| /* DWARF 2 debugging format support for GDB. |
| |
| Copyright (C) 1994-2024 Free Software Foundation, Inc. |
| |
| Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology, |
| Inc. with support from Florida State University (under contract |
| with the Ada Joint Program Office), and Silicon Graphics, Inc. |
| Initial contribution by Brent Benson, Harris Computer Systems, Inc., |
| based on Fred Fish's (Cygnus Support) implementation of DWARF 1 |
| support. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* FIXME: Various die-reading functions need to be more careful with |
| reading off the end of the section. */ |
| |
| #include "dwarf2/read.h" |
| #include "dwarf2/abbrev.h" |
| #include "dwarf2/aranges.h" |
| #include "dwarf2/attribute.h" |
| #include "dwarf2/comp-unit-head.h" |
| #include "dwarf2/cooked-index-storage.h" |
| #include "dwarf2/cooked-indexer.h" |
| #include "dwarf2/cu.h" |
| #include "dwarf2/index-cache.h" |
| #include "dwarf2/leb.h" |
| #include "dwarf2/line-header.h" |
| #include "dwarf2/dwz.h" |
| #include "dwarf2/macro.h" |
| #include "dwarf2/die.h" |
| #include "dwarf2/read-debug-names.h" |
| #include "dwarf2/read-gdb-index.h" |
| #include "dwarf2/sect-names.h" |
| #include "dwarf2/stringify.h" |
| #include "dwarf2/tag.h" |
| #include "dwarf2/public.h" |
| #include "bfd.h" |
| #include "elf-bfd.h" |
| #include "event-top.h" |
| #include "exceptions.h" |
| #include "gdbsupport/task-group.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "objfiles.h" |
| #include "dwarf2.h" |
| #include "demangle.h" |
| #include "gdb-demangle.h" |
| #include "filenames.h" |
| #include "language.h" |
| #include "complaints.h" |
| #include "dwarf2/expr.h" |
| #include "dwarf2/loc.h" |
| #include "cp-support.h" |
| #include "hashtab.h" |
| #include "command.h" |
| #include "cli/cli-cmds.h" |
| #include "block.h" |
| #include "addrmap.h" |
| #include "typeprint.h" |
| #include "c-lang.h" |
| #include "go-lang.h" |
| #include "valprint.h" |
| #include "gdbcore.h" |
| #include "gdb_bfd.h" |
| #include "f-lang.h" |
| #include "source.h" |
| #include "build-id.h" |
| #include "namespace.h" |
| #include "gdbsupport/function-view.h" |
| #include <optional> |
| #include "gdbsupport/underlying.h" |
| #include "filename-seen-cache.h" |
| #include <fcntl.h> |
| #include <algorithm> |
| #include "gdbsupport/selftest.h" |
| #include "rust-lang.h" |
| #include "gdbsupport/pathstuff.h" |
| #include "count-one-bits.h" |
| #include "dwarf2/abbrev-table-cache.h" |
| #include "cooked-index.h" |
| #include "gdbsupport/thread-pool.h" |
| #include "run-on-main-thread.h" |
| #include "dwarf2/parent-map.h" |
| #include "dwarf2/error.h" |
| #include "gdbsupport/unordered_set.h" |
| #include "extract-store-integer.h" |
| |
| /* When == 1, print basic high level tracing messages. |
| When > 1, be more verbose. |
| This is in contrast to the low level DIE reading of dwarf_die_debug. */ |
| static unsigned int dwarf_read_debug = 0; |
| |
| /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 1. */ |
| |
| #define dwarf_read_debug_printf(fmt, ...) \ |
| debug_prefixed_printf_cond (dwarf_read_debug >= 1, "dwarf-read", fmt, \ |
| ##__VA_ARGS__) |
| |
| /* Print a "dwarf-read" debug statement if dwarf_read_debug is >= 2. */ |
| |
| #define dwarf_read_debug_printf_v(fmt, ...) \ |
| debug_prefixed_printf_cond (dwarf_read_debug >= 2, "dwarf-read", fmt, \ |
| ##__VA_ARGS__) |
| |
| /* Print "dwarf-read" start/end debug statements. */ |
| |
| #define DWARF_READ_SCOPED_DEBUG_START_END(fmt, ...) \ |
| scoped_debug_start_end ([] { return dwarf_read_debug >= 1; }, "dwarf-read", \ |
| fmt, ##__VA_ARGS__) |
| |
| /* When non-zero, dump DIEs after they are read in. */ |
| static unsigned int dwarf_die_debug = 0; |
| |
| /* When non-zero, dump line number entries as they are read in. */ |
| unsigned int dwarf_line_debug = 0; |
| |
| /* When true, cross-check physname against demangler. */ |
| static bool check_physname = false; |
| |
| /* This is used to store the data that is always per objfile. */ |
| static const registry<objfile>::key<dwarf2_per_objfile> |
| dwarf2_objfile_data_key; |
| |
| /* These are used to store the dwarf2_per_bfd objects. |
| |
| objfiles having the same BFD, which doesn't require relocations, are going to |
| share a dwarf2_per_bfd object, which is held in the _bfd_data_key version. |
| |
| Other objfiles are not going to share a dwarf2_per_bfd with any other |
| objfiles, so they'll have their own version kept in the _objfile_data_key |
| version. */ |
| static const registry<bfd>::key<dwarf2_per_bfd> dwarf2_per_bfd_bfd_data_key; |
| static const registry<objfile>::key<dwarf2_per_bfd> |
| dwarf2_per_bfd_objfile_data_key; |
| |
| /* The "aclass" indices for various kinds of computed DWARF symbols. */ |
| |
| static int dwarf2_locexpr_index; |
| static int dwarf2_loclist_index; |
| static int ada_imported_index; |
| static int dwarf2_locexpr_block_index; |
| static int dwarf2_loclist_block_index; |
| static int ada_block_index; |
| |
| /* Size of .debug_loclists section header for 32-bit DWARF format. */ |
| #define LOCLIST_HEADER_SIZE32 12 |
| |
| /* Size of .debug_loclists section header for 64-bit DWARF format. */ |
| #define LOCLIST_HEADER_SIZE64 20 |
| |
| /* Size of .debug_rnglists section header for 32-bit DWARF format. */ |
| #define RNGLIST_HEADER_SIZE32 12 |
| |
| /* Size of .debug_rnglists section header for 64-bit DWARF format. */ |
| #define RNGLIST_HEADER_SIZE64 20 |
| |
| /* See dwarf2/read.h. */ |
| |
| dwarf2_per_objfile * |
| get_dwarf2_per_objfile (struct objfile *objfile) |
| { |
| return dwarf2_objfile_data_key.get (objfile); |
| } |
| |
| /* Default names of the debugging sections. */ |
| |
| /* Note that if the debugging section has been compressed, it might |
| have a name like .zdebug_info. */ |
| |
| const struct dwarf2_debug_sections dwarf2_elf_names = |
| { |
| { ".debug_info", ".zdebug_info" }, |
| { ".debug_abbrev", ".zdebug_abbrev" }, |
| { ".debug_line", ".zdebug_line" }, |
| { ".debug_loc", ".zdebug_loc" }, |
| { ".debug_loclists", ".zdebug_loclists" }, |
| { ".debug_macinfo", ".zdebug_macinfo" }, |
| { ".debug_macro", ".zdebug_macro" }, |
| { ".debug_str", ".zdebug_str" }, |
| { ".debug_str_offsets", ".zdebug_str_offsets" }, |
| { ".debug_line_str", ".zdebug_line_str" }, |
| { ".debug_ranges", ".zdebug_ranges" }, |
| { ".debug_rnglists", ".zdebug_rnglists" }, |
| { ".debug_types", ".zdebug_types" }, |
| { ".debug_addr", ".zdebug_addr" }, |
| { ".debug_frame", ".zdebug_frame" }, |
| { ".eh_frame", NULL }, |
| { ".gdb_index", ".zgdb_index" }, |
| { ".debug_names", ".zdebug_names" }, |
| { ".debug_aranges", ".zdebug_aranges" }, |
| 23 |
| }; |
| |
| /* List of DWO/DWP sections. */ |
| |
| static const struct dwop_section_names |
| { |
| struct dwarf2_section_names abbrev_dwo; |
| struct dwarf2_section_names info_dwo; |
| struct dwarf2_section_names line_dwo; |
| struct dwarf2_section_names loc_dwo; |
| struct dwarf2_section_names loclists_dwo; |
| struct dwarf2_section_names macinfo_dwo; |
| struct dwarf2_section_names macro_dwo; |
| struct dwarf2_section_names rnglists_dwo; |
| struct dwarf2_section_names str_dwo; |
| struct dwarf2_section_names str_offsets_dwo; |
| struct dwarf2_section_names types_dwo; |
| struct dwarf2_section_names cu_index; |
| struct dwarf2_section_names tu_index; |
| } |
| dwop_section_names = |
| { |
| { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" }, |
| { ".debug_info.dwo", ".zdebug_info.dwo" }, |
| { ".debug_line.dwo", ".zdebug_line.dwo" }, |
| { ".debug_loc.dwo", ".zdebug_loc.dwo" }, |
| { ".debug_loclists.dwo", ".zdebug_loclists.dwo" }, |
| { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" }, |
| { ".debug_macro.dwo", ".zdebug_macro.dwo" }, |
| { ".debug_rnglists.dwo", ".zdebug_rnglists.dwo" }, |
| { ".debug_str.dwo", ".zdebug_str.dwo" }, |
| { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" }, |
| { ".debug_types.dwo", ".zdebug_types.dwo" }, |
| { ".debug_cu_index", ".zdebug_cu_index" }, |
| { ".debug_tu_index", ".zdebug_tu_index" }, |
| }; |
| |
| /* local data types */ |
| |
| /* The location list and range list sections (.debug_loclists & .debug_rnglists) |
| begin with a header, which contains the following information. */ |
| struct loclists_rnglists_header |
| { |
| /* A 4-byte or 12-byte length containing the length of the |
| set of entries for this compilation unit, not including the |
| length field itself. */ |
| unsigned int length; |
| |
| /* A 2-byte version identifier. */ |
| short version; |
| |
| /* A 1-byte unsigned integer containing the size in bytes of an address on |
| the target system. */ |
| unsigned char addr_size; |
| |
| /* A 1-byte unsigned integer containing the size in bytes of a segment selector |
| on the target system. */ |
| unsigned char segment_collector_size; |
| |
| /* A 4-byte count of the number of offsets that follow the header. */ |
| unsigned int offset_entry_count; |
| }; |
| |
| /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list. |
| This includes type_unit_group and quick_file_names. */ |
| |
| struct stmt_list_hash |
| { |
| /* The DWO unit this table is from or NULL if there is none. */ |
| struct dwo_unit *dwo_unit; |
| |
| /* Offset in .debug_line or .debug_line.dwo. */ |
| sect_offset line_sect_off; |
| }; |
| |
| /* Each element of dwarf2_per_bfd->type_unit_groups is a pointer to |
| an object of this type. This contains elements of type unit groups |
| that can be shared across objfiles. The non-shareable parts are in |
| type_unit_group_unshareable. */ |
| |
| struct type_unit_group |
| { |
| /* The data used to construct the hash key. */ |
| struct stmt_list_hash hash {}; |
| }; |
| |
| using type_unit_group_up = std::unique_ptr<type_unit_group>; |
| |
| /* These sections are what may appear in a (real or virtual) DWO file. */ |
| |
| struct dwo_sections |
| { |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info loclists; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info rnglists; |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info str_offsets; |
| /* In the case of a virtual DWO file, these two are unused. */ |
| struct dwarf2_section_info info; |
| std::vector<dwarf2_section_info> types; |
| }; |
| |
| /* CUs/TUs in DWP/DWO files. */ |
| |
| struct dwo_unit |
| { |
| /* Backlink to the containing struct dwo_file. */ |
| struct dwo_file *dwo_file; |
