|  | /* Target-dependent code for GNU/Linux, architecture independent. | 
|  |  | 
|  | Copyright (C) 2009-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "linux-tdep.h" | 
|  | #include "auxv.h" | 
|  | #include "target.h" | 
|  | #include "gdbthread.h" | 
|  | #include "gdbcore.h" | 
|  | #include "regcache.h" | 
|  | #include "regset.h" | 
|  | #include "elf/common.h" | 
|  | #include "elf-bfd.h"            /* for elfcore_write_* */ | 
|  | #include "inferior.h" | 
|  | #include "cli/cli-utils.h" | 
|  | #include "arch-utils.h" | 
|  | #include "gdbsupport/gdb_obstack.h" | 
|  | #include "observable.h" | 
|  | #include "objfiles.h" | 
|  | #include "infcall.h" | 
|  | #include "gdbcmd.h" | 
|  | #include "gdbsupport/gdb_regex.h" | 
|  | #include "gdbsupport/enum-flags.h" | 
|  | #include "gdbsupport/gdb_optional.h" | 
|  | #include "gcore.h" | 
|  | #include "gcore-elf.h" | 
|  | #include "solib-svr4.h" | 
|  | #include "memtag.h" | 
|  |  | 
|  | #include <ctype.h> | 
|  | #include <unordered_map> | 
|  |  | 
|  | /* This enum represents the values that the user can choose when | 
|  | informing the Linux kernel about which memory mappings will be | 
|  | dumped in a corefile.  They are described in the file | 
|  | Documentation/filesystems/proc.txt, inside the Linux kernel | 
|  | tree.  */ | 
|  |  | 
|  | enum filter_flag | 
|  | { | 
|  | COREFILTER_ANON_PRIVATE = 1 << 0, | 
|  | COREFILTER_ANON_SHARED = 1 << 1, | 
|  | COREFILTER_MAPPED_PRIVATE = 1 << 2, | 
|  | COREFILTER_MAPPED_SHARED = 1 << 3, | 
|  | COREFILTER_ELF_HEADERS = 1 << 4, | 
|  | COREFILTER_HUGETLB_PRIVATE = 1 << 5, | 
|  | COREFILTER_HUGETLB_SHARED = 1 << 6, | 
|  | }; | 
|  | DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags); | 
|  |  | 
|  | /* This struct is used to map flags found in the "VmFlags:" field (in | 
|  | the /proc/<PID>/smaps file).  */ | 
|  |  | 
|  | struct smaps_vmflags | 
|  | { | 
|  | /* Zero if this structure has not been initialized yet.  It | 
|  | probably means that the Linux kernel being used does not emit | 
|  | the "VmFlags:" field on "/proc/PID/smaps".  */ | 
|  |  | 
|  | unsigned int initialized_p : 1; | 
|  |  | 
|  | /* Memory mapped I/O area (VM_IO, "io").  */ | 
|  |  | 
|  | unsigned int io_page : 1; | 
|  |  | 
|  | /* Area uses huge TLB pages (VM_HUGETLB, "ht").  */ | 
|  |  | 
|  | unsigned int uses_huge_tlb : 1; | 
|  |  | 
|  | /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd").  */ | 
|  |  | 
|  | unsigned int exclude_coredump : 1; | 
|  |  | 
|  | /* Is this a MAP_SHARED mapping (VM_SHARED, "sh").  */ | 
|  |  | 
|  | unsigned int shared_mapping : 1; | 
|  |  | 
|  | /* Memory map has memory tagging enabled.  */ | 
|  |  | 
|  | unsigned int memory_tagging : 1; | 
|  | }; | 
|  |  | 
|  | /* Data structure that holds the information contained in the | 
|  | /proc/<pid>/smaps file.  */ | 
|  |  | 
|  | struct smaps_data | 
|  | { | 
|  | ULONGEST start_address; | 
|  | ULONGEST end_address; | 
|  | std::string filename; | 
|  | struct smaps_vmflags vmflags; | 
|  | bool read; | 
|  | bool write; | 
|  | bool exec; | 
|  | bool priv; | 
|  | bool has_anonymous; | 
|  | bool mapping_anon_p; | 
|  | bool mapping_file_p; | 
|  |  | 
|  | ULONGEST inode; | 
|  | ULONGEST offset; | 
|  | }; | 
|  |  | 
|  | /* Whether to take the /proc/PID/coredump_filter into account when | 
|  | generating a corefile.  */ | 
|  |  | 
|  | static bool use_coredump_filter = true; | 
|  |  | 
|  | /* Whether the value of smaps_vmflags->exclude_coredump should be | 
|  | ignored, including mappings marked with the VM_DONTDUMP flag in | 
|  | the dump.  */ | 
|  | static bool dump_excluded_mappings = false; | 
|  |  | 
|  | /* This enum represents the signals' numbers on a generic architecture | 
|  | running the Linux kernel.  The definition of "generic" comes from | 
|  | the file <include/uapi/asm-generic/signal.h>, from the Linux kernel | 
|  | tree, which is the "de facto" implementation of signal numbers to | 
|  | be used by new architecture ports. | 
|  |  | 
|  | For those architectures which have differences between the generic | 
|  | standard (e.g., Alpha), we define the different signals (and *only* | 
|  | those) in the specific target-dependent file (e.g., | 
|  | alpha-linux-tdep.c, for Alpha).  Please refer to the architecture's | 
|  | tdep file for more information. | 
|  |  | 
|  | ARM deserves a special mention here.  On the file | 
|  | <arch/arm/include/uapi/asm/signal.h>, it defines only one different | 
|  | (and ARM-only) signal, which is SIGSWI, with the same number as | 
|  | SIGRTMIN.  This signal is used only for a very specific target, | 
|  | called ArthurOS (from RISCOS).  Therefore, we do not handle it on | 
|  | the ARM-tdep file, and we can safely use the generic signal handler | 
|  | here for ARM targets. | 
|  |  | 
|  | As stated above, this enum is derived from | 
|  | <include/uapi/asm-generic/signal.h>, from the Linux kernel | 
|  | tree.  */ | 
|  |  | 
|  | enum | 
|  | { | 
|  | LINUX_SIGHUP = 1, | 
|  | LINUX_SIGINT = 2, | 
|  | LINUX_SIGQUIT = 3, | 
|  | LINUX_SIGILL = 4, | 
|  | LINUX_SIGTRAP = 5, | 
|  | LINUX_SIGABRT = 6, | 
|  | LINUX_SIGIOT = 6, | 
|  | LINUX_SIGBUS = 7, | 
|  | LINUX_SIGFPE = 8, | 
|  | LINUX_SIGKILL = 9, | 
|  | LINUX_SIGUSR1 = 10, | 
|  | LINUX_SIGSEGV = 11, | 
|  | LINUX_SIGUSR2 = 12, | 
|  | LINUX_SIGPIPE = 13, | 
|  | LINUX_SIGALRM = 14, | 
|  | LINUX_SIGTERM = 15, | 
|  | LINUX_SIGSTKFLT = 16, | 
|  | LINUX_SIGCHLD = 17, | 
|  | LINUX_SIGCONT = 18, | 
|  | LINUX_SIGSTOP = 19, | 
|  | LINUX_SIGTSTP = 20, | 
|  | LINUX_SIGTTIN = 21, | 
|  | LINUX_SIGTTOU = 22, | 
|  | LINUX_SIGURG = 23, | 
|  | LINUX_SIGXCPU = 24, | 
|  | LINUX_SIGXFSZ = 25, | 
|  | LINUX_SIGVTALRM = 26, | 
|  | LINUX_SIGPROF = 27, | 
|  | LINUX_SIGWINCH = 28, | 
|  | LINUX_SIGIO = 29, | 
|  | LINUX_SIGPOLL = LINUX_SIGIO, | 
|  | LINUX_SIGPWR = 30, | 
|  | LINUX_SIGSYS = 31, | 
|  | LINUX_SIGUNUSED = 31, | 
|  |  | 
|  | LINUX_SIGRTMIN = 32, | 
|  | LINUX_SIGRTMAX = 64, | 
|  | }; | 
|  |  | 
|  | struct linux_gdbarch_data | 
|  | { | 
|  | struct type *siginfo_type = nullptr; | 
|  | int num_disp_step_buffers = 0; | 
|  | }; | 
|  |  | 
|  | static const registry<gdbarch>::key<linux_gdbarch_data> | 
|  | linux_gdbarch_data_handle; | 
|  |  | 
|  | static struct linux_gdbarch_data * | 
|  | get_linux_gdbarch_data (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct linux_gdbarch_data *result = linux_gdbarch_data_handle.get (gdbarch); | 
|  | if (result == nullptr) | 
|  | result = linux_gdbarch_data_handle.emplace (gdbarch); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Linux-specific cached data.  This is used by GDB for caching | 
|  | purposes for each inferior.  This helps reduce the overhead of | 
|  | transfering data from a remote target to the local host.  */ | 
|  | struct linux_info | 
|  | { | 
|  | /* Cache of the inferior's vsyscall/vDSO mapping range.  Only valid | 
|  | if VSYSCALL_RANGE_P is positive.  This is cached because getting | 
|  | at this info requires an auxv lookup (which is itself cached), | 
|  | and looking through the inferior's mappings (which change | 
|  | throughout execution and therefore cannot be cached).  */ | 
|  | struct mem_range vsyscall_range {}; | 
|  |  | 
|  | /* Zero if we haven't tried looking up the vsyscall's range before | 
|  | yet.  Positive if we tried looking it up, and found it.  Negative | 
|  | if we tried looking it up but failed.  */ | 
|  | int vsyscall_range_p = 0; | 
|  |  | 
|  | /* Inferior's displaced step buffers.  */ | 
|  | gdb::optional<displaced_step_buffers> disp_step_bufs; | 
|  | }; | 
|  |  | 
|  | /* Per-inferior data key.  */ | 
|  | static const registry<inferior>::key<linux_info> linux_inferior_data; | 
|  |  | 
|  | /* Frees whatever allocated space there is to be freed and sets INF's | 
|  | linux cache data pointer to NULL.  */ | 
|  |  | 
|  | static void | 
|  | invalidate_linux_cache_inf (struct inferior *inf) | 
|  | { | 
|  | linux_inferior_data.clear (inf); | 
|  | } | 
|  |  | 
|  | /* Fetch the linux cache info for INF.  This function always returns a | 
|  | valid INFO pointer.  */ | 
|  |  | 
|  | static struct linux_info * | 
|  | get_linux_inferior_data (inferior *inf) | 
|  | { | 
|  | linux_info *info = linux_inferior_data.get (inf); | 
|  |  | 
|  | if (info == nullptr) | 
|  | info = linux_inferior_data.emplace (inf); | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | struct type * | 
|  | linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch, | 
|  | linux_siginfo_extra_fields extra_fields) | 
|  | { | 
|  | struct linux_gdbarch_data *linux_gdbarch_data; | 
|  | struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type; | 
|  | struct type *uid_type, *pid_type; | 
|  | struct type *sigval_type, *clock_type; | 
|  | struct type *siginfo_type, *sifields_type; | 
|  | struct type *type; | 
|  |  | 
|  | linux_gdbarch_data = get_linux_gdbarch_data (gdbarch); | 
|  | if (linux_gdbarch_data->siginfo_type != NULL) | 
|  | return linux_gdbarch_data->siginfo_type; | 
|  |  | 
|  | int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | 
|  | 0, "int"); | 
|  | uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch), | 
|  | 1, "unsigned int"); | 
|  | long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | 
|  | 0, "long"); | 
|  | short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), | 
|  | 0, "short"); | 
|  | void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void); | 
|  |  | 
|  | /* sival_t */ | 
|  | sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); | 
|  | sigval_type->set_name (xstrdup ("sigval_t")); | 
|  | append_composite_type_field (sigval_type, "sival_int", int_type); | 
|  | append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type); | 
|  |  | 
|  | /* __pid_t */ | 
|  | pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, | 
|  | int_type->length () * TARGET_CHAR_BIT, "__pid_t"); | 
|  | pid_type->set_target_type (int_type); | 
|  | pid_type->set_target_is_stub (true); | 
|  |  | 
|  | /* __uid_t */ | 
|  | uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, | 
|  | uint_type->length () * TARGET_CHAR_BIT, "__uid_t"); | 
|  | uid_type->set_target_type (uint_type); | 
|  | uid_type->set_target_is_stub (true); | 
|  |  | 
|  | /* __clock_t */ | 
|  | clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF, | 
|  | long_type->length () * TARGET_CHAR_BIT, | 
|  | "__clock_t"); | 
|  | clock_type->set_target_type (long_type); | 
|  | clock_type->set_target_is_stub (true); | 
|  |  | 
|  | /* _sifields */ | 
|  | sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION); | 
|  |  | 
|  | { | 
|  | const int si_max_size = 128; | 
|  | int si_pad_size; | 
|  | int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT; | 
|  |  | 
|  | /* _pad */ | 
|  | if (gdbarch_ptr_bit (gdbarch) == 64) | 
|  | si_pad_size = (si_max_size / size_of_int) - 4; | 
|  | else | 
|  | si_pad_size = (si_max_size / size_of_int) - 3; | 
|  | append_composite_type_field (sifields_type, "_pad", | 
|  | init_vector_type (int_type, si_pad_size)); | 
|  | } | 
|  |  | 
|  | /* _kill */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_pid", pid_type); | 
|  | append_composite_type_field (type, "si_uid", uid_type); | 
|  | append_composite_type_field (sifields_type, "_kill", type); | 
|  |  | 
|  | /* _timer */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_tid", int_type); | 
|  | append_composite_type_field (type, "si_overrun", int_type); | 
|  | append_composite_type_field (type, "si_sigval", sigval_type); | 
|  | append_composite_type_field (sifields_type, "_timer", type); | 
|  |  | 
|  | /* _rt */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_pid", pid_type); | 
|  | append_composite_type_field (type, "si_uid", uid_type); | 
|  | append_composite_type_field (type, "si_sigval", sigval_type); | 
|  | append_composite_type_field (sifields_type, "_rt", type); | 
|  |  | 
|  | /* _sigchld */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_pid", pid_type); | 
|  | append_composite_type_field (type, "si_uid", uid_type); | 
|  | append_composite_type_field (type, "si_status", int_type); | 
