|  | /* Target-dependent code for Renesas M32R, for GDB. | 
|  |  | 
|  | Copyright (C) 1996-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "symtab.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "gdbcore.h" | 
|  | #include "value.h" | 
|  | #include "inferior.h" | 
|  | #include "symfile.h" | 
|  | #include "objfiles.h" | 
|  | #include "osabi.h" | 
|  | #include "language.h" | 
|  | #include "arch-utils.h" | 
|  | #include "regcache.h" | 
|  | #include "trad-frame.h" | 
|  | #include "dis-asm.h" | 
|  | #include "m32r-tdep.h" | 
|  | #include <algorithm> | 
|  |  | 
|  | /* The size of the argument registers (r0 - r3) in bytes.  */ | 
|  | #define M32R_ARG_REGISTER_SIZE 4 | 
|  |  | 
|  | /* Local functions */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | /* Align to the size of an instruction (so that they can safely be | 
|  | pushed onto the stack.  */ | 
|  | return sp & ~3; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Breakpoints | 
|  |  | 
|  | The little endian mode of M32R is unique.  In most of architectures, | 
|  | two 16-bit instructions, A and B, are placed as the following: | 
|  |  | 
|  | Big endian: | 
|  | A0 A1 B0 B1 | 
|  |  | 
|  | Little endian: | 
|  | A1 A0 B1 B0 | 
|  |  | 
|  | In M32R, they are placed like this: | 
|  |  | 
|  | Big endian: | 
|  | A0 A1 B0 B1 | 
|  |  | 
|  | Little endian: | 
|  | B1 B0 A1 A0 | 
|  |  | 
|  | This is because M32R always fetches instructions in 32-bit. | 
|  |  | 
|  | The following functions take care of this behavior.  */ | 
|  |  | 
|  | static int | 
|  | m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; | 
|  | int val; | 
|  | gdb_byte buf[4]; | 
|  | gdb_byte contents_cache[4]; | 
|  | gdb_byte bp_entry[] = { 0x10, 0xf1 };	/* dpt */ | 
|  |  | 
|  | /* Save the memory contents.  */ | 
|  | val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); | 
|  | if (val != 0) | 
|  | return val;			/* return error */ | 
|  |  | 
|  | memcpy (bp_tgt->shadow_contents, contents_cache, 4); | 
|  | bp_tgt->shadow_len = 4; | 
|  |  | 
|  | /* Determine appropriate breakpoint contents and size for this address.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | { | 
|  | if ((addr & 3) == 0) | 
|  | { | 
|  | buf[0] = bp_entry[0]; | 
|  | buf[1] = bp_entry[1]; | 
|  | buf[2] = contents_cache[2] & 0x7f; | 
|  | buf[3] = contents_cache[3]; | 
|  | } | 
|  | else | 
|  | { | 
|  | buf[0] = contents_cache[0]; | 
|  | buf[1] = contents_cache[1]; | 
|  | buf[2] = bp_entry[0]; | 
|  | buf[3] = bp_entry[1]; | 
|  | } | 
|  | } | 
|  | else				/* little-endian */ | 
|  | { | 
|  | if ((addr & 3) == 0) | 
|  | { | 
|  | buf[0] = contents_cache[0]; | 
|  | buf[1] = contents_cache[1] & 0x7f; | 
|  | buf[2] = bp_entry[1]; | 
|  | buf[3] = bp_entry[0]; | 
|  | } | 
|  | else | 
|  | { | 
|  | buf[0] = bp_entry[1]; | 
|  | buf[1] = bp_entry[0]; | 
|  | buf[2] = contents_cache[2]; | 
|  | buf[3] = contents_cache[3]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write the breakpoint.  */ | 
|  | val = target_write_memory (addr & 0xfffffffc, buf, 4); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int | 
|  | m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, | 
|  | struct bp_target_info *bp_tgt) | 
|  | { | 
|  | CORE_ADDR addr = bp_tgt->placed_address; | 
|  | int val; | 
|  | gdb_byte buf[4]; | 
|  | gdb_byte *contents_cache = bp_tgt->shadow_contents; | 
|  |  | 
|  | buf[0] = contents_cache[0]; | 
|  | buf[1] = contents_cache[1]; | 
|  | buf[2] = contents_cache[2]; | 
|  | buf[3] = contents_cache[3]; | 
|  |  | 
|  | /* Remove parallel bit.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | { | 
|  | if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) | 
|  | buf[2] &= 0x7f; | 
|  | } | 
|  | else				/* little-endian */ | 
|  | { | 
|  | if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) | 
|  | buf[1] &= 0x7f; | 
|  | } | 
|  |  | 
|  | /* Write contents.  */ | 
