| /* Perform arithmetic and other operations on values, for GDB. | 
 |  | 
 |    Copyright (C) 1986-2024 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "extract-store-integer.h" | 
 | #include "value.h" | 
 | #include "symtab.h" | 
 | #include "gdbtypes.h" | 
 | #include "expression.h" | 
 | #include "target.h" | 
 | #include "language.h" | 
 | #include "target-float.h" | 
 | #include "infcall.h" | 
 | #include "gdbsupport/byte-vector.h" | 
 | #include "gdbarch.h" | 
 | #include "rust-lang.h" | 
 | #include "ada-lang.h" | 
 |  | 
 | /* Forward declarations.  */ | 
 | static struct value *value_subscripted_rvalue (struct value *array, | 
 | 					       LONGEST index, | 
 | 					       LONGEST lowerbound); | 
 |  | 
 | /* Given a pointer, return the size of its target. | 
 |    If the pointer type is void *, then return 1. | 
 |    If the target type is incomplete, then error out. | 
 |    This isn't a general purpose function, but just a  | 
 |    helper for value_ptradd.  */ | 
 |  | 
 | static LONGEST | 
 | find_size_for_pointer_math (struct type *ptr_type) | 
 | { | 
 |   LONGEST sz = -1; | 
 |   struct type *ptr_target; | 
 |  | 
 |   gdb_assert (ptr_type->code () == TYPE_CODE_PTR); | 
 |   ptr_target = check_typedef (ptr_type->target_type ()); | 
 |  | 
 |   sz = type_length_units (ptr_target); | 
 |   if (sz == 0) | 
 |     { | 
 |       if (ptr_type->code () == TYPE_CODE_VOID) | 
 | 	sz = 1; | 
 |       else | 
 | 	{ | 
 | 	  const char *name; | 
 | 	   | 
 | 	  name = ptr_target->name (); | 
 | 	  if (name == NULL) | 
 | 	    error (_("Cannot perform pointer math on incomplete types, " | 
 | 		   "try casting to a known type, or void *.")); | 
 | 	  else | 
 | 	    error (_("Cannot perform pointer math on incomplete type \"%s\", " | 
 | 		   "try casting to a known type, or void *."), name); | 
 | 	} | 
 |     } | 
 |   return sz; | 
 | } | 
 |  | 
 | /* Given a pointer ARG1 and an integral value ARG2, return the | 
 |    result of C-style pointer arithmetic ARG1 + ARG2.  */ | 
 |  | 
 | struct value * | 
 | value_ptradd (struct value *arg1, LONGEST arg2) | 
 | { | 
 |   struct type *valptrtype; | 
 |   LONGEST sz; | 
 |   struct value *result; | 
 |  | 
 |   arg1 = coerce_array (arg1); | 
 |   valptrtype = check_typedef (arg1->type ()); | 
 |   sz = find_size_for_pointer_math (valptrtype); | 
 |  | 
 |   result = value_from_pointer (valptrtype, | 
 | 			       value_as_address (arg1) + sz * arg2); | 
 |   if (arg1->lval () != lval_internalvar) | 
 |     result->set_component_location (arg1); | 
 |   return result; | 
 | } | 
 |  | 
 | /* Given two compatible pointer values ARG1 and ARG2, return the | 
 |    result of C-style pointer arithmetic ARG1 - ARG2.  */ | 
 |  | 
 | LONGEST | 
 | value_ptrdiff (struct value *arg1, struct value *arg2) | 
 | { | 
 |   struct type *type1, *type2; | 
 |   LONGEST sz; | 
 |  | 
 |   arg1 = coerce_array (arg1); | 
 |   arg2 = coerce_array (arg2); | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |  | 
 |   gdb_assert (type1->code () == TYPE_CODE_PTR); | 
 |   gdb_assert (type2->code () == TYPE_CODE_PTR); | 
 |  | 
 |   if (check_typedef (type1->target_type ())->length () | 
 |       != check_typedef (type2->target_type ())->length ()) | 
 |     error (_("First argument of `-' is a pointer and " | 
 | 	     "second argument is neither\n" | 
 | 	     "an integer nor a pointer of the same type.")); | 
 |  | 
 |   sz = type_length_units (check_typedef (type1->target_type ())); | 
 |   if (sz == 0)  | 
 |     { | 
 |       warning (_("Type size unknown, assuming 1. " | 
 | 	       "Try casting to a known type, or void *.")); | 
 |       sz = 1; | 
 |     } | 
 |  | 
 |   return (value_as_long (arg1) - value_as_long (arg2)) / sz; | 
 | } | 
 |  | 
 | /* Return the value of ARRAY[IDX]. | 
 |  | 
 |    ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING.  If the | 
 |    current language supports C-style arrays, it may also be TYPE_CODE_PTR. | 
 |  | 
 |    See comments in value_coerce_array() for rationale for reason for | 
 |    doing lower bounds adjustment here rather than there. | 
 |    FIXME:  Perhaps we should validate that the index is valid and if | 
 |    verbosity is set, warn about invalid indices (but still use them).  */ | 
 |  | 
 | struct value * | 
 | value_subscript (struct value *array, LONGEST index) | 
 | { | 
 |   bool c_style = current_language->c_style_arrays_p (); | 
 |   struct type *tarray; | 
 |  | 
 |   array = coerce_ref (array); | 
 |   tarray = check_typedef (array->type ()); | 
 |  | 
 |   if (tarray->code () == TYPE_CODE_ARRAY | 
 |       || tarray->code () == TYPE_CODE_STRING) | 
 |     { | 
 |       struct type *range_type = tarray->index_type (); | 
 |       std::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type); | 
 |       if (!lowerbound.has_value ()) | 
 | 	lowerbound = 0; | 
 |  | 
 |       if (array->lval () != lval_memory) | 
 | 	return value_subscripted_rvalue (array, index, *lowerbound); | 
 |  | 
 |       std::optional<LONGEST> upperbound | 
 | 	= get_discrete_high_bound (range_type); | 
 |  | 
 |       if (!upperbound.has_value ()) | 
 | 	upperbound = -1; | 
 |  | 
 |       if (index >= *lowerbound && index <= *upperbound) | 
 | 	return value_subscripted_rvalue (array, index, *lowerbound); | 
 |  | 
 |       if (!c_style) | 
 | 	{ | 
 | 	  /* Emit warning unless we have an array of unknown size. | 
 | 	     An array of unknown size has lowerbound 0 and upperbound -1.  */ | 
 | 	  if (*upperbound > -1) | 
 | 	    warning (_("array or string index out of range")); | 
 | 	  /* fall doing C stuff */ | 
 | 	  c_style = true; | 
 | 	} | 
 |  | 
 |       index -= *lowerbound; | 
 |  | 
 |       /* Do not try to dereference a pointer to an unavailable value. | 
 | 	 Instead mock up a new one and give it the original address.  */ | 
 |       struct type *elt_type = check_typedef (tarray->target_type ()); | 
 |       LONGEST elt_size = type_length_units (elt_type); | 
 |       if (!array->lazy () | 
 | 	  && !array->bytes_available (elt_size * index, elt_size)) | 
 | 	{ | 
 | 	  struct value *val = value::allocate (elt_type); | 
 | 	  val->mark_bytes_unavailable (0, elt_size); | 
 | 	  val->set_lval (lval_memory); | 
 | 	  val->set_address (array->address () + elt_size * index); | 
 | 	  return val; | 
 | 	} | 
 |  | 
 |       array = value_coerce_array (array); | 
 |     } | 
 |  | 
 |   if (c_style) | 
 |     return value_ind (value_ptradd (array, index)); | 
 |   else | 
 |     error (_("not an array or string")); | 
 | } | 
 |  | 
 | /* Return the value of EXPR[IDX], expr an aggregate rvalue | 
 |    (eg, a vector register).  This routine used to promote floats | 
 |    to doubles, but no longer does.  */ | 
 |  | 
 | static struct value * | 
 | value_subscripted_rvalue (struct value *array, LONGEST index, | 
 | 			  LONGEST lowerbound) | 
 | { | 
 |   struct type *array_type = check_typedef (array->type ()); | 
 |   struct type *elt_type = array_type->target_type (); | 
 |   LONGEST elt_size = type_length_units (elt_type); | 
 |  | 
 |   /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits | 
 |      in a byte.  */ | 
 |   LONGEST stride = array_type->bit_stride (); | 
 |   if (stride != 0) | 
 |     { | 
 |       struct gdbarch *arch = elt_type->arch (); | 
 |       int unit_size = gdbarch_addressable_memory_unit_size (arch); | 
 |       elt_size = stride / (unit_size * 8); | 
 |     } | 
 |  | 
 |   LONGEST elt_offs = elt_size * (index - lowerbound); | 
 |   bool array_upper_bound_undefined | 
 |     = array_type->bounds ()->high.kind () == PROP_UNDEFINED; | 
 |  | 
 |   if (index < lowerbound | 
 |       || (!array_upper_bound_undefined | 
 | 	  && elt_offs >= type_length_units (array_type)) | 
