| /* IBM RS/6000 native-dependent code for GDB, the GNU debugger. |
| |
| Copyright (C) 1986-2023 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "inferior.h" |
| #include "target.h" |
| #include "gdbcore.h" |
| #include "symfile.h" |
| #include "objfiles.h" |
| #include "bfd.h" |
| #include "gdb-stabs.h" |
| #include "regcache.h" |
| #include "arch-utils.h" |
| #include "inf-child.h" |
| #include "inf-ptrace.h" |
| #include "ppc-tdep.h" |
| #include "rs6000-aix-tdep.h" |
| #include "exec.h" |
| #include "observable.h" |
| #include "xcoffread.h" |
| |
| #include <sys/ptrace.h> |
| #include <sys/reg.h> |
| |
| #include <sys/dir.h> |
| #include <sys/user.h> |
| #include <signal.h> |
| #include <sys/ioctl.h> |
| #include <fcntl.h> |
| |
| #include <a.out.h> |
| #include <sys/file.h> |
| #include <sys/stat.h> |
| #include "gdb_bfd.h" |
| #include <sys/core.h> |
| #define __LDINFO_PTRACE32__ /* for __ld_info32 */ |
| #define __LDINFO_PTRACE64__ /* for __ld_info64 */ |
| #include <sys/ldr.h> |
| #include <sys/systemcfg.h> |
| |
| /* Header files for getting ppid in AIX of a child process. */ |
| #include <procinfo.h> |
| #include <sys/types.h> |
| |
| /* Header files for alti-vec reg. */ |
| #include <sys/context.h> |
| |
| /* On AIX4.3+, sys/ldr.h provides different versions of struct ld_info for |
| debugging 32-bit and 64-bit processes. Define a typedef and macros for |
| accessing fields in the appropriate structures. */ |
| |
| /* In 32-bit compilation mode (which is the only mode from which ptrace() |
| works on 4.3), __ld_info32 is #defined as equivalent to ld_info. */ |
| |
| #if defined (__ld_info32) || defined (__ld_info64) |
| # define ARCH3264 |
| #endif |
| |
| /* Return whether the current architecture is 64-bit. */ |
| |
| #ifndef ARCH3264 |
| # define ARCH64() 0 |
| #else |
| # define ARCH64() (register_size (current_inferior ()->arch (), 0) == 8) |
| #endif |
| |
| class rs6000_nat_target final : public inf_ptrace_target |
| { |
| public: |
| void fetch_registers (struct regcache *, int) override; |
| void store_registers (struct regcache *, int) override; |
| |
| enum target_xfer_status xfer_partial (enum target_object object, |
| const char *annex, |
| gdb_byte *readbuf, |
| const gdb_byte *writebuf, |
| ULONGEST offset, ULONGEST len, |
| ULONGEST *xfered_len) override; |
| |
| void create_inferior (const char *, const std::string &, |
| char **, int) override; |
| |
| ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override; |
| |
| /* Fork detection related functions, For adding multi process debugging |
| support. */ |
| void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool) override; |
| |
| const struct target_desc *read_description () override; |
| |
| protected: |
| |
| void post_startup_inferior (ptid_t ptid) override; |
| |
| private: |
| enum target_xfer_status |
| xfer_shared_libraries (enum target_object object, |
| const char *annex, gdb_byte *readbuf, |
| const gdb_byte *writebuf, |
| ULONGEST offset, ULONGEST len, |
| ULONGEST *xfered_len); |
| }; |
| |
| static rs6000_nat_target the_rs6000_nat_target; |
| |
| /* The below declaration is to track number of times, parent has |
| reported fork event before its children. */ |
| |
| static std::list<pid_t> aix_pending_parent; |
| |
| /* The below declaration is for a child process event that |
| is reported before its corresponding parent process in |
| the event of a fork (). */ |
| |
| static std::list<pid_t> aix_pending_children; |
| |
| static void |
| aix_remember_child (pid_t pid) |
| { |
| aix_pending_children.push_front (pid); |
| } |
