| /* Target-dependent code for the NDS32 architecture, for GDB. |
| |
| Copyright (C) 2013-2021 Free Software Foundation, Inc. |
| Contributed by Andes Technology Corporation. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "frame.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "gdbcore.h" |
| #include "value.h" |
| #include "reggroups.h" |
| #include "inferior.h" |
| #include "osabi.h" |
| #include "arch-utils.h" |
| #include "regcache.h" |
| #include "dis-asm.h" |
| #include "user-regs.h" |
| #include "elf-bfd.h" |
| #include "dwarf2/frame.h" |
| #include "remote.h" |
| #include "target-descriptions.h" |
| |
| #include "nds32-tdep.h" |
| #include "elf/nds32.h" |
| #include "opcode/nds32.h" |
| #include <algorithm> |
| |
| #include "features/nds32.c" |
| |
| /* Simple macros for instruction analysis. */ |
| #define CHOP_BITS(insn, n) (insn & ~__MASK (n)) |
| #define N32_LSMW_ENABLE4(insn) (((insn) >> 6) & 0xf) |
| #define N32_SMW_ADM \ |
| N32_TYPE4 (LSMW, 0, 0, 0, 1, (N32_LSMW_ADM << 2) | N32_LSMW_LSMW) |
| #define N32_LMW_BIM \ |
| N32_TYPE4 (LSMW, 0, 0, 0, 0, (N32_LSMW_BIM << 2) | N32_LSMW_LSMW) |
| #define N32_FLDI_SP \ |
| N32_TYPE2 (LDC, 0, REG_SP, 0) |
| |
| /* Use an invalid address value as 'not available' marker. */ |
| enum { REG_UNAVAIL = (CORE_ADDR) -1 }; |
| |
| /* Use an impossible value as invalid offset. */ |
| enum { INVALID_OFFSET = (CORE_ADDR) -1 }; |
| |
| /* Instruction groups for NDS32 epilogue analysis. */ |
| enum |
| { |
| /* Instructions used everywhere, not only in epilogue. */ |
| INSN_NORMAL, |
| /* Instructions used to reset sp for local vars, arguments, etc. */ |
| INSN_RESET_SP, |
| /* Instructions used to recover saved regs and to recover padding. */ |
| INSN_RECOVER, |
| /* Instructions used to return to the caller. */ |
| INSN_RETURN, |
| /* Instructions used to recover saved regs and to return to the caller. */ |
| INSN_RECOVER_RETURN, |
| }; |
| |
| static const char *const nds32_register_names[] = |
| { |
| /* 32 GPRs. */ |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "fp", "gp", "lp", "sp", |
| /* PC. */ |
| "pc", |
| }; |
| |
| static const char *const nds32_fdr_register_names[] = |
| { |
| "fd0", "fd1", "fd2", "fd3", "fd4", "fd5", "fd6", "fd7", |
| "fd8", "fd9", "fd10", "fd11", "fd12", "fd13", "fd14", "fd15", |
| "fd16", "fd17", "fd18", "fd19", "fd20", "fd21", "fd22", "fd23", |
| "fd24", "fd25", "fd26", "fd27", "fd28", "fd29", "fd30", "fd31" |
| }; |
| |
| static const char *const nds32_fsr_register_names[] = |
| { |
| "fs0", "fs1", "fs2", "fs3", "fs4", "fs5", "fs6", "fs7", |
| "fs8", "fs9", "fs10", "fs11", "fs12", "fs13", "fs14", "fs15", |
| "fs16", "fs17", "fs18", "fs19", "fs20", "fs21", "fs22", "fs23", |
| "fs24", "fs25", "fs26", "fs27", "fs28", "fs29", "fs30", "fs31" |
| }; |
| |
| /* The number of registers for four FPU configuration options. */ |
| const int num_fdr_map[] = { 4, 8, 16, 32 }; |
| const int num_fsr_map[] = { 8, 16, 32, 32 }; |
| |
| /* Aliases for registers. */ |
| static const struct |
| { |
| const char *name; |
| const char *alias; |
| } nds32_register_aliases[] = |
| { |
| {"r15", "ta"}, |
| {"r26", "p0"}, |
| {"r27", "p1"}, |
| {"fp", "r28"}, |
| {"gp", "r29"}, |
| {"lp", "r30"}, |
| {"sp", "r31"}, |
| |
| {"cr0", "cpu_ver"}, |
| {"cr1", "icm_cfg"}, |
| {"cr2", "dcm_cfg"}, |
| {"cr3", "mmu_cfg"}, |
| {"cr4", "msc_cfg"}, |
| {"cr5", "core_id"}, |
| {"cr6", "fucop_exist"}, |
| {"cr7", "msc_cfg2"}, |
| |
| {"ir0", "psw"}, |
| {"ir1", "ipsw"}, |
| {"ir2", "p_psw"}, |
| {"ir3", "ivb"}, |
| {"ir4", "eva"}, |
| {"ir5", "p_eva"}, |
| {"ir6", "itype"}, |
| {"ir7", "p_itype"}, |
| {"ir8", "merr"}, |
| {"ir9", "ipc"}, |
| {"ir10", "p_ipc"}, |
| {"ir11", "oipc"}, |
| {"ir12", "p_p0"}, |
| {"ir13", "p_p1"}, |
| {"ir14", "int_mask"}, |
| {"ir15", "int_pend"}, |
| {"ir16", "sp_usr"}, |
| {"ir17", "sp_priv"}, |
| {"ir18", "int_pri"}, |
| {"ir19", "int_ctrl"}, |
| {"ir20", "sp_usr1"}, |
| {"ir21", "sp_priv1"}, |
| {"ir22", "sp_usr2"}, |
| {"ir23", "sp_priv2"}, |
| {"ir24", "sp_usr3"}, |
| {"ir25", "sp_priv3"}, |
| {"ir26", "int_mask2"}, |
| {"ir27", "int_pend2"}, |
| {"ir28", "int_pri2"}, |
| {"ir29", "int_trigger"}, |
| |
| {"mr0", "mmu_ctl"}, |
| {"mr1", "l1_pptb"}, |
| {"mr2", "tlb_vpn"}, |
| {"mr3", "tlb_data"}, |
| {"mr4", "tlb_misc"}, |
| {"mr5", "vlpt_idx"}, |
| {"mr6", "ilmb"}, |
| {"mr7", "dlmb"}, |
| {"mr8", "cache_ctl"}, |
| {"mr9", "hsmp_saddr"}, |
| {"mr10", "hsmp_eaddr"}, |
| {"mr11", "bg_region"}, |
| |
| {"dr0", "bpc0"}, |
| {"dr1", "bpc1"}, |
| {"dr2", "bpc2"}, |
| {"dr3", "bpc3"}, |
| {"dr4", "bpc4"}, |
| {"dr5", "bpc5"}, |
| {"dr6", "bpc6"}, |
| {"dr7", "bpc7"}, |
| {"dr8", "bpa0"}, |
| {"dr9", "bpa1"}, |
| {"dr10", "bpa2"}, |
| {"dr11", "bpa3"}, |
| {"dr12", "bpa4"}, |
| {"dr13", "bpa5"}, |
| {"dr14", "bpa6"}, |
| {"dr15", "bpa7"}, |
| {"dr16", "bpam0"}, |
| {"dr17", "bpam1"}, |
| {"dr18", "bpam2"}, |
| {"dr19", "bpam3"}, |
| {"dr20", "bpam4"}, |
| {"dr21", "bpam5"}, |
| {"dr22", "bpam6"}, |
| {"dr23", "bpam7"}, |
| {"dr24", "bpv0"}, |
| {"dr25", "bpv1"}, |
| {"dr26", "bpv2"}, |
| {"dr27", "bpv3"}, |
| {"dr28", "bpv4"}, |
| {"dr29", "bpv5"}, |
| {"dr30", "bpv6"}, |
| {"dr31", "bpv7"}, |
| {"dr32", "bpcid0"}, |
| {"dr33", "bpcid1"}, |
| {"dr34", "bpcid2"}, |
| {"dr35", "bpcid3"}, |
| {"dr36", "bpcid4"}, |
| {"dr37", "bpcid5"}, |
| {"dr38", "bpcid6"}, |
| {"dr39", "bpcid7"}, |
| {"dr40", "edm_cfg"}, |
| {"dr41", "edmsw"}, |
| {"dr42", "edm_ctl"}, |
| {"dr43", "edm_dtr"}, |
| {"dr44", "bpmtc"}, |
| {"dr45", "dimbr"}, |
| {"dr46", "tecr0"}, |
| {"dr47", "tecr1"}, |
| |
| {"hspr0", "hsp_ctl"}, |
| {"hspr1", "sp_bound"}, |
| {"hspr2", "sp_bound_priv"}, |
| |
| {"pfr0", "pfmc0"}, |
| {"pfr1", "pfmc1"}, |
| {"pfr2", "pfmc2"}, |
| {"pfr3", "pfm_ctl"}, |
| {"pfr4", "pft_ctl"}, |
| |
| {"dmar0", "dma_cfg"}, |
| {"dmar1", "dma_gcsw"}, |
| {"dmar2", "dma_chnsel"}, |
| {"dmar3", "dma_act"}, |
| {"dmar4", "dma_setup"}, |
| {"dmar5", "dma_isaddr"}, |
| {"dmar6", "dma_esaddr"}, |
| {"dmar7", "dma_tcnt"}, |
| {"dmar8", "dma_status"}, |
| {"dmar9", "dma_2dset"}, |
| {"dmar10", "dma_2dsctl"}, |
| {"dmar11", "dma_rcnt"}, |
| {"dmar12", "dma_hstatus"}, |
| |
| {"racr0", "prusr_acc_ctl"}, |
| {"fucpr", "fucop_ctl"}, |
| |
| {"idr0", "sdz_ctl"}, |
| {"idr1", "misc_ctl"}, |
| {"idr2", "ecc_misc"}, |
| |
| {"secur0", "sfcr"}, |
| {"secur1", "sign"}, |
| {"secur2", "isign"}, |
| {"secur3", "p_isign"}, |
| }; |
| |
| /* Value of a register alias. BATON is the regnum of the corresponding |
| register. */ |
| |
| static struct value * |
| value_of_nds32_reg (struct frame_info *frame, const void *baton) |
| { |
| return value_of_register ((int) (intptr_t) baton, frame); |
| } |
| |
| /* Implement the "frame_align" gdbarch method. */ |
| |
| static CORE_ADDR |
| nds32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| { |
| /* 8-byte aligned. */ |
| return align_down (sp, 8); |
| } |
| |
| /* The same insn machine code is used for little-endian and big-endian. */ |
| constexpr gdb_byte nds32_break_insn[] = { 0xEA, 0x00 }; |
| |
| typedef BP_MANIPULATION (nds32_break_insn) nds32_breakpoint; |
| |
| /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */ |
| |
| static int |
| nds32_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| const int FSR = 38; |
| const int FDR = FSR + 32; |
| |
| if (num >= 0 && num < 32) |
| { |