 |       || (array->lval () != lval_memory && array_upper_bound_undefined)) | 
 |     { | 
 |       if (type_not_associated (array_type)) | 
 | 	error (_("no such vector element (vector not associated)")); | 
 |       else if (type_not_allocated (array_type)) | 
 | 	error (_("no such vector element (vector not allocated)")); | 
 |       else | 
 | 	error (_("no such vector element")); | 
 |     } | 
 |  | 
 |   if (is_dynamic_type (elt_type)) | 
 |     { | 
 |       CORE_ADDR address; | 
 |  | 
 |       address = array->address () + elt_offs; | 
 |       elt_type = resolve_dynamic_type (elt_type, {}, address); | 
 |     } | 
 |  | 
 |   return value_from_component (array, elt_type, elt_offs); | 
 | } | 
 |  | 
 | /* See value.h.  */ | 
 |  | 
 | struct value * | 
 | value_to_array (struct value *val) | 
 | { | 
 |   struct type *type = check_typedef (val->type ()); | 
 |   if (type->code () == TYPE_CODE_ARRAY) | 
 |     return val; | 
 |  | 
 |   if (type->is_array_like ()) | 
 |     { | 
 |       const language_defn *defn = language_def (type->language ()); | 
 |       return defn->to_array (val); | 
 |     } | 
 |   return nullptr; | 
 | } | 
 |  | 
 |  | 
 | /* Check to see if either argument is a structure, or a reference to | 
 |    one.  This is called so we know whether to go ahead with the normal | 
 |    binop or look for a user defined function instead. | 
 |  | 
 |    For now, we do not overload the `=' operator.  */ | 
 |  | 
 | int | 
 | binop_types_user_defined_p (enum exp_opcode op, | 
 | 			    struct type *type1, struct type *type2) | 
 | { | 
 |   if (op == BINOP_ASSIGN) | 
 |     return 0; | 
 |  | 
 |   type1 = check_typedef (type1); | 
 |   if (TYPE_IS_REFERENCE (type1)) | 
 |     type1 = check_typedef (type1->target_type ()); | 
 |  | 
 |   type2 = check_typedef (type2); | 
 |   if (TYPE_IS_REFERENCE (type2)) | 
 |     type2 = check_typedef (type2->target_type ()); | 
 |  | 
 |   return (type1->code () == TYPE_CODE_STRUCT | 
 | 	  || type2->code () == TYPE_CODE_STRUCT); | 
 | } | 
 |  | 
 | /* Check to see if either argument is a structure, or a reference to | 
 |    one.  This is called so we know whether to go ahead with the normal | 
 |    binop or look for a user defined function instead. | 
 |  | 
 |    For now, we do not overload the `=' operator.  */ | 
 |  | 
 | int | 
 | binop_user_defined_p (enum exp_opcode op, | 
 | 		      struct value *arg1, struct value *arg2) | 
 | { | 
 |   return binop_types_user_defined_p (op, arg1->type (), arg2->type ()); | 
 | } | 
 |  | 
 | /* Check to see if argument is a structure.  This is called so | 
 |    we know whether to go ahead with the normal unop or look for a  | 
 |    user defined function instead. | 
 |  | 
 |    For now, we do not overload the `&' operator.  */ | 
 |  | 
 | int | 
 | unop_user_defined_p (enum exp_opcode op, struct value *arg1) | 
 | { | 
 |   struct type *type1; | 
 |  | 
 |   if (op == UNOP_ADDR) | 
 |     return 0; | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   if (TYPE_IS_REFERENCE (type1)) | 
 |     type1 = check_typedef (type1->target_type ()); | 
 |   return type1->code () == TYPE_CODE_STRUCT; | 
 | } | 
 |  | 
 | /* Try to find an operator named OPERATOR which takes NARGS arguments | 
 |    specified in ARGS.  If the operator found is a static member operator | 
 |    *STATIC_MEMFUNP will be set to 1, and otherwise 0. | 
 |    The search if performed through find_overload_match which will handle | 
 |    member operators, non member operators, operators imported implicitly or | 
 |    explicitly, and perform correct overload resolution in all of the above | 
 |    situations or combinations thereof.  */ | 
 |  | 
 | static struct value * | 
 | value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper, | 
 | 			   int *static_memfuncp, enum noside noside) | 
 | { | 
 |  | 
 |   struct symbol *symp = NULL; | 
 |   struct value *valp = NULL; | 
 |  | 
 |   find_overload_match (args, oper, BOTH /* could be method */, | 
 | 		       &args[0] /* objp */, | 
 | 		       NULL /* pass NULL symbol since symbol is unknown */, | 
 | 		       &valp, &symp, static_memfuncp, 0, noside); | 
 |  | 
 |   if (valp) | 
 |     return valp; | 
 |  | 
 |   if (symp) | 
 |     { | 
 |       /* This is a non member function and does not | 
 | 	 expect a reference as its first argument | 
 | 	 rather the explicit structure.  */ | 
 |       args[0] = value_ind (args[0]); | 
 |       return value_of_variable (symp, 0); | 
 |     } | 
 |  | 
 |   error (_("Could not find %s."), oper); | 
 | } | 
 |  | 
 | /* Lookup user defined operator NAME.  Return a value representing the | 
 |    function, otherwise return NULL.  */ | 
 |  | 
 | static struct value * | 
 | value_user_defined_op (struct value **argp, gdb::array_view<value *> args, | 
 | 		       char *name, int *static_memfuncp, enum noside noside) | 
 | { | 
 |   struct value *result = NULL; | 
 |  | 
 |   if (current_language->la_language == language_cplus) | 
 |     { | 
 |       result = value_user_defined_cpp_op (args, name, static_memfuncp, | 
 | 					  noside); | 
 |     } | 
 |   else | 
 |     result = value_struct_elt (argp, args, name, static_memfuncp, | 
 | 			       "structure"); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /* We know either arg1 or arg2 is a structure, so try to find the right | 
 |    user defined function.  Create an argument vector that calls  | 
 |    arg1.operator @ (arg1,arg2) and return that value (where '@' is any | 
 |    binary operator which is legal for GNU C++). | 
 |  | 
 |    OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP | 
 |    is the opcode saying how to modify it.  Otherwise, OTHEROP is | 
 |    unused.  */ | 
 |  | 
 | struct value * | 
 | value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op, | 
 | 	       enum exp_opcode otherop, enum noside noside) | 
 | { | 
 |   char *ptr; | 
 |   char tstr[13]; | 
 |   int static_memfuncp; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |   arg2 = coerce_ref (arg2); | 
 |  | 
 |   /* now we know that what we have to do is construct our | 
 |      arg vector and find the right function to call it with.  */ | 
 |  | 
 |   if (check_typedef (arg1->type ())->code () != TYPE_CODE_STRUCT) | 
 |     error (_("Can't do that binary op on that type"));	/* FIXME be explicit */ | 
 |  | 
 |   value *argvec_storage[3]; | 
 |   gdb::array_view<value *> argvec = argvec_storage; | 
 |  | 
 |   argvec[1] = value_addr (arg1); | 
 |   argvec[2] = arg2; | 
 |  | 
 |   /* Make the right function name up.  */ | 
 |   strcpy (tstr, "operator__"); | 
 |   ptr = tstr + 8; | 
 |   switch (op) | 
 |     { | 
 |     case BINOP_ADD: | 
 |       strcpy (ptr, "+"); | 
 |       break; | 
 |     case BINOP_SUB: | 
 |       strcpy (ptr, "-"); | 
 |       break; | 
 |     case BINOP_MUL: | 
 |       strcpy (ptr, "*"); | 
 |       break; | 
 |     case BINOP_DIV: | 
 |       strcpy (ptr, "/"); | 
 |       break; | 
 |     case BINOP_REM: | 
 |       strcpy (ptr, "%"); | 
 |       break; | 
 |     case BINOP_LSH: | 
 |       strcpy (ptr, "<<"); | 
 |       break; | 
 |     case BINOP_RSH: | 
 |       strcpy (ptr, ">>"); | 
 |       break; | 
 |     case BINOP_BITWISE_AND: | 
 |       strcpy (ptr, "&"); | 
 |       break; | 
 |     case BINOP_BITWISE_IOR: | 
 |       strcpy (ptr, "|"); | 
 |       break; | 
 |     case BINOP_BITWISE_XOR: | 
 |       strcpy (ptr, "^"); | 
 |       break; | 
 |     case BINOP_LOGICAL_AND: | 
 |       strcpy (ptr, "&&"); | 
 |       break; | 
 |     case BINOP_LOGICAL_OR: | 
 |       strcpy (ptr, "||"); | 
 |       break; | 
 |     case BINOP_MIN: | 
 |       strcpy (ptr, "<?"); | 
 |       break; | 