|  | append_composite_type_field (type, "si_utime", clock_type); | 
|  | append_composite_type_field (type, "si_stime", clock_type); | 
|  | append_composite_type_field (sifields_type, "_sigchld", type); | 
|  |  | 
|  | /* _sigfault */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_addr", void_ptr_type); | 
|  |  | 
|  | /* Additional bound fields for _sigfault in case they were requested.  */ | 
|  | if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0) | 
|  | { | 
|  | struct type *sigfault_bnd_fields; | 
|  |  | 
|  | append_composite_type_field (type, "_addr_lsb", short_type); | 
|  | sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type); | 
|  | append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type); | 
|  | append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields); | 
|  | } | 
|  | append_composite_type_field (sifields_type, "_sigfault", type); | 
|  |  | 
|  | /* _sigpoll */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "si_band", long_type); | 
|  | append_composite_type_field (type, "si_fd", int_type); | 
|  | append_composite_type_field (sifields_type, "_sigpoll", type); | 
|  |  | 
|  | /* _sigsys */ | 
|  | type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | append_composite_type_field (type, "_call_addr", void_ptr_type); | 
|  | append_composite_type_field (type, "_syscall", int_type); | 
|  | append_composite_type_field (type, "_arch", uint_type); | 
|  | append_composite_type_field (sifields_type, "_sigsys", type); | 
|  |  | 
|  | /* struct siginfo */ | 
|  | siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT); | 
|  | siginfo_type->set_name (xstrdup ("siginfo")); | 
|  | append_composite_type_field (siginfo_type, "si_signo", int_type); | 
|  | append_composite_type_field (siginfo_type, "si_errno", int_type); | 
|  | append_composite_type_field (siginfo_type, "si_code", int_type); | 
|  | append_composite_type_field_aligned (siginfo_type, | 
|  | "_sifields", sifields_type, | 
|  | long_type->length ()); | 
|  |  | 
|  | linux_gdbarch_data->siginfo_type = siginfo_type; | 
|  |  | 
|  | return siginfo_type; | 
|  | } | 
|  |  | 
|  | /* This function is suitable for architectures that don't | 
|  | extend/override the standard siginfo structure.  */ | 
|  |  | 
|  | static struct type * | 
|  | linux_get_siginfo_type (struct gdbarch *gdbarch) | 
|  | { | 
|  | return linux_get_siginfo_type_with_fields (gdbarch, 0); | 
|  | } | 
|  |  | 
|  | /* Return true if the target is running on uClinux instead of normal | 
|  | Linux kernel.  */ | 
|  |  | 
|  | int | 
|  | linux_is_uclinux (void) | 
|  | { | 
|  | CORE_ADDR dummy; | 
|  |  | 
|  | return (target_auxv_search (AT_NULL, &dummy) > 0 | 
|  | && target_auxv_search (AT_PAGESZ, &dummy) == 0); | 
|  | } | 
|  |  | 
|  | static int | 
|  | linux_has_shared_address_space (struct gdbarch *gdbarch) | 
|  | { | 
|  | return linux_is_uclinux (); | 
|  | } | 
|  |  | 
|  | /* This is how we want PTIDs from core files to be printed.  */ | 
|  |  | 
|  | static std::string | 
|  | linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid) | 
|  | { | 
|  | if (ptid.lwp () != 0) | 
|  | return string_printf ("LWP %ld", ptid.lwp ()); | 
|  |  | 
|  | return normal_pid_to_str (ptid); | 
|  | } | 
|  |  | 
|  | /* Data from one mapping from /proc/PID/maps.  */ | 
|  |  | 
|  | struct mapping | 
|  | { | 
|  | ULONGEST addr; | 
|  | ULONGEST endaddr; | 
|  | gdb::string_view permissions; | 
|  | ULONGEST offset; | 
|  | gdb::string_view device; | 
|  | ULONGEST inode; | 
|  |  | 
|  | /* This field is guaranteed to be NULL-terminated, hence it is not a | 
|  | gdb::string_view.  */ | 
|  | const char *filename; | 
|  | }; | 
|  |  | 
|  | /* Service function for corefiles and info proc.  */ | 
|  |  | 
|  | static mapping | 
|  | read_mapping (const char *line) | 
|  | { | 
|  | struct mapping mapping; | 
|  | const char *p = line; | 
|  |  | 
|  | mapping.addr = strtoulst (p, &p, 16); | 
|  | if (*p == '-') | 
|  | p++; | 
|  | mapping.endaddr = strtoulst (p, &p, 16); | 
|  |  | 
|  | p = skip_spaces (p); | 
|  | const char *permissions_start = p; | 
|  | while (*p && !isspace (*p)) | 
|  | p++; | 
|  | mapping.permissions = {permissions_start, (size_t) (p - permissions_start)}; | 
|  |  | 
|  | mapping.offset = strtoulst (p, &p, 16); | 
|  |  | 
|  | p = skip_spaces (p); | 
|  | const char *device_start = p; | 
|  | while (*p && !isspace (*p)) | 
|  | p++; | 
|  | mapping.device = {device_start, (size_t) (p - device_start)}; | 
|  |  | 
|  | mapping.inode = strtoulst (p, &p, 10); | 
|  |  | 
|  | p = skip_spaces (p); | 
|  | mapping.filename = p; | 
|  |  | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | /* Helper function to decode the "VmFlags" field in /proc/PID/smaps. | 
|  |  | 
|  | This function was based on the documentation found on | 
|  | <Documentation/filesystems/proc.txt>, on the Linux kernel. | 
|  |  | 
|  | Linux kernels before commit | 
|  | 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this | 
|  | field on smaps.  */ | 
|  |  | 
|  | static void | 
|  | decode_vmflags (char *p, struct smaps_vmflags *v) | 
|  | { | 
|  | char *saveptr = NULL; | 
|  | const char *s; | 
|  |  | 
|  | v->initialized_p = 1; | 
|  | p = skip_to_space (p); | 
|  | p = skip_spaces (p); | 
|  |  | 
|  | for (s = strtok_r (p, " ", &saveptr); | 
|  | s != NULL; | 
|  | s = strtok_r (NULL, " ", &saveptr)) | 
|  | { | 
|  | if (strcmp (s, "io") == 0) | 
|  | v->io_page = 1; | 
|  | else if (strcmp (s, "ht") == 0) | 
|  | v->uses_huge_tlb = 1; | 
|  | else if (strcmp (s, "dd") == 0) | 
|  | v->exclude_coredump = 1; | 
|  | else if (strcmp (s, "sh") == 0) | 
|  | v->shared_mapping = 1; | 
|  | else if (strcmp (s, "mt") == 0) | 
|  | v->memory_tagging = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Regexes used by mapping_is_anonymous_p.  Put in a structure because | 
|  | they're initialized lazily.  */ | 
|  |  | 
|  | struct mapping_regexes | 
|  | { | 
|  | /* Matches "/dev/zero" filenames (with or without the "(deleted)" | 
|  | string in the end).  We know for sure, based on the Linux kernel | 
|  | code, that memory mappings whose associated filename is | 
|  | "/dev/zero" are guaranteed to be MAP_ANONYMOUS.  */ | 
|  | compiled_regex dev_zero | 
|  | {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB, | 
|  | _("Could not compile regex to match /dev/zero filename")}; | 
|  |  | 
|  | /* Matches "/SYSV%08x" filenames (with or without the "(deleted)" | 
|  | string in the end).  These filenames refer to shared memory | 
|  | (shmem), and memory mappings associated with them are | 
|  | MAP_ANONYMOUS as well.  */ | 
|  | compiled_regex shmem_file | 
|  | {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB, | 
|  | _("Could not compile regex to match shmem filenames")}; | 
|  |  | 
|  | /* A heuristic we use to try to mimic the Linux kernel's 'n_link == | 
|  | 0' code, which is responsible to decide if it is dealing with a | 
|  | 'MAP_SHARED | MAP_ANONYMOUS' mapping.  In other words, if | 
|  | FILE_DELETED matches, it does not necessarily mean that we are | 
|  | dealing with an anonymous shared mapping.  However, there is no | 
|  | easy way to detect this currently, so this is the best | 
|  | approximation we have. | 
|  |  | 
|  | As a result, GDB will dump readonly pages of deleted executables | 
|  | when using the default value of coredump_filter (0x33), while the | 
|  | Linux kernel will not dump those pages.  But we can live with | 
|  | that.  */ | 
|  | compiled_regex file_deleted | 
|  | {" (deleted)$", REG_NOSUB, | 
|  | _("Could not compile regex to match '<file> (deleted)'")}; | 
|  | }; | 
|  |  | 
|  | /* Return 1 if the memory mapping is anonymous, 0 otherwise. | 
|  |  | 
|  | FILENAME is the name of the file present in the first line of the | 
|  | memory mapping, in the "/proc/PID/smaps" output.  For example, if | 
|  | the first line is: | 
|  |  | 
|  | 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770   /path/to/file | 
|  |  | 
|  | Then FILENAME will be "/path/to/file".  */ | 
|  |  | 
|  | static int | 
|  | mapping_is_anonymous_p (const char *filename) | 
|  | { | 
|  | static gdb::optional<mapping_regexes> regexes; | 
|  | static int init_regex_p = 0; | 
|  |  | 
|  | if (!init_regex_p) | 
|  | { | 
|  | /* Let's be pessimistic and assume there will be an error while | 
|  | compiling the regex'es.  */ | 
|  | init_regex_p = -1; | 
|  |  | 
|  | regexes.emplace (); | 
|  |  | 
|  | /* If we reached this point, then everything succeeded.  */ | 
|  | init_regex_p = 1; | 
|  | } | 
|  |  | 
|  | if (init_regex_p == -1) | 
|  | { | 
|  | const char deleted[] = " (deleted)"; | 
|  | size_t del_len = sizeof (deleted) - 1; | 
|  | size_t filename_len = strlen (filename); | 
|  |  | 
|  | /* There was an error while compiling the regex'es above.  In | 
|  | order to try to give some reliable information to the caller, | 
|  | we just try to find the string " (deleted)" in the filename. | 
|  | If we managed to find it, then we assume the mapping is | 
|  | anonymous.  */ | 
|  | return (filename_len >= del_len | 
|  | && strcmp (filename + filename_len - del_len, deleted) == 0); | 
|  | } | 
|  |  | 
|  | if (*filename == '\0' | 
|  | || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0 | 
|  | || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0 | 
|  | || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V, | 
|  | MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not | 
|  | be dumped, or greater than 0 if it should. | 
|  |  | 
|  | In a nutshell, this is the logic that we follow in order to decide | 
|  | if a mapping should be dumped or not. | 
|  |  | 
|  | - If the mapping is associated to a file whose name ends with | 
|  | " (deleted)", or if the file is "/dev/zero", or if it is | 
|  | "/SYSV%08x" (shared memory), or if there is no file associated | 
|  | with it, or if the AnonHugePages: or the Anonymous: fields in the | 
|  | /proc/PID/smaps have contents, then GDB considers this mapping to | 
|  | be anonymous.  Otherwise, GDB considers this mapping to be a | 
|  | file-backed mapping (because there will be a file associated with | 
|  | it). | 
|  |  | 
|  | It is worth mentioning that, from all those checks described | 
|  | above, the most fragile is the one to see if the file name ends | 
|  | with " (deleted)".  This does not necessarily mean that the | 
|  | mapping is anonymous, because the deleted file associated with | 
|  | the mapping may have been a hard link to another file, for | 
|  | example.  The Linux kernel checks to see if "i_nlink == 0", but | 
|  | GDB cannot easily (and normally) do this check (iff running as | 
|  | root, it could find the mapping in /proc/PID/map_files/ and | 
|  | determine whether there still are other hard links to the | 
|  | inode/file).  Therefore, we made a compromise here, and we assume | 
|  | that if the file name ends with " (deleted)", then the mapping is | 
|  | indeed anonymous.  FWIW, this is something the Linux kernel could | 
|  | do better: expose this information in a more direct way. | 
|  |  | 
|  | - If we see the flag "sh" in the "VmFlags:" field (in | 
|  | /proc/PID/smaps), then certainly the memory mapping is shared | 
|  | (VM_SHARED).  If we have access to the VmFlags, and we don't see | 
|  | the "sh" there, then certainly the mapping is private.  However, | 
|  | Linux kernels before commit | 
|  | 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the | 
|  | "VmFlags:" field; in that case, we use another heuristic: if we | 
|  | see 'p' in the permission flags, then we assume that the mapping | 
|  | is private, even though the presence of the 's' flag there would | 
|  | mean VM_MAYSHARE, which means the mapping could still be private. | 
|  | This should work OK enough, however. | 
|  |  | 
|  | - Even if, at the end, we decided that we should not dump the | 
|  | mapping, we still have to check if it is something like an ELF | 
|  | header (of a DSO or an executable, for example).  If it is, and | 
|  | if the user is interested in dump it, then we should dump it.  */ | 
|  |  | 