| /* General-purpose registers (R0 - R31). */ |
| return num; |
| } |
| else if (num >= FSR && num < FSR + 32) |
| { |
| /* Single precision floating-point registers (FS0 - FS31). */ |
| return num - FSR + tdep->fs0_regnum; |
| } |
| else if (num >= FDR && num < FDR + 32) |
| { |
| /* Double precision floating-point registers (FD0 - FD31). */ |
| return num - FDR + NDS32_FD0_REGNUM; |
| } |
| |
| /* No match, return a inaccessible register number. */ |
| return -1; |
| } |
| |
| /* NDS32 register groups. */ |
| static struct reggroup *nds32_cr_reggroup; |
| static struct reggroup *nds32_ir_reggroup; |
| static struct reggroup *nds32_mr_reggroup; |
| static struct reggroup *nds32_dr_reggroup; |
| static struct reggroup *nds32_pfr_reggroup; |
| static struct reggroup *nds32_hspr_reggroup; |
| static struct reggroup *nds32_dmar_reggroup; |
| static struct reggroup *nds32_racr_reggroup; |
| static struct reggroup *nds32_idr_reggroup; |
| static struct reggroup *nds32_secur_reggroup; |
| |
| static void |
| nds32_init_reggroups (void) |
| { |
| nds32_cr_reggroup = reggroup_new ("cr", USER_REGGROUP); |
| nds32_ir_reggroup = reggroup_new ("ir", USER_REGGROUP); |
| nds32_mr_reggroup = reggroup_new ("mr", USER_REGGROUP); |
| nds32_dr_reggroup = reggroup_new ("dr", USER_REGGROUP); |
| nds32_pfr_reggroup = reggroup_new ("pfr", USER_REGGROUP); |
| nds32_hspr_reggroup = reggroup_new ("hspr", USER_REGGROUP); |
| nds32_dmar_reggroup = reggroup_new ("dmar", USER_REGGROUP); |
| nds32_racr_reggroup = reggroup_new ("racr", USER_REGGROUP); |
| nds32_idr_reggroup = reggroup_new ("idr", USER_REGGROUP); |
| nds32_secur_reggroup = reggroup_new ("secur", USER_REGGROUP); |
| } |
| |
| static void |
| nds32_add_reggroups (struct gdbarch *gdbarch) |
| { |
| /* Add pre-defined register groups. */ |
| reggroup_add (gdbarch, general_reggroup); |
| reggroup_add (gdbarch, float_reggroup); |
| reggroup_add (gdbarch, system_reggroup); |
| reggroup_add (gdbarch, all_reggroup); |
| reggroup_add (gdbarch, save_reggroup); |
| reggroup_add (gdbarch, restore_reggroup); |
| |
| /* Add NDS32 register groups. */ |
| reggroup_add (gdbarch, nds32_cr_reggroup); |
| reggroup_add (gdbarch, nds32_ir_reggroup); |
| reggroup_add (gdbarch, nds32_mr_reggroup); |
| reggroup_add (gdbarch, nds32_dr_reggroup); |
| reggroup_add (gdbarch, nds32_pfr_reggroup); |
| reggroup_add (gdbarch, nds32_hspr_reggroup); |
| reggroup_add (gdbarch, nds32_dmar_reggroup); |
| reggroup_add (gdbarch, nds32_racr_reggroup); |
| reggroup_add (gdbarch, nds32_idr_reggroup); |
| reggroup_add (gdbarch, nds32_secur_reggroup); |
| } |
| |
| /* Implement the "register_reggroup_p" gdbarch method. */ |
| |
| static int |
| nds32_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
| struct reggroup *reggroup) |
| { |
| const char *reg_name; |
| const char *group_name; |
| int ret; |
| |
| if (reggroup == all_reggroup) |
| return 1; |
| |
| /* General reggroup contains only GPRs and PC. */ |
| if (reggroup == general_reggroup) |
| return regnum <= NDS32_PC_REGNUM; |
| |
| if (reggroup == float_reggroup || reggroup == save_reggroup |
| || reggroup == restore_reggroup) |
| { |
| ret = tdesc_register_in_reggroup_p (gdbarch, regnum, reggroup); |
| if (ret != -1) |
| return ret; |
| |
| return default_register_reggroup_p (gdbarch, regnum, reggroup); |
| } |
| |
| if (reggroup == system_reggroup) |
| return (regnum > NDS32_PC_REGNUM) |
| && !nds32_register_reggroup_p (gdbarch, regnum, float_reggroup); |
| |
| /* The NDS32 reggroup contains registers whose name is prefixed |
| by reggroup name. */ |
| reg_name = gdbarch_register_name (gdbarch, regnum); |
| group_name = reggroup_name (reggroup); |
| return !strncmp (reg_name, group_name, strlen (group_name)); |
| } |
| |
| /* Implement the "pseudo_register_type" tdesc_arch_data method. */ |
| |
| static struct type * |
| nds32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| regnum -= gdbarch_num_regs (gdbarch); |
| |
| /* Currently, only FSRs could be defined as pseudo registers. */ |
| if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| return arch_float_type (gdbarch, -1, "builtin_type_ieee_single", |
| floatformats_ieee_single); |
| |
| warning (_("Unknown nds32 pseudo register %d."), regnum); |
| return NULL; |
| } |
| |
| /* Implement the "pseudo_register_name" tdesc_arch_data method. */ |
| |
| static const char * |
| nds32_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| regnum -= gdbarch_num_regs (gdbarch); |
| |
| /* Currently, only FSRs could be defined as pseudo registers. */ |
| if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| return nds32_fsr_register_names[regnum]; |
| |
| warning (_("Unknown nds32 pseudo register %d."), regnum); |
| return NULL; |
| } |
| |
| /* Implement the "pseudo_register_read" gdbarch method. */ |
| |
| static enum register_status |
| nds32_pseudo_register_read (struct gdbarch *gdbarch, |
| readable_regcache *regcache, int regnum, |
| gdb_byte *buf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| gdb_byte reg_buf[8]; |
| int offset, fdr_regnum; |
| enum register_status status; |
| |
| /* This function is registered in nds32_gdbarch_init only after these are |
| set. */ |
| gdb_assert (tdep->fpu_freg != -1); |
| gdb_assert (tdep->use_pseudo_fsrs != 0); |
| |
| regnum -= gdbarch_num_regs (gdbarch); |
| |
| /* Currently, only FSRs could be defined as pseudo registers. */ |
| if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| { |
| /* fs0 is always the most significant half of fd0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = (regnum & 1) ? 4 : 0; |
| else |
| offset = (regnum & 1) ? 0 : 4; |
| |
| fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1); |
| status = regcache->raw_read (fdr_regnum, reg_buf); |
| if (status == REG_VALID) |
| memcpy (buf, reg_buf + offset, 4); |
| |
| return status; |
| } |
| |
| gdb_assert_not_reached ("invalid pseudo register number"); |
| } |
| |
| /* Implement the "pseudo_register_write" gdbarch method. */ |
| |
| static void |
| nds32_pseudo_register_write (struct gdbarch *gdbarch, |
| struct regcache *regcache, int regnum, |
| const gdb_byte *buf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| gdb_byte reg_buf[8]; |
| int offset, fdr_regnum; |
| |
| /* This function is registered in nds32_gdbarch_init only after these are |
| set. */ |
| gdb_assert (tdep->fpu_freg != -1); |
| gdb_assert (tdep->use_pseudo_fsrs != 0); |
| |
| regnum -= gdbarch_num_regs (gdbarch); |
| |
| /* Currently, only FSRs could be defined as pseudo registers. */ |
| if (regnum < gdbarch_num_pseudo_regs (gdbarch)) |
| { |
| /* fs0 is always the most significant half of fd0. */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| offset = (regnum & 1) ? 4 : 0; |
| else |
| offset = (regnum & 1) ? 0 : 4; |
| |
| fdr_regnum = NDS32_FD0_REGNUM + (regnum >> 1); |
| regcache->raw_read (fdr_regnum, reg_buf); |
| memcpy (reg_buf + offset, buf, 4); |
| regcache->raw_write (fdr_regnum, reg_buf); |
| return; |
| } |
| |
| gdb_assert_not_reached ("invalid pseudo register number"); |
| } |
| |
| /* Helper function for NDS32 ABI. Return true if FPRs can be used |
| to pass function arguments and return value. */ |
| |
| static int |
| nds32_abi_use_fpr (int elf_abi) |
| { |
| return elf_abi == E_NDS_ABI_V2FP_PLUS; |
| } |
| |
| /* Helper function for NDS32 ABI. Return true if GPRs and stack |