| |
| static void |
| aix_remember_parent (pid_t pid) |
| { |
| aix_pending_parent.push_front (pid); |
| } |
| |
| /* This function returns a parent of a child process. */ |
| |
| static pid_t |
| find_my_aix_parent (pid_t child_pid) |
| { |
| struct procsinfo ProcessBuffer1; |
| |
| if (getprocs (&ProcessBuffer1, sizeof (ProcessBuffer1), |
| NULL, 0, &child_pid, 1) != 1) |
| return 0; |
| else |
| return ProcessBuffer1.pi_ppid; |
| } |
| |
| /* In the below function we check if there was any child |
| process pending. If it exists we return it from the |
| list, otherwise we return a null. */ |
| |
| static pid_t |
| has_my_aix_child_reported (pid_t parent_pid) |
| { |
| pid_t child = 0; |
| auto it = std::find_if (aix_pending_children.begin (), |
| aix_pending_children.end (), |
| [=] (pid_t child_pid) |
| { |
| return find_my_aix_parent (child_pid) == parent_pid; |
| }); |
| if (it != aix_pending_children.end ()) |
| { |
| child = *it; |
| aix_pending_children.erase (it); |
| } |
| return child; |
| } |
| |
| /* In the below function we check if there was any parent |
| process pending. If it exists we return it from the |
| list, otherwise we return a null. */ |
| |
| static pid_t |
| has_my_aix_parent_reported (pid_t child_pid) |
| { |
| pid_t my_parent = find_my_aix_parent (child_pid); |
| auto it = std::find (aix_pending_parent.begin (), |
| aix_pending_parent.end (), |
| my_parent); |
| if (it != aix_pending_parent.end ()) |
| { |
| aix_pending_parent.erase (it); |
| return my_parent; |
| } |
| return 0; |
| } |
| |
| /* Given REGNO, a gdb register number, return the corresponding |
| number suitable for use as a ptrace() parameter. Return -1 if |
| there's no suitable mapping. Also, set the int pointed to by |
| ISFLOAT to indicate whether REGNO is a floating point register. */ |
| |
| static int |
| regmap (struct gdbarch *gdbarch, int regno, int *isfloat) |
| { |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| |
| *isfloat = 0; |
| if (tdep->ppc_gp0_regnum <= regno |
| && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) |
| return regno; |
| else if (tdep->ppc_fp0_regnum >= 0 |
| && tdep->ppc_fp0_regnum <= regno |
| && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
| { |
| *isfloat = 1; |
| return regno - tdep->ppc_fp0_regnum + FPR0; |
| } |
| else if (regno == gdbarch_pc_regnum (gdbarch)) |
| return IAR; |
| else if (regno == tdep->ppc_ps_regnum) |
| return MSR; |
| else if (regno == tdep->ppc_cr_regnum) |
| return CR; |
| else if (regno == tdep->ppc_lr_regnum) |
| return LR; |
| else if (regno == tdep->ppc_ctr_regnum) |
| return CTR; |
| else if (regno == tdep->ppc_xer_regnum) |
| return XER; |
| else if (tdep->ppc_fpscr_regnum >= 0 |
| && regno == tdep->ppc_fpscr_regnum) |
| return FPSCR; |
| else if (tdep->ppc_mq_regnum >= 0 && regno == tdep->ppc_mq_regnum) |
| return MQ; |
| else |
| return -1; |
| } |
| |
| /* Call ptrace(REQ, ID, ADDR, DATA, BUF). */ |
| |
| static int |
| rs6000_ptrace32 (int req, int id, int *addr, int data, int *buf) |
| { |
| #ifdef HAVE_PTRACE64 |
| int ret = ptrace64 (req, id, (uintptr_t) addr, data, buf); |
| #else |
| int ret = ptrace (req, id, (int *)addr, data, buf); |
| #endif |
| #if 0 |
| printf ("rs6000_ptrace32 (%d, %d, 0x%x, %08x, 0x%x) = 0x%x\n", |
| req, id, (unsigned int)addr, data, (unsigned int)buf, ret); |
| #endif |
| return ret; |
| } |
| |
| /* Call ptracex(REQ, ID, ADDR, DATA, BUF). */ |
| |
| static int |
| rs6000_ptrace64 (int req, int id, long long addr, int data, void *buf) |
| { |
| #ifdef ARCH3264 |
| # ifdef HAVE_PTRACE64 |