| |
| /* The "id" that distinguishes this CU/TU. |
| .debug_info calls this "dwo_id", .debug_types calls this "signature". |
| Since signatures came first, we stick with it for consistency. */ |
| ULONGEST signature; |
| |
| /* The section this CU/TU lives in, in the DWO file. */ |
| struct dwarf2_section_info *section; |
| |
| /* Same as dwarf2_per_cu::{sect_off,length} but in the DWO section. */ |
| sect_offset sect_off; |
| unsigned int length; |
| |
| /* For types, offset in the type's DIE of the type defined by this TU. */ |
| cu_offset type_offset_in_tu; |
| }; |
| |
| /* Hash function for dwo_unit objects, based on the signature. */ |
| |
| struct dwo_unit_hash |
| { |
| using is_transparent = void; |
| |
| std::size_t operator() (ULONGEST signature) const noexcept |
| { return signature; } |
| |
| std::size_t operator() (const dwo_unit *unit) const noexcept |
| { return (*this) (unit->signature); } |
| }; |
| |
| /* Equal function for dwo_unit objects, based on the signature. |
| |
| The signature is assumed to be unique within the DWO file. So while object |
| file CU dwo_id's always have the value zero, that's OK, assuming each object |
| file DWO file has only one CU, and that's the rule for now. */ |
| |
| struct dwo_unit_eq |
| { |
| using is_transparent = void; |
| |
| bool operator() (ULONGEST sig, const dwo_unit *unit) const noexcept |
| { return sig == unit->signature; } |
| |
| bool operator() (const dwo_unit *a, const dwo_unit *b) const noexcept |
| { return (*this) (a->signature, b); } |
| }; |
| |
| /* Set of dwo_unit object, using their signature as identity. */ |
| |
| using dwo_unit_set = gdb::unordered_set<dwo_unit *, dwo_unit_hash, dwo_unit_eq>; |
| |
| /* include/dwarf2.h defines the DWP section codes. |
| It defines a max value but it doesn't define a min value, which we |
| use for error checking, so provide one. */ |
| |
| enum dwp_v2_section_ids |
| { |
| DW_SECT_MIN = 1 |
| }; |
| |
| /* Data for one DWO file. |
| |
| This includes virtual DWO files (a virtual DWO file is a DWO file as it |
| appears in a DWP file). DWP files don't really have DWO files per se - |
| comdat folding of types "loses" the DWO file they came from, and from |
| a high level view DWP files appear to contain a mass of random types. |
| However, to maintain consistency with the non-DWP case we pretend DWP |
| files contain virtual DWO files, and we assign each TU with one virtual |
| DWO file (generally based on the line and abbrev section offsets - |
| a heuristic that seems to work in practice). */ |
| |
| struct dwo_file |
| { |
| dwo_file () = default; |
| DISABLE_COPY_AND_ASSIGN (dwo_file); |
| |
| /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. |
| For virtual DWO files the name is constructed from the section offsets |
| of abbrev,line,loc,str_offsets so that we combine virtual DWO files |
| from related CU+TUs. */ |
| std::string dwo_name; |
| |
| /* The DW_AT_comp_dir attribute. */ |
| const char *comp_dir = nullptr; |
| |
| /* The bfd, when the file is open. Otherwise this is NULL. |
| This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */ |
| gdb_bfd_ref_ptr dbfd; |
| |
| /* The sections that make up this DWO file. |
| Remember that for virtual DWO files in DWP V2 or DWP V5, these are virtual |
| sections (for lack of a better name). */ |
| struct dwo_sections sections {}; |
| |
| /* The CUs in the file. |
| |
| Multiple CUs per DWO are supported as an extension to handle LLVM's Link |
| Time Optimization output (where multiple source files may be compiled into |
| a single object/dwo pair). */ |
| dwo_unit_set cus; |
| |
| /* Table of TUs in the file. */ |
| dwo_unit_set tus; |
| }; |
| |
| /* See dwarf2/read.h. */ |
| |
| std::size_t |
| dwo_file_hash::operator() (const dwo_file_search &search) const noexcept |
| { |
| hashval_t hash = htab_hash_string (search.dwo_name); |
| |
| if (search.comp_dir != nullptr) |
| hash += htab_hash_string (search.comp_dir); |
| |
| return hash; |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| std::size_t |
| dwo_file_hash::operator() (const dwo_file_up &file) const noexcept |
| { |
| return (*this) ({ file->dwo_name.c_str (), file->comp_dir }); |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| bool |
| dwo_file_eq::operator() (const dwo_file_search &search, |
| const dwo_file_up &dwo_file) const noexcept |
| { |
| if (search.dwo_name != dwo_file->dwo_name) |
| return false; |
| |
| if (search.comp_dir == nullptr || dwo_file->comp_dir == nullptr) |
| return search.comp_dir == dwo_file->comp_dir; |
| |
| return std::strcmp (search.comp_dir, dwo_file->comp_dir) == 0; |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| bool |
| dwo_file_eq::operator() (const dwo_file_up &a, |
| const dwo_file_up &b) const noexcept |
| { return (*this) ({ a->dwo_name.c_str (), a->comp_dir }, b); } |
| |
| /* These sections are what may appear in a DWP file. */ |
| |
| struct dwp_sections |
| { |
| /* These are used by all DWP versions (1, 2 and 5). */ |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info cu_index; |
| struct dwarf2_section_info tu_index; |
| |
| /* These are only used by DWP version 2 and version 5 files. |
| In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other |
| sections are referenced by section number, and are not recorded here. |
| In DWP version 2 or 5 there is at most one copy of all these sections, |
| each section being (effectively) comprised of the concatenation of all of |
| the individual sections that exist in the version 1 format. |
| To keep the code simple we treat each of these concatenated pieces as a |
| section itself (a virtual section?). */ |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info info; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info loclists; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info rnglists; |
| struct dwarf2_section_info str_offsets; |
| struct dwarf2_section_info types; |
| }; |
| |
| /* These sections are what may appear in a virtual DWO file in DWP version 1. |
| A virtual DWO file is a DWO file as it appears in a DWP file. */ |
| |
| struct virtual_v1_dwo_sections |
| { |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info str_offsets; |
| /* Each DWP hash table entry records one CU or one TU. |
| That is recorded here, and copied to dwo_unit.section. */ |
| struct dwarf2_section_info info_or_types; |
| }; |
| |
| /* Similar to virtual_v1_dwo_sections, but for DWP version 2 or 5. |
| In version 2, the sections of the DWO files are concatenated together |
| and stored in one section of that name. Thus each ELF section contains |
| several "virtual" sections. */ |
| |
| struct virtual_v2_or_v5_dwo_sections |
| { |
| bfd_size_type abbrev_offset; |
| bfd_size_type abbrev_size; |
| |
| bfd_size_type line_offset; |
| bfd_size_type line_size; |
| |
| bfd_size_type loc_offset; |
| bfd_size_type loc_size; |
| |
| bfd_size_type loclists_offset; |
| bfd_size_type loclists_size; |
| |
| bfd_size_type macinfo_offset; |
| bfd_size_type macinfo_size; |
| |
| bfd_size_type macro_offset; |
| bfd_size_type macro_size; |
| |
| bfd_size_type rnglists_offset; |
| bfd_size_type rnglists_size; |
| |
| bfd_size_type str_offsets_offset; |
| bfd_size_type str_offsets_size; |
| |
| /* Each DWP hash table entry records one CU or one TU. |
| That is recorded here, and copied to dwo_unit.section. */ |
| bfd_size_type info_or_types_offset; |
| bfd_size_type info_or_types_size; |
| }; |
| |
| /* Contents of DWP hash tables. */ |
| |
| struct dwp_hash_table |
| { |
| uint32_t version, nr_columns; |
| uint32_t nr_units, nr_slots; |
| const gdb_byte *hash_table, *unit_table; |
| union |
| { |
| struct |
| { |
| const gdb_byte *indices; |
| } v1; |
| struct |
| { |
| /* This is indexed by column number and gives the id of the section |
| in that column. */ |
| #define MAX_NR_V2_DWO_SECTIONS \ |
| (1 /* .debug_info or .debug_types */ \ |
| + 1 /* .debug_abbrev */ \ |
| + 1 /* .debug_line */ \ |
| + 1 /* .debug_loc */ \ |
| + 1 /* .debug_str_offsets */ \ |
| + 1 /* .debug_macro or .debug_macinfo */) |
| int section_ids[MAX_NR_V2_DWO_SECTIONS]; |
| const gdb_byte *offsets; |
| const gdb_byte *sizes; |
| } v2; |
| struct |
| { |
| /* This is indexed by column number and gives the id of the section |
| in that column. */ |
| #define MAX_NR_V5_DWO_SECTIONS \ |
| (1 /* .debug_info */ \ |
| + 1 /* .debug_abbrev */ \ |
| + 1 /* .debug_line */ \ |
| + 1 /* .debug_loclists */ \ |
| + 1 /* .debug_str_offsets */ \ |
| + 1 /* .debug_macro */ \ |
| + 1 /* .debug_rnglists */) |
| int section_ids[MAX_NR_V5_DWO_SECTIONS]; |
| const gdb_byte *offsets; |
| const gdb_byte *sizes; |
| } v5; |
| } section_pool; |
| }; |
| |
| /* Data for one DWP file. */ |
| |
| struct dwp_file |
| { |
| dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd) |
| : name (name_), |
| dbfd (std::move (abfd)) |
| { |
| } |
| |
| /* Name of the file. */ |
| const char *name; |
| |
| /* File format version. */ |
| int version = 0; |
| |
| /* The bfd. */ |
| gdb_bfd_ref_ptr dbfd; |
| |
| /* Section info for this file. */ |
| struct dwp_sections sections {}; |
| |
| /* Table of CUs in the file. */ |
| const struct dwp_hash_table *cus = nullptr; |
| |
| /* Table of TUs in the file. */ |
| const struct dwp_hash_table *tus = nullptr; |
| |
| /* Tables of loaded CUs/TUs. */ |
| dwo_unit_set loaded_cus; |
| dwo_unit_set loaded_tus; |
| |
| /* Table to map ELF section numbers to their sections. |
| This is only needed for the DWP V1 file format. */ |
| unsigned int num_sections = 0; |
| asection **elf_sections = nullptr; |
| }; |
| |
| /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte, |
| but this would require a corresponding change in unpack_field_as_long |
| and friends. */ |
| static int bits_per_byte = 8; |
| |
| struct variant_part_builder; |
| |
| /* When reading a variant, we track a bit more information about the |
| field, and store it in an object of this type. */ |
| |
| struct variant_field |
| { |
| int first_field = -1; |
| int last_field = -1; |
| |
| /* A variant can contain other variant parts. */ |
| std::vector<variant_part_builder> variant_parts; |
| |
| /* If we see a DW_TAG_variant, then this will be set if this is the |
| default branch. */ |
| bool default_branch = false; |
| /* If we see a DW_AT_discr_value, then this will be the discriminant |
| value. */ |
| ULONGEST discriminant_value = 0; |
