tdep->m_profile_psp_ns_regnum) | 
|  | { | 
|  | cache->active_msp_regnum = tdep->m_profile_msp_ns_regnum; | 
|  | cache->active_psp_regnum = tdep->m_profile_psp_ns_regnum; | 
|  | } | 
|  | } | 
|  |  | 
|  | cache->active_sp_regnum = sp_regnum; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /* Abstract class to read ARM instructions from memory.  */ | 
|  |  | 
|  | class arm_instruction_reader | 
|  | { | 
|  | public: | 
|  | /* Read a 4 bytes instruction from memory using the BYTE_ORDER endianness.  */ | 
|  | virtual uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const = 0; | 
|  | }; | 
|  |  | 
|  | /* Read instructions from target memory.  */ | 
|  |  | 
|  | class target_arm_instruction_reader : public arm_instruction_reader | 
|  | { | 
|  | public: | 
|  | uint32_t read (CORE_ADDR memaddr, bfd_endian byte_order) const override | 
|  | { | 
|  | return read_code_unsigned_integer (memaddr, 4, byte_order); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } /* namespace */ | 
|  |  | 
|  | static CORE_ADDR arm_analyze_prologue | 
|  | (struct gdbarch *gdbarch, CORE_ADDR prologue_start, CORE_ADDR prologue_end, | 
|  | struct arm_prologue_cache *cache, const arm_instruction_reader &insn_reader); | 
|  |  | 
|  | /* Architecture version for displaced stepping.  This effects the behaviour of | 
|  | certain instructions, and really should not be hard-wired.  */ | 
|  |  | 
|  | #define DISPLACED_STEPPING_ARCH_VERSION		5 | 
|  |  | 
|  | /* See arm-tdep.h.  */ | 
|  |  | 
|  | bool arm_apcs_32 = true; | 
|  | bool arm_unwind_secure_frames = true; | 
|  |  | 
|  | /* Return the bit mask in ARM_PS_REGNUM that indicates Thumb mode.  */ | 
|  |  | 
|  | int | 
|  | arm_psr_thumb_bit (struct gdbarch *gdbarch) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->is_m) | 
|  | return XPSR_T; | 
|  | else | 
|  | return CPSR_T; | 
|  | } | 
|  |  | 
|  | /* Determine if the processor is currently executing in Thumb mode.  */ | 
|  |  | 
|  | int | 
|  | arm_is_thumb (struct regcache *regcache) | 
|  | { | 
|  | ULONGEST cpsr; | 
|  | ULONGEST t_bit = arm_psr_thumb_bit (regcache->arch ()); | 
|  |  | 
|  | cpsr = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM); | 
|  |  | 
|  | return (cpsr & t_bit) != 0; | 
|  | } | 
|  |  | 
|  | /* Determine if FRAME is executing in Thumb mode.  FRAME must be an ARM | 
|  | frame.  */ | 
|  |  | 
|  | int | 
|  | arm_frame_is_thumb (frame_info_ptr frame) | 
|  | { | 
|  | /* Check the architecture of FRAME.  */ | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | gdb_assert (gdbarch_bfd_arch_info (gdbarch)->arch == bfd_arch_arm); | 
|  |  | 
|  | /* Every ARM frame unwinder can unwind the T bit of the CPSR, either | 
|  | directly (from a signal frame or dummy frame) or by interpreting | 
|  | the saved LR (from a prologue or DWARF frame).  So consult it and | 
|  | trust the unwinders.  */ | 
|  | CORE_ADDR cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM); | 
|  |  | 
|  | /* Find and extract the thumb bit.  */ | 
|  | ULONGEST t_bit = arm_psr_thumb_bit (gdbarch); | 
|  | return (cpsr & t_bit) != 0; | 
|  | } | 
|  |  | 
|  | /* Search for the mapping symbol covering MEMADDR.  If one is found, | 
|  | return its type.  Otherwise, return 0.  If START is non-NULL, | 
|  | set *START to the location of the mapping symbol.  */ | 
|  |  | 
|  | static char | 
|  | arm_find_mapping_symbol (CORE_ADDR memaddr, CORE_ADDR *start) | 
|  | { | 
|  | struct obj_section *sec; | 
|  |  | 
|  | /* If there are mapping symbols, consult them.  */ | 
|  | sec = find_pc_section (memaddr); | 
|  | if (sec != NULL) | 
|  | { | 
|  | arm_per_bfd *data = arm_bfd_data_key.get (sec->objfile->obfd.get ()); | 
|  | if (data != NULL) | 
|  | { | 
|  | unsigned int section_idx = sec->the_bfd_section->index; | 
|  | arm_mapping_symbol_vec &map | 
|  | = data->section_maps[section_idx]; | 
|  |  | 
|  | /* Sort the vector on first use.  */ | 
|  | if (!data->section_maps_sorted[section_idx]) | 
|  | { | 
|  | std::sort (map.begin (), map.end ()); | 
|  | data->section_maps_sorted[section_idx] = true; | 
|  | } | 
|  |  | 
|  | arm_mapping_symbol map_key = { memaddr - sec->addr (), 0 }; | 
|  | arm_mapping_symbol_vec::const_iterator it | 
|  | = std::lower_bound (map.begin (), map.end (), map_key); | 
|  |  | 
|  | /* std::lower_bound finds the earliest ordered insertion | 
|  | point.  If the symbol at this position starts at this exact | 
|  | address, we use that; otherwise, the preceding | 
|  | mapping symbol covers this address.  */ | 
|  | if (it < map.end ()) | 
|  | { | 
|  | if (it->value == map_key.value) | 
|  | { | 
|  | if (start) | 
|  | *start = it->value + sec->addr (); | 
|  | return it->type; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (it > map.begin ()) | 
|  | { | 
|  | arm_mapping_symbol_vec::const_iterator prev_it | 
|  | = it - 1; | 
|  |  | 
|  | if (start) | 
|  | *start = prev_it->value + sec->addr (); | 
|  | return prev_it->type; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Determine if the program counter specified in MEMADDR is in a Thumb | 
|  | function.  This function should be called for addresses unrelated to | 
|  | any executing frame; otherwise, prefer arm_frame_is_thumb.  */ | 
|  |  | 
|  | int | 
|  | arm_pc_is_thumb (struct gdbarch *gdbarch, CORE_ADDR memaddr) | 
|  | { | 
|  | struct bound_minimal_symbol sym; | 
|  | char type; | 
|  | arm_displaced_step_copy_insn_closure *dsc = nullptr; | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (gdbarch_displaced_step_copy_insn_closure_by_addr_p (gdbarch)) | 
|  | dsc = ((arm_displaced_step_copy_insn_closure * ) | 
|  | gdbarch_displaced_step_copy_insn_closure_by_addr | 
|  | (gdbarch, current_inferior (), memaddr)); | 
|  |  | 
|  | /* If checking the mode of displaced instruction in copy area, the mode | 
|  | should be determined by instruction on the original address.  */ | 
|  | if (dsc) | 
|  | { | 
|  | displaced_debug_printf ("check mode of %.8lx instead of %.8lx", | 
|  | (unsigned long) dsc->insn_addr, | 
|  | (unsigned long) memaddr); | 
|  | memaddr = dsc->insn_addr; | 
|  | } | 
|  |  | 
|  | /* If bit 0 of the address is set, assume this is a Thumb address.  */ | 
|  | if (IS_THUMB_ADDR (memaddr)) | 
|  | return 1; | 
|  |  | 
|  | /* If the user wants to override the symbol table, let him.  */ | 
|  | if (strcmp (arm_force_mode_string, "arm") == 0) | 
|  | return 0; | 
|  | if (strcmp (arm_force_mode_string, "thumb") == 0) | 
|  | return 1; | 
|  |  | 
|  | /* ARM v6-M and v7-M are always in Thumb mode.  */ | 
|  | if (tdep->is_m) | 
|  | return 1; | 
|  |  | 
|  | /* If there are mapping symbols, consult them.  */ | 
|  | type = arm_find_mapping_symbol (memaddr, NULL); | 
|  | if (type) | 
|  | return type == 't'; | 
|  |  | 
|  | /* Thumb functions have a "special" bit set in minimal symbols.  */ | 
|  | sym = lookup_minimal_symbol_by_pc (memaddr); | 
|  | if (sym.minsym) | 
|  | return (MSYMBOL_IS_SPECIAL (sym.minsym)); | 
|  |  | 
|  | /* If the user wants to override the fallback mode, let them.  */ | 
|  | if (strcmp (arm_fallback_mode_string, "arm") == 0) | 
|  | return 0; | 
|  | if (strcmp (arm_fallback_mode_string, "thumb") == 0) | 
|  | return 1; | 
|  |  | 
|  | /* If we couldn't find any symbol, but we're talking to a running | 
|  | target, then trust the current value of $cpsr.  This lets | 
|  | "display/i $pc" always show the correct mode (though if there is | 
|  | a symbol table we will not reach here, so it still may not be | 
|  | displayed in the mode it will be executed).  */ | 
|  | if (target_has_registers ()) | 
|  | return arm_frame_is_thumb (get_current_frame ()); | 
|  |  | 
|  | /* Otherwise we're out of luck; we assume ARM.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | arm_m_addr_is_lockup (CORE_ADDR addr) | 
|  | { | 
|  | switch (addr) | 
|  | { | 
|  | /* Values for lockup state. | 
|  | For more details see "B1.5.15 Unrecoverable exception cases" in | 
|  | both ARMv6-M and ARMv7-M Architecture Reference Manuals, or | 
|  | see "B4.32 Lockup" in ARMv8-M Architecture Reference Manual.  */ | 
|  | case 0xeffffffe: | 
|  | case 0xfffffffe: | 
|  | case 0xffffffff: | 
|  | return true; | 
|  |  | 
|  | default: | 
|  | /* Address is not lockup.  */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine if the address specified equals any of these magic return | 
|  | values, called EXC_RETURN, defined by the ARM v6-M, v7-M and v8-M | 
|  | architectures.  Also include lockup magic PC value. | 
|  | Check also for FNC_RETURN if we have the v8-M security extension. | 
|  |  | 
|  | From ARMv6-M Reference Manual B1.5.8 | 
|  | Table B1-5 Exception return behavior | 
|  |  | 
|  | EXC_RETURN    Return To        Return Stack | 
|  | 0xFFFFFFF1    Handler mode     Main | 
|  | 0xFFFFFFF9    Thread mode      Main | 
|  | 0xFFFFFFFD    Thread mode      Process | 
|  |  | 
|  | From ARMv7-M Reference Manual B1.5.8 | 
|  | Table B1-8 EXC_RETURN definition of exception return behavior, no FP | 
|  |  | 
|  | EXC_RETURN    Return To        Return Stack | 
|  | 0xFFFFFFF1    Handler mode     Main | 
|  | 0xFFFFFFF9    Thread mode      Main | 
|  | 0xFFFFFFFD    Thread mode      Process | 
|  |  | 
|  | Table B1-9 EXC_RETURN definition of exception return behavior, with | 
|  | FP | 
|  |  | 
|  | EXC_RETURN    Return To        Return Stack    Frame Type | 
|  | 0xFFFFFFE1    Handler mode     Main            Extended | 
|  | 0xFFFFFFE9    Thread mode      Main            Extended | 
|  | 0xFFFFFFED    Thread mode      Process         Extended | 
|  | 0xFFFFFFF1    Handler mode     Main            Basic | 
|  | 0xFFFFFFF9    Thread mode      Main            Basic | 
|  | 0xFFFFFFFD    Thread mode      Process         Basic | 
|  |  | 
|  | For more details see "B1.5.8 Exception return behavior" | 
|  | in both ARMv6-M and ARMv7-M Architecture Reference Manuals. | 
|  |  | 
|  | From ARMv8-M Architecture Technical Reference, D1.2.95 | 
|  | FType, Mode and SPSEL bits are to be considered when the Security | 
|  | Extension is not implemented. | 
|  |  | 
|  | EXC_RETURN    Return To        Return Stack    Frame Type | 
|  | 0xFFFFFFA0    Handler mode     Main            Extended | 
|  | 0xFFFFFFA8    Thread mode      Main            Extended | 
|  | 0xFFFFFFAC    Thread mode      Process         Extended | 
|  | 0xFFFFFFB0    Handler mode     Main            Standard | 
|  | 0xFFFFFFB8    Thread mode      Main            Standard | 
|  | 0xFFFFFFBC    Thread mode      Process         Standard  */ | 
|  |  | 
|  | static int | 
|  | arm_m_addr_is_magic (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | if (arm_m_addr_is_lockup (addr)) | 
|  | return 1; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | switch ((addr & 0xff000000)) | 
|  | { | 
|  | case 0xff000000: /* EXC_RETURN pattern.  */ | 
|  | case 0xfe000000: /* FNC_RETURN pattern.  */ | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | switch (addr) | 
|  | { | 
|  | /* Values from ARMv8-M Architecture Technical Reference.  */ | 
|  | case 0xffffffa0: | 
|  | case 0xffffffa8: | 
|  | case 0xffffffac: | 
|  | case 0xffffffb0: | 
|  | case 0xffffffb8: | 
|  | case 0xffffffbc: | 
|  | /* Values from Tables in B1.5.8 the EXC_RETURN definitions of | 
|  | the exception return behavior.  */ | 
|  | case 0xffffffe1: | 
|  | case 0xffffffe9: | 
|  | case 0xffffffed: | 
|  | case 0xfffffff1: | 
|  | case 0xfffffff9: | 
|  | case 0xfffffffd: | 
|  | /* Address is magic.  */ | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | /* Address is not magic.  */ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove useless bits from addresses in a running program.  */ | 
|  | static CORE_ADDR | 
|  | arm_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR val) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* On M-profile devices, do not strip the low bit from EXC_RETURN | 
|  | (the magic exception return address).  */ | 
|  | if (tdep->is_m && arm_m_addr_is_magic (gdbarch, val)) | 
|  | return val; | 
|  |  | 
|  | if (arm_apcs_32) | 
|  | return UNMAKE_THUMB_ADDR (val); | 
|  | else | 
|  | return (val & 0x03fffffc); | 
|  | } | 
|  |  | 
|  | /* Return 1 if PC is the start of a compiler helper function which | 
|  | can be safely ignored during prologue skipping.  IS_THUMB is true | 
|  | if the function is known to be a Thumb function due to the way it | 
|  | is being called.  */ | 
|  | static int | 
|  | skip_prologue_function (struct gdbarch *gdbarch, CORE_ADDR pc, int is_thumb) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | struct bound_minimal_symbol msym; | 
|  |  | 
|  | msym = lookup_minimal_symbol_by_pc (pc); | 
|  | if (msym.minsym != NULL | 
|  | && msym.value_address () == pc | 
|  | && msym.minsym->linkage_name () != NULL) | 
|  | { | 
|  | const char *name = msym.minsym->linkage_name (); | 
|  |  | 
|  | /* The GNU linker's Thumb call stub to foo is named | 
|  | __foo_from_thumb.  */ | 
|  | if (strstr (name, "_from_thumb") != NULL) | 
|  | name += 2; | 
|  |  | 
|  | /* On soft-float targets, __truncdfsf2 is called to convert promoted | 
|  | arguments to their argument types in non-prototyped | 
|  | functions.  */ | 
|  | if (startswith (name, "__truncdfsf2")) | 
|  | return 1; | 
|  | if (startswith (name, "__aeabi_d2f")) | 
|  | return 1; | 
|  |  | 
|  | /* Internal functions related to thread-local storage.  */ | 
|  | if (startswith (name, "__tls_get_addr")) | 
|  | return 1; | 
|  | if (startswith (name, "__aeabi_read_tp")) | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* If we run against a stripped glibc, we may be unable to identify | 
|  | special functions by name.  Check for one important case, | 
|  | __aeabi_read_tp, by comparing the *code* against the default | 
|  | implementation (this is hand-written ARM assembler in glibc).  */ | 
|  |  | 
|  | if (!is_thumb | 
|  | && read_code_unsigned_integer (pc, 4, byte_order_for_code) | 
|  | == 0xe3e00a0f /* mov r0, #0xffff0fff */ | 
|  | && read_code_unsigned_integer (pc + 4, 4, byte_order_for_code) | 
|  | == 0xe240f01f) /* sub pc, r0, #31 */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Extract the immediate from instruction movw/movt of encoding T.  INSN1 is | 
|  | the first 16-bit of instruction, and INSN2 is the second 16-bit of | 
|  | instruction.  */ | 
|  | #define EXTRACT_MOVW_MOVT_IMM_T(insn1, insn2) \ | 
|  | ((bits ((insn1), 0, 3) << 12)               \ | 
|  | | (bits ((insn1), 10, 10) << 11)           \ | 
|  | | (bits ((insn2), 12, 14) << 8)            \ | 
|  | | bits ((insn2), 0, 7)) | 
|  |  | 
|  | /* Extract the immediate from instruction movw/movt of encoding A.  INSN is | 
|  | the 32-bit instruction.  */ | 
|  | #define EXTRACT_MOVW_MOVT_IMM_A(insn) \ | 
|  | ((bits ((insn), 16, 19) << 12) \ | 
|  | | bits ((insn), 0, 11)) | 
|  |  | 
|  | /* Decode immediate value; implements ThumbExpandImmediate pseudo-op.  */ | 
|  |  | 
|  | static unsigned int | 
|  | thumb_expand_immediate (unsigned int imm) | 
|  | { | 
|  | unsigned int count = imm >> 7; | 
|  |  | 
|  | if (count < 8) | 
|  | switch (count / 2) | 
|  | { | 
|  | case 0: | 
|  | return imm & 0xff; | 
|  | case 1: | 
|  | return (imm & 0xff) | ((imm & 0xff) << 16); | 
|  | case 2: | 
|  | return ((imm & 0xff) << 8) | ((imm & 0xff) << 24); | 
|  | case 3: | 
|  | return (imm & 0xff) | ((imm & 0xff) << 8) | 
|  | | ((imm & 0xff) << 16) | ((imm & 0xff) << 24); | 
|  | } | 
|  |  | 
|  | return (0x80 | (imm & 0x7f)) << (32 - count); | 
|  | } | 
|  |  | 
|  | /* Return 1 if the 16-bit Thumb instruction INSN restores SP in | 
|  | epilogue, 0 otherwise.  */ | 
|  |  | 
|  | static int | 
|  | thumb_instruction_restores_sp (unsigned short insn) | 
|  | { | 
|  | return (insn == 0x46bd  /* mov sp, r7 */ | 
|  | || (insn & 0xff80) == 0xb000  /* add sp, imm */ | 
|  | || (insn & 0xfe00) == 0xbc00);  /* pop <registers> */ | 
|  | } | 
|  |  | 
|  | /* Analyze a Thumb prologue, looking for a recognizable stack frame | 
|  | and frame pointer.  Scan until we encounter a store that could | 
|  | clobber the stack frame unexpectedly, or an unknown instruction. | 
|  | Return the last address which is definitely safe to skip for an | 
|  | initial breakpoint.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | thumb_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR start, CORE_ADDR limit, | 
|  | struct arm_prologue_cache *cache) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | int i; | 
|  | pv_t regs[16]; | 
|  | CORE_ADDR offset; | 
|  | CORE_ADDR unrecognized_pc = 0; | 
|  |  | 
|  | for (i = 0; i < 16; i++) | 
|  | regs[i] = pv_register (i, 0); | 
|  | pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); | 
|  |  | 
|  | while (start < limit) | 
|  | { | 
|  | unsigned short insn; | 
|  | std::optional<bool> ra_signed_state; | 
|  |  | 
|  | insn = read_code_unsigned_integer (start, 2, byte_order_for_code); | 
|  |  | 
|  | if ((insn & 0xfe00) == 0xb400)		/* push { rlist } */ | 
|  | { | 
|  | int regno; | 
|  | int mask; | 
|  |  | 
|  | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) | 
|  | break; | 
|  |  | 
|  | /* Bits 0-7 contain a mask for registers R0-R7.  Bit 8 says | 
|  | whether to save LR (R14).  */ | 
|  | mask = (insn & 0xff) | ((insn & 0x100) << 6); | 
|  |  | 
|  | /* Calculate offsets of saved R0-R7 and LR.  */ | 
|  | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | 
|  | if (mask & (1 << regno)) | 
|  | { | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | 
|  | -4); | 
|  | stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); | 
|  | } | 
|  | } | 
|  | else if ((insn & 0xff80) == 0xb080)	/* sub sp, #imm */ | 
|  | { | 
|  | offset = (insn & 0x7f) << 2;		/* get scaled offset */ | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], | 
|  | -offset); | 
|  | } | 
|  | else if (thumb_instruction_restores_sp (insn)) | 
|  | { | 
|  | /* Don't scan past the epilogue.  */ | 
|  | break; | 
|  | } | 
|  | else if ((insn & 0xf800) == 0xa800)	/* add Rd, sp, #imm */ | 
|  | regs[bits (insn, 8, 10)] = pv_add_constant (regs[ARM_SP_REGNUM], | 
|  | (insn & 0xff) << 2); | 
|  | else if ((insn & 0xfe00) == 0x1c00	/* add Rd, Rn, #imm */ | 
|  | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | 
|  | regs[bits (insn, 0, 2)] = pv_add_constant (regs[bits (insn, 3, 5)], | 
|  | bits (insn, 6, 8)); | 
|  | else if ((insn & 0xf800) == 0x3000	/* add Rd, #imm */ | 
|  | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | 
|  | regs[bits (insn, 8, 10)] = pv_add_constant (regs[bits (insn, 8, 10)], | 
|  | bits (insn, 0, 7)); | 
|  | else if ((insn & 0xfe00) == 0x1800	/* add Rd, Rn, Rm */ | 
|  | && pv_is_register (regs[bits (insn, 6, 8)], ARM_SP_REGNUM) | 
|  | && pv_is_constant (regs[bits (insn, 3, 5)])) | 
|  | regs[bits (insn, 0, 2)] = pv_add (regs[bits (insn, 3, 5)], | 
|  | regs[bits (insn, 6, 8)]); | 
|  | else if ((insn & 0xff00) == 0x4400	/* add Rd, Rm */ | 
|  | && pv_is_constant (regs[bits (insn, 3, 6)])) | 
|  | { | 
|  | int rd = (bit (insn, 7) << 3) + bits (insn, 0, 2); | 
|  | int rm = bits (insn, 3, 6); | 
|  | regs[rd] = pv_add (regs[rd], regs[rm]); | 
|  | } | 
|  | else if ((insn & 0xff00) == 0x4600)	/* mov hi, lo or mov lo, hi */ | 
|  | { | 
|  | int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4); | 
|  | int src_reg = (insn & 0x78) >> 3; | 
|  | regs[dst_reg] = regs[src_reg]; | 
|  | } | 
|  | else if ((insn & 0xf800) == 0x9000)	/* str rd, [sp, #off] */ | 
|  | { | 
|  | /* Handle stores to the stack.  Normally pushes are used, | 
|  | but with GCC -mtpcs-frame, there may be other stores | 
|  | in the prologue to create the frame.  */ | 
|  | int regno = (insn >> 8) & 0x7; | 
|  | pv_t addr; | 
|  |  | 
|  | offset = (insn & 0xff) << 2; | 
|  | addr = pv_add_constant (regs[ARM_SP_REGNUM], offset); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | stack.store (addr, 4, regs[regno]); | 
|  | } | 
|  | else if ((insn & 0xf800) == 0x6000)	/* str rd, [rn, #off] */ | 
|  | { | 
|  | int rd = bits (insn, 0, 2); | 
|  | int rn = bits (insn, 3, 5); | 
|  | pv_t addr; | 
|  |  | 
|  | offset = bits (insn, 6, 10) << 2; | 
|  | addr = pv_add_constant (regs[rn], offset); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | stack.store (addr, 4, regs[rd]); | 
|  | } | 
|  | else if (((insn & 0xf800) == 0x7000	/* strb Rd, [Rn, #off] */ | 
|  | || (insn & 0xf800) == 0x8000)	/* strh Rd, [Rn, #off] */ | 
|  | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM)) | 
|  | /* Ignore stores of argument registers to the stack.  */ | 
|  | ; | 
|  | else if ((insn & 0xf800) == 0xc800	/* ldmia Rn!, { registers } */ | 
|  | && pv_is_register (regs[bits (insn, 8, 10)], ARM_SP_REGNUM)) | 
|  | /* Ignore block loads from the stack, potentially copying | 
|  | parameters from memory.  */ | 
|  | ; | 
|  | else if ((insn & 0xf800) == 0x9800	/* ldr Rd, [Rn, #immed] */ | 
|  | || ((insn & 0xf800) == 0x6800	/* ldr Rd, [sp, #immed] */ | 
|  | && pv_is_register (regs[bits (insn, 3, 5)], ARM_SP_REGNUM))) | 
|  | /* Similarly ignore single loads from the stack.  */ | 
|  | ; | 
|  | else if ((insn & 0xffc0) == 0x0000	/* lsls Rd, Rm, #0 */ | 
|  | || (insn & 0xffc0) == 0x1c00)	/* add Rd, Rn, #0 */ | 
|  | /* Skip register copies, i.e. saves to another register | 
|  | instead of the stack.  */ | 
|  | ; | 
|  | else if ((insn & 0xf800) == 0x2000)	/* movs Rd, #imm */ | 
|  | /* Recognize constant loads; even with small stacks these are necessary | 
|  | on Thumb.  */ | 
|  | regs[bits (insn, 8, 10)] = pv_constant (bits (insn, 0, 7)); | 
|  | else if ((insn & 0xf800) == 0x4800)	/* ldr Rd, [pc, #imm] */ | 
|  | { | 
|  | /* Constant pool loads, for the same reason.  */ | 
|  | unsigned int constant; | 
|  | CORE_ADDR loc; | 
|  |  | 
|  | loc = start + 4 + bits (insn, 0, 7) * 4; | 
|  | constant = read_memory_unsigned_integer (loc, 4, byte_order); | 
|  | regs[bits (insn, 8, 10)] = pv_constant (constant); | 
|  | } | 
|  | else if (thumb_insn_size (insn) == 4) /* 32-bit Thumb-2 instructions.  */ | 
|  | { | 
|  | unsigned short inst2; | 
|  |  | 
|  | inst2 = read_code_unsigned_integer (start + 2, 2, | 
|  | byte_order_for_code); | 
|  | uint32_t whole_insn = (insn << 16) | inst2; | 
|  |  | 
|  | if ((insn & 0xf800) == 0xf000 && (inst2 & 0xe800) == 0xe800) | 
|  | { | 
|  | /* BL, BLX.  Allow some special function calls when | 
|  | skipping the prologue; GCC generates these before | 
|  | storing arguments to the stack.  */ | 
|  | CORE_ADDR nextpc; | 
|  | int j1, j2, imm1, imm2; | 
|  |  | 
|  | imm1 = sbits (insn, 0, 10); | 
|  | imm2 = bits (inst2, 0, 10); | 
|  | j1 = bit (inst2, 13); | 
|  | j2 = bit (inst2, 11); | 
|  |  | 
|  | offset = ((imm1 << 12) + (imm2 << 1)); | 
|  | offset ^= ((!j2) << 22) | ((!j1) << 23); | 
|  |  | 
|  | nextpc = start + 4 + offset; | 
|  | /* For BLX make sure to clear the low bits.  */ | 
|  | if (bit (inst2, 12) == 0) | 
|  | nextpc = nextpc & 0xfffffffc; | 
|  |  | 
|  | if (!skip_prologue_function (gdbarch, nextpc, | 
|  | bit (inst2, 12) != 0)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xffd0) == 0xe900    /* stmdb Rn{!}, | 
|  | { registers } */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | { | 
|  | pv_t addr = regs[bits (insn, 0, 3)]; | 
|  | int regno; | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | /* Calculate offsets of saved registers.  */ | 
|  | for (regno = ARM_LR_REGNUM; regno >= 0; regno--) | 
|  | if (inst2 & (1 << regno)) | 
|  | { | 
|  | addr = pv_add_constant (addr, -4); | 
|  | stack.store (addr, 4, regs[regno]); | 
|  | } | 
|  |  | 
|  | if (insn & 0x0020) | 
|  | regs[bits (insn, 0, 3)] = addr; | 
|  | } | 
|  |  | 
|  | /* vstmdb Rn{!}, { D-registers } (aka vpush).  */ | 
|  | else if ((insn & 0xff20) == 0xed20 | 
|  | && (inst2 & 0x0f00) == 0x0b00 | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | { | 
|  | /* Address SP points to.  */ | 
|  | pv_t addr = regs[bits (insn, 0, 3)]; | 
|  |  | 
|  | /* Number of registers saved.  */ | 
|  | unsigned int number = bits (inst2, 0, 7) >> 1; | 
|  |  | 
|  | /* First register to save.  */ | 
|  | int vd = bits (inst2, 12, 15) | (bits (insn, 6, 6) << 4); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | /* Calculate offsets of saved registers.  */ | 
|  | for (; number > 0; number--) | 
|  | { | 
|  | addr = pv_add_constant (addr, -8); | 
|  | stack.store (addr, 8, pv_register (ARM_D0_REGNUM | 
|  | + vd + number, 0)); | 
|  | } | 
|  |  | 
|  | /* Writeback SP to account for the saved registers.  */ | 
|  | regs[bits (insn, 0, 3)] = addr; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xff50) == 0xe940	/* strd Rt, Rt2, | 
|  | [Rn, #+/-imm]{!} */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | { | 
|  | int regno1 = bits (inst2, 12, 15); | 
|  | int regno2 = bits (inst2, 8, 11); | 
|  | pv_t addr = regs[bits (insn, 0, 3)]; | 
|  |  | 
|  | offset = inst2 & 0xff; | 
|  | if (insn & 0x0080) | 
|  | addr = pv_add_constant (addr, offset); | 
|  | else | 
|  | addr = pv_add_constant (addr, -offset); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | stack.store (addr, 4, regs[regno1]); | 
|  | stack.store (pv_add_constant (addr, 4), | 
|  | 4, regs[regno2]); | 
|  |  | 
|  | if (insn & 0x0020) | 
|  | regs[bits (insn, 0, 3)] = addr; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfff0) == 0xf8c0	/* str Rt,[Rn,+/-#imm]{!} */ | 
|  | && (inst2 & 0x0c00) == 0x0c00 | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | { | 
|  | int regno = bits (inst2, 12, 15); | 
|  | pv_t addr = regs[bits (insn, 0, 3)]; | 
|  |  | 
|  | offset = inst2 & 0xff; | 
|  | if (inst2 & 0x0200) | 
|  | addr = pv_add_constant (addr, offset); | 
|  | else | 
|  | addr = pv_add_constant (addr, -offset); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | stack.store (addr, 4, regs[regno]); | 
|  |  | 
|  | if (inst2 & 0x0100) | 
|  | regs[bits (insn, 0, 3)] = addr; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfff0) == 0xf8c0	/* str.w Rt,[Rn,#imm] */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | { | 
|  | int regno = bits (inst2, 12, 15); | 
|  | pv_t addr; | 
|  |  | 
|  | offset = inst2 & 0xfff; | 
|  | addr = pv_add_constant (regs[bits (insn, 0, 3)], offset); | 
|  |  | 
|  | if (stack.store_would_trash (addr)) | 
|  | break; | 
|  |  | 
|  | stack.store (addr, 4, regs[regno]); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xffd0) == 0xf880	/* str{bh}.w Rt,[Rn,#imm] */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Ignore stores of argument registers to the stack.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xffd0) == 0xf800	/* str{bh} Rt,[Rn,#+/-imm] */ | 
|  | && (inst2 & 0x0d00) == 0x0c00 | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Ignore stores of argument registers to the stack.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xffd0) == 0xe890	/* ldmia Rn[!], | 
|  | { registers } */ | 
|  | && (inst2 & 0x8000) == 0x0000 | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Ignore block loads from the stack, potentially copying | 
|  | parameters from memory.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xff70) == 0xe950    /* ldrd Rt, Rt2, | 
|  | [Rn, #+/-imm] */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Similarly ignore dual loads from the stack.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xfff0) == 0xf850	/* ldr Rt,[Rn,#+/-imm] */ | 
|  | && (inst2 & 0x0d00) == 0x0c00 | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Similarly ignore single loads from the stack.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xfff0) == 0xf8d0	/* ldr.w Rt,[Rn,#imm] */ | 
|  | && pv_is_register (regs[bits (insn, 0, 3)], ARM_SP_REGNUM)) | 
|  | /* Similarly ignore single loads from the stack.  */ | 
|  | ; | 
|  |  | 
|  | else if ((insn & 0xfbf0) == 0xf100	/* add.w Rd, Rn, #imm */ | 
|  | && (inst2 & 0x8000) == 0x0000) | 
|  | { | 
|  | unsigned int imm = ((bits (insn, 10, 10) << 11) | 
|  | | (bits (inst2, 12, 14) << 8) | 
|  | | bits (inst2, 0, 7)); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] | 
|  | = pv_add_constant (regs[bits (insn, 0, 3)], | 
|  | thumb_expand_immediate (imm)); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfbf0) == 0xf200	/* addw Rd, Rn, #imm */ | 
|  | && (inst2 & 0x8000) == 0x0000) | 
|  | { | 
|  | unsigned int imm = ((bits (insn, 10, 10) << 11) | 
|  | | (bits (inst2, 12, 14) << 8) | 
|  | | bits (inst2, 0, 7)); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] | 
|  | = pv_add_constant (regs[bits (insn, 0, 3)], imm); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfbf0) == 0xf1a0	/* sub.w Rd, Rn, #imm */ | 
|  | && (inst2 & 0x8000) == 0x0000) | 
|  | { | 
|  | unsigned int imm = ((bits (insn, 10, 10) << 11) | 
|  | | (bits (inst2, 12, 14) << 8) | 
|  | | bits (inst2, 0, 7)); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] | 
|  | = pv_add_constant (regs[bits (insn, 0, 3)], | 
|  | - (CORE_ADDR) thumb_expand_immediate (imm)); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfbf0) == 0xf2a0	/* subw Rd, Rn, #imm */ | 
|  | && (inst2 & 0x8000) == 0x0000) | 
|  | { | 
|  | unsigned int imm = ((bits (insn, 10, 10) << 11) | 
|  | | (bits (inst2, 12, 14) << 8) | 
|  | | bits (inst2, 0, 7)); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] | 
|  | = pv_add_constant (regs[bits (insn, 0, 3)], - (CORE_ADDR) imm); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfbff) == 0xf04f)	/* mov.w Rd, #const */ | 
|  | { | 
|  | unsigned int imm = ((bits (insn, 10, 10) << 11) | 
|  | | (bits (inst2, 12, 14) << 8) | 
|  | | bits (inst2, 0, 7)); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] | 
|  | = pv_constant (thumb_expand_immediate (imm)); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xfbf0) == 0xf240)	/* movw Rd, #const */ | 
|  | { | 
|  | unsigned int imm | 
|  | = EXTRACT_MOVW_MOVT_IMM_T (insn, inst2); | 
|  |  | 
|  | regs[bits (inst2, 8, 11)] = pv_constant (imm); | 
|  | } | 
|  |  | 
|  | else if (insn == 0xea5f		/* mov.w Rd,Rm */ | 
|  | && (inst2 & 0xf0f0) == 0) | 
|  | { | 
|  | int dst_reg = (inst2 & 0x0f00) >> 8; | 
|  | int src_reg = inst2 & 0xf; | 
|  | regs[dst_reg] = regs[src_reg]; | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xff7f) == 0xf85f)	/* ldr.w Rt,<label> */ | 
|  | { | 
|  | /* Constant pool loads.  */ | 
|  | unsigned int constant; | 
|  | CORE_ADDR loc; | 
|  |  | 
|  | offset = bits (inst2, 0, 11); | 
|  | if (insn & 0x0080) | 
|  | loc = start + 4 + offset; | 
|  | else | 
|  | loc = start + 4 - offset; | 
|  |  | 
|  | constant = read_memory_unsigned_integer (loc, 4, byte_order); | 
|  | regs[bits (inst2, 12, 15)] = pv_constant (constant); | 
|  | } | 
|  |  | 
|  | else if ((insn & 0xff7f) == 0xe95f)	/* ldrd Rt,Rt2,<label> */ | 
|  | { | 
|  | /* Constant pool loads.  */ | 
|  | unsigned int constant; | 
|  | CORE_ADDR loc; | 
|  |  | 
|  | offset = bits (inst2, 0, 7) << 2; | 
|  | if (insn & 0x0080) | 
|  | loc = start + 4 + offset; | 
|  | else | 
|  | loc = start + 4 - offset; | 
|  |  | 
|  | constant = read_memory_unsigned_integer (loc, 4, byte_order); | 
|  | regs[bits (inst2, 12, 15)] = pv_constant (constant); | 
|  |  | 
|  | constant = read_memory_unsigned_integer (loc + 4, 4, byte_order); | 
|  | regs[bits (inst2, 8, 11)] = pv_constant (constant); | 
|  | } | 
|  | /* Start of ARMv8.1-m PACBTI extension instructions.  */ | 
|  | else if (IS_PAC (whole_insn)) | 
|  | { | 
|  | /* LR and SP are input registers.  PAC is in R12.  LR is | 
|  | signed from this point onwards.  NOP space.  */ | 
|  | ra_signed_state = true; | 
|  | } | 
|  | else if (IS_PACBTI (whole_insn)) | 
|  | { | 
|  | /* LR and SP are input registers.  PAC is in R12 and PC is a | 
|  | valid BTI landing pad.  LR is signed from this point onwards. | 
|  | NOP space.  */ | 
|  | ra_signed_state = true; | 
|  | } | 
|  | else if (IS_BTI (whole_insn)) | 
|  | { | 
|  | /* Valid BTI landing pad.  NOP space.  */ | 
|  | } | 
|  | else if (IS_PACG (whole_insn)) | 
|  | { | 
|  | /* Sign Rn using Rm and store the PAC in Rd.  Rd is signed from | 
|  | this point onwards.  */ | 
|  | ra_signed_state = true; | 
|  | } | 
|  | else if (IS_AUT (whole_insn) || IS_AUTG (whole_insn)) | 
|  | { | 
|  | /* These instructions appear close to the epilogue, when signed | 
|  | pointers are getting authenticated.  */ | 
|  | ra_signed_state = false; | 
|  | } | 
|  | /* End of ARMv8.1-m PACBTI extension instructions */ | 
|  | else if (thumb2_instruction_changes_pc (insn, inst2)) | 
|  | { | 
|  | /* Don't scan past anything that might change control flow.  */ | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The optimizer might shove anything into the prologue, | 
|  | so we just skip what we don't recognize.  */ | 
|  | unrecognized_pc = start; | 
|  | } | 
|  |  | 
|  | /* Make sure we are dealing with a target that supports ARMv8.1-m | 
|  | PACBTI.  */ | 
|  | if (cache != nullptr && tdep->have_pacbti | 
|  | && ra_signed_state.has_value ()) | 
|  | { | 
|  | arm_debug_printf ("Found pacbti instruction at %s", | 
|  | paddress (gdbarch, start)); | 
|  | arm_debug_printf ("RA is %s", | 
|  | *ra_signed_state ? "signed" : "not signed"); | 
|  | cache->ra_signed_state = ra_signed_state; | 
|  | } | 
|  |  | 
|  | start += 2; | 
|  | } | 
|  | else if (thumb_instruction_changes_pc (insn)) | 
|  | { | 
|  | /* Don't scan past anything that might change control flow.  */ | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The optimizer might shove anything into the prologue, | 
|  | so we just skip what we don't recognize.  */ | 
|  | unrecognized_pc = start; | 
|  | } | 
|  |  | 
|  | start += 2; | 
|  | } | 
|  |  | 
|  | arm_debug_printf ("Prologue scan stopped at %s", | 
|  | paddress (gdbarch, start)); | 
|  |  | 
|  | if (unrecognized_pc == 0) | 
|  | unrecognized_pc = start; | 
|  |  | 
|  | if (cache == NULL) | 
|  | return unrecognized_pc; | 
|  |  | 
|  | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | 
|  | { | 
|  | /* Frame pointer is fp.  Frame size is constant.  */ | 
|  | cache->framereg = ARM_FP_REGNUM; | 
|  | cache->framesize = -regs[ARM_FP_REGNUM].k; | 
|  | } | 
|  | else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM)) | 
|  | { | 
|  | /* Frame pointer is r7.  Frame size is constant.  */ | 
|  | cache->framereg = THUMB_FP_REGNUM; | 
|  | cache->framesize = -regs[THUMB_FP_REGNUM].k; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Try the stack pointer... this is a bit desperate.  */ | 
|  | cache->framereg = ARM_SP_REGNUM; | 
|  | cache->framesize = -regs[ARM_SP_REGNUM].k; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < gdbarch_num_regs (gdbarch); i++) | 
|  | if (stack.find_reg (gdbarch, i, &offset)) | 
|  | { | 
|  | cache->saved_regs[i].set_addr (offset); | 
|  | if (i == ARM_SP_REGNUM) | 
|  | arm_cache_set_active_sp_value(cache, tdep, offset); | 
|  | } | 
|  |  | 
|  | return unrecognized_pc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Try to analyze the instructions starting from PC, which load symbol | 
|  | __stack_chk_guard.  Return the address of instruction after loading this | 
|  | symbol, set the dest register number to *BASEREG, and set the size of | 
|  | instructions for loading symbol in OFFSET.  Return 0 if instructions are | 
|  | not recognized.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_analyze_load_stack_chk_guard(CORE_ADDR pc, struct gdbarch *gdbarch, | 
|  | unsigned int *destreg, int *offset) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | 
|  | unsigned int low, high, address; | 
|  |  | 
|  | address = 0; | 
|  | if (is_thumb) | 
|  | { | 
|  | unsigned short insn1 | 
|  | = read_code_unsigned_integer (pc, 2, byte_order_for_code); | 
|  |  | 
|  | if ((insn1 & 0xf800) == 0x4800) /* ldr Rd, #immed */ | 
|  | { | 
|  | *destreg = bits (insn1, 8, 10); | 
|  | *offset = 2; | 
|  | address = (pc & 0xfffffffc) + 4 + (bits (insn1, 0, 7) << 2); | 
|  | address = read_memory_unsigned_integer (address, 4, | 
|  | byte_order_for_code); | 
|  | } | 
|  | else if ((insn1 & 0xfbf0) == 0xf240) /* movw Rd, #const */ | 
|  | { | 
|  | unsigned short insn2 | 
|  | = read_code_unsigned_integer (pc + 2, 2, byte_order_for_code); | 
|  |  | 
|  | low = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | 
|  |  | 
|  | insn1 | 
|  | = read_code_unsigned_integer (pc + 4, 2, byte_order_for_code); | 
|  | insn2 | 
|  | = read_code_unsigned_integer (pc + 6, 2, byte_order_for_code); | 
|  |  | 
|  | /* movt Rd, #const */ | 
|  | if ((insn1 & 0xfbc0) == 0xf2c0) | 
|  | { | 
|  | high = EXTRACT_MOVW_MOVT_IMM_T (insn1, insn2); | 
|  | *destreg = bits (insn2, 8, 11); | 
|  | *offset = 8; | 
|  | address = (high << 16 | low); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int insn | 
|  | = read_code_unsigned_integer (pc, 4, byte_order_for_code); | 
|  |  | 
|  | if ((insn & 0x0e5f0000) == 0x041f0000) /* ldr Rd, [PC, #immed] */ | 
|  | { | 
|  | address = bits (insn, 0, 11) + pc + 8; | 
|  | address = read_memory_unsigned_integer (address, 4, | 
|  | byte_order_for_code); | 
|  |  | 
|  | *destreg = bits (insn, 12, 15); | 
|  | *offset = 4; | 
|  | } | 
|  | else if ((insn & 0x0ff00000) == 0x03000000) /* movw Rd, #const */ | 
|  | { | 
|  | low = EXTRACT_MOVW_MOVT_IMM_A (insn); | 
|  |  | 
|  | insn | 
|  | = read_code_unsigned_integer (pc + 4, 4, byte_order_for_code); | 
|  |  | 
|  | if ((insn & 0x0ff00000) == 0x03400000) /* movt Rd, #const */ | 
|  | { | 
|  | high = EXTRACT_MOVW_MOVT_IMM_A (insn); | 
|  | *destreg = bits (insn, 12, 15); | 
|  | *offset = 8; | 
|  | address = (high << 16 | low); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return address; | 
|  | } | 
|  |  | 
|  | /* Try to skip a sequence of instructions used for stack protector.  If PC | 
|  | points to the first instruction of this sequence, return the address of | 
|  | first instruction after this sequence, otherwise, return original PC. | 
|  |  | 
|  | On arm, this sequence of instructions is composed of mainly three steps, | 
|  | Step 1: load symbol __stack_chk_guard, | 
|  | Step 2: load from address of __stack_chk_guard, | 
|  | Step 3: store it to somewhere else. | 
|  |  | 
|  | Usually, instructions on step 2 and step 3 are the same on various ARM | 
|  | architectures.  On step 2, it is one instruction 'ldr Rx, [Rn, #0]', and | 
|  | on step 3, it is also one instruction 'str Rx, [r7, #immd]'.  However, | 
|  | instructions in step 1 vary from different ARM architectures.  On ARMv7, | 
|  | they are, | 
|  |  | 
|  | movw	Rn, #:lower16:__stack_chk_guard | 
|  | movt	Rn, #:upper16:__stack_chk_guard | 
|  |  | 
|  | On ARMv5t, it is, | 
|  |  | 
|  | ldr	Rn, .Label | 
|  | .... | 
|  | .Lable: | 
|  | .word	__stack_chk_guard | 
|  |  | 
|  | Since ldr/str is a very popular instruction, we can't use them as | 
|  | 'fingerprint' or 'signature' of stack protector sequence.  Here we choose | 
|  | sequence {movw/movt, ldr}/ldr/str plus symbol __stack_chk_guard, if not | 
|  | stripped, as the 'fingerprint' of a stack protector cdoe sequence.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_skip_stack_protector(CORE_ADDR pc, struct gdbarch *gdbarch) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | unsigned int basereg; | 
|  | struct bound_minimal_symbol stack_chk_guard; | 
|  | int offset; | 
|  | int is_thumb = arm_pc_is_thumb (gdbarch, pc); | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | /* Try to parse the instructions in Step 1.  */ | 
|  | addr = arm_analyze_load_stack_chk_guard (pc, gdbarch, | 
|  | &basereg, &offset); | 
|  | if (!addr) | 
|  | return pc; | 
|  |  | 
|  | stack_chk_guard = lookup_minimal_symbol_by_pc (addr); | 
|  | /* ADDR must correspond to a symbol whose name is __stack_chk_guard. | 
|  | Otherwise, this sequence cannot be for stack protector.  */ | 
|  | if (stack_chk_guard.minsym == NULL | 
|  | || !startswith (stack_chk_guard.minsym->linkage_name (), "__stack_chk_guard")) | 
|  | return pc; | 
|  |  | 
|  | if (is_thumb) | 
|  | { | 
|  | unsigned int destreg; | 
|  | unsigned short insn | 
|  | = read_code_unsigned_integer (pc + offset, 2, byte_order_for_code); | 
|  |  | 
|  | /* Step 2: ldr Rd, [Rn, #immed], encoding T1.  */ | 
|  | if ((insn & 0xf800) != 0x6800) | 
|  | return pc; | 
|  | if (bits (insn, 3, 5) != basereg) | 
|  | return pc; | 
|  | destreg = bits (insn, 0, 2); | 
|  |  | 
|  | insn = read_code_unsigned_integer (pc + offset + 2, 2, | 
|  | byte_order_for_code); | 
|  | /* Step 3: str Rd, [Rn, #immed], encoding T1.  */ | 
|  | if ((insn & 0xf800) != 0x6000) | 
|  | return pc; | 
|  | if (destreg != bits (insn, 0, 2)) | 
|  | return pc; | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int destreg; | 
|  | unsigned int insn | 
|  | = read_code_unsigned_integer (pc + offset, 4, byte_order_for_code); | 
|  |  | 
|  | /* Step 2: ldr Rd, [Rn, #immed], encoding A1.  */ | 
|  | if ((insn & 0x0e500000) != 0x04100000) | 
|  | return pc; | 
|  | if (bits (insn, 16, 19) != basereg) | 
|  | return pc; | 
|  | destreg = bits (insn, 12, 15); | 
|  | /* Step 3: str Rd, [Rn, #immed], encoding A1.  */ | 
|  | insn = read_code_unsigned_integer (pc + offset + 4, | 
|  | 4, byte_order_for_code); | 
|  | if ((insn & 0x0e500000) != 0x04000000) | 
|  | return pc; | 
|  | if (bits (insn, 12, 15) != destreg) | 
|  | return pc; | 
|  | } | 
|  | /* The size of total two instructions ldr/str is 4 on Thumb-2, while 8 | 
|  | on arm.  */ | 
|  | if (is_thumb) | 
|  | return pc + offset + 4; | 
|  | else | 
|  | return pc + offset + 8; | 
|  | } | 
|  |  | 
|  | /* Advance the PC across any function entry prologue instructions to | 
|  | reach some "real" code. | 
|  |  | 
|  | The APCS (ARM Procedure Call Standard) defines the following | 
|  | prologue: | 
|  |  | 
|  | mov          ip, sp | 
|  | [stmfd       sp!, {a1,a2,a3,a4}] | 
|  | stmfd        sp!, {...,fp,ip,lr,pc} | 
|  | [stfe        f7, [sp, #-12]!] | 
|  | [stfe        f6, [sp, #-12]!] | 
|  | [stfe        f5, [sp, #-12]!] | 
|  | [stfe        f4, [sp, #-12]!] | 
|  | sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr, func_end_addr, limit_pc; | 
|  |  | 
|  | /* See if we can determine the end of the prologue via the symbol table. | 
|  | If so, then return either PC, or the PC after the prologue, whichever | 
|  | is greater.  */ | 
|  | bool func_addr_found | 
|  | = find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr); | 
|  |  | 
|  | /* Whether the function is thumb mode or not.  */ | 
|  | bool func_is_thumb = false; | 
|  |  | 
|  | if (func_addr_found) | 
|  | { | 
|  | CORE_ADDR post_prologue_pc | 
|  | = skip_prologue_using_sal (gdbarch, func_addr); | 
|  | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); | 
|  |  | 
|  | if (post_prologue_pc) | 
|  | post_prologue_pc | 
|  | = arm_skip_stack_protector (post_prologue_pc, gdbarch); | 
|  |  | 
|  |  | 
|  | /* GCC always emits a line note before the prologue and another | 
|  | one after, even if the two are at the same address or on the | 
|  | same line.  Take advantage of this so that we do not need to | 
|  | know every instruction that might appear in the prologue.  We | 
|  | will have producer information for most binaries; if it is | 
|  | missing (e.g. for -gstabs), assuming the GNU tools.  */ | 
|  | if (post_prologue_pc | 
|  | && (cust == NULL | 
|  | || cust->producer () == NULL | 
|  | || startswith (cust->producer (), "GNU ") | 
|  | || producer_is_llvm (cust->producer ()))) | 
|  | return post_prologue_pc; | 
|  |  | 
|  | if (post_prologue_pc != 0) | 
|  | { | 
|  | CORE_ADDR analyzed_limit; | 
|  |  | 
|  | /* For non-GCC compilers, make sure the entire line is an | 
|  | acceptable prologue; GDB will round this function's | 
|  | return value up to the end of the following line so we | 
|  | can not skip just part of a line (and we do not want to). | 
|  |  | 
|  | RealView does not treat the prologue specially, but does | 
|  | associate prologue code with the opening brace; so this | 
|  | lets us skip the first line if we think it is the opening | 
|  | brace.  */ | 
|  | func_is_thumb = arm_pc_is_thumb (gdbarch, func_addr); | 
|  | if (func_is_thumb) | 
|  | analyzed_limit = thumb_analyze_prologue (gdbarch, func_addr, | 
|  | post_prologue_pc, NULL); | 
|  | else | 
|  | analyzed_limit | 
|  | = arm_analyze_prologue (gdbarch, func_addr, post_prologue_pc, | 
|  | NULL, target_arm_instruction_reader ()); | 
|  |  | 
|  | if (analyzed_limit != post_prologue_pc) | 
|  | return func_addr; | 
|  |  | 
|  | return post_prologue_pc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Can't determine prologue from the symbol table, need to examine | 
|  | instructions.  */ | 
|  |  | 
|  | /* Find an upper limit on the function prologue using the debug | 
|  | information.  If the debug information could not be used to provide | 
|  | that bound, then use an arbitrary large number as the upper bound.  */ | 
|  | /* Like arm_scan_prologue, stop no later than pc + 64.  */ | 
|  | limit_pc = skip_prologue_using_sal (gdbarch, pc); | 
|  | if (limit_pc == 0) | 
|  | limit_pc = pc + 64;          /* Magic.  */ | 
|  |  | 
|  | /* Set the correct adjustment based on whether the function is thumb mode or | 
|  | not.  We use it to get the address of the last instruction in the | 
|  | function (as opposed to the first address of the next function).  */ | 
|  | CORE_ADDR adjustment = func_is_thumb ? 2 : 4; | 
|  |  | 
|  | limit_pc | 
|  | = func_end_addr == 0 ? limit_pc : std::min (limit_pc, | 
|  | func_end_addr - adjustment); | 
|  |  | 
|  | /* Check if this is Thumb code.  */ | 
|  | if (arm_pc_is_thumb (gdbarch, pc)) | 
|  | return thumb_analyze_prologue (gdbarch, pc, limit_pc, NULL); | 
|  | else | 
|  | return arm_analyze_prologue (gdbarch, pc, limit_pc, NULL, | 
|  | target_arm_instruction_reader ()); | 
|  | } | 
|  |  | 
|  | /* Function: thumb_scan_prologue (helper function for arm_scan_prologue) | 
|  | This function decodes a Thumb function prologue to determine: | 
|  | 1) the size of the stack frame | 
|  | 2) which registers are saved on it | 
|  | 3) the offsets of saved regs | 
|  | 4) the offset from the stack pointer to the frame pointer | 
|  |  | 
|  | A typical Thumb function prologue would create this stack frame | 
|  | (offsets relative to FP) | 
|  | old SP ->	24  stack parameters | 
|  | 20  LR | 
|  | 16  R7 | 
|  | R7 ->       0  local variables (16 bytes) | 
|  | SP ->     -12  additional stack space (12 bytes) | 
|  | The frame size would thus be 36 bytes, and the frame offset would be | 
|  | 12 bytes.  The frame register is R7. | 
|  |  | 
|  | The comments for thumb_skip_prolog() describe the algorithm we use | 
|  | to detect the end of the prolog.  */ | 
|  |  | 
|  | static void | 
|  | thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc, | 
|  | CORE_ADDR block_addr, struct arm_prologue_cache *cache) | 
|  | { | 
|  | CORE_ADDR prologue_start; | 
|  | CORE_ADDR prologue_end; | 
|  |  | 
|  | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | 
|  | &prologue_end)) | 
|  | { | 
|  | /* See comment in arm_scan_prologue for an explanation of | 
|  | this heuristics.  */ | 
|  | if (prologue_end > prologue_start + 64) | 
|  | { | 
|  | prologue_end = prologue_start + 64; | 
|  | } | 
|  | } | 
|  | else | 
|  | /* We're in the boondocks: we have no idea where the start of the | 
|  | function is.  */ | 
|  | return; | 
|  |  | 
|  | prologue_end = std::min (prologue_end, prev_pc); | 
|  |  | 
|  | thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache); | 
|  | } | 
|  |  | 
|  | /* Return 1 if the ARM instruction INSN restores SP in epilogue, 0 | 
|  | otherwise.  */ | 
|  |  | 
|  | static int | 
|  | arm_instruction_restores_sp (unsigned int insn) | 
|  | { | 
|  | if (bits (insn, 28, 31) != INST_NV) | 
|  | { | 
|  | if ((insn & 0x0df0f000) == 0x0080d000 | 
|  | /* ADD SP (register or immediate).  */ | 
|  | || (insn & 0x0df0f000) == 0x0040d000 | 
|  | /* SUB SP (register or immediate).  */ | 
|  | || (insn & 0x0ffffff0) == 0x01a0d000 | 
|  | /* MOV SP.  */ | 
|  | || (insn & 0x0fff0000) == 0x08bd0000 | 
|  | /* POP (LDMIA).  */ | 
|  | || (insn & 0x0fff0000) == 0x049d0000) | 
|  | /* POP of a single register.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement immediate value decoding, as described in section A5.2.4 | 
|  | (Modified immediate constants in ARM instructions) of the ARM Architecture | 
|  | Reference Manual (ARMv7-A and ARMv7-R edition).  */ | 
|  |  | 
|  | static uint32_t | 
|  | arm_expand_immediate (uint32_t imm) | 
|  | { | 
|  | /* Immediate values are 12 bits long.  */ | 
|  | gdb_assert ((imm & 0xfffff000) == 0); | 
|  |  | 
|  | uint32_t unrotated_value = imm & 0xff; | 
|  | uint32_t rotate_amount = (imm & 0xf00) >> 7; | 
|  |  | 
|  | if (rotate_amount == 0) | 
|  | return unrotated_value; | 
|  |  | 
|  | return ((unrotated_value >> rotate_amount) | 
|  | | (unrotated_value << (32 - rotate_amount))); | 
|  | } | 
|  |  | 
|  | /* Analyze an ARM mode prologue starting at PROLOGUE_START and | 
|  | continuing no further than PROLOGUE_END.  If CACHE is non-NULL, | 
|  | fill it in.  Return the first address not recognized as a prologue | 
|  | instruction. | 
|  |  | 
|  | We recognize all the instructions typically found in ARM prologues, | 
|  | plus harmless instructions which can be skipped (either for analysis | 
|  | purposes, or a more restrictive set that can be skipped when finding | 
|  | the end of the prologue).  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR prologue_start, CORE_ADDR prologue_end, | 
|  | struct arm_prologue_cache *cache, | 
|  | const arm_instruction_reader &insn_reader) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | int regno; | 
|  | CORE_ADDR offset, current_pc; | 
|  | pv_t regs[ARM_FPS_REGNUM]; | 
|  | CORE_ADDR unrecognized_pc = 0; | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Search the prologue looking for instructions that set up the | 
|  | frame pointer, adjust the stack pointer, and save registers. | 
|  |  | 
|  | Be careful, however, and if it doesn't look like a prologue, | 
|  | don't try to scan it.  If, for instance, a frameless function | 
|  | begins with stmfd sp!, then we will tell ourselves there is | 
|  | a frame, which will confuse stack traceback, as well as "finish" | 
|  | and other operations that rely on a knowledge of the stack | 
|  | traceback.  */ | 
|  |  | 
|  | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | 
|  | regs[regno] = pv_register (regno, 0); | 
|  | pv_area stack (ARM_SP_REGNUM, gdbarch_addr_bit (gdbarch)); | 
|  |  | 
|  | for (current_pc = prologue_start; | 
|  | current_pc < prologue_end; | 
|  | current_pc += 4) | 
|  | { | 
|  | uint32_t insn = insn_reader.read (current_pc, byte_order_for_code); | 
|  |  | 
|  | if (insn == 0xe1a0c00d)		/* mov ip, sp */ | 
|  | { | 
|  | regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM]; | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xfff00000) == 0xe2800000	/* add Rd, Rn, #n */ | 
|  | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | 
|  | { | 
|  | uint32_t imm = arm_expand_immediate (insn & 0xfff); | 
|  | int rd = bits (insn, 12, 15); | 
|  | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], imm); | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xfff00000) == 0xe2400000	/* sub Rd, Rn, #n */ | 
|  | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | 
|  | { | 
|  | uint32_t imm = arm_expand_immediate (insn & 0xfff); | 
|  | int rd = bits (insn, 12, 15); | 
|  | regs[rd] = pv_add_constant (regs[bits (insn, 16, 19)], -imm); | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xffff0fff) == 0xe52d0004)	/* str Rd, | 
|  | [sp, #-4]! */ | 
|  | { | 
|  | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) | 
|  | break; | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4); | 
|  | stack.store (regs[ARM_SP_REGNUM], 4, | 
|  | regs[bits (insn, 12, 15)]); | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xffff0000) == 0xe92d0000) | 
|  | /* stmfd sp!, {..., fp, ip, lr, pc} | 
|  | or | 
|  | stmfd sp!, {a1, a2, a3, a4}  */ | 
|  | { | 
|  | int mask = insn & 0xffff; | 
|  |  | 
|  | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) | 
|  | break; | 
|  |  | 
|  | /* Calculate offsets of saved registers.  */ | 
|  | for (regno = ARM_PC_REGNUM; regno >= 0; regno--) | 
|  | if (mask & (1 << regno)) | 
|  | { | 
|  | regs[ARM_SP_REGNUM] | 
|  | = pv_add_constant (regs[ARM_SP_REGNUM], -4); | 
|  | stack.store (regs[ARM_SP_REGNUM], 4, regs[regno]); | 
|  | } | 
|  | } | 
|  | else if ((insn & 0xffff0000) == 0xe54b0000	/* strb rx,[r11,#-n] */ | 
|  | || (insn & 0xffff00f0) == 0xe14b00b0	/* strh rx,[r11,#-n] */ | 
|  | || (insn & 0xffffc000) == 0xe50b0000)	/* str  rx,[r11,#-n] */ | 
|  | { | 
|  | /* No need to add this to saved_regs -- it's just an arg reg.  */ | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xffff0000) == 0xe5cd0000	/* strb rx,[sp,#n] */ | 
|  | || (insn & 0xffff00f0) == 0xe1cd00b0	/* strh rx,[sp,#n] */ | 
|  | || (insn & 0xffffc000) == 0xe58d0000)	/* str  rx,[sp,#n] */ | 
|  | { | 
|  | /* No need to add this to saved_regs -- it's just an arg reg.  */ | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xfff00000) == 0xe8800000	/* stm Rn, | 
|  | { registers } */ | 
|  | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | 
|  | { | 
|  | /* No need to add this to saved_regs -- it's just arg regs.  */ | 
|  | continue; | 
|  | } | 
|  | else if ((insn & 0xfffff000) == 0xe24cb000)	/* sub fp, ip #n */ | 
|  | { | 
|  | uint32_t imm = arm_expand_immediate (insn & 0xfff); | 
|  | regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm); | 
|  | } | 
|  | else if ((insn & 0xfffff000) == 0xe24dd000)	/* sub sp, sp #n */ | 
|  | { | 
|  | uint32_t imm = arm_expand_immediate(insn & 0xfff); | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm); | 
|  | } | 
|  | else if ((insn & 0xffff7fff) == 0xed6d0103	/* stfe f?, | 
|  | [sp, -#c]! */ | 
|  | && tdep->have_fpa_registers) | 
|  | { | 
|  | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) | 
|  | break; | 
|  |  | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | 
|  | regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07); | 
|  | stack.store (regs[ARM_SP_REGNUM], 12, regs[regno]); | 
|  | } | 
|  | else if ((insn & 0xffbf0fff) == 0xec2d0200	/* sfmfd f0, 4, | 
|  | [sp!] */ | 
|  | && tdep->have_fpa_registers) | 
|  | { | 
|  | int n_saved_fp_regs; | 
|  | unsigned int fp_start_reg, fp_bound_reg; | 
|  |  | 
|  | if (stack.store_would_trash (regs[ARM_SP_REGNUM])) | 
|  | break; | 
|  |  | 
|  | if ((insn & 0x800) == 0x800)		/* N0 is set */ | 
|  | { | 
|  | if ((insn & 0x40000) == 0x40000)	/* N1 is set */ | 
|  | n_saved_fp_regs = 3; | 
|  | else | 
|  | n_saved_fp_regs = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((insn & 0x40000) == 0x40000)	/* N1 is set */ | 
|  | n_saved_fp_regs = 2; | 
|  | else | 
|  | n_saved_fp_regs = 4; | 
|  | } | 
|  |  | 
|  | fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7); | 
|  | fp_bound_reg = fp_start_reg + n_saved_fp_regs; | 
|  | for (; fp_start_reg < fp_bound_reg; fp_start_reg++) | 
|  | { | 
|  | regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12); | 
|  | stack.store (regs[ARM_SP_REGNUM], 12, | 
|  | regs[fp_start_reg++]); | 
|  | } | 
|  | } | 
|  | else if ((insn & 0xff000000) == 0xeb000000 && cache == NULL) /* bl */ | 
|  | { | 
|  | /* Allow some special function calls when skipping the | 
|  | prologue; GCC generates these before storing arguments to | 
|  | the stack.  */ | 
|  | CORE_ADDR dest = BranchDest (current_pc, insn); | 
|  |  | 
|  | if (skip_prologue_function (gdbarch, dest, 0)) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  | else if ((insn & 0xf0000000) != 0xe0000000) | 
|  | break;			/* Condition not true, exit early.  */ | 
|  | else if (arm_instruction_changes_pc (insn)) | 
|  | /* Don't scan past anything that might change control flow.  */ | 
|  | break; | 
|  | else if (arm_instruction_restores_sp (insn)) | 
|  | { | 
|  | /* Don't scan past the epilogue.  */ | 
|  | break; | 
|  | } | 
|  | else if ((insn & 0xfe500000) == 0xe8100000	/* ldm */ | 
|  | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | 
|  | /* Ignore block loads from the stack, potentially copying | 
|  | parameters from memory.  */ | 
|  | continue; | 
|  | else if ((insn & 0xfc500000) == 0xe4100000 | 
|  | && pv_is_register (regs[bits (insn, 16, 19)], ARM_SP_REGNUM)) | 
|  | /* Similarly ignore single loads from the stack.  */ | 
|  | continue; | 
|  | else if ((insn & 0xffff0ff0) == 0xe1a00000) | 
|  | /* MOV Rd, Rm.  Skip register copies, i.e. saves to another | 
|  | register instead of the stack.  */ | 
|  | continue; | 
|  | else | 
|  | { | 
|  | /* The optimizer might shove anything into the prologue, if | 
|  | we build up cache (cache != NULL) from scanning prologue, | 
|  | we just skip what we don't recognize and scan further to | 
|  | make cache as complete as possible.  However, if we skip | 
|  | prologue, we'll stop immediately on unrecognized | 
|  | instruction.  */ | 
|  | unrecognized_pc = current_pc; | 
|  | if (cache != NULL) | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (unrecognized_pc == 0) | 
|  | unrecognized_pc = current_pc; | 
|  |  | 
|  | if (cache) | 
|  | { | 