| int ret = ptrace64 (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); |
| # else |
| int ret = ptracex (req, id, addr, data, (PTRACE_TYPE_ARG5) buf); |
| # endif |
| #else |
| int ret = 0; |
| #endif |
| #if 0 |
| printf ("rs6000_ptrace64 (%d, %d, %s, %08x, 0x%x) = 0x%x\n", |
| req, id, hex_string (addr), data, (unsigned int)buf, ret); |
| #endif |
| return ret; |
| } |
| |
| /* Store the vsx registers. */ |
| |
| static void |
| store_vsx_register_aix (struct regcache *regcache, int regno) |
| { |
| int ret; |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| struct thrdentry64 thrdentry; |
| __vsx_context_t vsx; |
| pid_t pid = inferior_ptid.pid (); |
| tid64_t thrd_i = 0; |
| |
| if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), |
| &thrd_i, 1) == 1) |
| thrd_i = thrdentry.ti_tid; |
| |
| memset(&vsx, 0, sizeof(__vsx_context_t)); |
| if (__power_vsx() && thrd_i > 0) |
| { |
| if (ARCH64 ()) |
| ret = rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0); |
| else |
| ret = rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *)&vsx, 0, 0); |
| if (ret < 0) |
| return; |
| |
| regcache->raw_collect (regno, &(vsx.__vsr_dw1[0])+ |
| regno - tdep->ppc_vsr0_upper_regnum); |
| |
| if (ARCH64 ()) |
| ret = rs6000_ptrace64 (PTT_WRITE_VSX, thrd_i, (long long) &vsx, 0, 0); |
| else |
| ret = rs6000_ptrace32 (PTT_WRITE_VSX, thrd_i, (int *) &vsx, 0, 0); |
| |
| if (ret < 0) |
| perror_with_name (_("Unable to write VSX registers after reading it")); |
| } |
| } |
| |
| /* Store Altivec registers. */ |
| |
| static void |
| store_altivec_register_aix (struct regcache *regcache, int regno) |
| { |
| int ret; |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| struct thrdentry64 thrdentry; |
| __vmx_context_t vmx; |
| pid_t pid = inferior_ptid.pid (); |
| tid64_t thrd_i = 0; |
| |
| if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), |
| &thrd_i, 1) == 1) |
| thrd_i = thrdentry.ti_tid; |
| |
| memset(&vmx, 0, sizeof(__vmx_context_t)); |
| if (__power_vmx() && thrd_i > 0) |
| { |
| if (ARCH64 ()) |
| ret = rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0); |
| else |
| ret = rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0); |
| if (ret < 0) |
| return; |
| |
| regcache->raw_collect (regno, &(vmx.__vr[0]) + regno |
| - tdep->ppc_vr0_regnum); |
| |
| if (ARCH64 ()) |
| ret = rs6000_ptrace64 (PTT_WRITE_VEC, thrd_i, (long long) &vmx, 0, 0); |
| else |
| ret = rs6000_ptrace32 (PTT_WRITE_VEC, thrd_i, (int *) &vmx, 0, 0); |
| if (ret < 0) |
| perror_with_name (_("Unable to store AltiVec register after reading it")); |
| } |
| } |
| |
| /* Supply altivec registers. */ |
| |
| static void |
| supply_vrregset_aix (struct regcache *regcache, __vmx_context_t *vmx) |
| { |
| int i; |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| int num_of_vrregs = tdep->ppc_vrsave_regnum - tdep->ppc_vr0_regnum + 1; |
| |
| for (i = 0; i < num_of_vrregs; i++) |
| regcache->raw_supply (tdep->ppc_vr0_regnum + i, |
| &(vmx->__vr[i])); |
| regcache->raw_supply (tdep->ppc_vrsave_regnum, &(vmx->__vrsave)); |
| regcache->raw_supply (tdep->ppc_vrsave_regnum - 1, &(vmx->__vscr)); |
| } |
| |
| /* Fetch altivec register. */ |
| |
| static void |
| fetch_altivec_registers_aix (struct regcache *regcache) |
| { |
| struct thrdentry64 thrdentry; |
| __vmx_context_t vmx; |
| pid_t pid = current_inferior ()->pid; |
| tid64_t thrd_i = 0; |
| |
| if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), |
| &thrd_i, 1) == 1) |
| thrd_i = thrdentry.ti_tid; |
| |
| memset(&vmx, 0, sizeof(__vmx_context_t)); |
| if (__power_vmx() && thrd_i > 0) |
| { |