 |     case BINOP_MAX: | 
 |       strcpy (ptr, ">?"); | 
 |       break; | 
 |     case BINOP_ASSIGN: | 
 |       strcpy (ptr, "="); | 
 |       break; | 
 |     case BINOP_ASSIGN_MODIFY: | 
 |       switch (otherop) | 
 | 	{ | 
 | 	case BINOP_ADD: | 
 | 	  strcpy (ptr, "+="); | 
 | 	  break; | 
 | 	case BINOP_SUB: | 
 | 	  strcpy (ptr, "-="); | 
 | 	  break; | 
 | 	case BINOP_MUL: | 
 | 	  strcpy (ptr, "*="); | 
 | 	  break; | 
 | 	case BINOP_DIV: | 
 | 	  strcpy (ptr, "/="); | 
 | 	  break; | 
 | 	case BINOP_REM: | 
 | 	  strcpy (ptr, "%="); | 
 | 	  break; | 
 | 	case BINOP_BITWISE_AND: | 
 | 	  strcpy (ptr, "&="); | 
 | 	  break; | 
 | 	case BINOP_BITWISE_IOR: | 
 | 	  strcpy (ptr, "|="); | 
 | 	  break; | 
 | 	case BINOP_BITWISE_XOR: | 
 | 	  strcpy (ptr, "^="); | 
 | 	  break; | 
 | 	case BINOP_MOD:	/* invalid */ | 
 | 	default: | 
 | 	  error (_("Invalid binary operation specified.")); | 
 | 	} | 
 |       break; | 
 |     case BINOP_SUBSCRIPT: | 
 |       strcpy (ptr, "[]"); | 
 |       break; | 
 |     case BINOP_EQUAL: | 
 |       strcpy (ptr, "=="); | 
 |       break; | 
 |     case BINOP_NOTEQUAL: | 
 |       strcpy (ptr, "!="); | 
 |       break; | 
 |     case BINOP_LESS: | 
 |       strcpy (ptr, "<"); | 
 |       break; | 
 |     case BINOP_GTR: | 
 |       strcpy (ptr, ">"); | 
 |       break; | 
 |     case BINOP_GEQ: | 
 |       strcpy (ptr, ">="); | 
 |       break; | 
 |     case BINOP_LEQ: | 
 |       strcpy (ptr, "<="); | 
 |       break; | 
 |     case BINOP_MOD:		/* invalid */ | 
 |     default: | 
 |       error (_("Invalid binary operation specified.")); | 
 |     } | 
 |  | 
 |   argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr, | 
 | 				     &static_memfuncp, noside); | 
 |  | 
 |   if (argvec[0]) | 
 |     { | 
 |       if (static_memfuncp) | 
 | 	{ | 
 | 	  argvec[1] = argvec[0]; | 
 | 	  argvec = argvec.slice (1); | 
 | 	} | 
 |       if (argvec[0]->type ()->code () == TYPE_CODE_XMETHOD) | 
 | 	{ | 
 | 	  /* Static xmethods are not supported yet.  */ | 
 | 	  gdb_assert (static_memfuncp == 0); | 
 | 	  if (noside == EVAL_AVOID_SIDE_EFFECTS) | 
 | 	    { | 
 | 	      struct type *return_type | 
 | 		= argvec[0]->result_type_of_xmethod (argvec.slice (1)); | 
 |  | 
 | 	      if (return_type == NULL) | 
 | 		error (_("Xmethod is missing return type.")); | 
 | 	      return value::zero (return_type, arg1->lval ()); | 
 | 	    } | 
 | 	  return argvec[0]->call_xmethod (argvec.slice (1)); | 
 | 	} | 
 |       if (noside == EVAL_AVOID_SIDE_EFFECTS) | 
 | 	{ | 
 | 	  struct type *return_type; | 
 |  | 
 | 	  return_type = check_typedef (argvec[0]->type ())->target_type (); | 
 | 	  return value::zero (return_type, arg1->lval ()); | 
 | 	} | 
 |       return call_function_by_hand (argvec[0], NULL, | 
 | 				    argvec.slice (1, 2 - static_memfuncp)); | 
 |     } | 
 |   throw_error (NOT_FOUND_ERROR, | 
 | 	       _("member function %s not found"), tstr); | 
 | } | 
 |  | 
 | /* We know that arg1 is a structure, so try to find a unary user | 
 |    defined operator that matches the operator in question. | 
 |    Create an argument vector that calls arg1.operator @ (arg1) | 
 |    and return that value (where '@' is (almost) any unary operator which | 
 |    is legal for GNU C++).  */ | 
 |  | 
 | struct value * | 
 | value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside) | 
 | { | 
 |   struct gdbarch *gdbarch = arg1->type ()->arch (); | 
 |   char *ptr; | 
 |   char tstr[13], mangle_tstr[13]; | 
 |   int static_memfuncp, nargs; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |  | 
 |   /* now we know that what we have to do is construct our | 
 |      arg vector and find the right function to call it with.  */ | 
 |  | 
 |   if (check_typedef (arg1->type ())->code () != TYPE_CODE_STRUCT) | 
 |     error (_("Can't do that unary op on that type"));	/* FIXME be explicit */ | 
 |  | 
 |   value *argvec_storage[3]; | 
 |   gdb::array_view<value *> argvec = argvec_storage; | 
 |  | 
 |   argvec[1] = value_addr (arg1); | 
 |   argvec[2] = 0; | 
 |  | 
 |   nargs = 1; | 
 |  | 
 |   /* Make the right function name up.  */ | 
 |   strcpy (tstr, "operator__"); | 
 |   ptr = tstr + 8; | 
 |   strcpy (mangle_tstr, "__"); | 
 |   switch (op) | 
 |     { | 
 |     case UNOP_PREINCREMENT: | 
 |       strcpy (ptr, "++"); | 
 |       break; | 
 |     case UNOP_PREDECREMENT: | 
 |       strcpy (ptr, "--"); | 
 |       break; | 
 |     case UNOP_POSTINCREMENT: | 
 |       strcpy (ptr, "++"); | 
 |       argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); | 
 |       nargs ++; | 
 |       break; | 
 |     case UNOP_POSTDECREMENT: | 
 |       strcpy (ptr, "--"); | 
 |       argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); | 
 |       nargs ++; | 
 |       break; | 
 |     case UNOP_LOGICAL_NOT: | 
 |       strcpy (ptr, "!"); | 
 |       break; | 
 |     case UNOP_COMPLEMENT: | 
 |       strcpy (ptr, "~"); | 
 |       break; | 
 |     case UNOP_NEG: | 
 |       strcpy (ptr, "-"); | 
 |       break; | 
 |     case UNOP_PLUS: | 
 |       strcpy (ptr, "+"); | 
 |       break; | 
 |     case UNOP_IND: | 
 |       strcpy (ptr, "*"); | 
 |       break; | 
 |     case STRUCTOP_PTR: | 
 |       strcpy (ptr, "->"); | 
 |       break; | 
 |     default: | 
 |       error (_("Invalid unary operation specified.")); | 
 |     } | 
 |  | 
 |   argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr, | 
 | 				     &static_memfuncp, noside); | 
 |  | 
 |   if (argvec[0]) | 
 |     { | 
 |       if (static_memfuncp) | 
 | 	{ | 
 | 	  argvec[1] = argvec[0]; | 
 | 	  argvec = argvec.slice (1); | 
 | 	} | 
 |       if (argvec[0]->type ()->code () == TYPE_CODE_XMETHOD) | 
 | 	{ | 
 | 	  /* Static xmethods are not supported yet.  */ | 
 | 	  gdb_assert (static_memfuncp == 0); | 
 | 	  if (noside == EVAL_AVOID_SIDE_EFFECTS) | 
 | 	    { | 
 | 	      struct type *return_type | 
 | 		= argvec[0]->result_type_of_xmethod (argvec[1]); | 
 |  | 
 | 	      if (return_type == NULL) | 
 | 		error (_("Xmethod is missing return type.")); | 
 | 	      return value::zero (return_type, arg1->lval ()); | 
 | 	    } | 
 | 	  return argvec[0]->call_xmethod (argvec[1]); | 
 | 	} | 
 |       if (noside == EVAL_AVOID_SIDE_EFFECTS) | 
 | 	{ | 
 | 	  struct type *return_type; | 
 |  | 
 | 	  return_type = check_typedef (argvec[0]->type ())->target_type (); | 
 | 	  return value::zero (return_type, arg1->lval ()); | 
 | 	} | 
 |       return call_function_by_hand (argvec[0], NULL, | 
 | 				    argvec.slice (1, nargs)); | 
 |     } | 
 |   throw_error (NOT_FOUND_ERROR, | 
 | 	       _("member function %s not found"), tstr); | 
 | } | 
 |  | 
 |  | 
 | /* Concatenate two values.  One value must be an array; and the other | 
 |    value must either be an array with the same element type, or be of | 
 |    the array's element type.  */ | 
 |  | 
 | struct value * | 
 | value_concat (struct value *arg1, struct value *arg2) | 
 | { | 
 |   struct type *type1 = check_typedef (arg1->type ()); | 
 |   struct type *type2 = check_typedef (arg2->type ()); | 
 |  | 
 |   if (type1->code () != TYPE_CODE_ARRAY && type2->code () != TYPE_CODE_ARRAY) | 
 |     error ("no array provided to concatenation"); | 
 |  | 
 |   LONGEST low1, high1; | 
 |   struct type *elttype1 = type1; | 
 |   if (elttype1->code () == TYPE_CODE_ARRAY) | 
 |     { | 
 |       elttype1 = elttype1->target_type (); | 
 |       if (!get_array_bounds (type1, &low1, &high1)) | 
 | 	error (_("could not determine array bounds on left-hand-side of " | 
 | 		 "array concatenation")); | 
 |     } | 
 |   else | 
 |     { | 
 |       low1 = 0; | 
 |       high1 = 0; | 
 |     } | 
 |  | 
 |   LONGEST low2, high2; | 