| /* If we see a DW_AT_discr_list, then this is a pointer to the list |
| data. */ |
| struct dwarf_block *discr_list_data = nullptr; |
| }; |
| |
| /* This represents a DW_TAG_variant_part. */ |
| |
| struct variant_part_builder |
| { |
| /* The offset of the discriminant field. */ |
| sect_offset discriminant_offset {}; |
| |
| /* Variants that are direct children of this variant part. */ |
| std::vector<variant_field> variants; |
| |
| /* True if we're currently reading a variant. */ |
| bool processing_variant = false; |
| }; |
| |
| struct nextfield |
| { |
| /* Variant parts need to find the discriminant, which is a DIE |
| reference. We track the section offset of each field to make |
| this link. */ |
| sect_offset offset; |
| struct field field {}; |
| }; |
| |
| struct fnfieldlist |
| { |
| const char *name = nullptr; |
| std::vector<struct fn_field> fnfields; |
| }; |
| |
| /* The routines that read and process dies for a C struct or C++ class |
| pass lists of data member fields and lists of member function fields |
| in an instance of a field_info structure, as defined below. */ |
| struct field_info |
| { |
| /* List of data member and baseclasses fields. */ |
| std::vector<struct nextfield> fields; |
| std::vector<struct nextfield> baseclasses; |
| |
| /* Member function fieldlist array, contains name of possibly overloaded |
| member function, number of overloaded member functions and a pointer |
| to the head of the member function field chain. */ |
| std::vector<struct fnfieldlist> fnfieldlists; |
| |
| /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of |
| a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */ |
| std::vector<struct decl_field> typedef_field_list; |
| |
| /* Nested types defined by this class and the number of elements in this |
| list. */ |
| std::vector<struct decl_field> nested_types_list; |
| |
| /* If non-null, this is the variant part we are currently |
| reading. */ |
| variant_part_builder *current_variant_part = nullptr; |
| /* This holds all the top-level variant parts attached to the type |
| we're reading. */ |
| std::vector<variant_part_builder> variant_parts; |
| |
| /* Return the total number of fields (including baseclasses). */ |
| int nfields () const |
| { |
| return fields.size () + baseclasses.size (); |
| } |
| }; |
| |
| /* Loaded secondary compilation units are kept in memory until they |
| have not been referenced for the processing of this many |
| compilation units. Set this to zero to disable caching. Cache |
| sizes of up to at least twenty will improve startup time for |
| typical inter-CU-reference binaries, at an obvious memory cost. */ |
| static int dwarf_max_cache_age = 5; |
| static void |
| show_dwarf_max_cache_age (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| gdb_printf (file, _("The upper bound on the age of cached " |
| "DWARF compilation units is %s.\n"), |
| value); |
| } |
| |
| /* When true, wait for DWARF reading to be complete. */ |
| static bool dwarf_synchronous = false; |
| |
| /* "Show" callback for "maint set dwarf synchronous". */ |
| static void |
| show_dwarf_synchronous (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| gdb_printf (file, _("Whether DWARF reading is synchronous is %s.\n"), |
| value); |
| } |
| |
| /* local function prototypes */ |
| |
| static void build_type_psymtabs_reader (cutu_reader *reader, |
| cooked_index_storage *storage); |
| |
| static void var_decode_location (struct attribute *attr, |
| struct symbol *sym, |
| struct dwarf2_cu *cu); |
| |
| static unsigned int peek_abbrev_code (bfd *, const gdb_byte *); |
| |
| static unrelocated_addr read_addr_index (struct dwarf2_cu *cu, |
| unsigned int addr_index); |
| |
| static sect_offset read_abbrev_offset (dwarf2_per_objfile *per_objfile, |
| dwarf2_section_info *, sect_offset); |
| |
| static const char *read_indirect_string |
| (dwarf2_per_objfile *per_objfile, bfd *, const gdb_byte *, |
| const struct comp_unit_head *, unsigned int *); |
| |
| static unrelocated_addr read_addr_index_from_leb128 (struct dwarf2_cu *, |
| const gdb_byte *, |
| unsigned int *); |
| |
| static const char *read_stub_str_index (struct dwarf2_cu *cu, |
| ULONGEST str_index); |
| |
| static struct attribute *dwarf2_attr (struct die_info *, unsigned int, |
| struct dwarf2_cu *); |
| |
| static const char *dwarf2_string_attr (struct die_info *die, unsigned int name, |
| struct dwarf2_cu *cu); |
| |
| static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static int dwarf2_flag_true_p (struct die_info *die, unsigned name, |
| struct dwarf2_cu *cu); |
| |
| static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu); |
| |
| static struct die_info *die_specification (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static line_header_up dwarf_decode_line_header (sect_offset sect_off, |
| struct dwarf2_cu *cu, |
| const char *comp_dir); |
| |
| static void dwarf_decode_lines (struct line_header *, |
| struct dwarf2_cu *, |
| unrelocated_addr, int decode_mapping); |
| |
| static void dwarf2_start_subfile (dwarf2_cu *cu, const file_entry &fe, |
| const line_header &lh); |
| |
| static struct symbol *new_symbol (struct die_info *, struct type *, |
| struct dwarf2_cu *, struct symbol * = NULL); |
| |
| static void dwarf2_const_value (const struct attribute *, struct symbol *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_const_value_attr (const struct attribute *attr, |
| struct type *type, |
| const char *name, |
| struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, |
| const gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton); |
| |
| static struct type *read_subrange_index_type (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static struct type *die_type (struct die_info *, struct dwarf2_cu *); |
| |
| static int need_gnat_info (struct dwarf2_cu *); |
| |
| static struct type *die_descriptive_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void set_descriptive_type (struct type *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *die_containing_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *lookup_die_type (struct die_info *, const struct attribute *, |
| struct dwarf2_cu *); |
| |
| static struct type *read_type_die (struct die_info *, struct dwarf2_cu *); |
| |
| static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *); |
| |
| static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *); |
| |
| static gdb::unique_xmalloc_ptr<char> typename_concat (const char *prefix, |
| const char *suffix, |
| int physname, |
| struct dwarf2_cu *cu); |
| |
| static void read_file_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_func_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void read_variable (struct die_info *die, struct dwarf2_cu *cu); |
| |
| /* Return the .debug_loclists section to use for cu. */ |
| static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu); |
| |
| /* Return the .debug_rnglists section to use for cu. */ |
| static struct dwarf2_section_info *cu_debug_rnglists_section |
| (struct dwarf2_cu *cu, dwarf_tag tag); |
| |
| static void get_scope_pc_bounds (struct die_info *, |
| unrelocated_addr *, unrelocated_addr *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_record_block_ranges (struct die_info *, struct block *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_add_field (struct field_info *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fields_to_type (struct field_info *, |
| struct type *, struct dwarf2_cu *); |
| |
| static void dwarf2_add_member_fn (struct field_info *, |
| struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fn_fields_to_type (struct field_info *, |
| struct type *, |
| struct dwarf2_cu *); |
| |
| static void process_structure_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_common_block (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_namespace (struct die_info *die, struct dwarf2_cu *); |
| |
| static void read_module (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static struct using_direct **using_directives (struct dwarf2_cu *cu); |
| |
| static void read_import_statement (struct die_info *die, struct dwarf2_cu *); |
| |
| static bool read_alias (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static struct type *read_module_type (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static const char *namespace_name (struct die_info *die, |
| int *is_anonymous, struct dwarf2_cu *); |
| |
| static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static enum dwarf_array_dim_ordering read_array_order (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void process_die (struct die_info *, struct dwarf2_cu *); |
| |
| static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *, |
| struct objfile *); |
| |
| static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *); |
| |
| static const char *dwarf2_full_name (const char *name, |
| struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static const char *dwarf2_physname (const char *name, struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static struct die_info *dwarf2_extension (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_ref_or_sig (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_ref (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_sig (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct type *get_signatured_type (struct die_info *, ULONGEST, |
| struct dwarf2_cu *); |
| |
| static struct type *get_DW_AT_signature_type (struct die_info *, |
| const struct attribute *, |
| struct dwarf2_cu *); |
| |
| static void load_full_type_unit (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile); |
| |
| static void read_signatured_type (signatured_type *sig_type, |
| dwarf2_per_objfile *per_objfile); |
| |
| static int attr_to_dynamic_prop (const struct attribute *attr, |
| struct die_info *die, struct dwarf2_cu *cu, |
| struct dynamic_prop *prop, struct type *type); |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *); |
| |
| static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int); |
| |
| static void fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| const struct attribute *attr); |
| |
| static void dwarf2_symbol_mark_computed (const struct attribute *attr, |
| struct symbol *sym, |
| struct dwarf2_cu *cu, |
| int is_block); |
| |
| static struct type *set_die_type (struct die_info *, struct type *, |
