| /* CTF dict creation. |
| Copyright (C) 2019-2023 Free Software Foundation, Inc. |
| |
| This file is part of libctf. |
| |
| libctf is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 3, or (at your option) any later |
| version. |
| |
| This program is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. |
| See the GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING. If not see |
| <http://www.gnu.org/licenses/>. */ |
| |
| #include <ctf-impl.h> |
| #include <sys/param.h> |
| #include <string.h> |
| #include <unistd.h> |
| |
| #ifndef EOVERFLOW |
| #define EOVERFLOW ERANGE |
| #endif |
| |
| #ifndef roundup |
| #define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y)) |
| #endif |
| |
| /* The initial size of a dynamic type's vlen in members. Arbitrary: the bigger |
| this is, the less allocation needs to be done for small structure |
| initialization, and the more memory is wasted for small structures during CTF |
| construction. No effect on generated CTF or ctf_open()ed CTF. */ |
| #define INITIAL_VLEN 16 |
| |
| /* Make sure the ptrtab has enough space for at least one more type. |
| |
| We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25% |
| at a time. */ |
| |
| static int |
| ctf_grow_ptrtab (ctf_dict_t *fp) |
| { |
| size_t new_ptrtab_len = fp->ctf_ptrtab_len; |
| |
| /* We allocate one more ptrtab entry than we need, for the initial zero, |
| plus one because the caller will probably allocate a new type. */ |
| |
| if (fp->ctf_ptrtab == NULL) |
| new_ptrtab_len = 1024; |
| else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len) |
| new_ptrtab_len = fp->ctf_ptrtab_len * 1.25; |
| |
| if (new_ptrtab_len != fp->ctf_ptrtab_len) |
| { |
| uint32_t *new_ptrtab; |
| |
| if ((new_ptrtab = realloc (fp->ctf_ptrtab, |
| new_ptrtab_len * sizeof (uint32_t))) == NULL) |
| return (ctf_set_errno (fp, ENOMEM)); |
| |
| fp->ctf_ptrtab = new_ptrtab; |
| memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0, |
| (new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t)); |
| fp->ctf_ptrtab_len = new_ptrtab_len; |
| } |
| return 0; |
| } |
| |
| /* Make sure a vlen has enough space: expand it otherwise. Unlike the ptrtab, |
| which grows quite slowly, the vlen grows in big jumps because it is quite |
| expensive to expand: the caller has to scan the old vlen for string refs |
| first and remove them, then re-add them afterwards. The initial size is |
| more or less arbitrary. */ |
| static int |
| ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen) |
| { |
| unsigned char *old = dtd->dtd_vlen; |
| |
| if (dtd->dtd_vlen_alloc > vlen) |
| return 0; |
| |
| if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen, |
| dtd->dtd_vlen_alloc * 2)) == NULL) |
| { |
| dtd->dtd_vlen = old; |
| return (ctf_set_errno (fp, ENOMEM)); |
| } |
| memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc); |
| dtd->dtd_vlen_alloc *= 2; |
| return 0; |
| } |
| |
| /* To create an empty CTF dict, we just declare a zeroed header and call |
| ctf_bufopen() on it. If ctf_bufopen succeeds, we mark the new dict r/w and |
| initialize the dynamic members. We start assigning type IDs at 1 because |
| type ID 0 is used as a sentinel and a not-found indicator. */ |
| |
| ctf_dict_t * |
| ctf_create (int *errp) |
| { |
| static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } }; |
| |
| ctf_dynhash_t *dthash; |
| ctf_dynhash_t *dvhash; |
| ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL; |
| ctf_dynhash_t *objthash = NULL, *funchash = NULL; |
| ctf_sect_t cts; |
| ctf_dict_t *fp; |
| |
| libctf_init_debug(); |
| dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer, |
| NULL, NULL); |
| if (dthash == NULL) |
| { |
| ctf_set_open_errno (errp, EAGAIN); |
| goto err; |
| } |
| |
| dvhash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| NULL, NULL); |
| if (dvhash == NULL) |
| { |
| ctf_set_open_errno (errp, EAGAIN); |
| goto err_dt; |
| } |
| |
| structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| NULL, NULL); |
| unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| NULL, NULL); |
| enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| NULL, NULL); |
| names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| NULL, NULL); |
| objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| free, NULL); |
| funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, |
| free, NULL); |
| if (!structs || !unions || !enums || !names) |
| { |
| ctf_set_open_errno (errp, EAGAIN); |
| goto err_dv; |
| } |
| |
| cts.cts_name = _CTF_SECTION; |
| cts.cts_data = &hdr; |
| cts.cts_size = sizeof (hdr); |
| cts.cts_entsize = 1; |
| |
| if ((fp = ctf_bufopen_internal (&cts, NULL, NULL, NULL, 1, errp)) == NULL) |
| goto err_dv; |
| |
| fp->ctf_structs.ctn_writable = structs; |
| fp->ctf_unions.ctn_writable = unions; |
| fp->ctf_enums.ctn_writable = enums; |
| fp->ctf_names.ctn_writable = names; |
| fp->ctf_objthash = objthash; |
| fp->ctf_funchash = funchash; |
| fp->ctf_dthash = dthash; |
| fp->ctf_dvhash = dvhash; |
| fp->ctf_dtoldid = 0; |
| fp->ctf_snapshots = 1; |
| fp->ctf_snapshot_lu = 0; |
| fp->ctf_flags |= LCTF_DIRTY; |
| |
| ctf_set_ctl_hashes (fp); |
| ctf_setmodel (fp, CTF_MODEL_NATIVE); |
| if (ctf_grow_ptrtab (fp) < 0) |
| { |
| ctf_set_open_errno (errp, ctf_errno (fp)); |
| ctf_dict_close (fp); |
| return NULL; |
| } |
| |
| return fp; |
| |
| err_dv: |
| ctf_dynhash_destroy (structs); |
| ctf_dynhash_destroy (unions); |
| ctf_dynhash_destroy (enums); |
| ctf_dynhash_destroy (names); |
| ctf_dynhash_destroy (objthash); |
| ctf_dynhash_destroy (funchash); |
| ctf_dynhash_destroy (dvhash); |
| err_dt: |
| ctf_dynhash_destroy (dthash); |
| err: |
| return NULL; |
| } |
| |
| /* Compatibility: just update the threshold for ctf_discard. */ |
| int |
| ctf_update (ctf_dict_t *fp) |
| { |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (fp, ECTF_RDONLY)); |
| |
| fp->ctf_dtoldid = fp->ctf_typemax; |
| return 0; |
| } |
| |
| ctf_names_t * |
| ctf_name_table (ctf_dict_t *fp, int kind) |
| { |
| switch (kind) |
| { |
| case CTF_K_STRUCT: |
| return &fp->ctf_structs; |
| case CTF_K_UNION: |
| return &fp->ctf_unions; |
| case CTF_K_ENUM: |
| return &fp->ctf_enums; |
| default: |
| return &fp->ctf_names; |
| } |
| } |
| |
| int |
| ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind) |
| { |
| const char *name; |
| if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type, |
| dtd) < 0) |
| return ctf_set_errno (fp, ENOMEM); |
| |
| if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name |
| && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL) |
| { |
| if (ctf_dynhash_insert (ctf_name_table (fp, kind)->ctn_writable, |
| (char *) name, (void *) (uintptr_t) |
| dtd->dtd_type) < 0) |
| { |
| ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) |
| dtd->dtd_type); |
| return ctf_set_errno (fp, ENOMEM); |
| } |
| } |
| ctf_list_append (&fp->ctf_dtdefs, dtd); |
| return 0; |
| } |
| |
| void |
| ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd) |
| { |
| int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); |
| size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); |
| int name_kind = kind; |
| const char *name; |
| |
| ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type); |
| |
| switch (kind) |
| { |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| { |
| ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen; |
| size_t i; |
| |
| for (i = 0; i < vlen; i++) |
| ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name), |
| &memb[i].ctlm_name); |
| } |
| break; |
| case CTF_K_ENUM: |
| { |
| ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen; |
| size_t i; |
| |
| for (i = 0; i < vlen; i++) |
| ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name), |
| &en[i].cte_name); |
| } |
| break; |
| case CTF_K_FORWARD: |
| name_kind = dtd->dtd_data.ctt_type; |
| break; |
| } |
| free (dtd->dtd_vlen); |
| dtd->dtd_vlen_alloc = 0; |
| |
| if (dtd->dtd_data.ctt_name |
| && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL |
| && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info)) |
| { |
| ctf_dynhash_remove (ctf_name_table (fp, name_kind)->ctn_writable, |
| name); |
| ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name); |
| } |
| |
| ctf_list_delete (&fp->ctf_dtdefs, dtd); |
| free (dtd); |
| } |
| |
| ctf_dtdef_t * |
| ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type) |
| { |
| if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)) |
| fp = fp->ctf_parent; |
| |
| return (ctf_dtdef_t *) |
| ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type); |
| } |
| |
| ctf_dtdef_t * |
| ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id) |
| { |
| ctf_id_t idx; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return NULL; |
| |
| if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id)) |
| fp = fp->ctf_parent; |
| |
| idx = LCTF_TYPE_TO_INDEX(fp, id); |
| |
| if ((unsigned long) idx <= fp->ctf_typemax) |
| return ctf_dtd_lookup (fp, id); |
| return NULL; |
| } |
| |
| int |
| ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd) |
| { |
| if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0) |
| return ctf_set_errno (fp, ENOMEM); |
| ctf_list_append (&fp->ctf_dvdefs, dvd); |
| return 0; |
| } |
| |
| void |
| ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd) |
| { |
| ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name); |
| free (dvd->dvd_name); |
| |
| ctf_list_delete (&fp->ctf_dvdefs, dvd); |
| free (dvd); |
| } |
| |
| ctf_dvdef_t * |
| ctf_dvd_lookup (const ctf_dict_t *fp, const char *name) |
| { |
| return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name); |
| } |
| |
| /* Discard all of the dynamic type definitions and variable definitions that |
| have been added to the dict since the last call to ctf_update(). We locate |
| such types by scanning the dtd list and deleting elements that have type IDs |
| greater than ctf_dtoldid, which is set by ctf_update(), above, and by |
| scanning the variable list and deleting elements that have update IDs equal |
| to the current value of the last-update snapshot count (indicating that they |
| were added after the most recent call to ctf_update()). */ |
| int |
| ctf_discard (ctf_dict_t *fp) |
| { |
| ctf_snapshot_id_t last_update = |
| { fp->ctf_dtoldid, |
| fp->ctf_snapshot_lu + 1 }; |
| |
| /* Update required? */ |
| if (!(fp->ctf_flags & LCTF_DIRTY)) |
| return 0; |
| |
| return (ctf_rollback (fp, last_update)); |
| } |
| |
| ctf_snapshot_id_t |
| ctf_snapshot (ctf_dict_t *fp) |
| { |
| ctf_snapshot_id_t snapid; |
| snapid.dtd_id = fp->ctf_typemax; |
| snapid.snapshot_id = fp->ctf_snapshots++; |
| return snapid; |
| } |
| |
| /* Like ctf_discard(), only discards everything after a particular ID. */ |
| int |
| ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id) |
| { |
| ctf_dtdef_t *dtd, *ntd; |
| ctf_dvdef_t *dvd, *nvd; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (fp, ECTF_RDONLY)); |
| |
| if (fp->ctf_snapshot_lu >= id.snapshot_id) |
| return (ctf_set_errno (fp, ECTF_OVERROLLBACK)); |
| |
| for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) |
| { |
| int kind; |
| const char *name; |
| |
| ntd = ctf_list_next (dtd); |
| |
| if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id) |
| continue; |
| |
| kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); |
| if (kind == CTF_K_FORWARD) |
| kind = dtd->dtd_data.ctt_type; |
| |
| if (dtd->dtd_data.ctt_name |
| && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL |
| && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info)) |
| { |
| ctf_dynhash_remove (ctf_name_table (fp, kind)->ctn_writable, |
| name); |
| ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name); |
| } |
| |
| ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type); |
| ctf_dtd_delete (fp, dtd); |
| } |
| |
| for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd) |
| { |
| nvd = ctf_list_next (dvd); |
| |
| if (dvd->dvd_snapshots <= id.snapshot_id) |
| continue; |
| |
| ctf_dvd_delete (fp, dvd); |
| } |
| |
| fp->ctf_typemax = id.dtd_id; |
| fp->ctf_snapshots = id.snapshot_id; |
| |
| if (fp->ctf_snapshots == fp->ctf_snapshot_lu) |
| fp->ctf_flags &= ~LCTF_DIRTY; |
| |
| return 0; |
| } |
| |
| /* Note: vlen is the amount of space *allocated* for the vlen. It may well not |
| be the amount of space used (yet): the space used is declared in per-kind |
| fashion in the dtd_data's info word. */ |
| static ctf_id_t |
| ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind, |
| size_t vlen, ctf_dtdef_t **rp) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| |
| if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_typed_errno (fp, ECTF_RDONLY)); |
| |
| if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE) |
| return (ctf_set_typed_errno (fp, ECTF_FULL)); |
| |
| if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1)) |
| return (ctf_set_typed_errno (fp, ECTF_FULL)); |
| |
| /* Make sure ptrtab always grows to be big enough for all types. */ |
| if (ctf_grow_ptrtab (fp) < 0) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL) |
| return (ctf_set_typed_errno (fp, EAGAIN)); |
| |
| dtd->dtd_vlen_alloc = vlen; |
| if (vlen > 0) |
| { |
| if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL) |
| goto oom; |
| } |
| else |
| dtd->dtd_vlen = NULL; |
| |
| type = ++fp->ctf_typemax; |
| type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD)); |
| |
| dtd->dtd_data.ctt_name = ctf_str_add_pending (fp, name, |
| &dtd->dtd_data.ctt_name); |
| dtd->dtd_type = type; |
| |
| if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0') |
| goto oom; |
| |
| if (ctf_dtd_insert (fp, dtd, flag, kind) < 0) |
| goto err; /* errno is set for us. */ |
| |
| fp->ctf_flags |= LCTF_DIRTY; |
| |
| *rp = dtd; |
| return type; |
| |
| oom: |
| ctf_set_errno (fp, EAGAIN); |
| err: |
| free (dtd->dtd_vlen); |
| free (dtd); |
| return CTF_ERR; |
| } |
| |
| /* When encoding integer sizes, we want to convert a byte count in the range |
| 1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc). The clp2() function |
| is a clever implementation from "Hacker's Delight" by Henry Warren, Jr. */ |
| static size_t |
| clp2 (size_t x) |
| { |
| x--; |
| |
| x |= (x >> 1); |
| x |= (x >> 2); |
| x |= (x >> 4); |
| x |= (x >> 8); |
| x |= (x >> 16); |
| |
| return (x + 1); |
| } |
| |
| ctf_id_t |
| ctf_add_encoded (ctf_dict_t *fp, uint32_t flag, |
| const char *name, const ctf_encoding_t *ep, uint32_t kind) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| uint32_t encoding; |
| |
| if (ep == NULL) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (name == NULL || name[0] == '\0') |