|  | static int | 
|  | dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v, | 
|  | int maybe_private_p, int mapping_anon_p, int mapping_file_p, | 
|  | const char *filename, ULONGEST addr, ULONGEST offset) | 
|  | { | 
|  | /* Initially, we trust in what we received from our caller.  This | 
|  | value may not be very precise (i.e., it was probably gathered | 
|  | from the permission line in the /proc/PID/smaps list, which | 
|  | actually refers to VM_MAYSHARE, and not VM_SHARED), but it is | 
|  | what we have until we take a look at the "VmFlags:" field | 
|  | (assuming that the version of the Linux kernel being used | 
|  | supports it, of course).  */ | 
|  | int private_p = maybe_private_p; | 
|  | int dump_p; | 
|  |  | 
|  | /* We always dump vDSO and vsyscall mappings, because it's likely that | 
|  | there'll be no file to read the contents from at core load time. | 
|  | The kernel does the same.  */ | 
|  | if (strcmp ("[vdso]", filename) == 0 | 
|  | || strcmp ("[vsyscall]", filename) == 0) | 
|  | return 1; | 
|  |  | 
|  | if (v->initialized_p) | 
|  | { | 
|  | /* We never dump I/O mappings.  */ | 
|  | if (v->io_page) | 
|  | return 0; | 
|  |  | 
|  | /* Check if we should exclude this mapping.  */ | 
|  | if (!dump_excluded_mappings && v->exclude_coredump) | 
|  | return 0; | 
|  |  | 
|  | /* Update our notion of whether this mapping is shared or | 
|  | private based on a trustworthy value.  */ | 
|  | private_p = !v->shared_mapping; | 
|  |  | 
|  | /* HugeTLB checking.  */ | 
|  | if (v->uses_huge_tlb) | 
|  | { | 
|  | if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE)) | 
|  | || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED))) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (private_p) | 
|  | { | 
|  | if (mapping_anon_p && mapping_file_p) | 
|  | { | 
|  | /* This is a special situation.  It can happen when we see a | 
|  | mapping that is file-backed, but that contains anonymous | 
|  | pages.  */ | 
|  | dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0 | 
|  | || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0); | 
|  | } | 
|  | else if (mapping_anon_p) | 
|  | dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0; | 
|  | else | 
|  | dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (mapping_anon_p && mapping_file_p) | 
|  | { | 
|  | /* This is a special situation.  It can happen when we see a | 
|  | mapping that is file-backed, but that contains anonymous | 
|  | pages.  */ | 
|  | dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0 | 
|  | || (filterflags & COREFILTER_MAPPED_SHARED) != 0); | 
|  | } | 
|  | else if (mapping_anon_p) | 
|  | dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0; | 
|  | else | 
|  | dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0; | 
|  | } | 
|  |  | 
|  | /* Even if we decided that we shouldn't dump this mapping, we still | 
|  | have to check whether (a) the user wants us to dump mappings | 
|  | containing an ELF header, and (b) the mapping in question | 
|  | contains an ELF header.  If (a) and (b) are true, then we should | 
|  | dump this mapping. | 
|  |  | 
|  | A mapping contains an ELF header if it is a private mapping, its | 
|  | offset is zero, and its first word is ELFMAG.  */ | 
|  | if (!dump_p && private_p && offset == 0 | 
|  | && (filterflags & COREFILTER_ELF_HEADERS) != 0) | 
|  | { | 
|  | /* Useful define specifying the size of the ELF magical | 
|  | header.  */ | 
|  | #ifndef SELFMAG | 
|  | #define SELFMAG 4 | 
|  | #endif | 
|  |  | 
|  | /* Let's check if we have an ELF header.  */ | 
|  | gdb_byte h[SELFMAG]; | 
|  | if (target_read_memory (addr, h, SELFMAG) == 0) | 
|  | { | 
|  | /* The EI_MAG* and ELFMAG* constants come from | 
|  | <elf/common.h>.  */ | 
|  | if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1 | 
|  | && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3) | 
|  | { | 
|  | /* This mapping contains an ELF header, so we | 
|  | should dump it.  */ | 
|  | dump_p = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return dump_p; | 
|  | } | 
|  |  | 
|  | /* As above, but return true only when we should dump the NT_FILE | 
|  | entry.  */ | 
|  |  | 
|  | static int | 
|  | dump_note_entry_p (filter_flags filterflags, const struct smaps_vmflags *v, | 
|  | int maybe_private_p, int mapping_anon_p, int mapping_file_p, | 
|  | const char *filename, ULONGEST addr, ULONGEST offset) | 
|  | { | 
|  | /* vDSO and vsyscall mappings will end up in the core file.  Don't | 
|  | put them in the NT_FILE note.  */ | 
|  | if (strcmp ("[vdso]", filename) == 0 | 
|  | || strcmp ("[vsyscall]", filename) == 0) | 
|  | return 0; | 
|  |  | 
|  | /* Otherwise, any other file-based mapping should be placed in the | 
|  | note.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Implement the "info proc" command.  */ | 
|  |  | 
|  | static void | 
|  | linux_info_proc (struct gdbarch *gdbarch, const char *args, | 
|  | enum info_proc_what what) | 
|  | { | 
|  | /* A long is used for pid instead of an int to avoid a loss of precision | 
|  | compiler warning from the output of strtoul.  */ | 
|  | long pid; | 
|  | int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL); | 
|  | int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL); | 
|  | int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); | 
|  | int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); | 
|  | int status_f = (what == IP_STATUS || what == IP_ALL); | 
|  | int stat_f = (what == IP_STAT || what == IP_ALL); | 
|  | char filename[100]; | 
|  | fileio_error target_errno; | 
|  |  | 
|  | if (args && isdigit (args[0])) | 
|  | { | 
|  | char *tem; | 
|  |  | 
|  | pid = strtoul (args, &tem, 10); | 
|  | args = tem; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!target_has_execution ()) | 
|  | error (_("No current process: you must name one.")); | 
|  | if (current_inferior ()->fake_pid_p) | 
|  | error (_("Can't determine the current process's PID: you must name one.")); | 
|  |  | 
|  | pid = current_inferior ()->pid; | 
|  | } | 
|  |  | 
|  | args = skip_spaces (args); | 
|  | if (args && args[0]) | 
|  | error (_("Too many parameters: %s"), args); | 
|  |  | 
|  | gdb_printf (_("process %ld\n"), pid); | 
|  | if (cmdline_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid); | 
|  | gdb_byte *buffer; | 
|  | ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer); | 
|  |  | 
|  | if (len > 0) | 
|  | { | 
|  | gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer); | 
|  | ssize_t pos; | 
|  |  | 
|  | for (pos = 0; pos < len - 1; pos++) | 
|  | { | 
|  | if (buffer[pos] == '\0') | 
|  | buffer[pos] = ' '; | 
|  | } | 
|  | buffer[len - 1] = '\0'; | 
|  | gdb_printf ("cmdline = '%s'\n", buffer); | 
|  | } | 
|  | else | 
|  | warning (_("unable to open /proc file '%s'"), filename); | 
|  | } | 
|  | if (cwd_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid); | 
|  | gdb::optional<std::string> contents | 
|  | = target_fileio_readlink (NULL, filename, &target_errno); | 
|  | if (contents.has_value ()) | 
|  | gdb_printf ("cwd = '%s'\n", contents->c_str ()); | 
|  | else | 
|  | warning (_("unable to read link '%s'"), filename); | 
|  | } | 
|  | if (exe_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid); | 
|  | gdb::optional<std::string> contents | 
|  | = target_fileio_readlink (NULL, filename, &target_errno); | 
|  | if (contents.has_value ()) | 
|  | gdb_printf ("exe = '%s'\n", contents->c_str ()); | 
|  | else | 
|  | warning (_("unable to read link '%s'"), filename); | 
|  | } | 
|  | if (mappings_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid); | 
|  | gdb::unique_xmalloc_ptr<char> map | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | if (map != NULL) | 
|  | { | 
|  | char *line; | 
|  |  | 
|  | gdb_printf (_("Mapped address spaces:\n\n")); | 
|  | if (gdbarch_addr_bit (gdbarch) == 32) | 
|  | { | 
|  | gdb_printf ("\t%10s %10s %10s %10s  %s %s\n", | 
|  | "Start Addr", "  End Addr", "      Size", | 
|  | "    Offset", "Perms  ", "objfile"); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf ("  %18s %18s %10s %10s  %s %s\n", | 
|  | "Start Addr", "  End Addr", "      Size", | 
|  | "    Offset", "Perms ", "objfile"); | 
|  | } | 
|  |  | 
|  | char *saveptr; | 
|  | for (line = strtok_r (map.get (), "\n", &saveptr); | 
|  | line; | 
|  | line = strtok_r (NULL, "\n", &saveptr)) | 
|  | { | 
|  | struct mapping m = read_mapping (line); | 
|  |  | 
|  | if (gdbarch_addr_bit (gdbarch) == 32) | 
|  | { | 
|  | gdb_printf ("\t%10s %10s %10s %10s  %-5.*s  %s\n", | 
|  | paddress (gdbarch, m.addr), | 
|  | paddress (gdbarch, m.endaddr), | 
|  | hex_string (m.endaddr - m.addr), | 
|  | hex_string (m.offset), | 
|  | (int) m.permissions.size (), | 
|  | m.permissions.data (), | 
|  | m.filename); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf ("  %18s %18s %10s %10s  %-5.*s  %s\n", | 
|  | paddress (gdbarch, m.addr), | 
|  | paddress (gdbarch, m.endaddr), | 
|  | hex_string (m.endaddr - m.addr), | 
|  | hex_string (m.offset), | 
|  | (int) m.permissions.size (), | 
|  | m.permissions.data (), | 
|  | m.filename); | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | warning (_("unable to open /proc file '%s'"), filename); | 
|  | } | 
|  | if (status_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid); | 
|  | gdb::unique_xmalloc_ptr<char> status | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | if (status) | 
|  | gdb_puts (status.get ()); | 
|  | else | 
|  | warning (_("unable to open /proc file '%s'"), filename); | 
|  | } | 
|  | if (stat_f) | 
|  | { | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid); | 
|  | gdb::unique_xmalloc_ptr<char> statstr | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | if (statstr) | 
|  | { | 
|  | const char *p = statstr.get (); | 
|  |  | 
|  | gdb_printf (_("Process: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  |  | 
|  | p = skip_spaces (p); | 
|  | if (*p == '(') | 
|  | { | 
|  | /* ps command also relies on no trailing fields | 
|  | ever contain ')'.  */ | 
|  | const char *ep = strrchr (p, ')'); | 
|  | if (ep != NULL) | 
|  | { | 
|  | gdb_printf ("Exec file: %.*s\n", | 
|  | (int) (ep - p - 1), p + 1); | 
|  | p = ep + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | p = skip_spaces (p); | 
|  | if (*p) | 
|  | gdb_printf (_("State: %c\n"), *p++); | 
|  |  | 
|  | if (*p) | 
|  | gdb_printf (_("Parent process: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Process group: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Session id: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("TTY: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("TTY owner process group: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  |  | 
|  | if (*p) | 
|  | gdb_printf (_("Flags: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Minor faults (no memory page): %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Minor faults, children: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Major faults (memory page faults): %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Major faults, children: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("utime: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("stime: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("utime, children: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("stime, children: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("jiffies remaining in current " | 
|  | "time slice: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("'nice' value: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("jiffies until next timeout: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("jiffies until next SIGALRM: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("start time (jiffies since " | 
|  | "system boot): %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Virtual memory size: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Resident set size: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("rlim: %s\n"), | 