| can be used together to pass an argument. */ |
| |
| static int |
| nds32_abi_split (int elf_abi) |
| { |
| return elf_abi == E_NDS_ABI_AABI; |
| } |
| |
| #define NDS32_NUM_SAVED_REGS (NDS32_LP_REGNUM + 1) |
| |
| struct nds32_frame_cache |
| { |
| /* The previous frame's inner most stack address. Used as this |
| frame ID's stack_addr. */ |
| CORE_ADDR prev_sp; |
| |
| /* The frame's base, optionally used by the high-level debug info. */ |
| CORE_ADDR base; |
| |
| /* During prologue analysis, keep how far the SP and FP have been offset |
| from the start of the stack frame (as defined by the previous frame's |
| stack pointer). |
| During epilogue analysis, keep how far the SP has been offset from the |
| current stack pointer. */ |
| CORE_ADDR sp_offset; |
| CORE_ADDR fp_offset; |
| |
| /* The address of the first instruction in this function. */ |
| CORE_ADDR pc; |
| |
| /* Saved registers. */ |
| CORE_ADDR saved_regs[NDS32_NUM_SAVED_REGS]; |
| }; |
| |
| /* Allocate and initialize a frame cache. */ |
| |
| static struct nds32_frame_cache * |
| nds32_alloc_frame_cache (void) |
| { |
| struct nds32_frame_cache *cache; |
| int i; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct nds32_frame_cache); |
| |
| /* Initialize fp_offset to check if FP is set in prologue. */ |
| cache->fp_offset = INVALID_OFFSET; |
| |
| /* Saved registers. We initialize these to -1 since zero is a valid |
| offset. */ |
| for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| cache->saved_regs[i] = REG_UNAVAIL; |
| |
| return cache; |
| } |
| |
| /* Helper function for instructions used to push multiple words. */ |
| |
| static void |
| nds32_push_multiple_words (struct nds32_frame_cache *cache, int rb, int re, |
| int enable4) |
| { |
| CORE_ADDR sp_offset = cache->sp_offset; |
| int i; |
| |
| /* Check LP, GP, FP in enable4. */ |
| for (i = 1; i <= 3; i++) |
| { |
| if ((enable4 >> i) & 0x1) |
| { |
| sp_offset += 4; |
| cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset; |
| } |
| } |
| |
| /* Skip case where re == rb == sp. */ |
| if ((rb < REG_FP) && (re < REG_FP)) |
| { |
| for (i = re; i >= rb; i--) |
| { |
| sp_offset += 4; |
| cache->saved_regs[i] = sp_offset; |
| } |
| } |
| |
| /* For sp, update the offset. */ |
| cache->sp_offset = sp_offset; |
| } |
| |
| /* Analyze the instructions within the given address range. If CACHE |
| is non-NULL, fill it in. Return the first address beyond the given |
| address range. If CACHE is NULL, return the first address not |
| recognized as a prologue instruction. */ |
| |
| static CORE_ADDR |
| nds32_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, |
| CORE_ADDR limit_pc, struct nds32_frame_cache *cache) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| /* Current scanning status. */ |
| int in_prologue_bb = 0; |
| int val_ta = 0; |
| uint32_t insn, insn_len; |
| |
| for (; pc < limit_pc; pc += insn_len) |
| { |
| insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG); |
| |
| if ((insn & 0x80000000) == 0) |
| { |
| /* 32-bit instruction */ |
| insn_len = 4; |
| |
| if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0)) |
| { |
| /* addi $sp, $sp, imm15s */ |
| int imm15s = N32_IMM15S (insn); |
| |
| if (imm15s < 0) |
| { |
| if (cache != NULL) |
| cache->sp_offset += -imm15s; |
| |
| in_prologue_bb = 1; |
| continue; |
| } |
| } |
| else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_FP, REG_SP, 0)) |
| { |
| /* addi $fp, $sp, imm15s */ |
| int imm15s = N32_IMM15S (insn); |
| |
| if (imm15s > 0) |
| { |
| if (cache != NULL) |
| cache->fp_offset = cache->sp_offset - imm15s; |
| |
| in_prologue_bb = 1; |
| continue; |
| } |
| } |
| else if ((insn & ~(__MASK (19) << 6)) == N32_SMW_ADM |
| && N32_RA5 (insn) == REG_SP) |
| { |
| /* smw.adm Rb, [$sp], Re, enable4 */ |
| if (cache != NULL) |
| nds32_push_multiple_words (cache, N32_RT5 (insn), |
| N32_RB5 (insn), |
| N32_LSMW_ENABLE4 (insn)); |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA) |
| || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP)) |
| { |
| /* add $sp, $sp, $ta */ |
| /* add $sp, $ta, $sp */ |
| if (val_ta < 0) |
| { |
| if (cache != NULL) |
| cache->sp_offset += -val_ta; |
| |
| in_prologue_bb = 1; |
| continue; |
| } |
| } |
| else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_TA, 0)) |
| { |
| /* movi $ta, imm20s */ |
| if (cache != NULL) |
| val_ta = N32_IMM20S (insn); |
| |
| continue; |
| } |
| else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_TA, 0)) |
| { |
| /* sethi $ta, imm20u */ |
| if (cache != NULL) |
| val_ta = N32_IMM20U (insn) << 12; |
| |
| continue; |
| } |
| else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_TA, REG_TA, 0)) |
| { |
| /* ori $ta, $ta, imm15u */ |
| if (cache != NULL) |
| val_ta |= N32_IMM15U (insn); |
| |
| continue; |
| } |
| else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_TA, REG_TA, 0)) |
| { |
| /* addi $ta, $ta, imm15s */ |
| if (cache != NULL) |
| val_ta += N32_IMM15S (insn); |
| |
| continue; |
| } |
| if (insn == N32_ALU1 (ADD, REG_GP, REG_TA, REG_GP) |
| || insn == N32_ALU1 (ADD, REG_GP, REG_GP, REG_TA)) |
| { |
| /* add $gp, $ta, $gp */ |
| /* add $gp, $gp, $ta */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (CHOP_BITS (insn, 20) == N32_TYPE1 (MOVI, REG_GP, 0)) |
| { |
| /* movi $gp, imm20s */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (CHOP_BITS (insn, 20) == N32_TYPE1 (SETHI, REG_GP, 0)) |
| { |
| /* sethi $gp, imm20u */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ORI, REG_GP, REG_GP, 0)) |
| { |
| /* ori $gp, $gp, imm15u */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else |
| { |
| /* Jump/Branch insns never appear in prologue basic block. |
| The loop can be escaped early when these insns are met. */ |
| if (in_prologue_bb == 1) |
| { |
| int op = N32_OP6 (insn); |
| |
| if (op == N32_OP6_JI |
| || op == N32_OP6_JREG |
| || op == N32_OP6_BR1 |
| || op == N32_OP6_BR2 |
| || op == N32_OP6_BR3) |
| break; |
| } |
| } |
| |
| if (abi_use_fpr && N32_OP6 (insn) == N32_OP6_SDC |
| && __GF (insn, 12, 3) == 0) |
| { |
| /* For FPU insns, CP (bit [13:14]) should be CP0, and only |
| normal form (bit [12] == 0) is used. */ |
| |
| /* fsdi FDt, [$sp + (imm12s << 2)] */ |
| if (N32_RA5 (insn) == REG_SP) |
| continue; |
| } |
| |
| /* The optimizer might shove anything into the prologue, if |
| we build up cache (cache != NULL) from analyzing prologue, |
| we just skip what we don't recognize and analyze further to |
| make cache as complete as possible. However, if we skip |
| prologue, we'll stop immediately on unrecognized |
| instruction. */ |
| if (cache == NULL) |
| break; |
| } |
| else |
| { |
| /* 16-bit instruction */ |
| insn_len = 2; |
| |
| insn >>= 16; |
| |
| if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0)) |
| { |
| /* addi10s.sp */ |
| int imm10s = N16_IMM10S (insn); |
| |
| if (imm10s < 0) |
| { |
| if (cache != NULL) |
| cache->sp_offset += -imm10s; |
| |
| in_prologue_bb = 1; |
| continue; |
| } |
| } |
| else if (__GF (insn, 7, 8) == N16_T25_PUSH25) |
| { |
| /* push25 */ |
| if (cache != NULL) |
| { |
| int imm8u = (insn & 0x1f) << 3; |
| int re = (insn >> 5) & 0x3; |
| const int reg_map[] = { 6, 8, 10, 14 }; |
| |
| /* Operation 1 -- smw.adm R6, [$sp], Re, #0xe */ |
| nds32_push_multiple_words (cache, 6, reg_map[re], 0xe); |