 |   struct type *elttype2 = type2; | 
 |   if (elttype2->code () == TYPE_CODE_ARRAY) | 
 |     { | 
 |       elttype2 = elttype2->target_type (); | 
 |       if (!get_array_bounds (type2, &low2, &high2)) | 
 | 	error (_("could not determine array bounds on right-hand-side of " | 
 | 		 "array concatenation")); | 
 |     } | 
 |   else | 
 |     { | 
 |       low2 = 0; | 
 |       high2 = 0; | 
 |     } | 
 |  | 
 |   if (!types_equal (elttype1, elttype2)) | 
 |     error (_("concatenation with different element types")); | 
 |  | 
 |   LONGEST lowbound = current_language->c_style_arrays_p () ? 0 : 1; | 
 |   LONGEST n_elts = (high1 - low1 + 1) + (high2 - low2 + 1); | 
 |   struct type *atype = lookup_array_range_type (elttype1, | 
 | 						lowbound, | 
 | 						lowbound + n_elts - 1); | 
 |  | 
 |   struct value *result = value::allocate (atype); | 
 |   gdb::array_view<gdb_byte> contents = result->contents_raw (); | 
 |   gdb::array_view<const gdb_byte> lhs_contents = arg1->contents (); | 
 |   gdb::array_view<const gdb_byte> rhs_contents = arg2->contents (); | 
 |   gdb::copy (lhs_contents, contents.slice (0, lhs_contents.size ())); | 
 |   gdb::copy (rhs_contents, contents.slice (lhs_contents.size ())); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 |  | 
 | /* Obtain argument values for binary operation, converting from | 
 |    other types if one of them is not floating point.  */ | 
 | static void | 
 | value_args_as_target_float (struct value *arg1, struct value *arg2, | 
 | 			    gdb_byte *x, struct type **eff_type_x, | 
 | 			    gdb_byte *y, struct type **eff_type_y) | 
 | { | 
 |   struct type *type1, *type2; | 
 |  | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |  | 
 |   /* At least one of the arguments must be of floating-point type.  */ | 
 |   gdb_assert (is_floating_type (type1) || is_floating_type (type2)); | 
 |  | 
 |   if (is_floating_type (type1) && is_floating_type (type2) | 
 |       && type1->code () != type2->code ()) | 
 |     /* The DFP extension to the C language does not allow mixing of | 
 |      * decimal float types with other float types in expressions | 
 |      * (see WDTR 24732, page 12).  */ | 
 |     error (_("Mixing decimal floating types with " | 
 | 	     "other floating types is not allowed.")); | 
 |  | 
 |   /* Obtain value of arg1, converting from other types if necessary.  */ | 
 |  | 
 |   if (is_floating_type (type1)) | 
 |     { | 
 |       *eff_type_x = type1; | 
 |       memcpy (x, arg1->contents ().data (), type1->length ()); | 
 |     } | 
 |   else if (is_integral_type (type1)) | 
 |     { | 
 |       *eff_type_x = type2; | 
 |       if (type1->is_unsigned ()) | 
 | 	target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1)); | 
 |       else | 
 | 	target_float_from_longest (x, *eff_type_x, value_as_long (arg1)); | 
 |     } | 
 |   else | 
 |     error (_("Don't know how to convert from %s to %s."), type1->name (), | 
 | 	     type2->name ()); | 
 |  | 
 |   /* Obtain value of arg2, converting from other types if necessary.  */ | 
 |  | 
 |   if (is_floating_type (type2)) | 
 |     { | 
 |       *eff_type_y = type2; | 
 |       memcpy (y, arg2->contents ().data (), type2->length ()); | 
 |     } | 
 |   else if (is_integral_type (type2)) | 
 |     { | 
 |       *eff_type_y = type1; | 
 |       if (type2->is_unsigned ()) | 
 | 	target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2)); | 
 |       else | 
 | 	target_float_from_longest (y, *eff_type_y, value_as_long (arg2)); | 
 |     } | 
 |   else | 
 |     error (_("Don't know how to convert from %s to %s."), type1->name (), | 
 | 	     type2->name ()); | 
 | } | 
 |  | 
 | /* Assuming at last one of ARG1 or ARG2 is a fixed point value, | 
 |    perform the binary operation OP on these two operands, and return | 
 |    the resulting value (also as a fixed point).  */ | 
 |  | 
 | static struct value * | 
 | fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | 
 | { | 
 |   struct type *type1 = check_typedef (arg1->type ()); | 
 |   struct type *type2 = check_typedef (arg2->type ()); | 
 |   const struct language_defn *language = current_language; | 
 |  | 
 |   struct gdbarch *gdbarch = type1->arch (); | 
 |   struct value *val; | 
 |  | 
 |   gdb_mpq v1, v2, res; | 
 |  | 
 |   gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2)); | 
 |   if (op == BINOP_MUL || op == BINOP_DIV) | 
 |     { | 
 |       v1 = value_to_gdb_mpq (arg1); | 
 |       v2 = value_to_gdb_mpq (arg2); | 
 |  | 
 |       /* The code below uses TYPE1 for the result type, so make sure | 
 | 	 it is set properly.  */ | 
 |       if (!is_fixed_point_type (type1)) | 
 | 	type1 = type2; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (!is_fixed_point_type (type1)) | 
 | 	{ | 
 | 	  arg1 = value_cast (type2, arg1); | 
 | 	  type1 = type2; | 
 | 	} | 
 |       if (!is_fixed_point_type (type2)) | 
 | 	{ | 
 | 	  arg2 = value_cast (type1, arg2); | 
 | 	  type2 = type1; | 
 | 	} | 
 |  | 
 |       v1.read_fixed_point (arg1->contents (), | 
 | 			   type_byte_order (type1), type1->is_unsigned (), | 
 | 			   type1->fixed_point_scaling_factor ()); | 
 |       v2.read_fixed_point (arg2->contents (), | 
 | 			   type_byte_order (type2), type2->is_unsigned (), | 
 | 			   type2->fixed_point_scaling_factor ()); | 
 |     } | 
 |  | 
 |   auto fixed_point_to_value = [type1] (const gdb_mpq &fp) | 
 |     { | 
 |       value *fp_val = value::allocate (type1); | 
 |  | 
 |       fp.write_fixed_point | 
 |       (fp_val->contents_raw (), | 
 | 	 type_byte_order (type1), | 
 | 	 type1->is_unsigned (), | 
 | 	 type1->fixed_point_scaling_factor ()); | 
 |  | 
 |       return fp_val; | 
 |     }; | 
 |  | 
 |   switch (op) | 
 |     { | 
 |     case BINOP_ADD: | 
 |       res = v1 + v2; | 
 |       val = fixed_point_to_value (res); | 
 |       break; | 
 |  | 
 |     case BINOP_SUB: | 
 |       res = v1 - v2; | 
 |       val = fixed_point_to_value (res); | 
 |       break; | 
 |  | 
 |     case BINOP_MIN: | 
 |       val = fixed_point_to_value (std::min (v1, v2)); | 
 |       break; | 
 |  | 
 |     case BINOP_MAX: | 
 |       val = fixed_point_to_value (std::max (v1, v2)); | 
 |       break; | 
 |  | 
 |     case BINOP_MUL: | 
 |       res = v1 * v2; | 
 |       val = fixed_point_to_value (res); | 
 |       break; | 
 |  | 
 |     case BINOP_DIV: | 
 |       if (v2.sgn () == 0) | 
 | 	error (_("Division by zero")); | 
 |       res = v1 / v2; | 
 |       val = fixed_point_to_value (res); | 
 |       break; | 
 |  | 
 |     case BINOP_EQUAL: | 
 |       val = value_from_ulongest (language_bool_type (language, gdbarch), | 
 | 				 v1 == v2 ? 1 : 0); | 
 |       break; | 
 |  | 
 |     case BINOP_LESS: | 
 |       val = value_from_ulongest (language_bool_type (language, gdbarch), | 
 | 				 v1 < v2 ? 1 : 0); | 
 |       break; | 
 |  | 
 |     default: | 
 |       error (_("Integer-only operation on fixed point number.")); | 
 |     } | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* A helper function that finds the type to use for a binary operation | 
 |    involving TYPE1 and TYPE2.  */ | 
 |  | 
 | static struct type * | 
 | promotion_type (struct type *type1, struct type *type2) | 
 | { | 
 |   struct type *result_type; | 
 |  | 
 |   if (is_floating_type (type1) || is_floating_type (type2)) | 
 |     { | 
 |       /* If only one type is floating-point, use its type. | 
 | 	 Otherwise use the bigger type.  */ | 
 |       if (!is_floating_type (type1)) | 
 | 	result_type = type2; | 
 |       else if (!is_floating_type (type2)) | 
 | 	result_type = type1; | 
 |       else if (type2->length () > type1->length ()) | 
 | 	result_type = type2; | 
 |       else | 