|  | int framereg, framesize; | 
|  |  | 
|  | /* The frame size is just the distance from the frame register | 
|  | to the original stack pointer.  */ | 
|  | if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM)) | 
|  | { | 
|  | /* Frame pointer is fp.  */ | 
|  | framereg = ARM_FP_REGNUM; | 
|  | framesize = -regs[ARM_FP_REGNUM].k; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Try the stack pointer... this is a bit desperate.  */ | 
|  | framereg = ARM_SP_REGNUM; | 
|  | framesize = -regs[ARM_SP_REGNUM].k; | 
|  | } | 
|  |  | 
|  | cache->framereg = framereg; | 
|  | cache->framesize = framesize; | 
|  |  | 
|  | for (regno = 0; regno < ARM_FPS_REGNUM; regno++) | 
|  | if (stack.find_reg (gdbarch, regno, &offset)) | 
|  | { | 
|  | cache->saved_regs[regno].set_addr (offset); | 
|  | if (regno == ARM_SP_REGNUM) | 
|  | arm_cache_set_active_sp_value(cache, tdep, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | arm_debug_printf ("Prologue scan stopped at %s", | 
|  | paddress (gdbarch, unrecognized_pc)); | 
|  |  | 
|  | return unrecognized_pc; | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_scan_prologue (frame_info_ptr this_frame, | 
|  | struct arm_prologue_cache *cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR prologue_start, prologue_end; | 
|  | CORE_ADDR prev_pc = get_frame_pc (this_frame); | 
|  | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Assume there is no frame until proven otherwise.  */ | 
|  | cache->framereg = ARM_SP_REGNUM; | 
|  | cache->framesize = 0; | 
|  |  | 
|  | /* Check for Thumb prologue.  */ | 
|  | if (arm_frame_is_thumb (this_frame)) | 
|  | { | 
|  | thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Find the function prologue.  If we can't find the function in | 
|  | the symbol table, peek in the stack frame to find the PC.  */ | 
|  | if (find_pc_partial_function (block_addr, NULL, &prologue_start, | 
|  | &prologue_end)) | 
|  | { | 
|  | /* One way to find the end of the prologue (which works well | 
|  | for unoptimized code) is to do the following: | 
|  |  | 
|  | struct symtab_and_line sal = find_pc_line (prologue_start, 0); | 
|  |  | 
|  | if (sal.line == 0) | 
|  | prologue_end = prev_pc; | 
|  | else if (sal.end < prologue_end) | 
|  | prologue_end = sal.end; | 
|  |  | 
|  | This mechanism is very accurate so long as the optimizer | 
|  | doesn't move any instructions from the function body into the | 
|  | prologue.  If this happens, sal.end will be the last | 
|  | instruction in the first hunk of prologue code just before | 
|  | the first instruction that the scheduler has moved from | 
|  | the body to the prologue. | 
|  |  | 
|  | In order to make sure that we scan all of the prologue | 
|  | instructions, we use a slightly less accurate mechanism which | 
|  | may scan more than necessary.  To help compensate for this | 
|  | lack of accuracy, the prologue scanning loop below contains | 
|  | several clauses which'll cause the loop to terminate early if | 
|  | an implausible prologue instruction is encountered. | 
|  |  | 
|  | The expression | 
|  |  | 
|  | prologue_start + 64 | 
|  |  | 
|  | is a suitable endpoint since it accounts for the largest | 
|  | possible prologue plus up to five instructions inserted by | 
|  | the scheduler.  */ | 
|  |  | 
|  | if (prologue_end > prologue_start + 64) | 
|  | { | 
|  | prologue_end = prologue_start + 64;	/* See above.  */ | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We have no symbol information.  Our only option is to assume this | 
|  | function has a standard stack frame and the normal frame register. | 
|  | Then, we can find the value of our frame pointer on entrance to | 
|  | the callee (or at the present moment if this is the innermost frame). | 
|  | The value stored there should be the address of the stmfd + 8.  */ | 
|  | CORE_ADDR frame_loc; | 
|  | ULONGEST return_value; | 
|  |  | 
|  | /* AAPCS does not use a frame register, so we can abort here.  */ | 
|  | if (tdep->arm_abi == ARM_ABI_AAPCS) | 
|  | return; | 
|  |  | 
|  | frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM); | 
|  | if (!safe_read_memory_unsigned_integer (frame_loc, 4, byte_order, | 
|  | &return_value)) | 
|  | return; | 
|  | else | 
|  | { | 
|  | prologue_start = gdbarch_addr_bits_remove | 
|  | (gdbarch, return_value) - 8; | 
|  | prologue_end = prologue_start + 64;	/* See above.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | if (prev_pc < prologue_end) | 
|  | prologue_end = prev_pc; | 
|  |  | 
|  | arm_analyze_prologue (gdbarch, prologue_start, prologue_end, cache, | 
|  | target_arm_instruction_reader ()); | 
|  | } | 
|  |  | 
|  | static struct arm_prologue_cache * | 
|  | arm_make_prologue_cache (frame_info_ptr this_frame) | 
|  | { | 
|  | int reg; | 
|  | struct arm_prologue_cache *cache; | 
|  | CORE_ADDR unwound_fp, prev_sp; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | 
|  | arm_cache_init (cache, this_frame); | 
|  |  | 
|  | arm_scan_prologue (this_frame, cache); | 
|  |  | 
|  | unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg); | 
|  | if (unwound_fp == 0) | 
|  | return cache; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep = | 
|  | gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  |  | 
|  | prev_sp = unwound_fp + cache->framesize; | 
|  | arm_cache_set_active_sp_value (cache, tdep, prev_sp); | 
|  |  | 
|  | /* Calculate actual addresses of saved registers using offsets | 
|  | determined by arm_scan_prologue.  */ | 
|  | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) | 
|  | if (cache->saved_regs[reg].is_addr ()) | 
|  | cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () + | 
|  | prev_sp); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Implementation of the stop_reason hook for arm_prologue frames.  */ | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | arm_prologue_unwind_stop_reason (frame_info_ptr this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_prologue_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | /* This is meant to halt the backtrace at "_start".  */ | 
|  | pc = get_frame_pc (this_frame); | 
|  | gdbarch *arch = get_frame_arch (this_frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch); | 
|  | if (pc <= tdep->lowest_pc) | 
|  | return UNWIND_OUTERMOST; | 
|  |  | 
|  | /* If we've hit a wall, stop.  */ | 
|  | if (arm_cache_get_prev_sp_value (cache, tdep) == 0) | 
|  | return UNWIND_OUTERMOST; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | /* Our frame ID for a normal frame is the current function's starting PC | 
|  | and the caller's SP when we were called.  */ | 
|  |  | 
|  | static void | 
|  | arm_prologue_this_id (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | struct frame_id id; | 
|  | CORE_ADDR pc, func; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_prologue_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  |  | 
|  | /* Use function start address as part of the frame ID.  If we cannot | 
|  | identify the start address (due to missing symbol information), | 
|  | fall back to just using the current PC.  */ | 
|  | pc = get_frame_pc (this_frame); | 
|  | func = get_frame_func (this_frame); | 
|  | if (!func) | 
|  | func = pc; | 
|  |  | 
|  | id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), func); | 
|  | *this_id = id; | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | arm_prologue_prev_register (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | int prev_regnum) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct arm_prologue_cache *cache; | 
|  | CORE_ADDR sp_value; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_prologue_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* If this frame has signed the return address, mark it as so.  */ | 
|  | if (tdep->have_pacbti && cache->ra_signed_state.has_value () | 
|  | && *cache->ra_signed_state) | 
|  | set_frame_previous_pc_masked (this_frame); | 
|  |  | 
|  | /* If we are asked to unwind the PC, then we need to return the LR | 
|  | instead.  The prologue may save PC, but it will point into this | 
|  | frame's prologue, not the next frame's resume location.  Also | 
|  | strip the saved T bit.  A valid LR may have the low bit set, but | 
|  | a valid PC never does.  */ | 
|  | if (prev_regnum == ARM_PC_REGNUM) | 
|  | { | 
|  | CORE_ADDR lr; | 
|  |  | 
|  | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, | 
|  | arm_addr_bits_remove (gdbarch, lr)); | 
|  | } | 
|  |  | 
|  | /* SP is generally not saved to the stack, but this frame is | 
|  | identified by the next frame's stack pointer at the time of the call. | 
|  | The value was already reconstructed into PREV_SP.  */ | 
|  | if (prev_regnum == ARM_SP_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, | 
|  | arm_cache_get_prev_sp_value (cache, tdep)); | 
|  |  | 
|  | /* The value might be one of the alternative SP, if so, use the | 
|  | value already constructed.  */ | 
|  | if (arm_is_alternative_sp_register (tdep, prev_regnum)) | 
|  | { | 
|  | sp_value = arm_cache_get_sp_register (cache, tdep, prev_regnum); | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, sp_value); | 
|  | } | 
|  |  | 
|  | /* The CPSR may have been changed by the call instruction and by the | 
|  | called function.  The only bit we can reconstruct is the T bit, | 
|  | by checking the low bit of LR as of the call.  This is a reliable | 
|  | indicator of Thumb-ness except for some ARM v4T pre-interworking | 
|  | Thumb code, which could get away with a clear low bit as long as | 
|  | the called function did not use bx.  Guess that all other | 
|  | bits are unchanged; the condition flags are presumably lost, | 
|  | but the processor status is likely valid.  */ | 
|  | if (prev_regnum == ARM_PS_REGNUM) | 
|  | { | 
|  | ULONGEST cpsr = get_frame_register_unsigned (this_frame, prev_regnum); | 
|  | CORE_ADDR lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | 
|  |  | 
|  | cpsr = reconstruct_t_bit (gdbarch, lr, cpsr); | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, cpsr); | 
|  | } | 
|  |  | 
|  | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | 
|  | prev_regnum); | 
|  | } | 
|  |  | 
|  | static frame_unwind arm_prologue_unwind = { | 
|  | "arm prologue", | 
|  | NORMAL_FRAME, | 
|  | arm_prologue_unwind_stop_reason, | 
|  | arm_prologue_this_id, | 
|  | arm_prologue_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Maintain a list of ARM exception table entries per objfile, similar to the | 
|  | list of mapping symbols.  We only cache entries for standard ARM-defined | 
|  | personality routines; the cache will contain only the frame unwinding | 
|  | instructions associated with the entry (not the descriptors).  */ | 
|  |  | 
|  | struct arm_exidx_entry | 
|  | { | 
|  | CORE_ADDR addr; | 
|  | gdb_byte *entry; | 
|  |  | 
|  | bool operator< (const arm_exidx_entry &other) const | 
|  | { | 
|  | return addr < other.addr; | 
|  | } | 
|  | }; | 
|  |  | 
|  | struct arm_exidx_data | 
|  | { | 
|  | std::vector<std::vector<arm_exidx_entry>> section_maps; | 
|  | }; | 
|  |  | 
|  | /* Per-BFD key to store exception handling information.  */ | 
|  | static const registry<bfd>::key<arm_exidx_data> arm_exidx_data_key; | 
|  |  | 
|  | static struct obj_section * | 
|  | arm_obj_section_from_vma (struct objfile *objfile, bfd_vma vma) | 
|  | { | 
|  | for (obj_section *osect : objfile->sections ()) | 
|  | if (bfd_section_flags (osect->the_bfd_section) & SEC_ALLOC) | 
|  | { | 
|  | bfd_vma start, size; | 
|  | start = bfd_section_vma (osect->the_bfd_section); | 
|  | size = bfd_section_size (osect->the_bfd_section); | 
|  |  | 
|  | if (start <= vma && vma < start + size) | 
|  | return osect; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Parse contents of exception table and exception index sections | 
|  | of OBJFILE, and fill in the exception table entry cache. | 
|  |  | 
|  | For each entry that refers to a standard ARM-defined personality | 
|  | routine, extract the frame unwinding instructions (from either | 
|  | the index or the table section).  The unwinding instructions | 
|  | are normalized by: | 
|  | - extracting them from the rest of the table data | 
|  | - converting to host endianness | 
|  | - appending the implicit 0xb0 ("Finish") code | 
|  |  | 
|  | The extracted and normalized instructions are stored for later | 
|  | retrieval by the arm_find_exidx_entry routine.  */ | 
|  |  | 
|  | static void | 
|  | arm_exidx_new_objfile (struct objfile *objfile) | 
|  | { | 
|  | struct arm_exidx_data *data; | 
|  | asection *exidx, *extab; | 
|  | bfd_vma exidx_vma = 0, extab_vma = 0; | 
|  | LONGEST i; | 
|  |  | 
|  | /* If we've already touched this file, do nothing.  */ | 
|  | if (arm_exidx_data_key.get (objfile->obfd.get ()) != nullptr) | 
|  | return; | 
|  |  | 
|  | /* Read contents of exception table and index.  */ | 
|  | exidx = bfd_get_section_by_name (objfile->obfd.get (), | 
|  | ELF_STRING_ARM_unwind); | 
|  | gdb::byte_vector exidx_data; | 
|  | if (exidx) | 
|  | { | 
|  | exidx_vma = bfd_section_vma (exidx); | 
|  | exidx_data.resize (bfd_section_size (exidx)); | 
|  |  | 
|  | if (!bfd_get_section_contents (objfile->obfd.get (), exidx, | 
|  | exidx_data.data (), 0, | 
|  | exidx_data.size ())) | 
|  | return; | 
|  | } | 
|  |  | 
|  | extab = bfd_get_section_by_name (objfile->obfd.get (), ".ARM.extab"); | 
|  | gdb::byte_vector extab_data; | 
|  | if (extab) | 
|  | { | 
|  | extab_vma = bfd_section_vma (extab); | 
|  | extab_data.resize (bfd_section_size (extab)); | 
|  |  | 
|  | if (!bfd_get_section_contents (objfile->obfd.get (), extab, | 
|  | extab_data.data (), 0, | 
|  | extab_data.size ())) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allocate exception table data structure.  */ | 
|  | data = arm_exidx_data_key.emplace (objfile->obfd.get ()); | 
|  | data->section_maps.resize (objfile->obfd->section_count); | 
|  |  | 
|  | /* Fill in exception table.  */ | 
|  | for (i = 0; i < exidx_data.size () / 8; i++) | 
|  | { | 
|  | struct arm_exidx_entry new_exidx_entry; | 
|  | bfd_vma idx = bfd_h_get_32 (objfile->obfd, exidx_data.data () + i * 8); | 
|  | bfd_vma val = bfd_h_get_32 (objfile->obfd, | 
|  | exidx_data.data () + i * 8 + 4); | 
|  | bfd_vma addr = 0, word = 0; | 
|  | int n_bytes = 0, n_words = 0; | 
|  | struct obj_section *sec; | 
|  | gdb_byte *entry = NULL; | 
|  |  | 
|  | /* Extract address of start of function.  */ | 
|  | idx = ((idx & 0x7fffffff) ^ 0x40000000) - 0x40000000; | 
|  | idx += exidx_vma + i * 8; | 
|  |  | 
|  | /* Find section containing function and compute section offset.  */ | 
|  | sec = arm_obj_section_from_vma (objfile, idx); | 
|  | if (sec == NULL) | 
|  | continue; | 
|  | idx -= bfd_section_vma (sec->the_bfd_section); | 
|  |  | 
|  | /* Determine address of exception table entry.  */ | 
|  | if (val == 1) | 
|  | { | 
|  | /* EXIDX_CANTUNWIND -- no exception table entry present.  */ | 
|  | } | 
|  | else if ((val & 0xff000000) == 0x80000000) | 
|  | { | 
|  | /* Exception table entry embedded in .ARM.exidx | 
|  | -- must be short form.  */ | 
|  | word = val; | 
|  | n_bytes = 3; | 
|  | } | 
|  | else if (!(val & 0x80000000)) | 
|  | { | 
|  | /* Exception table entry in .ARM.extab.  */ | 
|  | addr = ((val & 0x7fffffff) ^ 0x40000000) - 0x40000000; | 
|  | addr += exidx_vma + i * 8 + 4; | 
|  |  | 
|  | if (addr >= extab_vma && addr + 4 <= extab_vma + extab_data.size ()) | 
|  | { | 
|  | word = bfd_h_get_32 (objfile->obfd, | 
|  | extab_data.data () + addr - extab_vma); | 
|  | addr += 4; | 
|  |  | 
|  | if ((word & 0xff000000) == 0x80000000) | 
|  | { | 
|  | /* Short form.  */ | 
|  | n_bytes = 3; | 
|  | } | 
|  | else if ((word & 0xff000000) == 0x81000000 | 
|  | || (word & 0xff000000) == 0x82000000) | 
|  | { | 
|  | /* Long form.  */ | 
|  | n_bytes = 2; | 
|  | n_words = ((word >> 16) & 0xff); | 
|  | } | 
|  | else if (!(word & 0x80000000)) | 
|  | { | 
|  | bfd_vma pers; | 
|  | struct obj_section *pers_sec; | 
|  | int gnu_personality = 0; | 
|  |  | 
|  | /* Custom personality routine.  */ | 
|  | pers = ((word & 0x7fffffff) ^ 0x40000000) - 0x40000000; | 
|  | pers = UNMAKE_THUMB_ADDR (pers + addr - 4); | 
|  |  | 
|  | /* Check whether we've got one of the variants of the | 
|  | GNU personality routines.  */ | 
|  | pers_sec = arm_obj_section_from_vma (objfile, pers); | 
|  | if (pers_sec) | 
|  | { | 
|  | static const char *personality[] = | 
|  | { | 
|  | "__gcc_personality_v0", | 
|  | "__gxx_personality_v0", | 
|  | "__gcj_personality_v0", | 
|  | "__gnu_objc_personality_v0", | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | CORE_ADDR pc = pers + pers_sec->offset (); | 
|  | int k; | 
|  |  | 
|  | for (k = 0; personality[k]; k++) | 
|  | if (lookup_minimal_symbol_by_pc_name | 
|  | (pc, personality[k], objfile)) | 
|  | { | 
|  | gnu_personality = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If so, the next word contains a word count in the high | 
|  | byte, followed by the same unwind instructions as the | 
|  | pre-defined forms.  */ | 
|  | if (gnu_personality | 
|  | && addr + 4 <= extab_vma + extab_data.size ()) | 
|  | { | 
|  | word = bfd_h_get_32 (objfile->obfd, | 
|  | (extab_data.data () | 
|  | + addr - extab_vma)); | 
|  | addr += 4; | 
|  | n_bytes = 3; | 
|  | n_words = ((word >> 24) & 0xff); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Sanity check address.  */ | 
|  | if (n_words) | 
|  | if (addr < extab_vma | 
|  | || addr + 4 * n_words > extab_vma + extab_data.size ()) | 
|  | n_words = n_bytes = 0; | 
|  |  | 
|  | /* The unwind instructions reside in WORD (only the N_BYTES least | 
|  | significant bytes are valid), followed by N_WORDS words in the | 
|  | extab section starting at ADDR.  */ | 
|  | if (n_bytes || n_words) | 
|  | { | 
|  | gdb_byte *p = entry | 
|  | = (gdb_byte *) obstack_alloc (&objfile->per_bfd->storage_obstack, | 
|  | n_bytes + n_words * 4 + 1); | 
|  |  | 
|  | while (n_bytes--) | 
|  | *p++ = (gdb_byte) ((word >> (8 * n_bytes)) & 0xff); | 
|  |  | 
|  | while (n_words--) | 
|  | { | 
|  | word = bfd_h_get_32 (objfile->obfd, | 
|  | extab_data.data () + addr - extab_vma); | 
|  | addr += 4; | 
|  |  | 
|  | *p++ = (gdb_byte) ((word >> 24) & 0xff); | 
|  | *p++ = (gdb_byte) ((word >> 16) & 0xff); | 
|  | *p++ = (gdb_byte) ((word >> 8) & 0xff); | 
|  | *p++ = (gdb_byte) (word & 0xff); | 
|  | } | 
|  |  | 
|  | /* Implied "Finish" to terminate the list.  */ | 
|  | *p++ = 0xb0; | 
|  | } | 
|  |  | 
|  | /* Push entry onto vector.  They are guaranteed to always | 
|  | appear in order of increasing addresses.  */ | 
|  | new_exidx_entry.addr = idx; | 
|  | new_exidx_entry.entry = entry; | 
|  | data->section_maps[sec->the_bfd_section->index].push_back | 
|  | (new_exidx_entry); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Search for the exception table entry covering MEMADDR.  If one is found, | 
|  | return a pointer to its data.  Otherwise, return 0.  If START is non-NULL, | 
|  | set *START to the start of the region covered by this entry.  */ | 
|  |  | 
|  | static gdb_byte * | 
|  | arm_find_exidx_entry (CORE_ADDR memaddr, CORE_ADDR *start) | 
|  | { | 
|  | struct obj_section *sec; | 
|  |  | 
|  | sec = find_pc_section (memaddr); | 
|  | if (sec != NULL) | 
|  | { | 
|  | struct arm_exidx_data *data; | 
|  | struct arm_exidx_entry map_key = { memaddr - sec->addr (), 0 }; | 
|  |  | 
|  | data = arm_exidx_data_key.get (sec->objfile->obfd.get ()); | 
|  | if (data != NULL) | 
|  | { | 
|  | std::vector<arm_exidx_entry> &map | 
|  | = data->section_maps[sec->the_bfd_section->index]; | 
|  | if (!map.empty ()) | 
|  | { | 
|  | auto idx = std::lower_bound (map.begin (), map.end (), map_key); | 
|  |  | 
|  | /* std::lower_bound finds the earliest ordered insertion | 
|  | point.  If the following symbol starts at this exact | 
|  | address, we use that; otherwise, the preceding | 
|  | exception table entry covers this address.  */ | 
|  | if (idx < map.end ()) | 
|  | { | 
|  | if (idx->addr == map_key.addr) | 
|  | { | 
|  | if (start) | 
|  | *start = idx->addr + sec->addr (); | 
|  | return idx->entry; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (idx > map.begin ()) | 
|  | { | 
|  | idx = idx - 1; | 
|  | if (start) | 
|  | *start = idx->addr + sec->addr (); | 
|  | return idx->entry; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Given the current frame THIS_FRAME, and its associated frame unwinding | 
|  | instruction list from the ARM exception table entry ENTRY, allocate and | 
|  | return a prologue cache structure describing how to unwind this frame. | 
|  |  | 
|  | Return NULL if the unwinding instruction list contains a "spare", | 
|  | "reserved" or "refuse to unwind" instruction as defined in section | 
|  | "9.3 Frame unwinding instructions" of the "Exception Handling ABI | 
|  | for the ARM Architecture" document.  */ | 
|  |  | 
|  | static struct arm_prologue_cache * | 
|  | arm_exidx_fill_cache (frame_info_ptr this_frame, gdb_byte *entry) | 
|  | { | 
|  | CORE_ADDR vsp = 0; | 
|  | int vsp_valid = 0; | 
|  |  | 
|  | struct arm_prologue_cache *cache; | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | 
|  | arm_cache_init (cache, this_frame); | 
|  |  | 
|  | for (;;) | 
|  | { | 
|  | gdb_byte insn; | 
|  |  | 
|  | /* Whenever we reload SP, we actually have to retrieve its | 
|  | actual value in the current frame.  */ | 
|  | if (!vsp_valid) | 
|  | { | 
|  | if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ()) | 
|  | { | 
|  | int reg = cache->saved_regs[ARM_SP_REGNUM].realreg (); | 
|  | vsp = get_frame_register_unsigned (this_frame, reg); | 
|  | } | 
|  | else | 
|  | { | 
|  | CORE_ADDR addr = cache->saved_regs[ARM_SP_REGNUM].addr (); | 
|  | vsp = get_frame_memory_unsigned (this_frame, addr, 4); | 
|  | } | 
|  |  | 
|  | vsp_valid = 1; | 
|  | } | 
|  |  | 
|  | /* Decode next unwind instruction.  */ | 
|  | insn = *entry++; | 
|  |  | 
|  | if ((insn & 0xc0) == 0) | 
|  | { | 
|  | int offset = insn & 0x3f; | 
|  | vsp += (offset << 2) + 4; | 
|  | } | 
|  | else if ((insn & 0xc0) == 0x40) | 
|  | { | 
|  | int offset = insn & 0x3f; | 
|  | vsp -= (offset << 2) + 4; | 
|  | } | 
|  | else if ((insn & 0xf0) == 0x80) | 
|  | { | 
|  | int mask = ((insn & 0xf) << 8) | *entry++; | 
|  | int i; | 
|  |  | 
|  | /* The special case of an all-zero mask identifies | 
|  | "Refuse to unwind".  We return NULL to fall back | 
|  | to the prologue analyzer.  */ | 
|  | if (mask == 0) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop registers r4..r15 under mask.  */ | 
|  | for (i = 0; i < 12; i++) | 
|  | if (mask & (1 << i)) | 
|  | { | 
|  | cache->saved_regs[4 + i].set_addr (vsp); | 
|  | vsp += 4; | 
|  | } | 
|  |  | 
|  | /* Special-case popping SP -- we need to reload vsp.  */ | 
|  | if (mask & (1 << (ARM_SP_REGNUM - 4))) | 
|  | vsp_valid = 0; | 
|  | } | 
|  | else if ((insn & 0xf0) == 0x90) | 
|  | { | 
|  | int reg = insn & 0xf; | 
|  |  | 
|  | /* Reserved cases.  */ | 
|  | if (reg == ARM_SP_REGNUM || reg == ARM_PC_REGNUM) | 
|  | return NULL; | 
|  |  | 
|  | /* Set SP from another register and mark VSP for reload.  */ | 
|  | cache->saved_regs[ARM_SP_REGNUM] = cache->saved_regs[reg]; | 
|  | vsp_valid = 0; | 
|  | } | 
|  | else if ((insn & 0xf0) == 0xa0) | 
|  | { | 
|  | int count = insn & 0x7; | 
|  | int pop_lr = (insn & 0x8) != 0; | 
|  | int i; | 
|  |  | 
|  | /* Pop r4..r[4+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[4 + i].set_addr (vsp); | 
|  | vsp += 4; | 
|  | } | 
|  |  | 
|  | /* If indicated by flag, pop LR as well.  */ | 
|  | if (pop_lr) | 
|  | { | 
|  | cache->saved_regs[ARM_LR_REGNUM].set_addr (vsp); | 
|  | vsp += 4; | 
|  | } | 
|  | } | 
|  | else if (insn == 0xb0) | 
|  | { | 
|  | /* We could only have updated PC by popping into it; if so, it | 
|  | will show up as address.  Otherwise, copy LR into PC.  */ | 
|  | if (!cache->saved_regs[ARM_PC_REGNUM].is_addr ()) | 
|  | cache->saved_regs[ARM_PC_REGNUM] | 
|  | = cache->saved_regs[ARM_LR_REGNUM]; | 
|  |  | 
|  | /* We're done.  */ | 
|  | break; | 
|  | } | 
|  | else if (insn == 0xb1) | 
|  | { | 
|  | int mask = *entry++; | 
|  | int i; | 
|  |  | 
|  | /* All-zero mask and mask >= 16 is "spare".  */ | 
|  | if (mask == 0 || mask >= 16) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop r0..r3 under mask.  */ | 
|  | for (i = 0; i < 4; i++) | 
|  | if (mask & (1 << i)) | 
|  | { | 
|  | cache->saved_regs[i].set_addr (vsp); | 
|  | vsp += 4; | 
|  | } | 
|  | } | 
|  | else if (insn == 0xb2) | 
|  | { | 
|  | ULONGEST offset = 0; | 
|  | unsigned shift = 0; | 
|  |  | 
|  | do | 
|  | { | 
|  | offset |= (*entry & 0x7f) << shift; | 
|  | shift += 7; | 
|  | } | 
|  | while (*entry++ & 0x80); | 
|  |  | 
|  | vsp += 0x204 + (offset << 2); | 
|  | } | 
|  | else if (insn == 0xb3) | 
|  | { | 
|  | int start = *entry >> 4; | 
|  | int count = (*entry++) & 0xf; | 
|  | int i; | 
|  |  | 
|  | /* Only registers D0..D15 are valid here.  */ | 
|  | if (start + count >= 16) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop VFP double-precision registers D[start]..D[start+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  |  | 
|  | /* Add an extra 4 bytes for FSTMFDX-style stack.  */ | 
|  | vsp += 4; | 
|  | } | 
|  | else if ((insn & 0xf8) == 0xb8) | 
|  | { | 
|  | int count = insn & 0x7; | 
|  | int i; | 
|  |  | 
|  | /* Pop VFP double-precision registers D[8]..D[8+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  |  | 
|  | /* Add an extra 4 bytes for FSTMFDX-style stack.  */ | 
|  | vsp += 4; | 
|  | } | 
|  | else if (insn == 0xc6) | 
|  | { | 
|  | int start = *entry >> 4; | 
|  | int count = (*entry++) & 0xf; | 
|  | int i; | 
|  |  | 
|  | /* Only registers WR0..WR15 are valid.  */ | 
|  | if (start + count >= 16) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop iwmmx registers WR[start]..WR[start+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_WR0_REGNUM + start + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  | } | 
|  | else if (insn == 0xc7) | 
|  | { | 
|  | int mask = *entry++; | 
|  | int i; | 
|  |  | 
|  | /* All-zero mask and mask >= 16 is "spare".  */ | 
|  | if (mask == 0 || mask >= 16) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop iwmmx general-purpose registers WCGR0..WCGR3 under mask.  */ | 
|  | for (i = 0; i < 4; i++) | 
|  | if (mask & (1 << i)) | 
|  | { | 
|  | cache->saved_regs[ARM_WCGR0_REGNUM + i].set_addr (vsp); | 
|  | vsp += 4; | 
|  | } | 
|  | } | 
|  | else if ((insn & 0xf8) == 0xc0) | 
|  | { | 
|  | int count = insn & 0x7; | 
|  | int i; | 
|  |  | 
|  | /* Pop iwmmx registers WR[10]..WR[10+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_WR0_REGNUM + 10 + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  | } | 
|  | else if (insn == 0xc8) | 
|  | { | 
|  | int start = *entry >> 4; | 
|  | int count = (*entry++) & 0xf; | 
|  | int i; | 
|  |  | 
|  | /* Only registers D0..D31 are valid.  */ | 
|  | if (start + count >= 16) | 
|  | return NULL; | 
|  |  | 
|  | /* Pop VFP double-precision registers | 
|  | D[16+start]..D[16+start+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + 16 + start + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  | } | 
|  | else if (insn == 0xc9) | 
|  | { | 
|  | int start = *entry >> 4; | 
|  | int count = (*entry++) & 0xf; | 
|  | int i; | 
|  |  | 
|  | /* Pop VFP double-precision registers D[start]..D[start+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + start + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  | } | 
|  | else if ((insn & 0xf8) == 0xd0) | 
|  | { | 
|  | int count = insn & 0x7; | 
|  | int i; | 
|  |  | 
|  | /* Pop VFP double-precision registers D[8]..D[8+count].  */ | 
|  | for (i = 0; i <= count; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + 8 + i].set_addr (vsp); | 
|  | vsp += 8; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Everything else is "spare".  */ | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we restore SP from a register, assume this was the frame register. | 
|  | Otherwise just fall back to SP as frame register.  */ | 
|  | if (cache->saved_regs[ARM_SP_REGNUM].is_realreg ()) | 
|  | cache->framereg = cache->saved_regs[ARM_SP_REGNUM].realreg (); | 
|  | else | 
|  | cache->framereg = ARM_SP_REGNUM; | 
|  |  | 
|  | /* Determine offset to previous frame.  */ | 
|  | cache->framesize | 
|  | = vsp - get_frame_register_unsigned (this_frame, cache->framereg); | 
|  |  | 
|  | /* We already got the previous SP.  */ | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | arm_cache_set_active_sp_value (cache, tdep, vsp); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Unwinding via ARM exception table entries.  Note that the sniffer | 
|  | already computes a filled-in prologue cache, which is then used | 
|  | with the same arm_prologue_this_id and arm_prologue_prev_register | 
|  | routines also used for prologue-parsing based unwinding.  */ | 
|  |  | 
|  | static int | 
|  | arm_exidx_unwind_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | CORE_ADDR addr_in_block, exidx_region, func_start; | 
|  | struct arm_prologue_cache *cache; | 
|  | gdb_byte *entry; | 
|  |  | 
|  | /* See if we have an ARM exception table entry covering this address.  */ | 
|  | addr_in_block = get_frame_address_in_block (this_frame); | 
|  | entry = arm_find_exidx_entry (addr_in_block, &exidx_region); | 
|  | if (!entry) | 
|  | return 0; | 
|  |  | 
|  | /* The ARM exception table does not describe unwind information | 
|  | for arbitrary PC values, but is guaranteed to be correct only | 
|  | at call sites.  We have to decide here whether we want to use | 
|  | ARM exception table information for this frame, or fall back | 
|  | to using prologue parsing.  (Note that if we have DWARF CFI, | 
|  | this sniffer isn't even called -- CFI is always preferred.) | 
|  |  | 
|  | Before we make this decision, however, we check whether we | 
|  | actually have *symbol* information for the current frame. | 
|  | If not, prologue parsing would not work anyway, so we might | 
|  | as well use the exception table and hope for the best.  */ | 
|  | if (find_pc_partial_function (addr_in_block, NULL, &func_start, NULL)) | 
|  | { | 
|  | int exc_valid = 0; | 
|  |  | 
|  | /* If the next frame is "normal", we are at a call site in this | 
|  | frame, so exception information is guaranteed to be valid.  */ | 
|  | if (get_next_frame (this_frame) | 
|  | && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME) | 
|  | exc_valid = 1; | 
|  |  | 
|  | /* Some syscalls keep PC pointing to the SVC instruction itself.  */ | 
|  | for (int shift = 0; shift <= 1 && !exc_valid; ++shift) | 
|  | { | 
|  | /* We also assume exception information is valid if we're currently | 
|  | blocked in a system call.  The system library is supposed to | 
|  | ensure this, so that e.g. pthread cancellation works.  */ | 
|  | if (arm_frame_is_thumb (this_frame)) | 
|  | { | 
|  | ULONGEST insn; | 
|  |  | 
|  | if (safe_read_memory_unsigned_integer ((get_frame_pc (this_frame) | 
|  | - (shift ? 2 : 0)), | 
|  | 2, byte_order_for_code, | 
|  | &insn) | 
|  | && (insn & 0xff00) == 0xdf00 /* svc */) | 
|  | exc_valid = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | ULONGEST insn; | 
|  |  | 
|  | if (safe_read_memory_unsigned_integer ((get_frame_pc (this_frame) | 
|  | - (shift ? 4 : 0)), | 
|  | 4, byte_order_for_code, | 
|  | &insn) | 
|  | && (insn & 0x0f000000) == 0x0f000000 /* svc */) | 
|  | exc_valid = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Bail out if we don't know that exception information is valid.  */ | 
|  | if (!exc_valid) | 
|  | return 0; | 
|  |  | 
|  | /* The ARM exception index does not mark the *end* of the region | 
|  | covered by the entry, and some functions will not have any entry. | 
|  | To correctly recognize the end of the covered region, the linker | 
|  | should have inserted dummy records with a CANTUNWIND marker. | 
|  |  | 
|  | Unfortunately, current versions of GNU ld do not reliably do | 
|  | this, and thus we may have found an incorrect entry above. | 
|  | As a (temporary) sanity check, we only use the entry if it | 
|  | lies *within* the bounds of the function.  Note that this check | 
|  | might reject perfectly valid entries that just happen to cover | 
|  | multiple functions; therefore this check ought to be removed | 
|  | once the linker is fixed.  */ | 
|  | if (func_start > exidx_region) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Decode the list of unwinding instructions into a prologue cache. | 
|  | Note that this may fail due to e.g. a "refuse to unwind" code.  */ | 
|  | cache = arm_exidx_fill_cache (this_frame, entry); | 
|  | if (!cache) | 
|  | return 0; | 
|  |  | 
|  | *this_prologue_cache = cache; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct frame_unwind arm_exidx_unwind = { | 
|  | "arm exidx", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | arm_prologue_this_id, | 
|  | arm_prologue_prev_register, | 
|  | NULL, | 
|  | arm_exidx_unwind_sniffer | 
|  | }; | 
|  |  | 
|  | static struct arm_prologue_cache * | 
|  | arm_make_epilogue_frame_cache (frame_info_ptr this_frame) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | int reg; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | 
|  | arm_cache_init (cache, this_frame); | 
|  |  | 
|  | /* Still rely on the offset calculated from prologue.  */ | 
|  | arm_scan_prologue (this_frame, cache); | 
|  |  | 
|  | /* Since we are in epilogue, the SP has been restored.  */ | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | arm_cache_set_active_sp_value (cache, tdep, | 
|  | get_frame_register_unsigned (this_frame, | 
|  | ARM_SP_REGNUM)); | 
|  |  | 
|  | /* Calculate actual addresses of saved registers using offsets | 
|  | determined by arm_scan_prologue.  */ | 
|  | for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++) | 
|  | if (cache->saved_regs[reg].is_addr ()) | 
|  | cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () | 
|  | + arm_cache_get_prev_sp_value (cache, tdep)); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Implementation of function hook 'this_id' in | 
|  | 'struct frame_uwnind' for epilogue unwinder.  */ | 
|  |  | 
|  | static void | 
|  | arm_epilogue_frame_this_id (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | CORE_ADDR pc, func; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_epilogue_frame_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | /* Use function start address as part of the frame ID.  If we cannot | 
|  | identify the start address (due to missing symbol information), | 
|  | fall back to just using the current PC.  */ | 
|  | pc = get_frame_pc (this_frame); | 
|  | func = get_frame_func (this_frame); | 
|  | if (func == 0) | 
|  | func = pc; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), func); | 
|  | } | 
|  |  | 
|  | /* Implementation of function hook 'prev_register' in | 
|  | 'struct frame_uwnind' for epilogue unwinder.  */ | 
|  |  | 
|  | static struct value * | 
|  | arm_epilogue_frame_prev_register (frame_info_ptr this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_epilogue_frame_cache (this_frame); | 
|  |  | 
|  | return arm_prologue_prev_register (this_frame, this_cache, regnum); | 
|  | } | 
|  |  | 
|  | static int arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, | 
|  | CORE_ADDR pc); | 
|  | static int thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, | 
|  | CORE_ADDR pc); | 
|  |  | 
|  | /* Implementation of function hook 'sniffer' in | 
|  | 'struct frame_uwnind' for epilogue unwinder.  */ | 
|  |  | 
|  | static int | 
|  | arm_epilogue_frame_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | if (frame_relative_level (this_frame) == 0) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  |  | 
|  | if (arm_frame_is_thumb (this_frame)) | 
|  | return thumb_stack_frame_destroyed_p (gdbarch, pc); | 
|  | else | 
|  | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | 
|  | } | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Frame unwinder from epilogue.  */ | 
|  |  | 
|  | static const struct frame_unwind arm_epilogue_frame_unwind = | 
|  | { | 
|  | "arm epilogue", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | arm_epilogue_frame_this_id, | 
|  | arm_epilogue_frame_prev_register, | 
|  | NULL, | 
|  | arm_epilogue_frame_sniffer, | 
|  | }; | 
|  |  | 
|  | /* Recognize GCC's trampoline for thumb call-indirect.  If we are in a | 
|  | trampoline, return the target PC.  Otherwise return 0. | 
|  |  | 
|  | void call0a (char c, short s, int i, long l) {} | 
|  |  | 
|  | int main (void) | 
|  | { | 
|  | (*pointer_to_call0a) (c, s, i, l); | 
|  | } | 
|  |  | 
|  | Instead of calling a stub library function  _call_via_xx (xx is | 
|  | the register name), GCC may inline the trampoline in the object | 
|  | file as below (register r2 has the address of call0a). | 
|  |  | 
|  | .global main | 
|  | .type main, %function | 
|  | ... | 
|  | bl .L1 | 
|  | ... | 
|  | .size main, .-main | 
|  |  | 
|  | .L1: | 
|  | bx r2 | 
|  |  | 
|  | The trampoline 'bx r2' doesn't belong to main.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_skip_bx_reg (frame_info_ptr frame, CORE_ADDR pc) | 
|  | { | 
|  | /* The heuristics of recognizing such trampoline is that FRAME is | 
|  | executing in Thumb mode and the instruction on PC is 'bx Rm'.  */ | 
|  | if (arm_frame_is_thumb (frame)) | 
|  | { | 
|  | gdb_byte buf[2]; | 
|  |  | 
|  | if (target_read_memory (pc, buf, 2) == 0) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | enum bfd_endian byte_order_for_code | 
|  | = gdbarch_byte_order_for_code (gdbarch); | 
|  | uint16_t insn | 
|  | = extract_unsigned_integer (buf, 2, byte_order_for_code); | 
|  |  | 
|  | if ((insn & 0xff80) == 0x4700)  /* bx <Rm> */ | 
|  | { | 
|  | CORE_ADDR dest | 
|  | = get_frame_register_unsigned (frame, bits (insn, 3, 6)); | 
|  |  | 
|  | /* Clear the LSB so that gdb core sets step-resume | 
|  | breakpoint at the right address.  */ | 
|  | return UNMAKE_THUMB_ADDR (dest); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct arm_prologue_cache * | 
|  | arm_make_stub_cache (frame_info_ptr this_frame) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | 
|  | arm_cache_init (cache, this_frame); | 
|  |  | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | arm_cache_set_active_sp_value (cache, tdep, | 
|  | get_frame_register_unsigned (this_frame, | 
|  | ARM_SP_REGNUM)); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Our frame ID for a stub frame is the current SP and LR.  */ | 
|  |  | 
|  | static void | 
|  | arm_stub_this_id (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_stub_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), | 
|  | get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_stub_unwind_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR addr_in_block; | 
|  | gdb_byte dummy[4]; | 
|  | CORE_ADDR pc, start_addr; | 
|  | const char *name; | 
|  |  | 
|  | addr_in_block = get_frame_address_in_block (this_frame); | 
|  | pc = get_frame_pc (this_frame); | 
|  | if (in_plt_section (addr_in_block) | 
|  | /* We also use the stub winder if the target memory is unreadable | 
|  | to avoid having the prologue unwinder trying to read it.  */ | 
|  | || target_read_memory (pc, dummy, 4) != 0) | 
|  | return 1; | 
|  |  | 
|  | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0 | 
|  | && arm_skip_bx_reg (this_frame, pc) != 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct frame_unwind arm_stub_unwind = { | 
|  | "arm stub", | 
|  | NORMAL_FRAME, | 
|  | default_frame_unwind_stop_reason, | 
|  | arm_stub_this_id, | 
|  | arm_prologue_prev_register, | 
|  | NULL, | 
|  | arm_stub_unwind_sniffer | 
|  | }; | 
|  |  | 
|  | /* Put here the code to store, into CACHE->saved_regs, the addresses | 
|  | of the saved registers of frame described by THIS_FRAME.  CACHE is | 
|  | returned.  */ | 
|  |  | 
|  | static struct arm_prologue_cache * | 
|  | arm_m_exception_cache (frame_info_ptr this_frame) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | struct arm_prologue_cache *cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache); | 
|  | arm_cache_init (cache, this_frame); | 
|  |  | 
|  | /* ARMv7-M Architecture Reference "B1.5.6 Exception entry behavior" | 
|  | describes which bits in LR that define which stack was used prior | 
|  | to the exception and if FPU is used (causing extended stack frame).  */ | 
|  |  | 
|  | /* In the lockup state PC contains a lockup magic value. | 
|  | The PC value of the the next outer frame is irreversibly | 
|  | lost.  The other registers are intact so LR likely contains | 
|  | PC of some frame next to the outer one, but we cannot analyze | 
|  | the next outer frame without knowing its PC | 
|  | therefore we do not know SP fixup for this frame. | 
|  | Some heuristics to resynchronize SP might be possible. | 
|  | For simplicity, just terminate the unwinding to prevent it going | 
|  | astray and attempting to read data/addresses it shouldn't, | 
|  | which may cause further issues due to side-effects.  */ | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  | if (arm_m_addr_is_lockup (pc)) | 
|  | { | 
|  | /* The lockup can be real just in the innermost frame | 
|  | as the CPU is stopped and cannot create more frames. | 
|  | If we hit lockup magic PC in the other frame, it is | 
|  | just a sentinel at the top of stack: do not warn then.  */ | 
|  | if (frame_relative_level (this_frame) == 0) | 
|  | warning (_("ARM M in lockup state, stack unwinding terminated.")); | 
|  |  | 
|  | /* Terminate any further stack unwinding.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | CORE_ADDR lr = get_frame_register_unsigned (this_frame, ARM_LR_REGNUM); | 
|  |  | 
|  | /* ARMv7-M Architecture Reference "A2.3.1 Arm core registers" | 
|  | states that LR is set to 0xffffffff on reset.  ARMv8-M Architecture | 
|  | Reference "B3.3 Registers" states that LR is set to 0xffffffff on warm | 
|  | reset if Main Extension is implemented, otherwise the value is unknown.  */ | 
|  | if (lr == 0xffffffff) | 
|  | { | 
|  | /* Terminate any further stack unwinding.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Check FNC_RETURN indicator bits (24-31).  */ | 
|  | bool fnc_return = (((lr >> 24) & 0xff) == 0xfe); | 
|  | if (fnc_return) | 
|  | { | 
|  | /* FNC_RETURN is only valid for targets with Security Extension.  */ | 
|  | if (!tdep->have_sec_ext) | 
|  | { | 
|  | error (_("While unwinding an exception frame, found unexpected Link " | 
|  | "Register value %s that requires the security extension, " | 
|  | "but the extension was not found or is disabled.  This " | 
|  | "should not happen and may be caused by corrupt data or a " | 
|  | "bug in GDB."), phex (lr, ARM_INT_REGISTER_SIZE)); | 
|  | } | 
|  |  | 
|  | if (!arm_unwind_secure_frames) | 
|  | { | 
|  | warning (_("Non-secure to secure stack unwinding disabled.")); | 
|  |  | 
|  | /* Terminate any further stack unwinding.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | ULONGEST xpsr = get_frame_register_unsigned (this_frame, ARM_PS_REGNUM); | 
|  | if ((xpsr & 0x1ff) != 0) | 
|  | /* Handler mode: This is the mode that exceptions are handled in.  */ | 
|  | arm_cache_switch_prev_sp (cache, tdep, tdep->m_profile_msp_s_regnum); | 
|  | else | 
|  | /* Thread mode: This is the normal mode that programs run in.  */ | 
|  | arm_cache_switch_prev_sp (cache, tdep, tdep->m_profile_psp_s_regnum); | 
|  |  | 
|  | CORE_ADDR unwound_sp = arm_cache_get_prev_sp_value (cache, tdep); | 
|  |  | 
|  | /* Stack layout for a function call from Secure to Non-Secure state | 
|  | (ARMv8-M section B3.16): | 
|  |  | 
|  | SP Offset | 
|  |  | 
|  | +-------------------+ | 
|  | 0x08   |                   | | 
|  | +-------------------+   <-- Original SP | 
|  | 0x04   |    Partial xPSR   | | 
|  | +-------------------+ | 
|  | 0x00   |   Return Address  | | 
|  | +===================+   <-- New SP  */ | 
|  |  | 
|  | cache->saved_regs[ARM_PC_REGNUM].set_addr (unwound_sp + 0x00); | 
|  | cache->saved_regs[ARM_LR_REGNUM].set_addr (unwound_sp + 0x00); | 
|  | cache->saved_regs[ARM_PS_REGNUM].set_addr (unwound_sp + 0x04); | 
|  |  | 
|  | arm_cache_set_active_sp_value (cache, tdep, unwound_sp + 0x08); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Check EXC_RETURN indicator bits (24-31).  */ | 
|  | bool exc_return = (((lr >> 24) & 0xff) == 0xff); | 
|  | if (exc_return) | 
|  | { | 
|  | int sp_regnum; | 
|  | bool secure_stack_used = false; | 
|  | bool default_callee_register_stacking = false; | 
|  | bool exception_domain_is_secure = false; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Check EXC_RETURN bit SPSEL if Main or Thread (process) stack used.  */ | 
|  | bool process_stack_used = (bit (lr, 2) != 0); | 
|  |  | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | secure_stack_used = (bit (lr, 6) != 0); | 
|  | default_callee_register_stacking = (bit (lr, 5) != 0); | 
|  | exception_domain_is_secure = (bit (lr, 0) != 0); | 
|  |  | 
|  | /* Unwinding from non-secure to secure can trip security | 
|  | measures.  In order to avoid the debugger being | 
|  | intrusive, rely on the user to configure the requested | 
|  | mode.  */ | 
|  | if (secure_stack_used && !exception_domain_is_secure | 
|  | && !arm_unwind_secure_frames) | 
|  | { | 
|  | warning (_("Non-secure to secure stack unwinding disabled.")); | 
|  |  | 
|  | /* Terminate any further stack unwinding.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | if (process_stack_used) | 
|  | { | 
|  | if (secure_stack_used) | 
|  | /* Secure thread (process) stack used, use PSP_S as SP.  */ | 
|  | sp_regnum = tdep->m_profile_psp_s_regnum; | 
|  | else | 
|  | /* Non-secure thread (process) stack used, use PSP_NS as SP.  */ | 
|  | sp_regnum = tdep->m_profile_psp_ns_regnum; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (secure_stack_used) | 
|  | /* Secure main stack used, use MSP_S as SP.  */ | 
|  | sp_regnum = tdep->m_profile_msp_s_regnum; | 
|  | else | 
|  | /* Non-secure main stack used, use MSP_NS as SP.  */ | 
|  | sp_regnum = tdep->m_profile_msp_ns_regnum; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (process_stack_used) | 
|  | /* Thread (process) stack used, use PSP as SP.  */ | 
|  | sp_regnum = tdep->m_profile_psp_regnum; | 
|  | else | 
|  | /* Main stack used, use MSP as SP.  */ | 
|  | sp_regnum = tdep->m_profile_msp_regnum; | 
|  | } | 
|  |  | 
|  | /* Set the active SP regnum.  */ | 
|  | arm_cache_switch_prev_sp (cache, tdep, sp_regnum); | 
|  |  | 
|  | /* Fetch the SP to use for this frame.  */ | 
|  | CORE_ADDR unwound_sp = arm_cache_get_prev_sp_value (cache, tdep); | 
|  |  | 
|  | /* Exception entry context stacking are described in ARMv8-M (section | 
|  | B3.19) and ARMv7-M (sections B1.5.6 and B1.5.7) Architecture Reference | 
|  | Manuals. | 
|  |  | 
|  | The following figure shows the structure of the stack frame when | 
|  | Security and Floating-point extensions are present. | 
|  |  | 
|  | SP Offsets | 
|  | Without                         With | 
|  | Callee Regs                    Callee Regs | 
|  | (Secure -> Non-Secure) | 
|  | +-------------------+ | 
|  | 0xA8   |                   |   0xD0 | 
|  | +===================+         --+  <-- Original SP | 
|  | 0xA4   |        S31        |   0xCC    | | 
|  | +-------------------+           | | 
|  | ...                    |  Additional FP context | 
|  | +-------------------+           | | 
|  | 0x68   |        S16        |   0x90    | | 
|  | +===================+         --+ | 
|  | 0x64   |      Reserved     |   0x8C    | | 
|  | +-------------------+           | | 
|  | 0x60   |       FPSCR       |   0x88    | | 
|  | +-------------------+           | | 
|  | 0x5C   |        S15        |   0x84    |  FP context | 
|  | +-------------------+           | | 
|  | ...                    | | 
|  | +-------------------+           | | 
|  | 0x20   |         S0        |   0x48    | | 
|  | +===================+         --+ | 
|  | 0x1C   |       xPSR        |   0x44    | | 
|  | +-------------------+           | | 
|  | 0x18   |  Return address   |   0x40    | | 
|  | +-------------------+           | | 
|  | 0x14   |      LR(R14)      |   0x3C    | | 
|  | +-------------------+           | | 
|  | 0x10   |        R12        |   0x38    |  State context | 
|  | +-------------------+           | | 
|  | 0x0C   |         R3        |   0x34    | | 
|  | +-------------------+           | | 
|  | ...                    | | 
|  | +-------------------+           | | 
|  | 0x00   |         R0        |   0x28    | | 
|  | +===================+         --+ | 
|  | |        R11        |   0x24    | | 
|  | +-------------------+           | | 
|  | ...                    | | 
|  | +-------------------+           |  Additional state | 
|  | |         R4        |   0x08    |  context when | 
|  | +-------------------+           |  transitioning from | 
|  | |      Reserved     |   0x04    |  Secure to Non-Secure | 
|  | +-------------------+           | | 
|  | |  Magic signature  |   0x00    | | 
|  | +===================+         --+  <-- New SP  */ | 
|  |  | 
|  | uint32_t sp_r0_offset = 0; | 
|  |  | 
|  | /* With the Security extension, the hardware saves R4..R11 too.  */ | 
|  | if (tdep->have_sec_ext && secure_stack_used | 
|  | && (!default_callee_register_stacking || !exception_domain_is_secure)) | 
|  | { | 
|  | /* Read R4..R11 from the integer callee registers.  */ | 
|  | cache->saved_regs[4].set_addr (unwound_sp + 0x08); | 
|  | cache->saved_regs[5].set_addr (unwound_sp + 0x0C); | 
|  | cache->saved_regs[6].set_addr (unwound_sp + 0x10); | 
|  | cache->saved_regs[7].set_addr (unwound_sp + 0x14); | 
|  | cache->saved_regs[8].set_addr (unwound_sp + 0x18); | 
|  | cache->saved_regs[9].set_addr (unwound_sp + 0x1C); | 
|  | cache->saved_regs[10].set_addr (unwound_sp + 0x20); | 
|  | cache->saved_regs[11].set_addr (unwound_sp + 0x24); | 
|  | sp_r0_offset = 0x28; | 
|  | } | 
|  |  | 
|  | /* The hardware saves eight 32-bit words, comprising xPSR, | 
|  | ReturnAddress, LR (R14), R12, R3, R2, R1, R0.  See details in | 
|  | "B1.5.6 Exception entry behavior" in | 
|  | "ARMv7-M Architecture Reference Manual".  */ | 
|  | cache->saved_regs[0].set_addr (unwound_sp + sp_r0_offset); | 
|  | cache->saved_regs[1].set_addr (unwound_sp + sp_r0_offset + 0x04); | 
|  | cache->saved_regs[2].set_addr (unwound_sp + sp_r0_offset + 0x08); | 
|  | cache->saved_regs[3].set_addr (unwound_sp + sp_r0_offset + 0x0C); | 
|  | cache->saved_regs[ARM_IP_REGNUM].set_addr (unwound_sp + sp_r0_offset | 
|  | + 0x10); | 
|  | cache->saved_regs[ARM_LR_REGNUM].set_addr (unwound_sp + sp_r0_offset | 
|  | + 0x14); | 
|  | cache->saved_regs[ARM_PC_REGNUM].set_addr (unwound_sp + sp_r0_offset | 
|  | + 0x18); | 
|  | cache->saved_regs[ARM_PS_REGNUM].set_addr (unwound_sp + sp_r0_offset | 
|  | + 0x1C); | 
|  |  | 
|  | /* Check EXC_RETURN bit FTYPE if extended stack frame (FPU regs stored) | 
|  | type used.  */ | 
|  | bool extended_frame_used = (bit (lr, 4) == 0); | 
|  | if (extended_frame_used) | 
|  | { | 
|  | ULONGEST fpccr; | 
|  | ULONGEST fpcar; | 
|  |  | 
|  | /* Read FPCCR register.  */ | 
|  | if (!safe_read_memory_unsigned_integer (FPCCR, ARM_INT_REGISTER_SIZE, | 
|  | byte_order, &fpccr)) | 
|  | { | 
|  | warning (_("Could not fetch required FPCCR content.  Further " | 
|  | "unwinding is impossible.")); | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* Read FPCAR register.  */ | 
|  | if (!safe_read_memory_unsigned_integer (FPCAR, ARM_INT_REGISTER_SIZE, | 
|  | byte_order, &fpcar)) | 
|  | { | 
|  | warning (_("Could not fetch FPCAR content. Further unwinding of " | 
|  | "FP register values will be unreliable.")); | 
|  | fpcar = 0; | 
|  | } | 
|  |  | 
|  | bool fpccr_aspen = bit (fpccr, 31); | 
|  | bool fpccr_lspen = bit (fpccr, 30); | 
|  | bool fpccr_ts = bit (fpccr, 26); | 
|  | bool fpccr_lspact = bit (fpccr, 0); | 
|  |  | 
|  | /* The LSPEN and ASPEN bits indicate if the lazy state preservation | 
|  | for FP registers is enabled or disabled.  The LSPACT bit indicate, | 
|  | together with FPCAR, if the lazy state preservation feature is | 
|  | active for the current frame or for another frame. | 
|  | See "Lazy context save of FP state", in B1.5.7, also ARM AN298, | 
|  | supported by Cortex-M4F architecture for details.  */ | 
|  | bool fpcar_points_to_this_frame = ((unwound_sp + sp_r0_offset + 0x20) | 
|  | == (fpcar & ~0x7)); | 
|  | bool read_fp_regs_from_stack = (!(fpccr_aspen && fpccr_lspen | 
|  | && fpccr_lspact | 
|  | && fpcar_points_to_this_frame)); | 
|  |  | 
|  | /* Extended stack frame type used.  */ | 
|  | if (read_fp_regs_from_stack) | 
|  | { | 
|  | CORE_ADDR addr = unwound_sp + sp_r0_offset + 0x20; | 
|  | for (int i = 0; i < 8; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + i].set_addr (addr); | 
|  | addr += 8; | 
|  | } | 
|  | } | 
|  | cache->saved_regs[ARM_FPSCR_REGNUM].set_addr (unwound_sp | 
|  | + sp_r0_offset + 0x60); | 
|  |  | 
|  | if (tdep->have_sec_ext && !default_callee_register_stacking | 
|  | && fpccr_ts) | 
|  | { | 
|  | /* Handle floating-point callee saved registers.  */ | 
|  | if (read_fp_regs_from_stack) | 
|  | { | 
|  | CORE_ADDR addr = unwound_sp + sp_r0_offset + 0x68; | 
|  | for (int i = 8; i < 16; i++) | 
|  | { | 
|  | cache->saved_regs[ARM_D0_REGNUM + i].set_addr (addr); | 
|  | addr += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | arm_cache_set_active_sp_value (cache, tdep, | 
|  | unwound_sp + sp_r0_offset + 0xA8); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Offset 0x64 is reserved.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, | 
|  | unwound_sp + sp_r0_offset + 0x68); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Standard stack frame type used.  */ | 
|  | arm_cache_set_active_sp_value (cache, tdep, | 
|  | unwound_sp + sp_r0_offset + 0x20); | 
|  | } | 
|  |  | 
|  | /* If bit 9 of the saved xPSR is set, then there is a four-byte | 
|  | aligner between the top of the 32-byte stack frame and the | 
|  | previous context's stack pointer.  */ | 
|  | ULONGEST xpsr; | 
|  | if (!safe_read_memory_unsigned_integer (cache->saved_regs[ARM_PS_REGNUM] | 
|  | .addr (), ARM_INT_REGISTER_SIZE, | 
|  | byte_order, &xpsr)) | 
|  | { | 
|  | warning (_("Could not fetch required XPSR content.  Further " | 
|  | "unwinding is impossible.")); | 
|  | arm_cache_set_active_sp_value (cache, tdep, 0); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | if (bit (xpsr, 9) != 0) | 
|  | { | 
|  | CORE_ADDR new_sp = arm_cache_get_prev_sp_value (cache, tdep) + 4; | 
|  | arm_cache_set_active_sp_value (cache, tdep, new_sp); | 
|  | } | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | internal_error (_("While unwinding an exception frame, " | 
|  | "found unexpected Link Register value " | 
|  | "%s.  This should not happen and may " | 
|  | "be caused by corrupt data or a bug in" | 
|  | " GDB."), | 
|  | phex (lr, ARM_INT_REGISTER_SIZE)); | 
|  | } | 
|  |  | 
|  | /* Implementation of the stop_reason hook for arm_m_exception frames.  */ | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | arm_m_exception_frame_unwind_stop_reason (frame_info_ptr this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_m_exception_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | /* If we've hit a wall, stop.  */ | 
|  | if (arm_cache_get_prev_sp_value (cache, tdep) == 0) | 
|  | return UNWIND_OUTERMOST; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | /* Implementation of function hook 'this_id' in | 
|  | 'struct frame_uwnind'.  */ | 
|  |  | 
|  | static void | 
|  | arm_m_exception_this_id (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_m_exception_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | /* Our frame ID for a stub frame is the current SP and LR.  */ | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | *this_id = frame_id_build (arm_cache_get_prev_sp_value (cache, tdep), | 
|  | get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | /* Implementation of function hook 'prev_register' in | 
|  | 'struct frame_uwnind'.  */ | 
|  |  | 
|  | static struct value * | 
|  | arm_m_exception_prev_register (frame_info_ptr this_frame, | 
|  | void **this_cache, | 
|  | int prev_regnum) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  | CORE_ADDR sp_value; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_m_exception_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | /* The value was already reconstructed into PREV_SP.  */ | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | if (prev_regnum == ARM_SP_REGNUM) | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, | 
|  | arm_cache_get_prev_sp_value (cache, tdep)); | 
|  |  | 
|  | /* If we are asked to unwind the PC, strip the saved T bit.  */ | 
|  | if (prev_regnum == ARM_PC_REGNUM) | 
|  | { | 
|  | struct value *value = trad_frame_get_prev_register (this_frame, | 
|  | cache->saved_regs, | 
|  | prev_regnum); | 