|  | pulongest (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Start of text: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("End of text: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Start of stack: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | #if 0	/* Don't know how architecture-dependent the rest is... | 
|  | Anyway the signal bitmap info is available from "status".  */ | 
|  | if (*p) | 
|  | gdb_printf (_("Kernel stack pointer: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Kernel instr pointer: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Pending signals bitmap: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Blocked signals bitmap: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Ignored signals bitmap: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("Catched signals bitmap: %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | if (*p) | 
|  | gdb_printf (_("wchan (system call): %s\n"), | 
|  | hex_string (strtoulst (p, &p, 10))); | 
|  | #endif | 
|  | } | 
|  | else | 
|  | warning (_("unable to open /proc file '%s'"), filename); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_read_core_file_mappings', as defined in | 
|  | gdbarch.h. | 
|  |  | 
|  | This function reads the NT_FILE note (which BFD turns into the | 
|  | section ".note.linuxcore.file").  The format of this note / section | 
|  | is described as follows in the Linux kernel sources in | 
|  | fs/binfmt_elf.c: | 
|  |  | 
|  | long count     -- how many files are mapped | 
|  | long page_size -- units for file_ofs | 
|  | array of [COUNT] elements of | 
|  | long start | 
|  | long end | 
|  | long file_ofs | 
|  | followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL... | 
|  |  | 
|  | CBFD is the BFD of the core file. | 
|  |  | 
|  | PRE_LOOP_CB is the callback function to invoke prior to starting | 
|  | the loop which processes individual entries.  This callback will | 
|  | only be executed after the note has been examined in enough | 
|  | detail to verify that it's not malformed in some way. | 
|  |  | 
|  | LOOP_CB is the callback function that will be executed once | 
|  | for each mapping.  */ | 
|  |  | 
|  | static void | 
|  | linux_read_core_file_mappings | 
|  | (struct gdbarch *gdbarch, | 
|  | struct bfd *cbfd, | 
|  | read_core_file_mappings_pre_loop_ftype pre_loop_cb, | 
|  | read_core_file_mappings_loop_ftype  loop_cb) | 
|  | { | 
|  | /* Ensure that ULONGEST is big enough for reading 64-bit core files.  */ | 
|  | gdb_static_assert (sizeof (ULONGEST) >= 8); | 
|  |  | 
|  | /* It's not required that the NT_FILE note exists, so return silently | 
|  | if it's not found.  Beyond this point though, we'll complain | 
|  | if problems are found.  */ | 
|  | asection *section = bfd_get_section_by_name (cbfd, ".note.linuxcore.file"); | 
|  | if (section == nullptr) | 
|  | return; | 
|  |  | 
|  | unsigned int addr_size_bits = gdbarch_addr_bit (gdbarch); | 
|  | unsigned int addr_size = addr_size_bits / 8; | 
|  | size_t note_size = bfd_section_size (section); | 
|  |  | 
|  | if (note_size < 2 * addr_size) | 
|  | { | 
|  | warning (_("malformed core note - too short for header")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb::def_vector<gdb_byte> contents (note_size); | 
|  | if (!bfd_get_section_contents (core_bfd, section, contents.data (), | 
|  | 0, note_size)) | 
|  | { | 
|  | warning (_("could not get core note contents")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb_byte *descdata = contents.data (); | 
|  | char *descend = (char *) descdata + note_size; | 
|  |  | 
|  | if (descdata[note_size - 1] != '\0') | 
|  | { | 
|  | warning (_("malformed note - does not end with \\0")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ULONGEST count = bfd_get (addr_size_bits, core_bfd, descdata); | 
|  | descdata += addr_size; | 
|  |  | 
|  | ULONGEST page_size = bfd_get (addr_size_bits, core_bfd, descdata); | 
|  | descdata += addr_size; | 
|  |  | 
|  | if (note_size < 2 * addr_size + count * 3 * addr_size) | 
|  | { | 
|  | warning (_("malformed note - too short for supplied file count")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | char *filenames = (char *) descdata + count * 3 * addr_size; | 
|  |  | 
|  | /* Make sure that the correct number of filenames exist.  Complain | 
|  | if there aren't enough or are too many.  */ | 
|  | char *f = filenames; | 
|  | for (int i = 0; i < count; i++) | 
|  | { | 
|  | if (f >= descend) | 
|  | { | 
|  | warning (_("malformed note - filename area is too small")); | 
|  | return; | 
|  | } | 
|  | f += strnlen (f, descend - f) + 1; | 
|  | } | 
|  | /* Complain, but don't return early if the filename area is too big.  */ | 
|  | if (f != descend) | 
|  | warning (_("malformed note - filename area is too big")); | 
|  |  | 
|  | const bfd_build_id *orig_build_id = cbfd->build_id; | 
|  | std::unordered_map<ULONGEST, const bfd_build_id *> vma_map; | 
|  |  | 
|  | /* Search for solib build-ids in the core file.  Each time one is found, | 
|  | map the start vma of the corresponding elf header to the build-id.  */ | 
|  | for (bfd_section *sec = cbfd->sections; sec != nullptr; sec = sec->next) | 
|  | { | 
|  | cbfd->build_id = nullptr; | 
|  |  | 
|  | if (sec->flags & SEC_LOAD | 
|  | && (get_elf_backend_data (cbfd)->elf_backend_core_find_build_id | 
|  | (cbfd, (bfd_vma) sec->filepos))) | 
|  | vma_map[sec->vma] = cbfd->build_id; | 
|  | } | 
|  |  | 
|  | cbfd->build_id = orig_build_id; | 
|  | pre_loop_cb (count); | 
|  |  | 
|  | for (int i = 0; i < count; i++) | 
|  | { | 
|  | ULONGEST start = bfd_get (addr_size_bits, core_bfd, descdata); | 
|  | descdata += addr_size; | 
|  | ULONGEST end = bfd_get (addr_size_bits, core_bfd, descdata); | 
|  | descdata += addr_size; | 
|  | ULONGEST file_ofs | 
|  | = bfd_get (addr_size_bits, core_bfd, descdata) * page_size; | 
|  | descdata += addr_size; | 
|  | char * filename = filenames; | 
|  | filenames += strlen ((char *) filenames) + 1; | 
|  | const bfd_build_id *build_id = nullptr; | 
|  | auto vma_map_it = vma_map.find (start); | 
|  |  | 
|  | if (vma_map_it != vma_map.end ()) | 
|  | build_id = vma_map_it->second; | 
|  |  | 
|  | loop_cb (i, start, end, file_ofs, filename, build_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Implement "info proc mappings" for a corefile.  */ | 
|  |  | 
|  | static void | 
|  | linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args) | 
|  | { | 
|  | linux_read_core_file_mappings (gdbarch, core_bfd, | 
|  | [=] (ULONGEST count) | 
|  | { | 
|  | gdb_printf (_("Mapped address spaces:\n\n")); | 
|  | if (gdbarch_addr_bit (gdbarch) == 32) | 
|  | { | 
|  | gdb_printf ("\t%10s %10s %10s %10s %s\n", | 
|  | "Start Addr", | 
|  | "  End Addr", | 
|  | "      Size", "    Offset", "objfile"); | 
|  | } | 
|  | else | 
|  | { | 
|  | gdb_printf ("  %18s %18s %10s %10s %s\n", | 
|  | "Start Addr", | 
|  | "  End Addr", | 
|  | "      Size", "    Offset", "objfile"); | 
|  | } | 
|  | }, | 
|  | [=] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs, | 
|  | const char *filename, const bfd_build_id *build_id) | 
|  | { | 
|  | if (gdbarch_addr_bit (gdbarch) == 32) | 
|  | gdb_printf ("\t%10s %10s %10s %10s %s\n", | 
|  | paddress (gdbarch, start), | 
|  | paddress (gdbarch, end), | 
|  | hex_string (end - start), | 
|  | hex_string (file_ofs), | 
|  | filename); | 
|  | else | 
|  | gdb_printf ("  %18s %18s %10s %10s %s\n", | 
|  | paddress (gdbarch, start), | 
|  | paddress (gdbarch, end), | 
|  | hex_string (end - start), | 
|  | hex_string (file_ofs), | 
|  | filename); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /* Implement "info proc" for a corefile.  */ | 
|  |  | 
|  | static void | 
|  | linux_core_info_proc (struct gdbarch *gdbarch, const char *args, | 
|  | enum info_proc_what what) | 
|  | { | 
|  | int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL); | 
|  | int mappings_f = (what == IP_MAPPINGS || what == IP_ALL); | 
|  |  | 
|  | if (exe_f) | 
|  | { | 
|  | const char *exe; | 
|  |  | 
|  | exe = bfd_core_file_failing_command (core_bfd); | 
|  | if (exe != NULL) | 
|  | gdb_printf ("exe = '%s'\n", exe); | 
|  | else | 
|  | warning (_("unable to find command name in core file")); | 
|  | } | 
|  |  | 
|  | if (mappings_f) | 
|  | linux_core_info_proc_mappings (gdbarch, args); | 
|  |  | 
|  | if (!exe_f && !mappings_f) | 
|  | error (_("unable to handle request")); | 
|  | } | 
|  |  | 
|  | /* Read siginfo data from the core, if possible.  Returns -1 on | 
|  | failure.  Otherwise, returns the number of bytes read.  READBUF, | 
|  | OFFSET, and LEN are all as specified by the to_xfer_partial | 
|  | interface.  */ | 
|  |  | 
|  | static LONGEST | 
|  | linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf, | 
|  | ULONGEST offset, ULONGEST len) | 
|  | { | 
|  | thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid); | 
|  | asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ()); | 
|  | if (section == NULL) | 
|  | return -1; | 
|  |  | 
|  | if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len)) | 
|  | return -1; | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size, | 
|  | ULONGEST offset, ULONGEST inode, | 
|  | int read, int write, | 
|  | int exec, int modified, | 
|  | bool memory_tagged, | 
|  | const char *filename, | 
|  | void *data); | 
|  |  | 
|  | typedef int linux_dump_mapping_p_ftype (filter_flags filterflags, | 
|  | const struct smaps_vmflags *v, | 
|  | int maybe_private_p, | 
|  | int mapping_anon_p, | 
|  | int mapping_file_p, | 
|  | const char *filename, | 
|  | ULONGEST addr, | 
|  | ULONGEST offset); | 
|  |  | 
|  | /* Helper function to parse the contents of /proc/<pid>/smaps into a data | 
|  | structure, for easy access. | 
|  |  | 
|  | DATA is the contents of the smaps file.  The parsed contents are stored | 
|  | into the SMAPS vector.  */ | 
|  |  | 
|  | static std::vector<struct smaps_data> | 
|  | parse_smaps_data (const char *data, | 
|  | const std::string maps_filename) | 
|  | { | 
|  | char *line, *t; | 
|  |  | 
|  | gdb_assert (data != nullptr); | 
|  |  | 
|  | line = strtok_r ((char *) data, "\n", &t); | 
|  |  | 
|  | std::vector<struct smaps_data> smaps; | 
|  |  | 
|  | while (line != NULL) | 
|  | { | 
|  | struct smaps_vmflags v; | 
|  | int read, write, exec, priv; | 
|  | int has_anonymous = 0; | 
|  | int mapping_anon_p; | 
|  | int mapping_file_p; | 
|  |  | 
|  | memset (&v, 0, sizeof (v)); | 
|  | struct mapping m = read_mapping (line); | 
|  | mapping_anon_p = mapping_is_anonymous_p (m.filename); | 
|  | /* If the mapping is not anonymous, then we can consider it | 
|  | to be file-backed.  These two states (anonymous or | 
|  | file-backed) seem to be exclusive, but they can actually | 
|  | coexist.  For example, if a file-backed mapping has | 
|  | "Anonymous:" pages (see more below), then the Linux | 
|  | kernel will dump this mapping when the user specified | 
|  | that she only wants anonymous mappings in the corefile | 
|  | (*even* when she explicitly disabled the dumping of | 
|  | file-backed mappings).  */ | 
|  | mapping_file_p = !mapping_anon_p; | 
|  |  | 
|  | /* Decode permissions.  */ | 
|  | auto has_perm = [&m] (char c) | 
|  | { return m.permissions.find (c) != gdb::string_view::npos; }; | 
|  | read = has_perm ('r'); | 
|  | write = has_perm ('w'); | 
|  | exec = has_perm ('x'); | 
|  |  | 
|  | /* 'private' here actually means VM_MAYSHARE, and not | 
|  | VM_SHARED.  In order to know if a mapping is really | 
|  | private or not, we must check the flag "sh" in the | 
|  | VmFlags field.  This is done by decode_vmflags.  However, | 
|  | if we are using a Linux kernel released before the commit | 
|  | 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will | 
|  | not have the VmFlags there.  In this case, there is | 
|  | really no way to know if we are dealing with VM_SHARED, | 
|  | so we just assume that VM_MAYSHARE is enough.  */ | 
|  | priv = has_perm ('p'); | 
|  |  | 
|  | /* Try to detect if region should be dumped by parsing smaps | 
|  | counters.  */ | 
|  | for (line = strtok_r (NULL, "\n", &t); | 
|  | line != NULL && line[0] >= 'A' && line[0] <= 'Z'; | 
|  | line = strtok_r (NULL, "\n", &t)) | 