 | 	result_type = type1; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Integer types.  */ | 
 |       if (type1->length () > type2->length ()) | 
 | 	result_type = type1; | 
 |       else if (type2->length () > type1->length ()) | 
 | 	result_type = type2; | 
 |       else if (type1->is_unsigned ()) | 
 | 	result_type = type1; | 
 |       else if (type2->is_unsigned ()) | 
 | 	result_type = type2; | 
 |       else | 
 | 	result_type = type1; | 
 |     } | 
 |  | 
 |   return result_type; | 
 | } | 
 |  | 
 | static struct value *scalar_binop (struct value *arg1, struct value *arg2, | 
 | 				   enum exp_opcode op); | 
 |  | 
 | /* Perform a binary operation on complex operands.  */ | 
 |  | 
 | static struct value * | 
 | complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | 
 | { | 
 |   struct type *arg1_type = check_typedef (arg1->type ()); | 
 |   struct type *arg2_type = check_typedef (arg2->type ()); | 
 |  | 
 |   struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag; | 
 |   if (arg1_type->code () == TYPE_CODE_COMPLEX) | 
 |     { | 
 |       arg1_real = value_real_part (arg1); | 
 |       arg1_imag = value_imaginary_part (arg1); | 
 |     } | 
 |   else | 
 |     { | 
 |       arg1_real = arg1; | 
 |       arg1_imag = value::zero (arg1_type, not_lval); | 
 |     } | 
 |   if (arg2_type->code () == TYPE_CODE_COMPLEX) | 
 |     { | 
 |       arg2_real = value_real_part (arg2); | 
 |       arg2_imag = value_imaginary_part (arg2); | 
 |     } | 
 |   else | 
 |     { | 
 |       arg2_real = arg2; | 
 |       arg2_imag = value::zero (arg2_type, not_lval); | 
 |     } | 
 |  | 
 |   struct type *comp_type = promotion_type (arg1_real->type (), | 
 | 					   arg2_real->type ()); | 
 |   if (!can_create_complex_type (comp_type)) | 
 |     error (_("Argument to complex arithmetic operation not supported.")); | 
 |  | 
 |   arg1_real = value_cast (comp_type, arg1_real); | 
 |   arg1_imag = value_cast (comp_type, arg1_imag); | 
 |   arg2_real = value_cast (comp_type, arg2_real); | 
 |   arg2_imag = value_cast (comp_type, arg2_imag); | 
 |  | 
 |   struct type *result_type = init_complex_type (nullptr, comp_type); | 
 |  | 
 |   struct value *result_real, *result_imag; | 
 |   switch (op) | 
 |     { | 
 |     case BINOP_ADD: | 
 |     case BINOP_SUB: | 
 |       result_real = scalar_binop (arg1_real, arg2_real, op); | 
 |       result_imag = scalar_binop (arg1_imag, arg2_imag, op); | 
 |       break; | 
 |  | 
 |     case BINOP_MUL: | 
 |       { | 
 | 	struct value *x1 = scalar_binop (arg1_real, arg2_real, op); | 
 | 	struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op); | 
 | 	result_real = scalar_binop (x1, x2, BINOP_SUB); | 
 |  | 
 | 	x1 = scalar_binop (arg1_real, arg2_imag, op); | 
 | 	x2 = scalar_binop (arg1_imag, arg2_real, op); | 
 | 	result_imag = scalar_binop (x1, x2, BINOP_ADD); | 
 |       } | 
 |       break; | 
 |  | 
 |     case BINOP_DIV: | 
 |       { | 
 | 	if (arg2_type->code () == TYPE_CODE_COMPLEX) | 
 | 	  { | 
 | 	    struct value *conjugate = value_complement (arg2); | 
 | 	    /* We have to reconstruct ARG1, in case the type was | 
 | 	       promoted.  */ | 
 | 	    arg1 = value_literal_complex (arg1_real, arg1_imag, result_type); | 
 |  | 
 | 	    struct value *numerator = scalar_binop (arg1, conjugate, | 
 | 						    BINOP_MUL); | 
 | 	    arg1_real = value_real_part (numerator); | 
 | 	    arg1_imag = value_imaginary_part (numerator); | 
 |  | 
 | 	    struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL); | 
 | 	    struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL); | 
 | 	    arg2_real = scalar_binop (x1, x2, BINOP_ADD); | 
 | 	  } | 
 |  | 
 | 	result_real = scalar_binop (arg1_real, arg2_real, op); | 
 | 	result_imag = scalar_binop (arg1_imag, arg2_real, op); | 
 |       } | 
 |       break; | 
 |  | 
 |     case BINOP_EQUAL: | 
 |     case BINOP_NOTEQUAL: | 
 |       { | 
 | 	struct value *x1 = scalar_binop (arg1_real, arg2_real, op); | 
 | 	struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op); | 
 |  | 
 | 	LONGEST v1 = value_as_long (x1); | 
 | 	LONGEST v2 = value_as_long (x2); | 
 |  | 
 | 	if (op == BINOP_EQUAL) | 
 | 	  v1 = v1 && v2; | 
 | 	else | 
 | 	  v1 = v1 || v2; | 
 |  | 
 | 	return value_from_longest (x1->type (), v1); | 
 |       } | 
 |       break; | 
 |  | 
 |     default: | 
 |       error (_("Invalid binary operation on numbers.")); | 
 |     } | 
 |  | 
 |   return value_literal_complex (result_real, result_imag, result_type); | 
 | } | 
 |  | 
 | /* Return the type's length in bits.  */ | 
 |  | 
 | static int | 
 | type_length_bits (type *type) | 
 | { | 
 |   int unit_size = gdbarch_addressable_memory_unit_size (type->arch ()); | 
 |   return unit_size * 8 * type->length (); | 
 | } | 
 |  | 
 | /* Check whether the RHS value of a shift is valid in C/C++ semantics. | 
 |    SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of | 
 |    the shift count value, used to determine whether the type is | 
 |    signed, and RESULT_TYPE is the result type.  This is used to avoid | 
 |    both negative and too-large shift amounts, which are undefined, and | 
 |    would crash a GDB built with UBSan.  Depending on the current | 
 |    language, if the shift is not valid, this either warns and returns | 
 |    false, or errors out.  Returns true and sets NBITS if valid.  */ | 
 |  | 
 | static bool | 
 | check_valid_shift_count (enum exp_opcode op, type *result_type, | 
 | 			 type *shift_count_type, const gdb_mpz &shift_count, | 
 | 			 ULONGEST &nbits) | 
 | { | 
 |   if (!shift_count_type->is_unsigned ()) | 
 |     { | 
 |       LONGEST count = shift_count.as_integer<LONGEST> (); | 
 |       if (count < 0) | 
 | 	{ | 
 | 	  auto error_or_warning = [] (const char *msg) | 
 | 	  { | 
 | 	    /* Shifts by a negative amount are always an error in Go.  Other | 
 | 	       languages are more permissive and their compilers just warn or | 
 | 	       have modes to disable the errors.  */ | 
 | 	    if (current_language->la_language == language_go) | 
 | 	      error (("%s"), msg); | 
 | 	    else | 
 | 	      warning (("%s"), msg); | 
 | 	  }; | 
 |  | 
 | 	  if (op == BINOP_RSH) | 
 | 	    error_or_warning (_("right shift count is negative")); | 
 | 	  else | 
 | 	    error_or_warning (_("left shift count is negative")); | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   nbits = shift_count.as_integer<ULONGEST> (); | 
 |   if (nbits >= type_length_bits (result_type)) | 
 |     { | 
 |       /* In Go, shifting by large amounts is defined.  Be silent and | 
 | 	 still return false, as the caller's error path does the right | 
 | 	 thing for Go.  */ | 
 |       if (current_language->la_language != language_go) | 
 | 	{ | 
 | 	  if (op == BINOP_RSH) | 
 | 	    warning (_("right shift count >= width of type")); | 
 | 	  else | 
 | 	    warning (_("left shift count >= width of type")); | 
 | 	} | 
 |       return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Perform a binary operation on two operands which have reasonable | 
 |    representations as integers or floats.  This includes booleans, | 
 |    characters, integers, or floats. | 
 |    Does not support addition and subtraction on pointers; | 
 |    use value_ptradd, value_ptrsub or value_ptrdiff for those operations.  */ | 
 |  | 
 | static struct value * | 
 | scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | 
 | { | 
 |   struct value *val; | 
 |   struct type *type1, *type2, *result_type; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |   arg2 = coerce_ref (arg2); | 
 |  | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |  | 
 |   if (type1->code () == TYPE_CODE_COMPLEX | 
 |       || type2->code () == TYPE_CODE_COMPLEX) | 