| if (ARCH64 ()) |
| rs6000_ptrace64 (PTT_READ_VEC, thrd_i, (long long) &vmx, 0, 0); |
| else |
| rs6000_ptrace32 (PTT_READ_VEC, thrd_i, (int *) &vmx, 0, 0); |
| supply_vrregset_aix (regcache, &vmx); |
| } |
| } |
| |
| /* supply vsx register. */ |
| |
| static void |
| supply_vsxregset_aix (struct regcache *regcache, __vsx_context_t *vsx) |
| { |
| int i; |
| struct gdbarch *gdbarch = regcache->arch (); |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| |
| for (i = 0; i < ppc_num_vshrs; i++) |
| regcache->raw_supply (tdep->ppc_vsr0_upper_regnum + i, |
| &(vsx->__vsr_dw1[i])); |
| } |
| |
| /* Fetch vsx registers. */ |
| static void |
| fetch_vsx_registers_aix (struct regcache *regcache) |
| { |
| struct thrdentry64 thrdentry; |
| __vsx_context_t vsx; |
| pid_t pid = current_inferior ()->pid; |
| tid64_t thrd_i = 0; |
| |
| if (getthrds64(pid, &thrdentry, sizeof(struct thrdentry64), |
| &thrd_i, 1) == 1) |
| thrd_i = thrdentry.ti_tid; |
| |
| memset(&vsx, 0, sizeof(__vsx_context_t)); |
| if (__power_vsx() && thrd_i > 0) |
| { |
| if (ARCH64 ()) |
| rs6000_ptrace64 (PTT_READ_VSX, thrd_i, (long long) &vsx, 0, 0); |
| else |
| rs6000_ptrace32 (PTT_READ_VSX, thrd_i, (int *) &vsx, 0, 0); |
| supply_vsxregset_aix (regcache, &vsx); |
| } |
| } |
| |
| void rs6000_nat_target::post_startup_inferior (ptid_t ptid) |
| { |
| |
| /* In AIX to turn on multi process debugging in ptrace |
| PT_MULTI is the option to be passed, |
| with the process ID which can fork () and |
| the data parameter [fourth parameter] must be 1. */ |
| |
| if (!ARCH64 ()) |
| rs6000_ptrace32 (PT_MULTI, ptid.pid(), 0, 1, 0); |
| else |
| rs6000_ptrace64 (PT_MULTI, ptid.pid(), 0, 1, 0); |
| } |
| |
| void |
| rs6000_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid, |
| target_waitkind fork_kind, bool follow_child, |
| bool detach_fork) |
| { |
| |
| /* Once the fork event is detected the infrun.c code |
| calls the target_follow_fork to take care of |
| follow child and detach the child activity which is |
| done using the function below. */ |
| |
| inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind, |
| follow_child, detach_fork); |
| |
| /* If we detach fork and follow child we do not want the child |
| process to generate events that ptrace can trace. Hence we |
| detach it. */ |
| |
| if (detach_fork && !follow_child) |
| { |
| if (ARCH64 ()) |
| rs6000_ptrace64 (PT_DETACH, child_ptid.pid (), 0, 0, 0); |
| else |
| rs6000_ptrace32 (PT_DETACH, child_ptid.pid (), 0, 0, 0); |
| } |
| } |
| |
| /* Fetch register REGNO from the inferior. */ |
| |
| static void |
| fetch_register (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| int addr[PPC_MAX_REGISTER_SIZE]; |
| int nr, isfloat; |
| pid_t pid = regcache->ptid ().pid (); |
| |
| /* Retrieved values may be -1, so infer errors from errno. */ |
| errno = 0; |
| |
| /* Alti-vec register. */ |
| if (altivec_register_p (gdbarch, regno)) |
| { |
| fetch_altivec_registers_aix (regcache); |
| return; |
| } |
| |
| /* VSX register. */ |
| if (vsx_register_p (gdbarch, regno)) |
| { |
| fetch_vsx_registers_aix (regcache); |
| return; |
| } |
| |
| nr = regmap (gdbarch, regno, &isfloat); |
| |
| /* Floating-point registers. */ |
| if (isfloat) |
| rs6000_ptrace32 (PT_READ_FPR, pid, addr, nr, 0); |
| |
| /* Bogus register number. */ |
| else if (nr < 0) |
| { |
| if (regno >= gdbarch_num_regs (gdbarch)) |
| gdb_printf (gdb_stderr, |
| "gdb error: register no %d not implemented.\n", |
| regno); |
| return; |
| } |
| |
| /* Fixed-point registers. */ |
| else |
| { |
| if (!ARCH64 ()) |