| |
| /* Operation 2 -- sp = sp - (imm5u << 3) */ |
| cache->sp_offset += imm8u; |
| } |
| |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (insn == N16_TYPE5 (ADD5PC, REG_GP)) |
| { |
| /* add5.pc $gp */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else if (CHOP_BITS (insn, 5) == N16_TYPE55 (MOVI55, REG_GP, 0)) |
| { |
| /* movi55 $gp, imm5s */ |
| in_prologue_bb = 1; |
| continue; |
| } |
| else |
| { |
| /* Jump/Branch insns never appear in prologue basic block. |
| The loop can be escaped early when these insns are met. */ |
| if (in_prologue_bb == 1) |
| { |
| uint32_t insn5 = CHOP_BITS (insn, 5); |
| uint32_t insn8 = CHOP_BITS (insn, 8); |
| uint32_t insn38 = CHOP_BITS (insn, 11); |
| |
| if (insn5 == N16_TYPE5 (JR5, 0) |
| || insn5 == N16_TYPE5 (JRAL5, 0) |
| || insn5 == N16_TYPE5 (RET5, 0) |
| || insn8 == N16_TYPE8 (J8, 0) |
| || insn8 == N16_TYPE8 (BEQZS8, 0) |
| || insn8 == N16_TYPE8 (BNEZS8, 0) |
| || insn38 == N16_TYPE38 (BEQZ38, 0, 0) |
| || insn38 == N16_TYPE38 (BNEZ38, 0, 0) |
| || insn38 == N16_TYPE38 (BEQS38, 0, 0) |
| || insn38 == N16_TYPE38 (BNES38, 0, 0)) |
| break; |
| } |
| } |
| |
| /* The optimizer might shove anything into the prologue, if |
| we build up cache (cache != NULL) from analyzing prologue, |
| we just skip what we don't recognize and analyze further to |
| make cache as complete as possible. However, if we skip |
| prologue, we'll stop immediately on unrecognized |
| instruction. */ |
| if (cache == NULL) |
| break; |
| } |
| } |
| |
| return pc; |
| } |
| |
| /* Implement the "skip_prologue" gdbarch method. |
| |
| Find the end of function prologue. */ |
| |
| static CORE_ADDR |
| nds32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR func_addr, limit_pc; |
| |
| /* See if we can determine the end of the prologue via the symbol table. |
| If so, then return either PC, or the PC after the prologue, whichever |
| is greater. */ |
| if (find_pc_partial_function (pc, NULL, &func_addr, NULL)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| } |
| |
| /* Can't determine prologue from the symbol table, need to examine |
| instructions. */ |
| |
| /* Find an upper limit on the function prologue using the debug |
| information. If the debug information could not be used to provide |
| that bound, then use an arbitrary large number as the upper bound. */ |
| limit_pc = skip_prologue_using_sal (gdbarch, pc); |
| if (limit_pc == 0) |
| limit_pc = pc + 128; /* Magic. */ |
| |
| /* Find the end of prologue. */ |
| return nds32_analyze_prologue (gdbarch, pc, limit_pc, NULL); |
| } |
| |
| /* Allocate and fill in *THIS_CACHE with information about the prologue of |
| *THIS_FRAME. Do not do this if *THIS_CACHE was already allocated. Return |
| a pointer to the current nds32_frame_cache in *THIS_CACHE. */ |
| |
| static struct nds32_frame_cache * |
| nds32_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct nds32_frame_cache *cache; |
| CORE_ADDR current_pc; |
| ULONGEST prev_sp; |
| ULONGEST this_base; |
| int i; |
| |
| if (*this_cache) |
| return (struct nds32_frame_cache *) *this_cache; |
| |
| cache = nds32_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| cache->pc = get_frame_func (this_frame); |
| current_pc = get_frame_pc (this_frame); |
| nds32_analyze_prologue (gdbarch, cache->pc, current_pc, cache); |
| |
| /* Compute the previous frame's stack pointer (which is also the |
| frame's ID's stack address), and this frame's base pointer. */ |
| if (cache->fp_offset != INVALID_OFFSET) |
| { |
| /* FP is set in prologue, so it can be used to calculate other info. */ |
| this_base = get_frame_register_unsigned (this_frame, NDS32_FP_REGNUM); |
| prev_sp = this_base + cache->fp_offset; |
| } |
| else |
| { |
| this_base = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM); |
| prev_sp = this_base + cache->sp_offset; |
| } |
| |
| cache->prev_sp = prev_sp; |
| cache->base = this_base; |
| |
| /* Adjust all the saved registers such that they contain addresses |
| instead of offsets. */ |
| for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| if (cache->saved_regs[i] != REG_UNAVAIL) |
| cache->saved_regs[i] = cache->prev_sp - cache->saved_regs[i]; |
| |
| return cache; |
| } |
| |
| /* Implement the "this_id" frame_unwind method. |
| |
| Our frame ID for a normal frame is the current function's starting |
| PC and the caller's SP when we were called. */ |
| |
| static void |
| nds32_frame_this_id (struct frame_info *this_frame, |
| void **this_cache, struct frame_id *this_id) |
| { |
| struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| |
| /* This marks the outermost frame. */ |
| if (cache->prev_sp == 0) |
| return; |
| |
| *this_id = frame_id_build (cache->prev_sp, cache->pc); |
| } |
| |
| /* Implement the "prev_register" frame_unwind method. */ |
| |
| static struct value * |
| nds32_frame_prev_register (struct frame_info *this_frame, void **this_cache, |
| int regnum) |
| { |
| struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| |
| if (regnum == NDS32_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); |
| |
| /* The PC of the previous frame is stored in the LP register of |
| the current frame. */ |
| if (regnum == NDS32_PC_REGNUM) |
| regnum = NDS32_LP_REGNUM; |
| |
| if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) |
| return frame_unwind_got_memory (this_frame, regnum, |
| cache->saved_regs[regnum]); |
| |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| |
| static const struct frame_unwind nds32_frame_unwind = |
| { |
| "nds32 prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| nds32_frame_this_id, |
| nds32_frame_prev_register, |
| NULL, |
| default_frame_sniffer, |
| }; |
| |
| /* Return the frame base address of *THIS_FRAME. */ |
| |
| static CORE_ADDR |
| nds32_frame_base_address (struct frame_info *this_frame, void **this_cache) |
| { |
| struct nds32_frame_cache *cache = nds32_frame_cache (this_frame, this_cache); |
| |
| return cache->base; |
| } |
| |
| static const struct frame_base nds32_frame_base = |
| { |
| &nds32_frame_unwind, |
| nds32_frame_base_address, |
| nds32_frame_base_address, |
| nds32_frame_base_address |
| }; |
| |
| /* Helper function for instructions used to pop multiple words. */ |
| |
| static void |
| nds32_pop_multiple_words (struct nds32_frame_cache *cache, int rb, int re, |
| int enable4) |
| { |
| CORE_ADDR sp_offset = cache->sp_offset; |
| int i; |
| |
| /* Skip case where re == rb == sp. */ |
| if ((rb < REG_FP) && (re < REG_FP)) |
| { |
| for (i = rb; i <= re; i++) |
| { |
| cache->saved_regs[i] = sp_offset; |
| sp_offset += 4; |
| } |
| } |
| |
| /* Check FP, GP, LP in enable4. */ |
| for (i = 3; i >= 1; i--) |
| { |
| if ((enable4 >> i) & 0x1) |
| { |
| cache->saved_regs[NDS32_SP_REGNUM - i] = sp_offset; |
| sp_offset += 4; |
| } |
| } |
| |
| /* For sp, update the offset. */ |
| cache->sp_offset = sp_offset; |
| } |
| |
| /* The instruction sequences in NDS32 epilogue are |
| |
| INSN_RESET_SP (optional) |
| (If exists, this must be the first instruction in epilogue |
| and the stack has not been destroyed.). |
| INSN_RECOVER (optional). |
| INSN_RETURN/INSN_RECOVER_RETURN (required). */ |
| |
| /* Helper function for analyzing the given 32-bit INSN. If CACHE is non-NULL, |
| the necessary information will be recorded. */ |
| |
| static inline int |