|  | val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | /* Implement the breakpoint_kind_from_pc gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
|  | { | 
|  | if ((*pcptr & 3) == 0) | 
|  | return 4; | 
|  | else | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | /* Implement the sw_breakpoint_from_kind gdbarch method.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
|  | { | 
|  | static gdb_byte be_bp_entry[] = { | 
|  | 0x10, 0xf1, 0x70, 0x00 | 
|  | };	/* dpt -> nop */ | 
|  | static gdb_byte le_bp_entry[] = { | 
|  | 0x00, 0x70, 0xf1, 0x10 | 
|  | };	/* dpt -> nop */ | 
|  |  | 
|  | *size = kind; | 
|  |  | 
|  | /* Determine appropriate breakpoint.  */ | 
|  | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
|  | return be_bp_entry; | 
|  | else | 
|  | { | 
|  | if (kind == 4) | 
|  | return le_bp_entry; | 
|  | else | 
|  | return le_bp_entry + 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | static const char * const m32r_register_names[] = { | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | 
|  | "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | 
|  | "evb" | 
|  | }; | 
|  |  | 
|  | static const char * | 
|  | m32r_register_name (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | static_assert (ARRAY_SIZE (m32r_register_names) == M32R_NUM_REGS); | 
|  | return m32r_register_names[reg_nr]; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return the GDB type object for the "standard" data type | 
|  | of data in register N.  */ | 
|  |  | 
|  | static struct type * | 
|  | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr == M32R_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | else | 
|  | return builtin_type (gdbarch)->builtin_int32; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Write into appropriate registers a function return value | 
|  | of type TYPE, given in virtual format. | 
|  |  | 
|  | Things always get returned in RET1_REGNUM, RET2_REGNUM.  */ | 
|  |  | 
|  | static void | 
|  | m32r_store_return_value (struct type *type, struct regcache *regcache, | 
|  | const gdb_byte *valbuf) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR regval; | 
|  | int len = type->length (); | 
|  |  | 
|  | regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | 
|  |  | 
|  | if (len > 4) | 
|  | { | 
|  | regval = extract_unsigned_integer (valbuf + 4, | 
|  | len - 4, byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This is required by skip_prologue.  The results of decoding a prologue | 
|  | should be cached because this thrashing is getting nuts.  */ | 
|  |  | 
|  | static int | 
|  | decode_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR start_pc, CORE_ADDR scan_limit, | 
|  | CORE_ADDR *pl_endptr, unsigned long *framelength) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | unsigned long framesize; | 
|  | int insn; | 
|  | int op1; | 
|  | CORE_ADDR after_prologue = 0; | 
|  | CORE_ADDR after_push = 0; | 
|  | CORE_ADDR after_stack_adjust = 0; | 
|  | CORE_ADDR current_pc; | 
|  | LONGEST return_value; | 
|  |  | 
|  | framesize = 0; | 
|  | after_prologue = 0; | 
|  |  | 
|  | for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | 
|  | { | 
|  | /* Check if current pc's location is readable.  */ | 
|  | if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) | 
|  | return -1; | 
|  |  | 
|  | insn = read_memory_unsigned_integer (current_pc, 2, byte_order); | 
|  |  | 
|  | if (insn == 0x0000) | 
|  | break; | 
|  |  | 
|  | /* If this is a 32 bit instruction, we dont want to examine its | 
|  | immediate data as though it were an instruction.  */ | 
|  | if (current_pc & 0x02) | 
|  | { | 
|  | /* Decode this instruction further.  */ | 
|  | insn &= 0x7fff; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (insn & 0x8000) | 
|  | { | 
|  | if (current_pc == scan_limit) | 
|  | scan_limit += 2;	/* extend the search */ | 
|  |  | 