| *addr = rs6000_ptrace32 (PT_READ_GPR, pid, (int *) nr, 0, 0); |
| else |
| { |
| /* PT_READ_GPR requires the buffer parameter to point to long long, |
| even if the register is really only 32 bits. */ |
| long long buf; |
| rs6000_ptrace64 (PT_READ_GPR, pid, nr, 0, &buf); |
| if (register_size (gdbarch, regno) == 8) |
| memcpy (addr, &buf, 8); |
| else |
| *addr = buf; |
| } |
| } |
| |
| if (!errno) |
| regcache->raw_supply (regno, (char *) addr); |
| else |
| { |
| #if 0 |
| /* FIXME: this happens 3 times at the start of each 64-bit program. */ |
| perror (_("ptrace read")); |
| #endif |
| errno = 0; |
| } |
| } |
| |
| /* Store register REGNO back into the inferior. */ |
| |
| static void |
| store_register (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| int addr[PPC_MAX_REGISTER_SIZE]; |
| int nr, isfloat; |
| pid_t pid = regcache->ptid ().pid (); |
| |
| /* Fetch the register's value from the register cache. */ |
| regcache->raw_collect (regno, addr); |
| |
| /* -1 can be a successful return value, so infer errors from errno. */ |
| errno = 0; |
| |
| if (altivec_register_p (gdbarch, regno)) |
| { |
| store_altivec_register_aix (regcache, regno); |
| return; |
| } |
| |
| if (vsx_register_p (gdbarch, regno)) |
| { |
| store_vsx_register_aix (regcache, regno); |
| return; |
| } |
| |
| nr = regmap (gdbarch, regno, &isfloat); |
| |
| /* Floating-point registers. */ |
| if (isfloat) |
| rs6000_ptrace32 (PT_WRITE_FPR, pid, addr, nr, 0); |
| |
| /* Bogus register number. */ |
| else if (nr < 0) |
| { |
| if (regno >= gdbarch_num_regs (gdbarch)) |
| gdb_printf (gdb_stderr, |
| "gdb error: register no %d not implemented.\n", |
| regno); |
| } |
| |
| /* Fixed-point registers. */ |
| else |
| { |
| /* The PT_WRITE_GPR operation is rather odd. For 32-bit inferiors, |
| the register's value is passed by value, but for 64-bit inferiors, |
| the address of a buffer containing the value is passed. */ |
| if (!ARCH64 ()) |
| rs6000_ptrace32 (PT_WRITE_GPR, pid, (int *) nr, *addr, 0); |
| else |
| { |
| /* PT_WRITE_GPR requires the buffer parameter to point to an 8-byte |
| area, even if the register is really only 32 bits. */ |
| long long buf; |
| if (register_size (gdbarch, regno) == 8) |
| memcpy (&buf, addr, 8); |
| else |
| buf = *addr; |
| rs6000_ptrace64 (PT_WRITE_GPR, pid, nr, 0, &buf); |
| } |
| } |
| |
| if (errno) |
| { |
| perror (_("ptrace write")); |
| errno = 0; |
| } |
| } |
| |
| /* Read from the inferior all registers if REGNO == -1 and just register |
| REGNO otherwise. */ |
| |
| void |
| rs6000_nat_target::fetch_registers (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| if (regno != -1) |
| fetch_register (regcache, regno); |
| |
| else |
| { |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| |
| /* Read 32 general purpose registers. */ |
| for (regno = tdep->ppc_gp0_regnum; |
| regno < tdep->ppc_gp0_regnum + ppc_num_gprs; |
| regno++) |
| { |
| fetch_register (regcache, regno); |
| } |
| |
| /* Read general purpose floating point registers. */ |
| if (tdep->ppc_fp0_regnum >= 0) |
| for (regno = 0; regno < ppc_num_fprs; regno++) |
| fetch_register (regcache, tdep->ppc_fp0_regnum + regno); |
| |
| if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) |
| fetch_altivec_registers_aix (regcache); |
| |
| if (tdep->ppc_vsr0_upper_regnum != -1) |
| fetch_vsx_registers_aix (regcache); |
| |
| /* Read special registers. */ |
| fetch_register (regcache, gdbarch_pc_regnum (gdbarch)); |
| fetch_register (regcache, tdep->ppc_ps_regnum); |
| fetch_register (regcache, tdep->ppc_cr_regnum); |
| fetch_register (regcache, tdep->ppc_lr_regnum); |