| struct dwarf2_cu *, bool = false); |
| |
| static void load_full_comp_unit (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| dwarf2_cu *existing_cu, |
| bool skip_partial, |
| enum language pretend_language); |
| |
| static void process_full_comp_unit (dwarf2_cu *cu); |
| |
| static void process_full_type_unit (dwarf2_cu *cu); |
| |
| static struct type *get_die_type_at_offset (sect_offset, |
| dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile); |
| |
| static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void queue_comp_unit (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile); |
| |
| static void process_queue (dwarf2_per_objfile *per_objfile); |
| |
| static bool is_ada_import_or_export (dwarf2_cu *cu, const char *name, |
| const char *linkagename); |
| |
| /* Class, the destructor of which frees all allocated queue entries. This |
| will only have work to do if an error was thrown while processing the |
| dwarf. If no error was thrown then the queue entries should have all |
| been processed, and freed, as we went along. */ |
| |
| class dwarf2_queue_guard |
| { |
| public: |
| explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile) |
| : m_per_objfile (per_objfile) |
| { |
| gdb_assert (!m_per_objfile->queue.has_value ()); |
| |
| m_per_objfile->queue.emplace (); |
| } |
| |
| /* Free any entries remaining on the queue. There should only be |
| entries left if we hit an error while processing the dwarf. */ |
| ~dwarf2_queue_guard () |
| { |
| gdb_assert (m_per_objfile->queue.has_value ()); |
| |
| m_per_objfile->queue.reset (); |
| } |
| |
| DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard); |
| |
| private: |
| dwarf2_per_objfile *m_per_objfile; |
| }; |
| |
| dwarf2_queue_item::~dwarf2_queue_item () |
| { |
| /* Anything still marked queued is likely to be in an |
| inconsistent state, so discard it. */ |
| if (per_cu->queued) |
| { |
| per_objfile->remove_cu (per_cu); |
| per_cu->queued = 0; |
| } |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| void |
| dwarf2_per_cu_deleter::operator() (dwarf2_per_cu *data) |
| { |
| if (data->is_debug_types) |
| delete static_cast<signatured_type *> (data); |
| else |
| delete data; |
| } |
| |
| static const char *compute_include_file_name |
| (const struct line_header *lh, |
| const file_entry &fe, |
| const file_and_directory &cu_info, |
| std::string &name_holder); |
| |
| static struct dwo_unit *lookup_dwo_unit_in_dwp |
| (dwarf2_per_bfd *per_bfd, struct dwp_file *dwp_file, |
| const char *comp_dir, ULONGEST signature, int is_debug_types); |
| |
| static struct dwp_file *get_dwp_file (dwarf2_per_objfile *per_objfile); |
| |
| static struct dwo_unit *lookup_dwo_comp_unit |
| (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir, |
| ULONGEST signature); |
| |
| static struct dwo_unit *lookup_dwo_type_unit |
| (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir); |
| |
| static void queue_and_load_all_dwo_tus (dwarf2_cu *cu); |
| |
| static void process_cu_includes (dwarf2_per_objfile *per_objfile); |
| |
| |
| /* Various complaints about symbol reading that don't abort the process. */ |
| |
| static void |
| dwarf2_debug_line_missing_file_complaint (void) |
| { |
| complaint (_(".debug_line section has line data without a file")); |
| } |
| |
| static void |
| dwarf2_debug_line_missing_end_sequence_complaint (void) |
| { |
| complaint (_(".debug_line section has line " |
| "program sequence without an end")); |
| } |
| |
| static void |
| dwarf2_complex_location_expr_complaint (void) |
| { |
| complaint (_("location expression too complex")); |
| } |
| |
| static void |
| dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2, |
| int arg3) |
| { |
| complaint (_("const value length mismatch for '%s', got %d, expected %d"), |
| arg1, arg2, arg3); |
| } |
| |
| static void |
| dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2) |
| { |
| complaint (_("invalid attribute class or form for '%s' in '%s'"), |
| arg1, arg2); |
| } |
| |
| /* See read.h. */ |
| |
| CORE_ADDR |
| dwarf2_per_objfile::relocate (unrelocated_addr addr) |
| { |
| CORE_ADDR baseaddr = objfile->text_section_offset (); |
| CORE_ADDR tem = (CORE_ADDR) addr + baseaddr; |
| return gdbarch_adjust_dwarf2_addr (objfile->arch (), tem); |
| } |
| |
| /* Hash function for line_header_hash. */ |
| |
| static hashval_t |
| line_header_hash (const struct line_header *ofs) |
| { |
| return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz; |
| } |
| |
| /* Hash function for htab_create_alloc_ex for line_header_hash. */ |
| |
| static hashval_t |
| line_header_hash_voidp (const void *item) |
| { |
| const struct line_header *ofs = (const struct line_header *) item; |
| |
| return line_header_hash (ofs); |
| } |
| |
| /* Equality function for line_header_hash. */ |
| |
| static int |
| line_header_eq_voidp (const void *item_lhs, const void *item_rhs) |
| { |
| const struct line_header *ofs_lhs = (const struct line_header *) item_lhs; |
| const struct line_header *ofs_rhs = (const struct line_header *) item_rhs; |
| |
| return (ofs_lhs->sect_off == ofs_rhs->sect_off |
| && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz); |
| } |
| |
| /* See declaration. */ |
| |
| dwarf2_per_bfd::dwarf2_per_bfd (bfd *obfd, const dwarf2_debug_sections *names, |
| bool can_copy_) |
| : obfd (obfd), |
| can_copy (can_copy_), |
| captured_cwd (current_directory), |
| captured_debug_dir (debug_file_directory) |
| { |
| if (names == NULL) |
| names = &dwarf2_elf_names; |
| |
| for (asection *sec = obfd->sections; sec != NULL; sec = sec->next) |
| this->locate_sections (sec, *names); |
| } |
| |
| dwarf2_per_bfd::~dwarf2_per_bfd () |
| { |
| /* Data from the per-BFD may be needed when finalizing the cooked |
| index table, so wait here while this happens. */ |
| if (index_table != nullptr) |
| index_table->wait_completely (); |
| |
| for (auto &per_cu : all_units) |
| per_cu->free_cached_file_names (); |
| |
| /* Everything else should be on this->obstack. */ |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_objfile::remove_all_cus () |
| { |
| gdb_assert (!queue.has_value ()); |
| |
| m_dwarf2_cus.clear (); |
| } |
| |
| /* A helper class that calls free_cached_comp_units on |
| destruction. */ |
| |
| class free_cached_comp_units |
| { |
| public: |
| |
| explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile) |
| : m_per_objfile (per_objfile) |
| { |
| } |
| |
| ~free_cached_comp_units () |
| { |
| m_per_objfile->remove_all_cus (); |
| } |
| |
| DISABLE_COPY_AND_ASSIGN (free_cached_comp_units); |
| |
| private: |
| |
| dwarf2_per_objfile *m_per_objfile; |
| }; |
| |
| /* See read.h. */ |
| |
| bool |
| dwarf2_per_objfile::symtab_set_p (const dwarf2_per_cu *per_cu) const |
| { |
| if (per_cu->index < m_symtabs.size ()) |
| return m_symtabs[per_cu->index] != nullptr; |
| return false; |
| } |
| |
| /* See read.h. */ |
| |
| compunit_symtab * |
| dwarf2_per_objfile::get_symtab (const dwarf2_per_cu *per_cu) const |
| { |
| if (per_cu->index < m_symtabs.size ()) |
| return m_symtabs[per_cu->index]; |
| return nullptr; |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_objfile::set_symtab (const dwarf2_per_cu *per_cu, |
| compunit_symtab *symtab) |
| { |
| if (per_cu->index >= m_symtabs.size ()) |
| m_symtabs.resize (per_cu->index + 1); |
| gdb_assert (m_symtabs[per_cu->index] == nullptr); |
| m_symtabs[per_cu->index] = symtab; |
| } |
| |
| /* Helper function for dwarf2_initialize_objfile that creates the |
| per-BFD object. */ |
| |
| static bool |
| dwarf2_has_info (struct objfile *objfile, |
| const struct dwarf2_debug_sections *names, |
| bool can_copy) |
| { |
| if (objfile->flags & OBJF_READNEVER) |
| return false; |
| |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| bool just_created = false; |
| |
| if (per_objfile == NULL) |
| { |
| dwarf2_per_bfd *per_bfd; |
| |
| /* We can share a "dwarf2_per_bfd" with other objfiles if the |
| BFD doesn't require relocations. |
| |
| We don't share with objfiles for which -readnow was requested, |
| because it would complicate things when loading the same BFD with |
| -readnow and then without -readnow. */ |
| if (!gdb_bfd_requires_relocations (objfile->obfd.get ()) |
| && (objfile->flags & OBJF_READNOW) == 0) |
| { |
| /* See if one has been created for this BFD yet. */ |
| per_bfd = dwarf2_per_bfd_bfd_data_key.get (objfile->obfd.get ()); |
| |
| if (per_bfd == nullptr) |
| { |
| /* No, create it now. */ |
| per_bfd = new dwarf2_per_bfd (objfile->obfd.get (), names, |
| can_copy); |
| dwarf2_per_bfd_bfd_data_key.set (objfile->obfd.get (), per_bfd); |
| just_created = true; |
| } |
| } |
| else |
| { |
| /* No sharing possible, create one specifically for this objfile. */ |
| per_bfd = new dwarf2_per_bfd (objfile->obfd.get (), names, can_copy); |
| dwarf2_per_bfd_objfile_data_key.set (objfile, per_bfd); |
| just_created = true; |
| } |
| |
| per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile, per_bfd); |
| } |
| |
| /* Virtual sections are created from DWP files. It's not clear those |
| can occur here, so perhaps the is_virtual checks here are dead code. */ |
| const bool has_info = (!per_objfile->per_bfd->infos.empty () |
| && !per_objfile->per_bfd->infos[0].is_virtual |
| && per_objfile->per_bfd->infos[0].s.section != nullptr |
| && !per_objfile->per_bfd->abbrev.is_virtual |
| && per_objfile->per_bfd->abbrev.s.section != nullptr); |
| |
| if (just_created && has_info) |
| { |
| /* Try to fetch any potential dwz file early, while still on |
| the main thread. Also, be sure to do it just once per |
| BFD, to avoid races. */ |
| try |
| { |
| dwarf2_read_dwz_file (per_objfile); |
| } |
| catch (const gdb_exception_error &err) |
| { |
| warning (_("%s"), err.what ()); |
| } |
| } |
| |
| return has_info; |
| } |
| |
| /* See declaration. */ |
| |
| void |
| dwarf2_per_bfd::locate_sections (asection *sectp, |
| const dwarf2_debug_sections &names) |
| { |
| flagword aflag = bfd_section_flags (sectp); |
| |
| if ((aflag & SEC_HAS_CONTENTS) == 0) |
| { |
| } |
| else if (bfd_section_size_insane (this->obfd, sectp)) |
| { |
| bfd_size_type size = sectp->size; |
| warning (_("Discarding section %s which has an invalid size (%s) " |
| "[in module %s]"), |
| bfd_section_name (sectp), phex_nz (size, sizeof (size)), |
| this->filename ()); |
| } |
| else if (names.info.matches (sectp->name)) |