|  | current_pc += 2;	/* skip the immediate data */ | 
|  |  | 
|  | /* Check if current pc's location is readable.  */ | 
|  | if (!safe_read_memory_integer (current_pc, 2, byte_order, | 
|  | &return_value)) | 
|  | return -1; | 
|  |  | 
|  | if (insn == 0x8faf)	/* add3 sp, sp, xxxx */ | 
|  | /* add 16 bit sign-extended offset */ | 
|  | { | 
|  | framesize += | 
|  | -((short) read_memory_unsigned_integer (current_pc, | 
|  | 2, byte_order)); | 
|  | } | 
|  | else | 
|  | { | 
|  | if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ | 
|  | && safe_read_memory_integer (current_pc + 2, | 
|  | 2, byte_order, | 
|  | &return_value) | 
|  | && read_memory_unsigned_integer (current_pc + 2, | 
|  | 2, byte_order) | 
|  | == 0x0f24) | 
|  | { | 
|  | /* Subtract 24 bit sign-extended negative-offset.  */ | 
|  | insn = read_memory_unsigned_integer (current_pc - 2, | 
|  | 4, byte_order); | 
|  | if (insn & 0x00800000)	/* sign extend */ | 
|  | insn |= 0xff000000;	/* negative */ | 
|  | else | 
|  | insn &= 0x00ffffff;	/* positive */ | 
|  | framesize += insn; | 
|  | } | 
|  | } | 
|  | after_push = current_pc + 2; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | op1 = insn & 0xf000;	/* Isolate just the first nibble.  */ | 
|  |  | 
|  | if ((insn & 0xf0ff) == 0x207f) | 
|  | {			/* st reg, @-sp */ | 
|  | framesize += 4; | 
|  | after_prologue = 0; | 
|  | continue; | 
|  | } | 
|  | if ((insn >> 8) == 0x4f)	/* addi sp, xx */ | 
|  | /* Add 8 bit sign-extended offset.  */ | 
|  | { | 
|  | int stack_adjust = (signed char) (insn & 0xff); | 
|  |  | 
|  | /* there are probably two of these stack adjustments: | 
|  | 1) A negative one in the prologue, and | 
|  | 2) A positive one in the epilogue. | 
|  | We are only interested in the first one.  */ | 
|  |  | 
|  | if (stack_adjust < 0) | 
|  | { | 
|  | framesize -= stack_adjust; | 
|  | after_prologue = 0; | 
|  | /* A frameless function may have no "mv fp, sp". | 
|  | In that case, this is the end of the prologue.  */ | 
|  | after_stack_adjust = current_pc + 2; | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (insn == 0x1d8f) | 
|  | {			/* mv fp, sp */ | 
|  | after_prologue = current_pc + 2; | 
|  | break;		/* end of stack adjustments */ | 
|  | } | 
|  |  | 
|  | /* Nop looks like a branch, continue explicitly.  */ | 
|  | if (insn == 0x7000) | 
|  | { | 
|  | after_prologue = current_pc + 2; | 
|  | continue;		/* nop occurs between pushes.  */ | 
|  | } | 
|  | /* End of prolog if any of these are trap instructions.  */ | 
|  | if ((insn & 0xfff0) == 0x10f0) | 
|  | { | 
|  | after_prologue = current_pc; | 
|  | break; | 
|  | } | 
|  | /* End of prolog if any of these are branch instructions.  */ | 
|  | if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | 
|  | { | 
|  | after_prologue = current_pc; | 
|  | continue; | 
|  | } | 
|  | /* Some of the branch instructions are mixed with other types.  */ | 
|  | if (op1 == 0x1000) | 
|  | { | 
|  | int subop = insn & 0x0ff0; | 
|  | if ((subop == 0x0ec0) || (subop == 0x0fc0)) | 
|  | { | 
|  | after_prologue = current_pc; | 
|  | continue;		/* jmp , jl */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (framelength) | 
|  | *framelength = framesize; | 
|  |  | 
|  | if (current_pc >= scan_limit) | 
|  | { | 
|  | if (pl_endptr) | 
|  | { | 
|  | if (after_stack_adjust != 0) | 
|  | /* We did not find a "mv fp,sp", but we DID find | 
|  | a stack_adjust.  Is it safe to use that as the | 
|  | end of the prologue?  I just don't know.  */ | 
|  | { | 
|  | *pl_endptr = after_stack_adjust; | 
|  | } | 
|  | else if (after_push != 0) | 
|  | /* We did not find a "mv fp,sp", but we DID find | 
|  | a push.  Is it safe to use that as the | 
|  | end of the prologue?  I just don't know.  */ | 
|  | { | 
|  | *pl_endptr = after_push; | 
|  | } | 
|  | else | 
|  | /* We reached the end of the loop without finding the end | 