|  | CORE_ADDR pc = value_as_address (value); | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, | 
|  | UNMAKE_THUMB_ADDR (pc)); | 
|  | } | 
|  |  | 
|  | /* The value might be one of the alternative SP, if so, use the | 
|  | value already constructed.  */ | 
|  | if (arm_is_alternative_sp_register (tdep, prev_regnum)) | 
|  | { | 
|  | sp_value = arm_cache_get_sp_register (cache, tdep, prev_regnum); | 
|  | return frame_unwind_got_constant (this_frame, prev_regnum, sp_value); | 
|  | } | 
|  |  | 
|  | /* If we are asked to unwind the xPSR, set T bit if PC is in thumb mode. | 
|  | LR register is unreliable as it contains FNC_RETURN or EXC_RETURN | 
|  | pattern.  */ | 
|  | if (prev_regnum == ARM_PS_REGNUM) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct value *value = trad_frame_get_prev_register (this_frame, | 
|  | cache->saved_regs, | 
|  | ARM_PC_REGNUM); | 
|  | CORE_ADDR pc = value_as_address (value); | 
|  | value = trad_frame_get_prev_register (this_frame, cache->saved_regs, | 
|  | ARM_PS_REGNUM); | 
|  | ULONGEST xpsr = value_as_long (value); | 
|  |  | 
|  | /* Reconstruct the T bit; see arm_prologue_prev_register for details.  */ | 
|  | xpsr = reconstruct_t_bit (gdbarch, pc, xpsr); | 
|  | return frame_unwind_got_constant (this_frame, ARM_PS_REGNUM, xpsr); | 
|  | } | 
|  |  | 
|  | return trad_frame_get_prev_register (this_frame, cache->saved_regs, | 
|  | prev_regnum); | 
|  | } | 
|  |  | 
|  | /* Implementation of function hook 'sniffer' in | 
|  | 'struct frame_uwnind'.  */ | 
|  |  | 
|  | static int | 
|  | arm_m_exception_unwind_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | CORE_ADDR this_pc = get_frame_pc (this_frame); | 
|  |  | 
|  | /* No need to check is_m; this sniffer is only registered for | 
|  | M-profile architectures.  */ | 
|  |  | 
|  | /* Check if exception frame returns to a magic PC value.  */ | 
|  | return arm_m_addr_is_magic (gdbarch, this_pc); | 
|  | } | 
|  |  | 
|  | /* Frame unwinder for M-profile exceptions (EXC_RETURN on stack), | 
|  | lockup and secure/nonsecure interstate function calls (FNC_RETURN).  */ | 
|  |  | 
|  | struct frame_unwind arm_m_exception_unwind = | 
|  | { | 
|  | "arm m exception lockup sec_fnc", | 
|  | SIGTRAMP_FRAME, | 
|  | arm_m_exception_frame_unwind_stop_reason, | 
|  | arm_m_exception_this_id, | 
|  | arm_m_exception_prev_register, | 
|  | NULL, | 
|  | arm_m_exception_unwind_sniffer | 
|  | }; | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_normal_frame_base (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct arm_prologue_cache *cache; | 
|  |  | 
|  | if (*this_cache == NULL) | 
|  | *this_cache = arm_make_prologue_cache (this_frame); | 
|  | cache = (struct arm_prologue_cache *) *this_cache; | 
|  |  | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (get_frame_arch (this_frame)); | 
|  | return arm_cache_get_prev_sp_value (cache, tdep) - cache->framesize; | 
|  | } | 
|  |  | 
|  | struct frame_base arm_normal_base = { | 
|  | &arm_prologue_unwind, | 
|  | arm_normal_frame_base, | 
|  | arm_normal_frame_base, | 
|  | arm_normal_frame_base | 
|  | }; | 
|  |  | 
|  | struct arm_dwarf2_prev_register_cache | 
|  | { | 
|  | /* Cached value of the corresponding stack pointer for the inner frame.  */ | 
|  | CORE_ADDR sp; | 
|  | CORE_ADDR msp; | 
|  | CORE_ADDR msp_s; | 
|  | CORE_ADDR msp_ns; | 
|  | CORE_ADDR psp; | 
|  | CORE_ADDR psp_s; | 
|  | CORE_ADDR psp_ns; | 
|  | }; | 
|  |  | 
|  | static struct value * | 
|  | arm_dwarf2_prev_register (frame_info_ptr this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct gdbarch * gdbarch = get_frame_arch (this_frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | CORE_ADDR lr; | 
|  | ULONGEST cpsr; | 
|  | arm_dwarf2_prev_register_cache *cache | 
|  | = ((arm_dwarf2_prev_register_cache *) | 
|  | dwarf2_frame_get_fn_data (this_frame, this_cache, | 
|  | arm_dwarf2_prev_register)); | 
|  |  | 
|  | if (!cache) | 
|  | { | 
|  | const unsigned int size = sizeof (struct arm_dwarf2_prev_register_cache); | 
|  | cache = ((arm_dwarf2_prev_register_cache *) | 
|  | dwarf2_frame_allocate_fn_data (this_frame, this_cache, | 
|  | arm_dwarf2_prev_register, size)); | 
|  |  | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | cache->sp | 
|  | = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); | 
|  |  | 
|  | cache->msp_s | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_msp_s_regnum); | 
|  | cache->msp_ns | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_msp_ns_regnum); | 
|  | cache->psp_s | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_psp_s_regnum); | 
|  | cache->psp_ns | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_psp_ns_regnum); | 
|  | } | 
|  | else if (tdep->is_m) | 
|  | { | 
|  | cache->sp | 
|  | = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM); | 
|  |  | 
|  | cache->msp | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_msp_regnum); | 
|  | cache->psp | 
|  | = get_frame_register_unsigned (this_frame, | 
|  | tdep->m_profile_psp_regnum); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (regnum == ARM_PC_REGNUM) | 
|  | { | 
|  | /* The PC is normally copied from the return column, which | 
|  | describes saves of LR.  However, that version may have an | 
|  | extra bit set to indicate Thumb state.  The bit is not | 
|  | part of the PC.  */ | 
|  |  | 
|  | /* Record in the frame whether the return address was signed.  */ | 
|  | if (tdep->have_pacbti) | 
|  | { | 
|  | CORE_ADDR ra_auth_code | 
|  | = frame_unwind_register_unsigned (this_frame, | 
|  | tdep->pacbti_pseudo_base); | 
|  |  | 
|  | if (ra_auth_code != 0) | 
|  | set_frame_previous_pc_masked (this_frame); | 
|  | } | 
|  |  | 
|  | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | 
|  | return frame_unwind_got_constant (this_frame, regnum, | 
|  | arm_addr_bits_remove (gdbarch, lr)); | 
|  | } | 
|  | else if (regnum == ARM_PS_REGNUM) | 
|  | { | 
|  | /* Reconstruct the T bit; see arm_prologue_prev_register for details.  */ | 
|  | cpsr = get_frame_register_unsigned (this_frame, regnum); | 
|  | lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM); | 
|  | cpsr = reconstruct_t_bit (gdbarch, lr, cpsr); | 
|  | return frame_unwind_got_constant (this_frame, regnum, cpsr); | 
|  | } | 
|  | else if (arm_is_alternative_sp_register (tdep, regnum)) | 
|  | { | 
|  | /* Handle the alternative SP registers on Cortex-M.  */ | 
|  | bool override_with_sp_value = false; | 
|  | CORE_ADDR val; | 
|  |  | 
|  | if (tdep->have_sec_ext) | 
|  | { | 
|  | bool is_msp = (regnum == tdep->m_profile_msp_regnum) | 
|  | && (cache->msp_s == cache->sp || cache->msp_ns == cache->sp); | 
|  | bool is_msp_s = (regnum == tdep->m_profile_msp_s_regnum) | 
|  | && (cache->msp_s == cache->sp); | 
|  | bool is_msp_ns = (regnum == tdep->m_profile_msp_ns_regnum) | 
|  | && (cache->msp_ns == cache->sp); | 
|  | bool is_psp = (regnum == tdep->m_profile_psp_regnum) | 
|  | && (cache->psp_s == cache->sp || cache->psp_ns == cache->sp); | 
|  | bool is_psp_s = (regnum == tdep->m_profile_psp_s_regnum) | 
|  | && (cache->psp_s == cache->sp); | 
|  | bool is_psp_ns = (regnum == tdep->m_profile_psp_ns_regnum) | 
|  | && (cache->psp_ns == cache->sp); | 
|  |  | 
|  | override_with_sp_value = is_msp || is_msp_s || is_msp_ns | 
|  | || is_psp || is_psp_s || is_psp_ns; | 
|  |  | 
|  | } | 
|  | else if (tdep->is_m) | 
|  | { | 
|  | bool is_msp = (regnum == tdep->m_profile_msp_regnum) | 
|  | && (cache->sp == cache->msp); | 
|  | bool is_psp = (regnum == tdep->m_profile_psp_regnum) | 
|  | && (cache->sp == cache->psp); | 
|  |  | 
|  | override_with_sp_value = is_msp || is_psp; | 
|  | } | 
|  |  | 
|  | if (override_with_sp_value) | 
|  | { | 
|  | /* Use value of SP from previous frame.  */ | 
|  | frame_info_ptr prev_frame = get_prev_frame (this_frame); | 
|  | if (prev_frame) | 
|  | val = get_frame_register_unsigned (prev_frame, ARM_SP_REGNUM); | 
|  | else | 
|  | val = get_frame_base (this_frame); | 
|  | } | 
|  | else | 
|  | /* Use value for the register from previous frame.  */ | 
|  | val = get_frame_register_unsigned (this_frame, regnum); | 
|  |  | 
|  | return frame_unwind_got_constant (this_frame, regnum, val); | 
|  | } | 
|  |  | 
|  | internal_error (_("Unexpected register %d"), regnum); | 
|  | } | 
|  |  | 
|  | /* Implement the stack_frame_destroyed_p gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | thumb_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | unsigned int insn, insn2; | 
|  | int found_return = 0, found_stack_adjust = 0; | 
|  | CORE_ADDR func_start, func_end; | 
|  | CORE_ADDR scan_pc; | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | 
|  | return 0; | 
|  |  | 
|  | /* The epilogue is a sequence of instructions along the following lines: | 
|  |  | 
|  | - add stack frame size to SP or FP | 
|  | - [if frame pointer used] restore SP from FP | 
|  | - restore registers from SP [may include PC] | 
|  | - a return-type instruction [if PC wasn't already restored] | 
|  |  | 
|  | In a first pass, we scan forward from the current PC and verify the | 
|  | instructions we find as compatible with this sequence, ending in a | 
|  | return instruction. | 
|  |  | 
|  | However, this is not sufficient to distinguish indirect function calls | 
|  | within a function from indirect tail calls in the epilogue in some cases. | 
|  | Therefore, if we didn't already find any SP-changing instruction during | 
|  | forward scan, we add a backward scanning heuristic to ensure we actually | 
|  | are in the epilogue.  */ | 
|  |  | 
|  | scan_pc = pc; | 
|  | while (scan_pc < func_end && !found_return) | 
|  | { | 
|  | if (target_read_memory (scan_pc, buf, 2)) | 
|  | break; | 
|  |  | 
|  | scan_pc += 2; | 
|  | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | 
|  |  | 
|  | if ((insn & 0xff80) == 0x4700)  /* bx <Rm> */ | 
|  | found_return = 1; | 
|  | else if (insn == 0x46f7)  /* mov pc, lr */ | 
|  | found_return = 1; | 
|  | else if (thumb_instruction_restores_sp (insn)) | 
|  | { | 
|  | if ((insn & 0xff00) == 0xbd00)  /* pop <registers, PC> */ | 
|  | found_return = 1; | 
|  | } | 
|  | else if (thumb_insn_size (insn) == 4)  /* 32-bit Thumb-2 instruction */ | 
|  | { | 
|  | if (target_read_memory (scan_pc, buf, 2)) | 
|  | break; | 
|  |  | 
|  | scan_pc += 2; | 
|  | insn2 = extract_unsigned_integer (buf, 2, byte_order_for_code); | 
|  |  | 
|  | if (insn == 0xe8bd)  /* ldm.w sp!, <registers> */ | 
|  | { | 
|  | if (insn2 & 0x8000)  /* <registers> include PC.  */ | 
|  | found_return = 1; | 
|  | } | 
|  | else if (insn == 0xf85d  /* ldr.w <Rt>, [sp], #4 */ | 
|  | && (insn2 & 0x0fff) == 0x0b04) | 
|  | { | 
|  | if ((insn2 & 0xf000) == 0xf000) /* <Rt> is PC.  */ | 
|  | found_return = 1; | 
|  | } | 
|  | else if ((insn & 0xffbf) == 0xecbd  /* vldm sp!, <list> */ | 
|  | && (insn2 & 0x0e00) == 0x0a00) | 
|  | ; | 
|  | else | 
|  | break; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!found_return) | 
|  | return 0; | 
|  |  | 
|  | /* Since any instruction in the epilogue sequence, with the possible | 
|  | exception of return itself, updates the stack pointer, we need to | 
|  | scan backwards for at most one instruction.  Try either a 16-bit or | 
|  | a 32-bit instruction.  This is just a heuristic, so we do not worry | 
|  | too much about false positives.  */ | 
|  |  | 
|  | if (pc - 4 < func_start) | 
|  | return 0; | 
|  | if (target_read_memory (pc - 4, buf, 4)) | 
|  | return 0; | 
|  |  | 
|  | insn = extract_unsigned_integer (buf, 2, byte_order_for_code); | 
|  | insn2 = extract_unsigned_integer (buf + 2, 2, byte_order_for_code); | 
|  |  | 
|  | if (thumb_instruction_restores_sp (insn2)) | 
|  | found_stack_adjust = 1; | 
|  | else if (insn == 0xe8bd)  /* ldm.w sp!, <registers> */ | 
|  | found_stack_adjust = 1; | 
|  | else if (insn == 0xf85d  /* ldr.w <Rt>, [sp], #4 */ | 
|  | && (insn2 & 0x0fff) == 0x0b04) | 
|  | found_stack_adjust = 1; | 
|  | else if ((insn & 0xffbf) == 0xecbd  /* vldm sp!, <list> */ | 
|  | && (insn2 & 0x0e00) == 0x0a00) | 
|  | found_stack_adjust = 1; | 
|  |  | 
|  | return found_stack_adjust; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | unsigned int insn; | 
|  | int found_return; | 
|  | CORE_ADDR func_start, func_end; | 
|  |  | 
|  | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | 
|  | return 0; | 
|  |  | 
|  | /* We are in the epilogue if the previous instruction was a stack | 
|  | adjustment and the next instruction is a possible return (bx, mov | 
|  | pc, or pop).  We could have to scan backwards to find the stack | 
|  | adjustment, or forwards to find the return, but this is a decent | 
|  | approximation.  First scan forwards.  */ | 
|  |  | 
|  | found_return = 0; | 
|  | insn = read_memory_unsigned_integer (pc, 4, byte_order_for_code); | 
|  | if (bits (insn, 28, 31) != INST_NV) | 
|  | { | 
|  | if ((insn & 0x0ffffff0) == 0x012fff10) | 
|  | /* BX.  */ | 
|  | found_return = 1; | 
|  | else if ((insn & 0x0ffffff0) == 0x01a0f000) | 
|  | /* MOV PC.  */ | 
|  | found_return = 1; | 
|  | else if ((insn & 0x0fff0000) == 0x08bd0000 | 
|  | && (insn & 0x0000c000) != 0) | 
|  | /* POP (LDMIA), including PC or LR.  */ | 
|  | found_return = 1; | 
|  | } | 
|  |  | 
|  | if (!found_return) | 
|  | return 0; | 
|  |  | 
|  | /* Scan backwards.  This is just a heuristic, so do not worry about | 
|  | false positives from mode changes.  */ | 
|  |  | 
|  | if (pc < func_start + 4) | 
|  | return 0; | 
|  |  | 
|  | insn = read_memory_unsigned_integer (pc - 4, 4, byte_order_for_code); | 
|  | if (arm_instruction_restores_sp (insn)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implement the stack_frame_destroyed_p gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | arm_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | if (arm_pc_is_thumb (gdbarch, pc)) | 
|  | return thumb_stack_frame_destroyed_p (gdbarch, pc); | 
|  | else | 
|  | return arm_stack_frame_destroyed_p_1 (gdbarch, pc); | 
|  | } | 
|  |  | 
|  | /* When arguments must be pushed onto the stack, they go on in reverse | 
|  | order.  The code below implements a FILO (stack) to do this.  */ | 
|  |  | 
|  | struct arm_stack_item | 
|  | { | 
|  | int len; | 
|  | struct arm_stack_item *prev; | 
|  | gdb_byte *data; | 
|  | }; | 
|  |  | 
|  | static struct arm_stack_item * | 
|  | push_stack_item (struct arm_stack_item *prev, const gdb_byte *contents, | 
|  | int len) | 
|  | { | 
|  | struct arm_stack_item *si; | 
|  | si = XNEW (struct arm_stack_item); | 
|  | si->data = (gdb_byte *) xmalloc (len); | 
|  | si->len = len; | 
|  | si->prev = prev; | 
|  | memcpy (si->data, contents, len); | 
|  | return si; | 
|  | } | 
|  |  | 
|  | static struct arm_stack_item * | 
|  | pop_stack_item (struct arm_stack_item *si) | 
|  | { | 
|  | struct arm_stack_item *dead = si; | 
|  | si = si->prev; | 
|  | xfree (dead->data); | 
|  | xfree (dead); | 
|  | return si; | 
|  | } | 
|  |  | 
|  | /* Implement the gdbarch type alignment method, overrides the generic | 
|  | alignment algorithm for anything that is arm specific.  */ | 
|  |  | 
|  | static ULONGEST | 
|  | arm_type_align (gdbarch *gdbarch, struct type *t) | 
|  | { | 
|  | t = check_typedef (t); | 
|  | if (t->code () == TYPE_CODE_ARRAY && t->is_vector ()) | 
|  | { | 
|  | /* Use the natural alignment for vector types (the same for | 
|  | scalar type), but the maximum alignment is 64-bit.  */ | 
|  | if (t->length () > 8) | 
|  | return 8; | 
|  | else | 
|  | return t->length (); | 
|  | } | 
|  |  | 
|  | /* Allow the common code to calculate the alignment.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Possible base types for a candidate for passing and returning in | 
|  | VFP registers.  */ | 
|  |  | 
|  | enum arm_vfp_cprc_base_type | 
|  | { | 
|  | VFP_CPRC_UNKNOWN, | 
|  | VFP_CPRC_SINGLE, | 
|  | VFP_CPRC_DOUBLE, | 
|  | VFP_CPRC_VEC64, | 
|  | VFP_CPRC_VEC128 | 
|  | }; | 
|  |  | 
|  | /* The length of one element of base type B.  */ | 
|  |  | 
|  | static unsigned | 
|  | arm_vfp_cprc_unit_length (enum arm_vfp_cprc_base_type b) | 
|  | { | 
|  | switch (b) | 
|  | { | 
|  | case VFP_CPRC_SINGLE: | 
|  | return 4; | 
|  | case VFP_CPRC_DOUBLE: | 
|  | return 8; | 
|  | case VFP_CPRC_VEC64: | 
|  | return 8; | 
|  | case VFP_CPRC_VEC128: | 
|  | return 16; | 
|  | default: | 
|  | internal_error (_("Invalid VFP CPRC type: %d."), | 
|  | (int) b); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The character ('s', 'd' or 'q') for the type of VFP register used | 
|  | for passing base type B.  */ | 
|  |  | 
|  | static int | 
|  | arm_vfp_cprc_reg_char (enum arm_vfp_cprc_base_type b) | 
|  | { | 
|  | switch (b) | 
|  | { | 
|  | case VFP_CPRC_SINGLE: | 
|  | return 's'; | 
|  | case VFP_CPRC_DOUBLE: | 
|  | return 'd'; | 
|  | case VFP_CPRC_VEC64: | 
|  | return 'd'; | 
|  | case VFP_CPRC_VEC128: | 
|  | return 'q'; | 
|  | default: | 
|  | internal_error (_("Invalid VFP CPRC type: %d."), | 
|  | (int) b); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Determine whether T may be part of a candidate for passing and | 
|  | returning in VFP registers, ignoring the limit on the total number | 
|  | of components.  If *BASE_TYPE is VFP_CPRC_UNKNOWN, set it to the | 
|  | classification of the first valid component found; if it is not | 
|  | VFP_CPRC_UNKNOWN, all components must have the same classification | 
|  | as *BASE_TYPE.  If it is found that T contains a type not permitted | 
|  | for passing and returning in VFP registers, a type differently | 
|  | classified from *BASE_TYPE, or two types differently classified | 
|  | from each other, return -1, otherwise return the total number of | 
|  | base-type elements found (possibly 0 in an empty structure or | 
|  | array).  Vector types are not currently supported, matching the | 
|  | generic AAPCS support.  */ | 
|  |  | 
|  | static int | 
|  | arm_vfp_cprc_sub_candidate (struct type *t, | 
|  | enum arm_vfp_cprc_base_type *base_type) | 
|  | { | 
|  | t = check_typedef (t); | 
|  | switch (t->code ()) | 
|  | { | 
|  | case TYPE_CODE_FLT: | 
|  | switch (t->length ()) | 
|  | { | 
|  | case 4: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_SINGLE; | 
|  | else if (*base_type != VFP_CPRC_SINGLE) | 
|  | return -1; | 
|  | return 1; | 
|  |  | 
|  | case 8: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_DOUBLE; | 
|  | else if (*base_type != VFP_CPRC_DOUBLE) | 
|  | return -1; | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TYPE_CODE_COMPLEX: | 
|  | /* Arguments of complex T where T is one of the types float or | 
|  | double get treated as if they are implemented as: | 
|  |  | 
|  | struct complexT | 
|  | { | 
|  | T real; | 
|  | T imag; | 
|  | }; | 
|  |  | 
|  | */ | 
|  | switch (t->length ()) | 
|  | { | 
|  | case 8: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_SINGLE; | 
|  | else if (*base_type != VFP_CPRC_SINGLE) | 
|  | return -1; | 
|  | return 2; | 
|  |  | 
|  | case 16: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_DOUBLE; | 
|  | else if (*base_type != VFP_CPRC_DOUBLE) | 
|  | return -1; | 
|  | return 2; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TYPE_CODE_ARRAY: | 
|  | { | 
|  | if (t->is_vector ()) | 
|  | { | 
|  | /* A 64-bit or 128-bit containerized vector type are VFP | 
|  | CPRCs.  */ | 
|  | switch (t->length ()) | 
|  | { | 
|  | case 8: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_VEC64; | 
|  | return 1; | 
|  | case 16: | 
|  | if (*base_type == VFP_CPRC_UNKNOWN) | 
|  | *base_type = VFP_CPRC_VEC128; | 
|  | return 1; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | int count; | 
|  | unsigned unitlen; | 
|  |  | 
|  | count = arm_vfp_cprc_sub_candidate (t->target_type (), | 
|  | base_type); | 
|  | if (count == -1) | 
|  | return -1; | 
|  | if (t->length () == 0) | 
|  | { | 
|  | gdb_assert (count == 0); | 
|  | return 0; | 
|  | } | 
|  | else if (count == 0) | 
|  | return -1; | 
|  | unitlen = arm_vfp_cprc_unit_length (*base_type); | 
|  | gdb_assert ((t->length () % unitlen) == 0); | 
|  | return t->length () / unitlen; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case TYPE_CODE_STRUCT: | 
|  | { | 
|  | int count = 0; | 
|  | unsigned unitlen; | 
|  | int i; | 
|  | for (i = 0; i < t->num_fields (); i++) | 
|  | { | 
|  | int sub_count = 0; | 
|  |  | 
|  | if (!t->field (i).is_static ()) | 
|  | sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (), | 
|  | base_type); | 
|  | if (sub_count == -1) | 
|  | return -1; | 
|  | count += sub_count; | 
|  | } | 
|  | if (t->length () == 0) | 
|  | { | 
|  | gdb_assert (count == 0); | 
|  | return 0; | 
|  | } | 
|  | else if (count == 0) | 
|  | return -1; | 
|  | unitlen = arm_vfp_cprc_unit_length (*base_type); | 
|  | if (t->length () != unitlen * count) | 
|  | return -1; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | case TYPE_CODE_UNION: | 
|  | { | 
|  | int count = 0; | 
|  | unsigned unitlen; | 
|  | int i; | 
|  | for (i = 0; i < t->num_fields (); i++) | 
|  | { | 
|  | int sub_count = arm_vfp_cprc_sub_candidate (t->field (i).type (), | 
|  | base_type); | 
|  | if (sub_count == -1) | 
|  | return -1; | 
|  | count = (count > sub_count ? count : sub_count); | 
|  | } | 
|  | if (t->length () == 0) | 
|  | { | 
|  | gdb_assert (count == 0); | 
|  | return 0; | 
|  | } | 
|  | else if (count == 0) | 
|  | return -1; | 
|  | unitlen = arm_vfp_cprc_unit_length (*base_type); | 
|  | if (t->length () != unitlen * count) | 
|  | return -1; | 
|  | return count; | 
|  | } | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Determine whether T is a VFP co-processor register candidate (CPRC) | 
|  | if passed to or returned from a non-variadic function with the VFP | 
|  | ABI in effect.  Return 1 if it is, 0 otherwise.  If it is, set | 
|  | *BASE_TYPE to the base type for T and *COUNT to the number of | 
|  | elements of that base type before returning.  */ | 
|  |  | 
|  | static int | 
|  | arm_vfp_call_candidate (struct type *t, enum arm_vfp_cprc_base_type *base_type, | 
|  | int *count) | 
|  | { | 
|  | enum arm_vfp_cprc_base_type b = VFP_CPRC_UNKNOWN; | 
|  | int c = arm_vfp_cprc_sub_candidate (t, &b); | 
|  | if (c <= 0 || c > 4) | 
|  | return 0; | 
|  | *base_type = b; | 
|  | *count = c; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Return 1 if the VFP ABI should be used for passing arguments to and | 
|  | returning values from a function of type FUNC_TYPE, 0 | 
|  | otherwise.  */ | 
|  |  | 
|  | static int | 
|  | arm_vfp_abi_for_function (struct gdbarch *gdbarch, struct type *func_type) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Variadic functions always use the base ABI.  Assume that functions | 
|  | without debug info are not variadic.  */ | 
|  | if (func_type && check_typedef (func_type)->has_varargs ()) | 
|  | return 0; | 
|  |  | 
|  | /* The VFP ABI is only supported as a variant of AAPCS.  */ | 
|  | if (tdep->arm_abi != ARM_ABI_AAPCS) | 
|  | return 0; | 
|  |  | 
|  | return tdep->fp_model == ARM_FLOAT_VFP; | 
|  | } | 
|  |  | 
|  | /* We currently only support passing parameters in integer registers, which | 
|  | conforms with GCC's default model, and VFP argument passing following | 
|  | the VFP variant of AAPCS.  Several other variants exist and | 
|  | we should probably support some of them based on the selected ABI.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | 
|  | struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int argnum; | 
|  | int argreg; | 
|  | int nstack; | 
|  | struct arm_stack_item *si = NULL; | 
|  | int use_vfp_abi; | 
|  | struct type *ftype; | 
|  | unsigned vfp_regs_free = (1 << 16) - 1; | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Determine the type of this function and whether the VFP ABI | 
|  | applies.  */ | 
|  | ftype = check_typedef (function->type ()); | 
|  | if (ftype->code () == TYPE_CODE_PTR) | 
|  | ftype = check_typedef (ftype->target_type ()); | 
|  | use_vfp_abi = arm_vfp_abi_for_function (gdbarch, ftype); | 
|  |  | 
|  | /* Set the return address.  For the ARM, the return breakpoint is | 
|  | always at BP_ADDR.  */ | 
|  | if (arm_pc_is_thumb (gdbarch, bp_addr)) | 
|  | bp_addr |= 1; | 
|  | regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr); | 
|  |  | 
|  | /* Walk through the list of args and determine how large a temporary | 
|  | stack is required.  Need to take care here as structs may be | 
|  | passed on the stack, and we have to push them.  */ | 
|  | nstack = 0; | 
|  |  | 
|  | argreg = ARM_A1_REGNUM; | 
|  | nstack = 0; | 
|  |  | 
|  | /* The struct_return pointer occupies the first parameter | 
|  | passing register.  */ | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | arm_debug_printf ("struct return in %s = %s", | 
|  | gdbarch_register_name (gdbarch, argreg), | 
|  | paddress (gdbarch, struct_addr)); | 
|  |  | 
|  | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | 
|  | argreg++; | 
|  | } | 
|  |  | 
|  | for (argnum = 0; argnum < nargs; argnum++) | 
|  | { | 
|  | int len; | 
|  | struct type *arg_type; | 
|  | struct type *target_type; | 
|  | enum type_code typecode; | 
|  | const bfd_byte *val; | 
|  | int align; | 
|  | enum arm_vfp_cprc_base_type vfp_base_type; | 
|  | int vfp_base_count; | 
|  | int may_use_core_reg = 1; | 
|  |  | 
|  | arg_type = check_typedef (args[argnum]->type ()); | 
|  | len = arg_type->length (); | 
|  | target_type = arg_type->target_type (); | 
|  | typecode = arg_type->code (); | 
|  | val = args[argnum]->contents ().data (); | 
|  |  | 
|  | align = type_align (arg_type); | 
|  | /* Round alignment up to a whole number of words.  */ | 
|  | align = (align + ARM_INT_REGISTER_SIZE - 1) | 
|  | & ~(ARM_INT_REGISTER_SIZE - 1); | 
|  | /* Different ABIs have different maximum alignments.  */ | 
|  | if (tdep->arm_abi == ARM_ABI_APCS) | 
|  | { | 
|  | /* The APCS ABI only requires word alignment.  */ | 
|  | align = ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The AAPCS requires at most doubleword alignment.  */ | 
|  | if (align > ARM_INT_REGISTER_SIZE * 2) | 
|  | align = ARM_INT_REGISTER_SIZE * 2; | 
|  | } | 
|  |  | 
|  | if (use_vfp_abi | 
|  | && arm_vfp_call_candidate (arg_type, &vfp_base_type, | 
|  | &vfp_base_count)) | 
|  | { | 
|  | int regno; | 
|  | int unit_length; | 
|  | int shift; | 
|  | unsigned mask; | 
|  |  | 
|  | /* Because this is a CPRC it cannot go in a core register or | 
|  | cause a core register to be skipped for alignment. | 
|  | Either it goes in VFP registers and the rest of this loop | 
|  | iteration is skipped for this argument, or it goes on the | 
|  | stack (and the stack alignment code is correct for this | 
|  | case).  */ | 
|  | may_use_core_reg = 0; | 
|  |  | 
|  | unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | 
|  | shift = unit_length / 4; | 
|  | mask = (1 << (shift * vfp_base_count)) - 1; | 
|  | for (regno = 0; regno < 16; regno += shift) | 
|  | if (((vfp_regs_free >> regno) & mask) == mask) | 
|  | break; | 
|  |  | 
|  | if (regno < 16) | 
|  | { | 
|  | int reg_char; | 
|  | int reg_scaled; | 
|  | int i; | 
|  |  | 
|  | vfp_regs_free &= ~(mask << regno); | 
|  | reg_scaled = regno / shift; | 
|  | reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | 
|  | for (i = 0; i < vfp_base_count; i++) | 
|  | { | 
|  | char name_buf[4]; | 
|  | int regnum; | 
|  | if (reg_char == 'q') | 
|  | arm_neon_quad_write (gdbarch, regcache, reg_scaled + i, | 
|  | val + i * unit_length); | 
|  | else | 
|  | { | 
|  | xsnprintf (name_buf, sizeof (name_buf), "%c%d", | 
|  | reg_char, reg_scaled + i); | 
|  | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  | regcache->cooked_write (regnum, val + i * unit_length); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This CPRC could not go in VFP registers, so all VFP | 
|  | registers are now marked as used.  */ | 
|  | vfp_regs_free = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Push stack padding for doubleword alignment.  */ | 
|  | if (nstack & (align - 1)) | 
|  | { | 
|  | si = push_stack_item (si, val, ARM_INT_REGISTER_SIZE); | 
|  | nstack += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  |  | 
|  | /* Doubleword aligned quantities must go in even register pairs.  */ | 
|  | if (may_use_core_reg | 
|  | && argreg <= ARM_LAST_ARG_REGNUM | 
|  | && align > ARM_INT_REGISTER_SIZE | 
|  | && argreg & 1) | 
|  | argreg++; | 
|  |  | 
|  | /* If the argument is a pointer to a function, and it is a | 
|  | Thumb function, create a LOCAL copy of the value and set | 
|  | the THUMB bit in it.  */ | 
|  | if (TYPE_CODE_PTR == typecode | 
|  | && target_type != NULL | 
|  | && TYPE_CODE_FUNC == check_typedef (target_type)->code ()) | 
|  | { | 
|  | CORE_ADDR regval = extract_unsigned_integer (val, len, byte_order); | 
|  | if (arm_pc_is_thumb (gdbarch, regval)) | 
|  | { | 
|  | bfd_byte *copy = (bfd_byte *) alloca (len); | 
|  | store_unsigned_integer (copy, len, byte_order, | 
|  | MAKE_THUMB_ADDR (regval)); | 
|  | val = copy; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Copy the argument to general registers or the stack in | 
|  | register-sized pieces.  Large arguments are split between | 
|  | registers and stack.  */ | 
|  | while (len > 0) | 
|  | { | 
|  | int partial_len = len < ARM_INT_REGISTER_SIZE | 
|  | ? len : ARM_INT_REGISTER_SIZE; | 
|  | CORE_ADDR regval | 
|  | = extract_unsigned_integer (val, partial_len, byte_order); | 
|  |  | 
|  | if (may_use_core_reg && argreg <= ARM_LAST_ARG_REGNUM) | 
|  | { | 
|  | /* The argument is being passed in a general purpose | 
|  | register.  */ | 
|  | arm_debug_printf ("arg %d in %s = 0x%s", argnum, | 
|  | gdbarch_register_name (gdbarch, argreg), | 
|  | phex (regval, ARM_INT_REGISTER_SIZE)); | 
|  |  | 
|  | regcache_cooked_write_unsigned (regcache, argreg, regval); | 
|  | argreg++; | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_byte buf[ARM_INT_REGISTER_SIZE]; | 
|  |  | 
|  | memset (buf, 0, sizeof (buf)); | 
|  | store_unsigned_integer (buf, partial_len, byte_order, regval); | 
|  |  | 
|  | /* Push the arguments onto the stack.  */ | 
|  | arm_debug_printf ("arg %d @ sp + %d", argnum, nstack); | 
|  | si = push_stack_item (si, buf, ARM_INT_REGISTER_SIZE); | 
|  | nstack += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  |  | 
|  | len -= partial_len; | 
|  | val += partial_len; | 
|  | } | 
|  | } | 
|  | /* If we have an odd number of words to push, then decrement the stack | 
|  | by one word now, so first stack argument will be dword aligned.  */ | 
|  | if (nstack & 4) | 
|  | sp -= 4; | 
|  |  | 
|  | while (si) | 
|  | { | 
|  | sp -= si->len; | 
|  | write_memory (sp, si->data, si->len); | 
|  | si = pop_stack_item (si); | 
|  | } | 
|  |  | 
|  | /* Finally, update teh SP register.  */ | 
|  | regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Always align the frame to an 8-byte boundary.  This is required on | 
|  | some platforms and harmless on the rest.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | /* Align the stack to eight bytes.  */ | 
|  | return sp & ~ (CORE_ADDR) 7; | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_fpu_flags (struct ui_file *file, int flags) | 
|  | { | 
|  | if (flags & (1 << 0)) | 
|  | gdb_puts ("IVO ", file); | 
|  | if (flags & (1 << 1)) | 
|  | gdb_puts ("DVZ ", file); | 
|  | if (flags & (1 << 2)) | 
|  | gdb_puts ("OFL ", file); | 
|  | if (flags & (1 << 3)) | 
|  | gdb_puts ("UFL ", file); | 
|  | if (flags & (1 << 4)) | 
|  | gdb_puts ("INX ", file); | 
|  | gdb_putc ('\n', file); | 
|  | } | 
|  |  | 
|  | /* Print interesting information about the floating point processor | 
|  | (if present) or emulator.  */ | 
|  | static void | 
|  | arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, | 
|  | frame_info_ptr frame, const char *args) | 
|  | { | 
|  | unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM); | 
|  | int type; | 
|  |  | 
|  | type = (status >> 24) & 127; | 
|  | if (status & (1 << 31)) | 
|  | gdb_printf (file, _("Hardware FPU type %d\n"), type); | 
|  | else | 
|  | gdb_printf (file, _("Software FPU type %d\n"), type); | 
|  | /* i18n: [floating point unit] mask */ | 
|  | gdb_puts (_("mask: "), file); | 
|  | print_fpu_flags (file, status >> 16); | 
|  | /* i18n: [floating point unit] flags */ | 
|  | gdb_puts (_("flags: "), file); | 
|  | print_fpu_flags (file, status); | 
|  | } | 
|  |  | 
|  | /* Construct the ARM extended floating point type.  */ | 
|  | static struct type * | 
|  | arm_ext_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (!tdep->arm_ext_type) | 
|  | { | 
|  | type_allocator alloc (gdbarch); | 
|  | tdep->arm_ext_type | 
|  | = init_float_type (alloc, -1, "builtin_type_arm_ext", | 
|  | floatformats_arm_ext); | 
|  | } | 
|  |  | 
|  | return tdep->arm_ext_type; | 
|  | } | 
|  |  | 
|  | static struct type * | 
|  | arm_neon_double_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->neon_double_type == NULL) | 
|  | { | 
|  | struct type *t, *elem; | 
|  |  | 
|  | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_d", | 
|  | TYPE_CODE_UNION); | 
|  | elem = builtin_type (gdbarch)->builtin_uint8; | 
|  | append_composite_type_field (t, "u8", init_vector_type (elem, 8)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint16; | 
|  | append_composite_type_field (t, "u16", init_vector_type (elem, 4)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint32; | 
|  | append_composite_type_field (t, "u32", init_vector_type (elem, 2)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint64; | 
|  | append_composite_type_field (t, "u64", elem); | 
|  | elem = builtin_type (gdbarch)->builtin_float; | 
|  | append_composite_type_field (t, "f32", init_vector_type (elem, 2)); | 
|  | elem = builtin_type (gdbarch)->builtin_double; | 
|  | append_composite_type_field (t, "f64", elem); | 
|  |  | 
|  | t->set_is_vector (true); | 
|  | t->set_name ("neon_d"); | 
|  | tdep->neon_double_type = t; | 
|  | } | 
|  |  | 
|  | return tdep->neon_double_type; | 
|  | } | 
|  |  | 
|  | /* FIXME: The vector types are not correctly ordered on big-endian | 
|  | targets.  Just as s0 is the low bits of d0, d0[0] is also the low | 
|  | bits of d0 - regardless of what unit size is being held in d0.  So | 
|  | the offset of the first uint8 in d0 is 7, but the offset of the | 
|  | first float is 4.  This code works as-is for little-endian | 
|  | targets.  */ | 
|  |  | 
|  | static struct type * | 
|  | arm_neon_quad_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->neon_quad_type == NULL) | 
|  | { | 
|  | struct type *t, *elem; | 
|  |  | 
|  | t = arch_composite_type (gdbarch, "__gdb_builtin_type_neon_q", | 
|  | TYPE_CODE_UNION); | 
|  | elem = builtin_type (gdbarch)->builtin_uint8; | 
|  | append_composite_type_field (t, "u8", init_vector_type (elem, 16)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint16; | 
|  | append_composite_type_field (t, "u16", init_vector_type (elem, 8)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint32; | 
|  | append_composite_type_field (t, "u32", init_vector_type (elem, 4)); | 
|  | elem = builtin_type (gdbarch)->builtin_uint64; | 
|  | append_composite_type_field (t, "u64", init_vector_type (elem, 2)); | 
|  | elem = builtin_type (gdbarch)->builtin_float; | 
|  | append_composite_type_field (t, "f32", init_vector_type (elem, 4)); | 
|  | elem = builtin_type (gdbarch)->builtin_double; | 
|  | append_composite_type_field (t, "f64", init_vector_type (elem, 2)); | 
|  |  | 
|  | t->set_is_vector (true); | 
|  | t->set_name ("neon_q"); | 
|  | tdep->neon_quad_type = t; | 
|  | } | 
|  |  | 
|  | return tdep->neon_quad_type; | 
|  | } | 
|  |  | 
|  | /* Return true if REGNUM is a Q pseudo register.  Return false | 
|  | otherwise. | 
|  |  | 
|  | REGNUM is the raw register number and not a pseudo-relative register | 
|  | number.  */ | 
|  |  | 
|  | static bool | 
|  | is_q_pseudo (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Q pseudo registers are available for both NEON (Q0~Q15) and | 
|  | MVE (Q0~Q7) features.  */ | 
|  | if (tdep->have_q_pseudos | 
|  | && regnum >= tdep->q_pseudo_base | 
|  | && regnum < (tdep->q_pseudo_base + tdep->q_pseudo_count)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return true if REGNUM is a VFP S pseudo register.  Return false | 
|  | otherwise. | 
|  |  | 
|  | REGNUM is the raw register number and not a pseudo-relative register | 
|  | number.  */ | 
|  |  | 
|  | static bool | 
|  | is_s_pseudo (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->have_s_pseudos | 
|  | && regnum >= tdep->s_pseudo_base | 
|  | && regnum < (tdep->s_pseudo_base + tdep->s_pseudo_count)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return true if REGNUM is a MVE pseudo register (P0).  Return false | 
|  | otherwise. | 
|  |  | 
|  | REGNUM is the raw register number and not a pseudo-relative register | 
|  | number.  */ | 
|  |  | 
|  | static bool | 
|  | is_mve_pseudo (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->have_mve | 
|  | && regnum >= tdep->mve_pseudo_base | 
|  | && regnum < tdep->mve_pseudo_base + tdep->mve_pseudo_count) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return true if REGNUM is a PACBTI pseudo register (ra_auth_code).  Return | 
|  | false otherwise. | 
|  |  | 
|  | REGNUM is the raw register number and not a pseudo-relative register | 
|  | number.  */ | 
|  |  | 
|  | static bool | 
|  | is_pacbti_pseudo (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->have_pacbti | 
|  | && regnum >= tdep->pacbti_pseudo_base | 
|  | && regnum < tdep->pacbti_pseudo_base + tdep->pacbti_pseudo_count) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Return the GDB type object for the "standard" data type of data in | 
|  | register N.  */ | 
|  |  | 
|  | static struct type * | 
|  | arm_register_type (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (is_s_pseudo (gdbarch, regnum)) | 
|  | return builtin_type (gdbarch)->builtin_float; | 
|  |  | 
|  | if (is_q_pseudo (gdbarch, regnum)) | 
|  | return arm_neon_quad_type (gdbarch); | 
|  |  | 
|  | if (is_mve_pseudo (gdbarch, regnum)) | 
|  | return builtin_type (gdbarch)->builtin_int16; | 
|  |  | 
|  | if (is_pacbti_pseudo (gdbarch, regnum)) | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | /* If the target description has register information, we are only | 
|  | in this function so that we can override the types of | 
|  | double-precision registers for NEON.  */ | 
|  | if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) | 
|  | { | 
|  | struct type *t = tdesc_register_type (gdbarch, regnum); | 
|  |  | 
|  | if (regnum >= ARM_D0_REGNUM && regnum < ARM_D0_REGNUM + 32 | 
|  | && t->code () == TYPE_CODE_FLT | 
|  | && tdep->have_neon) | 
|  | return arm_neon_double_type (gdbarch); | 
|  | else | 
|  | return t; | 
|  | } | 
|  |  | 
|  | if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS) | 
|  | { | 
|  | if (!tdep->have_fpa_registers) | 
|  | return builtin_type (gdbarch)->builtin_void; | 
|  |  | 
|  | return arm_ext_type (gdbarch); | 
|  | } | 
|  | else if (regnum == ARM_SP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | else if (regnum == ARM_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else if (regnum >= ARRAY_SIZE (arm_register_names)) | 
|  | /* These registers are only supported on targets which supply | 
|  | an XML description.  */ | 
|  | return builtin_type (gdbarch)->builtin_int0; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  | } | 
|  |  | 
|  | /* Map a DWARF register REGNUM onto the appropriate GDB register | 
|  | number.  */ | 
|  |  | 
|  | static int | 
|  | arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | /* Core integer regs.  */ | 
|  | if (reg >= 0 && reg <= 15) | 
|  | return reg; | 
|  |  | 
|  | /* Legacy FPA encoding.  These were once used in a way which | 
|  | overlapped with VFP register numbering, so their use is | 
|  | discouraged, but GDB doesn't support the ARM toolchain | 
|  | which used them for VFP.  */ | 
|  | if (reg >= 16 && reg <= 23) | 
|  | return ARM_F0_REGNUM + reg - 16; | 
|  |  | 
|  | /* New assignments for the FPA registers.  */ | 
|  | if (reg >= 96 && reg <= 103) | 
|  | return ARM_F0_REGNUM + reg - 96; | 
|  |  | 
|  | /* WMMX register assignments.  */ | 
|  | if (reg >= 104 && reg <= 111) | 
|  | return ARM_WCGR0_REGNUM + reg - 104; | 
|  |  | 
|  | if (reg >= 112 && reg <= 127) | 
|  | return ARM_WR0_REGNUM + reg - 112; | 
|  |  | 
|  | /* PACBTI register containing the Pointer Authentication Code.  */ | 
|  | if (reg == ARM_DWARF_RA_AUTH_CODE) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->have_pacbti) | 
|  | return tdep->pacbti_pseudo_base; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (reg >= 192 && reg <= 199) | 
|  | return ARM_WC0_REGNUM + reg - 192; | 
|  |  | 
|  | /* VFP v2 registers.  A double precision value is actually | 
|  | in d1 rather than s2, but the ABI only defines numbering | 
|  | for the single precision registers.  This will "just work" | 
|  | in GDB for little endian targets (we'll read eight bytes, | 
|  | starting in s0 and then progressing to s1), but will be | 
|  | reversed on big endian targets with VFP.  This won't | 
|  | be a problem for the new Neon quad registers; you're supposed | 
|  | to use DW_OP_piece for those.  */ | 
|  | if (reg >= 64 && reg <= 95) | 
|  | { | 
|  | char name_buf[4]; | 
|  |  | 
|  | xsnprintf (name_buf, sizeof (name_buf), "s%d", reg - 64); | 
|  | return user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  | } | 
|  |  | 
|  | /* VFP v3 / Neon registers.  This range is also used for VFP v2 | 
|  | registers, except that it now describes d0 instead of s0.  */ | 
|  | if (reg >= 256 && reg <= 287) | 
|  | { | 
|  | char name_buf[4]; | 
|  |  | 
|  | xsnprintf (name_buf, sizeof (name_buf), "d%d", reg - 256); | 
|  | return user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Map GDB internal REGNUM onto the Arm simulator register numbers.  */ | 
|  | static int | 
|  | arm_register_sim_regno (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | int reg = regnum; | 
|  | gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch)); | 
|  |  | 
|  | if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM) | 
|  | return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM; | 
|  |  | 
|  | if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM) | 
|  | return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM; | 
|  |  | 
|  | if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM) | 
|  | return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM; | 
|  |  | 
|  | if (reg < NUM_GREGS) | 
|  | return SIM_ARM_R0_REGNUM + reg; | 
|  | reg -= NUM_GREGS; | 
|  |  | 
|  | if (reg < NUM_FREGS) | 
|  | return SIM_ARM_FP0_REGNUM + reg; | 
|  | reg -= NUM_FREGS; | 
|  |  | 
|  | if (reg < NUM_SREGS) | 
|  | return SIM_ARM_FPS_REGNUM + reg; | 
|  | reg -= NUM_SREGS; | 
|  |  | 
|  | internal_error (_("Bad REGNUM %d"), regnum); | 
|  | } | 
|  |  | 
|  | static const unsigned char op_lit0 = DW_OP_lit0; | 
|  |  | 
|  | static void | 
|  | arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | 
|  | struct dwarf2_frame_state_reg *reg, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (is_pacbti_pseudo (gdbarch, regnum)) | 
|  | { | 
|  | /* Initialize RA_AUTH_CODE to zero.  */ | 
|  | reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | 
|  | reg->loc.exp.start = &op_lit0; | 
|  | reg->loc.exp.len = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (regnum == ARM_PC_REGNUM || regnum == ARM_PS_REGNUM) | 
|  | { | 
|  | reg->how = DWARF2_FRAME_REG_FN; | 
|  | reg->loc.fn = arm_dwarf2_prev_register; | 
|  | } | 
|  | else if (regnum == ARM_SP_REGNUM) | 
|  | reg->how = DWARF2_FRAME_REG_CFA; | 
|  | else if (arm_is_alternative_sp_register (tdep, regnum)) | 
|  | { | 
|  | /* Handle the alternative SP registers on Cortex-M.  */ | 
|  | reg->how = DWARF2_FRAME_REG_FN; | 
|  | reg->loc.fn = arm_dwarf2_prev_register; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given BUF, which is OLD_LEN bytes ending at ENDADDR, expand | 
|  | the buffer to be NEW_LEN bytes ending at ENDADDR.  Return | 
|  | NULL if an error occurs.  BUF is freed.  */ | 
|  |  | 
|  | static gdb_byte * | 
|  | extend_buffer_earlier (gdb_byte *buf, CORE_ADDR endaddr, | 
|  | int old_len, int new_len) | 
|  | { | 
|  | gdb_byte *new_buf; | 
|  | int bytes_to_read = new_len - old_len; | 
|  |  | 
|  | new_buf = (gdb_byte *) xmalloc (new_len); | 
|  | memcpy (new_buf + bytes_to_read, buf, old_len); | 
|  | xfree (buf); | 
|  | if (target_read_code (endaddr - new_len, new_buf, bytes_to_read) != 0) | 
|  | { | 
|  | xfree (new_buf); | 
|  | return NULL; | 
|  | } | 
|  | return new_buf; | 
|  | } | 
|  |  | 
|  | /* An IT block is at most the 2-byte IT instruction followed by | 
|  | four 4-byte instructions.  The furthest back we must search to | 
|  | find an IT block that affects the current instruction is thus | 
|  | 2 + 3 * 4 == 14 bytes.  */ | 
|  | #define MAX_IT_BLOCK_PREFIX 14 | 
|  |  | 
|  | /* Use a quick scan if there are more than this many bytes of | 
|  | code.  */ | 
|  | #define IT_SCAN_THRESHOLD 32 | 
|  |  | 
|  | /* Adjust a breakpoint's address to move breakpoints out of IT blocks. | 
|  | A breakpoint in an IT block may not be hit, depending on the | 
|  | condition flags.  */ | 
|  | static CORE_ADDR | 
|  | arm_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr) | 
|  | { | 
|  | gdb_byte *buf; | 
|  | char map_type; | 
|  | CORE_ADDR boundary, func_start; | 
|  | int buf_len; | 
|  | enum bfd_endian order = gdbarch_byte_order_for_code (gdbarch); | 
|  | int i, any, last_it, last_it_count; | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* If we are using BKPT breakpoints, none of this is necessary.  */ | 
|  | if (tdep->thumb2_breakpoint == NULL) | 
|  | return bpaddr; | 
|  |  | 
|  | /* ARM mode does not have this problem.  */ | 
|  | if (!arm_pc_is_thumb (gdbarch, bpaddr)) | 
|  | return bpaddr; | 
|  |  | 
|  | /* We are setting a breakpoint in Thumb code that could potentially | 
|  | contain an IT block.  The first step is to find how much Thumb | 
|  | code there is; we do not need to read outside of known Thumb | 
|  | sequences.  */ | 
|  | map_type = arm_find_mapping_symbol (bpaddr, &boundary); | 
|  | if (map_type == 0) | 
|  | /* Thumb-2 code must have mapping symbols to have a chance.  */ | 
|  | return bpaddr; | 
|  |  | 
|  | bpaddr = gdbarch_addr_bits_remove (gdbarch, bpaddr); | 
|  |  | 
|  | if (find_pc_partial_function (bpaddr, NULL, &func_start, NULL)) | 
|  | { | 
|  | func_start = gdbarch_addr_bits_remove (gdbarch, func_start); | 
|  | if (func_start > boundary) | 
|  | boundary = func_start; | 
|  | } | 
|  |  | 
|  | /* Search for a candidate IT instruction.  We have to do some fancy | 
|  | footwork to distinguish a real IT instruction from the second | 
|  | half of a 32-bit instruction, but there is no need for that if | 
|  | there's no candidate.  */ | 
|  | buf_len = std::min (bpaddr - boundary, (CORE_ADDR) MAX_IT_BLOCK_PREFIX); | 
|  | if (buf_len == 0) | 
|  | /* No room for an IT instruction.  */ | 
|  | return bpaddr; | 
|  |  | 
|  | buf = (gdb_byte *) xmalloc (buf_len); | 
|  | if (target_read_code (bpaddr - buf_len, buf, buf_len) != 0) | 
|  | return bpaddr; | 
|  | any = 0; | 
|  | for (i = 0; i < buf_len; i += 2) | 
|  | { | 
|  | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | 
|  | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | 
|  | { | 
|  | any = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (any == 0) | 
|  | { | 
|  | xfree (buf); | 
|  | return bpaddr; | 
|  | } | 
|  |  | 
|  | /* OK, the code bytes before this instruction contain at least one | 
|  | halfword which resembles an IT instruction.  We know that it's | 
|  | Thumb code, but there are still two possibilities.  Either the | 
|  | halfword really is an IT instruction, or it is the second half of | 
|  | a 32-bit Thumb instruction.  The only way we can tell is to | 
|  | scan forwards from a known instruction boundary.  */ | 
|  | if (bpaddr - boundary > IT_SCAN_THRESHOLD) | 
|  | { | 
|  | int definite; | 
|  |  | 
|  | /* There's a lot of code before this instruction.  Start with an | 
|  | optimistic search; it's easy to recognize halfwords that can | 
|  | not be the start of a 32-bit instruction, and use that to | 
|  | lock on to the instruction boundaries.  */ | 
|  | buf = extend_buffer_earlier (buf, bpaddr, buf_len, IT_SCAN_THRESHOLD); | 
|  | if (buf == NULL) | 
|  | return bpaddr; | 
|  | buf_len = IT_SCAN_THRESHOLD; | 
|  |  | 
|  | definite = 0; | 
|  | for (i = 0; i < buf_len - sizeof (buf) && ! definite; i += 2) | 
|  | { | 
|  | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | 
|  | if (thumb_insn_size (inst1) == 2) | 
|  | { | 
|  | definite = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* At this point, if DEFINITE, BUF[I] is the first place we | 
|  | are sure that we know the instruction boundaries, and it is far | 
|  | enough from BPADDR that we could not miss an IT instruction | 
|  | affecting BPADDR.  If ! DEFINITE, give up - start from a | 
|  | known boundary.  */ | 
|  | if (! definite) | 
|  | { | 
|  | buf = extend_buffer_earlier (buf, bpaddr, buf_len, | 
|  | bpaddr - boundary); | 
|  | if (buf == NULL) | 
|  | return bpaddr; | 
|  | buf_len = bpaddr - boundary; | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | buf = extend_buffer_earlier (buf, bpaddr, buf_len, bpaddr - boundary); | 
|  | if (buf == NULL) | 
|  | return bpaddr; | 
|  | buf_len = bpaddr - boundary; | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | /* Scan forwards.  Find the last IT instruction before BPADDR.  */ | 
|  | last_it = -1; | 
|  | last_it_count = 0; | 
|  | while (i < buf_len) | 
|  | { | 
|  | unsigned short inst1 = extract_unsigned_integer (&buf[i], 2, order); | 
|  | last_it_count--; | 
|  | if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0) | 
|  | { | 
|  | last_it = i; | 
|  | if (inst1 & 0x0001) | 
|  | last_it_count = 4; | 
|  | else if (inst1 & 0x0002) | 
|  | last_it_count = 3; | 
|  | else if (inst1 & 0x0004) | 
|  | last_it_count = 2; | 
|  | else | 
|  | last_it_count = 1; | 
|  | } | 
|  | i += thumb_insn_size (inst1); | 
|  | } | 
|  |  | 
|  | xfree (buf); | 
|  |  | 
|  | if (last_it == -1) | 
|  | /* There wasn't really an IT instruction after all.  */ | 
|  | return bpaddr; | 
|  |  | 
|  | if (last_it_count < 1) | 
|  | /* It was too far away.  */ | 
|  | return bpaddr; | 
|  |  | 
|  | /* This really is a trouble spot.  Move the breakpoint to the IT | 
|  | instruction.  */ | 
|  | return bpaddr - buf_len + last_it; | 
|  | } | 
|  |  | 
|  | /* ARM displaced stepping support. | 
|  |  | 
|  | Generally ARM displaced stepping works as follows: | 
|  |  | 
|  | 1. When an instruction is to be single-stepped, it is first decoded by | 
|  | arm_process_displaced_insn.  Depending on the type of instruction, it is | 
|  | then copied to a scratch location, possibly in a modified form.  The | 
|  | copy_* set of functions performs such modification, as necessary.  A | 
|  | breakpoint is placed after the modified instruction in the scratch space | 
|  | to return control to GDB.  Note in particular that instructions which | 
|  | modify the PC will no longer do so after modification. | 
|  |  | 
|  | 2. The instruction is single-stepped, by setting the PC to the scratch | 
|  | location address, and resuming.  Control returns to GDB when the | 
|  | breakpoint is hit. | 
|  |  | 
|  | 3. A cleanup function (cleanup_*) is called corresponding to the copy_* | 
|  | function used for the current instruction.  This function's job is to | 
|  | put the CPU/memory state back to what it would have been if the | 
|  | instruction had been executed unmodified in its original location.  */ | 
|  |  | 
|  | /* NOP instruction (mov r0, r0).  */ | 
|  | #define ARM_NOP				0xe1a00000 | 
|  | #define THUMB_NOP 0x4600 | 
|  |  | 
|  | /* Helper for register reads for displaced stepping.  In particular, this | 
|  | returns the PC as it would be seen by the instruction at its original | 
|  | location.  */ | 
|  |  | 
|  | ULONGEST | 
|  | displaced_read_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, | 
|  | int regno) | 
|  | { | 
|  | ULONGEST ret; | 
|  | CORE_ADDR from = dsc->insn_addr; | 
|  |  | 
|  | if (regno == ARM_PC_REGNUM) | 
|  | { | 
|  | /* Compute pipeline offset: | 
|  | - When executing an ARM instruction, PC reads as the address of the | 
|  | current instruction plus 8. | 
|  | - When executing a Thumb instruction, PC reads as the address of the | 
|  | current instruction plus 4.  */ | 
|  |  | 
|  | if (!dsc->is_thumb) | 
|  | from += 8; | 
|  | else | 
|  | from += 4; | 
|  |  | 
|  | displaced_debug_printf ("read pc value %.8lx", | 
|  | (unsigned long) from); | 
|  | return (ULONGEST) from; | 
|  | } | 
|  | else | 
|  | { | 
|  | regcache_cooked_read_unsigned (regs, regno, &ret); | 
|  |  | 
|  | displaced_debug_printf ("read r%d value %.8lx", | 
|  | regno, (unsigned long) ret); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | displaced_in_arm_mode (struct regcache *regs) | 
|  | { | 
|  | ULONGEST ps; | 
|  | ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); | 
|  |  | 
|  | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | 
|  |  | 
|  | return (ps & t_bit) == 0; | 
|  | } | 
|  |  | 
|  | /* Write to the PC as from a branch instruction.  */ | 
|  |  | 
|  | static void | 
|  | branch_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, | 
|  | ULONGEST val) | 
|  | { | 
|  | if (!dsc->is_thumb) | 
|  | /* Note: If bits 0/1 are set, this branch would be unpredictable for | 
|  | architecture versions < 6.  */ | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, | 
|  | val & ~(ULONGEST) 0x3); | 
|  | else | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, | 
|  | val & ~(ULONGEST) 0x1); | 
|  | } | 
|  |  | 
|  | /* Write to the PC as from a branch-exchange instruction.  */ | 
|  |  | 
|  | static void | 
|  | bx_write_pc (struct regcache *regs, ULONGEST val) | 
|  | { | 
|  | ULONGEST ps; | 
|  | ULONGEST t_bit = arm_psr_thumb_bit (regs->arch ()); | 
|  |  | 
|  | regcache_cooked_read_unsigned (regs, ARM_PS_REGNUM, &ps); | 
|  |  | 
|  | if ((val & 1) == 1) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps | t_bit); | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffe); | 
|  | } | 
|  | else if ((val & 2) == 0) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Unpredictable behaviour.  Try to do something sensible (switch to ARM | 
|  | mode, align dest to 4 bytes).  */ | 
|  | warning (_("Single-stepping BX to non-word-aligned ARM instruction.")); | 
|  | regcache_cooked_write_unsigned (regs, ARM_PS_REGNUM, ps & ~t_bit); | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, val & 0xfffffffc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write to the PC as if from a load instruction.  */ | 
|  |  | 
|  | static void | 
|  | load_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, | 
|  | ULONGEST val) | 
|  | { | 
|  | if (DISPLACED_STEPPING_ARCH_VERSION >= 5) | 
|  | bx_write_pc (regs, val); | 
|  | else | 
|  | branch_write_pc (regs, dsc, val); | 
|  | } | 
|  |  | 
|  | /* Write to the PC as if from an ALU instruction.  */ | 
|  |  | 
|  | static void | 
|  | alu_write_pc (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, | 
|  | ULONGEST val) | 
|  | { | 
|  | if (DISPLACED_STEPPING_ARCH_VERSION >= 7 && !dsc->is_thumb) | 
|  | bx_write_pc (regs, val); | 
|  | else | 
|  | branch_write_pc (regs, dsc, val); | 
|  | } | 
|  |  | 
|  | /* Helper for writing to registers for displaced stepping.  Writing to the PC | 
|  | has a varying effects depending on the instruction which does the write: | 
|  | this is controlled by the WRITE_PC argument.  */ | 
|  |  | 
|  | void | 
|  | displaced_write_reg (regcache *regs, arm_displaced_step_copy_insn_closure *dsc, | 
|  | int regno, ULONGEST val, enum pc_write_style write_pc) | 
|  | { | 
|  | if (regno == ARM_PC_REGNUM) | 
|  | { | 
|  | displaced_debug_printf ("writing pc %.8lx", (unsigned long) val); | 
|  |  | 
|  | switch (write_pc) | 
|  | { | 
|  | case BRANCH_WRITE_PC: | 
|  | branch_write_pc (regs, dsc, val); | 
|  | break; | 
|  |  | 
|  | case BX_WRITE_PC: | 
|  | bx_write_pc (regs, val); | 
|  | break; | 
|  |  | 
|  | case LOAD_WRITE_PC: | 
|  | load_write_pc (regs, dsc, val); | 
|  | break; | 
|  |  | 
|  | case ALU_WRITE_PC: | 
|  | alu_write_pc (regs, dsc, val); | 
|  | break; | 
|  |  | 
|  | case CANNOT_WRITE_PC: | 
|  | warning (_("Instruction wrote to PC in an unexpected way when " | 
|  | "single-stepping")); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (_("Invalid argument to displaced_write_reg")); | 
|  | } | 
|  |  | 
|  | dsc->wrote_to_pc = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | displaced_debug_printf ("writing r%d value %.8lx", | 
|  | regno, (unsigned long) val); | 
|  | regcache_cooked_write_unsigned (regs, regno, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function is used to concisely determine if an instruction INSN | 