| return (ctf_set_typed_errno (fp, ECTF_NONAME)); |
| |
| if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT)) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t), |
| &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0); |
| dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT) |
| / CHAR_BIT); |
| switch (kind) |
| { |
| case CTF_K_INTEGER: |
| encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits); |
| break; |
| case CTF_K_FLOAT: |
| encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits); |
| break; |
| } |
| memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding)); |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| ctf_dict_t *tmp = fp; |
| int child = fp->ctf_flags & LCTF_CHILD; |
| |
| if (ref == CTF_ERR || ref > CTF_MAX_TYPE) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0); |
| dtd->dtd_data.ctt_type = (uint32_t) ref; |
| |
| if (kind != CTF_K_POINTER) |
| return type; |
| |
| /* If we are adding a pointer, update the ptrtab, pointing at this type from |
| the type it points to. Note that ctf_typemax is at this point one higher |
| than we want to check against, because it's just been incremented for the |
| addition of this type. The pptrtab is lazily-updated as needed, so is not |
| touched here. */ |
| |
| uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type); |
| uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref); |
| |
| if (LCTF_TYPE_ISCHILD (fp, ref) == child |
| && ref_idx < fp->ctf_typemax) |
| fp->ctf_ptrtab[ref_idx] = type_idx; |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, |
| const ctf_encoding_t *ep) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_slice_t slice; |
| ctf_id_t resolved_ref = ref; |
| ctf_id_t type; |
| int kind; |
| const ctf_type_t *tp; |
| ctf_dict_t *tmp = fp; |
| |
| if (ep == NULL) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if ((ep->cte_bits > 255) || (ep->cte_offset > 255)) |
| return (ctf_set_typed_errno (fp, ECTF_SLICEOVERFLOW)); |
| |
| if (ref == CTF_ERR || ref > CTF_MAX_TYPE) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL)) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* Make sure we ultimately point to an integral type. We also allow slices to |
| point to the unimplemented type, for now, because the compiler can emit |
| such slices, though they're not very much use. */ |
| |
| resolved_ref = ctf_type_resolve_unsliced (fp, ref); |
| kind = ctf_type_kind_unsliced (fp, resolved_ref); |
| |
| if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && |
| (kind != CTF_K_ENUM) |
| && (ref != 0)) |
| return (ctf_set_typed_errno (fp, ECTF_NOTINTFP)); |
| |
| if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE, |
| sizeof (ctf_slice_t), &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| memset (&slice, 0, sizeof (ctf_slice_t)); |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0); |
| dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT) |
| / CHAR_BIT); |
| slice.cts_type = (uint32_t) ref; |
| slice.cts_bits = ep->cte_bits; |
| slice.cts_offset = ep->cte_offset; |
| memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t)); |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_integer (ctf_dict_t *fp, uint32_t flag, |
| const char *name, const ctf_encoding_t *ep) |
| { |
| return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER)); |
| } |
| |
| ctf_id_t |
| ctf_add_float (ctf_dict_t *fp, uint32_t flag, |
| const char *name, const ctf_encoding_t *ep) |
| { |
| return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT)); |
| } |
| |
| ctf_id_t |
| ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER)); |
| } |
| |
| ctf_id_t |
| ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_array_t cta; |
| ctf_id_t type; |
| ctf_dict_t *tmp = fp; |
| |
| if (arp == NULL) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (arp->ctr_contents != 0 |
| && ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| tmp = fp; |
| if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD) |
| { |
| ctf_err_warn (fp, 1, ECTF_INCOMPLETE, |
| _("ctf_add_array: index type %lx is incomplete"), |
| arp->ctr_contents); |
| return (ctf_set_typed_errno (fp, ECTF_INCOMPLETE)); |
| } |
| |
| if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY, |
| sizeof (ctf_array_t), &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| memset (&cta, 0, sizeof (ctf_array_t)); |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0); |
| dtd->dtd_data.ctt_size = 0; |
| cta.cta_contents = (uint32_t) arp->ctr_contents; |
| cta.cta_index = (uint32_t) arp->ctr_index; |
| cta.cta_nelems = arp->ctr_nelems; |
| memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t)); |
| |
| return type; |
| } |
| |
| int |
| ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) |
| { |
| ctf_dict_t *ofp = fp; |
| ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type); |
| ctf_array_t *vlen; |
| |
| if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)) |
| fp = fp->ctf_parent; |
| |
| if (!(ofp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (dtd == NULL |
| || LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY) |
| return (ctf_set_errno (ofp, ECTF_BADID)); |
| |
| vlen = (ctf_array_t *) dtd->dtd_vlen; |
| fp->ctf_flags |= LCTF_DIRTY; |
| vlen->cta_contents = (uint32_t) arp->ctr_contents; |
| vlen->cta_index = (uint32_t) arp->ctr_index; |
| vlen->cta_nelems = arp->ctr_nelems; |
| |
| return 0; |
| } |
| |
| ctf_id_t |
| ctf_add_function (ctf_dict_t *fp, uint32_t flag, |
| const ctf_funcinfo_t *ctc, const ctf_id_t *argv) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| uint32_t vlen; |
| uint32_t *vdat; |
| ctf_dict_t *tmp = fp; |
| size_t initial_vlen; |
| size_t i; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_typed_errno (fp, ECTF_RDONLY)); |
| |
| if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 |
| || (ctc->ctc_argc != 0 && argv == NULL)) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| vlen = ctc->ctc_argc; |
| if (ctc->ctc_flags & CTF_FUNC_VARARG) |
| vlen++; /* Add trailing zero to indicate varargs (see below). */ |
| |
| if (ctc->ctc_return != 0 |
| && ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if (vlen > CTF_MAX_VLEN) |
| return (ctf_set_typed_errno (fp, EOVERFLOW)); |
| |
| /* One word extra allocated for padding for 4-byte alignment if need be. |
| Not reflected in vlen: we don't want to copy anything into it, and |
| it's in addition to (e.g.) the trailing 0 indicating varargs. */ |
| |
| initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1))); |
| if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION, |
| initial_vlen, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| vdat = (uint32_t *) dtd->dtd_vlen; |
| |
| for (i = 0; i < ctc->ctc_argc; i++) |
| { |
| tmp = fp; |
| if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| vdat[i] = (uint32_t) argv[i]; |
| } |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen); |
| dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return; |
| |
| if (ctc->ctc_flags & CTF_FUNC_VARARG) |
| vdat[vlen - 1] = 0; /* Add trailing zero to indicate varargs. */ |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name, |
| size_t size) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type = 0; |
| size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN; |