|  | of the prologue.  No way to win -- we should report | 
|  | failure.  The way we do that is to return the original | 
|  | start_pc.  GDB will set a breakpoint at the start of | 
|  | the function (etc.)  */ | 
|  | *pl_endptr = start_pc; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (after_prologue == 0) | 
|  | after_prologue = current_pc; | 
|  |  | 
|  | if (pl_endptr) | 
|  | *pl_endptr = after_prologue; | 
|  |  | 
|  | return 0; | 
|  | }				/*  decode_prologue */ | 
|  |  | 
|  | /* Function: skip_prologue | 
|  | Find end of function prologue.  */ | 
|  |  | 
|  | #define DEFAULT_SEARCH_LIMIT 128 | 
|  |  | 
|  | static CORE_ADDR | 
|  | m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR func_addr, func_end; | 
|  | struct symtab_and_line sal; | 
|  | LONGEST return_value; | 
|  |  | 
|  | /* See what the symbol table says.  */ | 
|  |  | 
|  | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
|  | { | 
|  | sal = find_pc_line (func_addr, 0); | 
|  |  | 
|  | if (sal.line != 0 && sal.end <= func_end) | 
|  | { | 
|  | func_end = sal.end; | 
|  | } | 
|  | else | 
|  | /* Either there's no line info, or the line after the prologue is after | 
|  | the end of the function.  In this case, there probably isn't a | 
|  | prologue.  */ | 
|  | { | 
|  | func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | 
|  | } | 
|  | } | 
|  | else | 
|  | func_end = pc + DEFAULT_SEARCH_LIMIT; | 
|  |  | 
|  | /* If pc's location is not readable, just quit.  */ | 
|  | if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) | 
|  | return pc; | 
|  |  | 
|  | /* Find the end of prologue.  */ | 
|  | if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) | 
|  | return pc; | 
|  |  | 
|  | return sal.end; | 
|  | } | 
|  |  | 
|  | struct m32r_unwind_cache | 
|  | { | 
|  | /* The previous frame's inner most stack address.  Used as this | 
|  | frame ID's stack_addr.  */ | 
|  | CORE_ADDR prev_sp; | 
|  | /* The frame's base, optionally used by the high-level debug info.  */ | 
|  | CORE_ADDR base; | 
|  | int size; | 
|  | /* How far the SP and r13 (FP) have been offset from the start of | 
|  | the stack frame (as defined by the previous frame's stack | 
|  | pointer).  */ | 
|  | LONGEST sp_offset; | 
|  | LONGEST r13_offset; | 
|  | int uses_frame; | 
|  | /* Table indicating the location of each and every register.  */ | 
|  | trad_frame_saved_reg *saved_regs; | 
|  | }; | 
|  |  | 
|  | /* Put here the code to store, into fi->saved_regs, the addresses of | 
|  | the saved registers of frame described by FRAME_INFO.  This | 
|  | includes special registers such as pc and fp saved in special ways | 
|  | in the stack frame.  sp is even more special: the address we return | 
|  | for it IS the sp for the next frame.  */ | 
|  |  | 
|  | static struct m32r_unwind_cache * | 
|  | m32r_frame_unwind_cache (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR pc, scan_limit; | 
|  | ULONGEST prev_sp; | 
|  | ULONGEST this_base; | 
|  | unsigned long op; | 
|  | int i; | 
|  | struct m32r_unwind_cache *info; | 
|  |  | 
|  |  | 
|  | if ((*this_prologue_cache)) | 
|  | return (struct m32r_unwind_cache *) (*this_prologue_cache); | 
|  |  | 
|  | info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | 
|  | (*this_prologue_cache) = info; | 
|  | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
|  |  | 
|  | info->size = 0; | 
|  | info->sp_offset = 0; | 
|  | info->uses_frame = 0; | 
|  |  | 
|  | scan_limit = get_frame_pc (this_frame); | 
|  | for (pc = get_frame_func (this_frame); | 
|  | pc > 0 && pc < scan_limit; pc += 2) | 
|  | { | 
|  | if ((pc & 2) == 0) | 
|  | { | 
|  | op = get_frame_memory_unsigned (this_frame, pc, 4); | 
|  | if ((op & 0x80000000) == 0x80000000) | 
|  | { | 
|  | /* 32-bit instruction */ | 
|  | if ((op & 0xffff0000) == 0x8faf0000) | 
|  | { | 
|  | /* add3 sp,sp,xxxx */ | 
|  | short n = op & 0xffff; | 
|  | info->sp_offset += n; | 