|  | references PC.  Register fields of interest in INSN should have the | 
|  | corresponding fields of BITMASK set to 0b1111.  The function | 
|  | returns return 1 if any of these fields in INSN reference the PC | 
|  | (also 0b1111, r15), else it returns 0.  */ | 
|  |  | 
|  | static int | 
|  | insn_references_pc (uint32_t insn, uint32_t bitmask) | 
|  | { | 
|  | uint32_t lowbit = 1; | 
|  |  | 
|  | while (bitmask != 0) | 
|  | { | 
|  | uint32_t mask; | 
|  |  | 
|  | for (; lowbit && (bitmask & lowbit) == 0; lowbit <<= 1) | 
|  | ; | 
|  |  | 
|  | if (!lowbit) | 
|  | break; | 
|  |  | 
|  | mask = lowbit * 0xf; | 
|  |  | 
|  | if ((insn & mask) == mask) | 
|  | return 1; | 
|  |  | 
|  | bitmask &= ~mask; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The simplest copy function.  Many instructions have the same effect no | 
|  | matter what address they are executed at: in those cases, use this.  */ | 
|  |  | 
|  | static int | 
|  | arm_copy_unmodified (struct gdbarch *gdbarch, uint32_t insn, const char *iname, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_debug_printf ("copying insn %.8lx, opcode/class '%s' unmodified", | 
|  | (unsigned long) insn, iname); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_unmodified_32bit (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, const char *iname, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_debug_printf ("copying insn %.4x %.4x, opcode/class '%s' " | 
|  | "unmodified", insn1, insn2, iname); | 
|  |  | 
|  | dsc->modinsn[0] = insn1; | 
|  | dsc->modinsn[1] = insn2; | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy 16-bit Thumb(Thumb and 16-bit Thumb-2) instruction without any | 
|  | modification.  */ | 
|  | static int | 
|  | thumb_copy_unmodified_16bit (struct gdbarch *gdbarch, uint16_t insn, | 
|  | const char *iname, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_debug_printf ("copying insn %.4x, opcode/class '%s' unmodified", | 
|  | insn, iname); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Preload instructions with immediate offset.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_preload (struct gdbarch *gdbarch, regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  | if (!dsc->u.preload.immed) | 
|  | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static void | 
|  | install_preload (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, unsigned int rn) | 
|  | { | 
|  | ULONGEST rn_val; | 
|  | /* Preload instructions: | 
|  |  | 
|  | {pli/pld} [rn, #+/-imm] | 
|  | -> | 
|  | {pli/pld} [r0, #+/-imm].  */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | 
|  | dsc->u.preload.immed = 1; | 
|  |  | 
|  | dsc->cleanup = &cleanup_preload; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_preload (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000f0000ul)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "preload", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying preload insn %.8lx", (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn & 0xfff0ffff; | 
|  |  | 
|  | install_preload (gdbarch, regs, dsc, rn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_preload (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn1, 0, 3); | 
|  | unsigned int u_bit = bit (insn1, 7); | 
|  | int imm12 = bits (insn2, 0, 11); | 
|  | ULONGEST pc_val; | 
|  |  | 
|  | if (rn != ARM_PC_REGNUM) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "preload", dsc); | 
|  |  | 
|  | /* PC is only allowed to use in PLI (immediate,literal) Encoding T3, and | 
|  | PLD (literal) Encoding T1.  */ | 
|  | displaced_debug_printf ("copying pld/pli pc (0x%x) %c imm12 %.4x", | 
|  | (unsigned int) dsc->insn_addr, u_bit ? '+' : '-', | 
|  | imm12); | 
|  |  | 
|  | if (!u_bit) | 
|  | imm12 = -1 * imm12; | 
|  |  | 
|  | /* Rewrite instruction {pli/pld} PC imm12 into: | 
|  | Prepare: tmp[0] <- r0, tmp[1] <- r1, r0 <- pc, r1 <- imm12 | 
|  |  | 
|  | {pli/pld} [r0, r1] | 
|  |  | 
|  | Cleanup: r0 <- tmp[0], r1 <- tmp[1].  */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  |  | 
|  | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, pc_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, imm12, CANNOT_WRITE_PC); | 
|  | dsc->u.preload.immed = 0; | 
|  |  | 
|  | /* {pli/pld} [r0, r1] */ | 
|  | dsc->modinsn[0] = insn1 & 0xfff0; | 
|  | dsc->modinsn[1] = 0xf001; | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | dsc->cleanup = &cleanup_preload; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Preload instructions with register offset.  */ | 
|  |  | 
|  | static void | 
|  | install_preload_reg(struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, unsigned int rn, | 
|  | unsigned int rm) | 
|  | { | 
|  | ULONGEST rn_val, rm_val; | 
|  |  | 
|  | /* Preload register-offset instructions: | 
|  |  | 
|  | {pli/pld} [rn, rm {, shift}] | 
|  | -> | 
|  | {pli/pld} [r0, r1 {, shift}].  */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | rm_val = displaced_read_reg (regs, dsc, rm); | 
|  | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, rm_val, CANNOT_WRITE_PC); | 
|  | dsc->u.preload.immed = 0; | 
|  |  | 
|  | dsc->cleanup = &cleanup_preload; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_preload_reg (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  | unsigned int rm = bits (insn, 0, 3); | 
|  |  | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000f000ful)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "preload reg", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying preload insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = (insn & 0xfff0fff0) | 0x1; | 
|  |  | 
|  | install_preload_reg (gdbarch, regs, dsc, rn, rm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy/cleanup coprocessor load and store instructions.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_copro_load_store (struct gdbarch *gdbarch, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rn_val = displaced_read_reg (regs, dsc, 0); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  |  | 
|  | if (dsc->u.ldst.writeback) | 
|  | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, LOAD_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static void | 
|  | install_copro_load_store (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | int writeback, unsigned int rn) | 
|  | { | 
|  | ULONGEST rn_val; | 
|  |  | 
|  | /* Coprocessor load/store instructions: | 
|  |  | 
|  | {stc/stc2} [<Rn>, #+/-imm]  (and other immediate addressing modes) | 
|  | -> | 
|  | {stc/stc2} [r0, #+/-imm]. | 
|  |  | 
|  | ldc/ldc2 are handled identically.  */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | /* PC should be 4-byte aligned.  */ | 
|  | rn_val = rn_val & 0xfffffffc; | 
|  | displaced_write_reg (regs, dsc, 0, rn_val, CANNOT_WRITE_PC); | 
|  |  | 
|  | dsc->u.ldst.writeback = writeback; | 
|  | dsc->u.ldst.rn = rn; | 
|  |  | 
|  | dsc->cleanup = &cleanup_copro_load_store; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_copro_load_store (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000f0000ul)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "copro load/store", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying coprocessor load/store insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn & 0xfff0ffff; | 
|  |  | 
|  | install_copro_load_store (gdbarch, regs, dsc, bit (insn, 25), rn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_copro_load_store (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn1, 0, 3); | 
|  |  | 
|  | if (rn != ARM_PC_REGNUM) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "copro load/store", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying coprocessor load/store insn %.4x%.4x", | 
|  | insn1, insn2); | 
|  |  | 
|  | dsc->modinsn[0] = insn1 & 0xfff0; | 
|  | dsc->modinsn[1] = insn2; | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | /* This function is called for copying instruction LDC/LDC2/VLDR, which | 
|  | doesn't support writeback, so pass 0.  */ | 
|  | install_copro_load_store (gdbarch, regs, dsc, 0, rn); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clean up branch instructions (actually perform the branch, by setting | 
|  | PC).  */ | 
|  |  | 
|  | static void | 
|  | cleanup_branch (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); | 
|  | int branch_taken = condition_true (dsc->u.branch.cond, status); | 
|  | enum pc_write_style write_pc = dsc->u.branch.exchange | 
|  | ? BX_WRITE_PC : BRANCH_WRITE_PC; | 
|  |  | 
|  | if (!branch_taken) | 
|  | return; | 
|  |  | 
|  | if (dsc->u.branch.link) | 
|  | { | 
|  | /* The value of LR should be the next insn of current one.  In order | 
|  | not to confuse logic handling later insn `bx lr', if current insn mode | 
|  | is Thumb, the bit 0 of LR value should be set to 1.  */ | 
|  | ULONGEST next_insn_addr = dsc->insn_addr + dsc->insn_size; | 
|  |  | 
|  | if (dsc->is_thumb) | 
|  | next_insn_addr |= 0x1; | 
|  |  | 
|  | displaced_write_reg (regs, dsc, ARM_LR_REGNUM, next_insn_addr, | 
|  | CANNOT_WRITE_PC); | 
|  | } | 
|  |  | 
|  | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->u.branch.dest, write_pc); | 
|  | } | 
|  |  | 
|  | /* Copy B/BL/BLX instructions with immediate destinations.  */ | 
|  |  | 
|  | static void | 
|  | install_b_bl_blx (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | unsigned int cond, int exchange, int link, long offset) | 
|  | { | 
|  | /* Implement "BL<cond> <label>" as: | 
|  |  | 
|  | Preparation: cond <- instruction condition | 
|  | Insn: mov r0, r0  (nop) | 
|  | Cleanup: if (condition true) { r14 <- pc; pc <- label }. | 
|  |  | 
|  | B<cond> similar, but don't set r14 in cleanup.  */ | 
|  |  | 
|  | dsc->u.branch.cond = cond; | 
|  | dsc->u.branch.link = link; | 
|  | dsc->u.branch.exchange = exchange; | 
|  |  | 
|  | dsc->u.branch.dest = dsc->insn_addr; | 
|  | if (link && exchange) | 
|  | /* For BLX, offset is computed from the Align (PC, 4).  */ | 
|  | dsc->u.branch.dest = dsc->u.branch.dest & 0xfffffffc; | 
|  |  | 
|  | if (dsc->is_thumb) | 
|  | dsc->u.branch.dest += 4 + offset; | 
|  | else | 
|  | dsc->u.branch.dest += 8 + offset; | 
|  |  | 
|  | dsc->cleanup = &cleanup_branch; | 
|  | } | 
|  | static int | 
|  | arm_copy_b_bl_blx (struct gdbarch *gdbarch, uint32_t insn, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int cond = bits (insn, 28, 31); | 
|  | int exchange = (cond == 0xf); | 
|  | int link = exchange || bit (insn, 24); | 
|  | long offset; | 
|  |  | 
|  | displaced_debug_printf ("copying %s immediate insn %.8lx", | 
|  | (exchange) ? "blx" : (link) ? "bl" : "b", | 
|  | (unsigned long) insn); | 
|  | if (exchange) | 
|  | /* For BLX, set bit 0 of the destination.  The cleanup_branch function will | 
|  | then arrange the switch into Thumb mode.  */ | 
|  | offset = (bits (insn, 0, 23) << 2) | (bit (insn, 24) << 1) | 1; | 
|  | else | 
|  | offset = bits (insn, 0, 23) << 2; | 
|  |  | 
|  | if (bit (offset, 25)) | 
|  | offset = offset | ~0x3ffffff; | 
|  |  | 
|  | dsc->modinsn[0] = ARM_NOP; | 
|  |  | 
|  | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_b_bl_blx (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int link = bit (insn2, 14); | 
|  | int exchange = link && !bit (insn2, 12); | 
|  | int cond = INST_AL; | 
|  | long offset = 0; | 
|  | int j1 = bit (insn2, 13); | 
|  | int j2 = bit (insn2, 11); | 
|  | int s = sbits (insn1, 10, 10); | 
|  | int i1 = !(j1 ^ bit (insn1, 10)); | 
|  | int i2 = !(j2 ^ bit (insn1, 10)); | 
|  |  | 
|  | if (!link && !exchange) /* B */ | 
|  | { | 
|  | offset = (bits (insn2, 0, 10) << 1); | 
|  | if (bit (insn2, 12)) /* Encoding T4 */ | 
|  | { | 
|  | offset |= (bits (insn1, 0, 9) << 12) | 
|  | | (i2 << 22) | 
|  | | (i1 << 23) | 
|  | | (s << 24); | 
|  | cond = INST_AL; | 
|  | } | 
|  | else /* Encoding T3 */ | 
|  | { | 
|  | offset |= (bits (insn1, 0, 5) << 12) | 
|  | | (j1 << 18) | 
|  | | (j2 << 19) | 
|  | | (s << 20); | 
|  | cond = bits (insn1, 6, 9); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | offset = (bits (insn1, 0, 9) << 12); | 
|  | offset |= ((i2 << 22) | (i1 << 23) | (s << 24)); | 
|  | offset |= exchange ? | 
|  | (bits (insn2, 1, 10) << 2) : (bits (insn2, 0, 10) << 1); | 
|  | } | 
|  |  | 
|  | displaced_debug_printf ("copying %s insn %.4x %.4x with offset %.8lx", | 
|  | link ? (exchange) ? "blx" : "bl" : "b", | 
|  | insn1, insn2, offset); | 
|  |  | 
|  | dsc->modinsn[0] = THUMB_NOP; | 
|  |  | 
|  | install_b_bl_blx (gdbarch, regs, dsc, cond, exchange, link, offset); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy B Thumb instructions.  */ | 
|  | static int | 
|  | thumb_copy_b (struct gdbarch *gdbarch, uint16_t insn, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int cond = 0; | 
|  | int offset = 0; | 
|  | unsigned short bit_12_15 = bits (insn, 12, 15); | 
|  | CORE_ADDR from = dsc->insn_addr; | 
|  |  | 
|  | if (bit_12_15 == 0xd) | 
|  | { | 
|  | /* offset = SignExtend (imm8:0, 32) */ | 
|  | offset = sbits ((insn << 1), 0, 8); | 
|  | cond = bits (insn, 8, 11); | 
|  | } | 
|  | else if (bit_12_15 == 0xe) /* Encoding T2 */ | 
|  | { | 
|  | offset = sbits ((insn << 1), 0, 11); | 
|  | cond = INST_AL; | 
|  | } | 
|  |  | 
|  | displaced_debug_printf ("copying b immediate insn %.4x with offset %d", | 
|  | insn, offset); | 
|  |  | 
|  | dsc->u.branch.cond = cond; | 
|  | dsc->u.branch.link = 0; | 
|  | dsc->u.branch.exchange = 0; | 
|  | dsc->u.branch.dest = from + 4 + offset; | 
|  |  | 
|  | dsc->modinsn[0] = THUMB_NOP; | 
|  |  | 
|  | dsc->cleanup = &cleanup_branch; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy BX/BLX with register-specified destinations.  */ | 
|  |  | 
|  | static void | 
|  | install_bx_blx_reg (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, int link, | 
|  | unsigned int cond, unsigned int rm) | 
|  | { | 
|  | /* Implement {BX,BLX}<cond> <reg>" as: | 
|  |  | 
|  | Preparation: cond <- instruction condition | 
|  | Insn: mov r0, r0 (nop) | 
|  | Cleanup: if (condition true) { r14 <- pc; pc <- dest; }. | 
|  |  | 
|  | Don't set r14 in cleanup for BX.  */ | 
|  |  | 
|  | dsc->u.branch.dest = displaced_read_reg (regs, dsc, rm); | 
|  |  | 
|  | dsc->u.branch.cond = cond; | 
|  | dsc->u.branch.link = link; | 
|  |  | 
|  | dsc->u.branch.exchange = 1; | 
|  |  | 
|  | dsc->cleanup = &cleanup_branch; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_bx_blx_reg (struct gdbarch *gdbarch, uint32_t insn, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int cond = bits (insn, 28, 31); | 
|  | /* BX:  x12xxx1x | 
|  | BLX: x12xxx3x.  */ | 
|  | int link = bit (insn, 5); | 
|  | unsigned int rm = bits (insn, 0, 3); | 
|  |  | 
|  | displaced_debug_printf ("copying insn %.8lx", (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = ARM_NOP; | 
|  |  | 
|  | install_bx_blx_reg (gdbarch, regs, dsc, link, cond, rm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_bx_blx_reg (struct gdbarch *gdbarch, uint16_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int link = bit (insn, 7); | 
|  | unsigned int rm = bits (insn, 3, 6); | 
|  |  | 
|  | displaced_debug_printf ("copying insn %.4x", (unsigned short) insn); | 
|  |  | 
|  | dsc->modinsn[0] = THUMB_NOP; | 
|  |  | 
|  | install_bx_blx_reg (gdbarch, regs, dsc, link, INST_AL, rm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Copy/cleanup arithmetic/logic instruction with immediate RHS.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_alu_imm (struct gdbarch *gdbarch, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); | 
|  | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_alu_imm (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  | unsigned int rd = bits (insn, 12, 15); | 
|  | unsigned int op = bits (insn, 21, 24); | 
|  | int is_mov = (op == 0xd); | 
|  | ULONGEST rd_val, rn_val; | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000ff000ul)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "ALU immediate", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying immediate %s insn %.8lx", | 
|  | is_mov ? "move" : "ALU", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | /* Instruction is of form: | 
|  |  | 
|  | <op><cond> rd, [rn,] #imm | 
|  |  | 
|  | Rewrite as: | 
|  |  | 
|  | Preparation: tmp1, tmp2 <- r0, r1; | 
|  | r0, r1 <- rd, rn | 
|  | Insn: <op><cond> r0, r1, #imm | 
|  | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | 
|  | */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | rd_val = displaced_read_reg (regs, dsc, rd); | 
|  | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | 
|  | dsc->rd = rd; | 
|  |  | 
|  | if (is_mov) | 
|  | dsc->modinsn[0] = insn & 0xfff00fff; | 
|  | else | 
|  | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x10000; | 
|  |  | 
|  | dsc->cleanup = &cleanup_alu_imm; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_alu_imm (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op = bits (insn1, 5, 8); | 
|  | unsigned int rn, rm, rd; | 
|  | ULONGEST rd_val, rn_val; | 
|  |  | 
|  | rn = bits (insn1, 0, 3); /* Rn */ | 
|  | rm = bits (insn2, 0, 3); /* Rm */ | 
|  | rd = bits (insn2, 8, 11); /* Rd */ | 
|  |  | 
|  | /* This routine is only called for instruction MOV.  */ | 
|  | gdb_assert (op == 0x2 && rn == 0xf); | 
|  |  | 
|  | if (rm != ARM_PC_REGNUM && rd != ARM_PC_REGNUM) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ALU imm", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying reg %s insn %.4x%.4x", "ALU", insn1, insn2); | 
|  |  | 
|  | /* Instruction is of form: | 
|  |  | 
|  | <op><cond> rd, [rn,] #imm | 
|  |  | 
|  | Rewrite as: | 
|  |  | 
|  | Preparation: tmp1, tmp2 <- r0, r1; | 
|  | r0, r1 <- rd, rn | 
|  | Insn: <op><cond> r0, r1, #imm | 
|  | Cleanup: rd <- r0; r0 <- tmp1; r1 <- tmp2 | 
|  | */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | rd_val = displaced_read_reg (regs, dsc, rd); | 
|  | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | 
|  | dsc->rd = rd; | 
|  |  | 
|  | dsc->modinsn[0] = insn1; | 
|  | dsc->modinsn[1] = ((insn2 & 0xf0f0) | 0x1); | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | dsc->cleanup = &cleanup_alu_imm; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy/cleanup arithmetic/logic insns with register RHS.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_alu_reg (struct gdbarch *gdbarch, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rd_val; | 
|  | int i; | 
|  |  | 
|  | rd_val = displaced_read_reg (regs, dsc, 0); | 
|  |  | 
|  | for (i = 0; i < 3; i++) | 
|  | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static void | 
|  | install_alu_reg (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | unsigned int rd, unsigned int rn, unsigned int rm) | 
|  | { | 
|  | ULONGEST rd_val, rn_val, rm_val; | 
|  |  | 
|  | /* Instruction is of form: | 
|  |  | 
|  | <op><cond> rd, [rn,] rm [, <shift>] | 
|  |  | 
|  | Rewrite as: | 
|  |  | 
|  | Preparation: tmp1, tmp2, tmp3 <- r0, r1, r2; | 
|  | r0, r1, r2 <- rd, rn, rm | 
|  | Insn: <op><cond> r0, [r1,] r2 [, <shift>] | 
|  | Cleanup: rd <- r0; r0, r1, r2 <- tmp1, tmp2, tmp3 | 
|  | */ | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | 
|  | rd_val = displaced_read_reg (regs, dsc, rd); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | rm_val = displaced_read_reg (regs, dsc, rm); | 
|  | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | 
|  | dsc->rd = rd; | 
|  |  | 
|  | dsc->cleanup = &cleanup_alu_reg; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_alu_reg (struct gdbarch *gdbarch, uint32_t insn, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op = bits (insn, 21, 24); | 
|  | int is_mov = (op == 0xd); | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000ff00ful)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "ALU reg", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying reg %s insn %.8lx", | 
|  | is_mov ? "move" : "ALU", (unsigned long) insn); | 
|  |  | 
|  | if (is_mov) | 
|  | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x2; | 
|  | else | 
|  | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x10002; | 
|  |  | 
|  | install_alu_reg (gdbarch, regs, dsc, bits (insn, 12, 15), bits (insn, 16, 19), | 
|  | bits (insn, 0, 3)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_alu_reg (struct gdbarch *gdbarch, uint16_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned rm, rd; | 
|  |  | 
|  | rm = bits (insn, 3, 6); | 
|  | rd = (bit (insn, 7) << 3) | bits (insn, 0, 2); | 
|  |  | 
|  | if (rd != ARM_PC_REGNUM && rm != ARM_PC_REGNUM) | 
|  | return thumb_copy_unmodified_16bit (gdbarch, insn, "ALU reg", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying ALU reg insn %.4x", (unsigned short) insn); | 
|  |  | 
|  | dsc->modinsn[0] = ((insn & 0xff00) | 0x10); | 
|  |  | 
|  | install_alu_reg (gdbarch, regs, dsc, rd, rd, rm); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Cleanup/copy arithmetic/logic insns with shifted register RHS.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_alu_shifted_reg (struct gdbarch *gdbarch, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rd_val = displaced_read_reg (regs, dsc, 0); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | displaced_write_reg (regs, dsc, i, dsc->tmp[i], CANNOT_WRITE_PC); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, dsc->rd, rd_val, ALU_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static void | 
|  | install_alu_shifted_reg (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | unsigned int rd, unsigned int rn, unsigned int rm, | 
|  | unsigned rs) | 
|  | { | 
|  | int i; | 
|  | ULONGEST rd_val, rn_val, rm_val, rs_val; | 
|  |  | 
|  | /* Instruction is of form: | 
|  |  | 
|  | <op><cond> rd, [rn,] rm, <shift> rs | 
|  |  | 
|  | Rewrite as: | 
|  |  | 
|  | Preparation: tmp1, tmp2, tmp3, tmp4 <- r0, r1, r2, r3 | 
|  | r0, r1, r2, r3 <- rd, rn, rm, rs | 
|  | Insn: <op><cond> r0, r1, r2, <shift> r3 | 
|  | Cleanup: tmp5 <- r0 | 
|  | r0, r1, r2, r3 <- tmp1, tmp2, tmp3, tmp4 | 
|  | rd <- tmp5 | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | 
|  |  | 
|  | rd_val = displaced_read_reg (regs, dsc, rd); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | rm_val = displaced_read_reg (regs, dsc, rm); | 
|  | rs_val = displaced_read_reg (regs, dsc, rs); | 
|  | displaced_write_reg (regs, dsc, 0, rd_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 1, rn_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, rm_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 3, rs_val, CANNOT_WRITE_PC); | 
|  | dsc->rd = rd; | 
|  | dsc->cleanup = &cleanup_alu_shifted_reg; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_alu_shifted_reg (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op = bits (insn, 21, 24); | 
|  | int is_mov = (op == 0xd); | 
|  | unsigned int rd, rn, rm, rs; | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000fff0ful)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "ALU shifted reg", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying shifted reg %s insn %.8lx", | 
|  | is_mov ? "move" : "ALU", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | rn = bits (insn, 16, 19); | 
|  | rm = bits (insn, 0, 3); | 
|  | rs = bits (insn, 8, 11); | 
|  | rd = bits (insn, 12, 15); | 
|  |  | 
|  | if (is_mov) | 
|  | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x302; | 
|  | else | 
|  | dsc->modinsn[0] = (insn & 0xfff000f0) | 0x10302; | 
|  |  | 
|  | install_alu_shifted_reg (gdbarch, regs, dsc, rd, rn, rm, rs); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Clean up load instructions.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_load (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rt_val, rt_val2 = 0, rn_val; | 
|  |  | 
|  | rt_val = displaced_read_reg (regs, dsc, 0); | 
|  | if (dsc->u.ldst.xfersize == 8) | 
|  | rt_val2 = displaced_read_reg (regs, dsc, 1); | 
|  | rn_val = displaced_read_reg (regs, dsc, 2); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  | if (dsc->u.ldst.xfersize > 4) | 
|  | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | 
|  | if (!dsc->u.ldst.immed) | 
|  | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | 
|  |  | 
|  | /* Handle register writeback.  */ | 
|  | if (dsc->u.ldst.writeback) | 
|  | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | 
|  | /* Put result in right place.  */ | 
|  | displaced_write_reg (regs, dsc, dsc->rd, rt_val, LOAD_WRITE_PC); | 
|  | if (dsc->u.ldst.xfersize == 8) | 
|  | displaced_write_reg (regs, dsc, dsc->rd + 1, rt_val2, LOAD_WRITE_PC); | 
|  | } | 
|  |  | 
|  | /* Clean up store instructions.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_store (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rn_val = displaced_read_reg (regs, dsc, 2); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  | if (dsc->u.ldst.xfersize > 4) | 
|  | displaced_write_reg (regs, dsc, 1, dsc->tmp[1], CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, dsc->tmp[2], CANNOT_WRITE_PC); | 
|  | if (!dsc->u.ldst.immed) | 
|  | displaced_write_reg (regs, dsc, 3, dsc->tmp[3], CANNOT_WRITE_PC); | 
|  | if (!dsc->u.ldst.restore_r4) | 
|  | displaced_write_reg (regs, dsc, 4, dsc->tmp[4], CANNOT_WRITE_PC); | 
|  |  | 
|  | /* Writeback.  */ | 
|  | if (dsc->u.ldst.writeback) | 
|  | displaced_write_reg (regs, dsc, dsc->u.ldst.rn, rn_val, CANNOT_WRITE_PC); | 
|  | } | 
|  |  | 
|  | /* Copy "extra" load/store instructions.  These are halfword/doubleword | 
|  | transfers, which have a different encoding to byte/word transfers.  */ | 
|  |  | 
|  | static int | 
|  | arm_copy_extra_ld_st (struct gdbarch *gdbarch, uint32_t insn, int unprivileged, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op1 = bits (insn, 20, 24); | 
|  | unsigned int op2 = bits (insn, 5, 6); | 
|  | unsigned int rt = bits (insn, 12, 15); | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  | unsigned int rm = bits (insn, 0, 3); | 
|  | char load[12]     = {0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1}; | 
|  | char bytesize[12] = {2, 2, 2, 2, 8, 1, 8, 1, 8, 2, 8, 2}; | 
|  | int immed = (op1 & 0x4) != 0; | 
|  | int opcode; | 
|  | ULONGEST rt_val, rt_val2 = 0, rn_val, rm_val = 0; | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000ff00ful)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "extra load/store", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying %sextra load/store insn %.8lx", | 
|  | unprivileged ? "unprivileged " : "", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | opcode = ((op2 << 2) | (op1 & 0x1) | ((op1 & 0x4) >> 1)) - 4; | 
|  |  | 
|  | if (opcode < 0) | 
|  | internal_error (_("copy_extra_ld_st: instruction decode error")); | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[1] = displaced_read_reg (regs, dsc, 1); | 
|  | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | 
|  | if (!immed) | 
|  | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | 
|  |  | 
|  | rt_val = displaced_read_reg (regs, dsc, rt); | 
|  | if (bytesize[opcode] == 8) | 
|  | rt_val2 = displaced_read_reg (regs, dsc, rt + 1); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | if (!immed) | 
|  | rm_val = displaced_read_reg (regs, dsc, rm); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | 
|  | if (bytesize[opcode] == 8) | 
|  | displaced_write_reg (regs, dsc, 1, rt_val2, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | 
|  | if (!immed) | 
|  | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | 
|  |  | 
|  | dsc->rd = rt; | 
|  | dsc->u.ldst.xfersize = bytesize[opcode]; | 
|  | dsc->u.ldst.rn = rn; | 
|  | dsc->u.ldst.immed = immed; | 
|  | dsc->u.ldst.writeback = bit (insn, 24) == 0 || bit (insn, 21) != 0; | 
|  | dsc->u.ldst.restore_r4 = 0; | 
|  |  | 
|  | if (immed) | 
|  | /* {ldr,str}<width><cond> rt, [rt2,] [rn, #imm] | 
|  | -> | 
|  | {ldr,str}<width><cond> r0, [r1,] [r2, #imm].  */ | 
|  | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | 
|  | else | 
|  | /* {ldr,str}<width><cond> rt, [rt2,] [rn, +/-rm] | 
|  | -> | 
|  | {ldr,str}<width><cond> r0, [r1,] [r2, +/-r3].  */ | 
|  | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | 
|  |  | 
|  | dsc->cleanup = load[opcode] ? &cleanup_load : &cleanup_store; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy byte/half word/word loads and stores.  */ | 
|  |  | 
|  | static void | 
|  | install_load_store (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, int load, | 
|  | int immed, int writeback, int size, int usermode, | 
|  | int rt, int rm, int rn) | 
|  | { | 
|  | ULONGEST rt_val, rn_val, rm_val = 0; | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | 
|  | if (!immed) | 
|  | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | 
|  | if (!load) | 
|  | dsc->tmp[4] = displaced_read_reg (regs, dsc, 4); | 
|  |  | 
|  | rt_val = displaced_read_reg (regs, dsc, rt); | 
|  | rn_val = displaced_read_reg (regs, dsc, rn); | 
|  | if (!immed) | 
|  | rm_val = displaced_read_reg (regs, dsc, rm); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 0, rt_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 2, rn_val, CANNOT_WRITE_PC); | 
|  | if (!immed) | 
|  | displaced_write_reg (regs, dsc, 3, rm_val, CANNOT_WRITE_PC); | 
|  | dsc->rd = rt; | 
|  | dsc->u.ldst.xfersize = size; | 
|  | dsc->u.ldst.rn = rn; | 
|  | dsc->u.ldst.immed = immed; | 
|  | dsc->u.ldst.writeback = writeback; | 
|  |  | 
|  | /* To write PC we can do: | 
|  |  | 
|  | Before this sequence of instructions: | 
|  | r0 is the PC value got from displaced_read_reg, so r0 = from + 8; | 
|  | r2 is the Rn value got from displaced_read_reg. | 
|  |  | 
|  | Insn1: push {pc} Write address of STR instruction + offset on stack | 
|  | Insn2: pop  {r4} Read it back from stack, r4 = addr(Insn1) + offset | 
|  | Insn3: sub r4, r4, pc   r4 = addr(Insn1) + offset - pc | 
|  | = addr(Insn1) + offset - addr(Insn3) - 8 | 
|  | = offset - 16 | 
|  | Insn4: add r4, r4, #8   r4 = offset - 8 | 
|  | Insn5: add r0, r0, r4   r0 = from + 8 + offset - 8 | 
|  | = from + offset | 
|  | Insn6: str r0, [r2, #imm] (or str r0, [r2, r3]) | 
|  |  | 
|  | Otherwise we don't know what value to write for PC, since the offset is | 
|  | architecture-dependent (sometimes PC+8, sometimes PC+12).  More details | 
|  | of this can be found in Section "Saving from r15" in | 
|  | http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204g/Cihbjifh.html */ | 
|  |  | 
|  | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | thumb2_copy_load_literal (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, int size) | 
|  | { | 
|  | unsigned int u_bit = bit (insn1, 7); | 
|  | unsigned int rt = bits (insn2, 12, 15); | 
|  | int imm12 = bits (insn2, 0, 11); | 
|  | ULONGEST pc_val; | 
|  |  | 
|  | displaced_debug_printf ("copying ldr pc (0x%x) R%d %c imm12 %.4x", | 
|  | (unsigned int) dsc->insn_addr, rt, u_bit ? '+' : '-', | 
|  | imm12); | 
|  |  | 
|  | if (!u_bit) | 
|  | imm12 = -1 * imm12; | 
|  |  | 
|  | /* Rewrite instruction LDR Rt imm12 into: | 
|  |  | 
|  | Prepare: tmp[0] <- r0, tmp[1] <- r2, tmp[2] <- r3, r2 <- pc, r3 <- imm12 | 
|  |  | 
|  | LDR R0, R2, R3, | 
|  |  | 
|  | Cleanup: rt <- r0, r0 <- tmp[0], r2 <- tmp[1], r3 <- tmp[2].  */ | 
|  |  | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | 
|  | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | 
|  |  | 
|  | pc_val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | 
|  |  | 
|  | pc_val = pc_val & 0xfffffffc; | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 2, pc_val, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 3, imm12, CANNOT_WRITE_PC); | 
|  |  | 
|  | dsc->rd = rt; | 
|  |  | 
|  | dsc->u.ldst.xfersize = size; | 
|  | dsc->u.ldst.immed = 0; | 
|  | dsc->u.ldst.writeback = 0; | 
|  | dsc->u.ldst.restore_r4 = 0; | 
|  |  | 
|  | /* LDR R0, R2, R3 */ | 
|  | dsc->modinsn[0] = 0xf852; | 
|  | dsc->modinsn[1] = 0x3; | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | dsc->cleanup = &cleanup_load; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_load_reg_imm (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | int writeback, int immed) | 
|  | { | 
|  | unsigned int rt = bits (insn2, 12, 15); | 
|  | unsigned int rn = bits (insn1, 0, 3); | 
|  | unsigned int rm = bits (insn2, 0, 3);  /* Only valid if !immed.  */ | 
|  | /* In LDR (register), there is also a register Rm, which is not allowed to | 
|  | be PC, so we don't have to check it.  */ | 
|  |  | 
|  | if (rt != ARM_PC_REGNUM && rn != ARM_PC_REGNUM) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "load", | 
|  | dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying ldr r%d [r%d] insn %.4x%.4x", | 
|  | rt, rn, insn1, insn2); | 
|  |  | 
|  | install_load_store (gdbarch, regs, dsc, 1, immed, writeback, 4, | 
|  | 0, rt, rm, rn); | 
|  |  | 
|  | dsc->u.ldst.restore_r4 = 0; | 
|  |  | 
|  | if (immed) | 
|  | /* ldr[b]<cond> rt, [rn, #imm], etc. | 
|  | -> | 
|  | ldr[b]<cond> r0, [r2, #imm].  */ | 
|  | { | 
|  | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | 
|  | dsc->modinsn[1] = insn2 & 0x0fff; | 
|  | } | 
|  | else | 
|  | /* ldr[b]<cond> rt, [rn, rm], etc. | 
|  | -> | 
|  | ldr[b]<cond> r0, [r2, r3].  */ | 
|  | { | 
|  | dsc->modinsn[0] = (insn1 & 0xfff0) | 0x2; | 
|  | dsc->modinsn[1] = (insn2 & 0x0ff0) | 0x3; | 
|  | } | 
|  |  | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | arm_copy_ldr_str_ldrb_strb (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | int load, int size, int usermode) | 
|  | { | 
|  | int immed = !bit (insn, 25); | 
|  | int writeback = (bit (insn, 24) == 0 || bit (insn, 21) != 0); | 
|  | unsigned int rt = bits (insn, 12, 15); | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  | unsigned int rm = bits (insn, 0, 3);  /* Only valid if !immed.  */ | 
|  |  | 
|  | if (!insn_references_pc (insn, 0x000ff00ful)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "load/store", dsc); | 
|  |  | 
|  | displaced_debug_printf ("copying %s%s r%d [r%d] insn %.8lx", | 
|  | load ? (size == 1 ? "ldrb" : "ldr") | 
|  | : (size == 1 ? "strb" : "str"), | 
|  | usermode ? "t" : "", | 
|  | rt, rn, | 
|  | (unsigned long) insn); | 
|  |  | 
|  | install_load_store (gdbarch, regs, dsc, load, immed, writeback, size, | 
|  | usermode, rt, rm, rn); | 
|  |  | 
|  | if (load || rt != ARM_PC_REGNUM) | 
|  | { | 
|  | dsc->u.ldst.restore_r4 = 0; | 
|  |  | 
|  | if (immed) | 
|  | /* {ldr,str}[b]<cond> rt, [rn, #imm], etc. | 
|  | -> | 
|  | {ldr,str}[b]<cond> r0, [r2, #imm].  */ | 
|  | dsc->modinsn[0] = (insn & 0xfff00fff) | 0x20000; | 
|  | else | 
|  | /* {ldr,str}[b]<cond> rt, [rn, rm], etc. | 
|  | -> | 
|  | {ldr,str}[b]<cond> r0, [r2, r3].  */ | 
|  | dsc->modinsn[0] = (insn & 0xfff00ff0) | 0x20003; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We need to use r4 as scratch.  Make sure it's restored afterwards.  */ | 
|  | dsc->u.ldst.restore_r4 = 1; | 
|  | dsc->modinsn[0] = 0xe92d8000;  /* push {pc} */ | 
|  | dsc->modinsn[1] = 0xe8bd0010;  /* pop  {r4} */ | 
|  | dsc->modinsn[2] = 0xe044400f;  /* sub r4, r4, pc.  */ | 
|  | dsc->modinsn[3] = 0xe2844008;  /* add r4, r4, #8.  */ | 
|  | dsc->modinsn[4] = 0xe0800004;  /* add r0, r0, r4.  */ | 
|  |  | 
|  | /* As above.  */ | 
|  | if (immed) | 
|  | dsc->modinsn[5] = (insn & 0xfff00fff) | 0x20000; | 
|  | else | 
|  | dsc->modinsn[5] = (insn & 0xfff00ff0) | 0x20003; | 
|  |  | 
|  | dsc->numinsns = 6; | 
|  | } | 
|  |  | 
|  | dsc->cleanup = load ? &cleanup_load : &cleanup_store; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Cleanup LDM instructions with fully-populated register list.  This is an | 
|  | unfortunate corner case: it's impossible to implement correctly by modifying | 
|  | the instruction.  The issue is as follows: we have an instruction, | 
|  |  | 
|  | ldm rN, {r0-r15} | 
|  |  | 
|  | which we must rewrite to avoid loading PC.  A possible solution would be to | 
|  | do the load in two halves, something like (with suitable cleanup | 
|  | afterwards): | 
|  |  | 
|  | mov r8, rN | 
|  | ldm[id][ab] r8!, {r0-r7} | 
|  | str r7, <temp> | 
|  | ldm[id][ab] r8, {r7-r14} | 
|  | <bkpt> | 
|  |  | 
|  | but at present there's no suitable place for <temp>, since the scratch space | 
|  | is overwritten before the cleanup routine is called.  For now, we simply | 
|  | emulate the instruction.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_block_load_all (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int inc = dsc->u.block.increment; | 
|  | int bump_before = dsc->u.block.before ? (inc ? 4 : -4) : 0; | 
|  | int bump_after = dsc->u.block.before ? 0 : (inc ? 4 : -4); | 
|  | uint32_t regmask = dsc->u.block.regmask; | 
|  | int regno = inc ? 0 : 15; | 
|  | CORE_ADDR xfer_addr = dsc->u.block.xfer_addr; | 
|  | int exception_return = dsc->u.block.load && dsc->u.block.user | 
|  | && (regmask & 0x8000) != 0; | 
|  | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); | 
|  | int do_transfer = condition_true (dsc->u.block.cond, status); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | if (!do_transfer) | 
|  | return; | 
|  |  | 
|  | /* If the instruction is ldm rN, {...pc}^, I don't think there's anything | 
|  | sensible we can do here.  Complain loudly.  */ | 
|  | if (exception_return) | 
|  | error (_("Cannot single-step exception return")); | 
|  |  | 
|  | /* We don't handle any stores here for now.  */ | 
|  | gdb_assert (dsc->u.block.load != 0); | 
|  |  | 
|  | displaced_debug_printf ("emulating block transfer: %s %s %s", | 
|  | dsc->u.block.load ? "ldm" : "stm", | 
|  | dsc->u.block.increment ? "inc" : "dec", | 
|  | dsc->u.block.before ? "before" : "after"); | 
|  |  | 
|  | while (regmask) | 
|  | { | 
|  | uint32_t memword; | 
|  |  | 
|  | if (inc) | 
|  | while (regno <= ARM_PC_REGNUM && (regmask & (1 << regno)) == 0) | 
|  | regno++; | 
|  | else | 
|  | while (regno >= 0 && (regmask & (1 << regno)) == 0) | 
|  | regno--; | 
|  |  | 
|  | xfer_addr += bump_before; | 
|  |  | 
|  | memword = read_memory_unsigned_integer (xfer_addr, 4, byte_order); | 
|  | displaced_write_reg (regs, dsc, regno, memword, LOAD_WRITE_PC); | 
|  |  | 
|  | xfer_addr += bump_after; | 
|  |  | 
|  | regmask &= ~(1 << regno); | 
|  | } | 
|  |  | 
|  | if (dsc->u.block.writeback) | 
|  | displaced_write_reg (regs, dsc, dsc->u.block.rn, xfer_addr, | 
|  | CANNOT_WRITE_PC); | 
|  | } | 
|  |  | 
|  | /* Clean up an STM which included the PC in the register list.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_block_store_pc (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); | 
|  | int store_executed = condition_true (dsc->u.block.cond, status); | 
|  | CORE_ADDR pc_stored_at, transferred_regs | 
|  | = count_one_bits (dsc->u.block.regmask); | 
|  | CORE_ADDR stm_insn_addr; | 
|  | uint32_t pc_val; | 
|  | long offset; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* If condition code fails, there's nothing else to do.  */ | 
|  | if (!store_executed) | 
|  | return; | 
|  |  | 
|  | if (dsc->u.block.increment) | 
|  | { | 
|  | pc_stored_at = dsc->u.block.xfer_addr + 4 * transferred_regs; | 
|  |  | 
|  | if (dsc->u.block.before) | 
|  | pc_stored_at += 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | pc_stored_at = dsc->u.block.xfer_addr; | 
|  |  | 
|  | if (dsc->u.block.before) | 
|  | pc_stored_at -= 4; | 
|  | } | 
|  |  | 
|  | pc_val = read_memory_unsigned_integer (pc_stored_at, 4, byte_order); | 
|  | stm_insn_addr = dsc->scratch_base; | 
|  | offset = pc_val - stm_insn_addr; | 
|  |  | 
|  | displaced_debug_printf ("detected PC offset %.8lx for STM instruction", | 
|  | offset); | 
|  |  | 
|  | /* Rewrite the stored PC to the proper value for the non-displaced original | 
|  | instruction.  */ | 
|  | write_memory_unsigned_integer (pc_stored_at, 4, byte_order, | 
|  | dsc->insn_addr + offset); | 
|  | } | 
|  |  | 
|  | /* Clean up an LDM which includes the PC in the register list.  We clumped all | 
|  | the registers in the transferred list into a contiguous range r0...rX (to | 
|  | avoid loading PC directly and losing control of the debugged program), so we | 
|  | must undo that here.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_block_load_pc (struct gdbarch *gdbarch, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | uint32_t status = displaced_read_reg (regs, dsc, ARM_PS_REGNUM); | 
|  | int load_executed = condition_true (dsc->u.block.cond, status); | 
|  | unsigned int mask = dsc->u.block.regmask, write_reg = ARM_PC_REGNUM; | 
|  | unsigned int regs_loaded = count_one_bits (mask); | 
|  | unsigned int num_to_shuffle = regs_loaded, clobbered; | 
|  |  | 
|  | /* The method employed here will fail if the register list is fully populated | 
|  | (we need to avoid loading PC directly).  */ | 
|  | gdb_assert (num_to_shuffle < 16); | 
|  |  | 
|  | if (!load_executed) | 
|  | return; | 
|  |  | 
|  | clobbered = (1 << num_to_shuffle) - 1; | 
|  |  | 
|  | while (num_to_shuffle > 0) | 
|  | { | 
|  | if ((mask & (1 << write_reg)) != 0) | 
|  | { | 
|  | unsigned int read_reg = num_to_shuffle - 1; | 
|  |  | 
|  | if (read_reg != write_reg) | 
|  | { | 
|  | ULONGEST rval = displaced_read_reg (regs, dsc, read_reg); | 
|  | displaced_write_reg (regs, dsc, write_reg, rval, LOAD_WRITE_PC); | 
|  | displaced_debug_printf ("LDM: move loaded register r%d to r%d", | 
|  | read_reg, write_reg); | 
|  | } | 
|  | else | 
|  | displaced_debug_printf ("LDM: register r%d already in the right " | 
|  | "place", write_reg); | 
|  |  | 
|  | clobbered &= ~(1 << write_reg); | 
|  |  | 
|  | num_to_shuffle--; | 
|  | } | 
|  |  | 
|  | write_reg--; | 
|  | } | 
|  |  | 
|  | /* Restore any registers we scribbled over.  */ | 
|  | for (write_reg = 0; clobbered != 0; write_reg++) | 
|  | { | 
|  | if ((clobbered & (1 << write_reg)) != 0) | 
|  | { | 
|  | displaced_write_reg (regs, dsc, write_reg, dsc->tmp[write_reg], | 
|  | CANNOT_WRITE_PC); | 
|  | displaced_debug_printf ("LDM: restored clobbered register r%d", | 
|  | write_reg); | 
|  | clobbered &= ~(1 << write_reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Perform register writeback manually.  */ | 
|  | if (dsc->u.block.writeback) | 
|  | { | 
|  | ULONGEST new_rn_val = dsc->u.block.xfer_addr; | 
|  |  | 
|  | if (dsc->u.block.increment) | 
|  | new_rn_val += regs_loaded * 4; | 
|  | else | 
|  | new_rn_val -= regs_loaded * 4; | 
|  |  | 
|  | displaced_write_reg (regs, dsc, dsc->u.block.rn, new_rn_val, | 
|  | CANNOT_WRITE_PC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle ldm/stm, apart from some tricky cases which are unlikely to occur | 
|  | in user-level code (in particular exception return, ldm rn, {...pc}^).  */ | 
|  |  | 
|  | static int | 
|  | arm_copy_block_xfer (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int load = bit (insn, 20); | 
|  | int user = bit (insn, 22); | 
|  | int increment = bit (insn, 23); | 
|  | int before = bit (insn, 24); | 
|  | int writeback = bit (insn, 21); | 
|  | int rn = bits (insn, 16, 19); | 
|  |  | 
|  | /* Block transfers which don't mention PC can be run directly | 
|  | out-of-line.  */ | 
|  | if (rn != ARM_PC_REGNUM && (insn & 0x8000) == 0) | 
|  | return arm_copy_unmodified (gdbarch, insn, "ldm/stm", dsc); | 
|  |  | 
|  | if (rn == ARM_PC_REGNUM) | 
|  | { | 
|  | warning (_("displaced: Unpredictable LDM or STM with " | 
|  | "base register r15")); | 
|  | return arm_copy_unmodified (gdbarch, insn, "unpredictable ldm/stm", dsc); | 
|  | } | 
|  |  | 
|  | displaced_debug_printf ("copying block transfer insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | 
|  | dsc->u.block.rn = rn; | 
|  |  | 
|  | dsc->u.block.load = load; | 
|  | dsc->u.block.user = user; | 
|  | dsc->u.block.increment = increment; | 
|  | dsc->u.block.before = before; | 
|  | dsc->u.block.writeback = writeback; | 
|  | dsc->u.block.cond = bits (insn, 28, 31); | 
|  |  | 
|  | dsc->u.block.regmask = insn & 0xffff; | 
|  |  | 
|  | if (load) | 
|  | { | 
|  | if ((insn & 0xffff) == 0xffff) | 
|  | { | 
|  | /* LDM with a fully-populated register list.  This case is | 
|  | particularly tricky.  Implement for now by fully emulating the | 
|  | instruction (which might not behave perfectly in all cases, but | 
|  | these instructions should be rare enough for that not to matter | 
|  | too much).  */ | 
|  | dsc->modinsn[0] = ARM_NOP; | 
|  |  | 
|  | dsc->cleanup = &cleanup_block_load_all; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* LDM of a list of registers which includes PC.  Implement by | 
|  | rewriting the list of registers to be transferred into a | 
|  | contiguous chunk r0...rX before doing the transfer, then shuffling | 
|  | registers into the correct places in the cleanup routine.  */ | 
|  | unsigned int regmask = insn & 0xffff; | 
|  | unsigned int num_in_list = count_one_bits (regmask), new_regmask; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < num_in_list; i++) | 
|  | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | 
|  |  | 
|  | /* Writeback makes things complicated.  We need to avoid clobbering | 
|  | the base register with one of the registers in our modified | 
|  | register list, but just using a different register can't work in | 
|  | all cases, e.g.: | 
|  |  | 
|  | ldm r14!, {r0-r13,pc} | 
|  |  | 
|  | which would need to be rewritten as: | 
|  |  | 
|  | ldm rN!, {r0-r14} | 
|  |  | 
|  | but that can't work, because there's no free register for N. | 
|  |  | 
|  | Solve this by turning off the writeback bit, and emulating | 
|  | writeback manually in the cleanup routine.  */ | 
|  |  | 
|  | if (writeback) | 
|  | insn &= ~(1 << 21); | 
|  |  | 
|  | new_regmask = (1 << num_in_list) - 1; | 
|  |  | 
|  | displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list " | 
|  | "%.4x, modified list %.4x", | 
|  | rn, writeback ? "!" : "", | 
|  | (int) insn & 0xffff, new_regmask); | 
|  |  | 
|  | dsc->modinsn[0] = (insn & ~0xffff) | (new_regmask & 0xffff); | 
|  |  | 
|  | dsc->cleanup = &cleanup_block_load_pc; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STM of a list of registers which includes PC.  Run the instruction | 
|  | as-is, but out of line: this will store the wrong value for the PC, | 
|  | so we must manually fix up the memory in the cleanup routine. | 
|  | Doing things this way has the advantage that we can auto-detect | 
|  | the offset of the PC write (which is architecture-dependent) in | 
|  | the cleanup routine.  */ | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | dsc->cleanup = &cleanup_block_store_pc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_copy_block_xfer (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int rn = bits (insn1, 0, 3); | 
|  | int load = bit (insn1, 4); | 
|  | int writeback = bit (insn1, 5); | 
|  |  | 
|  | /* Block transfers which don't mention PC can be run directly | 
|  | out-of-line.  */ | 
|  | if (rn != ARM_PC_REGNUM && (insn2 & 0x8000) == 0) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "ldm/stm", dsc); | 
|  |  | 
|  | if (rn == ARM_PC_REGNUM) | 
|  | { | 
|  | warning (_("displaced: Unpredictable LDM or STM with " | 
|  | "base register r15")); | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "unpredictable ldm/stm", dsc); | 
|  | } | 
|  |  | 
|  | displaced_debug_printf ("copying block transfer insn %.4x%.4x", | 
|  | insn1, insn2); | 
|  |  | 
|  | /* Clear bit 13, since it should be always zero.  */ | 
|  | dsc->u.block.regmask = (insn2 & 0xdfff); | 
|  | dsc->u.block.rn = rn; | 
|  |  | 
|  | dsc->u.block.load = load; | 
|  | dsc->u.block.user = 0; | 
|  | dsc->u.block.increment = bit (insn1, 7); | 
|  | dsc->u.block.before = bit (insn1, 8); | 
|  | dsc->u.block.writeback = writeback; | 
|  | dsc->u.block.cond = INST_AL; | 
|  | dsc->u.block.xfer_addr = displaced_read_reg (regs, dsc, rn); | 
|  |  | 
|  | if (load) | 
|  | { | 
|  | if (dsc->u.block.regmask == 0xffff) | 
|  | { | 
|  | /* This branch is impossible to happen.  */ | 
|  | gdb_assert (0); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int regmask = dsc->u.block.regmask; | 
|  | unsigned int num_in_list = count_one_bits (regmask), new_regmask; | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < num_in_list; i++) | 
|  | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | 
|  |  | 
|  | if (writeback) | 
|  | insn1 &= ~(1 << 5); | 
|  |  | 
|  | new_regmask = (1 << num_in_list) - 1; | 
|  |  | 
|  | displaced_debug_printf ("LDM r%d%s, {..., pc}: original reg list " | 
|  | "%.4x, modified list %.4x", | 
|  | rn, writeback ? "!" : "", | 
|  | (int) dsc->u.block.regmask, new_regmask); | 
|  |  | 
|  | dsc->modinsn[0] = insn1; | 
|  | dsc->modinsn[1] = (new_regmask & 0xffff); | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | dsc->cleanup = &cleanup_block_load_pc; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | dsc->modinsn[0] = insn1; | 
|  | dsc->modinsn[1] = insn2; | 
|  | dsc->numinsns = 2; | 
|  | dsc->cleanup = &cleanup_block_store_pc; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wrapper over read_memory_unsigned_integer for use in arm_get_next_pcs. | 
|  | This is used to avoid a dependency on BFD's bfd_endian enum.  */ | 
|  |  | 
|  | ULONGEST | 
|  | arm_get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr, int len, | 
|  | int byte_order) | 
|  | { | 
|  | return read_memory_unsigned_integer (memaddr, len, | 
|  | (enum bfd_endian) byte_order); | 
|  | } | 
|  |  | 
|  | /* Wrapper over gdbarch_addr_bits_remove for use in arm_get_next_pcs.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | arm_get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self, | 
|  | CORE_ADDR val) | 
|  | { | 
|  | return gdbarch_addr_bits_remove | 
|  | (gdb::checked_static_cast<regcache *> (self->regcache)->arch (), val); | 
|  | } | 
|  |  | 
|  | /* Wrapper over syscall_next_pc for use in get_next_pcs.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wrapper over arm_is_thumb for use in arm_get_next_pcs.  */ | 
|  |  | 
|  | int | 
|  | arm_get_next_pcs_is_thumb (struct arm_get_next_pcs *self) | 
|  | { | 
|  | return arm_is_thumb (gdb::checked_static_cast<regcache *> (self->regcache)); | 
|  | } | 
|  |  | 
|  | /* single_step() is called just before we want to resume the inferior, | 
|  | if we want to single-step it but there is no hardware or kernel | 
|  | single-step support.  We find the target of the coming instructions | 
|  | and breakpoint them.  */ | 
|  |  | 
|  | std::vector<CORE_ADDR> | 
|  | arm_software_single_step (struct regcache *regcache) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | struct arm_get_next_pcs next_pcs_ctx; | 
|  |  | 
|  | arm_get_next_pcs_ctor (&next_pcs_ctx, | 
|  | &arm_get_next_pcs_ops, | 
|  | gdbarch_byte_order (gdbarch), | 
|  | gdbarch_byte_order_for_code (gdbarch), | 
|  | 0, | 
|  | regcache); | 
|  |  | 
|  | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); | 
|  |  | 
|  | for (CORE_ADDR &pc_ref : next_pcs) | 
|  | pc_ref = gdbarch_addr_bits_remove (gdbarch, pc_ref); | 
|  |  | 
|  | return next_pcs; | 
|  | } | 
|  |  | 
|  | /* Cleanup/copy SVC (SWI) instructions.  These two functions are overridden | 
|  | for Linux, where some SVC instructions must be treated specially.  */ | 
|  |  | 
|  | static void | 
|  | cleanup_svc (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | CORE_ADDR resume_addr = dsc->insn_addr + dsc->insn_size; | 
|  |  | 
|  | displaced_debug_printf ("cleanup for svc, resume at %.8lx", | 
|  | (unsigned long) resume_addr); | 
|  |  | 
|  | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, resume_addr, BRANCH_WRITE_PC); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Common copy routine for svc instruction.  */ | 
|  |  | 
|  | static int | 
|  | install_svc (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | /* Preparation: none. | 
|  | Insn: unmodified svc. | 
|  | Cleanup: pc <- insn_addr + insn_size.  */ | 
|  |  | 
|  | /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next | 
|  | instruction.  */ | 
|  | dsc->wrote_to_pc = 1; | 
|  |  | 
|  | /* Allow OS-specific code to override SVC handling.  */ | 
|  | if (dsc->u.svc.copy_svc_os) | 
|  | return dsc->u.svc.copy_svc_os (gdbarch, regs, dsc); | 
|  | else | 
|  | { | 
|  | dsc->cleanup = &cleanup_svc; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_copy_svc (struct gdbarch *gdbarch, uint32_t insn, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  |  | 
|  | displaced_debug_printf ("copying svc insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return install_svc (gdbarch, regs, dsc); | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_svc (struct gdbarch *gdbarch, uint16_t insn, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  |  | 
|  | displaced_debug_printf ("copying svc insn %.4x", insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return install_svc (gdbarch, regs, dsc); | 
|  | } | 
|  |  | 
|  | /* Copy undefined instructions.  */ | 
|  |  | 
|  | static int | 
|  | arm_copy_undef (struct gdbarch *gdbarch, uint32_t insn, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_debug_printf ("copying undefined insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_32bit_copy_undef (struct gdbarch *gdbarch, uint16_t insn1, uint16_t insn2, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  |  | 
|  | displaced_debug_printf ("copying undefined insn %.4x %.4x", | 
|  | (unsigned short) insn1, (unsigned short) insn2); | 
|  |  | 
|  | dsc->modinsn[0] = insn1; | 
|  | dsc->modinsn[1] = insn2; | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy unpredictable instructions.  */ | 
|  |  | 
|  | static int | 
|  | arm_copy_unpred (struct gdbarch *gdbarch, uint32_t insn, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | displaced_debug_printf ("copying unpredictable insn %.8lx", | 
|  | (unsigned long) insn); | 
|  |  | 
|  | dsc->modinsn[0] = insn; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* The decode_* functions are instruction decoding helpers.  They mostly follow | 
|  | the presentation in the ARM ARM.  */ | 
|  |  | 
|  | static int | 
|  | arm_decode_misc_memhint_neon (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op1 = bits (insn, 20, 26), op2 = bits (insn, 4, 7); | 
|  | unsigned int rn = bits (insn, 16, 19); | 
|  |  | 
|  | if (op1 == 0x10 && (op2 & 0x2) == 0x0 && (rn & 0x1) == 0x0) | 
|  | return arm_copy_unmodified (gdbarch, insn, "cps", dsc); | 
|  | else if (op1 == 0x10 && op2 == 0x0 && (rn & 0x1) == 0x1) | 
|  | return arm_copy_unmodified (gdbarch, insn, "setend", dsc); | 
|  | else if ((op1 & 0x60) == 0x20) | 
|  | return arm_copy_unmodified (gdbarch, insn, "neon dataproc", dsc); | 
|  | else if ((op1 & 0x71) == 0x40) | 
|  | return arm_copy_unmodified (gdbarch, insn, "neon elt/struct load/store", | 
|  | dsc); | 
|  | else if ((op1 & 0x77) == 0x41) | 
|  | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | 
|  | else if ((op1 & 0x77) == 0x45) | 
|  | return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pli.  */ | 
|  | else if ((op1 & 0x77) == 0x51) | 
|  | { | 
|  | if (rn != 0xf) | 
|  | return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pld/pldw.  */ | 
|  | else | 
|  | return arm_copy_unpred (gdbarch, insn, dsc); | 
|  | } | 
|  | else if ((op1 & 0x77) == 0x55) | 
|  | return arm_copy_preload (gdbarch, insn, regs, dsc);  /* pld/pldw.  */ | 
|  | else if (op1 == 0x57) | 
|  | switch (op2) | 
|  | { | 
|  | case 0x1: return arm_copy_unmodified (gdbarch, insn, "clrex", dsc); | 
|  | case 0x4: return arm_copy_unmodified (gdbarch, insn, "dsb", dsc); | 
|  | case 0x5: return arm_copy_unmodified (gdbarch, insn, "dmb", dsc); | 
|  | case 0x6: return arm_copy_unmodified (gdbarch, insn, "isb", dsc); | 
|  | default: return arm_copy_unpred (gdbarch, insn, dsc); | 
|  | } | 
|  | else if ((op1 & 0x63) == 0x43) | 
|  | return arm_copy_unpred (gdbarch, insn, dsc); | 
|  | else if ((op2 & 0x1) == 0x0) | 
|  | switch (op1 & ~0x80) | 
|  | { | 
|  | case 0x61: | 
|  | return arm_copy_unmodified (gdbarch, insn, "unallocated mem hint", dsc); | 
|  | case 0x65: | 
|  | return arm_copy_preload_reg (gdbarch, insn, regs, dsc);  /* pli reg.  */ | 
|  | case 0x71: case 0x75: | 
|  | /* pld/pldw reg.  */ | 
|  | return arm_copy_preload_reg (gdbarch, insn, regs, dsc); | 
|  | case 0x63: case 0x67: case 0x73: case 0x77: | 
|  | return arm_copy_unpred (gdbarch, insn, dsc); | 
|  | default: | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc);  /* Probably unreachable.  */ | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_unconditional (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | if (bit (insn, 27) == 0) | 
|  | return arm_decode_misc_memhint_neon (gdbarch, insn, regs, dsc); | 
|  | /* Switch on bits: 0bxxxxx321xxx0xxxxxxxxxxxxxxxxxxxx.  */ | 
|  | else switch (((insn & 0x7000000) >> 23) | ((insn & 0x100000) >> 20)) | 
|  | { | 
|  | case 0x0: case 0x2: | 
|  | return arm_copy_unmodified (gdbarch, insn, "srs", dsc); | 
|  |  | 
|  | case 0x1: case 0x3: | 
|  | return arm_copy_unmodified (gdbarch, insn, "rfe", dsc); | 
|  |  | 
|  | case 0x4: case 0x5: case 0x6: case 0x7: | 
|  | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); | 
|  |  | 
|  | case 0x8: | 
|  | switch ((insn & 0xe00000) >> 21) | 
|  | { | 
|  | case 0x1: case 0x3: case 0x4: case 0x5: case 0x6: case 0x7: | 