| |
| /* Promote root-visible forwards to structs. */ |
| if (name != NULL) |
| type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name); |
| |
| if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup (fp, type); |
| else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT, |
| initial_vlen, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* Forwards won't have any vlen yet. */ |
| if (dtd->dtd_vlen_alloc == 0) |
| { |
| if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) |
| return (ctf_set_typed_errno (fp, ENOMEM)); |
| dtd->dtd_vlen_alloc = initial_vlen; |
| } |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0); |
| dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; |
| dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size); |
| dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size); |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name) |
| { |
| return (ctf_add_struct_sized (fp, flag, name, 0)); |
| } |
| |
| ctf_id_t |
| ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name, |
| size_t size) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type = 0; |
| size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN; |
| |
| /* Promote root-visible forwards to unions. */ |
| if (name != NULL) |
| type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name); |
| |
| if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup (fp, type); |
| else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION, |
| initial_vlen, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us */ |
| |
| /* Forwards won't have any vlen yet. */ |
| if (dtd->dtd_vlen_alloc == 0) |
| { |
| if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) |
| return (ctf_set_typed_errno (fp, ENOMEM)); |
| dtd->dtd_vlen_alloc = initial_vlen; |
| } |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0); |
| dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; |
| dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size); |
| dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size); |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name) |
| { |
| return (ctf_add_union_sized (fp, flag, name, 0)); |
| } |
| |
| ctf_id_t |
| ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type = 0; |
| size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN; |
| |
| /* Promote root-visible forwards to enums. */ |
| if (name != NULL) |
| type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name); |
| |
| if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) |
| dtd = ctf_dtd_lookup (fp, type); |
| else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM, |
| initial_vlen, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* Forwards won't have any vlen yet. */ |
| if (dtd->dtd_vlen_alloc == 0) |
| { |
| if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) |
| return (ctf_set_typed_errno (fp, ENOMEM)); |
| dtd->dtd_vlen_alloc = initial_vlen; |
| } |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0); |
| dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int; |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name, |
| const ctf_encoding_t *ep) |
| { |
| ctf_id_t type = 0; |
| |
| /* First, create the enum if need be, using most of the same machinery as |
| ctf_add_enum(), to ensure that we do not allow things past that are not |
| enums or forwards to them. (This includes other slices: you cannot slice a |
| slice, which would be a useless thing to do anyway.) */ |
| |
| if (name != NULL) |
| type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name); |
| |
| if (type != 0) |
| { |
| if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) && |
| (ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM)) |
| return (ctf_set_typed_errno (fp, ECTF_NOTINTFP)); |
| } |
| else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* Now attach a suitable slice to it. */ |
| |
| return ctf_add_slice (fp, flag, type, ep); |
| } |
| |
| ctf_id_t |
| ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name, |
| uint32_t kind) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type = 0; |
| |
| if (!ctf_forwardable_kind (kind)) |
| return (ctf_set_typed_errno (fp, ECTF_NOTSUE)); |
| |
| if (name == NULL || name[0] == '\0') |
| return (ctf_set_typed_errno (fp, ECTF_NONAME)); |
| |
| /* If the type is already defined or exists as a forward tag, just |
| return the ctf_id_t of the existing definition. */ |
| |
| type = ctf_lookup_by_rawname (fp, kind, name); |
| |
| if (type) |
| return type; |
| |
| if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0); |
| dtd->dtd_data.ctt_type = kind; |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_unknown (ctf_dict_t *fp, uint32_t flag, const char *name) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type = 0; |
| |
| /* If a type is already defined with this name, error (if not CTF_K_UNKNOWN) |
| or just return it. */ |
| |
| if (name != NULL && name[0] != '\0' && flag == CTF_ADD_ROOT |
| && (type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name))) |
| { |
| if (ctf_type_kind (fp, type) == CTF_K_UNKNOWN) |
| return type; |
| else |
| { |
| ctf_err_warn (fp, 1, ECTF_CONFLICT, |
| _("ctf_add_unknown: cannot add unknown type " |
| "named %s: type of this name already defined"), |
| name ? name : _("(unnamed type)")); |
| return (ctf_set_typed_errno (fp, ECTF_CONFLICT)); |
| } |
| } |
| |
| if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNKNOWN, 0, &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNKNOWN, flag, 0); |
| dtd->dtd_data.ctt_type = 0; |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name, |
| ctf_id_t ref) |
| { |
| ctf_dtdef_t *dtd; |
| ctf_id_t type; |
| ctf_dict_t *tmp = fp; |
| |
| if (ref == CTF_ERR || ref > CTF_MAX_TYPE) |
| return (ctf_set_typed_errno (fp, EINVAL)); |
| |
| if (name == NULL || name[0] == '\0') |
| return (ctf_set_typed_errno (fp, ECTF_NONAME)); |
| |
| if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0, |
| &dtd)) == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0); |
| dtd->dtd_data.ctt_type = (uint32_t) ref; |
| |
| return type; |
| } |
| |
| ctf_id_t |
| ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE)); |
| } |
| |
| ctf_id_t |
| ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST)); |
| } |
| |
| ctf_id_t |
| ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) |
| { |
| return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT)); |
| } |
| |
| int |
| ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name, |
| int value) |
| { |
| ctf_dict_t *ofp = fp; |
| ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, enid); |
| unsigned char *old_vlen; |
| ctf_enum_t *en; |
| size_t i; |
| |
| uint32_t kind, vlen, root; |
| |
| if (name == NULL) |
| return (ctf_set_errno (fp, EINVAL)); |
| |
| if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, enid)) |
| fp = fp->ctf_parent; |
| |
| if (!(ofp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (dtd == NULL) |
| return (ctf_set_errno (ofp, ECTF_BADID)); |
| |
| kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); |
| root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info); |
| vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); |
| |
| if (kind != CTF_K_ENUM) |
| return (ctf_set_errno (ofp, ECTF_NOTENUM)); |
| |
| if (vlen == CTF_MAX_VLEN) |