| fetch_register (regcache, tdep->ppc_ctr_regnum); |
| fetch_register (regcache, tdep->ppc_xer_regnum); |
| if (tdep->ppc_fpscr_regnum >= 0) |
| fetch_register (regcache, tdep->ppc_fpscr_regnum); |
| if (tdep->ppc_mq_regnum >= 0) |
| fetch_register (regcache, tdep->ppc_mq_regnum); |
| } |
| } |
| |
| const struct target_desc * |
| rs6000_nat_target::read_description () |
| { |
| if (ARCH64()) |
| { |
| if (__power_vsx ()) |
| return tdesc_powerpc_vsx64; |
| else if (__power_vmx ()) |
| return tdesc_powerpc_altivec64; |
| } |
| else |
| { |
| if (__power_vsx ()) |
| return tdesc_powerpc_vsx32; |
| else if (__power_vmx ()) |
| return tdesc_powerpc_altivec32; |
| } |
| return NULL; |
| } |
| |
| /* Store our register values back into the inferior. |
| If REGNO is -1, do this for all registers. |
| Otherwise, REGNO specifies which register (so we can save time). */ |
| |
| void |
| rs6000_nat_target::store_registers (struct regcache *regcache, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| if (regno != -1) |
| store_register (regcache, regno); |
| |
| else |
| { |
| ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch); |
| |
| /* Write general purpose registers first. */ |
| for (regno = tdep->ppc_gp0_regnum; |
| regno < tdep->ppc_gp0_regnum + ppc_num_gprs; |
| regno++) |
| { |
| store_register (regcache, regno); |
| } |
| |
| /* Write floating point registers. */ |
| if (tdep->ppc_fp0_regnum >= 0) |
| for (regno = 0; regno < ppc_num_fprs; regno++) |
| store_register (regcache, tdep->ppc_fp0_regnum + regno); |
| |
| /* Write special registers. */ |
| store_register (regcache, gdbarch_pc_regnum (gdbarch)); |
| store_register (regcache, tdep->ppc_ps_regnum); |
| store_register (regcache, tdep->ppc_cr_regnum); |
| store_register (regcache, tdep->ppc_lr_regnum); |
| store_register (regcache, tdep->ppc_ctr_regnum); |
| store_register (regcache, tdep->ppc_xer_regnum); |
| if (tdep->ppc_fpscr_regnum >= 0) |
| store_register (regcache, tdep->ppc_fpscr_regnum); |
| if (tdep->ppc_mq_regnum >= 0) |
| store_register (regcache, tdep->ppc_mq_regnum); |
| } |
| } |
| |
| /* Implement the to_xfer_partial target_ops method. */ |
| |
| enum target_xfer_status |
| rs6000_nat_target::xfer_partial (enum target_object object, |
| const char *annex, gdb_byte *readbuf, |
| const gdb_byte *writebuf, |
| ULONGEST offset, ULONGEST len, |
| ULONGEST *xfered_len) |
| { |
| pid_t pid = inferior_ptid.pid (); |
| int arch64 = ARCH64 (); |
| |
| switch (object) |
| { |
| case TARGET_OBJECT_LIBRARIES_AIX: |
| return xfer_shared_libraries (object, annex, |
| readbuf, writebuf, |
| offset, len, xfered_len); |
| case TARGET_OBJECT_MEMORY: |
| { |
| union |
| { |
| PTRACE_TYPE_RET word; |
| gdb_byte byte[sizeof (PTRACE_TYPE_RET)]; |
| } buffer; |
| ULONGEST rounded_offset; |
| LONGEST partial_len; |
| |
| /* Round the start offset down to the next long word |
| boundary. */ |
| rounded_offset = offset & -(ULONGEST) sizeof (PTRACE_TYPE_RET); |
| |
| /* Since ptrace will transfer a single word starting at that |
| rounded_offset the partial_len needs to be adjusted down to |
| that (remember this function only does a single transfer). |
| Should the required length be even less, adjust it down |
| again. */ |
| partial_len = (rounded_offset + sizeof (PTRACE_TYPE_RET)) - offset; |
| if (partial_len > len) |
| partial_len = len; |
| |
| if (writebuf) |
| { |
| /* If OFFSET:PARTIAL_LEN is smaller than |
| ROUNDED_OFFSET:WORDSIZE then a read/modify write will |
| be needed. Read in the entire word. */ |
| if (rounded_offset < offset |
| || (offset + partial_len |