|  | } | 
|  | else if (((op >> 8) == 0xe4) | 
|  | && get_frame_memory_unsigned (this_frame, pc + 2, | 
|  | 2) == 0x0f24) | 
|  | { | 
|  | /* ld24 r4, xxxxxx; sub sp, r4 */ | 
|  | unsigned long n = op & 0xffffff; | 
|  | info->sp_offset += n; | 
|  | pc += 2;	/* skip sub instruction */ | 
|  | } | 
|  |  | 
|  | if (pc == scan_limit) | 
|  | scan_limit += 2;	/* extend the search */ | 
|  | pc += 2;		/* skip the immediate data */ | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* 16-bit instructions */ | 
|  | op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; | 
|  | if ((op & 0xf0ff) == 0x207f) | 
|  | { | 
|  | /* st rn, @-sp */ | 
|  | int regno = ((op >> 8) & 0xf); | 
|  | info->sp_offset -= 4; | 
|  | info->saved_regs[regno].set_addr (info->sp_offset); | 
|  | } | 
|  | else if ((op & 0xff00) == 0x4f00) | 
|  | { | 
|  | /* addi sp, xx */ | 
|  | int n = (signed char) (op & 0xff); | 
|  | info->sp_offset += n; | 
|  | } | 
|  | else if (op == 0x1d8f) | 
|  | { | 
|  | /* mv fp, sp */ | 
|  | info->uses_frame = 1; | 
|  | info->r13_offset = info->sp_offset; | 
|  | break;		/* end of stack adjustments */ | 
|  | } | 
|  | else if ((op & 0xfff0) == 0x10f0) | 
|  | { | 
|  | /* End of prologue if this is a trap instruction.  */ | 
|  | break;		/* End of stack adjustments.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | info->size = -info->sp_offset; | 
|  |  | 
|  | /* Compute the previous frame's stack pointer (which is also the | 
|  | frame's ID's stack address), and this frame's base pointer.  */ | 
|  | if (info->uses_frame) | 
|  | { | 
|  | /* The SP was moved to the FP.  This indicates that a new frame | 
|  | was created.  Get THIS frame's FP value by unwinding it from | 
|  | the next frame.  */ | 
|  | this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); | 
|  | /* The FP points at the last saved register.  Adjust the FP back | 
|  | to before the first saved register giving the SP.  */ | 
|  | prev_sp = this_base + info->size; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Assume that the FP is this frame's SP but with that pushed | 
|  | stack space added back.  */ | 
|  | this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); | 
|  | prev_sp = this_base + info->size; | 
|  | } | 
|  |  | 
|  | /* Convert that SP/BASE into real addresses.  */ | 
|  | info->prev_sp = prev_sp; | 
|  | info->base = this_base; | 
|  |  | 
|  | /* Adjust all the saved registers so that they contain addresses and | 
|  | not offsets.  */ | 
|  | for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) | 
|  | if (info->saved_regs[i].is_addr ()) | 
|  | info->saved_regs[i].set_addr (info->prev_sp | 
|  | + info->saved_regs[i].addr ()); | 
|  |  | 
|  | /* The call instruction moves the caller's PC in the callee's LR. | 
|  | Since this is an unwind, do the reverse.  Copy the location of LR | 
|  | into PC (the address / regnum) so that a request for PC will be | 
|  | converted into a request for the LR.  */ | 
|  | info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | 
|  |  | 
|  | /* The previous frame's SP needed to be computed.  Save the computed | 
|  | value.  */ | 
|  | info->saved_regs[M32R_SP_REGNUM].set_value (prev_sp); | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | 
|  | struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int stack_offset, stack_alloc; | 
|  | int argreg = ARG1_REGNUM; | 
|  | int argnum; | 
|  | struct type *type; | 
|  | enum type_code typecode; | 
|  | CORE_ADDR regval; | 
|  | gdb_byte *val; | 
|  | gdb_byte valbuf[M32R_ARG_REGISTER_SIZE]; | 
|  | int len; | 
|  |  | 
|  | /* First force sp to a 4-byte alignment.  */ | 
|  | sp = sp & ~3; | 
|  |  | 
|  | /* Set the return address.  For the m32r, the return breakpoint is | 
|  | always at BP_ADDR.  */ | 
|  | regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | 
|  |  | 
|  | /* If STRUCT_RETURN is true, then the struct return address (in | 