| return (ctf_set_errno (ofp, ECTF_DTFULL)); |
| |
| old_vlen = dtd->dtd_vlen; |
| if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0) |
| return -1; /* errno is set for us. */ |
| en = (ctf_enum_t *) dtd->dtd_vlen; |
| |
| if (dtd->dtd_vlen != old_vlen) |
| { |
| ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen; |
| |
| /* Remove pending refs in the old vlen region and reapply them. */ |
| |
| for (i = 0; i < vlen; i++) |
| ctf_str_move_pending (fp, &en[i].cte_name, move); |
| } |
| |
| for (i = 0; i < vlen; i++) |
| if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0) |
| return (ctf_set_errno (ofp, ECTF_DUPLICATE)); |
| |
| en[i].cte_name = ctf_str_add_pending (fp, name, &en[i].cte_name); |
| en[i].cte_value = value; |
| |
| if (en[i].cte_name == 0 && name != NULL && name[0] != '\0') |
| return (ctf_set_errno (ofp, ctf_errno (fp))); |
| |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1); |
| |
| fp->ctf_flags |= LCTF_DIRTY; |
| |
| return 0; |
| } |
| |
| int |
| ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name, |
| ctf_id_t type, unsigned long bit_offset) |
| { |
| ctf_dict_t *ofp = fp; |
| ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid); |
| |
| ssize_t msize, malign, ssize; |
| uint32_t kind, vlen, root; |
| size_t i; |
| int is_incomplete = 0; |
| unsigned char *old_vlen; |
| ctf_lmember_t *memb; |
| |
| if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, souid)) |
| { |
| /* Adding a child type to a parent, even via the child, is prohibited. |
| Otherwise, climb to the parent and do all work there. */ |
| |
| if (LCTF_TYPE_ISCHILD (fp, type)) |
| return (ctf_set_errno (ofp, ECTF_BADID)); |
| |
| fp = fp->ctf_parent; |
| } |
| |
| if (!(ofp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (ofp, ECTF_RDONLY)); |
| |
| if (dtd == NULL) |
| return (ctf_set_errno (ofp, ECTF_BADID)); |
| |
| if (name != NULL && name[0] == '\0') |
| name = NULL; |
| |
| kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); |
| root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info); |
| vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); |
| |
| if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) |
| return (ctf_set_errno (ofp, ECTF_NOTSOU)); |
| |
| if (vlen == CTF_MAX_VLEN) |
| return (ctf_set_errno (ofp, ECTF_DTFULL)); |
| |
| old_vlen = dtd->dtd_vlen; |
| if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0) |
| return (ctf_set_errno (ofp, ctf_errno (fp))); |
| memb = (ctf_lmember_t *) dtd->dtd_vlen; |
| |
| if (dtd->dtd_vlen != old_vlen) |
| { |
| ptrdiff_t move = (signed char *) dtd->dtd_vlen - (signed char *) old_vlen; |
| |
| /* Remove pending refs in the old vlen region and reapply them. */ |
| |
| for (i = 0; i < vlen; i++) |
| ctf_str_move_pending (fp, &memb[i].ctlm_name, move); |
| } |
| |
| if (name != NULL) |
| { |
| for (i = 0; i < vlen; i++) |
| if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0) |
| return (ctf_set_errno (ofp, ECTF_DUPLICATE)); |
| } |
| |
| if ((msize = ctf_type_size (fp, type)) < 0 || |
| (malign = ctf_type_align (fp, type)) < 0) |
| { |
| /* The unimplemented type, and any type that resolves to it, has no size |
| and no alignment: it can correspond to any number of compiler-inserted |
| types. We allow incomplete types through since they are routinely |
| added to the ends of structures, and can even be added elsewhere in |
| structures by the deduplicator. They are assumed to be zero-size with |
| no alignment: this is often wrong, but problems can be avoided in this |
| case by explicitly specifying the size of the structure via the _sized |
| functions. The deduplicator always does this. */ |
| |
| msize = 0; |
| malign = 0; |
| if (ctf_errno (fp) == ECTF_NONREPRESENTABLE) |
| ctf_set_errno (fp, 0); |
| else if (ctf_errno (fp) == ECTF_INCOMPLETE) |
| is_incomplete = 1; |
| else |
| return -1; /* errno is set for us. */ |
| } |
| |
| memb[vlen].ctlm_name = ctf_str_add_pending (fp, name, &memb[vlen].ctlm_name); |
| memb[vlen].ctlm_type = type; |
| if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0') |
| return -1; /* errno is set for us. */ |
| |
| if (kind == CTF_K_STRUCT && vlen != 0) |
| { |
| if (bit_offset == (unsigned long) - 1) |
| { |
| /* Natural alignment. */ |
| |
| ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type); |
| size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]); |
| |
| ctf_encoding_t linfo; |
| ssize_t lsize; |
| |
| /* Propagate any error from ctf_type_resolve. If the last member was |
| of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we |
| cannot insert right after such a member without explicit offset |
| specification, because its alignment and size is not known. */ |
| if (ltype == CTF_ERR) |
| return -1; /* errno is set for us. */ |
| |
| if (is_incomplete) |
| { |
| ctf_err_warn (ofp, 1, ECTF_INCOMPLETE, |
| _("ctf_add_member_offset: cannot add member %s of " |
| "incomplete type %lx to struct %lx without " |
| "specifying explicit offset\n"), |
| name ? name : _("(unnamed member)"), type, souid); |
| return (ctf_set_errno (ofp, ECTF_INCOMPLETE)); |
| } |
| |
| if (ctf_type_encoding (fp, ltype, &linfo) == 0) |
| off += linfo.cte_bits; |
| else if ((lsize = ctf_type_size (fp, ltype)) > 0) |
| off += lsize * CHAR_BIT; |
| else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE) |
| { |
| const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name); |
| |
| ctf_err_warn (ofp, 1, ECTF_INCOMPLETE, |
| _("ctf_add_member_offset: cannot add member %s of " |
| "type %lx to struct %lx without specifying " |
| "explicit offset after member %s of type %lx, " |
| "which is an incomplete type\n"), |
| name ? name : _("(unnamed member)"), type, souid, |
| lname ? lname : _("(unnamed member)"), ltype); |
| return (ctf_set_errno (ofp, ECTF_INCOMPLETE)); |
| } |
| |
| /* Round up the offset of the end of the last member to |
| the next byte boundary, convert 'off' to bytes, and |
| then round it up again to the next multiple of the |
| alignment required by the new member. Finally, |
| convert back to bits and store the result in |
| dmd_offset. Technically we could do more efficient |
| packing if the new member is a bit-field, but we're |
| the "compiler" and ANSI says we can do as we choose. */ |
| |
| off = roundup (off, CHAR_BIT) / CHAR_BIT; |
| off = roundup (off, MAX (malign, 1)); |
| memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT); |
| memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT); |
| ssize = off + msize; |
| } |
| else |
| { |
| /* Specified offset in bits. */ |
| |
| memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset); |
| memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset); |
| ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL); |
| ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize); |
| } |
| } |
| else |
| { |
| memb[vlen].ctlm_offsethi = 0; |
| memb[vlen].ctlm_offsetlo = 0; |
| ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL); |
| ssize = MAX (ssize, msize); |
| } |
| |
| dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; |
| dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize); |
| dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize); |
| dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1); |
| |
| fp->ctf_flags |= LCTF_DIRTY; |