| < rounded_offset + sizeof (PTRACE_TYPE_RET))) |
| { |
| /* Need part of initial word -- fetch it. */ |
| if (arch64) |
| buffer.word = rs6000_ptrace64 (PT_READ_I, pid, |
| rounded_offset, 0, NULL); |
| else |
| buffer.word = rs6000_ptrace32 (PT_READ_I, pid, |
| (int *) (uintptr_t) |
| rounded_offset, |
| 0, NULL); |
| } |
| |
| /* Copy data to be written over corresponding part of |
| buffer. */ |
| memcpy (buffer.byte + (offset - rounded_offset), |
| writebuf, partial_len); |
| |
| errno = 0; |
| if (arch64) |
| rs6000_ptrace64 (PT_WRITE_D, pid, |
| rounded_offset, buffer.word, NULL); |
| else |
| rs6000_ptrace32 (PT_WRITE_D, pid, |
| (int *) (uintptr_t) rounded_offset, |
| buffer.word, NULL); |
| if (errno) |
| return TARGET_XFER_EOF; |
| } |
| |
| if (readbuf) |
| { |
| errno = 0; |
| if (arch64) |
| buffer.word = rs6000_ptrace64 (PT_READ_I, pid, |
| rounded_offset, 0, NULL); |
| else |
| buffer.word = rs6000_ptrace32 (PT_READ_I, pid, |
| (int *)(uintptr_t)rounded_offset, |
| 0, NULL); |
| if (errno) |
| return TARGET_XFER_EOF; |
| |
| /* Copy appropriate bytes out of the buffer. */ |
| memcpy (readbuf, buffer.byte + (offset - rounded_offset), |
| partial_len); |
| } |
| |
| *xfered_len = (ULONGEST) partial_len; |
| return TARGET_XFER_OK; |
| } |
| |
| default: |
| return TARGET_XFER_E_IO; |
| } |
| } |
| |
| /* Wait for the child specified by PTID to do something. Return the |
| process ID of the child, or MINUS_ONE_PTID in case of error; store |
| the status in *OURSTATUS. */ |
| |
| ptid_t |
| rs6000_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, |
| target_wait_flags options) |
| { |
| pid_t pid; |
| int status, save_errno; |
| |
| while (1) |
| { |
| set_sigint_trap (); |
| |
| do |
| { |
| pid = waitpid (ptid.pid (), &status, 0); |
| save_errno = errno; |
| } |
| while (pid == -1 && errno == EINTR); |
| |
| clear_sigint_trap (); |
| |
| if (pid == -1) |
| { |
| gdb_printf (gdb_stderr, |
| _("Child process unexpectedly missing: %s.\n"), |
| safe_strerror (save_errno)); |
| |
| ourstatus->set_ignore (); |
| return minus_one_ptid; |
| } |
| |
| /* Ignore terminated detached child processes. */ |
| if (!WIFSTOPPED (status) && find_inferior_pid (this, pid) == nullptr) |
| continue; |
| |
| /* Check for a fork () event. */ |
| if ((status & 0xff) == W_SFWTED) |
| { |
| /* Checking whether it is a parent or a child event. */ |
| |
| /* If the event is a child we check if there was a parent |
| event recorded before. If yes we got the parent child |
| relationship. If not we push this child and wait for |
| the next fork () event. */ |
| if (find_inferior_pid (this, pid) == nullptr) |
| { |
| pid_t parent_pid = has_my_aix_parent_reported (pid); |
| if (parent_pid > 0) |
| { |
| ourstatus->set_forked (ptid_t (pid)); |
| return ptid_t (parent_pid); |
| } |
| aix_remember_child (pid); |
| } |
| |
| /* If the event is a parent we check if there was a child |
| event recorded before. If yes we got the parent child |
| relationship. If not we push this parent and wait for |
| the next fork () event. */ |
| else |
| { |
| pid_t child_pid = has_my_aix_child_reported (pid); |
| if (child_pid > 0) |
| { |
| ourstatus->set_forked (ptid_t (child_pid)); |
| return ptid_t (pid); |
| } |
| aix_remember_parent (pid); |
| } |
| continue; |
| } |
| |
| break; |
| } |
| |
| /* AIX has a couple of strange returns from wait(). */ |
| |
| /* stop after load" status. */ |
| if (status == 0x57c) |
| ourstatus->set_loaded (); |
| /* 0x7f is signal 0. */ |
| else if (status == 0x7f) |
| ourstatus->set_spurious (); |