| nds32_analyze_epilogue_insn32 (int abi_use_fpr, uint32_t insn, |
| struct nds32_frame_cache *cache) |
| { |
| if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_SP, 0) |
| && N32_IMM15S (insn) > 0) |
| /* addi $sp, $sp, imm15s */ |
| return INSN_RESET_SP; |
| else if (CHOP_BITS (insn, 15) == N32_TYPE2 (ADDI, REG_SP, REG_FP, 0) |
| && N32_IMM15S (insn) < 0) |
| /* addi $sp, $fp, imm15s */ |
| return INSN_RESET_SP; |
| else if ((insn & ~(__MASK (19) << 6)) == N32_LMW_BIM |
| && N32_RA5 (insn) == REG_SP) |
| { |
| /* lmw.bim Rb, [$sp], Re, enable4 */ |
| if (cache != NULL) |
| nds32_pop_multiple_words (cache, N32_RT5 (insn), |
| N32_RB5 (insn), N32_LSMW_ENABLE4 (insn)); |
| |
| return INSN_RECOVER; |
| } |
| else if (insn == N32_JREG (JR, 0, REG_LP, 0, 1)) |
| /* ret $lp */ |
| return INSN_RETURN; |
| else if (insn == N32_ALU1 (ADD, REG_SP, REG_SP, REG_TA) |
| || insn == N32_ALU1 (ADD, REG_SP, REG_TA, REG_SP)) |
| /* add $sp, $sp, $ta */ |
| /* add $sp, $ta, $sp */ |
| return INSN_RESET_SP; |
| else if (abi_use_fpr |
| && (insn & ~(__MASK (5) << 20 | __MASK (13))) == N32_FLDI_SP) |
| { |
| if (__GF (insn, 12, 1) == 0) |
| /* fldi FDt, [$sp + (imm12s << 2)] */ |
| return INSN_RECOVER; |
| else |
| { |
| /* fldi.bi FDt, [$sp], (imm12s << 2) */ |
| int offset = N32_IMM12S (insn) << 2; |
| |
| if (offset == 8 || offset == 12) |
| { |
| if (cache != NULL) |
| cache->sp_offset += offset; |
| |
| return INSN_RECOVER; |
| } |
| } |
| } |
| |
| return INSN_NORMAL; |
| } |
| |
| /* Helper function for analyzing the given 16-bit INSN. If CACHE is non-NULL, |
| the necessary information will be recorded. */ |
| |
| static inline int |
| nds32_analyze_epilogue_insn16 (uint32_t insn, struct nds32_frame_cache *cache) |
| { |
| if (insn == N16_TYPE5 (RET5, REG_LP)) |
| /* ret5 $lp */ |
| return INSN_RETURN; |
| else if (CHOP_BITS (insn, 10) == N16_TYPE10 (ADDI10S, 0)) |
| { |
| /* addi10s.sp */ |
| int imm10s = N16_IMM10S (insn); |
| |
| if (imm10s > 0) |
| { |
| if (cache != NULL) |
| cache->sp_offset += imm10s; |
| |
| return INSN_RECOVER; |
| } |
| } |
| else if (__GF (insn, 7, 8) == N16_T25_POP25) |
| { |
| /* pop25 */ |
| if (cache != NULL) |
| { |
| int imm8u = (insn & 0x1f) << 3; |
| int re = (insn >> 5) & 0x3; |
| const int reg_map[] = { 6, 8, 10, 14 }; |
| |
| /* Operation 1 -- sp = sp + (imm5u << 3) */ |
| cache->sp_offset += imm8u; |
| |
| /* Operation 2 -- lmw.bim R6, [$sp], Re, #0xe */ |
| nds32_pop_multiple_words (cache, 6, reg_map[re], 0xe); |
| } |
| |
| /* Operation 3 -- ret $lp */ |
| return INSN_RECOVER_RETURN; |
| } |
| |
| return INSN_NORMAL; |
| } |
| |
| /* Analyze a reasonable amount of instructions from the given PC to find |
| the instruction used to return to the caller. Return 1 if the 'return' |
| instruction could be found, 0 otherwise. |
| |
| If CACHE is non-NULL, fill it in. */ |
| |
| static int |
| nds32_analyze_epilogue (struct gdbarch *gdbarch, CORE_ADDR pc, |
| struct nds32_frame_cache *cache) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| CORE_ADDR limit_pc; |
| uint32_t insn, insn_len; |
| int insn_type = INSN_NORMAL; |
| |
| if (abi_use_fpr) |
| limit_pc = pc + 48; |
| else |
| limit_pc = pc + 16; |
| |
| for (; pc < limit_pc; pc += insn_len) |
| { |
| insn = read_memory_unsigned_integer (pc, 4, BFD_ENDIAN_BIG); |
| |
| if ((insn & 0x80000000) == 0) |
| { |
| /* 32-bit instruction */ |
| insn_len = 4; |
| |
| insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, cache); |
| if (insn_type == INSN_RETURN) |
| return 1; |
| else if (insn_type == INSN_RECOVER) |
| continue; |
| } |
| else |
| { |
| /* 16-bit instruction */ |
| insn_len = 2; |
| |
| insn >>= 16; |
| insn_type = nds32_analyze_epilogue_insn16 (insn, cache); |
| if (insn_type == INSN_RETURN || insn_type == INSN_RECOVER_RETURN) |
| return 1; |
| else if (insn_type == INSN_RECOVER) |
| continue; |
| } |
| |
| /* Stop the scan if this is an unexpected instruction. */ |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Implement the "stack_frame_destroyed_p" gdbarch method. */ |
| |
| static int |
| nds32_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| int insn_type = INSN_NORMAL; |
| int ret_found = 0; |
| uint32_t insn; |
| |
| insn = read_memory_unsigned_integer (addr, 4, BFD_ENDIAN_BIG); |
| |
| if ((insn & 0x80000000) == 0) |
| { |
| /* 32-bit instruction */ |
| |
| insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL); |
| } |
| else |
| { |
| /* 16-bit instruction */ |
| |
| insn >>= 16; |
| insn_type = nds32_analyze_epilogue_insn16 (insn, NULL); |
| } |
| |
| if (insn_type == INSN_NORMAL || insn_type == INSN_RESET_SP) |
| return 0; |
| |
| /* Search the required 'return' instruction within the following reasonable |
| instructions. */ |
| ret_found = nds32_analyze_epilogue (gdbarch, addr, NULL); |
| if (ret_found == 0) |
| return 0; |
| |
| /* Scan backwards to make sure that the last instruction has adjusted |
| stack. Both a 16-bit and a 32-bit instruction will be tried. This is |
| just a heuristic, so the false positives will be acceptable. */ |
| insn = read_memory_unsigned_integer (addr - 2, 4, BFD_ENDIAN_BIG); |
| |
| /* Only 16-bit instructions are possible at addr - 2. */ |
| if ((insn & 0x80000000) != 0) |
| { |
| /* This may be a 16-bit instruction or part of a 32-bit instruction. */ |
| |
| insn_type = nds32_analyze_epilogue_insn16 (insn >> 16, NULL); |
| if (insn_type == INSN_RECOVER) |
| return 1; |
| } |
| |
| insn = read_memory_unsigned_integer (addr - 4, 4, BFD_ENDIAN_BIG); |
| |
| /* If this is a 16-bit instruction at addr - 4, then there must be another |
| 16-bit instruction at addr - 2, so only 32-bit instructions need to |
| be analyzed here. */ |
| if ((insn & 0x80000000) == 0) |
| { |
| /* This may be a 32-bit instruction or part of a 32-bit instruction. */ |
| |
| insn_type = nds32_analyze_epilogue_insn32 (abi_use_fpr, insn, NULL); |
| if (insn_type == INSN_RECOVER || insn_type == INSN_RESET_SP) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Implement the "sniffer" frame_unwind method. */ |
| |
| static int |
| nds32_epilogue_frame_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, void **this_cache) |
| { |
| if (frame_relative_level (this_frame) == 0) |
| return nds32_stack_frame_destroyed_p (get_frame_arch (this_frame), |
| get_frame_pc (this_frame)); |
| else |
| return 0; |
| } |
| |
| /* Allocate and fill in *THIS_CACHE with information needed to unwind |
| *THIS_FRAME within epilogue. Do not do this if *THIS_CACHE was already |
| allocated. Return a pointer to the current nds32_frame_cache in |
| *THIS_CACHE. */ |
| |
| static struct nds32_frame_cache * |
| nds32_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct nds32_frame_cache *cache; |
| CORE_ADDR current_pc, current_sp; |
| int i; |
| |
| if (*this_cache) |
| return (struct nds32_frame_cache *) *this_cache; |
| |
| cache = nds32_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| cache->pc = get_frame_func (this_frame); |
| current_pc = get_frame_pc (this_frame); |
| nds32_analyze_epilogue (gdbarch, current_pc, cache); |
| |
| current_sp = get_frame_register_unsigned (this_frame, NDS32_SP_REGNUM); |
| cache->prev_sp = current_sp + cache->sp_offset; |
| |
| /* Adjust all the saved registers such that they contain addresses |
| instead of offsets. */ |