| { |
| struct dwarf2_section_info info_section; |
| memset (&info_section, 0, sizeof (info_section)); |
| info_section.s.section = sectp; |
| info_section.size = bfd_section_size (sectp); |
| this->infos.push_back (info_section); |
| } |
| else if (names.abbrev.matches (sectp->name)) |
| { |
| this->abbrev.s.section = sectp; |
| this->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (names.line.matches (sectp->name)) |
| { |
| this->line.s.section = sectp; |
| this->line.size = bfd_section_size (sectp); |
| } |
| else if (names.loc.matches (sectp->name)) |
| { |
| this->loc.s.section = sectp; |
| this->loc.size = bfd_section_size (sectp); |
| } |
| else if (names.loclists.matches (sectp->name)) |
| { |
| this->loclists.s.section = sectp; |
| this->loclists.size = bfd_section_size (sectp); |
| } |
| else if (names.macinfo.matches (sectp->name)) |
| { |
| this->macinfo.s.section = sectp; |
| this->macinfo.size = bfd_section_size (sectp); |
| } |
| else if (names.macro.matches (sectp->name)) |
| { |
| this->macro.s.section = sectp; |
| this->macro.size = bfd_section_size (sectp); |
| } |
| else if (names.str.matches (sectp->name)) |
| { |
| this->str.s.section = sectp; |
| this->str.size = bfd_section_size (sectp); |
| } |
| else if (names.str_offsets.matches (sectp->name)) |
| { |
| this->str_offsets.s.section = sectp; |
| this->str_offsets.size = bfd_section_size (sectp); |
| } |
| else if (names.line_str.matches (sectp->name)) |
| { |
| this->line_str.s.section = sectp; |
| this->line_str.size = bfd_section_size (sectp); |
| } |
| else if (names.addr.matches (sectp->name)) |
| { |
| this->addr.s.section = sectp; |
| this->addr.size = bfd_section_size (sectp); |
| } |
| else if (names.frame.matches (sectp->name)) |
| { |
| this->frame.s.section = sectp; |
| this->frame.size = bfd_section_size (sectp); |
| } |
| else if (names.eh_frame.matches (sectp->name)) |
| { |
| this->eh_frame.s.section = sectp; |
| this->eh_frame.size = bfd_section_size (sectp); |
| } |
| else if (names.ranges.matches (sectp->name)) |
| { |
| this->ranges.s.section = sectp; |
| this->ranges.size = bfd_section_size (sectp); |
| } |
| else if (names.rnglists.matches (sectp->name)) |
| { |
| this->rnglists.s.section = sectp; |
| this->rnglists.size = bfd_section_size (sectp); |
| } |
| else if (names.types.matches (sectp->name)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| type_section.s.section = sectp; |
| type_section.size = bfd_section_size (sectp); |
| |
| this->types.push_back (type_section); |
| } |
| else if (names.gdb_index.matches (sectp->name)) |
| { |
| this->gdb_index.s.section = sectp; |
| this->gdb_index.size = bfd_section_size (sectp); |
| } |
| else if (names.debug_names.matches (sectp->name)) |
| { |
| this->debug_names.s.section = sectp; |
| this->debug_names.size = bfd_section_size (sectp); |
| } |
| else if (names.debug_aranges.matches (sectp->name)) |
| { |
| this->debug_aranges.s.section = sectp; |
| this->debug_aranges.size = bfd_section_size (sectp); |
| } |
| |
| if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC)) |
| && bfd_section_vma (sectp) == 0) |
| this->has_section_at_zero = true; |
| } |
| |
| /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and |
| SECTION_NAME. */ |
| |
| void |
| dwarf2_get_section_info (struct objfile *objfile, |
| enum dwarf2_section_enum sect, |
| asection **sectp, const gdb_byte **bufp, |
| bfd_size_type *sizep) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| struct dwarf2_section_info *info; |
| |
| /* We may see an objfile without any DWARF, in which case we just |
| return nothing. */ |
| if (per_objfile == NULL) |
| { |
| *sectp = NULL; |
| *bufp = NULL; |
| *sizep = 0; |
| return; |
| } |
| switch (sect) |
| { |
| case DWARF2_DEBUG_FRAME: |
| info = &per_objfile->per_bfd->frame; |
| break; |
| case DWARF2_EH_FRAME: |
| info = &per_objfile->per_bfd->eh_frame; |
| break; |
| default: |
| gdb_assert_not_reached ("unexpected section"); |
| } |
| |
| info->read (objfile); |
| |
| *sectp = info->get_bfd_section (); |
| *bufp = info->buffer; |
| *sizep = info->size; |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| void |
| dwarf2_per_bfd::map_info_sections (struct objfile *objfile) |
| { |
| for (auto §ion : infos) |
| section.read (objfile); |
| |
| abbrev.read (objfile); |
| line.read (objfile); |
| str.read (objfile); |
| str_offsets.read (objfile); |
| line_str.read (objfile); |
| ranges.read (objfile); |
| rnglists.read (objfile); |
| addr.read (objfile); |
| debug_aranges.read (objfile); |
| |
| for (auto §ion : types) |
| section.read (objfile); |
| } |
| |
| /* See dwarf2/read.h. */ |
| |
| void |
| dwarf2_per_bfd::start_reading (dwarf_scanner_base_up new_table) |
| { |
| gdb_assert (index_table == nullptr); |
| index_table = std::move (new_table); |
| index_table->start_reading (); |
| } |
| |
| |
| /* DWARF quick_symbol_functions support. */ |
| |
| /* TUs can share .debug_line entries, and there can be a lot more TUs than |
| unique line tables, so we maintain a separate table of all .debug_line |
| derived entries to support the sharing. |
| All the quick functions need is the list of file names. We discard the |
| line_header when we're done and don't need to record it here. */ |
| struct quick_file_names |
| { |
| /* The data used to construct the hash key. */ |
| struct stmt_list_hash hash; |
| |
| /* The number of entries in file_names, real_names. */ |
| unsigned int num_file_names; |
| |
| /* The CU directory, as given by DW_AT_comp_dir. May be |
| nullptr. */ |
| const char *comp_dir; |
| |
| /* The file names from the line table, after being run through |
| file_full_name. */ |
| const char **file_names; |
| |
| /* The file names from the line table after being run through |
| gdb_realpath. These are computed lazily. */ |
| const char **real_names; |
| }; |
| |
| /* With OBJF_READNOW, the DWARF reader expands all CUs immediately. |
| It's handy in this case to have an empty implementation of the |
| quick symbol functions, to avoid special cases in the rest of the |
| code. */ |
| |
| struct readnow_functions : public dwarf2_base_index_functions |
| { |
| void dump (struct objfile *objfile) override |
| { |
| } |
| |
| bool expand_symtabs_matching |
| (struct objfile *objfile, |
| expand_symtabs_file_matcher file_matcher, |
| const lookup_name_info *lookup_name, |
| expand_symtabs_symbol_matcher symbol_matcher, |
| expand_symtabs_expansion_listener expansion_notify, |
| block_search_flags search_flags, |
| domain_search_flags domain, |
| expand_symtabs_lang_matcher lang_matcher) override |
| { |
| return true; |
| } |
| }; |
| |
| /* Utility hash function for a stmt_list_hash. */ |
| |
| static hashval_t |
| hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash) |
| { |
| hashval_t v = 0; |
| |
| if (stmt_list_hash->dwo_unit != NULL) |
| v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file; |
| v += to_underlying (stmt_list_hash->line_sect_off); |
| return v; |
| } |
| |
| /* Utility equality function for a stmt_list_hash. */ |
| |
| static int |
| eq_stmt_list_entry (const struct stmt_list_hash *lhs, |
| const struct stmt_list_hash *rhs) |
| { |
| if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL)) |
| return 0; |
| if (lhs->dwo_unit != NULL |
| && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file) |
| return 0; |
| |
| return lhs->line_sect_off == rhs->line_sect_off; |
| } |
| |
| /* Hash function for a quick_file_names. */ |
| |
| static hashval_t |
| hash_file_name_entry (const void *e) |
| { |
| const struct quick_file_names *file_data |
| = (const struct quick_file_names *) e; |
| |
| return hash_stmt_list_entry (&file_data->hash); |
| } |
| |
| /* Equality function for a quick_file_names. */ |
| |
| static int |
| eq_file_name_entry (const void *a, const void *b) |
| { |
| const struct quick_file_names *ea = (const struct quick_file_names *) a; |
| const struct quick_file_names *eb = (const struct quick_file_names *) b; |
| |
| return eq_stmt_list_entry (&ea->hash, &eb->hash); |
| } |
| |
| /* See read.h. */ |
| |
| htab_up |
| create_quick_file_names_table (unsigned int nr_initial_entries) |
| { |
| return htab_up (htab_create_alloc (nr_initial_entries, |
| hash_file_name_entry, eq_file_name_entry, |
| nullptr, xcalloc, xfree)); |
| } |
| |
| /* Read in CU (dwarf2_cu object) for PER_CU in the context of PER_OBJFILE. This |
| function is unrelated to symtabs, symtab would have to be created afterwards. |
| You should call age_cached_comp_units after processing the CU. */ |
| |
| static dwarf2_cu * |
| load_cu (dwarf2_per_cu *per_cu, dwarf2_per_objfile *per_objfile, |
| bool skip_partial) |
| { |
| if (per_cu->is_debug_types) |
| load_full_type_unit (per_cu, per_objfile); |
| else |
| load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu), |
| skip_partial, language_minimal); |
| |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| if (cu == nullptr) |
| return nullptr; /* Dummy CU. */ |
| |
| dwarf2_find_base_address (cu->dies, cu); |
| |
| return cu; |
| } |
| |
| /* Read in the symbols for PER_CU in the context of PER_OBJFILE. */ |
| |
| static void |
| dw2_do_instantiate_symtab (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, bool skip_partial) |
| { |
| { |
| /* The destructor of dwarf2_queue_guard frees any entries left on |
| the queue. After this point we're guaranteed to leave this function |
| with the dwarf queue empty. */ |
| dwarf2_queue_guard q_guard (per_objfile); |
| |
| if (!per_objfile->symtab_set_p (per_cu)) |
| { |
| queue_comp_unit (per_cu, per_objfile); |
| dwarf2_cu *cu = load_cu (per_cu, per_objfile, skip_partial); |
| |
| /* If we just loaded a CU from a DWO, and we're working with an index |
| that may badly handle TUs, load all the TUs in that DWO as well. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */ |
| if (!per_cu->is_debug_types |
| && cu != NULL |
| && cu->dwo_unit != NULL |
| && per_objfile->per_bfd->index_table != NULL |
| && !per_objfile->per_bfd->index_table->version_check () |
| /* DWP files aren't supported yet. */ |
| && get_dwp_file (per_objfile) == NULL) |
| queue_and_load_all_dwo_tus (cu); |
| } |
| |
| process_queue (per_objfile); |
| } |
| |
| /* Age the cache, releasing compilation units that have not |
| been used recently. */ |
| per_objfile->age_comp_units (); |
| } |
| |
| /* Ensure that the symbols for PER_CU have been read in. DWARF2_PER_OBJFILE is |