 |     return complex_binop (arg1, arg2, op); | 
 |  | 
 |   if ((!is_floating_value (arg1) | 
 |        && !is_integral_type (type1) | 
 |        && !is_fixed_point_type (type1)) | 
 |       || (!is_floating_value (arg2) | 
 | 	  && !is_integral_type (type2) | 
 | 	  && !is_fixed_point_type (type2))) | 
 |     error (_("Argument to arithmetic operation not a number or boolean.")); | 
 |  | 
 |   if (is_fixed_point_type (type1) || is_fixed_point_type (type2)) | 
 |     return fixed_point_binop (arg1, arg2, op); | 
 |  | 
 |   if (is_floating_type (type1) || is_floating_type (type2)) | 
 |     { | 
 |       result_type = promotion_type (type1, type2); | 
 |       val = value::allocate (result_type); | 
 |  | 
 |       struct type *eff_type_v1, *eff_type_v2; | 
 |       gdb::byte_vector v1, v2; | 
 |       v1.resize (result_type->length ()); | 
 |       v2.resize (result_type->length ()); | 
 |  | 
 |       value_args_as_target_float (arg1, arg2, | 
 | 				  v1.data (), &eff_type_v1, | 
 | 				  v2.data (), &eff_type_v2); | 
 |       target_float_binop (op, v1.data (), eff_type_v1, | 
 | 			      v2.data (), eff_type_v2, | 
 | 			  val->contents_raw ().data (), result_type); | 
 |     } | 
 |   else if (type1->code () == TYPE_CODE_BOOL | 
 | 	   || type2->code () == TYPE_CODE_BOOL) | 
 |     { | 
 |       LONGEST v1, v2, v = 0; | 
 |  | 
 |       v1 = value_as_long (arg1); | 
 |       v2 = value_as_long (arg2); | 
 |  | 
 |       switch (op) | 
 | 	{ | 
 | 	case BINOP_BITWISE_AND: | 
 | 	  v = v1 & v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_BITWISE_IOR: | 
 | 	  v = v1 | v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_BITWISE_XOR: | 
 | 	  v = v1 ^ v2; | 
 | 	  break; | 
 | 	       | 
 | 	case BINOP_EQUAL: | 
 | 	  v = v1 == v2; | 
 | 	  break; | 
 | 	   | 
 | 	case BINOP_NOTEQUAL: | 
 | 	  v = v1 != v2; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  error (_("Invalid operation on booleans.")); | 
 | 	} | 
 |  | 
 |       result_type = type1; | 
 |  | 
 |       val = value::allocate (result_type); | 
 |       store_signed_integer (val->contents_raw ().data (), | 
 | 			    result_type->length (), | 
 | 			    type_byte_order (result_type), | 
 | 			    v); | 
 |     } | 
 |   else | 
 |     /* Integral operations here.  */ | 
 |     { | 
 |       /* Determine type length of the result, and if the operation should | 
 | 	 be done unsigned.  For exponentiation and shift operators, | 
 | 	 use the length and type of the left operand.  Otherwise, | 
 | 	 use the signedness of the operand with the greater length. | 
 | 	 If both operands are of equal length, use unsigned operation | 
 | 	 if one of the operands is unsigned.  */ | 
 |       if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP) | 
 | 	result_type = type1; | 
 |       else | 
 | 	result_type = promotion_type (type1, type2); | 
 |  | 
 |       gdb_mpz v1 = value_as_mpz (arg1); | 
 |       gdb_mpz v2 = value_as_mpz (arg2); | 
 |       gdb_mpz v; | 
 |  | 
 |       switch (op) | 
 | 	{ | 
 | 	case BINOP_ADD: | 
 | 	  v = v1 + v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_SUB: | 
 | 	  v = v1 - v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_MUL: | 
 | 	  v = v1 * v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_DIV: | 
 | 	case BINOP_INTDIV: | 
 | 	  if (v2.sgn () != 0) | 
 | 	    v = v1 / v2; | 
 | 	  else | 
 | 	    error (_("Division by zero")); | 
 | 	  break; | 
 |  | 
 | 	case BINOP_EXP: | 
 | 	  v = v1.pow (v2.as_integer<unsigned long> ()); | 
 | 	  break; | 
 |  | 
 | 	case BINOP_REM: | 
 | 	  if (v2.sgn () != 0) | 
 | 	    v = v1 % v2; | 
 | 	  else | 
 | 	    error (_("Division by zero")); | 
 | 	  break; | 
 |  | 
 | 	case BINOP_MOD: | 
 | 	  /* Knuth 1.2.4, integer only.  Note that unlike the C '%' op, | 
 | 	     v1 mod 0 has a defined value, v1.  */ | 
 | 	  if (v2.sgn () == 0) | 
 | 	    { | 
 | 	      v = v1; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      v = v1 / v2; | 
 | 	      /* Note floor(v1/v2) == v1/v2 for unsigned.  */ | 
 | 	      v = v1 - (v2 * v); | 
 | 	    } | 
 | 	  break; | 
 |  | 
 | 	case BINOP_LSH: | 
 | 	  { | 
 | 	    ULONGEST nbits; | 
 | 	    if (!check_valid_shift_count (op, result_type, type2, v2, nbits)) | 
 | 	      v = 0; | 
 | 	    else | 
 | 	      v = v1 << nbits; | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case BINOP_RSH: | 
 | 	  { | 
 | 	    ULONGEST nbits; | 
 | 	    if (!check_valid_shift_count (op, result_type, type2, v2, nbits)) | 
 | 	      { | 
 | 		/* Pretend the too-large shift was decomposed in a | 
 | 		   number of smaller shifts.  An arithmetic signed | 
 | 		   right shift of a negative number always yields -1 | 
 | 		   with such semantics.  This is the right thing to | 
 | 		   do for Go, and we might as well do it for | 
 | 		   languages where it is undefined.  Also, pretend a | 
 | 		   shift by a negative number was a shift by the | 
 | 		   negative number cast to unsigned, which is the | 
 | 		   same as shifting by a too-large number.  */ | 
 | 		if (v1 < 0 && !result_type->is_unsigned ()) | 
 | 		  v = -1; | 
 | 		else | 
 | 		  v = 0; | 
 | 	      } | 
 | 	    else | 
 | 	      v = v1 >> nbits; | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case BINOP_BITWISE_AND: | 
 | 	  v = v1 & v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_BITWISE_IOR: | 
 | 	  v = v1 | v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_BITWISE_XOR: | 
 | 	  v = v1 ^ v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_MIN: | 
 | 	  v = v1 < v2 ? v1 : v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_MAX: | 
 | 	  v = v1 > v2 ? v1 : v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_EQUAL: | 
 | 	  v = v1 == v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_NOTEQUAL: | 
 | 	  v = v1 != v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_LESS: | 
 | 	  v = v1 < v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_GTR: | 
 | 	  v = v1 > v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_LEQ: | 
 | 	  v = v1 <= v2; | 
 | 	  break; | 
 |  | 
 | 	case BINOP_GEQ: | 
 | 	  v = v1 >= v2; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  error (_("Invalid binary operation on numbers.")); | 
 | 	} | 
 |  | 
 |       val = value_from_mpz (result_type, v); | 
 |     } | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by | 
 |    replicating SCALAR_VALUE for each element of the vector.  Only scalar | 
 |    types that can be cast to the type of one element of the vector are | 
 |    acceptable.  The newly created vector value is returned upon success, | 
 |    otherwise an error is thrown.  */ | 
 |  | 
 | struct value * | 
 | value_vector_widen (struct value *scalar_value, struct type *vector_type) | 
 | { | 
 |   /* Widen the scalar to a vector.  */ | 
 |   struct type *eltype, *scalar_type; | 
 |   struct value *elval; | 
 |   LONGEST low_bound, high_bound; | 
 |   int i; | 
 |  | 
 |   vector_type = check_typedef (vector_type); | 
 |  | 
 |   gdb_assert (vector_type->code () == TYPE_CODE_ARRAY | 
 | 	      && vector_type->is_vector ()); | 
 |  | 
 |   if (!get_array_bounds (vector_type, &low_bound, &high_bound)) | 
 |     error (_("Could not determine the vector bounds")); | 
 |  | 
 |   eltype = check_typedef (vector_type->target_type ()); | 
 |   elval = value_cast (eltype, scalar_value); | 
 |  | 
 |   scalar_type = check_typedef (scalar_value->type ()); | 
 |  | 
 |   /* If we reduced the length of the scalar then check we didn't loose any | 
 |      important bits.  */ | 
 |   if (eltype->length () < scalar_type->length () | 
 |       && !value_equal (elval, scalar_value)) | 
 |     error (_("conversion of scalar to vector involves truncation")); | 
 |  | 
 |   value *val = value::allocate (vector_type); | 