| for (i = 0; i < NDS32_NUM_SAVED_REGS; i++) |
| if (cache->saved_regs[i] != REG_UNAVAIL) |
| cache->saved_regs[i] = current_sp + cache->saved_regs[i]; |
| |
| return cache; |
| } |
| |
| /* Implement the "this_id" frame_unwind method. */ |
| |
| static void |
| nds32_epilogue_frame_this_id (struct frame_info *this_frame, |
| void **this_cache, struct frame_id *this_id) |
| { |
| struct nds32_frame_cache *cache |
| = nds32_epilogue_frame_cache (this_frame, this_cache); |
| |
| /* This marks the outermost frame. */ |
| if (cache->prev_sp == 0) |
| return; |
| |
| *this_id = frame_id_build (cache->prev_sp, cache->pc); |
| } |
| |
| /* Implement the "prev_register" frame_unwind method. */ |
| |
| static struct value * |
| nds32_epilogue_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct nds32_frame_cache *cache |
| = nds32_epilogue_frame_cache (this_frame, this_cache); |
| |
| if (regnum == NDS32_SP_REGNUM) |
| return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp); |
| |
| /* The PC of the previous frame is stored in the LP register of |
| the current frame. */ |
| if (regnum == NDS32_PC_REGNUM) |
| regnum = NDS32_LP_REGNUM; |
| |
| if (regnum < NDS32_NUM_SAVED_REGS && cache->saved_regs[regnum] != REG_UNAVAIL) |
| return frame_unwind_got_memory (this_frame, regnum, |
| cache->saved_regs[regnum]); |
| |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| |
| static const struct frame_unwind nds32_epilogue_frame_unwind = |
| { |
| "nds32 epilogue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| nds32_epilogue_frame_this_id, |
| nds32_epilogue_frame_prev_register, |
| NULL, |
| nds32_epilogue_frame_sniffer |
| }; |
| |
| |
| /* Floating type and struct type that has only one floating type member |
| can pass value using FPU registers (when FPU ABI is used). */ |
| |
| static int |
| nds32_check_calling_use_fpr (struct type *type) |
| { |
| struct type *t; |
| enum type_code typecode; |
| |
| t = type; |
| while (1) |
| { |
| t = check_typedef (t); |
| typecode = t->code (); |
| if (typecode != TYPE_CODE_STRUCT) |
| break; |
| else if (t->num_fields () != 1) |
| return 0; |
| else |
| t = t->field (0).type (); |
| } |
| |
| return typecode == TYPE_CODE_FLT; |
| } |
| |
| /* Implement the "push_dummy_call" gdbarch method. */ |
| |
| static CORE_ADDR |
| nds32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| const int REND = 6; /* End for register offset. */ |
| int goff = 0; /* Current gpr offset for argument. */ |
| int foff = 0; /* Current fpr offset for argument. */ |
| int soff = 0; /* Current stack offset for argument. */ |
| int i; |
| ULONGEST regval; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| struct type *func_type = value_type (function); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| int abi_split = nds32_abi_split (tdep->elf_abi); |
| |
| /* Set the return address. For the NDS32, the return breakpoint is |
| always at BP_ADDR. */ |
| regcache_cooked_write_unsigned (regcache, NDS32_LP_REGNUM, bp_addr); |
| |
| /* If STRUCT_RETURN is true, then the struct return address (in |
| STRUCT_ADDR) will consume the first argument-passing register. |
| Both adjust the register count and store that value. */ |
| if (return_method == return_method_struct) |
| { |
| regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, struct_addr); |
| goff++; |
| } |
| |
| /* Now make sure there's space on the stack */ |
| for (i = 0; i < nargs; i++) |
| { |
| struct type *type = value_type (args[i]); |
| int align = type_align (type); |
| |
| /* If align is zero, it may be an empty struct. |
| Just ignore the argument of empty struct. */ |
| if (align == 0) |
| continue; |
| |
| sp -= TYPE_LENGTH (type); |
| sp = align_down (sp, align); |
| } |
| |
| /* Stack must be 8-byte aligned. */ |
| sp = align_down (sp, 8); |
| |
| soff = 0; |
| for (i = 0; i < nargs; i++) |
| { |
| const gdb_byte *val; |
| int align, len; |
| struct type *type; |
| int calling_use_fpr; |
| int use_fpr = 0; |
| |
| type = value_type (args[i]); |
| calling_use_fpr = nds32_check_calling_use_fpr (type); |
| len = TYPE_LENGTH (type); |
| align = type_align (type); |
| val = value_contents (args[i]).data (); |
| |
| /* The size of a composite type larger than 4 bytes will be rounded |
| up to the nearest multiple of 4. */ |
| if (len > 4) |
| len = align_up (len, 4); |
| |
| /* Variadic functions are handled differently between AABI and ABI2FP+. |
| |
| For AABI, the caller pushes arguments in registers, callee stores |
| unnamed arguments in stack, and then va_arg fetch arguments in stack. |
| Therefore, we don't have to handle variadic functions specially. |
| |
| For ABI2FP+, the caller pushes only named arguments in registers |
| and pushes all unnamed arguments in stack. */ |
| |
| if (abi_use_fpr && func_type->has_varargs () |
| && i >= func_type->num_fields ()) |
| goto use_stack; |
| |
| /* Try to use FPRs to pass arguments only when |
| 1. The program is built using toolchain with FPU support. |
| 2. The type of this argument can use FPR to pass value. */ |
| use_fpr = abi_use_fpr && calling_use_fpr; |
| |
| if (use_fpr) |
| { |
| if (tdep->fpu_freg == -1) |
| goto error_no_fpr; |
| |
| /* Adjust alignment. */ |
| if ((align >> 2) > 0) |
| foff = align_up (foff, align >> 2); |
| |
| if (foff < REND) |
| { |
| switch (len) |
| { |
| case 4: |
| regcache->cooked_write (tdep->fs0_regnum + foff, val); |
| foff++; |
| break; |
| case 8: |
| regcache->cooked_write (NDS32_FD0_REGNUM + (foff >> 1), val); |
| foff += 2; |
| break; |
| default: |
| /* Long double? */ |
| internal_error (__FILE__, __LINE__, |
| "Do not know how to handle %d-byte double.\n", |
| len); |
| break; |
| } |
| continue; |
| } |
| } |
| else |
| { |
| /* |
| When passing arguments using GPRs, |
| |
| * A composite type not larger than 4 bytes is passed in $rN. |
| The format is as if the value is loaded with load instruction |
| of corresponding size (e.g., LB, LH, LW). |
| |
| For example, |
| |
| r0 |
| 31 0 |
| LITTLE: [x x b a] |
| BIG: [x x a b] |
| |
| * Otherwise, a composite type is passed in consecutive registers. |
| The size is rounded up to the nearest multiple of 4. |
| The successive registers hold the parts of the argument as if |
| were loaded using lmw instructions. |
| |
| For example, |
| |
| r0 r1 |
| 31 0 31 0 |
| LITTLE: [d c b a] [x x x e] |
| BIG: [a b c d] [e x x x] |
| */ |
| |
| /* Adjust alignment. */ |
| if ((align >> 2) > 0) |
| goff = align_up (goff, align >> 2); |
| |
| if (len <= (REND - goff) * 4) |
| { |
| /* This argument can be passed wholly via GPRs. */ |
| while (len > 0) |
| { |
| regval = extract_unsigned_integer (val, (len > 4) ? 4 : len, |
| byte_order); |
| regcache_cooked_write_unsigned (regcache, |
| NDS32_R0_REGNUM + goff, |
| regval); |
| len -= 4; |
| val += 4; |
| goff++; |
| } |
| continue; |
| } |
| else if (abi_split) |
| { |
| /* Some parts of this argument can be passed via GPRs. */ |
| while (goff < REND) |
| { |
| regval = extract_unsigned_integer (val, (len > 4) ? 4 : len, |
| byte_order); |
| regcache_cooked_write_unsigned (regcache, |
| NDS32_R0_REGNUM + goff, |
| regval); |
| len -= 4; |
| val += 4; |
| goff++; |
| } |
| } |
| } |
| |
| use_stack: |
| /* |
| When pushing (split parts of) an argument into stack, |
| |
| * A composite type not larger than 4 bytes is copied to different |