| /* A normal waitstatus. Let the usual macros deal with it. */ |
| else |
| *ourstatus = host_status_to_waitstatus (status); |
| |
| return ptid_t (pid); |
| } |
| |
| |
| /* Set the current architecture from the host running GDB. Called when |
| starting a child process. */ |
| |
| void |
| rs6000_nat_target::create_inferior (const char *exec_file, |
| const std::string &allargs, |
| char **env, int from_tty) |
| { |
| enum bfd_architecture arch; |
| unsigned long mach; |
| bfd abfd; |
| |
| inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); |
| |
| if (__power_rs ()) |
| { |
| arch = bfd_arch_rs6000; |
| mach = bfd_mach_rs6k; |
| } |
| else |
| { |
| arch = bfd_arch_powerpc; |
| mach = bfd_mach_ppc; |
| } |
| |
| /* FIXME: schauer/2002-02-25: |
| We don't know if we are executing a 32 or 64 bit executable, |
| and have no way to pass the proper word size to rs6000_gdbarch_init. |
| So we have to avoid switching to a new architecture, if the architecture |
| matches already. |
| Blindly calling rs6000_gdbarch_init used to work in older versions of |
| GDB, as rs6000_gdbarch_init incorrectly used the previous tdep to |
| determine the wordsize. */ |
| if (current_program_space->exec_bfd ()) |
| { |
| const struct bfd_arch_info *exec_bfd_arch_info; |
| |
| exec_bfd_arch_info |
| = bfd_get_arch_info (current_program_space->exec_bfd ()); |
| if (arch == exec_bfd_arch_info->arch) |
| return; |
| } |
| |
| bfd_default_set_arch_mach (&abfd, arch, mach); |
| |
| gdbarch_info info; |
| info.bfd_arch_info = bfd_get_arch_info (&abfd); |
| info.abfd = current_program_space->exec_bfd (); |
| |
| if (!gdbarch_update_p (info)) |
| internal_error (_("rs6000_create_inferior: failed " |
| "to select architecture")); |
| } |
| |
| |
| /* Shared Object support. */ |
| |
| /* Return the LdInfo data for the given process. Raises an error |
| if the data could not be obtained. */ |
| |
| static gdb::byte_vector |
| rs6000_ptrace_ldinfo (ptid_t ptid) |
| { |
| const int pid = ptid.pid (); |
| gdb::byte_vector ldi (1024); |
| int rc = -1; |
| |
| while (1) |
| { |
| if (ARCH64 ()) |
| rc = rs6000_ptrace64 (PT_LDINFO, pid, (unsigned long) ldi.data (), |
| ldi.size (), NULL); |
| else |
| rc = rs6000_ptrace32 (PT_LDINFO, pid, (int *) ldi.data (), |
| ldi.size (), NULL); |
| |
| if (rc != -1) |
| break; /* Success, we got the entire ld_info data. */ |
| |
| if (errno != ENOMEM) |
| perror_with_name (_("ptrace ldinfo")); |
| |
| /* ldi is not big enough. Double it and try again. */ |
| ldi.resize (ldi.size () * 2); |
| } |
| |
| return ldi; |
| } |
| |
| /* Implement the to_xfer_partial target_ops method for |
| TARGET_OBJECT_LIBRARIES_AIX objects. */ |
| |
| enum target_xfer_status |
| rs6000_nat_target::xfer_shared_libraries |
| (enum target_object object, |
| const char *annex, gdb_byte *readbuf, const gdb_byte *writebuf, |
| ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) |
| { |
| ULONGEST result; |
| |
| /* This function assumes that it is being run with a live process. |
| Core files are handled via gdbarch. */ |
| gdb_assert (target_has_execution ()); |
| |
| if (writebuf) |
| return TARGET_XFER_E_IO; |
| |
| gdb::byte_vector ldi_buf = rs6000_ptrace_ldinfo (inferior_ptid); |
| result = rs6000_aix_ld_info_to_xml (current_inferior ()->arch (), |
| ldi_buf.data (), |
| readbuf, offset, len, 1); |
| |
| if (result == 0) |
| return TARGET_XFER_EOF; |
| else |
| { |
| *xfered_len = result; |
| return TARGET_XFER_OK; |
| } |
| } |
| |
| void _initialize_rs6000_nat (); |
| void |
| _initialize_rs6000_nat () |
| { |
| add_inf_child_target (&the_rs6000_nat_target); |
| } |