|  | { | 
|  | char keyword[64 + 1]; | 
|  |  | 
|  | if (sscanf (line, "%64s", keyword) != 1) | 
|  | { | 
|  | warning (_("Error parsing {s,}maps file '%s'"), | 
|  | maps_filename.c_str ()); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (strcmp (keyword, "Anonymous:") == 0) | 
|  | { | 
|  | /* Older Linux kernels did not support the | 
|  | "Anonymous:" counter.  Check it here.  */ | 
|  | has_anonymous = 1; | 
|  | } | 
|  | else if (strcmp (keyword, "VmFlags:") == 0) | 
|  | decode_vmflags (line, &v); | 
|  |  | 
|  | if (strcmp (keyword, "AnonHugePages:") == 0 | 
|  | || strcmp (keyword, "Anonymous:") == 0) | 
|  | { | 
|  | unsigned long number; | 
|  |  | 
|  | if (sscanf (line, "%*s%lu", &number) != 1) | 
|  | { | 
|  | warning (_("Error parsing {s,}maps file '%s' number"), | 
|  | maps_filename.c_str ()); | 
|  | break; | 
|  | } | 
|  | if (number > 0) | 
|  | { | 
|  | /* Even if we are dealing with a file-backed | 
|  | mapping, if it contains anonymous pages we | 
|  | consider it to be *also* an anonymous | 
|  | mapping, because this is what the Linux | 
|  | kernel does: | 
|  |  | 
|  | // Dump segments that have been written to. | 
|  | if (vma->anon_vma && FILTER(ANON_PRIVATE)) | 
|  | goto whole; | 
|  |  | 
|  | Note that if the mapping is already marked as | 
|  | file-backed (i.e., mapping_file_p is | 
|  | non-zero), then this is a special case, and | 
|  | this mapping will be dumped either when the | 
|  | user wants to dump file-backed *or* anonymous | 
|  | mappings.  */ | 
|  | mapping_anon_p = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Save the smaps entry to the vector.  */ | 
|  | struct smaps_data map; | 
|  |  | 
|  | map.start_address = m.addr; | 
|  | map.end_address = m.endaddr; | 
|  | map.filename = m.filename; | 
|  | map.vmflags = v; | 
|  | map.read = read? true : false; | 
|  | map.write = write? true : false; | 
|  | map.exec = exec? true : false; | 
|  | map.priv = priv? true : false; | 
|  | map.has_anonymous = has_anonymous; | 
|  | map.mapping_anon_p = mapping_anon_p? true : false; | 
|  | map.mapping_file_p = mapping_file_p? true : false; | 
|  | map.offset = m.offset; | 
|  | map.inode = m.inode; | 
|  |  | 
|  | smaps.emplace_back (map); | 
|  | } | 
|  |  | 
|  | return smaps; | 
|  | } | 
|  |  | 
|  | /* Helper that checks if an address is in a memory tag page for a live | 
|  | process.  */ | 
|  |  | 
|  | static bool | 
|  | linux_process_address_in_memtag_page (CORE_ADDR address) | 
|  | { | 
|  | if (current_inferior ()->fake_pid_p) | 
|  | return false; | 
|  |  | 
|  | pid_t pid = current_inferior ()->pid; | 
|  |  | 
|  | std::string smaps_file = string_printf ("/proc/%d/smaps", pid); | 
|  |  | 
|  | gdb::unique_xmalloc_ptr<char> data | 
|  | = target_fileio_read_stralloc (NULL, smaps_file.c_str ()); | 
|  |  | 
|  | if (data == nullptr) | 
|  | return false; | 
|  |  | 
|  | /* Parse the contents of smaps into a vector.  */ | 
|  | std::vector<struct smaps_data> smaps | 
|  | = parse_smaps_data (data.get (), smaps_file); | 
|  |  | 
|  | for (const smaps_data &map : smaps) | 
|  | { | 
|  | /* Is the address within [start_address, end_address) in a page | 
|  | mapped with memory tagging?  */ | 
|  | if (address >= map.start_address | 
|  | && address < map.end_address | 
|  | && map.vmflags.memory_tagging) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Helper that checks if an address is in a memory tag page for a core file | 
|  | process.  */ | 
|  |  | 
|  | static bool | 
|  | linux_core_file_address_in_memtag_page (CORE_ADDR address) | 
|  | { | 
|  | if (core_bfd == nullptr) | 
|  | return false; | 
|  |  | 
|  | memtag_section_info info; | 
|  | return get_next_core_memtag_section (core_bfd, nullptr, address, info); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | bool | 
|  | linux_address_in_memtag_page (CORE_ADDR address) | 
|  | { | 
|  | if (!target_has_execution ()) | 
|  | return linux_core_file_address_in_memtag_page (address); | 
|  |  | 
|  | return linux_process_address_in_memtag_page (address); | 
|  | } | 
|  |  | 
|  | /* List memory regions in the inferior for a corefile.  */ | 
|  |  | 
|  | static int | 
|  | linux_find_memory_regions_full (struct gdbarch *gdbarch, | 
|  | linux_dump_mapping_p_ftype *should_dump_mapping_p, | 
|  | linux_find_memory_region_ftype *func, | 
|  | void *obfd) | 
|  | { | 
|  | pid_t pid; | 
|  | /* Default dump behavior of coredump_filter (0x33), according to | 
|  | Documentation/filesystems/proc.txt from the Linux kernel | 
|  | tree.  */ | 
|  | filter_flags filterflags = (COREFILTER_ANON_PRIVATE | 
|  | | COREFILTER_ANON_SHARED | 
|  | | COREFILTER_ELF_HEADERS | 
|  | | COREFILTER_HUGETLB_PRIVATE); | 
|  |  | 
|  | /* We need to know the real target PID to access /proc.  */ | 
|  | if (current_inferior ()->fake_pid_p) | 
|  | return 1; | 
|  |  | 
|  | pid = current_inferior ()->pid; | 
|  |  | 
|  | if (use_coredump_filter) | 
|  | { | 
|  | std::string core_dump_filter_name | 
|  | = string_printf ("/proc/%d/coredump_filter", pid); | 
|  |  | 
|  | gdb::unique_xmalloc_ptr<char> coredumpfilterdata | 
|  | = target_fileio_read_stralloc (NULL, core_dump_filter_name.c_str ()); | 
|  |  | 
|  | if (coredumpfilterdata != NULL) | 
|  | { | 
|  | unsigned int flags; | 
|  |  | 
|  | sscanf (coredumpfilterdata.get (), "%x", &flags); | 
|  | filterflags = (enum filter_flag) flags; | 
|  | } | 
|  | } | 
|  |  | 
|  | std::string maps_filename = string_printf ("/proc/%d/smaps", pid); | 
|  |  | 
|  | gdb::unique_xmalloc_ptr<char> data | 
|  | = target_fileio_read_stralloc (NULL, maps_filename.c_str ()); | 
|  |  | 
|  | if (data == NULL) | 
|  | { | 
|  | /* Older Linux kernels did not support /proc/PID/smaps.  */ | 
|  | maps_filename = string_printf ("/proc/%d/maps", pid); | 
|  | data = target_fileio_read_stralloc (NULL, maps_filename.c_str ()); | 
|  |  | 
|  | if (data == nullptr) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Parse the contents of smaps into a vector.  */ | 
|  | std::vector<struct smaps_data> smaps | 
|  | = parse_smaps_data (data.get (), maps_filename.c_str ()); | 
|  |  | 
|  | for (const struct smaps_data &map : smaps) | 
|  | { | 
|  | int should_dump_p = 0; | 
|  |  | 
|  | if (map.has_anonymous) | 
|  | { | 
|  | should_dump_p | 
|  | = should_dump_mapping_p (filterflags, &map.vmflags, | 
|  | map.priv, | 
|  | map.mapping_anon_p, | 
|  | map.mapping_file_p, | 
|  | map.filename.c_str (), | 
|  | map.start_address, | 
|  | map.offset); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Older Linux kernels did not support the "Anonymous:" counter. | 
|  | If it is missing, we can't be sure - dump all the pages.  */ | 
|  | should_dump_p = 1; | 
|  | } | 
|  |  | 
|  | /* Invoke the callback function to create the corefile segment.  */ | 
|  | if (should_dump_p) | 
|  | { | 
|  | func (map.start_address, map.end_address - map.start_address, | 
|  | map.offset, map.inode, map.read, map.write, map.exec, | 
|  | 1, /* MODIFIED is true because we want to dump | 
|  | the mapping.  */ | 
|  | map.vmflags.memory_tagging != 0, | 
|  | map.filename.c_str (), obfd); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* A structure for passing information through | 
|  | linux_find_memory_regions_full.  */ | 
|  |  | 
|  | struct linux_find_memory_regions_data | 
|  | { | 
|  | /* The original callback.  */ | 
|  |  | 
|  | find_memory_region_ftype func; | 
|  |  | 
|  | /* The original datum.  */ | 
|  |  | 
|  | void *obfd; | 
|  | }; | 
|  |  | 
|  | /* A callback for linux_find_memory_regions that converts between the | 
|  | "full"-style callback and find_memory_region_ftype.  */ | 
|  |  | 
|  | static int | 
|  | linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size, | 
|  | ULONGEST offset, ULONGEST inode, | 
|  | int read, int write, int exec, int modified, | 
|  | bool memory_tagged, | 
|  | const char *filename, void *arg) | 
|  | { | 
|  | struct linux_find_memory_regions_data *data | 
|  | = (struct linux_find_memory_regions_data *) arg; | 
|  |  | 
|  | return data->func (vaddr, size, read, write, exec, modified, memory_tagged, | 
|  | data->obfd); | 
|  | } | 
|  |  | 
|  | /* A variant of linux_find_memory_regions_full that is suitable as the | 
|  | gdbarch find_memory_regions method.  */ | 
|  |  | 
|  | static int | 
|  | linux_find_memory_regions (struct gdbarch *gdbarch, | 
|  | find_memory_region_ftype func, void *obfd) | 
|  | { | 
|  | struct linux_find_memory_regions_data data; | 
|  |  | 
|  | data.func = func; | 
|  | data.obfd = obfd; | 
|  |  | 
|  | return linux_find_memory_regions_full (gdbarch, | 
|  | dump_mapping_p, | 
|  | linux_find_memory_regions_thunk, | 
|  | &data); | 
|  | } | 
|  |  | 
|  | /* This is used to pass information from | 
|  | linux_make_mappings_corefile_notes through | 
|  | linux_find_memory_regions_full.  */ | 
|  |  | 
|  | struct linux_make_mappings_data | 
|  | { | 
|  | /* Number of files mapped.  */ | 
|  | ULONGEST file_count; | 
|  |  | 
|  | /* The obstack for the main part of the data.  */ | 
|  | struct obstack *data_obstack; | 
|  |  | 
|  | /* The filename obstack.  */ | 
|  | struct obstack *filename_obstack; | 
|  |  | 
|  | /* The architecture's "long" type.  */ | 
|  | struct type *long_type; | 
|  | }; | 
|  |  | 
|  | static linux_find_memory_region_ftype linux_make_mappings_callback; | 
|  |  | 
|  | /* A callback for linux_find_memory_regions_full that updates the | 
|  | mappings data for linux_make_mappings_corefile_notes. | 
|  |  | 
|  | MEMORY_TAGGED is true if the memory region contains memory tags, false | 
|  | otherwise.  */ | 
|  |  | 
|  | static int | 
|  | linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size, | 
|  | ULONGEST offset, ULONGEST inode, | 
|  | int read, int write, int exec, int modified, | 
|  | bool memory_tagged, | 
|  | const char *filename, void *data) | 
|  | { | 
|  | struct linux_make_mappings_data *map_data | 
|  | = (struct linux_make_mappings_data *) data; | 
|  | gdb_byte buf[sizeof (ULONGEST)]; | 
|  |  | 
|  | if (*filename == '\0' || inode == 0) | 
|  | return 0; | 
|  |  | 
|  | ++map_data->file_count; | 
|  |  | 
|  | pack_long (buf, map_data->long_type, vaddr); | 
|  | obstack_grow (map_data->data_obstack, buf, map_data->long_type->length ()); | 
|  | pack_long (buf, map_data->long_type, vaddr + size); | 
|  | obstack_grow (map_data->data_obstack, buf, map_data->long_type->length ()); | 
|  | pack_long (buf, map_data->long_type, offset); | 
|  | obstack_grow (map_data->data_obstack, buf, map_data->long_type->length ()); | 
|  |  | 
|  | obstack_grow_str0 (map_data->filename_obstack, filename); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Write the file mapping data to the core file, if possible.  OBFD is | 
|  | the output BFD.  NOTE_DATA is the current note data, and NOTE_SIZE | 
|  | is a pointer to the note size.  Updates NOTE_DATA and NOTE_SIZE.  */ | 
|  |  | 
|  | static void | 
|  | linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, | 
|  | gdb::unique_xmalloc_ptr<char> ¬e_data, | 
|  | int *note_size) | 
|  | { | 
|  | struct linux_make_mappings_data mapping_data; | 
|  | struct type *long_type | 
|  | = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long"); | 
|  | gdb_byte buf[sizeof (ULONGEST)]; | 
|  |  | 
|  | auto_obstack data_obstack, filename_obstack; | 
|  |  | 
|  | mapping_data.file_count = 0; | 
|  | mapping_data.data_obstack = &data_obstack; | 
|  | mapping_data.filename_obstack = &filename_obstack; | 
|  | mapping_data.long_type = long_type; | 
|  |  | 
|  | /* Reserve space for the count.  */ | 
|  | obstack_blank (&data_obstack, long_type->length ()); | 
|  | /* We always write the page size as 1 since we have no good way to | 
|  | determine the correct value.  */ | 
|  | pack_long (buf, long_type, 1); | 
|  | obstack_grow (&data_obstack, buf, long_type->length ()); | 
|  |  | 
|  | linux_find_memory_regions_full (gdbarch, | 
|  | dump_note_entry_p, | 
|  | linux_make_mappings_callback, | 
|  | &mapping_data); | 
|  |  | 
|  | if (mapping_data.file_count != 0) | 
|  | { | 
|  | /* Write the count to the obstack.  */ | 