| base address. |
| In little-endian, the first byte of this argument is aligned |
| at the low address of the next free word. |
| In big-endian, the last byte of this argument is aligned |
| at the high address of the next free word. |
| |
| For example, |
| |
| sp [ - ] [ c ] hi |
| [ c ] [ b ] |
| [ b ] [ a ] |
| [ a ] [ - ] lo |
| LITTLE BIG |
| */ |
| |
| /* Adjust alignment. */ |
| soff = align_up (soff, align); |
| |
| while (len > 0) |
| { |
| int rlen = (len > 4) ? 4 : len; |
| |
| if (byte_order == BFD_ENDIAN_BIG) |
| write_memory (sp + soff + 4 - rlen, val, rlen); |
| else |
| write_memory (sp + soff, val, rlen); |
| |
| len -= 4; |
| val += 4; |
| soff += 4; |
| } |
| } |
| |
| /* Finally, update the SP register. */ |
| regcache_cooked_write_unsigned (regcache, NDS32_SP_REGNUM, sp); |
| |
| return sp; |
| |
| error_no_fpr: |
| /* If use_fpr, but no floating-point register exists, |
| then it is an error. */ |
| error (_("Fail to call. FPU registers are required.")); |
| } |
| |
| /* Read, for architecture GDBARCH, a function return value of TYPE |
| from REGCACHE, and copy that into VALBUF. */ |
| |
| static void |
| nds32_extract_return_value (struct gdbarch *gdbarch, struct type *type, |
| struct regcache *regcache, gdb_byte *valbuf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| int calling_use_fpr; |
| int len; |
| |
| calling_use_fpr = nds32_check_calling_use_fpr (type); |
| len = TYPE_LENGTH (type); |
| |
| if (abi_use_fpr && calling_use_fpr) |
| { |
| if (len == 4) |
| regcache->cooked_read (tdep->fs0_regnum, valbuf); |
| else if (len == 8) |
| regcache->cooked_read (NDS32_FD0_REGNUM, valbuf); |
| else |
| internal_error (__FILE__, __LINE__, |
| _("Cannot extract return value of %d bytes " |
| "long floating-point."), len); |
| } |
| else |
| { |
| /* |
| When returning result, |
| |
| * A composite type not larger than 4 bytes is returned in $r0. |
| The format is as if the result is loaded with load instruction |
| of corresponding size (e.g., LB, LH, LW). |
| |
| For example, |
| |
| r0 |
| 31 0 |
| LITTLE: [x x b a] |
| BIG: [x x a b] |
| |
| * Otherwise, a composite type not larger than 8 bytes is returned |
| in $r0 and $r1. |
| In little-endian, the first word is loaded in $r0. |
| In big-endian, the last word is loaded in $r1. |
| |
| For example, |
| |
| r0 r1 |
| 31 0 31 0 |
| LITTLE: [d c b a] [x x x e] |
| BIG: [x x x a] [b c d e] |
| */ |
| |
| ULONGEST tmp; |
| |
| if (len < 4) |
| { |
| /* By using store_unsigned_integer we avoid having to do |
| anything special for small big-endian values. */ |
| regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp); |
| store_unsigned_integer (valbuf, len, byte_order, tmp); |
| } |
| else if (len == 4) |
| { |
| regcache->cooked_read (NDS32_R0_REGNUM, valbuf); |
| } |
| else if (len < 8) |
| { |
| int len1, len2; |
| |
| len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4; |
| len2 = len - len1; |
| |
| regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM, &tmp); |
| store_unsigned_integer (valbuf, len1, byte_order, tmp); |
| |
| regcache_cooked_read_unsigned (regcache, NDS32_R0_REGNUM + 1, &tmp); |
| store_unsigned_integer (valbuf + len1, len2, byte_order, tmp); |
| } |
| else |
| { |
| regcache->cooked_read (NDS32_R0_REGNUM, valbuf); |
| regcache->cooked_read (NDS32_R0_REGNUM + 1, valbuf + 4); |
| } |
| } |
| } |
| |
| /* Write, for architecture GDBARCH, a function return value of TYPE |
| from VALBUF into REGCACHE. */ |
| |
| static void |
| nds32_store_return_value (struct gdbarch *gdbarch, struct type *type, |
| struct regcache *regcache, const gdb_byte *valbuf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int abi_use_fpr = nds32_abi_use_fpr (tdep->elf_abi); |
| int calling_use_fpr; |
| int len; |
| |
| calling_use_fpr = nds32_check_calling_use_fpr (type); |
| len = TYPE_LENGTH (type); |
| |
| if (abi_use_fpr && calling_use_fpr) |
| { |
| if (len == 4) |
| regcache->cooked_write (tdep->fs0_regnum, valbuf); |
| else if (len == 8) |
| regcache->cooked_write (NDS32_FD0_REGNUM, valbuf); |
| else |
| internal_error (__FILE__, __LINE__, |
| _("Cannot store return value of %d bytes " |
| "long floating-point."), len); |
| } |
| else |
| { |
| ULONGEST regval; |
| |
| if (len < 4) |
| { |
| regval = extract_unsigned_integer (valbuf, len, byte_order); |
| regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval); |
| } |
| else if (len == 4) |
| { |
| regcache->cooked_write (NDS32_R0_REGNUM, valbuf); |
| } |
| else if (len < 8) |
| { |
| int len1, len2; |
| |
| len1 = byte_order == BFD_ENDIAN_BIG ? len - 4 : 4; |
| len2 = len - len1; |
| |
| regval = extract_unsigned_integer (valbuf, len1, byte_order); |
| regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM, regval); |
| |
| regval = extract_unsigned_integer (valbuf + len1, len2, byte_order); |
| regcache_cooked_write_unsigned (regcache, NDS32_R0_REGNUM + 1, |
| regval); |
| } |
| else |
| { |
| regcache->cooked_write (NDS32_R0_REGNUM, valbuf); |
| regcache->cooked_write (NDS32_R0_REGNUM + 1, valbuf + 4); |
| } |
| } |
| } |
| |
| /* Implement the "return_value" gdbarch method. |
| |
| Determine, for architecture GDBARCH, how a return value of TYPE |
| should be returned. If it is supposed to be returned in registers, |
| and READBUF is non-zero, read the appropriate value from REGCACHE, |
| and copy it into READBUF. If WRITEBUF is non-zero, write the value |
| from WRITEBUF into REGCACHE. */ |
| |
| static enum return_value_convention |
| nds32_return_value (struct gdbarch *gdbarch, struct value *func_type, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if (TYPE_LENGTH (type) > 8) |
| { |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| else |
| { |
| if (readbuf != NULL) |
| nds32_extract_return_value (gdbarch, type, regcache, readbuf); |
| if (writebuf != NULL) |
| nds32_store_return_value (gdbarch, type, regcache, writebuf); |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| } |
| |
| /* Implement the "get_longjmp_target" gdbarch method. */ |
| |
| static int |
| nds32_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) |
| { |
| gdb_byte buf[4]; |
| CORE_ADDR jb_addr; |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| jb_addr = get_frame_register_unsigned (frame, NDS32_R0_REGNUM); |
| |
| if (target_read_memory (jb_addr + 11 * 4, buf, 4)) |
| return 0; |
| |
| *pc = extract_unsigned_integer (buf, 4, byte_order); |
| return 1; |
| } |
| |
| /* Validate the given TDESC, and fixed-number some registers in it. |
| Return 0 if the given TDESC does not contain the required feature |
| or not contain required registers. */ |
| |
| static int |
| nds32_validate_tdesc_p (const struct target_desc *tdesc, |
| struct tdesc_arch_data *tdesc_data, |
| int *fpu_freg, int *use_pseudo_fsrs) |
| { |
| const struct tdesc_feature *feature; |
| int i, valid_p; |
| |
| feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.core"); |
| if (feature == NULL) |
| return 0; |
| |
| valid_p = 1; |
| /* Validate and fixed-number R0-R10. */ |
| for (i = NDS32_R0_REGNUM; i <= NDS32_R0_REGNUM + 10; i++) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data, i, |
| nds32_register_names[i]); |
| |
| /* Validate R15. */ |
| valid_p &= tdesc_unnumbered_register (feature, |
| nds32_register_names[NDS32_TA_REGNUM]); |
| |
| /* Validate and fixed-number FP, GP, LP, SP, PC. */ |