| the per-objfile for which this symtab is instantiated. |
| |
| Returns the resulting symbol table. */ |
| |
| static struct compunit_symtab * |
| dw2_instantiate_symtab (dwarf2_per_cu *per_cu, dwarf2_per_objfile *per_objfile, |
| bool skip_partial) |
| { |
| if (!per_objfile->symtab_set_p (per_cu)) |
| { |
| free_cached_comp_units freer (per_objfile); |
| scoped_restore decrementer = increment_reading_symtab (); |
| dw2_do_instantiate_symtab (per_cu, per_objfile, skip_partial); |
| process_cu_includes (per_objfile); |
| } |
| |
| return per_objfile->get_symtab (per_cu); |
| } |
| |
| /* See read.h. */ |
| |
| dwarf2_per_cu_up |
| dwarf2_per_bfd::allocate_per_cu (dwarf2_section_info *section, |
| sect_offset sect_off, unsigned int length, |
| bool is_dwz) |
| { |
| dwarf2_per_cu_up result (new dwarf2_per_cu (this, section, sect_off, |
| length, is_dwz)); |
| result->index = all_units.size (); |
| return result; |
| } |
| |
| /* See read.h. */ |
| |
| signatured_type_up |
| dwarf2_per_bfd::allocate_signatured_type (dwarf2_section_info *section, |
| sect_offset sect_off, |
| unsigned int length, |
| bool is_dwz, |
| ULONGEST signature) |
| { |
| auto result |
| = std::make_unique<signatured_type> (this, section, sect_off, length, |
| is_dwz, signature); |
| result->index = all_units.size (); |
| tu_stats.nr_tus++; |
| return result; |
| } |
| |
| /* die_reader_func for dw2_get_file_names. */ |
| |
| static void |
| dw2_get_file_names_reader (dwarf2_cu *cu, die_info *comp_unit_die) |
| { |
| dwarf2_per_cu *this_cu = cu->per_cu; |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct attribute *attr; |
| void **slot; |
| struct quick_file_names *qfn; |
| |
| gdb_assert (! this_cu->is_debug_types); |
| |
| this_cu->files_read = true; |
| /* Our callers never want to match partial units -- instead they |
| will match the enclosing full CU. */ |
| if (comp_unit_die->tag == DW_TAG_partial_unit) |
| return; |
| |
| slot = NULL; |
| |
| line_header_up lh; |
| sect_offset line_offset {}; |
| |
| file_and_directory &fnd = find_file_and_directory (comp_unit_die, cu); |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| { |
| struct quick_file_names find_entry; |
| |
| line_offset = (sect_offset) attr->as_unsigned (); |
| |
| /* We may have already read in this line header (TU line header sharing). |
| If we have we're done. */ |
| find_entry.hash.dwo_unit = cu->dwo_unit; |
| find_entry.hash.line_sect_off = line_offset; |
| slot = htab_find_slot (per_objfile->per_bfd->quick_file_names_table.get (), |
| &find_entry, INSERT); |
| if (*slot != NULL) |
| { |
| this_cu->file_names = (struct quick_file_names *) *slot; |
| return; |
| } |
| |
| lh = dwarf_decode_line_header (line_offset, cu, fnd.get_comp_dir ()); |
| } |
| |
| int offset = 0; |
| if (!fnd.is_unknown ()) |
| ++offset; |
| else if (lh == nullptr) |
| return; |
| |
| qfn = XOBNEW (&per_objfile->per_bfd->obstack, struct quick_file_names); |
| qfn->hash.dwo_unit = cu->dwo_unit; |
| qfn->hash.line_sect_off = line_offset; |
| /* There may not be a DW_AT_stmt_list. */ |
| if (slot != nullptr) |
| *slot = qfn; |
| |
| std::vector<const char *> include_names; |
| if (lh != nullptr) |
| { |
| for (const auto &entry : lh->file_names ()) |
| { |
| std::string name_holder; |
| const char *include_name = |
| compute_include_file_name (lh.get (), entry, fnd, name_holder); |
| if (include_name != nullptr) |
| { |
| include_name = per_objfile->objfile->intern (include_name); |
| include_names.push_back (include_name); |
| } |
| } |
| } |
| |
| qfn->num_file_names = offset + include_names.size (); |
| qfn->comp_dir = fnd.intern_comp_dir (per_objfile->objfile); |
| qfn->file_names = |
| XOBNEWVEC (&per_objfile->per_bfd->obstack, const char *, |
| qfn->num_file_names); |
| if (offset != 0) |
| qfn->file_names[0] = per_objfile->objfile->intern (fnd.get_name ()); |
| |
| if (!include_names.empty ()) |
| memcpy (&qfn->file_names[offset], include_names.data (), |
| include_names.size () * sizeof (const char *)); |
| |
| qfn->real_names = NULL; |
| |
| this_cu->file_names = qfn; |
| } |
| |
| /* A helper for the "quick" functions which attempts to read the line |
| table for THIS_CU. */ |
| |
| static struct quick_file_names * |
| dw2_get_file_names (dwarf2_per_cu *this_cu, dwarf2_per_objfile *per_objfile) |
| { |
| /* This should never be called for TUs. */ |
| gdb_assert (! this_cu->is_debug_types); |
| |
| if (this_cu->files_read) |
| return this_cu->file_names; |
| |
| cutu_reader reader (this_cu, per_objfile, nullptr, |
| per_objfile->get_cu (this_cu), true, language_minimal, |
| nullptr); |
| if (!reader.is_dummy ()) |
| dw2_get_file_names_reader (reader.cu (), reader.top_level_die ()); |
| |
| return this_cu->file_names; |
| } |
| |
| /* A helper for the "quick" functions which computes and caches the |
| real path for a given file name from the line table. */ |
| |
| static const char * |
| dw2_get_real_path (dwarf2_per_objfile *per_objfile, |
| struct quick_file_names *qfn, int index) |
| { |
| if (qfn->real_names == NULL) |
| qfn->real_names = OBSTACK_CALLOC (&per_objfile->per_bfd->obstack, |
| qfn->num_file_names, const char *); |
| |
| if (qfn->real_names[index] == NULL) |
| { |
| const char *dirname = nullptr; |
| |
| if (!IS_ABSOLUTE_PATH (qfn->file_names[index])) |
| dirname = qfn->comp_dir; |
| |
| gdb::unique_xmalloc_ptr<char> fullname; |
| fullname = find_source_or_rewrite (qfn->file_names[index], dirname); |
| |
| qfn->real_names[index] = fullname.release (); |
| } |
| |
| return qfn->real_names[index]; |
| } |
| |
| struct symtab * |
| dwarf2_base_index_functions::find_last_source_symtab (struct objfile *objfile) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| dwarf2_per_cu *dwarf_cu = per_objfile->per_bfd->all_units.back ().get (); |
| compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, per_objfile, false); |
| |
| if (cust == NULL) |
| return NULL; |
| |
| return cust->primary_filetab (); |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_cu::free_cached_file_names () |
| { |
| if (fnd != nullptr) |
| fnd->forget_fullname (); |
| |
| if (per_bfd == nullptr) |
| return; |
| |
| struct quick_file_names *file_data = file_names; |
| if (file_data != nullptr && file_data->real_names != nullptr) |
| { |
| for (int i = 0; i < file_data->num_file_names; ++i) |
| { |
| xfree ((void *) file_data->real_names[i]); |
| file_data->real_names[i] = nullptr; |
| } |
| } |
| } |
| |
| void |
| dwarf2_base_index_functions::forget_cached_source_info |
| (struct objfile *objfile) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| |
| for (auto &per_cu : per_objfile->per_bfd->all_units) |
| per_cu->free_cached_file_names (); |
| } |
| |
| void |
| dwarf2_base_index_functions::print_stats (struct objfile *objfile, |
| bool print_bcache) |
| { |
| if (print_bcache) |
| return; |
| |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| int total = per_objfile->per_bfd->all_units.size (); |
| int count = 0; |
| |
| for (int i = 0; i < total; ++i) |
| { |
| dwarf2_per_cu *per_cu = per_objfile->per_bfd->get_cu (i); |
| |
| if (!per_objfile->symtab_set_p (per_cu)) |
| ++count; |
| } |
| gdb_printf (_(" Number of read CUs: %d\n"), total - count); |
| gdb_printf (_(" Number of unread CUs: %d\n"), count); |
| } |
| |
| void |
| dwarf2_base_index_functions::expand_all_symtabs (struct objfile *objfile) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| |
| for (dwarf2_per_cu *per_cu : all_units_range (per_objfile->per_bfd)) |
| { |
| /* We don't want to directly expand a partial CU, because if we |
| read it with the wrong language, then assertion failures can |
| be triggered later on. See PR symtab/23010. So, tell |
| dw2_instantiate_symtab to skip partial CUs -- any important |
| partial CU will be read via DW_TAG_imported_unit anyway. */ |
| dw2_instantiate_symtab (per_cu, per_objfile, true); |
| } |
| } |
| |
| /* See read.h. */ |
| |
| bool |
| dw2_expand_symtabs_matching_one |
| (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| expand_symtabs_file_matcher file_matcher, |
| expand_symtabs_expansion_listener expansion_notify, |
| expand_symtabs_lang_matcher lang_matcher) |
| { |
| if (file_matcher != nullptr && !per_cu->mark) |
| return true; |
| |
| if (lang_matcher != nullptr) |
| { |
| /* Try to skip CUs with non-matching language. */ |
| per_cu->ensure_lang (per_objfile); |
| if (!per_cu->maybe_multi_language () |
| && !lang_matcher (per_cu->lang ())) |
| return true; |
| } |
| |
| bool symtab_was_null = !per_objfile->symtab_set_p (per_cu); |
| compunit_symtab *symtab |
| = dw2_instantiate_symtab (per_cu, per_objfile, false); |
| gdb_assert (symtab != nullptr); |
| |
| if (expansion_notify != NULL && symtab_was_null) |
| return expansion_notify (symtab); |
| |
| return true; |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dw_expand_symtabs_matching_file_matcher |
| (dwarf2_per_objfile *per_objfile, expand_symtabs_file_matcher file_matcher) |
| { |
| if (file_matcher == NULL) |
| return; |
| |
| gdb::unordered_set<quick_file_names *> visited_found; |
| gdb::unordered_set<quick_file_names *> visited_not_found; |
| |
| /* The rule is CUs specify all the files, including those used by |
| any TU, so there's no need to scan TUs here. */ |
| |
| for (const auto &per_cu : per_objfile->per_bfd->all_units) |
| { |
| QUIT; |
| |
| if (per_cu->is_debug_types) |
| continue; |
| per_cu->mark = 0; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_objfile->symtab_set_p (per_cu.get ())) |
| continue; |
| |
| if (per_cu->fnd != nullptr) |
| { |
| file_and_directory *fnd = per_cu->fnd.get (); |
| |
| if (file_matcher (fnd->get_name (), false)) |
| { |
| per_cu->mark = 1; |
| continue; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if ((basenames_may_differ |
| || file_matcher (lbasename (fnd->get_name ()), true)) |
| && file_matcher (fnd->get_fullname (), false)) |
| { |
| per_cu->mark = 1; |
| continue; |
| } |
| } |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu.get (), |
| per_objfile); |
| if (file_data == NULL) |
| continue; |
| |
| if (visited_not_found.contains (file_data)) |
| continue; |
| else if (visited_found.contains (file_data)) |
| { |
| per_cu->mark = 1; |
| continue; |
| } |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_real_name; |
| |
| if (file_matcher (file_data->file_names[j], false)) |