| return 0; |
| } |
| |
| int |
| ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name, |
| ctf_id_t type, unsigned long bit_offset, |
| const ctf_encoding_t encoding) |
| { |
| ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type); |
| int kind; |
| int otype = type; |
| |
| if (dtd == NULL) |
| return (ctf_set_errno (fp, ECTF_BADID)); |
| |
| kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); |
| |
| if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM)) |
| return (ctf_set_errno (fp, ECTF_NOTINTFP)); |
| |
| if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR) |
| return -1; /* errno is set for us. */ |
| |
| return ctf_add_member_offset (fp, souid, name, type, bit_offset); |
| } |
| |
| int |
| ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name, |
| ctf_id_t type) |
| { |
| return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1); |
| } |
| |
| int |
| ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref) |
| { |
| ctf_dvdef_t *dvd; |
| ctf_dict_t *tmp = fp; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (fp, ECTF_RDONLY)); |
| |
| if (ctf_dvd_lookup (fp, name) != NULL) |
| return (ctf_set_errno (fp, ECTF_DUPLICATE)); |
| |
| if (ctf_lookup_by_id (&tmp, ref) == NULL) |
| return -1; /* errno is set for us. */ |
| |
| /* Make sure this type is representable. */ |
| if ((ctf_type_resolve (fp, ref) == CTF_ERR) |
| && (ctf_errno (fp) == ECTF_NONREPRESENTABLE)) |
| return -1; |
| |
| if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL) |
| return (ctf_set_errno (fp, EAGAIN)); |
| |
| if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL) |
| { |
| free (dvd); |
| return (ctf_set_errno (fp, EAGAIN)); |
| } |
| dvd->dvd_type = ref; |
| dvd->dvd_snapshots = fp->ctf_snapshots; |
| |
| if (ctf_dvd_insert (fp, dvd) < 0) |
| { |
| free (dvd->dvd_name); |
| free (dvd); |
| return -1; /* errno is set for us. */ |
| } |
| |
| fp->ctf_flags |= LCTF_DIRTY; |
| return 0; |
| } |
| |
| int |
| ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id) |
| { |
| ctf_dict_t *tmp = fp; |
| char *dupname; |
| ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash; |
| |
| if (!(fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_errno (fp, ECTF_RDONLY)); |
| |
| if (ctf_dynhash_lookup (fp->ctf_objthash, name) != NULL || |
| ctf_dynhash_lookup (fp->ctf_funchash, name) != NULL) |
| return (ctf_set_errno (fp, ECTF_DUPLICATE)); |
| |
| if (ctf_lookup_by_id (&tmp, id) == NULL) |
| return -1; /* errno is set for us. */ |
| |
| if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION) |
| return (ctf_set_errno (fp, ECTF_NOTFUNC)); |
| |
| if ((dupname = strdup (name)) == NULL) |
| return (ctf_set_errno (fp, ENOMEM)); |
| |
| if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0) |
| { |
| free (dupname); |
| return (ctf_set_errno (fp, ENOMEM)); |
| } |
| return 0; |
| } |
| |
| int |
| ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id) |
| { |
| return (ctf_add_funcobjt_sym (fp, 0, name, id)); |
| } |
| |
| int |
| ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id) |
| { |
| return (ctf_add_funcobjt_sym (fp, 1, name, id)); |
| } |
| |
| typedef struct ctf_bundle |
| { |
| ctf_dict_t *ctb_dict; /* CTF dict handle. */ |
| ctf_id_t ctb_type; /* CTF type identifier. */ |
| ctf_dtdef_t *ctb_dtd; /* CTF dynamic type definition (if any). */ |
| } ctf_bundle_t; |
| |
| static int |
| enumcmp (const char *name, int value, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| int bvalue; |
| |
| if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0) |
| { |
| ctf_err_warn (ctb->ctb_dict, 0, 0, |
| _("conflict due to enum %s iteration error"), name); |
| return 1; |
| } |
| if (value != bvalue) |
| { |
| ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT, |
| _("conflict due to enum value change: %i versus %i"), |
| value, bvalue); |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int |
| enumadd (const char *name, int value, void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| |
| return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type, |
| name, value) < 0); |
| } |
| |
| static int |
| membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset, |
| void *arg) |
| { |
| ctf_bundle_t *ctb = arg; |
| ctf_membinfo_t ctm; |
| |
| /* Don't check nameless members (e.g. anonymous structs/unions) against each |
| other. */ |
| if (name[0] == 0) |
| return 0; |
| |
| if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0) |
| { |
| ctf_err_warn (ctb->ctb_dict, 0, 0, |
| _("conflict due to struct member %s iteration error"), |
| name); |
| return 1; |
| } |
| if (ctm.ctm_offset != offset) |
| { |
| ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT, |
| _("conflict due to struct member %s offset change: " |
| "%lx versus %lx"), |
| name, ctm.ctm_offset, offset); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Record the correspondence between a source and ctf_add_type()-added |
| destination type: both types are translated into parent type IDs if need be, |
| so they relate to the actual dictionary they are in. Outside controlled |
| circumstances (like linking) it is probably not useful to do more than |
| compare these pointers, since there is nothing stopping the user closing the |
| source dict whenever they want to. |
| |
| Our OOM handling here is just to not do anything, because this is called deep |
| enough in the call stack that doing anything useful is painfully difficult: |
| the worst consequence if we do OOM is a bit of type duplication anyway. */ |
| |
| static void |
| ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, |
| ctf_dict_t *dst_fp, ctf_id_t dst_type) |
| { |
| if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) |
| src_fp = src_fp->ctf_parent; |
| |
| src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); |
| |
| if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent) |
| dst_fp = dst_fp->ctf_parent; |
| |
| dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type); |
| |
| if (dst_fp->ctf_link_type_mapping == NULL) |
| { |
| ctf_hash_fun f = ctf_hash_type_key; |
| ctf_hash_eq_fun e = ctf_hash_eq_type_key; |
| |
| if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free, |
| NULL)) == NULL) |
| return; |
| } |
| |
| ctf_link_type_key_t *key; |
| key = calloc (1, sizeof (struct ctf_link_type_key)); |
| if (!key) |
| return; |
| |
| key->cltk_fp = src_fp; |
| key->cltk_idx = src_type; |
| |
| /* No OOM checking needed, because if this doesn't work the worst we'll do is |
| add a few more duplicate types (which will probably run out of memory |
| anyway). */ |
| ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key, |
| (void *) (uintptr_t) dst_type); |
| } |
| |
| /* Look up a type mapping: return 0 if none. The DST_FP is modified to point to |
| the parent if need be. The ID returned is from the dst_fp's perspective. */ |
| static ctf_id_t |
| ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp) |
| { |
| ctf_link_type_key_t key; |
| ctf_dict_t *target_fp = *dst_fp; |
| ctf_id_t dst_type = 0; |
| |
| if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) |
| src_fp = src_fp->ctf_parent; |
| |
| src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); |
| key.cltk_fp = src_fp; |
| key.cltk_idx = src_type; |
| |
| if (target_fp->ctf_link_type_mapping) |
| dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, |
| &key); |
| |
| if (dst_type != 0) |
| { |
| dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, |
| target_fp->ctf_parent != NULL); |
| *dst_fp = target_fp; |
| return dst_type; |
| } |
| |
| if (target_fp->ctf_parent) |
| target_fp = target_fp->ctf_parent; |
| else |
| return 0; |
| |
| if (target_fp->ctf_link_type_mapping) |
| dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, |
| &key); |
| |
| if (dst_type) |
| dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, |
| target_fp->ctf_parent != NULL); |
| |
| *dst_fp = target_fp; |
| return dst_type; |
| } |
| |
| /* The ctf_add_type routine is used to copy a type from a source CTF dictionary |
| to a dynamic destination dictionary. This routine operates recursively by |
| following the source type's links and embedded member types. If the |
| destination dict already contains a named type which has the same attributes, |
| then we succeed and return this type but no changes occur. */ |
| static ctf_id_t |
| ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type, |
| ctf_dict_t *proc_tracking_fp) |
| { |
| ctf_id_t dst_type = CTF_ERR; |
| uint32_t dst_kind = CTF_K_UNKNOWN; |
| ctf_dict_t *tmp_fp = dst_fp; |
| ctf_id_t tmp; |
| |
| const char *name; |
| uint32_t kind, forward_kind, flag, vlen; |
| |
| const ctf_type_t *src_tp, *dst_tp; |
| ctf_bundle_t src, dst; |
| ctf_encoding_t src_en, dst_en; |
| ctf_arinfo_t src_ar, dst_ar; |
| |
| ctf_funcinfo_t ctc; |
| |
| ctf_id_t orig_src_type = src_type; |
| |
| if (!(dst_fp->ctf_flags & LCTF_RDWR)) |
| return (ctf_set_typed_errno (dst_fp, ECTF_RDONLY)); |
| |
| if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL) |
| return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); |
| |
| if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR) |
| && (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE)) |
| return (ctf_set_typed_errno (dst_fp, ECTF_NONREPRESENTABLE)); |
| |
| name = ctf_strptr (src_fp, src_tp->ctt_name); |
| kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info); |
| flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info); |
| vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info); |
| |
| /* If this is a type we are currently in the middle of adding, hand it |
| straight back. (This lets us handle self-referential structures without |
| considering forwards and empty structures the same as their completed |
| forms.) */ |
| |
| tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp); |
| |
| if (tmp != 0) |
| { |
| if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing, |
| (void *) (uintptr_t) src_type)) |
| return tmp; |
| |
| /* If this type has already been added from this dictionary, and is the |
| same kind and (if a struct or union) has the same number of members, |
| hand it straight back. */ |
| |
| if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind) |
| { |
| if (kind == CTF_K_STRUCT || kind == CTF_K_UNION |
| || kind == CTF_K_ENUM) |
| { |
| if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL) |
| if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info)) |
| return tmp; |
| } |
| else |
| return tmp; |
| } |
| } |
| |
| forward_kind = kind; |
| if (kind == CTF_K_FORWARD) |
| forward_kind = src_tp->ctt_type; |
| |
| /* If the source type has a name and is a root type (visible at the top-level |
| scope), lookup the name in the destination dictionary and verify that it is |
| of the same kind before we do anything else. */ |
| |
| if ((flag & CTF_ADD_ROOT) && name[0] != '\0' |
| && (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0) |
| { |
| dst_type = tmp; |
| dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type); |
| } |
| |
| /* If an identically named dst_type exists, fail with ECTF_CONFLICT |
| unless dst_type is a forward declaration and src_type is a struct, |
| union, or enum (i.e. the definition of the previous forward decl). |
| |
| We also allow addition in the opposite order (addition of a forward when a |
| struct, union, or enum already exists), which is a NOP and returns the |
| already-present struct, union, or enum. */ |
| |
| if (dst_type != CTF_ERR && dst_kind != kind) |
| { |
| if (kind == CTF_K_FORWARD |
| && (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT |
| || dst_kind == CTF_K_UNION)) |
| { |
| ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); |
| return dst_type; |
| } |
| |
| if (dst_kind != CTF_K_FORWARD |
| || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT |
| && kind != CTF_K_UNION)) |
| { |
| ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, |
| _("ctf_add_type: conflict for type %s: " |
| "kinds differ, new: %i; old (ID %lx): %i"), |
| name, kind, dst_type, dst_kind); |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| } |
| |
| /* We take special action for an integer, float, or slice since it is |
| described not only by its name but also its encoding. For integers, |
| bit-fields exploit this degeneracy. */ |
| |
| if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE) |
| { |
| if (ctf_type_encoding (src_fp, src_type, &src_en) != 0) |
| return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); |
| |
| if (dst_type != CTF_ERR) |
| { |
| ctf_dict_t *fp = dst_fp; |
| |
| if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL) |
| return CTF_ERR; |
| |
| if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0) |
| return CTF_ERR; /* errno set for us. */ |
| |
| if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT) |
| { |
| /* The type that we found in the hash is also root-visible. If |
| the two types match then use the existing one; otherwise, |
| declare a conflict. Note: slices are not certain to match |
| even if there is no conflict: we must check the contained type |
| too. */ |
| |
| if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0) |
| { |
| if (kind != CTF_K_SLICE) |
| { |
| ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); |
| return dst_type; |
| } |
| } |
| else |
| { |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| } |
| else |
| { |
| /* We found a non-root-visible type in the hash. If its encoding |
| is the same, we can reuse it, unless it is a slice. */ |
| |
| if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0) |
| { |
| if (kind != CTF_K_SLICE) |
| { |
| ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); |
| return dst_type; |
| } |
| } |
| } |
| } |
| } |
| |
| src.ctb_dict = src_fp; |
| src.ctb_type = src_type; |
| src.ctb_dtd = NULL; |
| |
| dst.ctb_dict = dst_fp; |
| dst.ctb_type = dst_type; |
| dst.ctb_dtd = NULL; |
| |
| /* Now perform kind-specific processing. If dst_type is CTF_ERR, then we add |
| a new type with the same properties as src_type to dst_fp. If dst_type is |
| not CTF_ERR, then we verify that dst_type has the same attributes as |
| src_type. We recurse for embedded references. Before we start, we note |
| that we are processing this type, to prevent infinite recursion: we do not |
| re-process any type that appears in this list. The list is emptied |
| wholesale at the end of processing everything in this recursive stack. */ |
| |
| if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing, |
| (void *) (uintptr_t) src_type, (void *) 1) < 0) |
| return ctf_set_typed_errno (dst_fp, ENOMEM); |
| |
| switch (kind) |