|  | pack_long ((gdb_byte *) obstack_base (&data_obstack), | 
|  | long_type, mapping_data.file_count); | 
|  |  | 
|  | /* Copy the filenames to the data obstack.  */ | 
|  | int size = obstack_object_size (&filename_obstack); | 
|  | obstack_grow (&data_obstack, obstack_base (&filename_obstack), | 
|  | size); | 
|  |  | 
|  | note_data.reset (elfcore_write_file_note (obfd, note_data.release (), note_size, | 
|  | obstack_base (&data_obstack), | 
|  | obstack_object_size (&data_obstack))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fetch the siginfo data for the specified thread, if it exists.  If | 
|  | there is no data, or we could not read it, return an empty | 
|  | buffer.  */ | 
|  |  | 
|  | static gdb::byte_vector | 
|  | linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch) | 
|  | { | 
|  | struct type *siginfo_type; | 
|  | LONGEST bytes_read; | 
|  |  | 
|  | if (!gdbarch_get_siginfo_type_p (gdbarch)) | 
|  | return gdb::byte_vector (); | 
|  |  | 
|  | scoped_restore_current_thread save_current_thread; | 
|  | switch_to_thread (thread); | 
|  |  | 
|  | siginfo_type = gdbarch_get_siginfo_type (gdbarch); | 
|  |  | 
|  | gdb::byte_vector buf (siginfo_type->length ()); | 
|  |  | 
|  | bytes_read = target_read (current_inferior ()->top_target (), | 
|  | TARGET_OBJECT_SIGNAL_INFO, NULL, | 
|  | buf.data (), 0, siginfo_type->length ()); | 
|  | if (bytes_read != siginfo_type->length ()) | 
|  | buf.clear (); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | struct linux_corefile_thread_data | 
|  | { | 
|  | linux_corefile_thread_data (struct gdbarch *gdbarch, bfd *obfd, | 
|  | gdb::unique_xmalloc_ptr<char> ¬e_data, | 
|  | int *note_size, gdb_signal stop_signal) | 
|  | : gdbarch (gdbarch), obfd (obfd), note_data (note_data), | 
|  | note_size (note_size), stop_signal (stop_signal) | 
|  | {} | 
|  |  | 
|  | struct gdbarch *gdbarch; | 
|  | bfd *obfd; | 
|  | gdb::unique_xmalloc_ptr<char> ¬e_data; | 
|  | int *note_size; | 
|  | enum gdb_signal stop_signal; | 
|  | }; | 
|  |  | 
|  | /* Records the thread's register state for the corefile note | 
|  | section.  */ | 
|  |  | 
|  | static void | 
|  | linux_corefile_thread (struct thread_info *info, | 
|  | struct linux_corefile_thread_data *args) | 
|  | { | 
|  | gcore_elf_build_thread_register_notes (args->gdbarch, info, | 
|  | args->stop_signal, | 
|  | args->obfd, &args->note_data, | 
|  | args->note_size); | 
|  |  | 
|  | /* Don't return anything if we got no register information above, | 
|  | such a core file is useless.  */ | 
|  | if (args->note_data != NULL) | 
|  | { | 
|  | gdb::byte_vector siginfo_data | 
|  | = linux_get_siginfo_data (info, args->gdbarch); | 
|  | if (!siginfo_data.empty ()) | 
|  | args->note_data.reset (elfcore_write_note (args->obfd, | 
|  | args->note_data.release (), | 
|  | args->note_size, | 
|  | "CORE", NT_SIGINFO, | 
|  | siginfo_data.data (), | 
|  | siginfo_data.size ())); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill the PRPSINFO structure with information about the process being | 
|  | debugged.  Returns 1 in case of success, 0 for failures.  Please note that | 
|  | even if the structure cannot be entirely filled (e.g., GDB was unable to | 
|  | gather information about the process UID/GID), this function will still | 
|  | return 1 since some information was already recorded.  It will only return | 
|  | 0 iff nothing can be gathered.  */ | 
|  |  | 
|  | static int | 
|  | linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p) | 
|  | { | 
|  | /* The filename which we will use to obtain some info about the process. | 
|  | We will basically use this to store the `/proc/PID/FILENAME' file.  */ | 
|  | char filename[100]; | 
|  | /* The basename of the executable.  */ | 
|  | const char *basename; | 
|  | /* Temporary buffer.  */ | 
|  | char *tmpstr; | 
|  | /* The valid states of a process, according to the Linux kernel.  */ | 
|  | const char valid_states[] = "RSDTZW"; | 
|  | /* The program state.  */ | 
|  | const char *prog_state; | 
|  | /* The state of the process.  */ | 
|  | char pr_sname; | 
|  | /* The PID of the program which generated the corefile.  */ | 
|  | pid_t pid; | 
|  | /* Process flags.  */ | 
|  | unsigned int pr_flag; | 
|  | /* Process nice value.  */ | 
|  | long pr_nice; | 
|  | /* The number of fields read by `sscanf'.  */ | 
|  | int n_fields = 0; | 
|  |  | 
|  | gdb_assert (p != NULL); | 
|  |  | 
|  | /* Obtaining PID and filename.  */ | 
|  | pid = inferior_ptid.pid (); | 
|  | xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid); | 
|  | /* The full name of the program which generated the corefile.  */ | 
|  | gdb::unique_xmalloc_ptr<char> fname | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  |  | 
|  | if (fname == NULL || fname.get ()[0] == '\0') | 
|  | { | 
|  | /* No program name was read, so we won't be able to retrieve more | 
|  | information about the process.  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memset (p, 0, sizeof (*p)); | 
|  |  | 
|  | /* Defining the PID.  */ | 
|  | p->pr_pid = pid; | 
|  |  | 
|  | /* Copying the program name.  Only the basename matters.  */ | 
|  | basename = lbasename (fname.get ()); | 
|  | strncpy (p->pr_fname, basename, sizeof (p->pr_fname) - 1); | 
|  | p->pr_fname[sizeof (p->pr_fname) - 1] = '\0'; | 
|  |  | 
|  | const std::string &infargs = current_inferior ()->args (); | 
|  |  | 
|  | /* The arguments of the program.  */ | 
|  | std::string psargs = fname.get (); | 
|  | if (!infargs.empty ()) | 
|  | psargs += ' ' + infargs; | 
|  |  | 
|  | strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs) - 1); | 
|  | p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0'; | 
|  |  | 
|  | xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid); | 
|  | /* The contents of `/proc/PID/stat'.  */ | 
|  | gdb::unique_xmalloc_ptr<char> proc_stat_contents | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | char *proc_stat = proc_stat_contents.get (); | 
|  |  | 
|  | if (proc_stat == NULL || *proc_stat == '\0') | 
|  | { | 
|  | /* Despite being unable to read more information about the | 
|  | process, we return 1 here because at least we have its | 
|  | command line, PID and arguments.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Ok, we have the stats.  It's time to do a little parsing of the | 
|  | contents of the buffer, so that we end up reading what we want. | 
|  |  | 
|  | The following parsing mechanism is strongly based on the | 
|  | information generated by the `fs/proc/array.c' file, present in | 
|  | the Linux kernel tree.  More details about how the information is | 
|  | displayed can be obtained by seeing the manpage of proc(5), | 
|  | specifically under the entry of `/proc/[pid]/stat'.  */ | 
|  |  | 
|  | /* Getting rid of the PID, since we already have it.  */ | 
|  | while (isdigit (*proc_stat)) | 
|  | ++proc_stat; | 
|  |  | 
|  | proc_stat = skip_spaces (proc_stat); | 
|  |  | 
|  | /* ps command also relies on no trailing fields ever contain ')'.  */ | 
|  | proc_stat = strrchr (proc_stat, ')'); | 
|  | if (proc_stat == NULL) | 
|  | return 1; | 
|  | proc_stat++; | 
|  |  | 
|  | proc_stat = skip_spaces (proc_stat); | 
|  |  | 
|  | n_fields = sscanf (proc_stat, | 
|  | "%c"		/* Process state.  */ | 
|  | "%d%d%d"		/* Parent PID, group ID, session ID.  */ | 
|  | "%*d%*d"		/* tty_nr, tpgid (not used).  */ | 
|  | "%u"		/* Flags.  */ | 
|  | "%*s%*s%*s%*s"	/* minflt, cminflt, majflt, | 
|  | cmajflt (not used).  */ | 
|  | "%*s%*s%*s%*s"	/* utime, stime, cutime, | 
|  | cstime (not used).  */ | 
|  | "%*s"		/* Priority (not used).  */ | 
|  | "%ld",		/* Nice.  */ | 
|  | &pr_sname, | 
|  | &p->pr_ppid, &p->pr_pgrp, &p->pr_sid, | 
|  | &pr_flag, | 
|  | &pr_nice); | 
|  |  | 
|  | if (n_fields != 6) | 
|  | { | 
|  | /* Again, we couldn't read the complementary information about | 
|  | the process state.  However, we already have minimal | 
|  | information, so we just return 1 here.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Filling the structure fields.  */ | 
|  | prog_state = strchr (valid_states, pr_sname); | 
|  | if (prog_state != NULL) | 
|  | p->pr_state = prog_state - valid_states; | 
|  | else | 
|  | { | 
|  | /* Zero means "Running".  */ | 
|  | p->pr_state = 0; | 
|  | } | 
|  |  | 
|  | p->pr_sname = p->pr_state > 5 ? '.' : pr_sname; | 
|  | p->pr_zomb = p->pr_sname == 'Z'; | 
|  | p->pr_nice = pr_nice; | 
|  | p->pr_flag = pr_flag; | 
|  |  | 
|  | /* Finally, obtaining the UID and GID.  For that, we read and parse the | 
|  | contents of the `/proc/PID/status' file.  */ | 
|  | xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid); | 
|  | /* The contents of `/proc/PID/status'.  */ | 
|  | gdb::unique_xmalloc_ptr<char> proc_status_contents | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | char *proc_status = proc_status_contents.get (); | 
|  |  | 
|  | if (proc_status == NULL || *proc_status == '\0') | 
|  | { | 
|  | /* Returning 1 since we already have a bunch of information.  */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Extracting the UID.  */ | 
|  | tmpstr = strstr (proc_status, "Uid:"); | 
|  | if (tmpstr != NULL) | 
|  | { | 
|  | /* Advancing the pointer to the beginning of the UID.  */ | 
|  | tmpstr += sizeof ("Uid:"); | 
|  | while (*tmpstr != '\0' && !isdigit (*tmpstr)) | 
|  | ++tmpstr; | 
|  |  | 
|  | if (isdigit (*tmpstr)) | 
|  | p->pr_uid = strtol (tmpstr, &tmpstr, 10); | 
|  | } | 
|  |  | 
|  | /* Extracting the GID.  */ | 
|  | tmpstr = strstr (proc_status, "Gid:"); | 
|  | if (tmpstr != NULL) | 
|  | { | 
|  | /* Advancing the pointer to the beginning of the GID.  */ | 
|  | tmpstr += sizeof ("Gid:"); | 
|  | while (*tmpstr != '\0' && !isdigit (*tmpstr)) | 
|  | ++tmpstr; | 
|  |  | 
|  | if (isdigit (*tmpstr)) | 
|  | p->pr_gid = strtol (tmpstr, &tmpstr, 10); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Build the note section for a corefile, and return it in a malloc | 
|  | buffer.  */ | 
|  |  | 
|  | static gdb::unique_xmalloc_ptr<char> | 
|  | linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size) | 
|  | { | 
|  | struct elf_internal_linux_prpsinfo prpsinfo; | 
|  | gdb::unique_xmalloc_ptr<char> note_data; | 
|  |  | 
|  | if (! gdbarch_iterate_over_regset_sections_p (gdbarch)) | 
|  | return NULL; | 
|  |  | 
|  | if (linux_fill_prpsinfo (&prpsinfo)) | 
|  | { | 
|  | if (gdbarch_ptr_bit (gdbarch) == 64) | 
|  | note_data.reset (elfcore_write_linux_prpsinfo64 (obfd, | 
|  | note_data.release (), | 
|  | note_size, &prpsinfo)); | 
|  | else | 
|  | note_data.reset (elfcore_write_linux_prpsinfo32 (obfd, | 
|  | note_data.release (), | 
|  | note_size, &prpsinfo)); | 
|  | } | 
|  |  | 
|  | /* Thread register information.  */ | 
|  | try | 
|  | { | 
|  | update_thread_list (); | 
|  | } | 
|  | catch (const gdb_exception_error &e) | 
|  | { | 
|  | exception_print (gdb_stderr, e); | 
|  | } | 
|  |  | 
|  | /* Like the kernel, prefer dumping the signalled thread first. | 
|  | "First thread" is what tools use to infer the signalled | 
|  | thread.  */ | 
|  | thread_info *signalled_thr = gcore_find_signalled_thread (); | 
|  | gdb_signal stop_signal; | 
|  | if (signalled_thr != nullptr) | 
|  | stop_signal = signalled_thr->stop_signal (); | 
|  | else | 
|  | stop_signal = GDB_SIGNAL_0; | 
|  |  | 
|  | linux_corefile_thread_data thread_args (gdbarch, obfd, note_data, note_size, | 
|  | stop_signal); | 
|  |  | 
|  | if (signalled_thr != nullptr) | 
|  | linux_corefile_thread (signalled_thr, &thread_args); | 
|  | for (thread_info *thr : current_inferior ()->non_exited_threads ()) | 
|  | { | 
|  | if (thr == signalled_thr) | 
|  | continue; | 
|  |  | 
|  | linux_corefile_thread (thr, &thread_args); | 
|  | } | 
|  |  | 
|  | if (!note_data) | 
|  | return NULL; | 
|  |  | 
|  | /* Auxillary vector.  */ | 
|  | gdb::optional<gdb::byte_vector> auxv = | 
|  | target_read_alloc (current_inferior ()->top_target (), | 
|  | TARGET_OBJECT_AUXV, NULL); | 
|  | if (auxv && !auxv->empty ()) | 
|  | { | 
|  | note_data.reset (elfcore_write_note (obfd, note_data.release (), | 
|  | note_size, "CORE", NT_AUXV, | 