| { |
| per_cu->mark = 1; |
| break; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if (!basenames_may_differ |
| && !file_matcher (lbasename (file_data->file_names[j]), |
| true)) |
| continue; |
| |
| this_real_name = dw2_get_real_path (per_objfile, file_data, j); |
| if (file_matcher (this_real_name, false)) |
| { |
| per_cu->mark = 1; |
| break; |
| } |
| } |
| |
| if (per_cu->mark) |
| visited_found.insert (file_data); |
| else |
| visited_not_found.insert (file_data); |
| } |
| } |
| |
| |
| /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific |
| symtab. */ |
| |
| static struct compunit_symtab * |
| recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust, |
| CORE_ADDR pc) |
| { |
| int i; |
| |
| if (cust->blockvector () != nullptr |
| && blockvector_contains_pc (cust->blockvector (), pc)) |
| return cust; |
| |
| if (cust->includes == NULL) |
| return NULL; |
| |
| for (i = 0; cust->includes[i]; ++i) |
| { |
| struct compunit_symtab *s = cust->includes[i]; |
| |
| s = recursively_find_pc_sect_compunit_symtab (s, pc); |
| if (s != NULL) |
| return s; |
| } |
| |
| return NULL; |
| } |
| |
| struct compunit_symtab * |
| dwarf2_base_index_functions::find_pc_sect_compunit_symtab |
| (struct objfile *objfile, |
| bound_minimal_symbol msymbol, |
| CORE_ADDR pc, |
| struct obj_section *section, |
| int warn_if_readin) |
| { |
| struct compunit_symtab *result; |
| |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| if (per_bfd->index_table == nullptr) |
| return nullptr; |
| |
| CORE_ADDR baseaddr = objfile->text_section_offset (); |
| dwarf2_per_cu *data |
| = per_bfd->index_table->lookup ((unrelocated_addr) (pc - baseaddr)); |
| if (data == nullptr) |
| return nullptr; |
| |
| if (warn_if_readin && per_objfile->symtab_set_p (data)) |
| warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"), |
| paddress (objfile->arch (), pc)); |
| |
| result = recursively_find_pc_sect_compunit_symtab |
| (dw2_instantiate_symtab (data, per_objfile, false), pc); |
| |
| if (warn_if_readin && result == nullptr) |
| warning (_("(Error: pc %s in address map, but not in symtab.)"), |
| paddress (objfile->arch (), pc)); |
| |
| return result; |
| } |
| |
| void |
| dwarf2_base_index_functions::map_symbol_filenames (objfile *objfile, |
| symbol_filename_listener fun, |
| bool need_fullname) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| |
| /* Use caches to ensure we only call FUN once for each filename. */ |
| filename_seen_cache filenames_cache; |
| gdb::unordered_set<quick_file_names *> qfn_cache; |
| |
| /* The rule is CUs specify all the files, including those used by any TU, |
| so there's no need to scan TUs here. We can ignore file names coming |
| from already-expanded CUs. It is possible that an expanded CU might |
| reuse the file names data from a currently unexpanded CU, in this |
| case we don't want to report the files from the unexpanded CU. */ |
| |
| for (const auto &per_cu : per_objfile->per_bfd->all_units) |
| { |
| if (!per_cu->is_debug_types |
| && per_objfile->symtab_set_p (per_cu.get ())) |
| { |
| if (per_cu->file_names != nullptr) |
| qfn_cache.insert (per_cu->file_names); |
| } |
| } |
| |
| for (dwarf2_per_cu *per_cu : all_units_range (per_objfile->per_bfd)) |
| { |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->is_debug_types || per_objfile->symtab_set_p (per_cu)) |
| continue; |
| |
| if (per_cu->fnd != nullptr) |
| { |
| file_and_directory *fnd = per_cu->fnd.get (); |
| |
| const char *filename = fnd->get_name (); |
| const char *key = filename; |
| const char *fullname = nullptr; |
| |
| if (need_fullname) |
| { |
| fullname = fnd->get_fullname (); |
| key = fullname; |
| } |
| |
| if (!filenames_cache.seen (key)) |
| fun (filename, fullname); |
| } |
| |
| quick_file_names *file_data = dw2_get_file_names (per_cu, per_objfile); |
| if (file_data == nullptr |
| || qfn_cache.find (file_data) != qfn_cache.end ()) |
| continue; |
| |
| for (int j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *filename = file_data->file_names[j]; |
| const char *key = filename; |
| const char *fullname = nullptr; |
| |
| if (need_fullname) |
| { |
| fullname = dw2_get_real_path (per_objfile, file_data, j); |
| key = fullname; |
| } |
| |
| if (!filenames_cache.seen (key)) |
| fun (filename, fullname); |
| } |
| } |
| } |
| |
| bool |
| dwarf2_base_index_functions::has_symbols (struct objfile *objfile) |
| { |
| return true; |
| } |
| |
| /* See quick_symbol_functions::has_unexpanded_symtabs in quick-symbol.h. */ |
| |
| bool |
| dwarf2_base_index_functions::has_unexpanded_symtabs (struct objfile *objfile) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| |
| for (const auto &per_cu : per_objfile->per_bfd->all_units) |
| { |
| /* Is this already expanded? */ |
| if (per_objfile->symtab_set_p (per_cu.get ())) |
| continue; |
| |
| /* It has not yet been expanded. */ |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point |
| to either a dwarf2_per_bfd or dwz_file object. */ |
| |
| template <typename T> |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_section (objfile *obj, T *section_owner) |
| { |
| dwarf2_section_info *section = §ion_owner->gdb_index; |
| |
| if (section->empty ()) |
| return {}; |
| |
| /* Older elfutils strip versions could keep the section in the main |
| executable while splitting it for the separate debug info file. */ |
| if ((section->get_flags () & SEC_HAS_CONTENTS) == 0) |
| return {}; |
| |
| section->read (obj); |
| |
| /* dwarf2_section_info::size is a bfd_size_type, while |
| gdb::array_view works with size_t. On 32-bit hosts, with |
| --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t |
| is 32-bit. So we need an explicit narrowing conversion here. |
| This is fine, because it's impossible to allocate or mmap an |
| array/buffer larger than what size_t can represent. */ |
| return gdb::make_array_view (section->buffer, section->size); |
| } |
| |
| /* Lookup the index cache for the contents of the index associated to |
| DWARF2_OBJ. */ |
| |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_bfd *dwarf2_per_bfd) |
| { |
| const bfd_build_id *build_id = build_id_bfd_get (obj->obfd.get ()); |
| if (build_id == nullptr) |
| return {}; |
| |
| return global_index_cache.lookup_gdb_index (build_id, |
| &dwarf2_per_bfd->index_cache_res); |
| } |
| |
| /* Same as the above, but for DWZ. */ |
| |
| static gdb::array_view<const gdb_byte> |
| get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz) |
| { |
| const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ()); |
| if (build_id == nullptr) |
| return {}; |
| |
| return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res); |
| } |
| |
| static void start_debug_info_reader (dwarf2_per_objfile *); |
| |
| /* See dwarf2/public.h. */ |
| |
| bool |
| dwarf2_initialize_objfile (struct objfile *objfile, |
| const struct dwarf2_debug_sections *names, |
| bool can_copy) |
| { |
| if (!dwarf2_has_info (objfile, names, can_copy)) |
| return false; |
| |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| dwarf_read_debug_printf ("called"); |
| |
| /* If we're about to read full symbols, don't bother with the |
| indices. In this case we also don't care if some other debug |
| format is making psymtabs, because they are all about to be |
| expanded anyway. */ |
| if ((objfile->flags & OBJF_READNOW)) |
| { |
| dwarf_read_debug_printf ("readnow requested"); |
| |
| create_all_units (per_objfile); |
| per_bfd->quick_file_names_table |
| = create_quick_file_names_table (per_bfd->all_units.size ()); |
| |
| objfile->qf.emplace_front (new readnow_functions); |
| } |
| /* Was a GDB index already read when we processed an objfile sharing |
| PER_BFD? */ |
| else if (per_bfd->index_table != nullptr) |
| dwarf_read_debug_printf ("re-using symbols"); |
| else if (dwarf2_read_debug_names (per_objfile)) |
| dwarf_read_debug_printf ("found debug names"); |
| else if (dwarf2_read_gdb_index (per_objfile, |
| get_gdb_index_contents_from_section<struct dwarf2_per_bfd>, |
| get_gdb_index_contents_from_section<dwz_file>)) |
| dwarf_read_debug_printf ("found gdb index from file"); |
| /* ... otherwise, try to find the index in the index cache. */ |
| else if (dwarf2_read_gdb_index (per_objfile, |
| get_gdb_index_contents_from_cache, |
| get_gdb_index_contents_from_cache_dwz)) |
| { |
| dwarf_read_debug_printf ("found gdb index from cache"); |
| global_index_cache.hit (); |
| } |
| else |
| { |
| global_index_cache.miss (); |
| start_debug_info_reader (per_objfile); |
| } |
| |
| if (per_bfd->index_table != nullptr) |
| { |
| if (dwarf_synchronous) |
| per_bfd->index_table->wait_completely (); |
| objfile->qf.push_front (per_bfd->index_table->make_quick_functions ()); |
| } |
| |
| return true; |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| cu->base_address.reset (); |
| |
| attr = dwarf2_attr (die, DW_AT_entry_pc, cu); |
| if (attr != nullptr) |
| cu->base_address = attr->as_address (); |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| cu->base_address = attr->as_address (); |
| } |
| } |
| |
| /* Helper function that returns the proper abbrev section for |
| THIS_CU. */ |
| |
| static struct dwarf2_section_info * |
| get_abbrev_section_for_cu (dwarf2_per_cu *this_cu) |
| { |
| struct dwarf2_section_info *abbrev; |
| dwarf2_per_bfd *per_bfd = this_cu->per_bfd; |
| |
| if (this_cu->is_dwz) |
| abbrev = &per_bfd->get_dwz_file (true)->abbrev; |
| else |
| abbrev = &per_bfd->abbrev; |
| |
| return abbrev; |
| } |
| |
| /* Fetch the abbreviation table offset from a comp or type unit header. */ |
| |
| static sect_offset |
| read_abbrev_offset (dwarf2_per_objfile *per_objfile, |
| struct dwarf2_section_info *section, |
| sect_offset sect_off) |
| { |
| bfd *abfd = section->get_bfd_owner (); |
| const gdb_byte *info_ptr; |
| unsigned int initial_length_size, offset_size; |
| uint16_t version; |
| |
| section->read (per_objfile->objfile); |
| info_ptr = section->buffer + to_underlying (sect_off); |
| read_initial_length (abfd, info_ptr, &initial_length_size); |
| offset_size = initial_length_size == 4 ? 4 : 8; |
| info_ptr += initial_length_size; |
| |
| version = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| if (version >= 5) |
| { |
| /* Skip unit type and address size. */ |
| info_ptr += 2; |
| } |
| |
| return (sect_offset) read_offset (abfd, info_ptr, offset_size); |
| } |
| |