|  | /* stc/stc2.  */ | 
|  | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  |  | 
|  | case 0x2: | 
|  | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | 
|  |  | 
|  | default: | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  |  | 
|  | case 0x9: | 
|  | { | 
|  | int rn_f = (bits (insn, 16, 19) == 0xf); | 
|  | switch ((insn & 0xe00000) >> 21) | 
|  | { | 
|  | case 0x1: case 0x3: | 
|  | /* ldc/ldc2 imm (undefined for rn == pc).  */ | 
|  | return rn_f ? arm_copy_undef (gdbarch, insn, dsc) | 
|  | : arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  |  | 
|  | case 0x2: | 
|  | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | 
|  |  | 
|  | case 0x4: case 0x5: case 0x6: case 0x7: | 
|  | /* ldc/ldc2 lit (undefined for rn != pc).  */ | 
|  | return rn_f ? arm_copy_copro_load_store (gdbarch, insn, regs, dsc) | 
|  | : arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | default: | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  | } | 
|  |  | 
|  | case 0xa: | 
|  | return arm_copy_unmodified (gdbarch, insn, "stc/stc2", dsc); | 
|  |  | 
|  | case 0xb: | 
|  | if (bits (insn, 16, 19) == 0xf) | 
|  | /* ldc/ldc2 lit.  */ | 
|  | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0xc: | 
|  | if (bit (insn, 4)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | 
|  | else | 
|  | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | 
|  |  | 
|  | case 0xd: | 
|  | if (bit (insn, 4)) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | 
|  | else | 
|  | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | 
|  |  | 
|  | default: | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Decode miscellaneous instructions in dp/misc encoding space.  */ | 
|  |  | 
|  | static int | 
|  | arm_decode_miscellaneous (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op2 = bits (insn, 4, 6); | 
|  | unsigned int op = bits (insn, 21, 22); | 
|  |  | 
|  | switch (op2) | 
|  | { | 
|  | case 0x0: | 
|  | return arm_copy_unmodified (gdbarch, insn, "mrs/msr", dsc); | 
|  |  | 
|  | case 0x1: | 
|  | if (op == 0x1)  /* bx.  */ | 
|  | return arm_copy_bx_blx_reg (gdbarch, insn, regs, dsc); | 
|  | else if (op == 0x3) | 
|  | return arm_copy_unmodified (gdbarch, insn, "clz", dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x2: | 
|  | if (op == 0x1) | 
|  | /* Not really supported.  */ | 
|  | return arm_copy_unmodified (gdbarch, insn, "bxj", dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x3: | 
|  | if (op == 0x1) | 
|  | return arm_copy_bx_blx_reg (gdbarch, insn, | 
|  | regs, dsc);  /* blx register.  */ | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x5: | 
|  | return arm_copy_unmodified (gdbarch, insn, "saturating add/sub", dsc); | 
|  |  | 
|  | case 0x7: | 
|  | if (op == 0x1) | 
|  | return arm_copy_unmodified (gdbarch, insn, "bkpt", dsc); | 
|  | else if (op == 0x3) | 
|  | /* Not really supported.  */ | 
|  | return arm_copy_unmodified (gdbarch, insn, "smc", dsc); | 
|  | [[fallthrough]]; | 
|  |  | 
|  | default: | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_dp_misc (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | if (bit (insn, 25)) | 
|  | switch (bits (insn, 20, 24)) | 
|  | { | 
|  | case 0x10: | 
|  | return arm_copy_unmodified (gdbarch, insn, "movw", dsc); | 
|  |  | 
|  | case 0x14: | 
|  | return arm_copy_unmodified (gdbarch, insn, "movt", dsc); | 
|  |  | 
|  | case 0x12: case 0x16: | 
|  | return arm_copy_unmodified (gdbarch, insn, "msr imm", dsc); | 
|  |  | 
|  | default: | 
|  | return arm_copy_alu_imm (gdbarch, insn, regs, dsc); | 
|  | } | 
|  | else | 
|  | { | 
|  | uint32_t op1 = bits (insn, 20, 24), op2 = bits (insn, 4, 7); | 
|  |  | 
|  | if ((op1 & 0x19) != 0x10 && (op2 & 0x1) == 0x0) | 
|  | return arm_copy_alu_reg (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x19) != 0x10 && (op2 & 0x9) == 0x1) | 
|  | return arm_copy_alu_shifted_reg (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x19) == 0x10 && (op2 & 0x8) == 0x0) | 
|  | return arm_decode_miscellaneous (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x19) == 0x10 && (op2 & 0x9) == 0x8) | 
|  | return arm_copy_unmodified (gdbarch, insn, "halfword mul/mla", dsc); | 
|  | else if ((op1 & 0x10) == 0x00 && op2 == 0x9) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mul/mla", dsc); | 
|  | else if ((op1 & 0x10) == 0x10 && op2 == 0x9) | 
|  | return arm_copy_unmodified (gdbarch, insn, "synch", dsc); | 
|  | else if (op2 == 0xb || (op2 & 0xd) == 0xd) | 
|  | /* 2nd arg means "unprivileged".  */ | 
|  | return arm_copy_extra_ld_st (gdbarch, insn, (op1 & 0x12) == 0x02, regs, | 
|  | dsc); | 
|  | } | 
|  |  | 
|  | /* Should be unreachable.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_ld_st_word_ubyte (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int a = bit (insn, 25), b = bit (insn, 4); | 
|  | uint32_t op1 = bits (insn, 20, 24); | 
|  |  | 
|  | if ((!a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02) | 
|  | || (a && (op1 & 0x05) == 0x00 && (op1 & 0x17) != 0x02 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 0); | 
|  | else if ((!a && (op1 & 0x17) == 0x02) | 
|  | || (a && (op1 & 0x17) == 0x02 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 4, 1); | 
|  | else if ((!a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03) | 
|  | || (a && (op1 & 0x05) == 0x01 && (op1 & 0x17) != 0x03 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 0); | 
|  | else if ((!a && (op1 & 0x17) == 0x03) | 
|  | || (a && (op1 & 0x17) == 0x03 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 4, 1); | 
|  | else if ((!a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06) | 
|  | || (a && (op1 & 0x05) == 0x04 && (op1 & 0x17) != 0x06 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 0); | 
|  | else if ((!a && (op1 & 0x17) == 0x06) | 
|  | || (a && (op1 & 0x17) == 0x06 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 0, 1, 1); | 
|  | else if ((!a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07) | 
|  | || (a && (op1 & 0x05) == 0x05 && (op1 & 0x17) != 0x07 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 0); | 
|  | else if ((!a && (op1 & 0x17) == 0x07) | 
|  | || (a && (op1 & 0x17) == 0x07 && !b)) | 
|  | return arm_copy_ldr_str_ldrb_strb (gdbarch, insn, regs, dsc, 1, 1, 1); | 
|  |  | 
|  | /* Should be unreachable.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_media (struct gdbarch *gdbarch, uint32_t insn, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | switch (bits (insn, 20, 24)) | 
|  | { | 
|  | case 0x00: case 0x01: case 0x02: case 0x03: | 
|  | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub signed", dsc); | 
|  |  | 
|  | case 0x04: case 0x05: case 0x06: case 0x07: | 
|  | return arm_copy_unmodified (gdbarch, insn, "parallel add/sub unsigned", dsc); | 
|  |  | 
|  | case 0x08: case 0x09: case 0x0a: case 0x0b: | 
|  | case 0x0c: case 0x0d: case 0x0e: case 0x0f: | 
|  | return arm_copy_unmodified (gdbarch, insn, | 
|  | "decode/pack/unpack/saturate/reverse", dsc); | 
|  |  | 
|  | case 0x18: | 
|  | if (bits (insn, 5, 7) == 0)  /* op2.  */ | 
|  | { | 
|  | if (bits (insn, 12, 15) == 0xf) | 
|  | return arm_copy_unmodified (gdbarch, insn, "usad8", dsc); | 
|  | else | 
|  | return arm_copy_unmodified (gdbarch, insn, "usada8", dsc); | 
|  | } | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x1a: case 0x1b: | 
|  | if (bits (insn, 5, 6) == 0x2)  /* op2[1:0].  */ | 
|  | return arm_copy_unmodified (gdbarch, insn, "sbfx", dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x1c: case 0x1d: | 
|  | if (bits (insn, 5, 6) == 0x0)  /* op2[1:0].  */ | 
|  | { | 
|  | if (bits (insn, 0, 3) == 0xf) | 
|  | return arm_copy_unmodified (gdbarch, insn, "bfc", dsc); | 
|  | else | 
|  | return arm_copy_unmodified (gdbarch, insn, "bfi", dsc); | 
|  | } | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  |  | 
|  | case 0x1e: case 0x1f: | 
|  | if (bits (insn, 5, 6) == 0x2)  /* op2[1:0].  */ | 
|  | return arm_copy_unmodified (gdbarch, insn, "ubfx", dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | } | 
|  |  | 
|  | /* Should be unreachable.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_b_bl_ldmstm (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | if (bit (insn, 25)) | 
|  | return arm_copy_b_bl_blx (gdbarch, insn, regs, dsc); | 
|  | else | 
|  | return arm_copy_block_xfer (gdbarch, insn, regs, dsc); | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint32_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int opcode = bits (insn, 20, 24); | 
|  |  | 
|  | switch (opcode) | 
|  | { | 
|  | case 0x04: case 0x05:  /* VFP/Neon mrrc/mcrr.  */ | 
|  | return arm_copy_unmodified (gdbarch, insn, "vfp/neon mrrc/mcrr", dsc); | 
|  |  | 
|  | case 0x08: case 0x0a: case 0x0c: case 0x0e: | 
|  | case 0x12: case 0x16: | 
|  | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vstm/vpush", dsc); | 
|  |  | 
|  | case 0x09: case 0x0b: case 0x0d: case 0x0f: | 
|  | case 0x13: case 0x17: | 
|  | return arm_copy_unmodified (gdbarch, insn, "vfp/neon vldm/vpop", dsc); | 
|  |  | 
|  | case 0x10: case 0x14: case 0x18: case 0x1c:  /* vstr.  */ | 
|  | case 0x11: case 0x15: case 0x19: case 0x1d:  /* vldr.  */ | 
|  | /* Note: no writeback for these instructions.  Bit 25 will always be | 
|  | zero though (via caller), so the following works OK.  */ | 
|  | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  | } | 
|  |  | 
|  | /* Should be unreachable.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Decode shifted register instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_decode_dp_shift_reg (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2,  struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | /* PC is only allowed to be used in instruction MOV.  */ | 
|  |  | 
|  | unsigned int op = bits (insn1, 5, 8); | 
|  | unsigned int rn = bits (insn1, 0, 3); | 
|  |  | 
|  | if (op == 0x2 && rn == 0xf) /* MOV */ | 
|  | return thumb2_copy_alu_imm (gdbarch, insn1, insn2, regs, dsc); | 
|  | else | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "dp (shift reg)", dsc); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Decode extension register load/store.  Exactly the same as | 
|  | arm_decode_ext_reg_ld_st.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_decode_ext_reg_ld_st (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2,  struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int opcode = bits (insn1, 4, 8); | 
|  |  | 
|  | switch (opcode) | 
|  | { | 
|  | case 0x04: case 0x05: | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "vfp/neon vmov", dsc); | 
|  |  | 
|  | case 0x08: case 0x0c: /* 01x00 */ | 
|  | case 0x0a: case 0x0e: /* 01x10 */ | 
|  | case 0x12: case 0x16: /* 10x10 */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "vfp/neon vstm/vpush", dsc); | 
|  |  | 
|  | case 0x09: case 0x0d: /* 01x01 */ | 
|  | case 0x0b: case 0x0f: /* 01x11 */ | 
|  | case 0x13: case 0x17: /* 10x11 */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "vfp/neon vldm/vpop", dsc); | 
|  |  | 
|  | case 0x10: case 0x14: case 0x18: case 0x1c:  /* vstr.  */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "vstr", dsc); | 
|  | case 0x11: case 0x15: case 0x19: case 0x1d:  /* vldr.  */ | 
|  | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, regs, dsc); | 
|  | } | 
|  |  | 
|  | /* Should be unreachable.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_decode_svc_copro (struct gdbarch *gdbarch, uint32_t insn, | 
|  | regcache *regs, arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int op1 = bits (insn, 20, 25); | 
|  | int op = bit (insn, 4); | 
|  | unsigned int coproc = bits (insn, 8, 11); | 
|  |  | 
|  | if ((op1 & 0x20) == 0x00 && (op1 & 0x3a) != 0x00 && (coproc & 0xe) == 0xa) | 
|  | return arm_decode_ext_reg_ld_st (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x21) == 0x00 && (op1 & 0x3a) != 0x00 | 
|  | && (coproc & 0xe) != 0xa) | 
|  | /* stc/stc2.  */ | 
|  | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x21) == 0x01 && (op1 & 0x3a) != 0x00 | 
|  | && (coproc & 0xe) != 0xa) | 
|  | /* ldc/ldc2 imm/lit.  */ | 
|  | return arm_copy_copro_load_store (gdbarch, insn, regs, dsc); | 
|  | else if ((op1 & 0x3e) == 0x00) | 
|  | return arm_copy_undef (gdbarch, insn, dsc); | 
|  | else if ((op1 & 0x3e) == 0x04 && (coproc & 0xe) == 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "neon 64bit xfer", dsc); | 
|  | else if (op1 == 0x04 && (coproc & 0xe) != 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mcrr/mcrr2", dsc); | 
|  | else if (op1 == 0x05 && (coproc & 0xe) != 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mrrc/mrrc2", dsc); | 
|  | else if ((op1 & 0x30) == 0x20 && !op) | 
|  | { | 
|  | if ((coproc & 0xe) == 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "vfp dataproc", dsc); | 
|  | else | 
|  | return arm_copy_unmodified (gdbarch, insn, "cdp/cdp2", dsc); | 
|  | } | 
|  | else if ((op1 & 0x30) == 0x20 && op) | 
|  | return arm_copy_unmodified (gdbarch, insn, "neon 8/16/32 bit xfer", dsc); | 
|  | else if ((op1 & 0x31) == 0x20 && op && (coproc & 0xe) != 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mcr/mcr2", dsc); | 
|  | else if ((op1 & 0x31) == 0x21 && op && (coproc & 0xe) != 0xa) | 
|  | return arm_copy_unmodified (gdbarch, insn, "mrc/mrc2", dsc); | 
|  | else if ((op1 & 0x30) == 0x30) | 
|  | return arm_copy_svc (gdbarch, insn, regs, dsc); | 
|  | else | 
|  | return arm_copy_undef (gdbarch, insn, dsc);  /* Possibly unreachable.  */ | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb2_decode_svc_copro (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int coproc = bits (insn2, 8, 11); | 
|  | unsigned int bit_5_8 = bits (insn1, 5, 8); | 
|  | unsigned int bit_9 = bit (insn1, 9); | 
|  | unsigned int bit_4 = bit (insn1, 4); | 
|  |  | 
|  | if (bit_9 == 0) | 
|  | { | 
|  | if (bit_5_8 == 2) | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "neon 64bit xfer/mrrc/mrrc2/mcrr/mcrr2", | 
|  | dsc); | 
|  | else if (bit_5_8 == 0) /* UNDEFINED.  */ | 
|  | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | 
|  | else | 
|  | { | 
|  | /*coproc is 101x.  SIMD/VFP, ext registers load/store.  */ | 
|  | if ((coproc & 0xe) == 0xa) | 
|  | return thumb2_decode_ext_reg_ld_st (gdbarch, insn1, insn2, regs, | 
|  | dsc); | 
|  | else /* coproc is not 101x.  */ | 
|  | { | 
|  | if (bit_4 == 0) /* STC/STC2.  */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "stc/stc2", dsc); | 
|  | else /* LDC/LDC2 {literal, immediate}.  */ | 
|  | return thumb2_copy_copro_load_store (gdbarch, insn1, insn2, | 
|  | regs, dsc); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, "coproc", dsc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | install_pc_relative (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, int rd) | 
|  | { | 
|  | /* ADR Rd, #imm | 
|  |  | 
|  | Rewrite as: | 
|  |  | 
|  | Preparation: Rd <- PC | 
|  | Insn: ADD Rd, #imm | 
|  | Cleanup: Null. | 
|  | */ | 
|  |  | 
|  | /* Rd <- PC */ | 
|  | int val = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | 
|  | displaced_write_reg (regs, dsc, rd, val, CANNOT_WRITE_PC); | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_pc_relative_16bit (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc, | 
|  | int rd, unsigned int imm) | 
|  | { | 
|  |  | 
|  | /* Encoding T2: ADDS Rd, #imm */ | 
|  | dsc->modinsn[0] = (0x3000 | (rd << 8) | imm); | 
|  |  | 
|  | install_pc_relative (gdbarch, regs, dsc, rd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_decode_pc_relative_16bit (struct gdbarch *gdbarch, uint16_t insn, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rd = bits (insn, 8, 10); | 
|  | unsigned int imm8 = bits (insn, 0, 7); | 
|  |  | 
|  | displaced_debug_printf ("copying thumb adr r%d, #%d insn %.4x", | 
|  | rd, imm8, insn); | 
|  |  | 
|  | return thumb_copy_pc_relative_16bit (gdbarch, regs, dsc, rd, imm8); | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_pc_relative_32bit (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rd = bits (insn2, 8, 11); | 
|  | /* Since immediate has the same encoding in ADR ADD and SUB, so we simply | 
|  | extract raw immediate encoding rather than computing immediate.  When | 
|  | generating ADD or SUB instruction, we can simply perform OR operation to | 
|  | set immediate into ADD.  */ | 
|  | unsigned int imm_3_8 = insn2 & 0x70ff; | 
|  | unsigned int imm_i = insn1 & 0x0400; /* Clear all bits except bit 10.  */ | 
|  |  | 
|  | displaced_debug_printf ("copying thumb adr r%d, #%d:%d insn %.4x%.4x", | 
|  | rd, imm_i, imm_3_8, insn1, insn2); | 
|  |  | 
|  | if (bit (insn1, 7)) /* Encoding T2 */ | 
|  | { | 
|  | /* Encoding T3: SUB Rd, Rd, #imm */ | 
|  | dsc->modinsn[0] = (0xf1a0 | rd | imm_i); | 
|  | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | 
|  | } | 
|  | else /* Encoding T3 */ | 
|  | { | 
|  | /* Encoding T3: ADD Rd, Rd, #imm */ | 
|  | dsc->modinsn[0] = (0xf100 | rd | imm_i); | 
|  | dsc->modinsn[1] = ((rd << 8) | imm_3_8); | 
|  | } | 
|  | dsc->numinsns = 2; | 
|  |  | 
|  | install_pc_relative (gdbarch, regs, dsc, rd); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_16bit_ldr_literal (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned int rt = bits (insn1, 8, 10); | 
|  | unsigned int pc; | 
|  | int imm8 = (bits (insn1, 0, 7) << 2); | 
|  |  | 
|  | /* LDR Rd, #imm8 | 
|  |  | 
|  | Rwrite as: | 
|  |  | 
|  | Preparation: tmp0 <- R0, tmp2 <- R2, tmp3 <- R3, R2 <- PC, R3 <- #imm8; | 
|  |  | 
|  | Insn: LDR R0, [R2, R3]; | 
|  | Cleanup: R2 <- tmp2, R3 <- tmp3, Rd <- R0, R0 <- tmp0 */ | 
|  |  | 
|  | displaced_debug_printf ("copying thumb ldr r%d [pc #%d]", rt, imm8); | 
|  |  | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 0); | 
|  | dsc->tmp[2] = displaced_read_reg (regs, dsc, 2); | 
|  | dsc->tmp[3] = displaced_read_reg (regs, dsc, 3); | 
|  | pc = displaced_read_reg (regs, dsc, ARM_PC_REGNUM); | 
|  | /* The assembler calculates the required value of the offset from the | 
|  | Align(PC,4) value of this instruction to the label.  */ | 
|  | pc = pc & 0xfffffffc; | 
|  |  | 
|  | displaced_write_reg (regs, dsc, 2, pc, CANNOT_WRITE_PC); | 
|  | displaced_write_reg (regs, dsc, 3, imm8, CANNOT_WRITE_PC); | 
|  |  | 
|  | dsc->rd = rt; | 
|  | dsc->u.ldst.xfersize = 4; | 
|  | dsc->u.ldst.rn = 0; | 
|  | dsc->u.ldst.immed = 0; | 
|  | dsc->u.ldst.writeback = 0; | 
|  | dsc->u.ldst.restore_r4 = 0; | 
|  |  | 
|  | dsc->modinsn[0] = 0x58d0; /* ldr r0, [r2, r3]*/ | 
|  |  | 
|  | dsc->cleanup = &cleanup_load; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy Thumb cbnz/cbz instruction.  */ | 
|  |  | 
|  | static int | 
|  | thumb_copy_cbnz_cbz (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int non_zero = bit (insn1, 11); | 
|  | unsigned int imm5 = (bit (insn1, 9) << 6) | (bits (insn1, 3, 7) << 1); | 
|  | CORE_ADDR from = dsc->insn_addr; | 
|  | int rn = bits (insn1, 0, 2); | 
|  | int rn_val = displaced_read_reg (regs, dsc, rn); | 
|  |  | 
|  | dsc->u.branch.cond = (rn_val && non_zero) || (!rn_val && !non_zero); | 
|  | /* CBNZ and CBZ do not affect the condition flags.  If condition is true, | 
|  | set it INST_AL, so cleanup_branch will know branch is taken, otherwise, | 
|  | condition is false, let it be, cleanup_branch will do nothing.  */ | 
|  | if (dsc->u.branch.cond) | 
|  | { | 
|  | dsc->u.branch.cond = INST_AL; | 
|  | dsc->u.branch.dest = from + 4 + imm5; | 
|  | } | 
|  | else | 
|  | dsc->u.branch.dest = from + 2; | 
|  |  | 
|  | dsc->u.branch.link = 0; | 
|  | dsc->u.branch.exchange = 0; | 
|  |  | 
|  | displaced_debug_printf ("copying %s [r%d = 0x%x] insn %.4x to %.8lx", | 
|  | non_zero ? "cbnz" : "cbz", | 
|  | rn, rn_val, insn1, dsc->u.branch.dest); | 
|  |  | 
|  | dsc->modinsn[0] = THUMB_NOP; | 
|  |  | 
|  | dsc->cleanup = &cleanup_branch; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Copy Table Branch Byte/Halfword */ | 
|  | static int | 
|  | thumb2_copy_table_branch (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | ULONGEST rn_val, rm_val; | 
|  | int is_tbh = bit (insn2, 4); | 
|  | CORE_ADDR halfwords = 0; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | rn_val = displaced_read_reg (regs, dsc, bits (insn1, 0, 3)); | 
|  | rm_val = displaced_read_reg (regs, dsc, bits (insn2, 0, 3)); | 
|  |  | 
|  | if (is_tbh) | 
|  | { | 
|  | gdb_byte buf[2]; | 
|  |  | 
|  | target_read_memory (rn_val + 2 * rm_val, buf, 2); | 
|  | halfwords = extract_unsigned_integer (buf, 2, byte_order); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_byte buf[1]; | 
|  |  | 
|  | target_read_memory (rn_val + rm_val, buf, 1); | 
|  | halfwords = extract_unsigned_integer (buf, 1, byte_order); | 
|  | } | 
|  |  | 
|  | displaced_debug_printf ("%s base 0x%x offset 0x%x offset 0x%x", | 
|  | is_tbh ? "tbh" : "tbb", | 
|  | (unsigned int) rn_val, (unsigned int) rm_val, | 
|  | (unsigned int) halfwords); | 
|  |  | 
|  | dsc->u.branch.cond = INST_AL; | 
|  | dsc->u.branch.link = 0; | 
|  | dsc->u.branch.exchange = 0; | 
|  | dsc->u.branch.dest = dsc->insn_addr + 4 + 2 * halfwords; | 
|  |  | 
|  | dsc->cleanup = &cleanup_branch; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | cleanup_pop_pc_16bit_all (struct gdbarch *gdbarch, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | /* PC <- r7 */ | 
|  | int val = displaced_read_reg (regs, dsc, 7); | 
|  | displaced_write_reg (regs, dsc, ARM_PC_REGNUM, val, BX_WRITE_PC); | 
|  |  | 
|  | /* r7 <- r8 */ | 
|  | val = displaced_read_reg (regs, dsc, 8); | 
|  | displaced_write_reg (regs, dsc, 7, val, CANNOT_WRITE_PC); | 
|  |  | 
|  | /* r8 <- tmp[0] */ | 
|  | displaced_write_reg (regs, dsc, 8, dsc->tmp[0], CANNOT_WRITE_PC); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | thumb_copy_pop_pc_16bit (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | dsc->u.block.regmask = insn1 & 0x00ff; | 
|  |  | 
|  | /* Rewrite instruction: POP {rX, rY, ...,rZ, PC} | 
|  | to : | 
|  |  | 
|  | (1) register list is full, that is, r0-r7 are used. | 
|  | Prepare: tmp[0] <- r8 | 
|  |  | 
|  | POP {r0, r1, ...., r6, r7}; remove PC from reglist | 
|  | MOV r8, r7; Move value of r7 to r8; | 
|  | POP {r7}; Store PC value into r7. | 
|  |  | 
|  | Cleanup: PC <- r7, r7 <- r8, r8 <-tmp[0] | 
|  |  | 
|  | (2) register list is not full, supposing there are N registers in | 
|  | register list (except PC, 0 <= N <= 7). | 
|  | Prepare: for each i, 0 - N, tmp[i] <- ri. | 
|  |  | 
|  | POP {r0, r1, ...., rN}; | 
|  |  | 
|  | Cleanup: Set registers in original reglist from r0 - rN.  Restore r0 - rN | 
|  | from tmp[] properly. | 
|  | */ | 
|  | displaced_debug_printf ("copying thumb pop {%.8x, pc} insn %.4x", | 
|  | dsc->u.block.regmask, insn1); | 
|  |  | 
|  | if (dsc->u.block.regmask == 0xff) | 
|  | { | 
|  | dsc->tmp[0] = displaced_read_reg (regs, dsc, 8); | 
|  |  | 
|  | dsc->modinsn[0] = (insn1 & 0xfeff); /* POP {r0,r1,...,r6, r7} */ | 
|  | dsc->modinsn[1] = 0x46b8; /* MOV r8, r7 */ | 
|  | dsc->modinsn[2] = 0xbc80; /* POP {r7} */ | 
|  |  | 
|  | dsc->numinsns = 3; | 
|  | dsc->cleanup = &cleanup_pop_pc_16bit_all; | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int num_in_list = count_one_bits (dsc->u.block.regmask); | 
|  | unsigned int i; | 
|  | unsigned int new_regmask; | 
|  |  | 
|  | for (i = 0; i < num_in_list + 1; i++) | 
|  | dsc->tmp[i] = displaced_read_reg (regs, dsc, i); | 
|  |  | 
|  | new_regmask = (1 << (num_in_list + 1)) - 1; | 
|  |  | 
|  | displaced_debug_printf ("POP {..., pc}: original reg list %.4x, " | 
|  | "modified list %.4x", | 
|  | (int) dsc->u.block.regmask, new_regmask); | 
|  |  | 
|  | dsc->u.block.regmask |= 0x8000; | 
|  | dsc->u.block.writeback = 0; | 
|  | dsc->u.block.cond = INST_AL; | 
|  |  | 
|  | dsc->modinsn[0] = (insn1 & ~0x1ff) | (new_regmask & 0xff); | 
|  |  | 
|  | dsc->cleanup = &cleanup_block_load_pc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | thumb_process_displaced_16bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | unsigned short op_bit_12_15 = bits (insn1, 12, 15); | 
|  | unsigned short op_bit_10_11 = bits (insn1, 10, 11); | 
|  | int err = 0; | 
|  |  | 
|  | /* 16-bit thumb instructions.  */ | 
|  | switch (op_bit_12_15) | 
|  | { | 
|  | /* Shift (imme), add, subtract, move and compare.  */ | 
|  | case 0: case 1: case 2: case 3: | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | 
|  | "shift/add/sub/mov/cmp", | 
|  | dsc); | 
|  | break; | 
|  | case 4: | 
|  | switch (op_bit_10_11) | 
|  | { | 
|  | case 0: /* Data-processing */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, | 
|  | "data-processing", | 
|  | dsc); | 
|  | break; | 
|  | case 1: /* Special data instructions and branch and exchange.  */ | 
|  | { | 
|  | unsigned short op = bits (insn1, 7, 9); | 
|  | if (op == 6 || op == 7) /* BX or BLX */ | 
|  | err = thumb_copy_bx_blx_reg (gdbarch, insn1, regs, dsc); | 
|  | else if (bits (insn1, 6, 7) != 0) /* ADD/MOV/CMP high registers.  */ | 
|  | err = thumb_copy_alu_reg (gdbarch, insn1, regs, dsc); | 
|  | else | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "special data", | 
|  | dsc); | 
|  | } | 
|  | break; | 
|  | default: /* LDR (literal) */ | 
|  | err = thumb_copy_16bit_ldr_literal (gdbarch, insn1, regs, dsc); | 
|  | } | 
|  | break; | 
|  | case 5: case 6: case 7: case 8: case 9: /* Load/Store single data item */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldr/str", dsc); | 
|  | break; | 
|  | case 10: | 
|  | if (op_bit_10_11 < 2) /* Generate PC-relative address */ | 
|  | err = thumb_decode_pc_relative_16bit (gdbarch, insn1, regs, dsc); | 
|  | else /* Generate SP-relative address */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "sp-relative", dsc); | 
|  | break; | 
|  | case 11: /* Misc 16-bit instructions */ | 
|  | { | 
|  | switch (bits (insn1, 8, 11)) | 
|  | { | 
|  | case 1: case 3:  case 9: case 11: /* CBNZ, CBZ */ | 
|  | err = thumb_copy_cbnz_cbz (gdbarch, insn1, regs, dsc); | 
|  | break; | 
|  | case 12: case 13: /* POP */ | 
|  | if (bit (insn1, 8)) /* PC is in register list.  */ | 
|  | err = thumb_copy_pop_pc_16bit (gdbarch, insn1, regs, dsc); | 
|  | else | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "pop", dsc); | 
|  | break; | 
|  | case 15: /* If-Then, and hints */ | 
|  | if (bits (insn1, 0, 3)) | 
|  | /* If-Then makes up to four following instructions conditional. | 
|  | IT instruction itself is not conditional, so handle it as a | 
|  | common unmodified instruction.  */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "If-Then", | 
|  | dsc); | 
|  | else | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "hints", dsc); | 
|  | break; | 
|  | default: | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "misc", dsc); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case 12: | 
|  | if (op_bit_10_11 < 2) /* Store multiple registers */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "stm", dsc); | 
|  | else /* Load multiple registers */ | 
|  | err = thumb_copy_unmodified_16bit (gdbarch, insn1, "ldm", dsc); | 
|  | break; | 
|  | case 13: /* Conditional branch and supervisor call */ | 
|  | if (bits (insn1, 9, 11) != 7) /* conditional branch */ | 
|  | err = thumb_copy_b (gdbarch, insn1, dsc); | 
|  | else | 
|  | err = thumb_copy_svc (gdbarch, insn1, regs, dsc); | 
|  | break; | 
|  | case 14: /* Unconditional branch */ | 
|  | err = thumb_copy_b (gdbarch, insn1, dsc); | 
|  | break; | 
|  | default: | 
|  | err = 1; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | internal_error (_("thumb_process_displaced_16bit_insn: Instruction decode error")); | 
|  | } | 
|  |  | 
|  | static int | 
|  | decode_thumb_32bit_ld_mem_hints (struct gdbarch *gdbarch, | 
|  | uint16_t insn1, uint16_t insn2, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int rt = bits (insn2, 12, 15); | 
|  | int rn = bits (insn1, 0, 3); | 
|  | int op1 = bits (insn1, 7, 8); | 
|  |  | 
|  | switch (bits (insn1, 5, 6)) | 
|  | { | 
|  | case 0: /* Load byte and memory hints */ | 
|  | if (rt == 0xf) /* PLD/PLI */ | 
|  | { | 
|  | if (rn == 0xf) | 
|  | /* PLD literal or Encoding T3 of PLI(immediate, literal).  */ | 
|  | return thumb2_copy_preload (gdbarch, insn1, insn2, regs, dsc); | 
|  | else | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "pli/pld", dsc); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (rn == 0xf) /* LDRB/LDRSB (literal) */ | 
|  | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | 
|  | 1); | 
|  | else | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "ldrb{reg, immediate}/ldrbt", | 
|  | dsc); | 
|  | } | 
|  |  | 
|  | break; | 
|  | case 1: /* Load halfword and memory hints.  */ | 
|  | if (rt == 0xf) /* PLD{W} and Unalloc memory hint.  */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "pld/unalloc memhint", dsc); | 
|  | else | 
|  | { | 
|  | if (rn == 0xf) | 
|  | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, | 
|  | 2); | 
|  | else | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "ldrh/ldrht", dsc); | 
|  | } | 
|  | break; | 
|  | case 2: /* Load word */ | 
|  | { | 
|  | int insn2_bit_8_11 = bits (insn2, 8, 11); | 
|  |  | 
|  | if (rn == 0xf) | 
|  | return thumb2_copy_load_literal (gdbarch, insn1, insn2, regs, dsc, 4); | 
|  | else if (op1 == 0x1) /* Encoding T3 */ | 
|  | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, dsc, | 
|  | 0, 1); | 
|  | else /* op1 == 0x0 */ | 
|  | { | 
|  | if (insn2_bit_8_11 == 0xc || (insn2_bit_8_11 & 0x9) == 0x9) | 
|  | /* LDR (immediate) */ | 
|  | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | 
|  | dsc, bit (insn2, 8), 1); | 
|  | else if (insn2_bit_8_11 == 0xe) /* LDRT */ | 
|  | return thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "ldrt", dsc); | 
|  | else | 
|  | /* LDR (register) */ | 
|  | return thumb2_copy_load_reg_imm (gdbarch, insn1, insn2, regs, | 
|  | dsc, 0, 0); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | return thumb_32bit_copy_undef (gdbarch, insn1, insn2, dsc); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | thumb_process_displaced_32bit_insn (struct gdbarch *gdbarch, uint16_t insn1, | 
|  | uint16_t insn2, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int err = 0; | 
|  | unsigned short op = bit (insn2, 15); | 
|  | unsigned int op1 = bits (insn1, 11, 12); | 
|  |  | 
|  | switch (op1) | 
|  | { | 
|  | case 1: | 
|  | { | 
|  | switch (bits (insn1, 9, 10)) | 
|  | { | 
|  | case 0: | 
|  | if (bit (insn1, 6)) | 
|  | { | 
|  | /* Load/store {dual, exclusive}, table branch.  */ | 
|  | if (bits (insn1, 7, 8) == 1 && bits (insn1, 4, 5) == 1 | 
|  | && bits (insn2, 5, 7) == 0) | 
|  | err = thumb2_copy_table_branch (gdbarch, insn1, insn2, regs, | 
|  | dsc); | 
|  | else | 
|  | /* PC is not allowed to use in load/store {dual, exclusive} | 
|  | instructions.  */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "load/store dual/ex", dsc); | 
|  | } | 
|  | else /* load/store multiple */ | 
|  | { | 
|  | switch (bits (insn1, 7, 8)) | 
|  | { | 
|  | case 0: case 3: /* SRS, RFE */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "srs/rfe", dsc); | 
|  | break; | 
|  | case 1: case 2: /* LDM/STM/PUSH/POP */ | 
|  | err = thumb2_copy_block_xfer (gdbarch, insn1, insn2, regs, dsc); | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | /* Data-processing (shift register).  */ | 
|  | err = thumb2_decode_dp_shift_reg (gdbarch, insn1, insn2, regs, | 
|  | dsc); | 
|  | break; | 
|  | default: /* Coprocessor instructions.  */ | 
|  | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case 2: /* op1 = 2 */ | 
|  | if (op) /* Branch and misc control.  */ | 
|  | { | 
|  | if (bit (insn2, 14)  /* BLX/BL */ | 
|  | || bit (insn2, 12) /* Unconditional branch */ | 
|  | || (bits (insn1, 7, 9) != 0x7)) /* Conditional branch */ | 
|  | err = thumb2_copy_b_bl_blx (gdbarch, insn1, insn2, regs, dsc); | 
|  | else | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "misc ctrl", dsc); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (bit (insn1, 9)) /* Data processing (plain binary imm).  */ | 
|  | { | 
|  | int dp_op = bits (insn1, 4, 8); | 
|  | int rn = bits (insn1, 0, 3); | 
|  | if ((dp_op == 0 || dp_op == 0xa) && rn == 0xf) | 
|  | err = thumb_copy_pc_relative_32bit (gdbarch, insn1, insn2, | 
|  | regs, dsc); | 
|  | else | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "dp/pb", dsc); | 
|  | } | 
|  | else /* Data processing (modified immediate) */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "dp/mi", dsc); | 
|  | } | 
|  | break; | 
|  | case 3: /* op1 = 3 */ | 
|  | switch (bits (insn1, 9, 10)) | 
|  | { | 
|  | case 0: | 
|  | if (bit (insn1, 4)) | 
|  | err = decode_thumb_32bit_ld_mem_hints (gdbarch, insn1, insn2, | 
|  | regs, dsc); | 
|  | else /* NEON Load/Store and Store single data item */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "neon elt/struct load/store", | 
|  | dsc); | 
|  | break; | 
|  | case 1: /* op1 = 3, bits (9, 10) == 1 */ | 
|  | switch (bits (insn1, 7, 8)) | 
|  | { | 
|  | case 0: case 1: /* Data processing (register) */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "dp(reg)", dsc); | 
|  | break; | 
|  | case 2: /* Multiply and absolute difference */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "mul/mua/diff", dsc); | 
|  | break; | 
|  | case 3: /* Long multiply and divide */ | 
|  | err = thumb_copy_unmodified_32bit (gdbarch, insn1, insn2, | 
|  | "lmul/lmua", dsc); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: /* Coprocessor instructions */ | 
|  | err = thumb2_decode_svc_copro (gdbarch, insn1, insn2, regs, dsc); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | err = 1; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | internal_error (_("thumb_process_displaced_32bit_insn: Instruction decode error")); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void | 
|  | thumb_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | 
|  | struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | uint16_t insn1 | 
|  | = read_memory_unsigned_integer (from, 2, byte_order_for_code); | 
|  |  | 
|  | displaced_debug_printf ("process thumb insn %.4x at %.8lx", | 
|  | insn1, (unsigned long) from); | 
|  |  | 
|  | dsc->is_thumb = 1; | 
|  | dsc->insn_size = thumb_insn_size (insn1); | 
|  | if (thumb_insn_size (insn1) == 4) | 
|  | { | 
|  | uint16_t insn2 | 
|  | = read_memory_unsigned_integer (from + 2, 2, byte_order_for_code); | 
|  | thumb_process_displaced_32bit_insn (gdbarch, insn1, insn2, regs, dsc); | 
|  | } | 
|  | else | 
|  | thumb_process_displaced_16bit_insn (gdbarch, insn1, regs, dsc); | 
|  | } | 
|  |  | 
|  | void | 
|  | arm_process_displaced_insn (struct gdbarch *gdbarch, CORE_ADDR from, | 
|  | CORE_ADDR to, struct regcache *regs, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | int err = 0; | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | uint32_t insn; | 
|  |  | 
|  | /* Most displaced instructions use a 1-instruction scratch space, so set this | 
|  | here and override below if/when necessary.  */ | 
|  | dsc->numinsns = 1; | 
|  | dsc->insn_addr = from; | 
|  | dsc->scratch_base = to; | 
|  | dsc->cleanup = NULL; | 
|  | dsc->wrote_to_pc = 0; | 
|  |  | 
|  | if (!displaced_in_arm_mode (regs)) | 
|  | return thumb_process_displaced_insn (gdbarch, from, regs, dsc); | 
|  |  | 
|  | dsc->is_thumb = 0; | 
|  | dsc->insn_size = 4; | 
|  | insn = read_memory_unsigned_integer (from, 4, byte_order_for_code); | 
|  | displaced_debug_printf ("stepping insn %.8lx at %.8lx", | 
|  | (unsigned long) insn, (unsigned long) from); | 
|  |  | 
|  | if ((insn & 0xf0000000) == 0xf0000000) | 
|  | err = arm_decode_unconditional (gdbarch, insn, regs, dsc); | 
|  | else switch (((insn & 0x10) >> 4) | ((insn & 0xe000000) >> 24)) | 
|  | { | 
|  | case 0x0: case 0x1: case 0x2: case 0x3: | 
|  | err = arm_decode_dp_misc (gdbarch, insn, regs, dsc); | 
|  | break; | 
|  |  | 
|  | case 0x4: case 0x5: case 0x6: | 
|  | err = arm_decode_ld_st_word_ubyte (gdbarch, insn, regs, dsc); | 
|  | break; | 
|  |  | 
|  | case 0x7: | 
|  | err = arm_decode_media (gdbarch, insn, dsc); | 
|  | break; | 
|  |  | 
|  | case 0x8: case 0x9: case 0xa: case 0xb: | 
|  | err = arm_decode_b_bl_ldmstm (gdbarch, insn, regs, dsc); | 
|  | break; | 
|  |  | 
|  | case 0xc: case 0xd: case 0xe: case 0xf: | 
|  | err = arm_decode_svc_copro (gdbarch, insn, regs, dsc); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | internal_error (_("arm_process_displaced_insn: Instruction decode error")); | 
|  | } | 
|  |  | 
|  | /* Actually set up the scratch space for a displaced instruction.  */ | 
|  |  | 
|  | void | 
|  | arm_displaced_init_closure (struct gdbarch *gdbarch, CORE_ADDR from, | 
|  | CORE_ADDR to, | 
|  | arm_displaced_step_copy_insn_closure *dsc) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | unsigned int i, len, offset; | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  | int size = dsc->is_thumb ? 2 : 4; | 
|  | const gdb_byte *bkp_insn; | 
|  |  | 
|  | offset = 0; | 
|  | /* Poke modified instruction(s).  */ | 
|  | for (i = 0; i < dsc->numinsns; i++) | 
|  | { | 
|  | if (size == 4) | 
|  | displaced_debug_printf ("writing insn %.8lx at %.8lx", | 
|  | dsc->modinsn[i], (unsigned long) to + offset); | 
|  | else if (size == 2) | 
|  | displaced_debug_printf ("writing insn %.4x at %.8lx", | 
|  | (unsigned short) dsc->modinsn[i], | 
|  | (unsigned long) to + offset); | 
|  |  | 
|  | write_memory_unsigned_integer (to + offset, size, | 
|  | byte_order_for_code, | 
|  | dsc->modinsn[i]); | 
|  | offset += size; | 
|  | } | 
|  |  | 
|  | /* Choose the correct breakpoint instruction.  */ | 
|  | if (dsc->is_thumb) | 
|  | { | 
|  | bkp_insn = tdep->thumb_breakpoint; | 
|  | len = tdep->thumb_breakpoint_size; | 
|  | } | 
|  | else | 
|  | { | 
|  | bkp_insn = tdep->arm_breakpoint; | 
|  | len = tdep->arm_breakpoint_size; | 
|  | } | 
|  |  | 
|  | /* Put breakpoint afterwards.  */ | 
|  | write_memory (to + offset, bkp_insn, len); | 
|  |  | 
|  | displaced_debug_printf ("copy %s->%s", paddress (gdbarch, from), | 
|  | paddress (gdbarch, to)); | 
|  | } | 
|  |  | 
|  | /* Entry point for cleaning things up after a displaced instruction has been | 
|  | single-stepped.  */ | 
|  |  | 
|  | void | 
|  | arm_displaced_step_fixup (struct gdbarch *gdbarch, | 
|  | struct displaced_step_copy_insn_closure *dsc_, | 
|  | CORE_ADDR from, CORE_ADDR to, | 
|  | struct regcache *regs, bool completed_p) | 
|  | { | 
|  | /* The following block exists as a temporary measure while displaced | 
|  | stepping is fixed architecture at a time within GDB. | 
|  |  | 
|  | In an earlier implementation of displaced stepping, if GDB thought the | 
|  | displaced instruction had not been executed then this fix up function | 
|  | was never called.  As a consequence, things that should be fixed by | 
|  | this function were left in an unfixed state. | 
|  |  | 
|  | However, it's not as simple as always calling this function; this | 
|  | function needs to be updated to decide what should be fixed up based | 
|  | on whether the displaced step executed or not, which requires each | 
|  | architecture to be considered individually. | 
|  |  | 
|  | Until this architecture is updated, this block replicates the old | 
|  | behaviour; we just restore the program counter register, and leave | 
|  | everything else unfixed.  */ | 
|  | if (!completed_p) | 
|  | { | 
|  | CORE_ADDR pc = regcache_read_pc (regs); | 
|  | pc = from + (pc - to); | 
|  | regcache_write_pc (regs, pc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | arm_displaced_step_copy_insn_closure *dsc | 
|  | = (arm_displaced_step_copy_insn_closure *) dsc_; | 
|  |  | 
|  | if (dsc->cleanup) | 
|  | dsc->cleanup (gdbarch, regs, dsc); | 
|  |  | 
|  | if (!dsc->wrote_to_pc) | 
|  | regcache_cooked_write_unsigned (regs, ARM_PC_REGNUM, | 
|  | dsc->insn_addr + dsc->insn_size); | 
|  |  | 
|  | } | 
|  |  | 
|  | #include "bfd-in2.h" | 
|  | #include "libcoff.h" | 
|  |  | 
|  | static int | 
|  | gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info) | 
|  | { | 
|  | gdb_disassemble_info *di | 
|  | = static_cast<gdb_disassemble_info *> (info->application_data); | 
|  | struct gdbarch *gdbarch = di->arch (); | 
|  |  | 
|  | if (arm_pc_is_thumb (gdbarch, memaddr)) | 
|  | { | 
|  | static asymbol *asym; | 
|  | static combined_entry_type ce; | 
|  | static struct coff_symbol_struct csym; | 
|  | static struct bfd fake_bfd; | 
|  | static bfd_target fake_target; | 
|  |  | 
|  | if (csym.native == NULL) | 
|  | { | 
|  | /* Create a fake symbol vector containing a Thumb symbol. | 
|  | This is solely so that the code in print_insn_little_arm() | 
|  | and print_insn_big_arm() in opcodes/arm-dis.c will detect | 
|  | the presence of a Thumb symbol and switch to decoding | 
|  | Thumb instructions.  */ | 
|  |  | 
|  | fake_target.flavour = bfd_target_coff_flavour; | 
|  | fake_bfd.xvec = &fake_target; | 
|  | ce.u.syment.n_sclass = C_THUMBEXTFUNC; | 
|  | csym.native = &ce; | 
|  | csym.symbol.the_bfd = &fake_bfd; | 
|  | csym.symbol.name = "fake"; | 
|  | asym = (asymbol *) & csym; | 
|  | } | 
|  |  | 
|  | memaddr = UNMAKE_THUMB_ADDR (memaddr); | 
|  | info->symbols = &asym; | 
|  | } | 
|  | else | 
|  | info->symbols = NULL; | 
|  |  | 
|  | /* GDB is able to get bfd_mach from the exe_bfd, info->mach is | 
|  | accurate, so mark USER_SPECIFIED_MACHINE_TYPE bit.  Otherwise, | 
|  | opcodes/arm-dis.c:print_insn reset info->mach, and it will trigger | 
|  | the assert on the mismatch of info->mach and | 
|  | bfd_get_mach (current_program_space->exec_bfd ()) in | 
|  | default_print_insn.  */ | 
|  | if (current_program_space->exec_bfd () != NULL | 
|  | && (current_program_space->exec_bfd ()->arch_info | 
|  | == gdbarch_bfd_arch_info (gdbarch))) | 
|  | info->flags |= USER_SPECIFIED_MACHINE_TYPE; | 
|  |  | 
|  | return default_print_insn (memaddr, info); | 
|  | } | 
|  |  | 
|  | /* The following define instruction sequences that will cause ARM | 
|  | cpu's to take an undefined instruction trap.  These are used to | 
|  | signal a breakpoint to GDB. | 
|  |  | 
|  | The newer ARMv4T cpu's are capable of operating in ARM or Thumb | 
|  | modes.  A different instruction is required for each mode.  The ARM | 
|  | cpu's can also be big or little endian.  Thus four different | 
|  | instructions are needed to support all cases. | 
|  |  | 
|  | Note: ARMv4 defines several new instructions that will take the | 
|  | undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does | 
|  | not in fact add the new instructions.  The new undefined | 
|  | instructions in ARMv4 are all instructions that had no defined | 
|  | behaviour in earlier chips.  There is no guarantee that they will | 
|  | raise an exception, but may be treated as NOP's.  In practice, it | 
|  | may only safe to rely on instructions matching: | 
|  |  | 
|  | 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 | 
|  | 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 | 
|  | C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x | 
|  |  | 
|  | Even this may only true if the condition predicate is true.  The | 
|  | following use a condition predicate of ALWAYS so it is always TRUE. | 
|  |  | 
|  | There are other ways of forcing a breakpoint.  GNU/Linux, RISC iX, | 
|  | and NetBSD all use a software interrupt rather than an undefined | 
|  | instruction to force a trap.  This can be handled by by the | 
|  | abi-specific code during establishment of the gdbarch vector.  */ | 
|  |  | 
|  | #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7} | 
|  | #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE} | 
|  | #define THUMB_LE_BREAKPOINT {0xbe,0xbe} | 
|  | #define THUMB_BE_BREAKPOINT {0xbe,0xbe} | 
|  |  | 
|  | static const gdb_byte arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT; | 
|  | static const gdb_byte arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT; | 
|  | static const gdb_byte arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT; | 
|  | static const gdb_byte arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT; | 
|  |  | 
|  | /* Implement the breakpoint_kind_from_pc gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | arm_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch); | 
|  |  | 
|  | if (arm_pc_is_thumb (gdbarch, *pcptr)) | 
|  | { | 
|  | *pcptr = UNMAKE_THUMB_ADDR (*pcptr); | 
|  |  | 
|  | /* If we have a separate 32-bit breakpoint instruction for Thumb-2, | 
|  | check whether we are replacing a 32-bit instruction.  */ | 
|  | if (tdep->thumb2_breakpoint != NULL) | 
|  | { | 
|  | gdb_byte buf[2]; | 
|  |  | 
|  | if (target_read_memory (*pcptr, buf, 2) == 0) | 
|  | { | 
|  | unsigned short inst1; | 
|  |  | 
|  | inst1 = extract_unsigned_integer (buf, 2, byte_order_for_code); | 
|  | if (thumb_insn_size (inst1) == 4) | 
|  | return ARM_BP_KIND_THUMB2; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ARM_BP_KIND_THUMB; | 
|  | } | 
|  | else | 
|  | return ARM_BP_KIND_ARM; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* Implement the sw_breakpoint_from_kind gdbarch method.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | arm_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | switch (kind) | 
|  | { | 
|  | case ARM_BP_KIND_ARM: | 
|  | *size = tdep->arm_breakpoint_size; | 
|  | return tdep->arm_breakpoint; | 
|  | case ARM_BP_KIND_THUMB: | 
|  | *size = tdep->thumb_breakpoint_size; | 
|  | return tdep->thumb_breakpoint; | 
|  | case ARM_BP_KIND_THUMB2: | 
|  | *size = tdep->thumb2_breakpoint_size; | 
|  | return tdep->thumb2_breakpoint; | 
|  | default: | 
|  | gdb_assert_not_reached ("unexpected arm breakpoint kind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement the breakpoint_kind_from_current_state gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | arm_breakpoint_kind_from_current_state (struct gdbarch *gdbarch, | 
|  | struct regcache *regcache, | 
|  | CORE_ADDR *pcptr) | 
|  | { | 
|  | gdb_byte buf[4]; | 
|  |  | 
|  | /* Check the memory pointed by PC is readable.  */ | 
|  | if (target_read_memory (regcache_read_pc (regcache), buf, 4) == 0) | 
|  | { | 
|  | struct arm_get_next_pcs next_pcs_ctx; | 
|  |  | 
|  | arm_get_next_pcs_ctor (&next_pcs_ctx, | 
|  | &arm_get_next_pcs_ops, | 
|  | gdbarch_byte_order (gdbarch), | 
|  | gdbarch_byte_order_for_code (gdbarch), | 
|  | 0, | 
|  | regcache); | 
|  |  | 
|  | std::vector<CORE_ADDR> next_pcs = arm_get_next_pcs (&next_pcs_ctx); | 
|  |  | 
|  | /* If MEMADDR is the next instruction of current pc, do the | 
|  | software single step computation, and get the thumb mode by | 
|  | the destination address.  */ | 
|  | for (CORE_ADDR pc : next_pcs) | 
|  | { | 
|  | if (UNMAKE_THUMB_ADDR (pc) == *pcptr) | 
|  | { | 
|  | if (IS_THUMB_ADDR (pc)) | 
|  | { | 
|  | *pcptr = MAKE_THUMB_ADDR (*pcptr); | 
|  | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | 
|  | } | 
|  | else | 
|  | return ARM_BP_KIND_ARM; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return arm_breakpoint_kind_from_pc (gdbarch, pcptr); | 
|  | } | 
|  |  | 
|  | /* Extract from an array REGBUF containing the (raw) register state a | 
|  | function return value of type TYPE, and copy that, in virtual | 
|  | format, into VALBUF.  */ | 
|  |  | 
|  | static void | 
|  | arm_extract_return_value (struct type *type, struct regcache *regs, | 
|  | gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regs->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | while (type->code () == TYPE_CODE_RANGE) | 
|  | type = check_typedef (type->target_type ()); | 
|  |  | 
|  | if (TYPE_CODE_FLT == type->code ()) | 
|  | { | 
|  | switch (tdep->fp_model) | 
|  | { | 
|  | case ARM_FLOAT_FPA: | 
|  | { | 
|  | /* The value is in register F0 in internal format.  We need to | 
|  | extract the raw value and then convert it to the desired | 
|  | internal type.  */ | 
|  | bfd_byte tmpbuf[ARM_FP_REGISTER_SIZE]; | 
|  |  | 
|  | regs->cooked_read (ARM_F0_REGNUM, tmpbuf); | 
|  | target_float_convert (tmpbuf, arm_ext_type (gdbarch), | 
|  | valbuf, type); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case ARM_FLOAT_SOFT_FPA: | 
|  | case ARM_FLOAT_SOFT_VFP: | 
|  | /* ARM_FLOAT_VFP can arise if this is a variadic function so | 
|  | not using the VFP ABI code.  */ | 
|  | case ARM_FLOAT_VFP: | 
|  | regs->cooked_read (ARM_A1_REGNUM, valbuf); | 
|  | if (type->length () > 4) | 
|  | regs->cooked_read (ARM_A1_REGNUM + 1, | 
|  | valbuf + ARM_INT_REGISTER_SIZE); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (_("arm_extract_return_value: " | 
|  | "Floating point model not supported")); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (type->code () == TYPE_CODE_INT | 
|  | || type->code () == TYPE_CODE_CHAR | 
|  | || type->code () == TYPE_CODE_BOOL | 
|  | || type->code () == TYPE_CODE_PTR | 
|  | || TYPE_IS_REFERENCE (type) | 
|  | || type->code () == TYPE_CODE_ENUM | 
|  | || is_fixed_point_type (type)) | 
|  | { | 
|  | /* If the type is a plain integer, then the access is | 
|  | straight-forward.  Otherwise we have to play around a bit | 
|  | more.  */ | 
|  | int len = type->length (); | 
|  | int regno = ARM_A1_REGNUM; | 
|  | ULONGEST tmp; | 
|  |  | 
|  | while (len > 0) | 
|  | { | 
|  | /* By using store_unsigned_integer we avoid having to do | 
|  | anything special for small big-endian values.  */ | 
|  | regcache_cooked_read_unsigned (regs, regno++, &tmp); | 
|  | store_unsigned_integer (valbuf, | 
|  | (len > ARM_INT_REGISTER_SIZE | 
|  | ? ARM_INT_REGISTER_SIZE : len), | 
|  | byte_order, tmp); | 
|  | len -= ARM_INT_REGISTER_SIZE; | 
|  | valbuf += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* For a structure or union the behaviour is as if the value had | 
|  | been stored to word-aligned memory and then loaded into | 
|  | registers with 32-bit load instruction(s).  */ | 
|  | int len = type->length (); | 
|  | int regno = ARM_A1_REGNUM; | 
|  | bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; | 
|  |  | 
|  | while (len > 0) | 
|  | { | 
|  | regs->cooked_read (regno++, tmpbuf); | 
|  | memcpy (valbuf, tmpbuf, | 
|  | len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len); | 
|  | len -= ARM_INT_REGISTER_SIZE; | 
|  | valbuf += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Will a function return an aggregate type in memory or in a | 
|  | register?  Return 0 if an aggregate type can be returned in a | 
|  | register, 1 if it must be returned in memory.  */ | 
|  |  | 
|  | static int | 
|  | arm_return_in_memory (struct gdbarch *gdbarch, struct type *type) | 
|  | { | 
|  | enum type_code code; | 
|  |  | 
|  | type = check_typedef (type); | 
|  |  | 
|  | /* Simple, non-aggregate types (ie not including vectors and | 
|  | complex) are always returned in a register (or registers).  */ | 
|  | code = type->code (); | 
|  | if (TYPE_CODE_STRUCT != code && TYPE_CODE_UNION != code | 
|  | && TYPE_CODE_ARRAY != code && TYPE_CODE_COMPLEX != code) | 
|  | return 0; | 
|  |  | 
|  | if (TYPE_HAS_DYNAMIC_LENGTH (type)) | 
|  | return 1; | 
|  |  | 
|  | if (TYPE_CODE_ARRAY == code && type->is_vector ()) | 
|  | { | 
|  | /* Vector values should be returned using ARM registers if they | 
|  | are not over 16 bytes.  */ | 
|  | return (type->length () > 16); | 
|  | } | 
|  |  | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | if (tdep->arm_abi != ARM_ABI_APCS) | 
|  | { | 
|  | /* The AAPCS says all aggregates not larger than a word are returned | 
|  | in a register.  */ | 
|  | if (type->length () <= ARM_INT_REGISTER_SIZE | 
|  | && language_pass_by_reference (type).trivially_copyable) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | int nRc; | 
|  |  | 
|  | /* All aggregate types that won't fit in a register must be returned | 
|  | in memory.  */ | 
|  | if (type->length () > ARM_INT_REGISTER_SIZE | 
|  | || !language_pass_by_reference (type).trivially_copyable) | 
|  | return 1; | 
|  |  | 
|  | /* In the ARM ABI, "integer" like aggregate types are returned in | 
|  | registers.  For an aggregate type to be integer like, its size | 
|  | must be less than or equal to ARM_INT_REGISTER_SIZE and the | 
|  | offset of each addressable subfield must be zero.  Note that bit | 
|  | fields are not addressable, and all addressable subfields of | 
|  | unions always start at offset zero. | 
|  |  | 
|  | This function is based on the behaviour of GCC 2.95.1. | 
|  | See: gcc/arm.c: arm_return_in_memory() for details. | 
|  |  | 
|  | Note: All versions of GCC before GCC 2.95.2 do not set up the | 
|  | parameters correctly for a function returning the following | 
|  | structure: struct { float f;}; This should be returned in memory, | 
|  | not a register.  Richard Earnshaw sent me a patch, but I do not | 
|  | know of any way to detect if a function like the above has been | 
|  | compiled with the correct calling convention.  */ | 
|  |  | 
|  | /* Assume all other aggregate types can be returned in a register. | 
|  | Run a check for structures, unions and arrays.  */ | 
|  | nRc = 0; | 
|  |  | 
|  | if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code)) | 
|  | { | 
|  | int i; | 
|  | /* Need to check if this struct/union is "integer" like.  For | 
|  | this to be true, its size must be less than or equal to | 
|  | ARM_INT_REGISTER_SIZE and the offset of each addressable | 
|  | subfield must be zero.  Note that bit fields are not | 
|  | addressable, and unions always start at offset zero.  If any | 
|  | of the subfields is a floating point type, the struct/union | 
|  | cannot be an integer type.  */ | 
|  |  | 
|  | /* For each field in the object, check: | 
|  | 1) Is it FP? --> yes, nRc = 1; | 
|  | 2) Is it addressable (bitpos != 0) and | 
|  | not packed (bitsize == 0)? | 
|  | --> yes, nRc = 1 | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < type->num_fields (); i++) | 
|  | { | 
|  | enum type_code field_type_code; | 
|  |  | 
|  | field_type_code | 
|  | = check_typedef (type->field (i).type ())->code (); | 
|  |  | 
|  | /* Is it a floating point type field?  */ | 
|  | if (field_type_code == TYPE_CODE_FLT) | 
|  | { | 
|  | nRc = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If bitpos != 0, then we have to care about it.  */ | 
|  | if (type->field (i).loc_bitpos () != 0) | 
|  | { | 
|  | /* Bitfields are not addressable.  If the field bitsize is | 
|  | zero, then the field is not packed.  Hence it cannot be | 
|  | a bitfield or any other packed type.  */ | 
|  | if (type->field (i).bitsize () == 0) | 
|  | { | 
|  | nRc = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nRc; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write into appropriate registers a function return value of type | 
|  | TYPE, given in virtual format.  */ | 
|  |  | 
|  | static void | 
|  | arm_store_return_value (struct type *type, struct regcache *regs, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regs->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | while (type->code () == TYPE_CODE_RANGE) | 
|  | type = check_typedef (type->target_type ()); | 
|  |  | 
|  | if (type->code () == TYPE_CODE_FLT) | 
|  | { | 
|  | gdb_byte buf[ARM_FP_REGISTER_SIZE]; | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | switch (tdep->fp_model) | 
|  | { | 
|  | case ARM_FLOAT_FPA: | 
|  |  | 
|  | target_float_convert (valbuf, type, buf, arm_ext_type (gdbarch)); | 
|  | regs->cooked_write (ARM_F0_REGNUM, buf); | 
|  | break; | 
|  |  | 
|  | case ARM_FLOAT_SOFT_FPA: | 
|  | case ARM_FLOAT_SOFT_VFP: | 
|  | /* ARM_FLOAT_VFP can arise if this is a variadic function so | 
|  | not using the VFP ABI code.  */ | 
|  | case ARM_FLOAT_VFP: | 
|  | regs->cooked_write (ARM_A1_REGNUM, valbuf); | 
|  | if (type->length () > 4) | 
|  | regs->cooked_write (ARM_A1_REGNUM + 1, | 
|  | valbuf + ARM_INT_REGISTER_SIZE); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (_("arm_store_return_value: Floating " | 
|  | "point model not supported")); | 
|  | break; | 
|  | } | 
|  | } | 
|  | else if (type->code () == TYPE_CODE_INT | 
|  | || type->code () == TYPE_CODE_CHAR | 
|  | || type->code () == TYPE_CODE_BOOL | 
|  | || type->code () == TYPE_CODE_PTR | 
|  | || TYPE_IS_REFERENCE (type) | 
|  | || type->code () == TYPE_CODE_ENUM | 
|  | || is_fixed_point_type (type)) | 
|  | { | 
|  | if (type->length () <= 4) | 
|  | { | 
|  | /* Values of one word or less are zero/sign-extended and | 
|  | returned in r0.  */ | 
|  | bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; | 
|  |  | 
|  | if (is_fixed_point_type (type)) | 
|  | { | 
|  | gdb_mpz unscaled; | 
|  | unscaled.read (gdb::make_array_view (valbuf, type->length ()), | 
|  | byte_order, type->is_unsigned ()); | 
|  | unscaled.write (gdb::make_array_view (tmpbuf, sizeof (tmpbuf)), | 
|  | byte_order, type->is_unsigned ()); | 
|  | } | 
|  | else | 
|  | { | 
|  | LONGEST val = unpack_long (type, valbuf); | 
|  | store_signed_integer (tmpbuf, ARM_INT_REGISTER_SIZE, byte_order, val); | 
|  | } | 
|  | regs->cooked_write (ARM_A1_REGNUM, tmpbuf); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Integral values greater than one word are stored in consecutive | 