|  | auxv->data (), auxv->size ())); | 
|  |  | 
|  | if (!note_data) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* File mappings.  */ | 
|  | linux_make_mappings_corefile_notes (gdbarch, obfd, note_data, note_size); | 
|  |  | 
|  | /* Target description.  */ | 
|  | gcore_elf_make_tdesc_note (obfd, ¬e_data, note_size); | 
|  |  | 
|  | return note_data; | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_gdb_signal_from_target', as defined in | 
|  | gdbarch.h.  This function is not static because it is exported to | 
|  | other -tdep files.  */ | 
|  |  | 
|  | enum gdb_signal | 
|  | linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal) | 
|  | { | 
|  | switch (signal) | 
|  | { | 
|  | case 0: | 
|  | return GDB_SIGNAL_0; | 
|  |  | 
|  | case LINUX_SIGHUP: | 
|  | return GDB_SIGNAL_HUP; | 
|  |  | 
|  | case LINUX_SIGINT: | 
|  | return GDB_SIGNAL_INT; | 
|  |  | 
|  | case LINUX_SIGQUIT: | 
|  | return GDB_SIGNAL_QUIT; | 
|  |  | 
|  | case LINUX_SIGILL: | 
|  | return GDB_SIGNAL_ILL; | 
|  |  | 
|  | case LINUX_SIGTRAP: | 
|  | return GDB_SIGNAL_TRAP; | 
|  |  | 
|  | case LINUX_SIGABRT: | 
|  | return GDB_SIGNAL_ABRT; | 
|  |  | 
|  | case LINUX_SIGBUS: | 
|  | return GDB_SIGNAL_BUS; | 
|  |  | 
|  | case LINUX_SIGFPE: | 
|  | return GDB_SIGNAL_FPE; | 
|  |  | 
|  | case LINUX_SIGKILL: | 
|  | return GDB_SIGNAL_KILL; | 
|  |  | 
|  | case LINUX_SIGUSR1: | 
|  | return GDB_SIGNAL_USR1; | 
|  |  | 
|  | case LINUX_SIGSEGV: | 
|  | return GDB_SIGNAL_SEGV; | 
|  |  | 
|  | case LINUX_SIGUSR2: | 
|  | return GDB_SIGNAL_USR2; | 
|  |  | 
|  | case LINUX_SIGPIPE: | 
|  | return GDB_SIGNAL_PIPE; | 
|  |  | 
|  | case LINUX_SIGALRM: | 
|  | return GDB_SIGNAL_ALRM; | 
|  |  | 
|  | case LINUX_SIGTERM: | 
|  | return GDB_SIGNAL_TERM; | 
|  |  | 
|  | case LINUX_SIGCHLD: | 
|  | return GDB_SIGNAL_CHLD; | 
|  |  | 
|  | case LINUX_SIGCONT: | 
|  | return GDB_SIGNAL_CONT; | 
|  |  | 
|  | case LINUX_SIGSTOP: | 
|  | return GDB_SIGNAL_STOP; | 
|  |  | 
|  | case LINUX_SIGTSTP: | 
|  | return GDB_SIGNAL_TSTP; | 
|  |  | 
|  | case LINUX_SIGTTIN: | 
|  | return GDB_SIGNAL_TTIN; | 
|  |  | 
|  | case LINUX_SIGTTOU: | 
|  | return GDB_SIGNAL_TTOU; | 
|  |  | 
|  | case LINUX_SIGURG: | 
|  | return GDB_SIGNAL_URG; | 
|  |  | 
|  | case LINUX_SIGXCPU: | 
|  | return GDB_SIGNAL_XCPU; | 
|  |  | 
|  | case LINUX_SIGXFSZ: | 
|  | return GDB_SIGNAL_XFSZ; | 
|  |  | 
|  | case LINUX_SIGVTALRM: | 
|  | return GDB_SIGNAL_VTALRM; | 
|  |  | 
|  | case LINUX_SIGPROF: | 
|  | return GDB_SIGNAL_PROF; | 
|  |  | 
|  | case LINUX_SIGWINCH: | 
|  | return GDB_SIGNAL_WINCH; | 
|  |  | 
|  | /* No way to differentiate between SIGIO and SIGPOLL. | 
|  | Therefore, we just handle the first one.  */ | 
|  | case LINUX_SIGIO: | 
|  | return GDB_SIGNAL_IO; | 
|  |  | 
|  | case LINUX_SIGPWR: | 
|  | return GDB_SIGNAL_PWR; | 
|  |  | 
|  | case LINUX_SIGSYS: | 
|  | return GDB_SIGNAL_SYS; | 
|  |  | 
|  | /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>, | 
|  | therefore we have to handle them here.  */ | 
|  | case LINUX_SIGRTMIN: | 
|  | return GDB_SIGNAL_REALTIME_32; | 
|  |  | 
|  | case LINUX_SIGRTMAX: | 
|  | return GDB_SIGNAL_REALTIME_64; | 
|  | } | 
|  |  | 
|  | if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1) | 
|  | { | 
|  | int offset = signal - LINUX_SIGRTMIN + 1; | 
|  |  | 
|  | return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset); | 
|  | } | 
|  |  | 
|  | return GDB_SIGNAL_UNKNOWN; | 
|  | } | 
|  |  | 
|  | /* Implementation of `gdbarch_gdb_signal_to_target', as defined in | 
|  | gdbarch.h.  This function is not static because it is exported to | 
|  | other -tdep files.  */ | 
|  |  | 
|  | int | 
|  | linux_gdb_signal_to_target (struct gdbarch *gdbarch, | 
|  | enum gdb_signal signal) | 
|  | { | 
|  | switch (signal) | 
|  | { | 
|  | case GDB_SIGNAL_0: | 
|  | return 0; | 
|  |  | 
|  | case GDB_SIGNAL_HUP: | 
|  | return LINUX_SIGHUP; | 
|  |  | 
|  | case GDB_SIGNAL_INT: | 
|  | return LINUX_SIGINT; | 
|  |  | 
|  | case GDB_SIGNAL_QUIT: | 
|  | return LINUX_SIGQUIT; | 
|  |  | 
|  | case GDB_SIGNAL_ILL: | 
|  | return LINUX_SIGILL; | 
|  |  | 
|  | case GDB_SIGNAL_TRAP: | 
|  | return LINUX_SIGTRAP; | 
|  |  | 
|  | case GDB_SIGNAL_ABRT: | 
|  | return LINUX_SIGABRT; | 
|  |  | 
|  | case GDB_SIGNAL_FPE: | 
|  | return LINUX_SIGFPE; | 
|  |  | 
|  | case GDB_SIGNAL_KILL: | 
|  | return LINUX_SIGKILL; | 
|  |  | 
|  | case GDB_SIGNAL_BUS: | 
|  | return LINUX_SIGBUS; | 
|  |  | 
|  | case GDB_SIGNAL_SEGV: | 
|  | return LINUX_SIGSEGV; | 
|  |  | 
|  | case GDB_SIGNAL_SYS: | 
|  | return LINUX_SIGSYS; | 
|  |  | 
|  | case GDB_SIGNAL_PIPE: | 
|  | return LINUX_SIGPIPE; | 
|  |  | 
|  | case GDB_SIGNAL_ALRM: | 
|  | return LINUX_SIGALRM; | 
|  |  | 
|  | case GDB_SIGNAL_TERM: | 
|  | return LINUX_SIGTERM; | 
|  |  | 
|  | case GDB_SIGNAL_URG: | 
|  | return LINUX_SIGURG; | 
|  |  | 
|  | case GDB_SIGNAL_STOP: | 
|  | return LINUX_SIGSTOP; | 
|  |  | 
|  | case GDB_SIGNAL_TSTP: | 
|  | return LINUX_SIGTSTP; | 
|  |  | 
|  | case GDB_SIGNAL_CONT: | 
|  | return LINUX_SIGCONT; | 
|  |  | 
|  | case GDB_SIGNAL_CHLD: | 
|  | return LINUX_SIGCHLD; | 
|  |  | 
|  | case GDB_SIGNAL_TTIN: | 
|  | return LINUX_SIGTTIN; | 
|  |  | 
|  | case GDB_SIGNAL_TTOU: | 
|  | return LINUX_SIGTTOU; | 
|  |  | 
|  | case GDB_SIGNAL_IO: | 
|  | return LINUX_SIGIO; | 
|  |  | 
|  | case GDB_SIGNAL_XCPU: | 
|  | return LINUX_SIGXCPU; | 
|  |  | 
|  | case GDB_SIGNAL_XFSZ: | 
|  | return LINUX_SIGXFSZ; | 
|  |  | 
|  | case GDB_SIGNAL_VTALRM: | 
|  | return LINUX_SIGVTALRM; | 
|  |  | 
|  | case GDB_SIGNAL_PROF: | 
|  | return LINUX_SIGPROF; | 
|  |  | 
|  | case GDB_SIGNAL_WINCH: | 
|  | return LINUX_SIGWINCH; | 
|  |  | 
|  | case GDB_SIGNAL_USR1: | 
|  | return LINUX_SIGUSR1; | 
|  |  | 
|  | case GDB_SIGNAL_USR2: | 
|  | return LINUX_SIGUSR2; | 
|  |  | 
|  | case GDB_SIGNAL_PWR: | 
|  | return LINUX_SIGPWR; | 
|  |  | 
|  | case GDB_SIGNAL_POLL: | 
|  | return LINUX_SIGPOLL; | 
|  |  | 
|  | /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>, | 
|  | therefore we have to handle it here.  */ | 
|  | case GDB_SIGNAL_REALTIME_32: | 
|  | return LINUX_SIGRTMIN; | 
|  |  | 
|  | /* Same comment applies to _64.  */ | 
|  | case GDB_SIGNAL_REALTIME_64: | 
|  | return LINUX_SIGRTMAX; | 
|  | } | 
|  |  | 
|  | /* GDB_SIGNAL_REALTIME_33 to _64 are continuous.  */ | 
|  | if (signal >= GDB_SIGNAL_REALTIME_33 | 
|  | && signal <= GDB_SIGNAL_REALTIME_63) | 
|  | { | 
|  | int offset = signal - GDB_SIGNAL_REALTIME_33; | 
|  |  | 
|  | return LINUX_SIGRTMIN + 1 + offset; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Helper for linux_vsyscall_range that does the real work of finding | 
|  | the vsyscall's address range.  */ | 
|  |  | 
|  | static int | 
|  | linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range) | 
|  | { | 
|  | char filename[100]; | 
|  | long pid; | 
|  |  | 
|  | if (target_auxv_search (AT_SYSINFO_EHDR, &range->start) <= 0) | 
|  | return 0; | 
|  |  | 
|  | /* It doesn't make sense to access the host's /proc when debugging a | 
|  | core file.  Instead, look for the PT_LOAD segment that matches | 
|  | the vDSO.  */ | 
|  | if (!target_has_execution ()) | 
|  | { | 
|  | long phdrs_size; | 
|  | int num_phdrs, i; | 
|  |  | 
|  | phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd); | 
|  | if (phdrs_size == -1) | 
|  | return 0; | 
|  |  | 
|  | gdb::unique_xmalloc_ptr<Elf_Internal_Phdr> | 
|  | phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size)); | 
|  | num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ()); | 
|  | if (num_phdrs == -1) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < num_phdrs; i++) | 
|  | if (phdrs.get ()[i].p_type == PT_LOAD | 
|  | && phdrs.get ()[i].p_vaddr == range->start) | 
|  | { | 
|  | range->length = phdrs.get ()[i].p_memsz; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We need to know the real target PID to access /proc.  */ | 
|  | if (current_inferior ()->fake_pid_p) | 
|  | return 0; | 
|  |  | 
|  | pid = current_inferior ()->pid; | 
|  |  | 
|  | /* Note that reading /proc/PID/task/PID/maps (1) is much faster than | 
|  | reading /proc/PID/maps (2).  The later identifies thread stacks | 
|  | in the output, which requires scanning every thread in the thread | 
|  | group to check whether a VMA is actually a thread's stack.  With | 
|  | Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with | 
|  | a few thousand threads, (1) takes a few miliseconds, while (2) | 
|  | takes several seconds.  Also note that "smaps", what we read for | 
|  | determining core dump mappings, is even slower than "maps".  */ | 
|  | xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid); | 
|  | gdb::unique_xmalloc_ptr<char> data | 
|  | = target_fileio_read_stralloc (NULL, filename); | 
|  | if (data != NULL) | 
|  | { | 
|  | char *line; | 
|  | char *saveptr = NULL; | 
|  |  | 
|  | for (line = strtok_r (data.get (), "\n", &saveptr); | 
|  | line != NULL; | 
|  | line = strtok_r (NULL, "\n", &saveptr)) | 
|  | { | 
|  | ULONGEST addr, endaddr; | 
|  | const char *p = line; | 
|  |  | 
|  | addr = strtoulst (p, &p, 16); | 
|  | if (addr == range->start) | 
|  | { | 
|  | if (*p == '-') | 
|  | p++; | 
|  | endaddr = strtoulst (p, &p, 16); | 
|  | range->length = endaddr - addr; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  | else | 
|  | warning (_("unable to open /proc file '%s'"), filename); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implementation of the "vsyscall_range" gdbarch hook.  Handles | 
|  | caching, and defers the real work to linux_vsyscall_range_raw.  */ | 
|  |  | 
|  | static int | 
|  | linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range) | 
|  | { | 
|  | struct linux_info *info = get_linux_inferior_data (current_inferior ()); | 
|  |  | 
|  | if (info->vsyscall_range_p == 0) | 
|  | { | 
|  | if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range)) | 
|  | info->vsyscall_range_p = 1; | 
|  | else | 
|  | info->vsyscall_range_p = -1; | 
|  | } | 
|  |  | 
|  | if (info->vsyscall_range_p < 0) | 
|  | return 0; | 
|  |  | 
|  | *range = info->vsyscall_range; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system | 
|  | definitions would be dependent on compilation host.  */ | 
|  | #define GDB_MMAP_MAP_PRIVATE	0x02		/* Changes are private.  */ | 
|  | #define GDB_MMAP_MAP_ANONYMOUS	0x20		/* Don't use a file.  */ | 
|  |  | 
|  | /* See gdbarch.sh 'infcall_mmap'.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | linux_infcall_mmap (CORE_ADDR size, unsigned prot) | 
|  | { | 
|  | struct objfile *objf; | 
|  | /* Do there still exist any Linux systems without "mmap64"? | 
|  | "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32.  */ | 
|  | struct value *mmap_val = find_function_in_inferior ("mmap64", &objf); | 
|  | struct value *addr_val; | 
|  | struct gdbarch *gdbarch = objf->arch (); | 
|  | CORE_ADDR retval; | 
|  | enum | 
|  | { | 
|  | ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST | 
|  | }; | 
|  | struct value *arg[ARG_LAST]; | 
|  |  | 
|  | arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, | 
|  | 0); | 
|  | /* Assuming sizeof (unsigned long) == sizeof (size_t).  */ | 
|  | arg[ARG_LENGTH] = value_from_ulongest | 
|  | (builtin_type (gdbarch)->builtin_unsigned_long, size); | 
|  | gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE | 
|  | | GDB_MMAP_PROT_EXEC)) | 
|  | == 0); | 
|  | arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot); | 
|  | arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int, | 
|  | GDB_MMAP_MAP_PRIVATE | 
|  | | GDB_MMAP_MAP_ANONYMOUS); | 
|  | arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1); | 
|  | arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64, | 
|  | 0); | 
|  | addr_val = call_function_by_hand (mmap_val, NULL, arg); | 
|  | retval = value_as_address (addr_val); | 
|  | if (retval == (CORE_ADDR) -1) | 
|  | error (_("Failed inferior mmap call for %s bytes, errno is changed."), | 
|  | pulongest (size)); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* See gdbarch.sh 'infcall_munmap'.  */ | 
|  |  | 
|  | static void | 