| for (i = NDS32_FP_REGNUM; i <= NDS32_PC_REGNUM; i++) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data, i, |
| nds32_register_names[i]); |
| |
| if (!valid_p) |
| return 0; |
| |
| /* Fixed-number R11-R27. */ |
| for (i = NDS32_R0_REGNUM + 11; i <= NDS32_R0_REGNUM + 27; i++) |
| tdesc_numbered_register (feature, tdesc_data, i, nds32_register_names[i]); |
| |
| feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nds32.fpu"); |
| if (feature != NULL) |
| { |
| int num_fdr_regs, num_fsr_regs, fs0_regnum, num_listed_fsr; |
| int freg = -1; |
| |
| /* Guess FPU configuration via listed registers. */ |
| if (tdesc_unnumbered_register (feature, "fd31")) |
| freg = 3; |
| else if (tdesc_unnumbered_register (feature, "fd15")) |
| freg = 2; |
| else if (tdesc_unnumbered_register (feature, "fd7")) |
| freg = 1; |
| else if (tdesc_unnumbered_register (feature, "fd3")) |
| freg = 0; |
| |
| if (freg == -1) |
| /* Required FDR is not found. */ |
| return 0; |
| else |
| *fpu_freg = freg; |
| |
| /* Validate and fixed-number required FDRs. */ |
| num_fdr_regs = num_fdr_map[freg]; |
| for (i = 0; i < num_fdr_regs; i++) |
| valid_p &= tdesc_numbered_register (feature, tdesc_data, |
| NDS32_FD0_REGNUM + i, |
| nds32_fdr_register_names[i]); |
| if (!valid_p) |
| return 0; |
| |
| /* Count the number of listed FSRs, and fixed-number them if present. */ |
| num_fsr_regs = num_fsr_map[freg]; |
| fs0_regnum = NDS32_FD0_REGNUM + num_fdr_regs; |
| num_listed_fsr = 0; |
| for (i = 0; i < num_fsr_regs; i++) |
| num_listed_fsr += tdesc_numbered_register (feature, tdesc_data, |
| fs0_regnum + i, |
| nds32_fsr_register_names[i]); |
| |
| if (num_listed_fsr == 0) |
| /* No required FSRs are listed explicitly, make them pseudo registers |
| of FDRs. */ |
| *use_pseudo_fsrs = 1; |
| else if (num_listed_fsr == num_fsr_regs) |
| /* All required FSRs are listed explicitly. */ |
| *use_pseudo_fsrs = 0; |
| else |
| /* Some required FSRs are missing. */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Initialize the current architecture based on INFO. If possible, |
| re-use an architecture from ARCHES, which is a list of |
| architectures already created during this debugging session. |
| |
| Called e.g. at program startup, when reading a core file, and when |
| reading a binary file. */ |
| |
| static struct gdbarch * |
| nds32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch *gdbarch; |
| struct gdbarch_tdep *tdep; |
| struct gdbarch_list *best_arch; |
| tdesc_arch_data_up tdesc_data; |
| const struct target_desc *tdesc = info.target_desc; |
| int elf_abi = E_NDS_ABI_AABI; |
| int fpu_freg = -1; |
| int use_pseudo_fsrs = 0; |
| int i, num_regs, maxregs; |
| |
| /* Extract the elf_flags if available. */ |
| if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) |
| elf_abi = elf_elfheader (info.abfd)->e_flags & EF_NDS_ABI; |
| |
| /* If there is already a candidate, use it. */ |
| for (best_arch = gdbarch_list_lookup_by_info (arches, &info); |
| best_arch != NULL; |
| best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) |
| { |
| struct gdbarch_tdep *idep = gdbarch_tdep (best_arch->gdbarch); |
| |
| if (idep->elf_abi != elf_abi) |
| continue; |
| |
| /* Found a match. */ |
| break; |
| } |
| |
| if (best_arch != NULL) |
| return best_arch->gdbarch; |
| |
| if (!tdesc_has_registers (tdesc)) |
| tdesc = tdesc_nds32; |
| |
| tdesc_data = tdesc_data_alloc (); |
| |
| if (!nds32_validate_tdesc_p (tdesc, tdesc_data.get (), &fpu_freg, |
| &use_pseudo_fsrs)) |
| return NULL; |
| |
| /* Allocate space for the new architecture. */ |
| tdep = XCNEW (struct gdbarch_tdep); |
| tdep->fpu_freg = fpu_freg; |
| tdep->use_pseudo_fsrs = use_pseudo_fsrs; |
| tdep->fs0_regnum = -1; |
| tdep->elf_abi = elf_abi; |
| |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| set_gdbarch_wchar_bit (gdbarch, 16); |
| set_gdbarch_wchar_signed (gdbarch, 0); |
| |
| if (fpu_freg == -1) |
| num_regs = NDS32_NUM_REGS; |
| else if (use_pseudo_fsrs == 1) |
| { |
| set_gdbarch_pseudo_register_read (gdbarch, nds32_pseudo_register_read); |
| set_gdbarch_pseudo_register_write (gdbarch, nds32_pseudo_register_write); |
| set_tdesc_pseudo_register_name (gdbarch, nds32_pseudo_register_name); |
| set_tdesc_pseudo_register_type (gdbarch, nds32_pseudo_register_type); |
| set_gdbarch_num_pseudo_regs (gdbarch, num_fsr_map[fpu_freg]); |
| |
| num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg]; |
| } |
| else |
| num_regs = NDS32_NUM_REGS + num_fdr_map[fpu_freg] + num_fsr_map[fpu_freg]; |
| |
| set_gdbarch_num_regs (gdbarch, num_regs); |
| tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data)); |
| |
| /* Cache the register number of fs0. */ |
| if (fpu_freg != -1) |
| tdep->fs0_regnum = user_reg_map_name_to_regnum (gdbarch, "fs0", -1); |
| |
| /* Add NDS32 register aliases. To avoid search in user register name space, |
| user_reg_map_name_to_regnum is not used. */ |
| maxregs = gdbarch_num_cooked_regs (gdbarch); |
| for (i = 0; i < ARRAY_SIZE (nds32_register_aliases); i++) |
| { |
| int regnum, j; |
| |
| regnum = -1; |
| /* Search register name space. */ |
| for (j = 0; j < maxregs; j++) |
| { |
| const char *regname = gdbarch_register_name (gdbarch, j); |
| |
| if (regname != NULL |
| && strcmp (regname, nds32_register_aliases[i].name) == 0) |
| { |
| regnum = j; |
| break; |
| } |
| } |
| |
| /* Try next alias entry if the given name can not be found in register |
| name space. */ |
| if (regnum == -1) |
| continue; |
| |
| user_reg_add (gdbarch, nds32_register_aliases[i].alias, |
| value_of_nds32_reg, (const void *) (intptr_t) regnum); |
| } |
| |
| nds32_add_reggroups (gdbarch); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| info.tdesc_data = tdesc_data.get (); |
| gdbarch_init_osabi (info, gdbarch); |
| |
| /* Override tdesc_register callbacks for system registers. */ |
| set_gdbarch_register_reggroup_p (gdbarch, nds32_register_reggroup_p); |
| |
| set_gdbarch_sp_regnum (gdbarch, NDS32_SP_REGNUM); |
| set_gdbarch_pc_regnum (gdbarch, NDS32_PC_REGNUM); |
| set_gdbarch_stack_frame_destroyed_p (gdbarch, nds32_stack_frame_destroyed_p); |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nds32_dwarf2_reg_to_regnum); |
| |
| set_gdbarch_push_dummy_call (gdbarch, nds32_push_dummy_call); |
| set_gdbarch_return_value (gdbarch, nds32_return_value); |
| |
| set_gdbarch_skip_prologue (gdbarch, nds32_skip_prologue); |
| set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, |
| nds32_breakpoint::kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, |
| nds32_breakpoint::bp_from_kind); |
| |
| set_gdbarch_frame_align (gdbarch, nds32_frame_align); |
| frame_base_set_default (gdbarch, &nds32_frame_base); |
| |
| /* Handle longjmp. */ |
| set_gdbarch_get_longjmp_target (gdbarch, nds32_get_longjmp_target); |
| |
| /* The order of appending is the order it check frame. */ |
| dwarf2_append_unwinders (gdbarch); |
| frame_unwind_append_unwinder (gdbarch, &nds32_epilogue_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &nds32_frame_unwind); |
| |
| return gdbarch; |
| } |
| |
| void _initialize_nds32_tdep (); |
| void |
| _initialize_nds32_tdep () |
| { |
| /* Initialize gdbarch. */ |
| register_gdbarch_init (bfd_arch_nds32, nds32_gdbarch_init); |
| |
| initialize_tdesc_nds32 (); |
| nds32_init_reggroups (); |
| } |