|  | registers starting with r0.  This will always be a multiple of | 
|  | the regiser size.  */ | 
|  | int len = type->length (); | 
|  | int regno = ARM_A1_REGNUM; | 
|  |  | 
|  | while (len > 0) | 
|  | { | 
|  | regs->cooked_write (regno++, valbuf); | 
|  | len -= ARM_INT_REGISTER_SIZE; | 
|  | valbuf += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* For a structure or union the behaviour is as if the value had | 
|  | been stored to word-aligned memory and then loaded into | 
|  | registers with 32-bit load instruction(s).  */ | 
|  | int len = type->length (); | 
|  | int regno = ARM_A1_REGNUM; | 
|  | bfd_byte tmpbuf[ARM_INT_REGISTER_SIZE]; | 
|  |  | 
|  | while (len > 0) | 
|  | { | 
|  | memcpy (tmpbuf, valbuf, | 
|  | len > ARM_INT_REGISTER_SIZE ? ARM_INT_REGISTER_SIZE : len); | 
|  | regs->cooked_write (regno++, tmpbuf); | 
|  | len -= ARM_INT_REGISTER_SIZE; | 
|  | valbuf += ARM_INT_REGISTER_SIZE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Handle function return values.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | arm_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *valtype, struct regcache *regcache, | 
|  | struct value **read_value, const gdb_byte *writebuf) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | struct type *func_type = function ? function->type () : NULL; | 
|  | enum arm_vfp_cprc_base_type vfp_base_type; | 
|  | int vfp_base_count; | 
|  |  | 
|  | if (arm_vfp_abi_for_function (gdbarch, func_type) | 
|  | && arm_vfp_call_candidate (valtype, &vfp_base_type, &vfp_base_count)) | 
|  | { | 
|  | int reg_char = arm_vfp_cprc_reg_char (vfp_base_type); | 
|  | int unit_length = arm_vfp_cprc_unit_length (vfp_base_type); | 
|  | int i; | 
|  |  | 
|  | gdb_byte *readbuf = nullptr; | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | *read_value = value::allocate (valtype); | 
|  | readbuf = (*read_value)->contents_raw ().data (); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < vfp_base_count; i++) | 
|  | { | 
|  | if (reg_char == 'q') | 
|  | { | 
|  | if (writebuf) | 
|  | arm_neon_quad_write (gdbarch, regcache, i, | 
|  | writebuf + i * unit_length); | 
|  |  | 
|  | if (readbuf) | 
|  | arm_neon_quad_read (gdbarch, regcache, i, | 
|  | readbuf + i * unit_length); | 
|  | } | 
|  | else | 
|  | { | 
|  | char name_buf[4]; | 
|  | int regnum; | 
|  |  | 
|  | xsnprintf (name_buf, sizeof (name_buf), "%c%d", reg_char, i); | 
|  | regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  | if (writebuf) | 
|  | regcache->cooked_write (regnum, writebuf + i * unit_length); | 
|  | if (readbuf) | 
|  | regcache->cooked_read (regnum, readbuf + i * unit_length); | 
|  | } | 
|  | } | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | if (valtype->code () == TYPE_CODE_STRUCT | 
|  | || valtype->code () == TYPE_CODE_UNION | 
|  | || valtype->code () == TYPE_CODE_ARRAY) | 
|  | { | 
|  | /* From the AAPCS document: | 
|  |  | 
|  | Result return: | 
|  |  | 
|  | A Composite Type larger than 4 bytes, or whose size cannot be | 
|  | determined statically by both caller and callee, is stored in memory | 
|  | at an address passed as an extra argument when the function was | 
|  | called (Parameter Passing, rule A.4). The memory to be used for the | 
|  | result may be modified at any point during the function call. | 
|  |  | 
|  | Parameter Passing: | 
|  |  | 
|  | A.4: If the subroutine is a function that returns a result in memory, | 
|  | then the address for the result is placed in r0 and the NCRN is set | 
|  | to r1.  */ | 
|  | if (tdep->struct_return == pcc_struct_return | 
|  | || arm_return_in_memory (gdbarch, valtype)) | 
|  | { | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | regcache->cooked_read (ARM_A1_REGNUM, &addr); | 
|  | *read_value = value_at_non_lval (valtype, addr); | 
|  | } | 
|  | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | 
|  | } | 
|  | } | 
|  | else if (valtype->code () == TYPE_CODE_COMPLEX) | 
|  | { | 
|  | if (arm_return_in_memory (gdbarch, valtype)) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | } | 
|  |  | 
|  | if (writebuf) | 
|  | arm_store_return_value (valtype, regcache, writebuf); | 
|  |  | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | *read_value = value::allocate (valtype); | 
|  | gdb_byte *readbuf = (*read_value)->contents_raw ().data (); | 
|  | arm_extract_return_value (valtype, regcache, readbuf); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | arm_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR jb_addr; | 
|  | gdb_byte buf[ARM_INT_REGISTER_SIZE]; | 
|  |  | 
|  | jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM); | 
|  |  | 
|  | if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf, | 
|  | ARM_INT_REGISTER_SIZE)) | 
|  | return 0; | 
|  |  | 
|  | *pc = extract_unsigned_integer (buf, ARM_INT_REGISTER_SIZE, byte_order); | 
|  | return 1; | 
|  | } | 
|  | /* A call to cmse secure entry function "foo" at "a" is modified by | 
|  | GNU ld as "b". | 
|  | a) bl xxxx <foo> | 
|  |  | 
|  | <foo> | 
|  | xxxx: | 
|  |  | 
|  | b) bl yyyy <__acle_se_foo> | 
|  |  | 
|  | section .gnu.sgstubs: | 
|  | <foo> | 
|  | yyyy: sg   // secure gateway | 
|  | b.w xxxx <__acle_se_foo>  // original_branch_dest | 
|  |  | 
|  | <__acle_se_foo> | 
|  | xxxx: | 
|  |  | 
|  | When the control at "b", the pc contains "yyyy" (sg address) which is a | 
|  | trampoline and does not exist in source code.  This function returns the | 
|  | target pc "xxxx".  For more details please refer to section 5.4 | 
|  | (Entry functions) and section 3.4.4 (C level development flow of secure code) | 
|  | of "armv8-m-security-extensions-requirements-on-development-tools-engineering-specification" | 
|  | document on www.developer.arm.com.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | arm_skip_cmse_entry (CORE_ADDR pc, const char *name, struct objfile *objfile) | 
|  | { | 
|  | int target_len = strlen (name) + strlen ("__acle_se_") + 1; | 
|  | char *target_name = (char *) alloca (target_len); | 
|  | xsnprintf (target_name, target_len, "%s%s", "__acle_se_", name); | 
|  |  | 
|  | struct bound_minimal_symbol minsym | 
|  | = lookup_minimal_symbol (target_name, NULL, objfile); | 
|  |  | 
|  | if (minsym.minsym != nullptr) | 
|  | return minsym.value_address (); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return true when SEC points to ".gnu.sgstubs" section.  */ | 
|  |  | 
|  | static bool | 
|  | arm_is_sgstubs_section (struct obj_section *sec) | 
|  | { | 
|  | return (sec != nullptr | 
|  | && sec->the_bfd_section != nullptr | 
|  | && sec->the_bfd_section->name != nullptr | 
|  | && streq (sec->the_bfd_section->name, ".gnu.sgstubs")); | 
|  | } | 
|  |  | 
|  | /* Recognize GCC and GNU ld's trampolines.  If we are in a trampoline, | 
|  | return the target PC.  Otherwise return 0.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | arm_skip_stub (frame_info_ptr frame, CORE_ADDR pc) | 
|  | { | 
|  | const char *name; | 
|  | int namelen; | 
|  | CORE_ADDR start_addr; | 
|  |  | 
|  | /* Find the starting address and name of the function containing the PC.  */ | 
|  | if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) | 
|  | { | 
|  | /* Trampoline 'bx reg' doesn't belong to any functions.  Do the | 
|  | check here.  */ | 
|  | start_addr = arm_skip_bx_reg (frame, pc); | 
|  | if (start_addr != 0) | 
|  | return start_addr; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If PC is in a Thumb call or return stub, return the address of the | 
|  | target PC, which is in a register.  The thunk functions are called | 
|  | _call_via_xx, where x is the register name.  The possible names | 
|  | are r0-r9, sl, fp, ip, sp, and lr.  ARM RealView has similar | 
|  | functions, named __ARM_call_via_r[0-7].  */ | 
|  | if (startswith (name, "_call_via_") | 
|  | || startswith (name, "__ARM_call_via_")) | 
|  | { | 
|  | /* Use the name suffix to determine which register contains the | 
|  | target PC.  */ | 
|  | static const char *table[15] = | 
|  | {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "sl", "fp", "ip", "sp", "lr" | 
|  | }; | 
|  | int regno; | 
|  | int offset = strlen (name) - 2; | 
|  |  | 
|  | for (regno = 0; regno <= 14; regno++) | 
|  | if (strcmp (&name[offset], table[regno]) == 0) | 
|  | return get_frame_register_unsigned (frame, regno); | 
|  | } | 
|  |  | 
|  | /* GNU ld generates __foo_from_arm or __foo_from_thumb for | 
|  | non-interworking calls to foo.  We could decode the stubs | 
|  | to find the target but it's easier to use the symbol table.  */ | 
|  | namelen = strlen (name); | 
|  | if (name[0] == '_' && name[1] == '_' | 
|  | && ((namelen > 2 + strlen ("_from_thumb") | 
|  | && startswith (name + namelen - strlen ("_from_thumb"), "_from_thumb")) | 
|  | || (namelen > 2 + strlen ("_from_arm") | 
|  | && startswith (name + namelen - strlen ("_from_arm"), "_from_arm")))) | 
|  | { | 
|  | char *target_name; | 
|  | int target_len = namelen - 2; | 
|  | struct bound_minimal_symbol minsym; | 
|  | struct objfile *objfile; | 
|  | struct obj_section *sec; | 
|  |  | 
|  | if (name[namelen - 1] == 'b') | 
|  | target_len -= strlen ("_from_thumb"); | 
|  | else | 
|  | target_len -= strlen ("_from_arm"); | 
|  |  | 
|  | target_name = (char *) alloca (target_len + 1); | 
|  | memcpy (target_name, name + 2, target_len); | 
|  | target_name[target_len] = '\0'; | 
|  |  | 
|  | sec = find_pc_section (pc); | 
|  | objfile = (sec == NULL) ? NULL : sec->objfile; | 
|  | minsym = lookup_minimal_symbol (target_name, NULL, objfile); | 
|  | if (minsym.minsym != NULL) | 
|  | return minsym.value_address (); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct obj_section *section = find_pc_section (pc); | 
|  |  | 
|  | /* Check whether SECTION points to the ".gnu.sgstubs" section.  */ | 
|  | if (arm_is_sgstubs_section (section)) | 
|  | return arm_skip_cmse_entry (pc, name, section->objfile); | 
|  |  | 
|  | return 0;			/* not a stub */ | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_update_current_architecture (void) | 
|  | { | 
|  | /* If the current architecture is not ARM, we have nothing to do.  */ | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  | if (gdbarch_bfd_arch_info (arch)->arch != bfd_arch_arm) | 
|  | return; | 
|  |  | 
|  | /* Update the architecture.  */ | 
|  | gdbarch_info info; | 
|  | if (!gdbarch_update_p (info)) | 
|  | internal_error (_("could not update architecture")); | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_fp_model_sfunc (const char *args, int from_tty, | 
|  | struct cmd_list_element *c) | 
|  | { | 
|  | int fp_model; | 
|  |  | 
|  | for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++) | 
|  | if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0) | 
|  | { | 
|  | arm_fp_model = (enum arm_float_model) fp_model; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (fp_model == ARM_FLOAT_LAST) | 
|  | internal_error (_("Invalid fp model accepted: %s."), | 
|  | current_fp_model); | 
|  |  | 
|  | arm_update_current_architecture (); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_fp_model (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  | if (arm_fp_model == ARM_FLOAT_AUTO | 
|  | && gdbarch_bfd_arch_info (arch)->arch == bfd_arch_arm) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch); | 
|  |  | 
|  | gdb_printf (file, _("\ | 
|  | The current ARM floating point model is \"auto\" (currently \"%s\").\n"), | 
|  | fp_model_strings[tdep->fp_model]); | 
|  | } | 
|  | else | 
|  | gdb_printf (file, _("\ | 
|  | The current ARM floating point model is \"%s\".\n"), | 
|  | fp_model_strings[arm_fp_model]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_set_abi (const char *args, int from_tty, | 
|  | struct cmd_list_element *c) | 
|  | { | 
|  | int arm_abi; | 
|  |  | 
|  | for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++) | 
|  | if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0) | 
|  | { | 
|  | arm_abi_global = (enum arm_abi_kind) arm_abi; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (arm_abi == ARM_ABI_LAST) | 
|  | internal_error (_("Invalid ABI accepted: %s."), | 
|  | arm_abi_string); | 
|  |  | 
|  | arm_update_current_architecture (); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_show_abi (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdbarch *arch = current_inferior ()->arch (); | 
|  | if (arm_abi_global == ARM_ABI_AUTO | 
|  | && gdbarch_bfd_arch_info (arch)->arch == bfd_arch_arm) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (arch); | 
|  |  | 
|  | gdb_printf (file, _("\ | 
|  | The current ARM ABI is \"auto\" (currently \"%s\").\n"), | 
|  | arm_abi_strings[tdep->arm_abi]); | 
|  | } | 
|  | else | 
|  | gdb_printf (file, _("The current ARM ABI is \"%s\".\n"), | 
|  | arm_abi_string); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_show_fallback_mode (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, | 
|  | _("The current execution mode assumed " | 
|  | "(when symbols are unavailable) is \"%s\".\n"), | 
|  | arm_fallback_mode_string); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_show_force_mode (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, | 
|  | _("The current execution mode assumed " | 
|  | "(even when symbols are available) is \"%s\".\n"), | 
|  | arm_force_mode_string); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_show_unwind_secure_frames (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, | 
|  | _("Usage of non-secure to secure exception stack unwinding is %s.\n"), | 
|  | arm_unwind_secure_frames ? "on" : "off"); | 
|  | } | 
|  |  | 
|  | /* If the user changes the register disassembly style used for info | 
|  | register and other commands, we have to also switch the style used | 
|  | in opcodes for disassembly output.  This function is run in the "set | 
|  | arm disassembly" command, and does that.  */ | 
|  |  | 
|  | static void | 
|  | set_disassembly_style_sfunc (const char *args, int from_tty, | 
|  | struct cmd_list_element *c) | 
|  | { | 
|  | /* Convert the short style name into the long style name (eg, reg-names-*) | 
|  | before calling the generic set_disassembler_options() function.  */ | 
|  | std::string long_name = std::string ("reg-names-") + disassembly_style; | 
|  | set_disassembler_options (&long_name[0]); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_disassembly_style_sfunc (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_current_arch (); | 
|  | char *options = get_disassembler_options (gdbarch); | 
|  | const char *style = ""; | 
|  | int len = 0; | 
|  | const char *opt; | 
|  |  | 
|  | FOR_EACH_DISASSEMBLER_OPTION (opt, options) | 
|  | if (startswith (opt, "reg-names-")) | 
|  | { | 
|  | style = &opt[strlen ("reg-names-")]; | 
|  | len = strcspn (style, ","); | 
|  | } | 
|  |  | 
|  | gdb_printf (file, "The disassembly style is \"%.*s\".\n", len, style); | 
|  | } | 
|  |  | 
|  | /* Return the ARM register name corresponding to register I.  */ | 
|  | static const char * | 
|  | arm_register_name (struct gdbarch *gdbarch, int i) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (is_s_pseudo (gdbarch, i)) | 
|  | { | 
|  | static const char *const s_pseudo_names[] = { | 
|  | "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", | 
|  | "s8", "s9", "s10", "s11", "s12", "s13", "s14", "s15", | 
|  | "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23", | 
|  | "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31", | 
|  | }; | 
|  |  | 
|  | return s_pseudo_names[i - tdep->s_pseudo_base]; | 
|  | } | 
|  |  | 
|  | if (is_q_pseudo (gdbarch, i)) | 
|  | { | 
|  | static const char *const q_pseudo_names[] = { | 
|  | "q0", "q1", "q2", "q3", "q4", "q5", "q6", "q7", | 
|  | "q8", "q9", "q10", "q11", "q12", "q13", "q14", "q15", | 
|  | }; | 
|  |  | 
|  | return q_pseudo_names[i - tdep->q_pseudo_base]; | 
|  | } | 
|  |  | 
|  | if (is_mve_pseudo (gdbarch, i)) | 
|  | return "p0"; | 
|  |  | 
|  | /* RA_AUTH_CODE is used for unwinding only.  Do not assign it a name.  */ | 
|  | if (is_pacbti_pseudo (gdbarch, i)) | 
|  | return ""; | 
|  |  | 
|  | if (i >= ARRAY_SIZE (arm_register_names)) | 
|  | /* These registers are only supported on targets which supply | 
|  | an XML description.  */ | 
|  | return ""; | 
|  |  | 
|  | /* Non-pseudo registers.  */ | 
|  | return arm_register_names[i]; | 
|  | } | 
|  |  | 
|  | /* Test whether the coff symbol specific value corresponds to a Thumb | 
|  | function.  */ | 
|  |  | 
|  | static int | 
|  | coff_sym_is_thumb (int val) | 
|  | { | 
|  | return (val == C_THUMBEXT | 
|  | || val == C_THUMBSTAT | 
|  | || val == C_THUMBEXTFUNC | 
|  | || val == C_THUMBSTATFUNC | 
|  | || val == C_THUMBLABEL); | 
|  | } | 
|  |  | 
|  | /* arm_coff_make_msymbol_special() | 
|  | arm_elf_make_msymbol_special() | 
|  |  | 
|  | These functions test whether the COFF or ELF symbol corresponds to | 
|  | an address in thumb code, and set a "special" bit in a minimal | 
|  | symbol to indicate that it does.  */ | 
|  |  | 
|  | static void | 
|  | arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym) | 
|  | { | 
|  | elf_symbol_type *elfsym = (elf_symbol_type *) sym; | 
|  |  | 
|  | if (ARM_GET_SYM_BRANCH_TYPE (elfsym->internal_elf_sym.st_target_internal) | 
|  | == ST_BRANCH_TO_THUMB) | 
|  | MSYMBOL_SET_SPECIAL (msym); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym) | 
|  | { | 
|  | if (coff_sym_is_thumb (val)) | 
|  | MSYMBOL_SET_SPECIAL (msym); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile, | 
|  | asymbol *sym) | 
|  | { | 
|  | const char *name = bfd_asymbol_name (sym); | 
|  | struct arm_per_bfd *data; | 
|  | struct arm_mapping_symbol new_map_sym; | 
|  |  | 
|  | gdb_assert (name[0] == '$'); | 
|  | if (name[1] != 'a' && name[1] != 't' && name[1] != 'd') | 
|  | return; | 
|  |  | 
|  | data = arm_bfd_data_key.get (objfile->obfd.get ()); | 
|  | if (data == NULL) | 
|  | data = arm_bfd_data_key.emplace (objfile->obfd.get (), | 
|  | objfile->obfd->section_count); | 
|  | arm_mapping_symbol_vec &map | 
|  | = data->section_maps[bfd_asymbol_section (sym)->index]; | 
|  |  | 
|  | new_map_sym.value = sym->value; | 
|  | new_map_sym.type = name[1]; | 
|  |  | 
|  | /* Insert at the end, the vector will be sorted on first use.  */ | 
|  | map.push_back (new_map_sym); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_write_pc (struct regcache *regcache, CORE_ADDR pc) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc); | 
|  |  | 
|  | /* If necessary, set the T bit.  */ | 
|  | if (arm_apcs_32) | 
|  | { | 
|  | ULONGEST val, t_bit; | 
|  | regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val); | 
|  | t_bit = arm_psr_thumb_bit (gdbarch); | 
|  | if (arm_pc_is_thumb (gdbarch, pc)) | 
|  | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | 
|  | val | t_bit); | 
|  | else | 
|  | regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, | 
|  | val & ~t_bit); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read the contents of a NEON quad register, by reading from two | 
|  | double registers.  This is used to implement the quad pseudo | 
|  | registers, and for argument passing in case the quad registers are | 
|  | missing; vectors are passed in quad registers when using the VFP | 
|  | ABI, even if a NEON unit is not present.  REGNUM is the index of | 
|  | the quad register, in [0, 15].  */ | 
|  |  | 
|  | static enum register_status | 
|  | arm_neon_quad_read (struct gdbarch *gdbarch, readable_regcache *regcache, | 
|  | int regnum, gdb_byte *buf) | 
|  | { | 
|  | char name_buf[4]; | 
|  | gdb_byte reg_buf[8]; | 
|  | int double_regnum; | 
|  | enum register_status status; | 
|  |  | 
|  | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); | 
|  | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  |  | 
|  | status = regcache->raw_read (double_regnum, reg_buf); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | memcpy (buf, reg_buf, 8); | 
|  |  | 
|  | status = regcache->raw_read (double_regnum + 1, reg_buf); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | memcpy (buf + 8, reg_buf, 8); | 
|  |  | 
|  | return REG_VALID; | 
|  | } | 
|  |  | 
|  | /* Read the contents of a NEON quad register, by reading from two double | 
|  | registers, and return it as a value.  QUAD_REG_INDEX is the index of the quad | 
|  | register, in [0, 15].  */ | 
|  |  | 
|  | static value * | 
|  | arm_neon_quad_read_value (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | int pseudo_reg_num, int quad_reg_index) | 
|  | { | 
|  | std::string raw_reg_name = string_printf ("d%d", quad_reg_index << 1); | 
|  | int double_regnum | 
|  | = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (), | 
|  | raw_reg_name.length ()); | 
|  |  | 
|  | return pseudo_from_concat_raw (next_frame, pseudo_reg_num, double_regnum, | 
|  | double_regnum + 1); | 
|  | } | 
|  |  | 
|  | /* Read the contents of the MVE pseudo register REGNUM and return it as a | 
|  | value.  */ | 
|  | static value * | 
|  | arm_mve_pseudo_read_value (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | int pseudo_reg_num) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* P0 is the first 16 bits of VPR.  */ | 
|  | return pseudo_from_raw_part (next_frame, pseudo_reg_num, | 
|  | tdep->mve_vpr_regnum, 0); | 
|  | } | 
|  |  | 
|  | static value * | 
|  | arm_pseudo_read_value (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | const int pseudo_reg_num) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | gdb_assert (pseudo_reg_num >= gdbarch_num_regs (gdbarch)); | 
|  |  | 
|  | if (is_q_pseudo (gdbarch, pseudo_reg_num)) | 
|  | { | 
|  | /* Quad-precision register.  */ | 
|  | return arm_neon_quad_read_value (gdbarch, next_frame, pseudo_reg_num, | 
|  | pseudo_reg_num - tdep->q_pseudo_base); | 
|  | } | 
|  | else if (is_mve_pseudo (gdbarch, pseudo_reg_num)) | 
|  | return arm_mve_pseudo_read_value (gdbarch, next_frame, pseudo_reg_num); | 
|  | else | 
|  | { | 
|  | int s_reg_index = pseudo_reg_num - tdep->s_pseudo_base; | 
|  |  | 
|  | /* Single-precision register.  */ | 
|  | gdb_assert (s_reg_index < 32); | 
|  |  | 
|  | /* s0 is always the least significant half of d0.  */ | 
|  | int offset; | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | offset = (s_reg_index & 1) ? 0 : 4; | 
|  | else | 
|  | offset = (s_reg_index & 1) ? 4 : 0; | 
|  |  | 
|  | std::string raw_reg_name = string_printf ("d%d", s_reg_index >> 1); | 
|  | int double_regnum | 
|  | = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (), | 
|  | raw_reg_name.length ()); | 
|  |  | 
|  | return pseudo_from_raw_part (next_frame, pseudo_reg_num, double_regnum, | 
|  | offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Store the contents of BUF to a NEON quad register, by writing to | 
|  | two double registers.  This is used to implement the quad pseudo | 
|  | registers, and for argument passing in case the quad registers are | 
|  | missing; vectors are passed in quad registers when using the VFP | 
|  | ABI, even if a NEON unit is not present.  REGNUM is the index | 
|  | of the quad register, in [0, 15].  */ | 
|  |  | 
|  | static void | 
|  | arm_neon_quad_write (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | int regnum, const gdb_byte *buf) | 
|  | { | 
|  | char name_buf[4]; | 
|  | int double_regnum; | 
|  |  | 
|  | xsnprintf (name_buf, sizeof (name_buf), "d%d", regnum << 1); | 
|  | double_regnum = user_reg_map_name_to_regnum (gdbarch, name_buf, | 
|  | strlen (name_buf)); | 
|  |  | 
|  | regcache->raw_write (double_regnum, buf); | 
|  | regcache->raw_write (double_regnum + 1, buf + 8); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_neon_quad_write (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | int quad_reg_index, gdb::array_view<const gdb_byte> buf) | 
|  | { | 
|  | std::string raw_reg_name = string_printf ("d%d", quad_reg_index << 1); | 
|  | int double_regnum | 
|  | = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.data (), | 
|  | raw_reg_name.length ()); | 
|  |  | 
|  | pseudo_to_concat_raw (next_frame, buf, double_regnum, double_regnum + 1); | 
|  | } | 
|  |  | 
|  | /* Store the contents of BUF to the MVE pseudo register REGNUM.  */ | 
|  |  | 
|  | static void | 
|  | arm_mve_pseudo_write (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | int pseudo_reg_num, gdb::array_view<const gdb_byte> buf) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* P0 is the first 16 bits of VPR.  */ | 
|  | pseudo_to_raw_part(next_frame, buf, tdep->mve_vpr_regnum, 0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_pseudo_write (gdbarch *gdbarch, frame_info_ptr next_frame, | 
|  | const int pseudo_reg_num, | 
|  | gdb::array_view<const gdb_byte> buf) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | gdb_assert (pseudo_reg_num >= gdbarch_num_regs (gdbarch)); | 
|  |  | 
|  | if (is_q_pseudo (gdbarch, pseudo_reg_num)) | 
|  | { | 
|  | /* Quad-precision register.  */ | 
|  | arm_neon_quad_write (gdbarch, next_frame, | 
|  | pseudo_reg_num - tdep->q_pseudo_base, buf); | 
|  | } | 
|  | else if (is_mve_pseudo (gdbarch, pseudo_reg_num)) | 
|  | arm_mve_pseudo_write (gdbarch, next_frame, pseudo_reg_num, buf); | 
|  | else | 
|  | { | 
|  | int s_reg_index = pseudo_reg_num - tdep->s_pseudo_base; | 
|  |  | 
|  | /* Single-precision register.  */ | 
|  | gdb_assert (s_reg_index < 32); | 
|  |  | 
|  | /* s0 is always the least significant half of d0.  */ | 
|  | int offset; | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | offset = (s_reg_index & 1) ? 0 : 4; | 
|  | else | 
|  | offset = (s_reg_index & 1) ? 4 : 0; | 
|  |  | 
|  | std::string raw_reg_name = string_printf ("d%d", s_reg_index >> 1); | 
|  | int double_regnum | 
|  | = user_reg_map_name_to_regnum (gdbarch, raw_reg_name.c_str (), | 
|  | raw_reg_name.length ()); | 
|  |  | 
|  | pseudo_to_raw_part (next_frame, buf, double_regnum, offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | value_of_arm_user_reg (frame_info_ptr frame, const void *baton) | 
|  | { | 
|  | const int *reg_p = (const int *) baton; | 
|  | return value_of_register (*reg_p, get_next_frame_sentinel_okay (frame)); | 
|  | } | 
|  |  | 
|  | static enum gdb_osabi | 
|  | arm_elf_osabi_sniffer (bfd *abfd) | 
|  | { | 
|  | unsigned int elfosabi; | 
|  | enum gdb_osabi osabi = GDB_OSABI_UNKNOWN; | 
|  |  | 
|  | elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI]; | 
|  |  | 
|  | if (elfosabi == ELFOSABI_ARM) | 
|  | /* GNU tools use this value.  Check note sections in this case, | 
|  | as well.  */ | 
|  | { | 
|  | for (asection *sect : gdb_bfd_sections (abfd)) | 
|  | generic_elf_osabi_sniff_abi_tag_sections (abfd, sect, &osabi); | 
|  | } | 
|  |  | 
|  | /* Anything else will be handled by the generic ELF sniffer.  */ | 
|  | return osabi; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | 
|  | const struct reggroup *group) | 
|  | { | 
|  | /* FPS register's type is INT, but belongs to float_reggroup.  Beside | 
|  | this, FPS register belongs to save_regroup, restore_reggroup, and | 
|  | all_reggroup, of course.  */ | 
|  | if (regnum == ARM_FPS_REGNUM) | 
|  | return (group == float_reggroup | 
|  | || group == save_reggroup | 
|  | || group == restore_reggroup | 
|  | || group == all_reggroup); | 
|  | else | 
|  | return default_register_reggroup_p (gdbarch, regnum, group); | 
|  | } | 
|  |  | 
|  | /* For backward-compatibility we allow two 'g' packet lengths with | 
|  | the remote protocol depending on whether FPA registers are | 
|  | supplied.  M-profile targets do not have FPA registers, but some | 
|  | stubs already exist in the wild which use a 'g' packet which | 
|  | supplies them albeit with dummy values.  The packet format which | 
|  | includes FPA registers should be considered deprecated for | 
|  | M-profile targets.  */ | 
|  |  | 
|  | static void | 
|  | arm_register_g_packet_guesses (struct gdbarch *gdbarch) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->is_m) | 
|  | { | 
|  | const target_desc *tdesc; | 
|  |  | 
|  | /* If we know from the executable this is an M-profile target, | 
|  | cater for remote targets whose register set layout is the | 
|  | same as the FPA layout.  */ | 
|  | tdesc = arm_read_mprofile_description (ARM_M_TYPE_WITH_FPA); | 
|  | register_remote_g_packet_guess (gdbarch, | 
|  | ARM_CORE_REGS_SIZE + ARM_FP_REGS_SIZE, | 
|  | tdesc); | 
|  |  | 
|  | /* The regular M-profile layout.  */ | 
|  | tdesc = arm_read_mprofile_description (ARM_M_TYPE_M_PROFILE); | 
|  | register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE, | 
|  | tdesc); | 
|  |  | 
|  | /* M-profile plus M4F VFP.  */ | 
|  | tdesc = arm_read_mprofile_description (ARM_M_TYPE_VFP_D16); | 
|  | register_remote_g_packet_guess (gdbarch, | 
|  | ARM_CORE_REGS_SIZE + ARM_VFP2_REGS_SIZE, | 
|  | tdesc); | 
|  | /* M-profile plus MVE.  */ | 
|  | tdesc = arm_read_mprofile_description (ARM_M_TYPE_MVE); | 
|  | register_remote_g_packet_guess (gdbarch, ARM_CORE_REGS_SIZE | 
|  | + ARM_VFP2_REGS_SIZE | 
|  | + ARM_INT_REGISTER_SIZE, tdesc); | 
|  |  | 
|  | /* M-profile system (stack pointers).  */ | 
|  | tdesc = arm_read_mprofile_description (ARM_M_TYPE_SYSTEM); | 
|  | register_remote_g_packet_guess (gdbarch, 2 * ARM_INT_REGISTER_SIZE, tdesc); | 
|  | } | 
|  |  | 
|  | /* Otherwise we don't have a useful guess.  */ | 
|  | } | 
|  |  | 
|  | /* Implement the code_of_frame_writable gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | arm_code_of_frame_writable (struct gdbarch *gdbarch, frame_info_ptr frame) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep->is_m && get_frame_type (frame) == SIGTRAMP_FRAME) | 
|  | { | 
|  | /* M-profile exception frames return to some magic PCs, where | 
|  | isn't writable at all.  */ | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Implement gdbarch_gnu_triplet_regexp.  If the arch name is arm then allow it | 
|  | to be postfixed by a version (eg armv7hl).  */ | 
|  |  | 
|  | static const char * | 
|  | arm_gnu_triplet_regexp (struct gdbarch *gdbarch) | 
|  | { | 
|  | if (strcmp (gdbarch_bfd_arch_info (gdbarch)->arch_name, "arm") == 0) | 
|  | return "arm(v[^- ]*)?"; | 
|  | return gdbarch_bfd_arch_info (gdbarch)->arch_name; | 
|  | } | 
|  |  | 
|  | /* Implement the "get_pc_address_flags" gdbarch method.  */ | 
|  |  | 
|  | static std::string | 
|  | arm_get_pc_address_flags (frame_info_ptr frame, CORE_ADDR pc) | 
|  | { | 
|  | if (get_frame_pc_masked (frame)) | 
|  | return "PAC"; | 
|  |  | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | /* Initialize the current architecture based on INFO.  If possible, | 
|  | re-use an architecture from ARCHES, which is a list of | 
|  | architectures already created during this debugging session. | 
|  |  | 
|  | Called e.g. at program startup, when reading a core file, and when | 
|  | reading a binary file.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch_list *best_arch; | 
|  | enum arm_abi_kind arm_abi = arm_abi_global; | 
|  | enum arm_float_model fp_model = arm_fp_model; | 
|  | tdesc_arch_data_up tdesc_data; | 
|  | int i; | 
|  | bool is_m = false; | 
|  | bool have_sec_ext = false; | 
|  | int vfp_register_count = 0; | 
|  | bool have_s_pseudos = false, have_q_pseudos = false; | 
|  | bool have_wmmx_registers = false; | 
|  | bool have_neon = false; | 
|  | bool have_fpa_registers = true; | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  | bool have_vfp = false; | 
|  | bool have_mve = false; | 
|  | bool have_pacbti = false; | 
|  | int mve_vpr_regnum = -1; | 
|  | int register_count = ARM_NUM_REGS; | 
|  | bool have_m_profile_msp = false; | 
|  | int m_profile_msp_regnum = -1; | 
|  | int m_profile_psp_regnum = -1; | 
|  | int m_profile_msp_ns_regnum = -1; | 
|  | int m_profile_psp_ns_regnum = -1; | 
|  | int m_profile_msp_s_regnum = -1; | 
|  | int m_profile_psp_s_regnum = -1; | 
|  | int tls_regnum = 0; | 
|  |  | 
|  | /* If we have an object to base this architecture on, try to determine | 
|  | its ABI.  */ | 
|  |  | 
|  | if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL) | 
|  | { | 
|  | int ei_osabi, e_flags; | 
|  |  | 
|  | switch (bfd_get_flavour (info.abfd)) | 
|  | { | 
|  | case bfd_target_coff_flavour: | 
|  | /* Assume it's an old APCS-style ABI.  */ | 
|  | /* XXX WinCE?  */ | 
|  | arm_abi = ARM_ABI_APCS; | 
|  | break; | 
|  |  | 
|  | case bfd_target_elf_flavour: | 
|  | ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | 
|  | e_flags = elf_elfheader (info.abfd)->e_flags; | 
|  |  | 
|  | if (ei_osabi == ELFOSABI_ARM) | 
|  | { | 
|  | /* GNU tools used to use this value, but do not for EABI | 
|  | objects.  There's nowhere to tag an EABI version | 
|  | anyway, so assume APCS.  */ | 
|  | arm_abi = ARM_ABI_APCS; | 
|  | } | 
|  | else if (ei_osabi == ELFOSABI_NONE || ei_osabi == ELFOSABI_GNU) | 
|  | { | 
|  | int eabi_ver = EF_ARM_EABI_VERSION (e_flags); | 
|  |  | 
|  | switch (eabi_ver) | 
|  | { | 
|  | case EF_ARM_EABI_UNKNOWN: | 
|  | /* Assume GNU tools.  */ | 
|  | arm_abi = ARM_ABI_APCS; | 
|  | break; | 
|  |  | 
|  | case EF_ARM_EABI_VER4: | 
|  | case EF_ARM_EABI_VER5: | 
|  | arm_abi = ARM_ABI_AAPCS; | 
|  | /* EABI binaries default to VFP float ordering. | 
|  | They may also contain build attributes that can | 
|  | be used to identify if the VFP argument-passing | 
|  | ABI is in use.  */ | 
|  | if (fp_model == ARM_FLOAT_AUTO) | 
|  | { | 
|  | #ifdef HAVE_ELF | 
|  | switch (bfd_elf_get_obj_attr_int (info.abfd, | 
|  | OBJ_ATTR_PROC, | 
|  | Tag_ABI_VFP_args)) | 
|  | { | 
|  | case AEABI_VFP_args_base: | 
|  | /* "The user intended FP parameter/result | 
|  | passing to conform to AAPCS, base | 
|  | variant".  */ | 
|  | fp_model = ARM_FLOAT_SOFT_VFP; | 
|  | break; | 
|  | case AEABI_VFP_args_vfp: | 
|  | /* "The user intended FP parameter/result | 
|  | passing to conform to AAPCS, VFP | 
|  | variant".  */ | 
|  | fp_model = ARM_FLOAT_VFP; | 
|  | break; | 
|  | case AEABI_VFP_args_toolchain: | 
|  | /* "The user intended FP parameter/result | 
|  | passing to conform to tool chain-specific | 
|  | conventions" - we don't know any such | 
|  | conventions, so leave it as "auto".  */ | 
|  | break; | 
|  | case AEABI_VFP_args_compatible: | 
|  | /* "Code is compatible with both the base | 
|  | and VFP variants; the user did not permit | 
|  | non-variadic functions to pass FP | 
|  | parameters/results" - leave it as | 
|  | "auto".  */ | 
|  | break; | 
|  | default: | 
|  | /* Attribute value not mentioned in the | 
|  | November 2012 ABI, so leave it as | 
|  | "auto".  */ | 
|  | break; | 
|  | } | 
|  | #else | 
|  | fp_model = ARM_FLOAT_SOFT_VFP; | 
|  | #endif | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Leave it as "auto".  */ | 
|  | warning (_("unknown ARM EABI version 0x%x"), eabi_ver); | 
|  | break; | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_ELF | 
|  | /* Detect M-profile programs.  This only works if the | 
|  | executable file includes build attributes; GCC does | 
|  | copy them to the executable, but e.g. RealView does | 
|  | not.  */ | 
|  | int attr_arch | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_CPU_arch); | 
|  | int attr_profile | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_CPU_arch_profile); | 
|  |  | 
|  | /* GCC specifies the profile for v6-M; RealView only | 
|  | specifies the profile for architectures starting with | 
|  | V7 (as opposed to architectures with a tag | 
|  | numerically greater than TAG_CPU_ARCH_V7).  */ | 
|  | if (!tdesc_has_registers (tdesc) | 
|  | && (attr_arch == TAG_CPU_ARCH_V6_M | 
|  | || attr_arch == TAG_CPU_ARCH_V6S_M | 
|  | || attr_arch == TAG_CPU_ARCH_V7E_M | 
|  | || attr_arch == TAG_CPU_ARCH_V8M_BASE | 
|  | || attr_arch == TAG_CPU_ARCH_V8M_MAIN | 
|  | || attr_arch == TAG_CPU_ARCH_V8_1M_MAIN | 
|  | || attr_profile == 'M')) | 
|  | is_m = true; | 
|  |  | 
|  | /* Look for attributes that indicate support for ARMv8.1-m | 
|  | PACBTI.  */ | 
|  | if (!tdesc_has_registers (tdesc) && is_m) | 
|  | { | 
|  | int attr_pac_extension | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_PAC_extension); | 
|  |  | 
|  | int attr_bti_extension | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_BTI_extension); | 
|  |  | 
|  | int attr_pacret_use | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_PACRET_use); | 
|  |  | 
|  | int attr_bti_use | 
|  | = bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC, | 
|  | Tag_BTI_use); | 
|  |  | 
|  | if (attr_pac_extension != 0 || attr_bti_extension != 0 | 
|  | || attr_pacret_use != 0 || attr_bti_use != 0) | 
|  | have_pacbti = true; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | if (fp_model == ARM_FLOAT_AUTO) | 
|  | { | 
|  | switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT)) | 
|  | { | 
|  | case 0: | 
|  | /* Leave it as "auto".  Strictly speaking this case | 
|  | means FPA, but almost nobody uses that now, and | 
|  | many toolchains fail to set the appropriate bits | 
|  | for the floating-point model they use.  */ | 
|  | break; | 
|  | case EF_ARM_SOFT_FLOAT: | 
|  | fp_model = ARM_FLOAT_SOFT_FPA; | 
|  | break; | 
|  | case EF_ARM_VFP_FLOAT: | 
|  | fp_model = ARM_FLOAT_VFP; | 
|  | break; | 
|  | case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT: | 
|  | fp_model = ARM_FLOAT_SOFT_VFP; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (e_flags & EF_ARM_BE8) | 
|  | info.byte_order_for_code = BFD_ENDIAN_LITTLE; | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Leave it as "auto".  */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check any target description for validity.  */ | 
|  | if (tdesc_has_registers (tdesc)) | 
|  | { | 
|  | /* For most registers we require GDB's default names; but also allow | 
|  | the numeric names for sp / lr / pc, as a convenience.  */ | 
|  | static const char *const arm_sp_names[] = { "r13", "sp", NULL }; | 
|  | static const char *const arm_lr_names[] = { "r14", "lr", NULL }; | 
|  | static const char *const arm_pc_names[] = { "r15", "pc", NULL }; | 
|  |  | 
|  | const struct tdesc_feature *feature; | 
|  | int valid_p; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.core"); | 
|  | if (feature == NULL) | 
|  | { | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.m-profile"); | 
|  | if (feature == NULL) | 
|  | return NULL; | 
|  | else | 
|  | is_m = true; | 
|  | } | 
|  |  | 
|  | tdesc_data = tdesc_data_alloc (); | 
|  |  | 
|  | valid_p = 1; | 
|  | for (i = 0; i < ARM_SP_REGNUM; i++) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | arm_register_names[i]); | 
|  | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), | 
|  | ARM_SP_REGNUM, | 
|  | arm_sp_names); | 
|  | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), | 
|  | ARM_LR_REGNUM, | 
|  | arm_lr_names); | 
|  | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (), | 
|  | ARM_PC_REGNUM, | 
|  | arm_pc_names); | 
|  | if (is_m) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | ARM_PS_REGNUM, "xpsr"); | 
|  | else | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | ARM_PS_REGNUM, "cpsr"); | 
|  |  | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  |  | 
|  | if (is_m) | 
|  | { | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.m-system"); | 
|  | if (feature != nullptr) | 
|  | { | 
|  | /* MSP */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "msp"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile m-system feature is missing required register msp.")); | 
|  | return nullptr; | 
|  | } | 
|  | have_m_profile_msp = true; | 
|  | m_profile_msp_regnum = register_count++; | 
|  |  | 
|  | /* PSP */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "psp"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile m-system feature is missing required register psp.")); | 
|  | return nullptr; | 
|  | } | 
|  | m_profile_psp_regnum = register_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.fpa"); | 
|  | if (feature != NULL) | 
|  | { | 
|  | valid_p = 1; | 
|  | for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++) | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | arm_register_names[i]); | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  | } | 
|  | else | 
|  | have_fpa_registers = false; | 
|  |  | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.xscale.iwmmxt"); | 
|  | if (feature != NULL) | 
|  | { | 
|  | static const char *const iwmmxt_names[] = { | 
|  | "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7", | 
|  | "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15", | 
|  | "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "", | 
|  | "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "", | 
|  | }; | 
|  |  | 
|  | valid_p = 1; | 
|  | for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++) | 
|  | valid_p | 
|  | &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | iwmmxt_names[i - ARM_WR0_REGNUM]); | 
|  |  | 
|  | /* Check for the control registers, but do not fail if they | 
|  | are missing.  */ | 
|  | for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++) | 
|  | tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | iwmmxt_names[i - ARM_WR0_REGNUM]); | 
|  |  | 
|  | for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++) | 
|  | valid_p | 
|  | &= tdesc_numbered_register (feature, tdesc_data.get (), i, | 
|  | iwmmxt_names[i - ARM_WR0_REGNUM]); | 
|  |  | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  |  | 
|  | have_wmmx_registers = true; | 
|  | } | 
|  |  | 
|  | /* If we have a VFP unit, check whether the single precision registers | 
|  | are present.  If not, then we will synthesize them as pseudo | 
|  | registers.  */ | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.vfp"); | 
|  | if (feature != NULL) | 
|  | { | 
|  | static const char *const vfp_double_names[] = { | 
|  | "d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7", | 
|  | "d8", "d9", "d10", "d11", "d12", "d13", "d14", "d15", | 
|  | "d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23", | 
|  | "d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31", | 
|  | }; | 
|  |  | 
|  | /* Require the double precision registers.  There must be either | 
|  | 16 or 32.  */ | 
|  | valid_p = 1; | 
|  | for (i = 0; i < 32; i++) | 
|  | { | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | ARM_D0_REGNUM + i, | 
|  | vfp_double_names[i]); | 
|  | if (!valid_p) | 
|  | break; | 
|  | } | 
|  | if (!valid_p && i == 16) | 
|  | valid_p = 1; | 
|  |  | 
|  | /* Also require FPSCR.  */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | ARM_FPSCR_REGNUM, "fpscr"); | 
|  | if (!valid_p) | 
|  | return NULL; | 
|  |  | 
|  | have_vfp = true; | 
|  |  | 
|  | if (tdesc_unnumbered_register (feature, "s0") == 0) | 
|  | have_s_pseudos = true; | 
|  |  | 
|  | vfp_register_count = i; | 
|  |  | 
|  | /* If we have VFP, also check for NEON.  The architecture allows | 
|  | NEON without VFP (integer vector operations only), but GDB | 
|  | does not support that.  */ | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.neon"); | 
|  | if (feature != NULL) | 
|  | { | 
|  | /* NEON requires 32 double-precision registers.  */ | 
|  | if (i != 32) | 
|  | return NULL; | 
|  |  | 
|  | /* If there are quad registers defined by the stub, use | 
|  | their type; otherwise (normally) provide them with | 
|  | the default type.  */ | 
|  | if (tdesc_unnumbered_register (feature, "q0") == 0) | 
|  | have_q_pseudos = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for the TLS register feature.  */ | 
|  | feature = tdesc_find_feature (tdesc, "org.gnu.gdb.arm.tls"); | 
|  | if (feature != nullptr) | 
|  | { | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "tpidruro"); | 
|  | if (!valid_p) | 
|  | return nullptr; | 
|  |  | 
|  | tls_regnum = register_count; | 
|  | register_count++; | 
|  | } | 
|  |  | 
|  | /* Check for MVE after all the checks for GPR's, VFP and Neon. | 
|  | MVE (Helium) is an M-profile extension.  */ | 
|  | if (is_m) | 
|  | { | 
|  | /* Do we have the MVE feature?  */ | 
|  | feature = tdesc_find_feature (tdesc,"org.gnu.gdb.arm.m-profile-mve"); | 
|  |  | 
|  | if (feature != nullptr) | 
|  | { | 
|  | /* If we have MVE, we must always have the VPR register.  */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "vpr"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("MVE feature is missing required register vpr.")); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | have_mve = true; | 
|  | mve_vpr_regnum = register_count; | 
|  | register_count++; | 
|  |  | 
|  | /* We can't have Q pseudo registers available here, as that | 
|  | would mean we have NEON features, and that is only available | 
|  | on A and R profiles.  */ | 
|  | gdb_assert (!have_q_pseudos); | 
|  |  | 
|  | /* Given we have a M-profile target description, if MVE is | 
|  | enabled and there are VFP registers, we should have Q | 
|  | pseudo registers (Q0 ~ Q7).  */ | 
|  | if (have_vfp) | 
|  | have_q_pseudos = true; | 
|  | } | 
|  |  | 
|  | /* Do we have the ARMv8.1-m PACBTI feature?  */ | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.m-profile-pacbti"); | 
|  | if (feature != nullptr) | 
|  | { | 
|  | /* By advertising this feature, the target acknowledges the | 
|  | presence of the ARMv8.1-m PACBTI extensions. | 
|  |  | 
|  | We don't care for any particular registers in this group, so | 
|  | the target is free to include whatever it deems appropriate. | 
|  |  | 
|  | The expectation is for this feature to include the PAC | 
|  | keys.  */ | 
|  | have_pacbti = true; | 
|  | } | 
|  |  | 
|  | /* Do we have the Security extension?  */ | 
|  | feature = tdesc_find_feature (tdesc, | 
|  | "org.gnu.gdb.arm.secext"); | 
|  | if (feature != nullptr) | 
|  | { | 
|  | /* Secure/Non-secure stack pointers.  */ | 
|  | /* MSP_NS */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "msp_ns"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile secext feature is missing required register msp_ns.")); | 
|  | return nullptr; | 
|  | } | 
|  | m_profile_msp_ns_regnum = register_count++; | 
|  |  | 
|  | /* PSP_NS */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "psp_ns"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile secext feature is missing required register psp_ns.")); | 
|  | return nullptr; | 
|  | } | 
|  | m_profile_psp_ns_regnum = register_count++; | 
|  |  | 
|  | /* MSP_S */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "msp_s"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile secext feature is missing required register msp_s.")); | 
|  | return nullptr; | 
|  | } | 
|  | m_profile_msp_s_regnum = register_count++; | 
|  |  | 
|  | /* PSP_S */ | 
|  | valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), | 
|  | register_count, "psp_s"); | 
|  | if (!valid_p) | 
|  | { | 
|  | warning (_("M-profile secext feature is missing required register psp_s.")); | 
|  | return nullptr; | 
|  | } | 
|  | m_profile_psp_s_regnum = register_count++; | 
|  |  | 
|  | have_sec_ext = true; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there is already a candidate, use it.  */ | 
|  | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | 
|  | best_arch != NULL; | 
|  | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (best_arch->gdbarch); | 
|  |  | 
|  | if (arm_abi != ARM_ABI_AUTO && arm_abi != tdep->arm_abi) | 
|  | continue; | 
|  |  | 
|  | if (fp_model != ARM_FLOAT_AUTO && fp_model != tdep->fp_model) | 
|  | continue; | 
|  |  | 
|  | /* There are various other properties in tdep that we do not | 
|  | need to check here: those derived from a target description, | 
|  | since gdbarches with a different target description are | 
|  | automatically disqualified.  */ | 
|  |  | 
|  | /* Do check is_m, though, since it might come from the binary.  */ | 
|  | if (is_m != tdep->is_m) | 
|  | continue; | 
|  |  | 
|  | /* Also check for ARMv8.1-m PACBTI support, since it might come from | 
|  | the binary.  */ | 
|  | if (have_pacbti != tdep->have_pacbti) | 
|  | continue; | 
|  |  | 
|  | /* Found a match.  */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (best_arch != NULL) | 
|  | return best_arch->gdbarch; | 
|  |  | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new arm_gdbarch_tdep)); | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | /* Record additional information about the architecture we are defining. | 
|  | These are gdbarch discriminators, like the OSABI.  */ | 
|  | tdep->arm_abi = arm_abi; | 
|  | tdep->fp_model = fp_model; | 
|  | tdep->is_m = is_m; | 
|  | tdep->have_sec_ext = have_sec_ext; | 
|  | tdep->have_fpa_registers = have_fpa_registers; | 
|  | tdep->have_wmmx_registers = have_wmmx_registers; | 
|  | gdb_assert (vfp_register_count == 0 | 
|  | || vfp_register_count == 16 | 
|  | || vfp_register_count == 32); | 
|  | tdep->vfp_register_count = vfp_register_count; | 
|  | tdep->have_s_pseudos = have_s_pseudos; | 
|  | tdep->have_q_pseudos = have_q_pseudos; | 
|  | tdep->have_neon = have_neon; | 
|  | tdep->tls_regnum = tls_regnum; | 
|  |  | 
|  | /* Adjust the MVE feature settings.  */ | 
|  | if (have_mve) | 
|  | { | 
|  | tdep->have_mve = true; | 
|  | tdep->mve_vpr_regnum = mve_vpr_regnum; | 
|  | } | 
|  |  | 
|  | /* Adjust the PACBTI feature settings.  */ | 
|  | tdep->have_pacbti = have_pacbti; | 
|  |  | 
|  | /* Adjust the M-profile stack pointers settings.  */ | 
|  | if (have_m_profile_msp) | 
|  | { | 
|  | tdep->m_profile_msp_regnum = m_profile_msp_regnum; | 
|  | tdep->m_profile_psp_regnum = m_profile_psp_regnum; | 
|  | tdep->m_profile_msp_ns_regnum = m_profile_msp_ns_regnum; | 
|  | tdep->m_profile_psp_ns_regnum = m_profile_psp_ns_regnum; | 
|  | tdep->m_profile_msp_s_regnum = m_profile_msp_s_regnum; | 
|  | tdep->m_profile_psp_s_regnum = m_profile_psp_s_regnum; | 
|  | } | 
|  |  | 
|  | arm_register_g_packet_guesses (gdbarch); | 
|  |  | 
|  | /* Breakpoints.  */ | 
|  | switch (info.byte_order_for_code) | 
|  | { | 
|  | case BFD_ENDIAN_BIG: | 
|  | tdep->arm_breakpoint = arm_default_arm_be_breakpoint; | 
|  | tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint); | 
|  | tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint; | 
|  | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case BFD_ENDIAN_LITTLE: | 
|  | tdep->arm_breakpoint = arm_default_arm_le_breakpoint; | 
|  | tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint); | 
|  | tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint; | 
|  | tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint); | 
|  |  | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (_("arm_gdbarch_init: bad byte order for float format")); | 
|  | } | 
|  |  | 
|  | /* On ARM targets char defaults to unsigned.  */ | 
|  | set_gdbarch_char_signed (gdbarch, 0); | 
|  |  | 
|  | /* wchar_t is unsigned under the AAPCS.  */ | 
|  | if (tdep->arm_abi == ARM_ABI_AAPCS) | 
|  | set_gdbarch_wchar_signed (gdbarch, 0); | 
|  | else | 
|  | set_gdbarch_wchar_signed (gdbarch, 1); | 
|  |  | 
|  | /* Compute type alignment.  */ | 
|  | set_gdbarch_type_align (gdbarch, arm_type_align); | 
|  |  | 
|  | /* Note: for displaced stepping, this includes the breakpoint, and one word | 
|  | of additional scratch space.  This setting isn't used for anything beside | 
|  | displaced stepping at present.  */ | 
|  | set_gdbarch_displaced_step_buffer_length | 
|  | (gdbarch, 4 * ARM_DISPLACED_MODIFIED_INSNS); | 
|  | set_gdbarch_max_insn_length (gdbarch, 4); | 
|  |  | 
|  | /* This should be low enough for everything.  */ | 
|  | tdep->lowest_pc = 0x20; | 
|  | tdep->jb_pc = -1;	/* Longjump support not enabled by default.  */ | 
|  |  | 
|  | /* The default, for both APCS and AAPCS, is to return small | 
|  | structures in registers.  */ | 
|  | tdep->struct_return = reg_struct_return; | 
|  |  | 
|  | set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call); | 
|  | set_gdbarch_frame_align (gdbarch, arm_frame_align); | 
|  |  | 
|  | if (is_m) | 
|  | set_gdbarch_code_of_frame_writable (gdbarch, arm_code_of_frame_writable); | 
|  |  | 
|  | set_gdbarch_write_pc (gdbarch, arm_write_pc); | 
|  |  | 
|  | frame_base_set_default (gdbarch, &arm_normal_base); | 
|  |  | 
|  | /* Address manipulation.  */ | 
|  | set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove); | 
|  |  | 
|  | /* Advance PC across function entry code.  */ | 
|  | set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue); | 
|  |  | 
|  | /* Detect whether PC is at a point where the stack has been destroyed.  */ | 
|  | set_gdbarch_stack_frame_destroyed_p (gdbarch, arm_stack_frame_destroyed_p); | 
|  |  | 
|  | /* Skip trampolines.  */ | 
|  | set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub); | 
|  |  | 
|  | /* The stack grows downward.  */ | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | /* Breakpoint manipulation.  */ | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, arm_breakpoint_kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, arm_sw_breakpoint_from_kind); | 
|  | set_gdbarch_breakpoint_kind_from_current_state (gdbarch, | 
|  | arm_breakpoint_kind_from_current_state); | 
|  |  | 
|  | /* Information about registers, etc.  */ | 
|  | set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM); | 
|  | set_gdbarch_num_regs (gdbarch, register_count); | 
|  | set_gdbarch_register_type (gdbarch, arm_register_type); | 
|  | set_gdbarch_register_reggroup_p (gdbarch, arm_register_reggroup_p); | 
|  |  | 
|  | /* This "info float" is FPA-specific.  Use the generic version if we | 
|  | do not have FPA.  */ | 
|  | if (tdep->have_fpa_registers) | 
|  | set_gdbarch_print_float_info (gdbarch, arm_print_float_info); | 
|  |  | 
|  | /* Internal <-> external register number maps.  */ | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum); | 
|  | set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno); | 
|  |  | 
|  | set_gdbarch_register_name (gdbarch, arm_register_name); | 
|  |  | 
|  | /* Returning results.  */ | 
|  | set_gdbarch_return_value_as_value (gdbarch, arm_return_value); | 
|  |  | 
|  | /* Disassembly.  */ | 
|  | set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm); | 
|  |  | 
|  | /* Minsymbol frobbing.  */ | 
|  | set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special); | 
|  | set_gdbarch_coff_make_msymbol_special (gdbarch, | 
|  | arm_coff_make_msymbol_special); | 
|  | set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol); | 
|  |  | 
|  | /* Thumb-2 IT block support.  */ | 
|  | set_gdbarch_adjust_breakpoint_address (gdbarch, | 
|  | arm_adjust_breakpoint_address); | 
|  |  | 
|  | /* Virtual tables.  */ | 
|  | set_gdbarch_vbit_in_delta (gdbarch, 1); | 
|  |  | 
|  | /* Hook in the ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg); | 
|  |  | 
|  | /* Add some default predicates.  */ | 
|  | if (is_m) | 
|  | frame_unwind_append_unwinder (gdbarch, &arm_m_exception_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind); | 
|  | dwarf2_append_unwinders (gdbarch); | 
|  | frame_unwind_append_unwinder (gdbarch, &arm_exidx_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &arm_epilogue_frame_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind); | 
|  |  | 
|  | /* Now we have tuned the configuration, set a few final things, | 
|  | based on what the OS ABI has told us.  */ | 
|  |  | 
|  | /* If the ABI is not otherwise marked, assume the old GNU APCS.  EABI | 
|  | binaries are always marked.  */ | 
|  | if (tdep->arm_abi == ARM_ABI_AUTO) | 
|  | tdep->arm_abi = ARM_ABI_APCS; | 
|  |  | 
|  | /* Watchpoints are not steppable.  */ | 
|  | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); | 
|  |  | 
|  | /* We used to default to FPA for generic ARM, but almost nobody | 
|  | uses that now, and we now provide a way for the user to force | 
|  | the model.  So default to the most useful variant.  */ | 
|  | if (tdep->fp_model == ARM_FLOAT_AUTO) | 
|  | tdep->fp_model = ARM_FLOAT_SOFT_FPA; | 
|  |  | 
|  | if (tdep->jb_pc >= 0) | 
|  | set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target); | 
|  |  | 
|  | /* Floating point sizes and format.  */ | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA) | 
|  | { | 
|  | set_gdbarch_double_format | 
|  | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | 
|  | set_gdbarch_long_double_format | 
|  | (gdbarch, floatformats_ieee_double_littlebyte_bigword); | 
|  | } | 
|  | else | 
|  | { | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | 
|  | } | 
|  |  | 
|  | /* Hook used to decorate frames with signed return addresses, only available | 
|  | for ARMv8.1-m PACBTI.  */ | 
|  | if (is_m && have_pacbti) | 
|  | set_gdbarch_get_pc_address_flags (gdbarch, arm_get_pc_address_flags); | 
|  |  | 
|  | if (tdesc_data != nullptr) | 
|  | { | 
|  | set_tdesc_pseudo_register_name (gdbarch, arm_register_name); | 
|  |  | 
|  | tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); | 
|  | register_count = gdbarch_num_regs (gdbarch); | 
|  |  | 
|  | /* Override tdesc_register_type to adjust the types of VFP | 
|  | registers for NEON.  */ | 
|  | set_gdbarch_register_type (gdbarch, arm_register_type); | 
|  | } | 
|  |  | 
|  | /* Initialize the pseudo register data.  */ | 