|  | linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size) | 
|  | { | 
|  | struct objfile *objf; | 
|  | struct value *munmap_val = find_function_in_inferior ("munmap", &objf); | 
|  | struct value *retval_val; | 
|  | struct gdbarch *gdbarch = objf->arch (); | 
|  | LONGEST retval; | 
|  | enum | 
|  | { | 
|  | ARG_ADDR, ARG_LENGTH, ARG_LAST | 
|  | }; | 
|  | struct value *arg[ARG_LAST]; | 
|  |  | 
|  | arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, | 
|  | addr); | 
|  | /* Assuming sizeof (unsigned long) == sizeof (size_t).  */ | 
|  | arg[ARG_LENGTH] = value_from_ulongest | 
|  | (builtin_type (gdbarch)->builtin_unsigned_long, size); | 
|  | retval_val = call_function_by_hand (munmap_val, NULL, arg); | 
|  | retval = value_as_long (retval_val); | 
|  | if (retval != 0) | 
|  | warning (_("Failed inferior munmap call at %s for %s bytes, " | 
|  | "errno is changed."), | 
|  | hex_string (addr), pulongest (size)); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | linux_displaced_step_location (struct gdbarch *gdbarch) | 
|  | { | 
|  | CORE_ADDR addr; | 
|  | int bp_len; | 
|  |  | 
|  | /* Determine entry point from target auxiliary vector.  This avoids | 
|  | the need for symbols.  Also, when debugging a stand-alone SPU | 
|  | executable, entry_point_address () will point to an SPU | 
|  | local-store address and is thus not usable as displaced stepping | 
|  | location.  The auxiliary vector gets us the PowerPC-side entry | 
|  | point address instead.  */ | 
|  | if (target_auxv_search (AT_ENTRY, &addr) <= 0) | 
|  | throw_error (NOT_SUPPORTED_ERROR, | 
|  | _("Cannot find AT_ENTRY auxiliary vector entry.")); | 
|  |  | 
|  | /* Make certain that the address points at real code, and not a | 
|  | function descriptor.  */ | 
|  | addr = gdbarch_convert_from_func_ptr_addr | 
|  | (gdbarch, addr, current_inferior ()->top_target ()); | 
|  |  | 
|  | /* Inferior calls also use the entry point as a breakpoint location. | 
|  | We don't want displaced stepping to interfere with those | 
|  | breakpoints, so leave space.  */ | 
|  | gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len); | 
|  | addr += bp_len * 2; | 
|  |  | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | displaced_step_prepare_status | 
|  | linux_displaced_step_prepare (gdbarch *arch, thread_info *thread, | 
|  | CORE_ADDR &displaced_pc) | 
|  | { | 
|  | linux_info *per_inferior = get_linux_inferior_data (thread->inf); | 
|  |  | 
|  | if (!per_inferior->disp_step_bufs.has_value ()) | 
|  | { | 
|  | /* Figure out the location of the buffers.  They are contiguous, starting | 
|  | at DISP_STEP_BUF_ADDR.  They are all of size BUF_LEN.  */ | 
|  | CORE_ADDR disp_step_buf_addr | 
|  | = linux_displaced_step_location (thread->inf->gdbarch); | 
|  | int buf_len = gdbarch_max_insn_length (arch); | 
|  |  | 
|  | linux_gdbarch_data *gdbarch_data = get_linux_gdbarch_data (arch); | 
|  | gdb_assert (gdbarch_data->num_disp_step_buffers > 0); | 
|  |  | 
|  | std::vector<CORE_ADDR> buffers; | 
|  | for (int i = 0; i < gdbarch_data->num_disp_step_buffers; i++) | 
|  | buffers.push_back (disp_step_buf_addr + i * buf_len); | 
|  |  | 
|  | per_inferior->disp_step_bufs.emplace (buffers); | 
|  | } | 
|  |  | 
|  | return per_inferior->disp_step_bufs->prepare (thread, displaced_pc); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | displaced_step_finish_status | 
|  | linux_displaced_step_finish (gdbarch *arch, thread_info *thread, gdb_signal sig) | 
|  | { | 
|  | linux_info *per_inferior = get_linux_inferior_data (thread->inf); | 
|  |  | 
|  | gdb_assert (per_inferior->disp_step_bufs.has_value ()); | 
|  |  | 
|  | return per_inferior->disp_step_bufs->finish (arch, thread, sig); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | const displaced_step_copy_insn_closure * | 
|  | linux_displaced_step_copy_insn_closure_by_addr (inferior *inf, CORE_ADDR addr) | 
|  | { | 
|  | linux_info *per_inferior = linux_inferior_data.get (inf); | 
|  |  | 
|  | if (per_inferior == nullptr | 
|  | || !per_inferior->disp_step_bufs.has_value ()) | 
|  | return nullptr; | 
|  |  | 
|  | return per_inferior->disp_step_bufs->copy_insn_closure_by_addr (addr); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | void | 
|  | linux_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid) | 
|  | { | 
|  | linux_info *per_inferior = linux_inferior_data.get (parent_inf); | 
|  |  | 
|  | if (per_inferior == nullptr | 
|  | || !per_inferior->disp_step_bufs.has_value ()) | 
|  | return; | 
|  |  | 
|  | per_inferior->disp_step_bufs->restore_in_ptid (ptid); | 
|  | } | 
|  |  | 
|  | /* Helper for linux_get_hwcap and linux_get_hwcap2.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | linux_get_hwcap_helper (const gdb::optional<gdb::byte_vector> &auxv, | 
|  | target_ops *target, gdbarch *gdbarch, CORE_ADDR match) | 
|  | { | 
|  | CORE_ADDR field; | 
|  | if (!auxv.has_value () | 
|  | || target_auxv_search (*auxv, target, gdbarch, match, &field) != 1) | 
|  | return 0; | 
|  | return field; | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | linux_get_hwcap (const gdb::optional<gdb::byte_vector> &auxv, | 
|  | target_ops *target, gdbarch *gdbarch) | 
|  | { | 
|  | return linux_get_hwcap_helper (auxv, target, gdbarch, AT_HWCAP); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | linux_get_hwcap () | 
|  | { | 
|  | return linux_get_hwcap (target_read_auxv (), | 
|  | current_inferior ()->top_target (), | 
|  | current_inferior ()->gdbarch); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | linux_get_hwcap2 (const gdb::optional<gdb::byte_vector> &auxv, | 
|  | target_ops *target, gdbarch *gdbarch) | 
|  | { | 
|  | return linux_get_hwcap_helper (auxv, target, gdbarch, AT_HWCAP2); | 
|  | } | 
|  |  | 
|  | /* See linux-tdep.h.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | linux_get_hwcap2 () | 
|  | { | 
|  | return linux_get_hwcap2 (target_read_auxv (), | 
|  | current_inferior ()->top_target (), | 
|  | current_inferior ()->gdbarch); | 
|  | } | 
|  |  | 
|  | /* Display whether the gcore command is using the | 
|  | /proc/PID/coredump_filter file.  */ | 
|  |  | 
|  | static void | 
|  | show_use_coredump_filter (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, _("Use of /proc/PID/coredump_filter file to generate" | 
|  | " corefiles is %s.\n"), value); | 
|  | } | 
|  |  | 
|  | /* Display whether the gcore command is dumping mappings marked with | 
|  | the VM_DONTDUMP flag.  */ | 
|  |  | 
|  | static void | 
|  | show_dump_excluded_mappings (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, const char *value) | 
|  | { | 
|  | gdb_printf (file, _("Dumping of mappings marked with the VM_DONTDUMP" | 
|  | " flag is %s.\n"), value); | 
|  | } | 
|  |  | 
|  | /* To be called from the various GDB_OSABI_LINUX handlers for the | 
|  | various GNU/Linux architectures and machine types. | 
|  |  | 
|  | NUM_DISP_STEP_BUFFERS is the number of displaced step buffers to use.  If 0, | 
|  | displaced stepping is not supported. */ | 
|  |  | 
|  | void | 
|  | linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, | 
|  | int num_disp_step_buffers) | 
|  | { | 
|  | if (num_disp_step_buffers > 0) | 
|  | { | 
|  | linux_gdbarch_data *gdbarch_data = get_linux_gdbarch_data (gdbarch); | 
|  | gdbarch_data->num_disp_step_buffers = num_disp_step_buffers; | 
|  |  | 
|  | set_gdbarch_displaced_step_prepare (gdbarch, | 
|  | linux_displaced_step_prepare); | 
|  | set_gdbarch_displaced_step_finish (gdbarch, linux_displaced_step_finish); | 
|  | set_gdbarch_displaced_step_copy_insn_closure_by_addr | 
|  | (gdbarch, linux_displaced_step_copy_insn_closure_by_addr); | 
|  | set_gdbarch_displaced_step_restore_all_in_ptid | 
|  | (gdbarch, linux_displaced_step_restore_all_in_ptid); | 
|  | } | 
|  |  | 
|  | set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str); | 
|  | set_gdbarch_info_proc (gdbarch, linux_info_proc); | 
|  | set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc); | 
|  | set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo); | 
|  | set_gdbarch_read_core_file_mappings (gdbarch, linux_read_core_file_mappings); | 
|  | set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions); | 
|  | set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes); | 
|  | set_gdbarch_has_shared_address_space (gdbarch, | 
|  | linux_has_shared_address_space); | 
|  | set_gdbarch_gdb_signal_from_target (gdbarch, | 
|  | linux_gdb_signal_from_target); | 
|  | set_gdbarch_gdb_signal_to_target (gdbarch, | 
|  | linux_gdb_signal_to_target); | 
|  | set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range); | 
|  | set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap); | 
|  | set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap); | 
|  | set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type); | 
|  | } | 
|  |  | 
|  | void _initialize_linux_tdep (); | 
|  | void | 
|  | _initialize_linux_tdep () | 
|  | { | 
|  | /* Observers used to invalidate the cache when needed.  */ | 
|  | gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf, | 
|  | "linux-tdep"); | 
|  | gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf, | 
|  | "linux-tdep"); | 
|  | gdb::observers::inferior_execd.attach (invalidate_linux_cache_inf, | 
|  | "linux-tdep"); | 
|  |  | 
|  | add_setshow_boolean_cmd ("use-coredump-filter", class_files, | 
|  | &use_coredump_filter, _("\ | 
|  | Set whether gcore should consider /proc/PID/coredump_filter."), | 
|  | _("\ | 
|  | Show whether gcore should consider /proc/PID/coredump_filter."), | 
|  | _("\ | 
|  | Use this command to set whether gcore should consider the contents\n\ | 
|  | of /proc/PID/coredump_filter when generating the corefile.  For more information\n\ | 
|  | about this file, refer to the manpage of core(5)."), | 
|  | NULL, show_use_coredump_filter, | 
|  | &setlist, &showlist); | 
|  |  | 
|  | add_setshow_boolean_cmd ("dump-excluded-mappings", class_files, | 
|  | &dump_excluded_mappings, _("\ | 
|  | Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."), | 
|  | _("\ | 
|  | Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."), | 
|  | _("\ | 
|  | Use this command to set whether gcore should dump mappings marked with the\n\ | 
|  | VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile.  For\n\ | 
|  | more information about this file, refer to the manpage of proc(5) and core(5)."), | 
|  | NULL, show_dump_excluded_mappings, | 
|  | &setlist, &showlist); | 
|  | } | 
|  |  | 
|  | /* Fetch (and possibly build) an appropriate `link_map_offsets' for | 
|  | ILP32/LP64 Linux systems which don't have the r_ldsomap field.  */ | 
|  |  | 
|  | link_map_offsets * | 
|  | linux_ilp32_fetch_link_map_offsets () | 
|  | { | 
|  | static link_map_offsets lmo; | 
|  | static link_map_offsets *lmp = nullptr; | 
|  |  | 
|  | if (lmp == nullptr) | 
|  | { | 
|  | lmp = &lmo; | 
|  |  | 
|  | lmo.r_version_offset = 0; | 
|  | lmo.r_version_size = 4; | 
|  | lmo.r_map_offset = 4; | 
|  | lmo.r_brk_offset = 8; | 
|  | lmo.r_ldsomap_offset = -1; | 
|  | lmo.r_next_offset = 20; | 
|  |  | 
|  | /* Everything we need is in the first 20 bytes.  */ | 
|  | lmo.link_map_size = 20; | 
|  | lmo.l_addr_offset = 0; | 
|  | lmo.l_name_offset = 4; | 
|  | lmo.l_ld_offset = 8; | 
|  | lmo.l_next_offset = 12; | 
|  | lmo.l_prev_offset = 16; | 
|  | } | 
|  |  | 
|  | return lmp; | 
|  | } | 
|  |  | 
|  | link_map_offsets * | 
|  | linux_lp64_fetch_link_map_offsets () | 
|  | { | 
|  | static link_map_offsets lmo; | 
|  | static link_map_offsets *lmp = nullptr; | 
|  |  | 
|  | if (lmp == nullptr) | 
|  | { | 
|  | lmp = &lmo; | 
|  |  | 
|  | lmo.r_version_offset = 0; | 
|  | lmo.r_version_size = 4; | 
|  | lmo.r_map_offset = 8; | 
|  | lmo.r_brk_offset = 16; | 
|  | lmo.r_ldsomap_offset = -1; | 
|  | lmo.r_next_offset = 40; | 
|  |  | 
|  | /* Everything we need is in the first 40 bytes.  */ | 
|  | lmo.link_map_size = 40; | 
|  | lmo.l_addr_offset = 0; | 
|  | lmo.l_name_offset = 8; | 
|  | lmo.l_ld_offset = 16; | 
|  | lmo.l_next_offset = 24; | 
|  | lmo.l_prev_offset = 32; | 
|  | } | 
|  |  | 
|  | return lmp; | 
|  | } |