|  | STRUCT_ADDR) will consume the first argument-passing register. | 
|  | Both adjust the register count and store that value.  */ | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | 
|  | argreg++; | 
|  | } | 
|  |  | 
|  | /* Now make sure there's space on the stack.  */ | 
|  | for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | 
|  | stack_alloc += ((args[argnum]->type ()->length () + 3) & ~3); | 
|  | sp -= stack_alloc;		/* Make room on stack for args.  */ | 
|  |  | 
|  | for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | 
|  | { | 
|  | type = args[argnum]->type (); | 
|  | typecode = type->code (); | 
|  | len = type->length (); | 
|  |  | 
|  | memset (valbuf, 0, sizeof (valbuf)); | 
|  |  | 
|  | /* Passes structures that do not fit in 2 registers by reference.  */ | 
|  | if (len > 8 | 
|  | && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | 
|  | { | 
|  | store_unsigned_integer (valbuf, 4, byte_order, | 
|  | args[argnum]->address ()); | 
|  | typecode = TYPE_CODE_PTR; | 
|  | len = 4; | 
|  | val = valbuf; | 
|  | } | 
|  | else if (len < 4) | 
|  | { | 
|  | /* Value gets right-justified in the register or stack word.  */ | 
|  | memcpy (valbuf + (register_size (gdbarch, argreg) - len), | 
|  | (gdb_byte *) args[argnum]->contents ().data (), len); | 
|  | val = valbuf; | 
|  | } | 
|  | else | 
|  | val = (gdb_byte *) args[argnum]->contents ().data (); | 
|  |  | 
|  | while (len > 0) | 
|  | { | 
|  | if (argreg > ARGN_REGNUM) | 
|  | { | 
|  | /* Must go on the stack.  */ | 
|  | write_memory (sp + stack_offset, val, 4); | 
|  | stack_offset += 4; | 
|  | } | 
|  | else if (argreg <= ARGN_REGNUM) | 
|  | { | 
|  | /* There's room in a register.  */ | 
|  | regval = | 
|  | extract_unsigned_integer (val, | 
|  | register_size (gdbarch, argreg), | 
|  | byte_order); | 
|  | regcache_cooked_write_unsigned (regcache, argreg++, regval); | 
|  | } | 
|  |  | 
|  | /* Store the value 4 bytes at a time.  This means that things | 
|  | larger than 4 bytes may go partly in registers and partly | 
|  | on the stack.  */ | 
|  | len -= register_size (gdbarch, argreg); | 
|  | val += register_size (gdbarch, argreg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Finally, update the SP register.  */ | 
|  | regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | 
|  |  | 
|  | return sp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Given a return value in `regbuf' with a type `valtype', | 
|  | extract and copy its value into `valbuf'.  */ | 
|  |  | 
|  | static void | 
|  | m32r_extract_return_value (struct type *type, struct regcache *regcache, | 
|  | gdb_byte *dst) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int len = type->length (); | 
|  | ULONGEST tmp; | 
|  |  | 
|  | /* By using store_unsigned_integer we avoid having to do | 
|  | anything special for small big-endian values.  */ | 
|  | regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | 
|  | store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); | 
|  |  | 
|  | /* Ignore return values more than 8 bytes in size because the m32r | 
|  | returns anything more than 8 bytes in the stack.  */ | 
|  | if (len > 4) | 
|  | { | 
|  | regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | 
|  | store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static enum return_value_convention | 
|  | m32r_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *valtype, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | if (valtype->length () > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  | else | 
|  | { | 
|  | if (readbuf != NULL) | 
|  | m32r_extract_return_value (valtype, regcache, readbuf); | 
|  | if (writebuf != NULL) | 
|  | m32r_store_return_value (valtype, regcache, writebuf); | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Given a GDB frame, determine the address of the calling function's | 