|  | int num_pseudos = 0; | 
|  | if (tdep->have_s_pseudos) | 
|  | { | 
|  | /* VFP single precision pseudo registers (S0~S31).  */ | 
|  | tdep->s_pseudo_base = register_count; | 
|  | tdep->s_pseudo_count = 32; | 
|  | num_pseudos += tdep->s_pseudo_count; | 
|  |  | 
|  | if (tdep->have_q_pseudos) | 
|  | { | 
|  | /* NEON quad precision pseudo registers (Q0~Q15).  */ | 
|  | tdep->q_pseudo_base = register_count + num_pseudos; | 
|  |  | 
|  | if (have_neon) | 
|  | tdep->q_pseudo_count = 16; | 
|  | else if (have_mve) | 
|  | tdep->q_pseudo_count = ARM_MVE_NUM_Q_REGS; | 
|  |  | 
|  | num_pseudos += tdep->q_pseudo_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do we have any MVE pseudo registers?  */ | 
|  | if (have_mve) | 
|  | { | 
|  | tdep->mve_pseudo_base = register_count + num_pseudos; | 
|  | tdep->mve_pseudo_count = 1; | 
|  | num_pseudos += tdep->mve_pseudo_count; | 
|  | } | 
|  |  | 
|  | /* Do we have any ARMv8.1-m PACBTI pseudo registers.  */ | 
|  | if (have_pacbti) | 
|  | { | 
|  | tdep->pacbti_pseudo_base = register_count + num_pseudos; | 
|  | tdep->pacbti_pseudo_count = 1; | 
|  | num_pseudos += tdep->pacbti_pseudo_count; | 
|  | } | 
|  |  | 
|  | /* Set some pseudo register hooks, if we have pseudo registers.  */ | 
|  | if (tdep->have_s_pseudos || have_mve || have_pacbti) | 
|  | { | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudos); | 
|  | set_gdbarch_pseudo_register_read_value (gdbarch, arm_pseudo_read_value); | 
|  | set_gdbarch_pseudo_register_write (gdbarch, arm_pseudo_write); | 
|  | } | 
|  |  | 
|  | /* Add standard register aliases.  We add aliases even for those | 
|  | names which are used by the current architecture - it's simpler, | 
|  | and does no harm, since nothing ever lists user registers.  */ | 
|  | for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++) | 
|  | user_reg_add (gdbarch, arm_register_aliases[i].name, | 
|  | value_of_arm_user_reg, &arm_register_aliases[i].regnum); | 
|  |  | 
|  | set_gdbarch_disassembler_options (gdbarch, &arm_disassembler_options); | 
|  | set_gdbarch_valid_disassembler_options (gdbarch, disassembler_options_arm ()); | 
|  |  | 
|  | set_gdbarch_gnu_triplet_regexp (gdbarch, arm_gnu_triplet_regexp); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | static void | 
|  | arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep = gdbarch_tdep<arm_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (tdep == NULL) | 
|  | return; | 
|  |  | 
|  | gdb_printf (file, _("arm_dump_tdep: fp_model = %i\n"), | 
|  | (int) tdep->fp_model); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_fpa_registers = %i\n"), | 
|  | (int) tdep->have_fpa_registers); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_wmmx_registers = %i\n"), | 
|  | (int) tdep->have_wmmx_registers); | 
|  | gdb_printf (file, _("arm_dump_tdep: vfp_register_count = %i\n"), | 
|  | (int) tdep->vfp_register_count); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_s_pseudos = %s\n"), | 
|  | tdep->have_s_pseudos ? "true" : "false"); | 
|  | gdb_printf (file, _("arm_dump_tdep: s_pseudo_base = %i\n"), | 
|  | (int) tdep->s_pseudo_base); | 
|  | gdb_printf (file, _("arm_dump_tdep: s_pseudo_count = %i\n"), | 
|  | (int) tdep->s_pseudo_count); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_q_pseudos = %s\n"), | 
|  | tdep->have_q_pseudos ? "true" : "false"); | 
|  | gdb_printf (file, _("arm_dump_tdep: q_pseudo_base = %i\n"), | 
|  | (int) tdep->q_pseudo_base); | 
|  | gdb_printf (file, _("arm_dump_tdep: q_pseudo_count = %i\n"), | 
|  | (int) tdep->q_pseudo_count); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_neon = %i\n"), | 
|  | (int) tdep->have_neon); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_mve = %s\n"), | 
|  | tdep->have_mve ? "yes" : "no"); | 
|  | gdb_printf (file, _("arm_dump_tdep: mve_vpr_regnum = %i\n"), | 
|  | tdep->mve_vpr_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: mve_pseudo_base = %i\n"), | 
|  | tdep->mve_pseudo_base); | 
|  | gdb_printf (file, _("arm_dump_tdep: mve_pseudo_count = %i\n"), | 
|  | tdep->mve_pseudo_count); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_msp_regnum = %i\n"), | 
|  | tdep->m_profile_msp_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_psp_regnum = %i\n"), | 
|  | tdep->m_profile_psp_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_msp_ns_regnum = %i\n"), | 
|  | tdep->m_profile_msp_ns_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_psp_ns_regnum = %i\n"), | 
|  | tdep->m_profile_psp_ns_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_msp_s_regnum = %i\n"), | 
|  | tdep->m_profile_msp_s_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: m_profile_psp_s_regnum = %i\n"), | 
|  | tdep->m_profile_psp_s_regnum); | 
|  | gdb_printf (file, _("arm_dump_tdep: Lowest pc = 0x%lx\n"), | 
|  | (unsigned long) tdep->lowest_pc); | 
|  | gdb_printf (file, _("arm_dump_tdep: have_pacbti = %s\n"), | 
|  | tdep->have_pacbti ? "yes" : "no"); | 
|  | gdb_printf (file, _("arm_dump_tdep: pacbti_pseudo_base = %i\n"), | 
|  | tdep->pacbti_pseudo_base); | 
|  | gdb_printf (file, _("arm_dump_tdep: pacbti_pseudo_count = %i\n"), | 
|  | tdep->pacbti_pseudo_count); | 
|  | gdb_printf (file, _("arm_dump_tdep: is_m = %s\n"), | 
|  | tdep->is_m ? "yes" : "no"); | 
|  | } | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | namespace selftests | 
|  | { | 
|  | static void arm_record_test (void); | 
|  | static void arm_analyze_prologue_test (); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void _initialize_arm_tdep (); | 
|  | void | 
|  | _initialize_arm_tdep () | 
|  | { | 
|  | long length; | 
|  | int i, j; | 
|  | char regdesc[1024], *rdptr = regdesc; | 
|  | size_t rest = sizeof (regdesc); | 
|  |  | 
|  | gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep); | 
|  |  | 
|  | /* Add ourselves to objfile event chain.  */ | 
|  | gdb::observers::new_objfile.attach (arm_exidx_new_objfile, "arm-tdep"); | 
|  |  | 
|  | /* Register an ELF OS ABI sniffer for ARM binaries.  */ | 
|  | gdbarch_register_osabi_sniffer (bfd_arch_arm, | 
|  | bfd_target_elf_flavour, | 
|  | arm_elf_osabi_sniffer); | 
|  |  | 
|  | /* Add root prefix command for all "set arm"/"show arm" commands.  */ | 
|  | add_setshow_prefix_cmd ("arm", no_class, | 
|  | _("Various ARM-specific commands."), | 
|  | _("Various ARM-specific commands."), | 
|  | &setarmcmdlist, &showarmcmdlist, | 
|  | &setlist, &showlist); | 
|  |  | 
|  | arm_disassembler_options = xstrdup ("reg-names-std"); | 
|  | const disasm_options_t *disasm_options | 
|  | = &disassembler_options_arm ()->options; | 
|  | int num_disassembly_styles = 0; | 
|  | for (i = 0; disasm_options->name[i] != NULL; i++) | 
|  | if (startswith (disasm_options->name[i], "reg-names-")) | 
|  | num_disassembly_styles++; | 
|  |  | 
|  | /* Initialize the array that will be passed to add_setshow_enum_cmd().  */ | 
|  | valid_disassembly_styles = XNEWVEC (const char *, | 
|  | num_disassembly_styles + 1); | 
|  | for (i = j = 0; disasm_options->name[i] != NULL; i++) | 
|  | if (startswith (disasm_options->name[i], "reg-names-")) | 
|  | { | 
|  | size_t offset = strlen ("reg-names-"); | 
|  | const char *style = disasm_options->name[i]; | 
|  | valid_disassembly_styles[j++] = &style[offset]; | 
|  | if (strcmp (&style[offset], "std") == 0) | 
|  | disassembly_style = &style[offset]; | 
|  | length = snprintf (rdptr, rest, "%s - %s\n", &style[offset], | 
|  | disasm_options->description[i]); | 
|  | rdptr += length; | 
|  | rest -= length; | 
|  | } | 
|  | /* Mark the end of valid options.  */ | 
|  | valid_disassembly_styles[num_disassembly_styles] = NULL; | 
|  |  | 
|  | /* Create the help text.  */ | 
|  | std::string helptext = string_printf ("%s%s%s", | 
|  | _("The valid values are:\n"), | 
|  | regdesc, | 
|  | _("The default is \"std\".")); | 
|  |  | 
|  | add_setshow_enum_cmd("disassembler", no_class, | 
|  | valid_disassembly_styles, &disassembly_style, | 
|  | _("Set the disassembly style."), | 
|  | _("Show the disassembly style."), | 
|  | helptext.c_str (), | 
|  | set_disassembly_style_sfunc, | 
|  | show_disassembly_style_sfunc, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32, | 
|  | _("Set usage of ARM 32-bit mode."), | 
|  | _("Show usage of ARM 32-bit mode."), | 
|  | _("When off, a 26-bit PC will be used."), | 
|  | NULL, | 
|  | NULL, /* FIXME: i18n: Usage of ARM 32-bit | 
|  | mode is %s.  */ | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | /* Add a command to allow the user to force the FPU model.  */ | 
|  | add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, ¤t_fp_model, | 
|  | _("Set the floating point type."), | 
|  | _("Show the floating point type."), | 
|  | _("auto - Determine the FP typefrom the OS-ABI.\n\ | 
|  | softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\ | 
|  | fpa - FPA co-processor (GCC compiled).\n\ | 
|  | softvfp - Software FP with pure-endian doubles.\n\ | 
|  | vfp - VFP co-processor."), | 
|  | set_fp_model_sfunc, show_fp_model, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | /* Add a command to allow the user to force the ABI.  */ | 
|  | add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string, | 
|  | _("Set the ABI."), | 
|  | _("Show the ABI."), | 
|  | NULL, arm_set_abi, arm_show_abi, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | /* Add two commands to allow the user to force the assumed | 
|  | execution mode.  */ | 
|  | add_setshow_enum_cmd ("fallback-mode", class_support, | 
|  | arm_mode_strings, &arm_fallback_mode_string, | 
|  | _("Set the mode assumed when symbols are unavailable."), | 
|  | _("Show the mode assumed when symbols are unavailable."), | 
|  | NULL, NULL, arm_show_fallback_mode, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  | add_setshow_enum_cmd ("force-mode", class_support, | 
|  | arm_mode_strings, &arm_force_mode_string, | 
|  | _("Set the mode assumed even when symbols are available."), | 
|  | _("Show the mode assumed even when symbols are available."), | 
|  | NULL, NULL, arm_show_force_mode, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | /* Add a command to stop triggering security exceptions when | 
|  | unwinding exception stacks.  */ | 
|  | add_setshow_boolean_cmd ("unwind-secure-frames", no_class, &arm_unwind_secure_frames, | 
|  | _("Set usage of non-secure to secure exception stack unwinding."), | 
|  | _("Show usage of non-secure to secure exception stack unwinding."), | 
|  | _("When on, the debugger can trigger memory access traps."), | 
|  | NULL, arm_show_unwind_secure_frames, | 
|  | &setarmcmdlist, &showarmcmdlist); | 
|  |  | 
|  | /* Debugging flag.  */ | 
|  | add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug, | 
|  | _("Set ARM debugging."), | 
|  | _("Show ARM debugging."), | 
|  | _("When on, arm-specific debugging is enabled."), | 
|  | NULL, | 
|  | NULL, /* FIXME: i18n: "ARM debugging is %s.  */ | 
|  | &setdebuglist, &showdebuglist); | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | selftests::register_test ("arm-record", selftests::arm_record_test); | 
|  | selftests::register_test ("arm_analyze_prologue", selftests::arm_analyze_prologue_test); | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | /* ARM-reversible process record data structures.  */ | 
|  |  | 
|  | #define ARM_INSN_SIZE_BYTES 4 | 
|  | #define THUMB_INSN_SIZE_BYTES 2 | 
|  | #define THUMB2_INSN_SIZE_BYTES 4 | 
|  |  | 
|  |  | 
|  | /* Position of the bit within a 32-bit ARM instruction | 
|  | that defines whether the instruction is a load or store.  */ | 
|  | #define INSN_S_L_BIT_NUM 20 | 
|  |  | 
|  | #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \ | 
|  | do  \ | 
|  | { \ | 
|  | unsigned int reg_len = LENGTH; \ | 
|  | if (reg_len) \ | 
|  | { \ | 
|  | REGS = XNEWVEC (uint32_t, reg_len); \ | 
|  | memcpy(®S[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \ | 
|  | } \ | 
|  | } \ | 
|  | while (0) | 
|  |  | 
|  | #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \ | 
|  | do  \ | 
|  | { \ | 
|  | unsigned int mem_len = LENGTH; \ | 
|  | if (mem_len) \ | 
|  | { \ | 
|  | MEMS =  XNEWVEC (struct arm_mem_r, mem_len);  \ | 
|  | memcpy(&MEMS->len, &RECORD_BUF[0], \ | 
|  | sizeof(struct arm_mem_r) * LENGTH); \ | 
|  | } \ | 
|  | } \ | 
|  | while (0) | 
|  |  | 
|  | /* Checks whether insn is already recorded or yet to be decoded. (boolean expression).  */ | 
|  | #define INSN_RECORDED(ARM_RECORD) \ | 
|  | (0 != (ARM_RECORD)->reg_rec_count || 0 != (ARM_RECORD)->mem_rec_count) | 
|  |  | 
|  | /* ARM memory record structure.  */ | 
|  | struct arm_mem_r | 
|  | { | 
|  | uint32_t len;    /* Record length.  */ | 
|  | uint32_t addr;   /* Memory address.  */ | 
|  | }; | 
|  |  | 
|  | /* ARM instruction record contains opcode of current insn | 
|  | and execution state (before entry to decode_insn()), | 
|  | contains list of to-be-modified registers and | 
|  | memory blocks (on return from decode_insn()).  */ | 
|  |  | 
|  | struct arm_insn_decode_record | 
|  | { | 
|  | struct gdbarch *gdbarch; | 
|  | struct regcache *regcache; | 
|  | CORE_ADDR this_addr;          /* Address of the insn being decoded.  */ | 
|  | uint32_t arm_insn;            /* Should accommodate thumb.  */ | 
|  | uint32_t cond;                /* Condition code.  */ | 
|  | uint32_t opcode;              /* Insn opcode.  */ | 
|  | uint32_t decode;              /* Insn decode bits.  */ | 
|  | uint32_t mem_rec_count;       /* No of mem records.  */ | 
|  | uint32_t reg_rec_count;       /* No of reg records.  */ | 
|  | uint32_t *arm_regs;           /* Registers to be saved for this record.  */ | 
|  | struct arm_mem_r *arm_mems;   /* Memory to be saved for this record.  */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Checks ARM SBZ and SBO mandatory fields.  */ | 
|  |  | 
|  | static int | 
|  | sbo_sbz (uint32_t insn, uint32_t bit_num, uint32_t len, uint32_t sbo) | 
|  | { | 
|  | uint32_t ones = bits (insn, bit_num - 1, (bit_num -1) + (len - 1)); | 
|  |  | 
|  | if (!len) | 
|  | return 1; | 
|  |  | 
|  | if (!sbo) | 
|  | ones = ~ones; | 
|  |  | 
|  | while (ones) | 
|  | { | 
|  | if (!(ones & sbo)) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | ones = ones >> 1; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | enum arm_record_result | 
|  | { | 
|  | ARM_RECORD_SUCCESS = 0, | 
|  | ARM_RECORD_FAILURE = 1 | 
|  | }; | 
|  |  | 
|  | enum arm_record_strx_t | 
|  | { | 
|  | ARM_RECORD_STRH=1, | 
|  | ARM_RECORD_STRD | 
|  | }; | 
|  |  | 
|  | enum record_type_t | 
|  | { | 
|  | ARM_RECORD=1, | 
|  | THUMB_RECORD, | 
|  | THUMB2_RECORD | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int | 
|  | arm_record_strx (arm_insn_decode_record *arm_insn_r, uint32_t *record_buf, | 
|  | uint32_t *record_buf_mem, arm_record_strx_t str_type) | 
|  | { | 
|  |  | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  | ULONGEST u_regval[2]= {0}; | 
|  |  | 
|  | uint32_t reg_src1 = 0, reg_src2 = 0; | 
|  | uint32_t immed_high = 0, immed_low = 0,offset_8 = 0, tgt_mem_addr = 0; | 
|  |  | 
|  | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | 
|  | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | 
|  |  | 
|  | if (14 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | 
|  | { | 
|  | /* 1) Handle misc store, immediate offset.  */ | 
|  | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, | 
|  | &u_regval[0]); | 
|  | if (ARM_PC_REGNUM == reg_src1) | 
|  | { | 
|  | /* If R15 was used as Rn, hence current PC+8.  */ | 
|  | u_regval[0] = u_regval[0] + 8; | 
|  | } | 
|  | offset_8 = (immed_high << 4) | immed_low; | 
|  | /* Calculate target store address.  */ | 
|  | if (14 == arm_insn_r->opcode) | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] + offset_8; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] - offset_8; | 
|  | } | 
|  | if (ARM_RECORD_STRH == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 2; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (ARM_RECORD_STRD == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = tgt_mem_addr + 4; | 
|  | arm_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else if (12 == arm_insn_r->opcode || 8 == arm_insn_r->opcode) | 
|  | { | 
|  | /* 2) Store, register offset.  */ | 
|  | /* Get Rm.  */ | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | /* Get Rn.  */ | 
|  | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | 
|  | if (15 == reg_src2) | 
|  | { | 
|  | /* If R15 was used as Rn, hence current PC+8.  */ | 
|  | u_regval[0] = u_regval[0] + 8; | 
|  | } | 
|  | /* Calculate target store address, Rn +/- Rm, register offset.  */ | 
|  | if (12 == arm_insn_r->opcode) | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] + u_regval[1]; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[1] - u_regval[0]; | 
|  | } | 
|  | if (ARM_RECORD_STRH == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 2; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (ARM_RECORD_STRD == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = tgt_mem_addr + 4; | 
|  | arm_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else if (11 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | 
|  | || 2 == arm_insn_r->opcode  || 6 == arm_insn_r->opcode) | 
|  | { | 
|  | /* 3) Store, immediate pre-indexed.  */ | 
|  | /* 5) Store, immediate post-indexed.  */ | 
|  | immed_low = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | immed_high = bits (arm_insn_r->arm_insn, 8, 11); | 
|  | offset_8 = (immed_high << 4) | immed_low; | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | /* Calculate target store address, Rn +/- Rm, register offset.  */ | 
|  | if (15 == arm_insn_r->opcode || 6 == arm_insn_r->opcode) | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] + offset_8; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] - offset_8; | 
|  | } | 
|  | if (ARM_RECORD_STRH == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 2; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (ARM_RECORD_STRD == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = tgt_mem_addr + 4; | 
|  | arm_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | /* Record Rn also as it changes.  */ | 
|  | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (9 == arm_insn_r->opcode || 13 == arm_insn_r->opcode | 
|  | || 0 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | 
|  | { | 
|  | /* 4) Store, register pre-indexed.  */ | 
|  | /* 6) Store, register post -indexed.  */ | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | 
|  | /* Calculate target store address, Rn +/- Rm, register offset.  */ | 
|  | if (13 == arm_insn_r->opcode || 4 == arm_insn_r->opcode) | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] + u_regval[1]; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[1] - u_regval[0]; | 
|  | } | 
|  | if (ARM_RECORD_STRH == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 2; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (ARM_RECORD_STRD == str_type) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = tgt_mem_addr + 4; | 
|  | arm_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | /* Record Rn also as it changes.  */ | 
|  | *(record_buf) = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling ARM extension space insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_extension_space (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | int ret = 0;  /* Return value: -1:record failure ;  0:success  */ | 
|  | uint32_t opcode1 = 0, opcode2 = 0, insn_op1 = 0; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  | uint32_t reg_src1 = 0; | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | gdb_assert (!INSN_RECORDED(arm_insn_r)); | 
|  | /* Handle unconditional insn extension space.  */ | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 20, 27); | 
|  | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | 
|  | if (arm_insn_r->cond) | 
|  | { | 
|  | /* PLD has no affect on architectural state, it just affects | 
|  | the caches.  */ | 
|  | if (5 == ((opcode1 & 0xE0) >> 5)) | 
|  | { | 
|  | /* BLX(1) */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | /* STC2, LDC2, MCR2, MRC2, CDP2: <TBD>, co-processor insn.  */ | 
|  | } | 
|  |  | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | 
|  | if (3 == opcode1 && bit (arm_insn_r->arm_insn, 4)) | 
|  | { | 
|  | ret = -1; | 
|  | /* Undefined instruction on ARM V5; need to handle if later | 
|  | versions define it.  */ | 
|  | } | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 24, 27); | 
|  | opcode2 = bits (arm_insn_r->arm_insn, 4, 7); | 
|  | insn_op1 = bits (arm_insn_r->arm_insn, 20, 23); | 
|  |  | 
|  | /* Handle arithmetic insn extension space.  */ | 
|  | if (!opcode1 && 9 == opcode2 && 1 != arm_insn_r->cond | 
|  | && !INSN_RECORDED(arm_insn_r)) | 
|  | { | 
|  | /* Handle MLA(S) and MUL(S).  */ | 
|  | if (in_inclusive_range (insn_op1, 0U, 3U)) | 
|  | { | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (in_inclusive_range (insn_op1, 4U, 15U)) | 
|  | { | 
|  | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S).  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[2] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 26, 27); | 
|  | opcode2 = bits (arm_insn_r->arm_insn, 23, 24); | 
|  | insn_op1 = bits (arm_insn_r->arm_insn, 21, 22); | 
|  |  | 
|  | /* Handle control insn extension space.  */ | 
|  |  | 
|  | if (!opcode1 && 2 == opcode2 && !bit (arm_insn_r->arm_insn, 20) | 
|  | && 1 != arm_insn_r->cond && !INSN_RECORDED(arm_insn_r)) | 
|  | { | 
|  | if (!bit (arm_insn_r->arm_insn,25)) | 
|  | { | 
|  | if (!bits (arm_insn_r->arm_insn, 4, 7)) | 
|  | { | 
|  | if ((0 == insn_op1) || (2 == insn_op1)) | 
|  | { | 
|  | /* MRS.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == insn_op1) | 
|  | { | 
|  | /* CSPR is going to be changed.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (3 == insn_op1) | 
|  | { | 
|  | /* SPSR is going to be changed.  */ | 
|  | /* We need to get SPSR value, which is yet to be done.  */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (1 == bits (arm_insn_r->arm_insn, 4, 7)) | 
|  | { | 
|  | if (1 == insn_op1) | 
|  | { | 
|  | /* BX.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (3 == insn_op1) | 
|  | { | 
|  | /* CLZ.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else if (3 == bits (arm_insn_r->arm_insn, 4, 7)) | 
|  | { | 
|  | /* BLX.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (5 == bits (arm_insn_r->arm_insn, 4, 7)) | 
|  | { | 
|  | /* QADD, QSUB, QDADD, QDSUB */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (7 == bits (arm_insn_r->arm_insn, 4, 7)) | 
|  | { | 
|  | /* BKPT.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | /* Save SPSR also;how?  */ | 
|  | return -1; | 
|  | } | 
|  | else if(8 == bits (arm_insn_r->arm_insn, 4, 7) | 
|  | || 10 == bits (arm_insn_r->arm_insn, 4, 7) | 
|  | || 12 == bits (arm_insn_r->arm_insn, 4, 7) | 
|  | || 14 == bits (arm_insn_r->arm_insn, 4, 7) | 
|  | ) | 
|  | { | 
|  | if (0 == insn_op1 || 1 == insn_op1) | 
|  | { | 
|  | /* SMLA<x><y>, SMLAW<y>, SMULW<y>.  */ | 
|  | /* We dont do optimization for SMULW<y> where we | 
|  | need only Rd.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (2 == insn_op1) | 
|  | { | 
|  | /* SMLAL<x><y>.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (3 == insn_op1) | 
|  | { | 
|  | /* SMUL<x><y>.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* MSR : immediate form.  */ | 
|  | if (1 == insn_op1) | 
|  | { | 
|  | /* CSPR is going to be changed.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (3 == insn_op1) | 
|  | { | 
|  | /* SPSR is going to be changed.  */ | 
|  | /* we need to get SPSR value, which is yet to be done  */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 25, 27); | 
|  | opcode2 = bits (arm_insn_r->arm_insn, 20, 24); | 
|  | insn_op1 = bits (arm_insn_r->arm_insn, 5, 6); | 
|  |  | 
|  | /* Handle load/store insn extension space.  */ | 
|  |  | 
|  | if (!opcode1 && bit (arm_insn_r->arm_insn, 7) | 
|  | && bit (arm_insn_r->arm_insn, 4) && 1 != arm_insn_r->cond | 
|  | && !INSN_RECORDED(arm_insn_r)) | 
|  | { | 
|  | /* SWP/SWPB.  */ | 
|  | if (0 == insn_op1) | 
|  | { | 
|  | /* These insn, changes register and memory as well.  */ | 
|  | /* SWP or SWPB insn.  */ | 
|  | /* Get memory address given by Rn.  */ | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | 
|  | /* SWP insn ?, swaps word.  */ | 
|  | if (8 == arm_insn_r->opcode) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* SWPB insn, swaps only byte.  */ | 
|  | record_buf_mem[0] = 1; | 
|  | } | 
|  | record_buf_mem[1] = u_regval; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | 
|  | { | 
|  | /* STRH.  */ | 
|  | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | 
|  | ARM_RECORD_STRH); | 
|  | } | 
|  | else if (2 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | 
|  | { | 
|  | /* LDRD.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = record_buf[0] + 1; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (3 == insn_op1 && !bit (arm_insn_r->arm_insn, 20)) | 
|  | { | 
|  | /* STRD.  */ | 
|  | arm_record_strx(arm_insn_r, &record_buf[0], &record_buf_mem[0], | 
|  | ARM_RECORD_STRD); | 
|  | } | 
|  | else if (bit (arm_insn_r->arm_insn, 20) && insn_op1 <= 3) | 
|  | { | 
|  | /* LDRH, LDRSB, LDRSH.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 23, 27); | 
|  | if (24 == opcode1 && bit (arm_insn_r->arm_insn, 21) | 
|  | && !INSN_RECORDED(arm_insn_r)) | 
|  | { | 
|  | ret = -1; | 
|  | /* Handle coprocessor insn extension space.  */ | 
|  | } | 
|  |  | 
|  | /* To be done for ARMv5 and later; as of now we return -1.  */ | 
|  | if (-1 == ret) | 
|  | return ret; | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 000 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_data_proc_misc_ld_str (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  | ULONGEST u_regval[2] = {0}; | 
|  |  | 
|  | uint32_t reg_src1 = 0; | 
|  | uint32_t opcode1 = 0; | 
|  |  | 
|  | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | 
|  | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | 
|  | opcode1 = bits (arm_insn_r->arm_insn, 20, 24); | 
|  |  | 
|  | if (!((opcode1 & 0x19) == 0x10)) | 
|  | { | 
|  | /* Data-processing (register) and Data-processing (register-shifted | 
|  | register */ | 
|  | /* Out of 11 shifter operands mode, all the insn modifies destination | 
|  | register, which is specified by 13-16 decode.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if ((arm_insn_r->decode < 8) && ((opcode1 & 0x19) == 0x10)) | 
|  | { | 
|  | /* Miscellaneous instructions */ | 
|  |  | 
|  | if (3 == arm_insn_r->decode && 0x12 == opcode1 | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | 
|  | { | 
|  | /* Handle BLX, branch and link/exchange.  */ | 
|  | if (9 == arm_insn_r->opcode) | 
|  | { | 
|  | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm, | 
|  | and R14 stores the return address.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else if (7 == arm_insn_r->decode && 0x12 == opcode1) | 
|  | { | 
|  | /* Handle enhanced software breakpoint insn, BKPT.  */ | 
|  | /* CPSR is changed to be executed in ARM state,  disabling normal | 
|  | interrupts, entering abort mode.  */ | 
|  | /* According to high vector configuration PC is set.  */ | 
|  | /* user hit breakpoint and type reverse, in | 
|  | that case, we need to go back with previous CPSR and | 
|  | Program Counter.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | /* Save SPSR also; how?  */ | 
|  | return -1; | 
|  | } | 
|  | else if (1 == arm_insn_r->decode && 0x12 == opcode1 | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 9, 12, 1)) | 
|  | { | 
|  | /* Handle BX, branch and link/exchange.  */ | 
|  | /* Branch is chosen by setting T bit of CSPR, bitp[0] of Rm.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == arm_insn_r->decode && 0x16 == opcode1 | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 9, 4, 1) | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1)) | 
|  | { | 
|  | /* Count leading zeros: CLZ.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (!bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM) | 
|  | && (8 == arm_insn_r->opcode || 10 == arm_insn_r->opcode) | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 17, 4, 1) | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 1, 12, 0)) | 
|  | { | 
|  | /* Handle MRS insn.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else if (9 == arm_insn_r->decode && opcode1 < 0x10) | 
|  | { | 
|  | /* Multiply and multiply-accumulate */ | 
|  |  | 
|  | /* Handle multiply instructions.  */ | 
|  | /* MLA, MUL, SMLAL, SMULL, UMLAL, UMULL.  */ | 
|  | if (0 == arm_insn_r->opcode || 1 == arm_insn_r->opcode) | 
|  | { | 
|  | /* Handle MLA and MUL.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else if (4 <= arm_insn_r->opcode && 7 >= arm_insn_r->opcode) | 
|  | { | 
|  | /* Handle SMLAL, SMULL, UMLAL, UMULL.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | record_buf[1] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[2] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 3; | 
|  | } | 
|  | } | 
|  | else if (9 == arm_insn_r->decode  && opcode1 > 0x10) | 
|  | { | 
|  | /* Synchronization primitives */ | 
|  |  | 
|  | /* Handling SWP, SWPB.  */ | 
|  | /* These insn, changes register and memory as well.  */ | 
|  | /* SWP or SWPB insn.  */ | 
|  |  | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | /* SWP insn ?, swaps word.  */ | 
|  | if (8 == arm_insn_r->opcode) | 
|  | { | 
|  | record_buf_mem[0] = 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* SWPB insn, swaps only byte.  */ | 
|  | record_buf_mem[0] = 1; | 
|  | } | 
|  | record_buf_mem[1] = u_regval[0]; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (11 == arm_insn_r->decode || 13 == arm_insn_r->decode | 
|  | || 15 == arm_insn_r->decode) | 
|  | { | 
|  | if ((opcode1 & 0x12) == 2) | 
|  | { | 
|  | /* Extra load/store (unprivileged) */ | 
|  | return -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Extra load/store */ | 
|  | switch (bits (arm_insn_r->arm_insn, 5, 6)) | 
|  | { | 
|  | case 1: | 
|  | if ((opcode1 & 0x05) == 0x0 || (opcode1 & 0x05) == 0x4) | 
|  | { | 
|  | /* STRH (register), STRH (immediate) */ | 
|  | arm_record_strx (arm_insn_r, &record_buf[0], | 
|  | &record_buf_mem[0], ARM_RECORD_STRH); | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x1) | 
|  | { | 
|  | /* LDRH (register) */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x5) | 
|  | { | 
|  | /* LDRH (immediate), LDRH (literal) */ | 
|  | int rn = bits (arm_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (rn != 15) | 
|  | { | 
|  | /*LDRH (immediate) */ | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] = rn; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | break; | 
|  | case 2: | 
|  | if ((opcode1 & 0x05) == 0x0) | 
|  | { | 
|  | /* LDRD (register) */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = record_buf[0] + 1; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x1) | 
|  | { | 
|  | /* LDRSB (register) */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x4 || (opcode1 & 0x05) == 0x5) | 
|  | { | 
|  | /* LDRD (immediate), LDRD (literal), LDRSB (immediate), | 
|  | LDRSB (literal) */ | 
|  | int rn = bits (arm_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (rn != 15) | 
|  | { | 
|  | /*LDRD (immediate), LDRSB (immediate) */ | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] = rn; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | break; | 
|  | case 3: | 
|  | if ((opcode1 & 0x05) == 0x0) | 
|  | { | 
|  | /* STRD (register) */ | 
|  | arm_record_strx (arm_insn_r, &record_buf[0], | 
|  | &record_buf_mem[0], ARM_RECORD_STRD); | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x1) | 
|  | { | 
|  | /* LDRSH (register) */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x4) | 
|  | { | 
|  | /* STRD (immediate) */ | 
|  | arm_record_strx (arm_insn_r, &record_buf[0], | 
|  | &record_buf_mem[0], ARM_RECORD_STRD); | 
|  | } | 
|  | else if ((opcode1 & 0x05) == 0x5) | 
|  | { | 
|  | /* LDRSH (immediate), LDRSH (literal) */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | /* Write back to Rn.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | else | 
|  | return -1; | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 001 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_data_proc_imm (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  |  | 
|  | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | 
|  | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | 
|  |  | 
|  | if ((9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode) | 
|  | && 2 == bits (arm_insn_r->arm_insn, 20, 21) | 
|  | && sbo_sbz (arm_insn_r->arm_insn, 13, 4, 1) | 
|  | ) | 
|  | { | 
|  | /* Handle MSR insn.  */ | 
|  | if (9 == arm_insn_r->opcode) | 
|  | { | 
|  | /* CSPR is going to be changed.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* SPSR is going to be changed.  */ | 
|  | } | 
|  | } | 
|  | else if (arm_insn_r->opcode <= 15) | 
|  | { | 
|  | /* Normal data processing insns.  */ | 
|  | /* Out of 11 shifter operands mode, all the insn modifies destination | 
|  | register, which is specified by 13-16 decode.  */ | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_record_media (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | switch (bits (arm_insn_r->arm_insn, 22, 24)) | 
|  | { | 
|  | case 0: | 
|  | /* Parallel addition and subtraction, signed */ | 
|  | case 1: | 
|  | /* Parallel addition and subtraction, unsigned */ | 
|  | case 2: | 
|  | case 3: | 
|  | /* Packing, unpacking, saturation and reversal */ | 
|  | { | 
|  | int rd = bits (arm_insn_r->arm_insn, 12, 15); | 
|  |  | 
|  | record_buf[arm_insn_r->reg_rec_count++] = rd; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | case 5: | 
|  | /* Signed multiplies */ | 
|  | { | 
|  | int rd = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 22); | 
|  |  | 
|  | record_buf[arm_insn_r->reg_rec_count++] = rd; | 
|  | if (op1 == 0x0) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | 
|  | else if (op1 == 0x4) | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 6: | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 21) | 
|  | && bits (arm_insn_r->arm_insn, 5, 6) == 0x2) | 
|  | { | 
|  | /* SBFX */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | } | 
|  | else if (bits (arm_insn_r->arm_insn, 20, 21) == 0x0 | 
|  | && bits (arm_insn_r->arm_insn, 5, 7) == 0x0) | 
|  | { | 
|  | /* USAD8 and USADA8 */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 7: | 
|  | { | 
|  | if (bits (arm_insn_r->arm_insn, 20, 21) == 0x3 | 
|  | && bits (arm_insn_r->arm_insn, 5, 7) == 0x7) | 
|  | { | 
|  | /* Permanently UNDEFINED */ | 
|  | return -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* BFC, BFI and UBFX */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handle ARM mode instructions with opcode 010.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_ld_st_imm_offset (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  |  | 
|  | uint32_t reg_base , reg_dest; | 
|  | uint32_t offset_12, tgt_mem_addr; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  | unsigned char wback; | 
|  | ULONGEST u_regval; | 
|  |  | 
|  | /* Calculate wback.  */ | 
|  | wback = (bit (arm_insn_r->arm_insn, 24) == 0) | 
|  | || (bit (arm_insn_r->arm_insn, 21) == 1); | 
|  |  | 
|  | arm_insn_r->reg_rec_count = 0; | 
|  | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | /* LDR (immediate), LDR (literal), LDRB (immediate), LDRB (literal), LDRBT | 
|  | and LDRT.  */ | 
|  |  | 
|  | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[arm_insn_r->reg_rec_count++] = reg_dest; | 
|  |  | 
|  | /* The LDR instruction is capable of doing branching.  If MOV LR, PC | 
|  | preceeds a LDR instruction having R15 as reg_base, it | 
|  | emulates a branch and link instruction, and hence we need to save | 
|  | CPSR and PC as well.  */ | 
|  | if (ARM_PC_REGNUM == reg_dest) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | 
|  |  | 
|  | /* If wback is true, also save the base register, which is going to be | 
|  | written to.  */ | 
|  | if (wback) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STR (immediate), STRB (immediate), STRBT and STRT.  */ | 
|  |  | 
|  | offset_12 = bits (arm_insn_r->arm_insn, 0, 11); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); | 
|  |  | 
|  | /* Handle bit U.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 23)) | 
|  | { | 
|  | /* U == 1: Add the offset. */ | 
|  | tgt_mem_addr = (uint32_t) u_regval + offset_12; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* U == 0: subtract the offset. */ | 
|  | tgt_mem_addr = (uint32_t) u_regval - offset_12; | 
|  | } | 
|  |  | 
|  | /* Bit 22 tells us whether the store instruction writes 1 byte or 4 | 
|  | bytes.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 22)) | 
|  | { | 
|  | /* STRB and STRBT: 1 byte.  */ | 
|  | record_buf_mem[0] = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STR and STRT: 4 bytes.  */ | 
|  | record_buf_mem[0] = 4; | 
|  | } | 
|  |  | 
|  | /* Handle bit P.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 24)) | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | else | 
|  | record_buf_mem[1] = (uint32_t) u_regval; | 
|  |  | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  |  | 
|  | /* If wback is true, also save the base register, which is going to be | 
|  | written to.  */ | 
|  | if (wback) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 011 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_ld_st_reg_offset (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  |  | 
|  | uint32_t shift_imm = 0; | 
|  | uint32_t reg_src1 = 0, reg_src2 = 0, reg_dest = 0; | 
|  | uint32_t offset_12 = 0, tgt_mem_addr = 0; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  |  | 
|  | LONGEST s_word; | 
|  | ULONGEST u_regval[2]; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 4)) | 
|  | return arm_record_media (arm_insn_r); | 
|  |  | 
|  | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 21, 24); | 
|  | arm_insn_r->decode = bits (arm_insn_r->arm_insn, 4, 7); | 
|  |  | 
|  | /* Handle enhanced store insns and LDRD DSP insn, | 
|  | order begins according to addressing modes for store insns | 
|  | STRH insn.  */ | 
|  |  | 
|  | /* LDR or STR?  */ | 
|  | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | reg_dest = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | /* LDR insn has a capability to do branching, if | 
|  | MOV LR, PC is preceded by LDR insn having Rn as R15 | 
|  | in that case, it emulates branch and link insn, and hence we | 
|  | need to save CSPR and PC as well.  */ | 
|  | if (15 != reg_dest) | 
|  | { | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | record_buf[0] = reg_dest; | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (! bits (arm_insn_r->arm_insn, 4, 11)) | 
|  | { | 
|  | /* Store insn, register offset and register pre-indexed, | 
|  | register post-indexed.  */ | 
|  | /* Get Rm.  */ | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | /* Get Rn.  */ | 
|  | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1 | 
|  | , &u_regval[0]); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2 | 
|  | , &u_regval[1]); | 
|  | if (15 == reg_src2) | 
|  | { | 
|  | /* If R15 was used as Rn, hence current PC+8.  */ | 
|  | /* Pre-indexed mode doesnt reach here ; illegal insn.  */ | 
|  | u_regval[0] = u_regval[0] + 8; | 
|  | } | 
|  | /* Calculate target store address, Rn +/- Rm, register offset.  */ | 
|  | /* U == 1.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 23)) | 
|  | { | 
|  | tgt_mem_addr = u_regval[0] + u_regval[1]; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[1] - u_regval[0]; | 
|  | } | 
|  |  | 
|  | switch (arm_insn_r->opcode) | 
|  | { | 
|  | /* STR.  */ | 
|  | case 8: | 
|  | case 12: | 
|  | /* STR.  */ | 
|  | case 9: | 
|  | case 13: | 
|  | /* STRT.  */ | 
|  | case 1: | 
|  | case 5: | 
|  | /* STR.  */ | 
|  | case 0: | 
|  | case 4: | 
|  | record_buf_mem[0] = 4; | 
|  | break; | 
|  |  | 
|  | /* STRB.  */ | 
|  | case 10: | 
|  | case 14: | 
|  | /* STRB.  */ | 
|  | case 11: | 
|  | case 15: | 
|  | /* STRBT.  */ | 
|  | case 3: | 
|  | case 7: | 
|  | /* STRB.  */ | 
|  | case 2: | 
|  | case 6: | 
|  | record_buf_mem[0] = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  |  | 
|  | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | 
|  | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | 
|  | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | 
|  | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | 
|  | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | 
|  | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | 
|  | ) | 
|  | { | 
|  | /* Rn is going to be changed in pre-indexed mode and | 
|  | post-indexed mode as well.  */ | 
|  | record_buf[0] = reg_src2; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Store insn, scaled register offset; scaled pre-indexed.  */ | 
|  | offset_12 = bits (arm_insn_r->arm_insn, 5, 6); | 
|  | /* Get Rm.  */ | 
|  | reg_src1 = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | /* Get Rn.  */ | 
|  | reg_src2 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | /* Get shift_imm.  */ | 
|  | shift_imm = bits (arm_insn_r->arm_insn, 7, 11); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | regcache_raw_read_signed (reg_cache, reg_src1, &s_word); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | 
|  | /* Offset_12 used as shift.  */ | 
|  | switch (offset_12) | 
|  | { | 
|  | case 0: | 
|  | /* Offset_12 used as index.  */ | 
|  | offset_12 = u_regval[0] << shift_imm; | 
|  | break; | 
|  |  | 
|  | case 1: | 
|  | offset_12 = (!shift_imm) ? 0 : u_regval[0] >> shift_imm; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | if (!shift_imm) | 
|  | { | 
|  | if (bit (u_regval[0], 31)) | 
|  | { | 
|  | offset_12 = 0xFFFFFFFF; | 
|  | } | 
|  | else | 
|  | { | 
|  | offset_12 = 0; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is arithmetic shift.  */ | 
|  | offset_12 = s_word >> shift_imm; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 3: | 
|  | if (!shift_imm) | 
|  | { | 
|  | regcache_raw_read_unsigned (reg_cache, ARM_PS_REGNUM, | 
|  | &u_regval[1]); | 
|  | /* Get C flag value and shift it by 31.  */ | 
|  | offset_12 = (((bit (u_regval[1], 29)) << 31) \ | 
|  | | (u_regval[0]) >> 1); | 
|  | } | 
|  | else | 
|  | { | 
|  | offset_12 = (u_regval[0] >> shift_imm) \ | 
|  | | (u_regval[0] << | 
|  | (sizeof(uint32_t) - shift_imm)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | 
|  | /* bit U set.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 23)) | 
|  | { | 
|  | tgt_mem_addr = u_regval[1] + offset_12; | 
|  | } | 
|  | else | 
|  | { | 
|  | tgt_mem_addr = u_regval[1] - offset_12; | 
|  | } | 
|  |  | 
|  | switch (arm_insn_r->opcode) | 
|  | { | 
|  | /* STR.  */ | 
|  | case 8: | 
|  | case 12: | 
|  | /* STR.  */ | 
|  | case 9: | 
|  | case 13: | 
|  | /* STRT.  */ | 
|  | case 1: | 
|  | case 5: | 
|  | /* STR.  */ | 
|  | case 0: | 
|  | case 4: | 
|  | record_buf_mem[0] = 4; | 
|  | break; | 
|  |  | 
|  | /* STRB.  */ | 
|  | case 10: | 
|  | case 14: | 
|  | /* STRB.  */ | 
|  | case 11: | 
|  | case 15: | 
|  | /* STRBT.  */ | 
|  | case 3: | 
|  | case 7: | 
|  | /* STRB.  */ | 
|  | case 2: | 
|  | case 6: | 
|  | record_buf_mem[0] = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  | record_buf_mem[1] = tgt_mem_addr; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  |  | 
|  | if (9 == arm_insn_r->opcode || 11 == arm_insn_r->opcode | 
|  | || 13 == arm_insn_r->opcode || 15 == arm_insn_r->opcode | 
|  | || 0 == arm_insn_r->opcode || 2 == arm_insn_r->opcode | 
|  | || 4 == arm_insn_r->opcode || 6 == arm_insn_r->opcode | 
|  | || 1 == arm_insn_r->opcode || 3 == arm_insn_r->opcode | 
|  | || 5 == arm_insn_r->opcode || 7 == arm_insn_r->opcode | 
|  | ) | 
|  | { | 
|  | /* Rn is going to be changed in register scaled pre-indexed | 
|  | mode,and scaled post indexed mode.  */ | 
|  | record_buf[0] = reg_src2; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handle ARM mode instructions with opcode 100.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_ld_st_multiple (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  | uint32_t register_count = 0, register_bits; | 
|  | uint32_t reg_base, addr_mode; | 
|  | uint32_t record_buf[24], record_buf_mem[48]; | 
|  | uint32_t wback; | 
|  | ULONGEST u_regval; | 
|  |  | 
|  | /* Fetch the list of registers.  */ | 
|  | register_bits = bits (arm_insn_r->arm_insn, 0, 15); | 
|  | arm_insn_r->reg_rec_count = 0; | 
|  |  | 
|  | /* Fetch the base register that contains the address we are loading data | 
|  | to.  */ | 
|  | reg_base = bits (arm_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | /* Calculate wback.  */ | 
|  | wback = (bit (arm_insn_r->arm_insn, 21) == 1); | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | /* LDM/LDMIA/LDMFD, LDMDA/LDMFA, LDMDB and LDMIB.  */ | 
|  |  | 
|  | /* Find out which registers are going to be loaded from memory.  */ | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = register_count; | 
|  | register_bits = register_bits >> 1; | 
|  | register_count++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If wback is true, also save the base register, which is going to be | 
|  | written to.  */ | 
|  | if (wback) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | 
|  |  | 
|  | /* Save the CPSR register.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] = ARM_PS_REGNUM; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STM (STMIA, STMEA), STMDA (STMED), STMDB (STMFD) and STMIB (STMFA).  */ | 
|  |  | 
|  | addr_mode = bits (arm_insn_r->arm_insn, 23, 24); | 
|  |  | 
|  | regcache_raw_read_unsigned (reg_cache, reg_base, &u_regval); | 
|  |  | 
|  | /* Find out how many registers are going to be stored to memory.  */ | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | register_count++; | 
|  | register_bits = register_bits >> 1; | 
|  | } | 
|  |  | 
|  | switch (addr_mode) | 
|  | { | 
|  | /* STMDA (STMED): Decrement after.  */ | 
|  | case 0: | 
|  | record_buf_mem[1] = (uint32_t) u_regval | 
|  | - register_count * ARM_INT_REGISTER_SIZE + 4; | 
|  | break; | 
|  | /* STM (STMIA, STMEA): Increment after.  */ | 
|  | case 1: | 
|  | record_buf_mem[1] = (uint32_t) u_regval; | 
|  | break; | 
|  | /* STMDB (STMFD): Decrement before.  */ | 
|  | case 2: | 
|  | record_buf_mem[1] = (uint32_t) u_regval | 
|  | - register_count * ARM_INT_REGISTER_SIZE; | 
|  | break; | 
|  | /* STMIB (STMFA): Increment before.  */ | 
|  | case 3: | 
|  | record_buf_mem[1] = (uint32_t) u_regval + ARM_INT_REGISTER_SIZE; | 
|  | break; | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | record_buf_mem[0] = register_count * ARM_INT_REGISTER_SIZE; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  |  | 
|  | /* If wback is true, also save the base register, which is going to be | 
|  | written to.  */ | 
|  | if (wback) | 
|  | record_buf[arm_insn_r->reg_rec_count++] = reg_base; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 101 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_b_bl (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | /* Handle B, BL, BLX(1) insns.  */ | 
|  | /* B simply branches so we do nothing here.  */ | 
|  | /* Note: BLX(1) doesnt fall here but instead it falls into | 
|  | extension space.  */ | 
|  | if (bit (arm_insn_r->arm_insn, 24)) | 
|  | { | 
|  | record_buf[0] = ARM_LR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | arm_record_unsupported_insn (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Process record does not support instruction " | 
|  | "0x%0x at address %s.\n"),arm_insn_r->arm_insn, | 
|  | paddress (arm_insn_r->gdbarch, arm_insn_r->this_addr)); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Record handler for vector data transfer instructions.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_vdata_transfer_insn (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t bits_a, bit_c, bit_l, reg_t, reg_v; | 
|  | uint32_t record_buf[4]; | 
|  |  | 
|  | reg_t = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | reg_v = bits (arm_insn_r->arm_insn, 21, 23); | 
|  | bits_a = bits (arm_insn_r->arm_insn, 21, 23); | 
|  | bit_l = bit (arm_insn_r->arm_insn, 20); | 
|  | bit_c = bit (arm_insn_r->arm_insn, 8); | 
|  |  | 
|  | /* Handle VMOV instruction.  */ | 
|  | if (bit_l && bit_c) | 
|  | { | 
|  | record_buf[0] = reg_t; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (bit_l && !bit_c) | 
|  | { | 
|  | /* Handle VMOV instruction.  */ | 
|  | if (bits_a == 0x00) | 
|  | { | 
|  | record_buf[0] = reg_t; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | /* Handle VMRS instruction.  */ | 
|  | else if (bits_a == 0x07) | 
|  | { | 
|  | if (reg_t == 15) | 
|  | reg_t = ARM_PS_REGNUM; | 
|  |  | 
|  | record_buf[0] = reg_t; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else if (!bit_l && !bit_c) | 
|  | { | 
|  | /* Handle VMOV instruction.  */ | 
|  | if (bits_a == 0x00) | 
|  | { | 
|  | record_buf[0] = ARM_D0_REGNUM + reg_v; | 
|  |  | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | /* Handle VMSR instruction.  */ | 
|  | else if (bits_a == 0x07) | 
|  | { | 
|  | record_buf[0] = ARM_FPSCR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else if (!bit_l && bit_c) | 
|  | { | 
|  | /* Handle VMOV instruction.  */ | 
|  | if (!(bits_a & 0x04)) | 
|  | { | 
|  | record_buf[0] = (reg_v | (bit (arm_insn_r->arm_insn, 7) << 4)) | 
|  | + ARM_D0_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | /* Handle VDUP instruction.  */ | 
|  | else | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | 
|  | record_buf[0] = reg_v + ARM_D0_REGNUM; | 
|  | record_buf[1] = reg_v + ARM_D0_REGNUM + 1; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | reg_v = reg_v | (bit (arm_insn_r->arm_insn, 7) << 4); | 
|  | record_buf[0] = reg_v + ARM_D0_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Record handler for extension register load/store instructions.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_exreg_ld_st_insn (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t opcode, single_reg; | 
|  | uint8_t op_vldm_vstm; | 
|  | uint32_t record_buf[8], record_buf_mem[128]; | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  |  | 
|  | opcode = bits (arm_insn_r->arm_insn, 20, 24); | 
|  | single_reg = !bit (arm_insn_r->arm_insn, 8); | 
|  | op_vldm_vstm = opcode & 0x1b; | 
|  |  | 
|  | /* Handle VMOV instructions.  */ | 
|  | if ((opcode & 0x1e) == 0x04) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 20)) /* to_arm_registers bit 20? */ | 
|  | { | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | uint8_t reg_m = bits (arm_insn_r->arm_insn, 0, 3); | 
|  | uint8_t bit_m = bit (arm_insn_r->arm_insn, 5); | 
|  |  | 
|  | if (single_reg) | 
|  | { | 
|  | /* The first S register number m is REG_M:M (M is bit 5), | 
|  | the corresponding D register number is REG_M:M / 2, which | 
|  | is REG_M.  */ | 
|  | record_buf[arm_insn_r->reg_rec_count++] = ARM_D0_REGNUM + reg_m; | 
|  | /* The second S register number is REG_M:M + 1, the | 
|  | corresponding D register number is (REG_M:M + 1) / 2. | 
|  | IOW, if bit M is 1, the first and second S registers | 
|  | are mapped to different D registers, otherwise, they are | 
|  | in the same D register.  */ | 
|  | if (bit_m) | 
|  | { | 
|  | record_buf[arm_insn_r->reg_rec_count++] | 
|  | = ARM_D0_REGNUM + reg_m + 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | record_buf[0] = ((bit_m << 4) + reg_m + ARM_D0_REGNUM); | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Handle VSTM and VPUSH instructions.  */ | 
|  | else if (op_vldm_vstm == 0x08 || op_vldm_vstm == 0x0a | 
|  | || op_vldm_vstm == 0x12) | 
|  | { | 
|  | uint32_t start_address, reg_rn, imm_off32, imm_off8, memory_count; | 
|  | uint32_t memory_index = 0; | 
|  |  | 
|  | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | 
|  | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | 
|  | imm_off32 = imm_off8 << 2; | 
|  | memory_count = imm_off8; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 23)) | 
|  | start_address = u_regval; | 
|  | else | 
|  | start_address = u_regval - imm_off32; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21)) | 
|  | { | 
|  | record_buf[0] = reg_rn; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  |  | 
|  | while (memory_count > 0) | 
|  | { | 
|  | if (single_reg) | 
|  | { | 
|  | record_buf_mem[memory_index] = 4; | 
|  | record_buf_mem[memory_index + 1] = start_address; | 
|  | start_address = start_address + 4; | 
|  | memory_index = memory_index + 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | record_buf_mem[memory_index] = 4; | 
|  | record_buf_mem[memory_index + 1] = start_address; | 
|  | record_buf_mem[memory_index + 2] = 4; | 
|  | record_buf_mem[memory_index + 3] = start_address + 4; | 
|  | start_address = start_address + 8; | 
|  | memory_index = memory_index + 4; | 
|  | } | 
|  | memory_count--; | 
|  | } | 
|  | arm_insn_r->mem_rec_count = (memory_index >> 1); | 
|  | } | 
|  | /* Handle VLDM instructions.  */ | 
|  | else if (op_vldm_vstm == 0x09 || op_vldm_vstm == 0x0b | 
|  | || op_vldm_vstm == 0x13) | 
|  | { | 
|  | uint32_t reg_count, reg_vd; | 
|  | uint32_t reg_index = 0; | 
|  | uint32_t bit_d = bit (arm_insn_r->arm_insn, 22); | 
|  |  | 
|  | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | reg_count = bits (arm_insn_r->arm_insn, 0, 7); | 
|  |  | 
|  | /* REG_VD is the first D register number.  If the instruction | 
|  | loads memory to S registers (SINGLE_REG is TRUE), the register | 
|  | number is (REG_VD << 1 | bit D), so the corresponding D | 
|  | register number is (REG_VD << 1 | bit D) / 2 = REG_VD.  */ | 
|  | if (!single_reg) | 
|  | reg_vd = reg_vd | (bit_d << 4); | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 21) /* write back */) | 
|  | record_buf[reg_index++] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | /* If the instruction loads memory to D register, REG_COUNT should | 
|  | be divided by 2, according to the ARM Architecture Reference | 
|  | Manual.  If the instruction loads memory to S register, divide by | 
|  | 2 as well because two S registers are mapped to D register.  */ | 
|  | reg_count  = reg_count / 2; | 
|  | if (single_reg && bit_d) | 
|  | { | 
|  | /* Increase the register count if S register list starts from | 
|  | an odd number (bit d is one).  */ | 
|  | reg_count++; | 
|  | } | 
|  |  | 
|  | while (reg_count > 0) | 
|  | { | 
|  | record_buf[reg_index++] = ARM_D0_REGNUM + reg_vd + reg_count - 1; | 
|  | reg_count--; | 
|  | } | 
|  | arm_insn_r->reg_rec_count = reg_index; | 
|  | } | 
|  | /* VSTR Vector store register.  */ | 
|  | else if ((opcode & 0x13) == 0x10) | 
|  | { | 
|  | uint32_t start_address, reg_rn, imm_off32, imm_off8; | 
|  | uint32_t memory_index = 0; | 
|  |  | 
|  | reg_rn = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | 
|  | imm_off8 = bits (arm_insn_r->arm_insn, 0, 7); | 
|  | imm_off32 = imm_off8 << 2; | 
|  |  | 
|  | if (bit (arm_insn_r->arm_insn, 23)) | 
|  | start_address = u_regval + imm_off32; | 
|  | else | 
|  | start_address = u_regval - imm_off32; | 
|  |  | 
|  | if (single_reg) | 
|  | { | 
|  | record_buf_mem[memory_index] = 4; | 
|  | record_buf_mem[memory_index + 1] = start_address; | 
|  | arm_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | record_buf_mem[memory_index] = 4; | 
|  | record_buf_mem[memory_index + 1] = start_address; | 
|  | record_buf_mem[memory_index + 2] = 4; | 
|  | record_buf_mem[memory_index + 3] = start_address + 4; | 
|  | arm_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | } | 
|  | /* VLDR Vector load register.  */ | 
|  | else if ((opcode & 0x13) == 0x11) | 
|  | { | 
|  | uint32_t reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | 
|  |  | 
|  | if (!single_reg) | 
|  | { | 
|  | reg_vd = reg_vd | (bit (arm_insn_r->arm_insn, 22) << 4); | 
|  | record_buf[0] = ARM_D0_REGNUM + reg_vd; | 
|  | } | 
|  | else | 
|  | { | 
|  | reg_vd = (reg_vd << 1) | bit (arm_insn_r->arm_insn, 22); | 
|  | /* Record register D rather than pseudo register S.  */ | 
|  | record_buf[0] = ARM_D0_REGNUM + reg_vd / 2; | 
|  | } | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (arm_insn_r->arm_mems, arm_insn_r->mem_rec_count, record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Record handler for arm/thumb mode VFP data processing instructions.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_vfp_data_proc_insn (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t opc1, opc2, opc3, dp_op_sz, bit_d, reg_vd; | 
|  | uint32_t record_buf[4]; | 
|  | enum insn_types {INSN_T0, INSN_T1, INSN_T2, INSN_T3, INSN_INV}; | 
|  | enum insn_types curr_insn_type = INSN_INV; | 
|  |  | 
|  | reg_vd = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | opc1 = bits (arm_insn_r->arm_insn, 20, 23); | 
|  | opc2 = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | opc3 = bits (arm_insn_r->arm_insn, 6, 7); | 