 |   gdb::array_view<gdb_byte> val_contents = val->contents_writeable (); | 
 |   int elt_len = eltype->length (); | 
 |  | 
 |   for (i = 0; i < high_bound - low_bound + 1; i++) | 
 |     /* Duplicate the contents of elval into the destination vector.  */ | 
 |     copy (elval->contents_all (), | 
 | 	  val_contents.slice (i * elt_len, elt_len)); | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* Performs a binary operation on two vector operands by calling scalar_binop | 
 |    for each pair of vector components.  */ | 
 |  | 
 | static struct value * | 
 | vector_binop (struct value *val1, struct value *val2, enum exp_opcode op) | 
 | { | 
 |   struct type *type1, *type2, *eltype1, *eltype2; | 
 |   int t1_is_vec, t2_is_vec, elsize, i; | 
 |   LONGEST low_bound1, high_bound1, low_bound2, high_bound2; | 
 |  | 
 |   type1 = check_typedef (val1->type ()); | 
 |   type2 = check_typedef (val2->type ()); | 
 |  | 
 |   t1_is_vec = (type1->code () == TYPE_CODE_ARRAY | 
 | 	       && type1->is_vector ()) ? 1 : 0; | 
 |   t2_is_vec = (type2->code () == TYPE_CODE_ARRAY | 
 | 	       && type2->is_vector ()) ? 1 : 0; | 
 |  | 
 |   if (!t1_is_vec || !t2_is_vec) | 
 |     error (_("Vector operations are only supported among vectors")); | 
 |  | 
 |   if (!get_array_bounds (type1, &low_bound1, &high_bound1) | 
 |       || !get_array_bounds (type2, &low_bound2, &high_bound2)) | 
 |     error (_("Could not determine the vector bounds")); | 
 |  | 
 |   eltype1 = check_typedef (type1->target_type ()); | 
 |   eltype2 = check_typedef (type2->target_type ()); | 
 |   elsize = eltype1->length (); | 
 |  | 
 |   if (eltype1->code () != eltype2->code () | 
 |       || elsize != eltype2->length () | 
 |       || eltype1->is_unsigned () != eltype2->is_unsigned () | 
 |       || low_bound1 != low_bound2 || high_bound1 != high_bound2) | 
 |     error (_("Cannot perform operation on vectors with different types")); | 
 |  | 
 |   value *val = value::allocate (type1); | 
 |   gdb::array_view<gdb_byte> val_contents = val->contents_writeable (); | 
 |   scoped_value_mark mark; | 
 |   for (i = 0; i < high_bound1 - low_bound1 + 1; i++) | 
 |     { | 
 |       value *tmp = value_binop (value_subscript (val1, i), | 
 | 				value_subscript (val2, i), op); | 
 |       copy (tmp->contents_all (), | 
 | 	    val_contents.slice (i * elsize, elsize)); | 
 |      } | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* Perform a binary operation on two operands.  */ | 
 |  | 
 | struct value * | 
 | value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op) | 
 | { | 
 |   struct value *val; | 
 |   struct type *type1 = check_typedef (arg1->type ()); | 
 |   struct type *type2 = check_typedef (arg2->type ()); | 
 |   int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY | 
 | 		   && type1->is_vector ()); | 
 |   int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY | 
 | 		   && type2->is_vector ()); | 
 |  | 
 |   if (!t1_is_vec && !t2_is_vec) | 
 |     val = scalar_binop (arg1, arg2, op); | 
 |   else if (t1_is_vec && t2_is_vec) | 
 |     val = vector_binop (arg1, arg2, op); | 
 |   else | 
 |     { | 
 |       /* Widen the scalar operand to a vector.  */ | 
 |       struct value **v = t1_is_vec ? &arg2 : &arg1; | 
 |       struct type *t = t1_is_vec ? type2 : type1; | 
 |        | 
 |       if (t->code () != TYPE_CODE_FLT | 
 | 	  && t->code () != TYPE_CODE_DECFLOAT | 
 | 	  && !is_integral_type (t)) | 
 | 	error (_("Argument to operation not a number or boolean.")); | 
 |  | 
 |       /* Replicate the scalar value to make a vector value.  */ | 
 |       *v = value_vector_widen (*v, t1_is_vec ? type1 : type2); | 
 |  | 
 |       val = vector_binop (arg1, arg2, op); | 
 |     } | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* See value.h.  */ | 
 |  | 
 | bool | 
 | value_logical_not (struct value *arg1) | 
 | { | 
 |   int len; | 
 |   const gdb_byte *p; | 
 |   struct type *type1; | 
 |  | 
 |   arg1 = coerce_array (arg1); | 
 |   type1 = check_typedef (arg1->type ()); | 
 |  | 
 |   if (is_floating_value (arg1)) | 
 |     return target_float_is_zero (arg1->contents ().data (), type1); | 
 |  | 
 |   len = type1->length (); | 
 |   p = arg1->contents ().data (); | 
 |  | 
 |   while (--len >= 0) | 
 |     { | 
 |       if (*p++) | 
 | 	break; | 
 |     } | 
 |  | 
 |   return len < 0; | 
 | } | 
 |  | 
 | /* Perform a comparison on two string values (whose content are not | 
 |    necessarily null terminated) based on their length.  */ | 
 |  | 
 | static int | 
 | value_strcmp (struct value *arg1, struct value *arg2) | 
 | { | 
 |   int len1 = arg1->type ()->length (); | 
 |   int len2 = arg2->type ()->length (); | 
 |   const gdb_byte *s1 = arg1->contents ().data (); | 
 |   const gdb_byte *s2 = arg2->contents ().data (); | 
 |   int i, len = len1 < len2 ? len1 : len2; | 
 |  | 
 |   for (i = 0; i < len; i++) | 
 |     { | 
 |       if (s1[i] < s2[i]) | 
 | 	return -1; | 
 |       else if (s1[i] > s2[i]) | 
 | 	return 1; | 
 |       else | 
 | 	continue; | 
 |     } | 
 |  | 
 |   if (len1 < len2) | 
 |     return -1; | 
 |   else if (len1 > len2) | 
 |     return 1; | 
 |   else | 
 |     return 0; | 
 | } | 
 |  | 
 | /* Simulate the C operator == by returning a 1 | 
 |    iff ARG1 and ARG2 have equal contents.  */ | 
 |  | 
 | int | 
 | value_equal (struct value *arg1, struct value *arg2) | 
 | { | 
 |   int len; | 
 |   const gdb_byte *p1; | 
 |   const gdb_byte *p2; | 
 |   struct type *type1, *type2; | 
 |   enum type_code code1; | 
 |   enum type_code code2; | 
 |   int is_int1, is_int2; | 
 |  | 
 |   arg1 = coerce_array (arg1); | 
 |   arg2 = coerce_array (arg2); | 
 |  | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |   code1 = type1->code (); | 
 |   code2 = type2->code (); | 
 |   is_int1 = is_integral_type (type1); | 
 |   is_int2 = is_integral_type (type2); | 
 |  | 
 |   if (is_int1 && is_int2) | 
 |     return value_true (value_binop (arg1, arg2, BINOP_EQUAL)); | 
 |   else if ((is_floating_value (arg1) || is_int1) | 
 | 	   && (is_floating_value (arg2) || is_int2)) | 
 |     { | 
 |       struct type *eff_type_v1, *eff_type_v2; | 
 |       gdb::byte_vector v1, v2; | 
 |       v1.resize (std::max (type1->length (), type2->length ())); | 
 |       v2.resize (std::max (type1->length (), type2->length ())); | 
 |  | 
 |       value_args_as_target_float (arg1, arg2, | 
 | 				  v1.data (), &eff_type_v1, | 
 | 				  v2.data (), &eff_type_v2); | 
 |  | 
 |       return target_float_compare (v1.data (), eff_type_v1, | 
 | 				   v2.data (), eff_type_v2) == 0; | 
 |     } | 
 |  | 
 |   /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | 
 |      is bigger.  */ | 
 |   else if (code1 == TYPE_CODE_PTR && is_int2) | 
 |     return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2); | 
 |   else if (code2 == TYPE_CODE_PTR && is_int1) | 
 |     return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2); | 
 |  | 
 |   else if (code1 == code2 | 
 | 	   && ((len = (int) type1->length ()) | 
 | 	       == (int) type2->length ())) | 
 |     { | 
 |       p1 = arg1->contents ().data (); | 
 |       p2 = arg2->contents ().data (); | 
 |       while (--len >= 0) | 
 | 	{ | 
 | 	  if (*p1++ != *p2++) | 
 | 	    break; | 
 | 	} | 
 |       return len < 0; | 
 |     } | 
 |   else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) | 
 |     { | 
 |       return value_strcmp (arg1, arg2) == 0; | 
 |     } | 
 |   else | 
 |     error (_("Invalid type combination in equality test.")); | 
 | } | 
 |  | 
 | /* Compare values based on their raw contents.  Useful for arrays since | 
 |    value_equal coerces them to pointers, thus comparing just the address | 