|  | frame.  This will be used to create a new GDB frame struct.  */ | 
|  |  | 
|  | static void | 
|  | m32r_frame_this_id (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache, struct frame_id *this_id) | 
|  | { | 
|  | struct m32r_unwind_cache *info | 
|  | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  | CORE_ADDR base; | 
|  | CORE_ADDR func; | 
|  | struct frame_id id; | 
|  |  | 
|  | /* The FUNC is easy.  */ | 
|  | func = get_frame_func (this_frame); | 
|  |  | 
|  | /* Check if the stack is empty.  */ | 
|  | bound_minimal_symbol msym_stack | 
|  | = lookup_minimal_symbol (current_program_space, "_stack"); | 
|  | if (msym_stack.minsym && info->base == msym_stack.value_address ()) | 
|  | return; | 
|  |  | 
|  | /* Hopefully the prologue analysis either correctly determined the | 
|  | frame's base (which is the SP from the previous frame), or set | 
|  | that base to "NULL".  */ | 
|  | base = info->prev_sp; | 
|  | if (base == 0) | 
|  | return; | 
|  |  | 
|  | id = frame_id_build (base, func); | 
|  | (*this_id) = id; | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | m32r_frame_prev_register (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct m32r_unwind_cache *info | 
|  | = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind_legacy m32r_frame_unwind ( | 
|  | "m32r prologue", | 
|  | NORMAL_FRAME, | 
|  | FRAME_UNWIND_ARCH, | 
|  | default_frame_unwind_stop_reason, | 
|  | m32r_frame_this_id, | 
|  | m32r_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | ); | 
|  |  | 
|  | static CORE_ADDR | 
|  | m32r_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct m32r_unwind_cache *info | 
|  | = m32r_frame_unwind_cache (this_frame, this_cache); | 
|  | return info->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base m32r_frame_base = { | 
|  | &m32r_frame_unwind, | 
|  | m32r_frame_base_address, | 
|  | m32r_frame_base_address, | 
|  | m32r_frame_base_address | 
|  | }; | 
|  |  | 
|  | static gdbarch_init_ftype m32r_gdbarch_init; | 
|  |  | 
|  | static struct gdbarch * | 
|  | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | /* If there is already a candidate, use it.  */ | 
|  | arches = gdbarch_list_lookup_by_info (arches, &info); | 
|  | if (arches != NULL) | 
|  | return arches->gdbarch; | 
|  |  | 
|  | /* Allocate space for the new architecture.  */ | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new m32r_gdbarch_tdep)); | 
|  |  | 
|  | set_gdbarch_wchar_bit (gdbarch, 16); | 
|  | set_gdbarch_wchar_signed (gdbarch, 0); | 
|  |  | 
|  | set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); | 
|  | set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); | 
|  | set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); | 
|  | set_gdbarch_register_name (gdbarch, m32r_register_name); | 
|  | set_gdbarch_register_type (gdbarch, m32r_register_type); | 
|  |  | 
|  | set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); | 
|  | set_gdbarch_return_value (gdbarch, m32r_return_value); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind); | 
|  | set_gdbarch_memory_insert_breakpoint (gdbarch, | 
|  | m32r_memory_insert_breakpoint); | 
|  | set_gdbarch_memory_remove_breakpoint (gdbarch, | 
|  | m32r_memory_remove_breakpoint); | 
|  |  | 
|  | set_gdbarch_frame_align (gdbarch, m32r_frame_align); | 
|  |  | 
|  | frame_base_set_default (gdbarch, &m32r_frame_base); | 
|  |  | 
|  | /* Hook in ABI-specific overrides, if they have been registered.  */ | 
|  | gdbarch_init_osabi (info, gdbarch); | 
|  |  | 
|  | /* Hook in the default unwinders.  */ | 
|  | frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); | 
|  |  | 
|  | /* Support simple overlay manager.  */ | 
|  | set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | void _initialize_m32r_tdep (); | 
|  | void | 
|  | _initialize_m32r_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_m32r, m32r_gdbarch_init); | 
|  | } |