| { |
| case CTF_K_INTEGER: |
| /* If we found a match we will have either returned it or declared a |
| conflict. */ |
| dst_type = ctf_add_integer (dst_fp, flag, name, &src_en); |
| break; |
| |
| case CTF_K_FLOAT: |
| /* If we found a match we will have either returned it or declared a |
| conflict. */ |
| dst_type = ctf_add_float (dst_fp, flag, name, &src_en); |
| break; |
| |
| case CTF_K_SLICE: |
| /* We have checked for conflicting encodings: now try to add the |
| contained type. */ |
| src_type = ctf_type_reference (src_fp, src_type); |
| src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, |
| proc_tracking_fp); |
| |
| if (src_type == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en); |
| break; |
| |
| case CTF_K_POINTER: |
| case CTF_K_VOLATILE: |
| case CTF_K_CONST: |
| case CTF_K_RESTRICT: |
| src_type = ctf_type_reference (src_fp, src_type); |
| src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, |
| proc_tracking_fp); |
| |
| if (src_type == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind); |
| break; |
| |
| case CTF_K_ARRAY: |
| if (ctf_array_info (src_fp, src_type, &src_ar) != 0) |
| return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); |
| |
| src_ar.ctr_contents = |
| ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents, |
| proc_tracking_fp); |
| src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp, |
| src_ar.ctr_index, |
| proc_tracking_fp); |
| src_ar.ctr_nelems = src_ar.ctr_nelems; |
| |
| if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if (dst_type != CTF_ERR) |
| { |
| if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) |
| { |
| ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, |
| _("conflict for type %s against ID %lx: array info " |
| "differs, old %lx/%lx/%x; new: %lx/%lx/%x"), |
| name, dst_type, src_ar.ctr_contents, |
| src_ar.ctr_index, src_ar.ctr_nelems, |
| dst_ar.ctr_contents, dst_ar.ctr_index, |
| dst_ar.ctr_nelems); |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| } |
| else |
| dst_type = ctf_add_array (dst_fp, flag, &src_ar); |
| break; |
| |
| case CTF_K_FUNCTION: |
| ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp, |
| src_tp->ctt_type, |
| proc_tracking_fp); |
| ctc.ctc_argc = 0; |
| ctc.ctc_flags = 0; |
| |
| if (ctc.ctc_return == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL); |
| break; |
| |
| case CTF_K_STRUCT: |
| case CTF_K_UNION: |
| { |
| ctf_next_t *i = NULL; |
| ssize_t offset; |
| const char *membname; |
| ctf_id_t src_membtype; |
| |
| /* Technically to match a struct or union we need to check both |
| ways (src members vs. dst, dst members vs. src) but we make |
| this more optimal by only checking src vs. dst and comparing |
| the total size of the structure (which we must do anyway) |
| which covers the possibility of dst members not in src. |
| This optimization can be defeated for unions, but is so |
| pathological as to render it irrelevant for our purposes. */ |
| |
| if (dst_type != CTF_ERR && kind != CTF_K_FORWARD |
| && dst_kind != CTF_K_FORWARD) |
| { |
| if (ctf_type_size (src_fp, src_type) != |
| ctf_type_size (dst_fp, dst_type)) |
| { |
| ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, |
| _("conflict for type %s against ID %lx: union " |
| "size differs, old %li, new %li"), name, |
| dst_type, (long) ctf_type_size (src_fp, src_type), |
| (long) ctf_type_size (dst_fp, dst_type)); |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| |
| if (ctf_member_iter (src_fp, src_type, membcmp, &dst)) |
| { |
| ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, |
| _("conflict for type %s against ID %lx: members " |
| "differ, see above"), name, dst_type); |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| |
| break; |
| } |
| |
| dst_type = ctf_add_struct_sized (dst_fp, flag, name, |
| ctf_type_size (src_fp, src_type)); |
| if (dst_type == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* Pre-emptively add this struct to the type mapping so that |
| structures that refer to themselves work. */ |
| ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); |
| |
| while ((offset = ctf_member_next (src_fp, src_type, &i, &membname, |
| &src_membtype, 0)) >= 0) |
| { |
| ctf_dict_t *dst = dst_fp; |
| ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst); |
| |
| if (dst_membtype == 0) |
| { |
| dst_membtype = ctf_add_type_internal (dst_fp, src_fp, |
| src_membtype, |
| proc_tracking_fp); |
| if (dst_membtype == CTF_ERR) |
| { |
| if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE) |
| { |
| ctf_next_destroy (i); |
| break; |
| } |
| } |
| } |
| |
| if (ctf_add_member_offset (dst_fp, dst_type, membname, |
| dst_membtype, offset) < 0) |
| { |
| ctf_next_destroy (i); |
| break; |
| } |
| } |
| if (ctf_errno (src_fp) != ECTF_NEXT_END) |
| return CTF_ERR; /* errno is set for us. */ |
| break; |
| } |
| |
| case CTF_K_ENUM: |
| if (dst_type != CTF_ERR && kind != CTF_K_FORWARD |
| && dst_kind != CTF_K_FORWARD) |
| { |
| if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst) |
| || ctf_enum_iter (dst_fp, dst_type, enumcmp, &src)) |
| { |
| ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, |
| _("conflict for enum %s against ID %lx: members " |
| "differ, see above"), name, dst_type); |
| return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); |
| } |
| } |
| else |
| { |
| dst_type = ctf_add_enum (dst_fp, flag, name); |
| if ((dst.ctb_type = dst_type) == CTF_ERR |
| || ctf_enum_iter (src_fp, src_type, enumadd, &dst)) |
| return CTF_ERR; /* errno is set for us */ |
| } |
| break; |
| |
| case CTF_K_FORWARD: |
| if (dst_type == CTF_ERR) |
| dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind); |
| break; |
| |
| case CTF_K_TYPEDEF: |
| src_type = ctf_type_reference (src_fp, src_type); |
| src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, |
| proc_tracking_fp); |
| |
| if (src_type == CTF_ERR) |
| return CTF_ERR; /* errno is set for us. */ |
| |
| /* If dst_type is not CTF_ERR at this point, we should check if |
| ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with |
| ECTF_CONFLICT. However, this causes problems with bitness typedefs |
| that vary based on things like if 32-bit then pid_t is int otherwise |
| long. We therefore omit this check and assume that if the identically |
| named typedef already exists in dst_fp, it is correct or |
| equivalent. */ |
| |
| if (dst_type == CTF_ERR) |
| dst_type = ctf_add_typedef (dst_fp, flag, name, src_type); |
| |
| break; |
| |
| default: |
| return (ctf_set_typed_errno (dst_fp, ECTF_CORRUPT)); |
| } |
| |
| if (dst_type != CTF_ERR) |
| ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type); |
| return dst_type; |
| } |
| |
| ctf_id_t |
| ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type) |
| { |
| ctf_id_t id; |
| |
| if (!src_fp->ctf_add_processing) |
| src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer, |
| ctf_hash_eq_integer, |
| NULL, NULL); |
| |
| /* We store the hash on the source, because it contains only source type IDs: |
| but callers will invariably expect errors to appear on the dest. */ |
| if (!src_fp->ctf_add_processing) |
| return (ctf_set_typed_errno (dst_fp, ENOMEM)); |
| |
| id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp); |
| ctf_dynhash_empty (src_fp->ctf_add_processing); |
| |
| return id; |
| } |