 |    of the array instead of its contents.  */ | 
 |  | 
 | int | 
 | value_equal_contents (struct value *arg1, struct value *arg2) | 
 | { | 
 |   struct type *type1, *type2; | 
 |  | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |  | 
 |   return (type1->code () == type2->code () | 
 | 	  && type1->length () == type2->length () | 
 | 	  && memcmp (arg1->contents ().data (), | 
 | 		     arg2->contents ().data (), | 
 | 		     type1->length ()) == 0); | 
 | } | 
 |  | 
 | /* Simulate the C operator < by returning 1 | 
 |    iff ARG1's contents are less than ARG2's.  */ | 
 |  | 
 | int | 
 | value_less (struct value *arg1, struct value *arg2) | 
 | { | 
 |   enum type_code code1; | 
 |   enum type_code code2; | 
 |   struct type *type1, *type2; | 
 |   int is_int1, is_int2; | 
 |  | 
 |   arg1 = coerce_array (arg1); | 
 |   arg2 = coerce_array (arg2); | 
 |  | 
 |   type1 = check_typedef (arg1->type ()); | 
 |   type2 = check_typedef (arg2->type ()); | 
 |   code1 = type1->code (); | 
 |   code2 = type2->code (); | 
 |   is_int1 = is_integral_type (type1); | 
 |   is_int2 = is_integral_type (type2); | 
 |  | 
 |   if ((is_int1 && is_int2) | 
 |       || (is_fixed_point_type (type1) && is_fixed_point_type (type2))) | 
 |     return value_true (value_binop (arg1, arg2, BINOP_LESS)); | 
 |   else if ((is_floating_value (arg1) || is_int1) | 
 | 	   && (is_floating_value (arg2) || is_int2)) | 
 |     { | 
 |       struct type *eff_type_v1, *eff_type_v2; | 
 |       gdb::byte_vector v1, v2; | 
 |       v1.resize (std::max (type1->length (), type2->length ())); | 
 |       v2.resize (std::max (type1->length (), type2->length ())); | 
 |  | 
 |       value_args_as_target_float (arg1, arg2, | 
 | 				  v1.data (), &eff_type_v1, | 
 | 				  v2.data (), &eff_type_v2); | 
 |  | 
 |       return target_float_compare (v1.data (), eff_type_v1, | 
 | 				   v2.data (), eff_type_v2) == -1; | 
 |     } | 
 |   else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR) | 
 |     return value_as_address (arg1) < value_as_address (arg2); | 
 |  | 
 |   /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever | 
 |      is bigger.  */ | 
 |   else if (code1 == TYPE_CODE_PTR && is_int2) | 
 |     return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2); | 
 |   else if (code2 == TYPE_CODE_PTR && is_int1) | 
 |     return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2); | 
 |   else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING) | 
 |     return value_strcmp (arg1, arg2) < 0; | 
 |   else | 
 |     { | 
 |       error (_("Invalid type combination in ordering comparison.")); | 
 |       return 0; | 
 |     } | 
 | } | 
 |  | 
 | /* See value.h.  */ | 
 |  | 
 | struct value * | 
 | value_pos (struct value *arg1) | 
 | { | 
 |   struct type *type; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |   type = check_typedef (arg1->type ()); | 
 |  | 
 |   if (is_integral_type (type) || is_floating_value (arg1) | 
 |       || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()) | 
 |       || type->code () == TYPE_CODE_COMPLEX) | 
 |     return value_from_contents (type, arg1->contents ().data ()); | 
 |   else | 
 |     error (_("Argument to positive operation not a number.")); | 
 | } | 
 |  | 
 | /* See value.h.  */ | 
 |  | 
 | struct value * | 
 | value_neg (struct value *arg1) | 
 | { | 
 |   struct type *type; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |   type = check_typedef (arg1->type ()); | 
 |  | 
 |   if (is_integral_type (type) || is_floating_type (type)) | 
 |     return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB); | 
 |   else if (is_fixed_point_type (type)) | 
 |     return value_binop (value::zero (type, not_lval), arg1, BINOP_SUB); | 
 |   else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()) | 
 |     { | 
 |       struct value *val = value::allocate (type); | 
 |       struct type *eltype = check_typedef (type->target_type ()); | 
 |       int i; | 
 |       LONGEST low_bound, high_bound; | 
 |  | 
 |       if (!get_array_bounds (type, &low_bound, &high_bound)) | 
 | 	error (_("Could not determine the vector bounds")); | 
 |  | 
 |       gdb::array_view<gdb_byte> val_contents = val->contents_writeable (); | 
 |       int elt_len = eltype->length (); | 
 |  | 
 |       for (i = 0; i < high_bound - low_bound + 1; i++) | 
 | 	{ | 
 | 	  value *tmp = value_neg (value_subscript (arg1, i)); | 
 | 	  copy (tmp->contents_all (), | 
 | 		val_contents.slice (i * elt_len, elt_len)); | 
 | 	} | 
 |       return val; | 
 |     } | 
 |   else if (type->code () == TYPE_CODE_COMPLEX) | 
 |     { | 
 |       struct value *real = value_real_part (arg1); | 
 |       struct value *imag = value_imaginary_part (arg1); | 
 |  | 
 |       real = value_neg (real); | 
 |       imag = value_neg (imag); | 
 |       return value_literal_complex (real, imag, type); | 
 |     } | 
 |   else | 
 |     error (_("Argument to negate operation not a number.")); | 
 | } | 
 |  | 
 | /* See value.h.  */ | 
 |  | 
 | struct value * | 
 | value_complement (struct value *arg1) | 
 | { | 
 |   struct type *type; | 
 |   struct value *val; | 
 |  | 
 |   arg1 = coerce_ref (arg1); | 
 |   type = check_typedef (arg1->type ()); | 
 |  | 
 |   if (is_integral_type (type)) | 
 |     { | 
 |       gdb_mpz num = value_as_mpz (arg1); | 
 |       num.complement (); | 
 |       val = value_from_mpz (type, num); | 
 |     } | 
 |   else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ()) | 
 |     { | 
 |       struct type *eltype = check_typedef (type->target_type ()); | 
 |       int i; | 
 |       LONGEST low_bound, high_bound; | 
 |  | 
 |       if (!get_array_bounds (type, &low_bound, &high_bound)) | 
 | 	error (_("Could not determine the vector bounds")); | 
 |  | 
 |       val = value::allocate (type); | 
 |       gdb::array_view<gdb_byte> val_contents = val->contents_writeable (); | 
 |       int elt_len = eltype->length (); | 
 |  | 
 |       for (i = 0; i < high_bound - low_bound + 1; i++) | 
 | 	{ | 
 | 	  value *tmp = value_complement (value_subscript (arg1, i)); | 
 | 	  copy (tmp->contents_all (), | 
 | 		val_contents.slice (i * elt_len, elt_len)); | 
 | 	} | 
 |     } | 
 |   else if (type->code () == TYPE_CODE_COMPLEX) | 
 |     { | 
 |       /* GCC has an extension that treats ~complex as the complex | 
 | 	 conjugate.  */ | 
 |       struct value *real = value_real_part (arg1); | 
 |       struct value *imag = value_imaginary_part (arg1); | 
 |  | 
 |       imag = value_neg (imag); | 
 |       return value_literal_complex (real, imag, type); | 
 |     } | 
 |   else | 
 |     error (_("Argument to complement operation not an integer, boolean.")); | 
 |  | 
 |   return val; | 
 | } | 
 |  | 
 | /* The INDEX'th bit of SET value whose value_type is TYPE, | 
 |    and whose value_contents is valaddr. | 
 |    Return -1 if out of range, -2 other error.  */ | 
 |  | 
 | int | 
 | value_bit_index (struct type *type, const gdb_byte *valaddr, int index) | 
 | { | 
 |   struct gdbarch *gdbarch = type->arch (); | 
 |   LONGEST low_bound, high_bound; | 
 |   LONGEST word; | 
 |   unsigned rel_index; | 
 |   struct type *range = type->index_type (); | 
 |  | 
 |   if (!get_discrete_bounds (range, &low_bound, &high_bound)) | 
 |     return -2; | 
 |   if (index < low_bound || index > high_bound) | 
 |     return -1; | 
 |   rel_index = index - low_bound; | 
 |   word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1, | 
 | 				   type_byte_order (type)); | 
 |   rel_index %= TARGET_CHAR_BIT; | 
 |   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
 |     rel_index = TARGET_CHAR_BIT - 1 - rel_index; | 
 |   return (word >> rel_index) & 1; | 
 | } |