|  | dp_op_sz = bit (arm_insn_r->arm_insn, 8); | 
|  | bit_d = bit (arm_insn_r->arm_insn, 22); | 
|  | /* Mask off the "D" bit.  */ | 
|  | opc1 = opc1 & ~0x04; | 
|  |  | 
|  | /* Handle VMLA, VMLS.  */ | 
|  | if (opc1 == 0x00) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 10)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 6)) | 
|  | curr_insn_type = INSN_T0; | 
|  | else | 
|  | curr_insn_type = INSN_T1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VNMLA, VNMLS, VNMUL.  */ | 
|  | else if (opc1 == 0x01) | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | /* Handle VMUL.  */ | 
|  | else if (opc1 == 0x02 && !(opc3 & 0x01)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 10)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 6)) | 
|  | curr_insn_type = INSN_T0; | 
|  | else | 
|  | curr_insn_type = INSN_T1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VADD, VSUB.  */ | 
|  | else if (opc1 == 0x03) | 
|  | { | 
|  | if (!bit (arm_insn_r->arm_insn, 9)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 6)) | 
|  | curr_insn_type = INSN_T0; | 
|  | else | 
|  | curr_insn_type = INSN_T1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VDIV.  */ | 
|  | else if (opc1 == 0x08) | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | /* Handle all other vfp data processing instructions.  */ | 
|  | else if (opc1 == 0x0b) | 
|  | { | 
|  | /* Handle VMOV.  */ | 
|  | if (!(opc3 & 0x01) || (opc2 == 0x00 && opc3 == 0x01)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 4)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 6)) | 
|  | curr_insn_type = INSN_T0; | 
|  | else | 
|  | curr_insn_type = INSN_T1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VNEG and VABS.  */ | 
|  | else if ((opc2 == 0x01 && opc3 == 0x01) | 
|  | || (opc2 == 0x00 && opc3 == 0x03)) | 
|  | { | 
|  | if (!bit (arm_insn_r->arm_insn, 11)) | 
|  | { | 
|  | if (bit (arm_insn_r->arm_insn, 6)) | 
|  | curr_insn_type = INSN_T0; | 
|  | else | 
|  | curr_insn_type = INSN_T1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VSQRT.  */ | 
|  | else if (opc2 == 0x01 && opc3 == 0x03) | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | /* Handle VCVT.  */ | 
|  | else if (opc2 == 0x07 && opc3 == 0x03) | 
|  | { | 
|  | if (!dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | else if (opc3 & 0x01) | 
|  | { | 
|  | /* Handle VCVT.  */ | 
|  | if ((opc2 == 0x08) || (opc2 & 0x0e) == 0x0c) | 
|  | { | 
|  | if (!bit (arm_insn_r->arm_insn, 18)) | 
|  | curr_insn_type = INSN_T2; | 
|  | else | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | } | 
|  | /* Handle VCVT.  */ | 
|  | else if ((opc2 & 0x0e) == 0x0a || (opc2 & 0x0e) == 0x0e) | 
|  | { | 
|  | if (dp_op_sz) | 
|  | curr_insn_type = INSN_T1; | 
|  | else | 
|  | curr_insn_type = INSN_T2; | 
|  | } | 
|  | /* Handle VCVTB, VCVTT.  */ | 
|  | else if ((opc2 & 0x0e) == 0x02) | 
|  | curr_insn_type = INSN_T2; | 
|  | /* Handle VCMP, VCMPE.  */ | 
|  | else if ((opc2 & 0x0e) == 0x04) | 
|  | curr_insn_type = INSN_T3; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (curr_insn_type) | 
|  | { | 
|  | case INSN_T0: | 
|  | reg_vd = reg_vd | (bit_d << 4); | 
|  | record_buf[0] = reg_vd + ARM_D0_REGNUM; | 
|  | record_buf[1] = reg_vd + ARM_D0_REGNUM + 1; | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  | break; | 
|  |  | 
|  | case INSN_T1: | 
|  | reg_vd = reg_vd | (bit_d << 4); | 
|  | record_buf[0] = reg_vd + ARM_D0_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  |  | 
|  | case INSN_T2: | 
|  | reg_vd = (reg_vd << 1) | bit_d; | 
|  | record_buf[0] = reg_vd + ARM_D0_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  |  | 
|  | case INSN_T3: | 
|  | record_buf[0] = ARM_FPSCR_REGNUM; | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, record_buf); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 110 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_asimd_vfp_coproc (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t op1, op1_ebit, coproc; | 
|  |  | 
|  | coproc = bits (arm_insn_r->arm_insn, 8, 11); | 
|  | op1 = bits (arm_insn_r->arm_insn, 20, 25); | 
|  | op1_ebit = bit (arm_insn_r->arm_insn, 20); | 
|  |  | 
|  | if ((coproc & 0x0e) == 0x0a) | 
|  | { | 
|  | /* Handle extension register ld/st instructions.  */ | 
|  | if (!(op1 & 0x20)) | 
|  | return arm_record_exreg_ld_st_insn (arm_insn_r); | 
|  |  | 
|  | /* 64-bit transfers between arm core and extension registers.  */ | 
|  | if ((op1 & 0x3e) == 0x04) | 
|  | return arm_record_exreg_ld_st_insn (arm_insn_r); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Handle coprocessor ld/st instructions.  */ | 
|  | if (!(op1 & 0x3a)) | 
|  | { | 
|  | /* Store.  */ | 
|  | if (!op1_ebit) | 
|  | return arm_record_unsupported_insn (arm_insn_r); | 
|  | else | 
|  | /* Load.  */ | 
|  | return arm_record_unsupported_insn (arm_insn_r); | 
|  | } | 
|  |  | 
|  | /* Move to coprocessor from two arm core registers.  */ | 
|  | if (op1 == 0x4) | 
|  | return arm_record_unsupported_insn (arm_insn_r); | 
|  |  | 
|  | /* Move to two arm core registers from coprocessor.  */ | 
|  | if (op1 == 0x5) | 
|  | { | 
|  | uint32_t reg_t[2]; | 
|  |  | 
|  | reg_t[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | reg_t[1] = bits (arm_insn_r->arm_insn, 16, 19); | 
|  | arm_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, reg_t); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return arm_record_unsupported_insn (arm_insn_r); | 
|  | } | 
|  |  | 
|  | /* Handling opcode 111 insns.  */ | 
|  |  | 
|  | static int | 
|  | arm_record_coproc_data_proc (arm_insn_decode_record *arm_insn_r) | 
|  | { | 
|  | uint32_t op, op1_ebit, coproc, bits_24_25; | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep> (arm_insn_r->gdbarch); | 
|  | struct regcache *reg_cache = arm_insn_r->regcache; | 
|  |  | 
|  | arm_insn_r->opcode = bits (arm_insn_r->arm_insn, 24, 27); | 
|  | coproc = bits (arm_insn_r->arm_insn, 8, 11); | 
|  | op1_ebit = bit (arm_insn_r->arm_insn, 20); | 
|  | op = bit (arm_insn_r->arm_insn, 4); | 
|  | bits_24_25 = bits (arm_insn_r->arm_insn, 24, 25); | 
|  |  | 
|  | /* Handle arm SWI/SVC system call instructions.  */ | 
|  | if (bits_24_25 == 0x3) | 
|  | { | 
|  | if (tdep->arm_syscall_record != NULL) | 
|  | { | 
|  | ULONGEST svc_operand, svc_number; | 
|  |  | 
|  | svc_operand = (0x00ffffff & arm_insn_r->arm_insn); | 
|  |  | 
|  | if (svc_operand)  /* OABI.  */ | 
|  | svc_number = svc_operand - 0x900000; | 
|  | else /* EABI.  */ | 
|  | regcache_raw_read_unsigned (reg_cache, 7, &svc_number); | 
|  |  | 
|  | return tdep->arm_syscall_record (reg_cache, svc_number); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf (gdb_stderr, _("no syscall record support\n")); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (bits_24_25 == 0x02) | 
|  | { | 
|  | if (op) | 
|  | { | 
|  | if ((coproc & 0x0e) == 0x0a) | 
|  | { | 
|  | /* 8, 16, and 32-bit transfer */ | 
|  | return arm_record_vdata_transfer_insn (arm_insn_r); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (op1_ebit) | 
|  | { | 
|  | /* MRC, MRC2 */ | 
|  | uint32_t record_buf[1]; | 
|  |  | 
|  | record_buf[0] = bits (arm_insn_r->arm_insn, 12, 15); | 
|  | if (record_buf[0] == 15) | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  |  | 
|  | arm_insn_r->reg_rec_count = 1; | 
|  | REG_ALLOC (arm_insn_r->arm_regs, arm_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* MCR, MCR2 */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((coproc & 0x0e) == 0x0a) | 
|  | { | 
|  | /* VFP data-processing instructions.  */ | 
|  | return arm_record_vfp_data_proc_insn (arm_insn_r); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* CDP, CDP2 */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int op1 = bits (arm_insn_r->arm_insn, 20, 25); | 
|  |  | 
|  | if (op1 == 5) | 
|  | { | 
|  | if ((coproc & 0x0e) != 0x0a) | 
|  | { | 
|  | /* MRRC, MRRC2 */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (op1 == 4 || op1 == 5) | 
|  | { | 
|  | if ((coproc & 0x0e) == 0x0a) | 
|  | { | 
|  | /* 64-bit transfers between ARM core and extension */ | 
|  | return -1; | 
|  | } | 
|  | else if (op1 == 4) | 
|  | { | 
|  | /* MCRR, MCRR2 */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (op1 == 0 || op1 == 1) | 
|  | { | 
|  | /* UNDEFINED */ | 
|  | return -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if ((coproc & 0x0e) == 0x0a) | 
|  | { | 
|  | /* Extension register load/store */ | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STC, STC2, LDC, LDC2 */ | 
|  | } | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 000 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_shift_add_sub (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  | uint32_t reg_src1 = 0; | 
|  |  | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  |  | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Handling opcode 001 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_add_sub_cmp_mov (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  | uint32_t reg_src1 = 0; | 
|  |  | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  |  | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 010 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_ld_st_reg_offset (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache =  thumb_insn_r->regcache; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  |  | 
|  | uint32_t reg_src1 = 0, reg_src2 = 0; | 
|  | uint32_t opcode1 = 0, opcode2 = 0, opcode3 = 0; | 
|  |  | 
|  | ULONGEST u_regval[2] = {0}; | 
|  |  | 
|  | opcode1 = bits (thumb_insn_r->arm_insn, 10, 12); | 
|  |  | 
|  | if (bit (thumb_insn_r->arm_insn, 12)) | 
|  | { | 
|  | /* Handle load/store register offset.  */ | 
|  | uint32_t opB = bits (thumb_insn_r->arm_insn, 9, 11); | 
|  |  | 
|  | if (in_inclusive_range (opB, 4U, 7U)) | 
|  | { | 
|  | /* LDR(2), LDRB(2) , LDRH(2), LDRSB, LDRSH.  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn,0, 2); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (in_inclusive_range (opB, 0U, 2U)) | 
|  | { | 
|  | /* STR(2), STRB(2), STRH(2) .  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | 
|  | reg_src2 = bits (thumb_insn_r->arm_insn, 6, 8); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval[0]); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src2, &u_regval[1]); | 
|  | if (0 == opB) | 
|  | record_buf_mem[0] = 4;    /* STR (2).  */ | 
|  | else if (2 == opB) | 
|  | record_buf_mem[0] = 1;    /*  STRB (2).  */ | 
|  | else if (1 == opB) | 
|  | record_buf_mem[0] = 2;    /* STRH (2).  */ | 
|  | record_buf_mem[1] = u_regval[0] + u_regval[1]; | 
|  | thumb_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | } | 
|  | else if (bit (thumb_insn_r->arm_insn, 11)) | 
|  | { | 
|  | /* Handle load from literal pool.  */ | 
|  | /* LDR(3).  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (opcode1) | 
|  | { | 
|  | /* Special data instructions and branch and exchange */ | 
|  | opcode2 = bits (thumb_insn_r->arm_insn, 8, 9); | 
|  | opcode3 = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | if ((3 == opcode2) && (!opcode3)) | 
|  | { | 
|  | /* Branch with exchange.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Format 8; special data processing insns.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = (bit (thumb_insn_r->arm_insn, 7) << 3 | 
|  | | bits (thumb_insn_r->arm_insn, 0, 2)); | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Format 5; data processing insns.  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | if (bit (thumb_insn_r->arm_insn, 7)) | 
|  | { | 
|  | reg_src1 = reg_src1 + 8; | 
|  | } | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 001 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_ld_st_imm_offset (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb_insn_r->regcache; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  |  | 
|  | uint32_t reg_src1 = 0; | 
|  | uint32_t opcode = 0, immed_5 = 0; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | 
|  |  | 
|  | if (opcode) | 
|  | { | 
|  | /* LDR(1).  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* STR(1).  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | 
|  | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = u_regval + (immed_5 * 4); | 
|  | thumb_insn_r->mem_rec_count = 1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 100 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_ld_st_stack (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb_insn_r->regcache; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  |  | 
|  | uint32_t reg_src1 = 0; | 
|  | uint32_t opcode = 0, immed_8 = 0, immed_5 = 0; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | 
|  |  | 
|  | if (3 == opcode) | 
|  | { | 
|  | /* LDR(4).  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == opcode) | 
|  | { | 
|  | /* LDRH(1).  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (2 == opcode) | 
|  | { | 
|  | /* STR(3).  */ | 
|  | immed_8 = bits (thumb_insn_r->arm_insn, 0, 7); | 
|  | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = u_regval + (immed_8 * 4); | 
|  | thumb_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (0 == opcode) | 
|  | { | 
|  | /* STRH(1).  */ | 
|  | immed_5 = bits (thumb_insn_r->arm_insn, 6, 10); | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 3, 5); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | 
|  | record_buf_mem[0] = 2; | 
|  | record_buf_mem[1] = u_regval + (immed_5 * 2); | 
|  | thumb_insn_r->mem_rec_count = 1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 101 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_misc (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb_insn_r->regcache; | 
|  |  | 
|  | uint32_t opcode = 0; | 
|  | uint32_t register_bits = 0, register_count = 0; | 
|  | uint32_t index = 0, start_address = 0; | 
|  | uint32_t record_buf[24], record_buf_mem[48]; | 
|  | uint32_t reg_src1; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | opcode = bits (thumb_insn_r->arm_insn, 11, 12); | 
|  |  | 
|  | if (opcode == 0 || opcode == 1) | 
|  | { | 
|  | /* ADR and ADD (SP plus immediate) */ | 
|  |  | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | record_buf[0] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Miscellaneous 16-bit instructions */ | 
|  | uint32_t opcode2 = bits (thumb_insn_r->arm_insn, 8, 11); | 
|  |  | 
|  | switch (opcode2) | 
|  | { | 
|  | case 6: | 
|  | /* SETEND and CPS */ | 
|  | break; | 
|  | case 0: | 
|  | /* ADD/SUB (SP plus immediate)  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | record_buf[0] = ARM_SP_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  | case 1: /* fall through  */ | 
|  | case 3: /* fall through  */ | 
|  | case 9: /* fall through  */ | 
|  | case 11: | 
|  | /* CBNZ, CBZ */ | 
|  | break; | 
|  | case 2: | 
|  | /* SXTH, SXTB, UXTH, UXTB */ | 
|  | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  | case 4: /* fall through  */ | 
|  | case 5: | 
|  | /* PUSH.  */ | 
|  | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | 
|  | regcache_raw_read_unsigned (reg_cache, ARM_SP_REGNUM, &u_regval); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | register_count++; | 
|  | register_bits = register_bits >> 1; | 
|  | } | 
|  | start_address = u_regval -  \ | 
|  | (4 * (bit (thumb_insn_r->arm_insn, 8) + register_count)); | 
|  | thumb_insn_r->mem_rec_count = register_count; | 
|  | while (register_count) | 
|  | { | 
|  | record_buf_mem[(register_count * 2) - 1] = start_address; | 
|  | record_buf_mem[(register_count * 2) - 2] = 4; | 
|  | start_address = start_address + 4; | 
|  | register_count--; | 
|  | } | 
|  | record_buf[0] = ARM_SP_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  | case 10: | 
|  | /* REV, REV16, REVSH */ | 
|  | record_buf[0] = bits (thumb_insn_r->arm_insn, 0, 2); | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | break; | 
|  | case 12: /* fall through  */ | 
|  | case 13: | 
|  | /* POP.  */ | 
|  | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | record_buf[index++] = register_count; | 
|  | register_bits = register_bits >> 1; | 
|  | register_count++; | 
|  | } | 
|  | record_buf[index++] = ARM_PS_REGNUM; | 
|  | record_buf[index++] = ARM_SP_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = index; | 
|  | break; | 
|  | case 0xe: | 
|  | /* BKPT insn.  */ | 
|  | /* Handle enhanced software breakpoint insn, BKPT.  */ | 
|  | /* CPSR is changed to be executed in ARM state,  disabling normal | 
|  | interrupts, entering abort mode.  */ | 
|  | /* According to high vector configuration PC is set.  */ | 
|  | /* User hits breakpoint and type reverse, in that case, we need to go back with | 
|  | previous CPSR and Program Counter.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  | /* We need to save SPSR value, which is not yet done.  */ | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Process record does not support instruction " | 
|  | "0x%0x at address %s.\n"), | 
|  | thumb_insn_r->arm_insn, | 
|  | paddress (thumb_insn_r->gdbarch, | 
|  | thumb_insn_r->this_addr)); | 
|  | return -1; | 
|  |  | 
|  | case 0xf: | 
|  | /* If-Then, and hints */ | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | }; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 110 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_ldm_stm_swi (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | arm_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<arm_gdbarch_tdep>  (thumb_insn_r->gdbarch); | 
|  | struct regcache *reg_cache = thumb_insn_r->regcache; | 
|  |  | 
|  | uint32_t ret = 0; /* function return value: -1:record failure ;  0:success  */ | 
|  | uint32_t reg_src1 = 0; | 
|  | uint32_t opcode1 = 0, opcode2 = 0, register_bits = 0, register_count = 0; | 
|  | uint32_t index = 0, start_address = 0; | 
|  | uint32_t record_buf[24], record_buf_mem[48]; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | opcode1 = bits (thumb_insn_r->arm_insn, 8, 12); | 
|  | opcode2 = bits (thumb_insn_r->arm_insn, 11, 12); | 
|  |  | 
|  | if (1 == opcode2) | 
|  | { | 
|  |  | 
|  | /* LDMIA.  */ | 
|  | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | 
|  | /* Get Rn.  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | record_buf[index++] = register_count; | 
|  | register_bits = register_bits >> 1; | 
|  | register_count++; | 
|  | } | 
|  | record_buf[index++] = reg_src1; | 
|  | thumb_insn_r->reg_rec_count = index; | 
|  | } | 
|  | else if (0 == opcode2) | 
|  | { | 
|  | /* It handles both STMIA.  */ | 
|  | register_bits = bits (thumb_insn_r->arm_insn, 0, 7); | 
|  | /* Get Rn.  */ | 
|  | reg_src1 = bits (thumb_insn_r->arm_insn, 8, 10); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_src1, &u_regval); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | register_count++; | 
|  | register_bits = register_bits >> 1; | 
|  | } | 
|  | start_address = u_regval; | 
|  | thumb_insn_r->mem_rec_count = register_count; | 
|  | while (register_count) | 
|  | { | 
|  | record_buf_mem[(register_count * 2) - 1] = start_address; | 
|  | record_buf_mem[(register_count * 2) - 2] = 4; | 
|  | start_address = start_address + 4; | 
|  | register_count--; | 
|  | } | 
|  | } | 
|  | else if (0x1F == opcode1) | 
|  | { | 
|  | /* Handle arm syscall insn.  */ | 
|  | if (tdep->arm_syscall_record != NULL) | 
|  | { | 
|  | regcache_raw_read_unsigned (reg_cache, 7, &u_regval); | 
|  | ret = tdep->arm_syscall_record (reg_cache, u_regval); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf (gdb_stderr, _("no syscall record support\n")); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* B (1), conditional branch is automatically taken care in process_record, | 
|  | as PC is saved there.  */ | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  | MEM_ALLOC (thumb_insn_r->arm_mems, thumb_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Handling opcode 111 insns.  */ | 
|  |  | 
|  | static int | 
|  | thumb_record_branch (arm_insn_decode_record *thumb_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  | uint32_t bits_h = 0; | 
|  |  | 
|  | bits_h = bits (thumb_insn_r->arm_insn, 11, 12); | 
|  |  | 
|  | if (2 == bits_h || 3 == bits_h) | 
|  | { | 
|  | /* BL */ | 
|  | record_buf[0] = ARM_LR_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == bits_h) | 
|  | { | 
|  | /* BLX(1). */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | thumb_insn_r->reg_rec_count = 2; | 
|  | } | 
|  |  | 
|  | /* B(2) is automatically taken care in process_record, as PC is | 
|  | saved there.  */ | 
|  |  | 
|  | REG_ALLOC (thumb_insn_r->arm_regs, thumb_insn_r->reg_rec_count, record_buf); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 load/store multiple instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_ld_st_multiple (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb2_insn_r->regcache; | 
|  |  | 
|  | uint32_t reg_rn, op; | 
|  | uint32_t register_bits = 0, register_count = 0; | 
|  | uint32_t index = 0, start_address = 0; | 
|  | uint32_t record_buf[24], record_buf_mem[48]; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | op = bits (thumb2_insn_r->arm_insn, 23, 24); | 
|  |  | 
|  | if (0 == op || 3 == op) | 
|  | { | 
|  | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | /* Handle RFE instruction.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Handle SRS instruction after reading banked SP.  */ | 
|  | return arm_record_unsupported_insn (thumb2_insn_r); | 
|  | } | 
|  | } | 
|  | else if (1 == op || 2 == op) | 
|  | { | 
|  | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | /* Handle LDM/LDMIA/LDMFD and LDMDB/LDMEA instructions.  */ | 
|  | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | record_buf[index++] = register_count; | 
|  |  | 
|  | register_count++; | 
|  | register_bits = register_bits >> 1; | 
|  | } | 
|  | record_buf[index++] = reg_rn; | 
|  | record_buf[index++] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = index; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Handle STM/STMIA/STMEA and STMDB/STMFD.  */ | 
|  | register_bits = bits (thumb2_insn_r->arm_insn, 0, 15); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | 
|  | while (register_bits) | 
|  | { | 
|  | if (register_bits & 0x00000001) | 
|  | register_count++; | 
|  |  | 
|  | register_bits = register_bits >> 1; | 
|  | } | 
|  |  | 
|  | if (1 == op) | 
|  | { | 
|  | /* Start address calculation for LDMDB/LDMEA.  */ | 
|  | start_address = u_regval; | 
|  | } | 
|  | else if (2 == op) | 
|  | { | 
|  | /* Start address calculation for LDMDB/LDMEA.  */ | 
|  | start_address = u_regval - register_count * 4; | 
|  | } | 
|  |  | 
|  | thumb2_insn_r->mem_rec_count = register_count; | 
|  | while (register_count) | 
|  | { | 
|  | record_buf_mem[register_count * 2 - 1] = start_address; | 
|  | record_buf_mem[register_count * 2 - 2] = 4; | 
|  | start_address = start_address + 4; | 
|  | register_count--; | 
|  | } | 
|  | record_buf[0] = reg_rn; | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 load/store (dual/exclusive) and table branch | 
|  | instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_ld_st_dual_ex_tbb (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb2_insn_r->regcache; | 
|  |  | 
|  | uint32_t reg_rd, reg_rn, offset_imm; | 
|  | uint32_t reg_dest1, reg_dest2; | 
|  | uint32_t address, offset_addr; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  | uint32_t op1, op2, op3; | 
|  |  | 
|  | ULONGEST u_regval[2]; | 
|  |  | 
|  | op1 = bits (thumb2_insn_r->arm_insn, 23, 24); | 
|  | op2 = bits (thumb2_insn_r->arm_insn, 20, 21); | 
|  | op3 = bits (thumb2_insn_r->arm_insn, 4, 7); | 
|  |  | 
|  | if (bit (thumb2_insn_r->arm_insn, INSN_S_L_BIT_NUM)) | 
|  | { | 
|  | if(!(1 == op1 && 1 == op2 && (0 == op3 || 1 == op3))) | 
|  | { | 
|  | reg_dest1 = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | record_buf[0] = reg_dest1; | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | } | 
|  |  | 
|  | if (3 == op2 || (op1 & 2) || (1 == op1 && 1 == op2 && 7 == op3)) | 
|  | { | 
|  | reg_dest2 = bits (thumb2_insn_r->arm_insn, 8, 11); | 
|  | record_buf[2] = reg_dest2; | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | 
|  |  | 
|  | if (0 == op1 && 0 == op2) | 
|  | { | 
|  | /* Handle STREX.  */ | 
|  | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | 
|  | address = u_regval[0] + (offset_imm * 4); | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = address; | 
|  | thumb2_insn_r->mem_rec_count = 1; | 
|  | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | 
|  | record_buf[0] = reg_rd; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else if (1 == op1 && 0 == op2) | 
|  | { | 
|  | reg_rd = bits (thumb2_insn_r->arm_insn, 0, 3); | 
|  | record_buf[0] = reg_rd; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | address = u_regval[0]; | 
|  | record_buf_mem[1] = address; | 
|  |  | 
|  | if (4 == op3) | 
|  | { | 
|  | /* Handle STREXB.  */ | 
|  | record_buf_mem[0] = 1; | 
|  | thumb2_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (5 == op3) | 
|  | { | 
|  | /* Handle STREXH.  */ | 
|  | record_buf_mem[0] = 2 ; | 
|  | thumb2_insn_r->mem_rec_count = 1; | 
|  | } | 
|  | else if (7 == op3) | 
|  | { | 
|  | /* Handle STREXD.  */ | 
|  | address = u_regval[0]; | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = address + 4; | 
|  | thumb2_insn_r->mem_rec_count = 2; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | 
|  |  | 
|  | if (bit (thumb2_insn_r->arm_insn, 24)) | 
|  | { | 
|  | if (bit (thumb2_insn_r->arm_insn, 23)) | 
|  | offset_addr = u_regval[0] + (offset_imm * 4); | 
|  | else | 
|  | offset_addr = u_regval[0] - (offset_imm * 4); | 
|  |  | 
|  | address = offset_addr; | 
|  | } | 
|  | else | 
|  | address = u_regval[0]; | 
|  |  | 
|  | record_buf_mem[0] = 4; | 
|  | record_buf_mem[1] = address; | 
|  | record_buf_mem[2] = 4; | 
|  | record_buf_mem[3] = address + 4; | 
|  | thumb2_insn_r->mem_rec_count = 2; | 
|  | record_buf[0] = reg_rn; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 data processing (shift register and modified immediate) | 
|  | instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_data_proc_sreg_mimm (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t reg_rd, op; | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | op = bits (thumb2_insn_r->arm_insn, 21, 24); | 
|  | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | 
|  |  | 
|  | if ((0 == op || 4 == op || 8 == op || 13 == op) && 15 == reg_rd) | 
|  | { | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | record_buf[0] = reg_rd; | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Generic handler for thumb2 instructions which effect destination and PS | 
|  | registers.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_ps_dest_generic (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t reg_rd; | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | reg_rd = bits (thumb2_insn_r->arm_insn, 8, 11); | 
|  |  | 
|  | record_buf[0] = reg_rd; | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 branch and miscellaneous control instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_branch_misc_cntrl (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t op, op1, op2; | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | op = bits (thumb2_insn_r->arm_insn, 20, 26); | 
|  | op1 = bits (thumb2_insn_r->arm_insn, 12, 14); | 
|  | op2 = bits (thumb2_insn_r->arm_insn, 8, 11); | 
|  |  | 
|  | /* Handle MSR insn.  */ | 
|  | if (!(op1 & 0x2) && 0x38 == op) | 
|  | { | 
|  | if (!(op2 & 0x3)) | 
|  | { | 
|  | /* CPSR is going to be changed.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | arm_record_unsupported_insn(thumb2_insn_r); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | else if (4 == (op1 & 0x5) || 5 == (op1 & 0x5)) | 
|  | { | 
|  | /* BLX.  */ | 
|  | record_buf[0] = ARM_PS_REGNUM; | 
|  | record_buf[1] = ARM_LR_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 store single data item instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_str_single_data (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb2_insn_r->regcache; | 
|  |  | 
|  | uint32_t reg_rn, reg_rm, offset_imm, shift_imm; | 
|  | uint32_t address, offset_addr; | 
|  | uint32_t record_buf[8], record_buf_mem[8]; | 
|  | uint32_t op1, op2; | 
|  |  | 
|  | ULONGEST u_regval[2]; | 
|  |  | 
|  | op1 = bits (thumb2_insn_r->arm_insn, 21, 23); | 
|  | op2 = bits (thumb2_insn_r->arm_insn, 6, 11); | 
|  | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval[0]); | 
|  |  | 
|  | if (bit (thumb2_insn_r->arm_insn, 23)) | 
|  | { | 
|  | /* T2 encoding.  */ | 
|  | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 11); | 
|  | offset_addr = u_regval[0] + offset_imm; | 
|  | address = offset_addr; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* T3 encoding.  */ | 
|  | if ((0 == op1 || 1 == op1 || 2 == op1) && !(op2 & 0x20)) | 
|  | { | 
|  | /* Handle STRB (register).  */ | 
|  | reg_rm = bits (thumb2_insn_r->arm_insn, 0, 3); | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rm, &u_regval[1]); | 
|  | shift_imm = bits (thumb2_insn_r->arm_insn, 4, 5); | 
|  | offset_addr = u_regval[1] << shift_imm; | 
|  | address = u_regval[0] + offset_addr; | 
|  | } | 
|  | else | 
|  | { | 
|  | offset_imm = bits (thumb2_insn_r->arm_insn, 0, 7); | 
|  | if (bit (thumb2_insn_r->arm_insn, 10)) | 
|  | { | 
|  | if (bit (thumb2_insn_r->arm_insn, 9)) | 
|  | offset_addr = u_regval[0] + offset_imm; | 
|  | else | 
|  | offset_addr = u_regval[0] - offset_imm; | 
|  |  | 
|  | address = offset_addr; | 
|  | } | 
|  | else | 
|  | address = u_regval[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (op1) | 
|  | { | 
|  | /* Store byte instructions.  */ | 
|  | case 4: | 
|  | case 0: | 
|  | record_buf_mem[0] = 1; | 
|  | break; | 
|  | /* Store half word instructions.  */ | 
|  | case 1: | 
|  | case 5: | 
|  | record_buf_mem[0] = 2; | 
|  | break; | 
|  | /* Store word instructions.  */ | 
|  | case 2: | 
|  | case 6: | 
|  | record_buf_mem[0] = 4; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | gdb_assert_not_reached ("no decoding pattern found"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | record_buf_mem[1] = address; | 
|  | thumb2_insn_r->mem_rec_count = 1; | 
|  | record_buf[0] = reg_rn; | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 load memory hints instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_ld_mem_hints (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  | uint32_t reg_rt, reg_rn; | 
|  |  | 
|  | reg_rt = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  |  | 
|  | if (ARM_PC_REGNUM != reg_rt) | 
|  | { | 
|  | record_buf[0] = reg_rt; | 
|  | record_buf[1] = reg_rn; | 
|  | record_buf[2] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | return ARM_RECORD_FAILURE; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 load word instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_ld_word (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | record_buf[0] = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | record_buf[1] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  |  | 
|  | if ((thumb2_insn_r->arm_insn & 0xfff00900) == 0xf8500900) | 
|  | { | 
|  | /* Detected LDR(immediate), T4, with write-back bit set.  Record Rn | 
|  | update.  */ | 
|  | record_buf[2] = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | thumb2_insn_r->reg_rec_count++; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Handler for thumb2 long multiply, long multiply accumulate, and | 
|  | divide instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_lmul_lmla_div (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t opcode1 = 0, opcode2 = 0; | 
|  | uint32_t record_buf[8]; | 
|  |  | 
|  | opcode1 = bits (thumb2_insn_r->arm_insn, 20, 22); | 
|  | opcode2 = bits (thumb2_insn_r->arm_insn, 4, 7); | 
|  |  | 
|  | if (0 == opcode1 || 2 == opcode1 || (opcode1 >= 4 && opcode1 <= 6)) | 
|  | { | 
|  | /* Handle SMULL, UMULL, SMULAL.  */ | 
|  | /* Handle SMLAL(S), SMULL(S), UMLAL(S), UMULL(S).  */ | 
|  | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | record_buf[2] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  | } | 
|  | else if (1 == opcode1 || 3 == opcode2) | 
|  | { | 
|  | /* Handle SDIV and UDIV.  */ | 
|  | record_buf[0] = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | record_buf[1] = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | record_buf[2] = ARM_PS_REGNUM; | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  | } | 
|  | else | 
|  | return ARM_RECORD_FAILURE; | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | return ARM_RECORD_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Record handler for thumb32 coprocessor instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_coproc_insn (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | if (bit (thumb2_insn_r->arm_insn, 25)) | 
|  | return arm_record_coproc_data_proc (thumb2_insn_r); | 
|  | else | 
|  | return arm_record_asimd_vfp_coproc (thumb2_insn_r); | 
|  | } | 
|  |  | 
|  | /* Record handler for advance SIMD structure load/store instructions.  */ | 
|  |  | 
|  | static int | 
|  | thumb2_record_asimd_struct_ld_st (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | struct regcache *reg_cache = thumb2_insn_r->regcache; | 
|  | uint32_t l_bit, a_bit, b_bits; | 
|  | uint32_t record_buf[128], record_buf_mem[128]; | 
|  | uint32_t reg_rn, reg_vd, address, f_elem; | 
|  | uint32_t index_r = 0, index_e = 0, bf_regs = 0, index_m = 0, loop_t = 0; | 
|  | uint8_t f_ebytes; | 
|  |  | 
|  | l_bit = bit (thumb2_insn_r->arm_insn, 21); | 
|  | a_bit = bit (thumb2_insn_r->arm_insn, 23); | 
|  | b_bits = bits (thumb2_insn_r->arm_insn, 8, 11); | 
|  | reg_rn = bits (thumb2_insn_r->arm_insn, 16, 19); | 
|  | reg_vd = bits (thumb2_insn_r->arm_insn, 12, 15); | 
|  | reg_vd = (bit (thumb2_insn_r->arm_insn, 22) << 4) | reg_vd; | 
|  | f_ebytes = (1 << bits (thumb2_insn_r->arm_insn, 6, 7)); | 
|  | f_elem = 8 / f_ebytes; | 
|  |  | 
|  | if (!l_bit) | 
|  | { | 
|  | ULONGEST u_regval = 0; | 
|  | regcache_raw_read_unsigned (reg_cache, reg_rn, &u_regval); | 
|  | address = u_regval; | 
|  |  | 
|  | if (!a_bit) | 
|  | { | 
|  | /* Handle VST1.  */ | 
|  | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | 
|  | { | 
|  | if (b_bits == 0x07) | 
|  | bf_regs = 1; | 
|  | else if (b_bits == 0x0a) | 
|  | bf_regs = 2; | 
|  | else if (b_bits == 0x06) | 
|  | bf_regs = 3; | 
|  | else if (b_bits == 0x02) | 
|  | bf_regs = 4; | 
|  | else | 
|  | bf_regs = 0; | 
|  |  | 
|  | for (index_r = 0; index_r < bf_regs; index_r++) | 
|  | { | 
|  | for (index_e = 0; index_e < f_elem; index_e++) | 
|  | { | 
|  | record_buf_mem[index_m++] = f_ebytes; | 
|  | record_buf_mem[index_m++] = address; | 
|  | address = address + f_ebytes; | 
|  | thumb2_insn_r->mem_rec_count += 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Handle VST2.  */ | 
|  | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | 
|  | { | 
|  | if (b_bits == 0x09 || b_bits == 0x08) | 
|  | bf_regs = 1; | 
|  | else if (b_bits == 0x03) | 
|  | bf_regs = 2; | 
|  | else | 
|  | bf_regs = 0; | 
|  |  | 
|  | for (index_r = 0; index_r < bf_regs; index_r++) | 
|  | for (index_e = 0; index_e < f_elem; index_e++) | 
|  | { | 
|  | for (loop_t = 0; loop_t < 2; loop_t++) | 
|  | { | 
|  | record_buf_mem[index_m++] = f_ebytes; | 
|  | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | 
|  | thumb2_insn_r->mem_rec_count += 1; | 
|  | } | 
|  | address = address + (2 * f_ebytes); | 
|  | } | 
|  | } | 
|  | /* Handle VST3.  */ | 
|  | else if ((b_bits & 0x0e) == 0x04) | 
|  | { | 
|  | for (index_e = 0; index_e < f_elem; index_e++) | 
|  | { | 
|  | for (loop_t = 0; loop_t < 3; loop_t++) | 
|  | { | 
|  | record_buf_mem[index_m++] = f_ebytes; | 
|  | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | 
|  | thumb2_insn_r->mem_rec_count += 1; | 
|  | } | 
|  | address = address + (3 * f_ebytes); | 
|  | } | 
|  | } | 
|  | /* Handle VST4.  */ | 
|  | else if (!(b_bits & 0x0e)) | 
|  | { | 
|  | for (index_e = 0; index_e < f_elem; index_e++) | 
|  | { | 
|  | for (loop_t = 0; loop_t < 4; loop_t++) | 
|  | { | 
|  | record_buf_mem[index_m++] = f_ebytes; | 
|  | record_buf_mem[index_m++] = address + (loop_t * f_ebytes); | 
|  | thumb2_insn_r->mem_rec_count += 1; | 
|  | } | 
|  | address = address + (4 * f_ebytes); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | uint8_t bft_size = bits (thumb2_insn_r->arm_insn, 10, 11); | 
|  |  | 
|  | if (bft_size == 0x00) | 
|  | f_ebytes = 1; | 
|  | else if (bft_size == 0x01) | 
|  | f_ebytes = 2; | 
|  | else if (bft_size == 0x02) | 
|  | f_ebytes = 4; | 
|  | else | 
|  | f_ebytes = 0; | 
|  |  | 
|  | /* Handle VST1.  */ | 
|  | if (!(b_bits & 0x0b) || b_bits == 0x08) | 
|  | thumb2_insn_r->mem_rec_count = 1; | 
|  | /* Handle VST2.  */ | 
|  | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09) | 
|  | thumb2_insn_r->mem_rec_count = 2; | 
|  | /* Handle VST3.  */ | 
|  | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a) | 
|  | thumb2_insn_r->mem_rec_count = 3; | 
|  | /* Handle VST4.  */ | 
|  | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b) | 
|  | thumb2_insn_r->mem_rec_count = 4; | 
|  |  | 
|  | for (index_m = 0; index_m < thumb2_insn_r->mem_rec_count; index_m++) | 
|  | { | 
|  | record_buf_mem[index_m] = f_ebytes; | 
|  | record_buf_mem[index_m] = address + (index_m * f_ebytes); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!a_bit) | 
|  | { | 
|  | /* Handle VLD1.  */ | 
|  | if (b_bits == 0x02 || b_bits == 0x0a || (b_bits & 0x0e) == 0x06) | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | /* Handle VLD2.  */ | 
|  | else if (b_bits == 0x03 || (b_bits & 0x0e) == 0x08) | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | /* Handle VLD3.  */ | 
|  | else if ((b_bits & 0x0e) == 0x04) | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  | /* Handle VLD4.  */ | 
|  | else if (!(b_bits & 0x0e)) | 
|  | thumb2_insn_r->reg_rec_count = 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Handle VLD1.  */ | 
|  | if (!(b_bits & 0x0b) || b_bits == 0x08 || b_bits == 0x0c) | 
|  | thumb2_insn_r->reg_rec_count = 1; | 
|  | /* Handle VLD2.  */ | 
|  | else if ((b_bits & 0x0b) == 0x01 || b_bits == 0x09 || b_bits == 0x0d) | 
|  | thumb2_insn_r->reg_rec_count = 2; | 
|  | /* Handle VLD3.  */ | 
|  | else if ((b_bits & 0x0b) == 0x02 || b_bits == 0x0a || b_bits == 0x0e) | 
|  | thumb2_insn_r->reg_rec_count = 3; | 
|  | /* Handle VLD4.  */ | 
|  | else if ((b_bits & 0x0b) == 0x03 || b_bits == 0x0b || b_bits == 0x0f) | 
|  | thumb2_insn_r->reg_rec_count = 4; | 
|  |  | 
|  | for (index_r = 0; index_r < thumb2_insn_r->reg_rec_count; index_r++) | 
|  | record_buf[index_r] = reg_vd + ARM_D0_REGNUM + index_r; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bits (thumb2_insn_r->arm_insn, 0, 3) != 15) | 
|  | { | 
|  | record_buf[index_r] = reg_rn; | 
|  | thumb2_insn_r->reg_rec_count += 1; | 
|  | } | 
|  |  | 
|  | REG_ALLOC (thumb2_insn_r->arm_regs, thumb2_insn_r->reg_rec_count, | 
|  | record_buf); | 
|  | MEM_ALLOC (thumb2_insn_r->arm_mems, thumb2_insn_r->mem_rec_count, | 
|  | record_buf_mem); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Decodes thumb2 instruction type and invokes its record handler.  */ | 
|  |  | 
|  | static unsigned int | 
|  | thumb2_record_decode_insn_handler (arm_insn_decode_record *thumb2_insn_r) | 
|  | { | 
|  | uint32_t op, op1, op2; | 
|  |  | 
|  | op = bit (thumb2_insn_r->arm_insn, 15); | 
|  | op1 = bits (thumb2_insn_r->arm_insn, 27, 28); | 
|  | op2 = bits (thumb2_insn_r->arm_insn, 20, 26); | 
|  |  | 
|  | if (op1 == 0x01) | 
|  | { | 
|  | if (!(op2 & 0x64 )) | 
|  | { | 
|  | /* Load/store multiple instruction.  */ | 
|  | return thumb2_record_ld_st_multiple (thumb2_insn_r); | 
|  | } | 
|  | else if ((op2 & 0x64) == 0x4) | 
|  | { | 
|  | /* Load/store (dual/exclusive) and table branch instruction.  */ | 
|  | return thumb2_record_ld_st_dual_ex_tbb (thumb2_insn_r); | 
|  | } | 
|  | else if ((op2 & 0x60) == 0x20) | 
|  | { | 
|  | /* Data-processing (shifted register).  */ | 
|  | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | 
|  | } | 
|  | else if (op2 & 0x40) | 
|  | { | 
|  | /* Co-processor instructions.  */ | 
|  | return thumb2_record_coproc_insn (thumb2_insn_r); | 
|  | } | 
|  | } | 
|  | else if (op1 == 0x02) | 
|  | { | 
|  | if (op) | 
|  | { | 
|  | /* Branches and miscellaneous control instructions.  */ | 
|  | return thumb2_record_branch_misc_cntrl (thumb2_insn_r); | 
|  | } | 
|  | else if (op2 & 0x20) | 
|  | { | 
|  | /* Data-processing (plain binary immediate) instruction.  */ | 
|  | return thumb2_record_ps_dest_generic (thumb2_insn_r); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Data-processing (modified immediate).  */ | 
|  | return thumb2_record_data_proc_sreg_mimm (thumb2_insn_r); | 
|  | } | 
|  | } | 
|  | else if (op1 == 0x03) | 
|  | { | 
|  | if (!(op2 & 0x71 )) | 
|  | { | 
|  | /* Store single data item.  */ | 
|  | return thumb2_record_str_single_data (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x71) ^ 0x10)) | 
|  | { | 
|  | /* Advanced SIMD or structure load/store instructions.  */ | 
|  | return thumb2_record_asimd_struct_ld_st (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x67) ^ 0x01)) | 
|  | { | 
|  | /* Load byte, memory hints instruction.  */ | 
|  | return thumb2_record_ld_mem_hints (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x67) ^ 0x03)) | 
|  | { | 
|  | /* Load halfword, memory hints instruction.  */ | 
|  | return thumb2_record_ld_mem_hints (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x67) ^ 0x05)) | 
|  | { | 
|  | /* Load word instruction.  */ | 
|  | return thumb2_record_ld_word (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x70) ^ 0x20)) | 
|  | { | 
|  | /* Data-processing (register) instruction.  */ | 
|  | return thumb2_record_ps_dest_generic (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x78) ^ 0x30)) | 
|  | { | 
|  | /* Multiply, multiply accumulate, abs diff instruction.  */ | 
|  | return thumb2_record_ps_dest_generic (thumb2_insn_r); | 
|  | } | 
|  | else if (!((op2 & 0x78) ^ 0x38)) | 
|  | { | 
|  | /* Long multiply, long multiply accumulate, and divide.  */ | 
|  | return thumb2_record_lmul_lmla_div (thumb2_insn_r); | 
|  | } | 
|  | else if (op2 & 0x40) | 
|  | { | 
|  | /* Co-processor instructions.  */ | 
|  | return thumb2_record_coproc_insn (thumb2_insn_r); | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /* Abstract instruction reader.  */ | 
|  |  | 
|  | class abstract_instruction_reader | 
|  | { | 
|  | public: | 
|  | /* Read one instruction of size LEN from address MEMADDR and using | 
|  | BYTE_ORDER endianness.  */ | 
|  |  | 
|  | virtual ULONGEST read (CORE_ADDR memaddr, const size_t len, | 
|  | enum bfd_endian byte_order) = 0; | 
|  | }; | 
|  |  | 
|  | /* Instruction reader from real target.  */ | 
|  |  | 
|  | class instruction_reader : public abstract_instruction_reader | 
|  | { | 
|  | public: | 
|  | ULONGEST read (CORE_ADDR memaddr, const size_t len, | 
|  | enum bfd_endian byte_order) override | 
|  | { | 
|  | return read_code_unsigned_integer (memaddr, len, byte_order); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | typedef int (*sti_arm_hdl_fp_t) (arm_insn_decode_record*); | 
|  |  | 
|  | /* Decode arm/thumb insn depending on condition cods and opcodes; and | 
|  | dispatch it.  */ | 
|  |  | 
|  | static int | 
|  | decode_insn (abstract_instruction_reader &reader, | 
|  | arm_insn_decode_record *arm_record, | 
|  | record_type_t record_type, uint32_t insn_size) | 
|  | { | 
|  |  | 
|  | /* (Starting from numerical 0); bits 25, 26, 27 decodes type of arm | 
|  | instruction.  */ | 
|  | static const sti_arm_hdl_fp_t arm_handle_insn[8] = | 
|  | { | 
|  | arm_record_data_proc_misc_ld_str,   /* 000.  */ | 
|  | arm_record_data_proc_imm,           /* 001.  */ | 
|  | arm_record_ld_st_imm_offset,        /* 010.  */ | 
|  | arm_record_ld_st_reg_offset,        /* 011.  */ | 
|  | arm_record_ld_st_multiple,          /* 100.  */ | 
|  | arm_record_b_bl,                    /* 101.  */ | 
|  | arm_record_asimd_vfp_coproc,        /* 110.  */ | 
|  | arm_record_coproc_data_proc         /* 111.  */ | 
|  | }; | 
|  |  | 
|  | /* (Starting from numerical 0); bits 13,14,15 decodes type of thumb | 
|  | instruction.  */ | 
|  | static const sti_arm_hdl_fp_t thumb_handle_insn[8] = | 
|  | { \ | 
|  | thumb_record_shift_add_sub,        /* 000.  */ | 
|  | thumb_record_add_sub_cmp_mov,      /* 001.  */ | 
|  | thumb_record_ld_st_reg_offset,     /* 010.  */ | 
|  | thumb_record_ld_st_imm_offset,     /* 011.  */ | 
|  | thumb_record_ld_st_stack,          /* 100.  */ | 
|  | thumb_record_misc,                 /* 101.  */ | 
|  | thumb_record_ldm_stm_swi,          /* 110.  */ | 
|  | thumb_record_branch                /* 111.  */ | 
|  | }; | 
|  |  | 
|  | uint32_t ret = 0;    /* return value: negative:failure   0:success.  */ | 
|  | uint32_t insn_id = 0; | 
|  | enum bfd_endian code_endian | 
|  | = gdbarch_byte_order_for_code (arm_record->gdbarch); | 
|  | arm_record->arm_insn | 
|  | = reader.read (arm_record->this_addr, insn_size, code_endian); | 
|  |  | 
|  | if (ARM_RECORD == record_type) | 
|  | { | 
|  | arm_record->cond = bits (arm_record->arm_insn, 28, 31); | 
|  | insn_id = bits (arm_record->arm_insn, 25, 27); | 
|  |  | 
|  | if (arm_record->cond == 0xf) | 
|  | ret = arm_record_extension_space (arm_record); | 
|  | else | 
|  | { | 
|  | /* If this insn has fallen into extension space | 
|  | then we need not decode it anymore.  */ | 
|  | ret = arm_handle_insn[insn_id] (arm_record); | 
|  | } | 
|  | if (ret != ARM_RECORD_SUCCESS) | 
|  | { | 
|  | arm_record_unsupported_insn (arm_record); | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | else if (THUMB_RECORD == record_type) | 
|  | { | 
|  | /* As thumb does not have condition codes, we set negative.  */ | 
|  | arm_record->cond = -1; | 
|  | insn_id = bits (arm_record->arm_insn, 13, 15); | 
|  | ret = thumb_handle_insn[insn_id] (arm_record); | 
|  | if (ret != ARM_RECORD_SUCCESS) | 
|  | { | 
|  | arm_record_unsupported_insn (arm_record); | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | else if (THUMB2_RECORD == record_type) | 
|  | { | 
|  | /* As thumb does not have condition codes, we set negative.  */ | 
|  | arm_record->cond = -1; | 
|  |  | 
|  | /* Swap first half of 32bit thumb instruction with second half.  */ | 
|  | arm_record->arm_insn | 
|  | = (arm_record->arm_insn >> 16) | (arm_record->arm_insn << 16); | 
|  |  | 
|  | ret = thumb2_record_decode_insn_handler (arm_record); | 
|  |  | 
|  | if (ret != ARM_RECORD_SUCCESS) | 
|  | { | 
|  | arm_record_unsupported_insn (arm_record); | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Throw assertion.  */ | 
|  | gdb_assert_not_reached ("not a valid instruction, could not decode"); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | namespace selftests { | 
|  |  | 
|  | /* Instruction reader class for selftests. | 
|  |  | 
|  | For 16-bit Thumb instructions, an array of uint16_t should be used. | 
|  |  | 
|  | For 32-bit Thumb instructions and regular 32-bit Arm instructions, an array | 
|  | of uint32_t should be used.  */ | 
|  |  | 
|  | template<typename T> | 
|  | class instruction_reader_selftest : public abstract_instruction_reader | 
|  | { | 
|  | public: | 
|  | template<size_t SIZE> | 
|  | instruction_reader_selftest (const T (&insns)[SIZE]) | 
|  | : m_insns (insns), m_insns_size (SIZE) | 
|  | {} | 
|  |  | 
|  | ULONGEST read (CORE_ADDR memaddr, const size_t length, | 
|  | enum bfd_endian byte_order) override | 
|  | { | 
|  | SELF_CHECK (length == sizeof (T)); | 
|  | SELF_CHECK (memaddr % sizeof (T) == 0); | 
|  | SELF_CHECK ((memaddr / sizeof (T)) < m_insns_size); | 
|  |  | 
|  | return m_insns[memaddr / sizeof (T)]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const T *m_insns; | 
|  | const size_t m_insns_size; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | arm_record_test (void) | 
|  | { | 
|  | struct gdbarch_info info; | 
|  | info.bfd_arch_info = bfd_scan_arch ("arm"); | 
|  |  | 
|  | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | 
|  |  | 
|  | SELF_CHECK (gdbarch != NULL); | 
|  |  | 
|  | /* 16-bit Thumb instructions.  */ | 
|  | { | 
|  | arm_insn_decode_record arm_record; | 
|  |  | 
|  | memset (&arm_record, 0, sizeof (arm_insn_decode_record)); | 
|  | arm_record.gdbarch = gdbarch; | 
|  |  | 
|  | /* Use the endian-free representation of the instructions here.  The test | 
|  | will handle endianness conversions.  */ | 
|  | static const uint16_t insns[] = { | 
|  | /* db b2	uxtb	r3, r3 */ | 
|  | 0xb2db, | 
|  | /* cd 58	ldr	r5, [r1, r3] */ | 
|  | 0x58cd, | 
|  | }; | 
|  |  | 
|  | instruction_reader_selftest<uint16_t> reader (insns); | 
|  | int ret = decode_insn (reader, &arm_record, THUMB_RECORD, | 
|  | THUMB_INSN_SIZE_BYTES); | 
|  |  | 
|  | SELF_CHECK (ret == 0); | 
|  | SELF_CHECK (arm_record.mem_rec_count == 0); | 
|  | SELF_CHECK (arm_record.reg_rec_count == 1); | 
|  | SELF_CHECK (arm_record.arm_regs[0] == 3); | 
|  |  | 
|  | arm_record.this_addr += 2; | 
|  | ret = decode_insn (reader, &arm_record, THUMB_RECORD, | 
|  | THUMB_INSN_SIZE_BYTES); | 
|  |  | 
|  | SELF_CHECK (ret == 0); | 
|  | SELF_CHECK (arm_record.mem_rec_count == 0); | 
|  | SELF_CHECK (arm_record.reg_rec_count == 1); | 
|  | SELF_CHECK (arm_record.arm_regs[0] == 5); | 
|  | } | 
|  |  | 
|  | /* 32-bit Thumb-2 instructions.  */ | 
|  | { | 
|  | arm_insn_decode_record arm_record; | 
|  |  | 
|  | memset (&arm_record, 0, sizeof (arm_insn_decode_record)); | 
|  | arm_record.gdbarch = gdbarch; | 
|  |  | 
|  | /* Use the endian-free representation of the instruction here.  The test | 
|  | will handle endianness conversions.  */ | 
|  | static const uint32_t insns[] = { | 
|  | /* mrc	15, 0, r7, cr13, cr0, {3} */ | 
|  | 0x7f70ee1d, | 
|  | }; | 
|  |  | 
|  | instruction_reader_selftest<uint32_t> reader (insns); | 
|  | int ret = decode_insn (reader, &arm_record, THUMB2_RECORD, | 
|  | THUMB2_INSN_SIZE_BYTES); | 
|  |  | 
|  | SELF_CHECK (ret == 0); | 
|  | SELF_CHECK (arm_record.mem_rec_count == 0); | 
|  | SELF_CHECK (arm_record.reg_rec_count == 1); | 
|  | SELF_CHECK (arm_record.arm_regs[0] == 7); | 
|  | } | 
|  |  | 
|  | /* 32-bit instructions.  */ | 
|  | { | 
|  | arm_insn_decode_record arm_record; | 
|  |  | 
|  | memset (&arm_record, 0, sizeof (arm_insn_decode_record)); | 
|  | arm_record.gdbarch = gdbarch; | 
|  |  | 
|  | /* Use the endian-free representation of the instruction here.  The test | 
|  | will handle endianness conversions.  */ | 
|  | static const uint32_t insns[] = { | 
|  | /* mov     r5, r0 */ | 
|  | 0xe1a05000, | 
|  | }; | 
|  |  | 
|  | instruction_reader_selftest<uint32_t> reader (insns); | 
|  | int ret = decode_insn (reader, &arm_record, ARM_RECORD, | 
|  | ARM_INSN_SIZE_BYTES); | 
|  |  | 
|  | SELF_CHECK (ret == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Instruction reader from manually cooked instruction sequences.  */ | 
|  |  | 
|  | class test_arm_instruction_reader : public arm_instruction_reader | 
|  | { | 
|  | public: | 
|  | explicit test_arm_instruction_reader (gdb::array_view<const uint32_t> insns) | 
|  | : m_insns (insns) | 
|  | {} | 
|  |  | 
|  | uint32_t read (CORE_ADDR memaddr, enum bfd_endian byte_order) const override | 
|  | { | 
|  | SELF_CHECK (memaddr % 4 == 0); | 
|  | SELF_CHECK (memaddr / 4 < m_insns.size ()); | 
|  |  | 
|  | return m_insns[memaddr / 4]; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const gdb::array_view<const uint32_t> m_insns; | 
|  | }; | 
|  |  | 
|  | static void | 
|  | arm_analyze_prologue_test () | 
|  | { | 
|  | for (bfd_endian endianness : {BFD_ENDIAN_LITTLE, BFD_ENDIAN_BIG}) | 
|  | { | 
|  | struct gdbarch_info info; | 
|  | info.byte_order = endianness; | 
|  | info.byte_order_for_code = endianness; | 
|  | info.bfd_arch_info = bfd_scan_arch ("arm"); | 
|  |  | 
|  | struct gdbarch *gdbarch = gdbarch_find_by_info (info); | 
|  |  | 
|  | SELF_CHECK (gdbarch != NULL); | 
|  |  | 
|  | /* The "sub" instruction contains an immediate value rotate count of 0, | 
|  | which resulted in a 32-bit shift of a 32-bit value, caught by | 
|  | UBSan.  */ | 
|  | const uint32_t insns[] = { | 
|  | 0xe92d4ff0, /* push    {r4, r5, r6, r7, r8, r9, sl, fp, lr} */ | 
|  | 0xe1a05000, /* mov     r5, r0 */ | 
|  | 0xe5903020, /* ldr     r3, [r0, #32] */ | 
|  | 0xe24dd044, /* sub     sp, sp, #68     ; 0x44 */ | 
|  | }; | 
|  |  | 
|  | test_arm_instruction_reader mem_reader (insns); | 
|  | arm_prologue_cache cache; | 
|  | arm_cache_init (&cache, gdbarch); | 
|  |  | 
|  | arm_analyze_prologue (gdbarch, 0, sizeof (insns) - 1, &cache, mem_reader); | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace selftests | 
|  | #endif /* GDB_SELF_TEST */ | 
|  |  | 
|  | /* Cleans up local record registers and memory allocations.  */ | 
|  |  | 
|  | static void | 
|  | deallocate_reg_mem (arm_insn_decode_record *record) | 
|  | { | 
|  | xfree (record->arm_regs); | 
|  | xfree (record->arm_mems); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Parse the current instruction and record the values of the registers and | 
|  | memory that will be changed in current instruction to record_arch_list". | 
|  | Return -1 if something is wrong.  */ | 
|  |  | 
|  | int | 
|  | arm_process_record (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | CORE_ADDR insn_addr) | 
|  | { | 
|  |  | 
|  | uint32_t no_of_rec = 0; | 
|  | uint32_t ret = 0;  /* return value: -1:record failure ;  0:success  */ | 
|  | ULONGEST t_bit = 0, insn_id = 0; | 
|  |  | 
|  | ULONGEST u_regval = 0; | 
|  |  | 
|  | arm_insn_decode_record arm_record; | 
|  |  | 
|  | memset (&arm_record, 0, sizeof (arm_insn_decode_record)); | 
|  | arm_record.regcache = regcache; | 
|  | arm_record.this_addr = insn_addr; | 
|  | arm_record.gdbarch = gdbarch; | 
|  |  | 
|  |  | 
|  | if (record_debug > 1) | 
|  | { | 
|  | gdb_printf (gdb_stdlog, "Process record: arm_process_record " | 
|  | "addr = %s\n", | 
|  | paddress (gdbarch, arm_record.this_addr)); | 
|  | } | 
|  |  | 
|  | instruction_reader reader; | 
|  | enum bfd_endian code_endian | 
|  | = gdbarch_byte_order_for_code (arm_record.gdbarch); | 
|  | arm_record.arm_insn | 
|  | = reader.read (arm_record.this_addr, 2, code_endian); | 
|  |  | 
|  | /* Check the insn, whether it is thumb or arm one.  */ | 
|  |  | 
|  | t_bit = arm_psr_thumb_bit (arm_record.gdbarch); | 
|  | regcache_raw_read_unsigned (arm_record.regcache, ARM_PS_REGNUM, &u_regval); | 
|  |  | 
|  |  | 
|  | if (!(u_regval & t_bit)) | 
|  | { | 
|  | /* We are decoding arm insn.  */ | 
|  | ret = decode_insn (reader, &arm_record, ARM_RECORD, ARM_INSN_SIZE_BYTES); | 
|  | } | 
|  | else | 
|  | { | 
|  | insn_id = bits (arm_record.arm_insn, 11, 15); | 
|  | /* is it thumb2 insn?  */ | 
|  | if ((0x1D == insn_id) || (0x1E == insn_id) || (0x1F == insn_id)) | 
|  | { | 
|  | ret = decode_insn (reader, &arm_record, THUMB2_RECORD, | 
|  | THUMB2_INSN_SIZE_BYTES); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* We are decoding thumb insn.  */ | 
|  | ret = decode_insn (reader, &arm_record, THUMB_RECORD, | 
|  | THUMB_INSN_SIZE_BYTES); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (0 == ret) | 
|  | { | 
|  | /* Record registers.  */ | 
|  | record_full_arch_list_add_reg (arm_record.regcache, ARM_PC_REGNUM); | 
|  | if (arm_record.arm_regs) | 
|  | { | 
|  | for (no_of_rec = 0; no_of_rec < arm_record.reg_rec_count; no_of_rec++) | 
|  | { | 
|  | if (record_full_arch_list_add_reg | 
|  | (arm_record.regcache , arm_record.arm_regs[no_of_rec])) | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | /* Record memories.  */ | 
|  | if (arm_record.arm_mems) | 
|  | { | 
|  | for (no_of_rec = 0; no_of_rec < arm_record.mem_rec_count; no_of_rec++) | 
|  | { | 
|  | if (record_full_arch_list_add_mem | 
|  | ((CORE_ADDR)arm_record.arm_mems[no_of_rec].addr, | 
|  | arm_record.arm_mems[no_of_rec].len)) | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (record_full_arch_list_add_end ()) | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | deallocate_reg_mem (&arm_record); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* See arm-tdep.h.  */ | 
|  |  | 
|  | const target_desc * | 
|  | arm_read_description (arm_fp_type fp_type, bool tls) | 
|  | { | 
|  | struct target_desc *tdesc = tdesc_arm_list[fp_type][tls]; | 
|  |  | 
|  | if (tdesc == nullptr) | 
|  | { | 
|  | tdesc = arm_create_target_description (fp_type, tls); | 
|  | tdesc_arm_list[fp_type][tls] = tdesc; | 
|  | } | 
|  |  | 
|  | return tdesc; | 
|  | } | 
|  |  | 
|  | /* See arm-tdep.h.  */ | 
|  |  | 
|  | const target_desc * | 
|  | arm_read_mprofile_description (arm_m_profile_type m_type) | 
|  | { | 
|  | struct target_desc *tdesc = tdesc_arm_mprofile_list[m_type]; | 
|  |  | 
|  | if (tdesc == nullptr) | 
|  | { | 
|  | tdesc = arm_create_mprofile_target_description (m_type); | 
|  | tdesc_arm_mprofile_list[m_type] = tdesc; | 
|  | } | 
|  |  | 
|  | return tdesc; | 
|  | } |