| /* A helper for create_debug_types_hash_table. Read types from SECTION |
| and fill them into DWO_FILE's type unit hash table. It will process only |
| type units, therefore DW_UT_type. */ |
| |
| static void |
| create_debug_type_hash_table (dwarf2_per_objfile *per_objfile, |
| dwo_file *dwo_file, dwarf2_section_info *section, |
| rcuh_kind section_kind) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_section_info *abbrev_section; |
| bfd *abfd; |
| const gdb_byte *info_ptr, *end_ptr; |
| |
| abbrev_section = &dwo_file->sections.abbrev; |
| |
| dwarf_read_debug_printf ("Reading %s for %s", |
| section->get_name (), |
| abbrev_section->get_file_name ()); |
| |
| section->read (objfile); |
| info_ptr = section->buffer; |
| |
| if (info_ptr == NULL) |
| return; |
| |
| /* We can't set abfd until now because the section may be empty or |
| not present, in which case the bfd is unknown. */ |
| abfd = section->get_bfd_owner (); |
| |
| /* We don't use cutu_reader here because we don't need to read |
| any dies: the signature is in the header. */ |
| |
| end_ptr = info_ptr + section->size; |
| while (info_ptr < end_ptr) |
| { |
| const gdb_byte *ptr = info_ptr; |
| struct comp_unit_head header; |
| unsigned int length; |
| |
| sect_offset sect_off = (sect_offset) (ptr - section->buffer); |
| |
| /* Initialize it due to a false compiler warning. */ |
| header.signature = -1; |
| header.type_cu_offset_in_tu = (cu_offset) -1; |
| |
| /* We need to read the type's signature in order to build the hash |
| table, but we don't need anything else just yet. */ |
| |
| ptr = read_and_check_comp_unit_head (per_objfile, &header, section, |
| abbrev_section, ptr, section_kind); |
| |
| length = header.get_length_with_initial (); |
| |
| /* Skip dummy type units. */ |
| if (ptr >= info_ptr + length |
| || peek_abbrev_code (abfd, ptr) == 0 |
| || (header.unit_type != DW_UT_type |
| && header.unit_type != DW_UT_split_type)) |
| { |
| info_ptr += length; |
| continue; |
| } |
| |
| dwo_unit *dwo_tu |
| = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, dwo_unit); |
| dwo_tu->dwo_file = dwo_file; |
| dwo_tu->signature = header.signature; |
| dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu; |
| dwo_tu->section = section; |
| dwo_tu->sect_off = sect_off; |
| dwo_tu->length = length; |
| |
| auto [it, inserted] = dwo_file->tus.emplace (dwo_tu); |
| if (!inserted) |
| complaint (_("debug type entry at offset %s is duplicate to" |
| " the entry at offset %s, signature %s"), |
| sect_offset_str (sect_off), |
| sect_offset_str ((*it)->sect_off), |
| hex_string (header.signature)); |
| |
| dwarf_read_debug_printf_v (" offset %s, signature %s", |
| sect_offset_str (sect_off), |
| hex_string (header.signature)); |
| |
| info_ptr += length; |
| } |
| } |
| |
| /* Create the hash table of all entries in the .debug_types |
| (or .debug_types.dwo) section(s). |
| DWO_FILE is a pointer to the DWO file object. |
| |
| Note: This function processes DWO files only, not DWP files. */ |
| |
| static void |
| create_debug_types_hash_table |
| (dwarf2_per_objfile *per_objfile, dwo_file *dwo_file, |
| gdb::array_view<dwarf2_section_info> type_sections) |
| { |
| for (dwarf2_section_info §ion : type_sections) |
| create_debug_type_hash_table (per_objfile, dwo_file, §ion, |
| rcuh_kind::TYPE); |
| } |
| |
| /* Add an entry for signature SIG to per_bfd->signatured_types. */ |
| |
| static signatured_type_set::iterator |
| add_type_unit (dwarf2_per_bfd *per_bfd, dwarf2_section_info *section, |
| sect_offset sect_off, unsigned int length, ULONGEST sig) |
| { |
| if (per_bfd->all_units.size () == per_bfd->all_units.capacity ()) |
| ++per_bfd->tu_stats.nr_all_type_units_reallocs; |
| |
| signatured_type_up sig_type_holder |
| = per_bfd->allocate_signatured_type (section, sect_off, length, |
| false /* is_dwz */, sig); |
| signatured_type *sig_type = sig_type_holder.get (); |
| |
| per_bfd->all_units.emplace_back (sig_type_holder.release ()); |
| auto emplace_ret = per_bfd->signatured_types.emplace (sig_type); |
| |
| /* Assert that an insertion took place - that there wasn't a type unit with |
| that signature already. */ |
| gdb_assert (emplace_ret.second); |
| |
| /* The rest of sig_type must be filled in by the caller. */ |
| return emplace_ret.first; |
| } |
| |
| /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type. |
| Fill in SIG_ENTRY with DWO_ENTRY. */ |
| |
| static void |
| fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile *per_objfile, |
| struct signatured_type *sig_entry, |
| struct dwo_unit *dwo_entry) |
| { |
| /* Make sure we're not clobbering something we don't expect to. */ |
| gdb_assert (! sig_entry->queued); |
| gdb_assert (per_objfile->get_cu (sig_entry) == NULL); |
| gdb_assert (!per_objfile->symtab_set_p (sig_entry)); |
| gdb_assert (sig_entry->signature == dwo_entry->signature); |
| gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0 |
| || (to_underlying (sig_entry->type_offset_in_section) |
| == to_underlying (dwo_entry->type_offset_in_tu))); |
| gdb_assert (sig_entry->type_unit_group == NULL); |
| gdb_assert (sig_entry->dwo_unit == NULL |
| || sig_entry->dwo_unit == dwo_entry); |
| |
| sig_entry->reading_dwo_directly = 1; |
| sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu; |
| sig_entry->dwo_unit = dwo_entry; |
| } |
| |
| /* Subroutine of lookup_signatured_type. |
| If we haven't read the TU yet, create the signatured_type data structure |
| for a TU to be read in directly from a DWO file, bypassing the stub. |
| This is the "Stay in DWO Optimization": When there is no DWP file and we're |
| using .gdb_index, then when reading a CU we want to stay in the DWO file |
| containing that CU. Otherwise we could end up reading several other DWO |
| files (due to comdat folding) to process the transitive closure of all the |
| mentioned TUs, and that can be slow. The current DWO file will have every |
| type signature that it needs. |
| We only do this for .gdb_index because in the psymtab case we already have |
| to read all the DWOs to build the type unit groups. */ |
| |
| static struct signatured_type * |
| lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| gdb_assert (cu->dwo_unit); |
| |
| /* We only ever need to read in one copy of a signatured type. |
| Use the global signatured_types array to do our own comdat-folding |
| of types. If this is the first time we're reading this TU, and |
| the TU has an entry in .gdb_index, replace the recorded data from |
| .gdb_index with this TU. */ |
| |
| auto sig_type_it = per_bfd->signatured_types.find (sig); |
| |
| /* We can get here with the TU already read, *or* in the process of being |
| read. Don't reassign the global entry to point to this DWO if that's |
| the case. Also note that if the TU is already being read, it may not |
| have come from a DWO, the program may be a mix of Fission-compiled |
| code and non-Fission-compiled code. */ |
| |
| /* Have we already tried to read this TU? |
| Note: sig_entry can be NULL if the skeleton TU was removed (thus it |
| needn't exist in the global table yet). */ |
| if (sig_type_it != per_bfd->signatured_types.end () |
| && (*sig_type_it)->tu_read) |
| return *sig_type_it; |
| |
| /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the |
| dwo_unit of the TU itself. */ |
| dwo_file *dwo_file = cu->dwo_unit->dwo_file; |
| auto it = dwo_file->tus.find (sig); |
| if (it == dwo_file->tus.end ()) |
| return nullptr; |
| |
| dwo_unit *dwo_entry = *it; |
| |
| /* If the global table doesn't have an entry for this TU, add one. */ |
| if (sig_type_it == per_bfd->signatured_types.end ()) |
| sig_type_it = add_type_unit (per_bfd, dwo_entry->section, |
| dwo_entry->sect_off, dwo_entry->length, sig); |
| |
| if ((*sig_type_it)->dwo_unit == nullptr) |
| fill_in_sig_entry_from_dwo_entry (per_objfile, *sig_type_it, dwo_entry); |
| |
| (*sig_type_it)->tu_read = 1; |
| return *sig_type_it; |
| } |
| |
| /* Subroutine of lookup_signatured_type. |
| Look up the type for signature SIG, and if we can't find SIG in .gdb_index |
| then try the DWP file. If the TU stub (skeleton) has been removed then |
| it won't be in .gdb_index. */ |
| |
| static struct signatured_type * |
| lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| struct dwp_file *dwp_file = get_dwp_file (per_objfile); |
| |
| gdb_assert (cu->dwo_unit); |
| gdb_assert (dwp_file != NULL); |
| |
| auto sig_type_it = per_bfd->signatured_types.find (sig); |
| |
| /* Have we already tried to read this TU? |
| Note: sig_entry can be NULL if the skeleton TU was removed (thus it |
| needn't exist in the global table yet). */ |
| if (sig_type_it != per_bfd->signatured_types.end ()) |
| return *sig_type_it; |
| |
| if (dwp_file->tus == NULL) |
| return NULL; |
| |
| auto dwo_entry = lookup_dwo_unit_in_dwp (per_bfd, dwp_file, NULL, sig, |
| 1 /* is_debug_types */); |
| if (dwo_entry == NULL) |
| return NULL; |
| |
| sig_type_it = add_type_unit (per_bfd, dwo_entry->section, |
| dwo_entry->sect_off, dwo_entry->length, sig); |
| fill_in_sig_entry_from_dwo_entry (per_objfile, *sig_type_it, dwo_entry); |
| |
| return *sig_type_it; |
| } |
| |
| /* Lookup a signature based type for DW_FORM_ref_sig8. |
| Returns NULL if signature SIG is not present in the table. |
| It is up to the caller to complain about this. */ |
| |
| static struct signatured_type * |
| lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| if (cu->dwo_unit) |
| { |
| /* We're in a DWO/DWP file, and we're using .gdb_index. |
| These cases require special processing. */ |
| if (get_dwp_file (per_objfile) == NULL) |
| return lookup_dwo_signatured_type (cu, sig); |
| else |
| return lookup_dwp_signatured_type (cu, sig); |
| } |
| else |
| { |
| auto sig_type_it = per_bfd->signatured_types.find (sig); |
| |
| if (sig_type_it != per_bfd->signatured_types.end ()) |
| return *sig_type_it; |
| |
| return nullptr; |
| } |
| } |
| |
| /* Low level DIE reading support. */ |
| |
| /* Initialize a cutu_reader from a dwarf2_cu. */ |
| |
| void |
| cutu_reader::init_cu_die_reader (dwarf2_cu *cu, dwarf2_section_info *section, |
| struct dwo_file *dwo_file, |
| const struct abbrev_table *abbrev_table) |
| { |
| gdb_assert (section->readin && section->buffer != NULL); |
| m_abfd = section->get_bfd_owner (); |
| m_cu = cu; |
| m_dwo_file = dwo_file; |
| m_die_section = section; |
| m_buffer = section->buffer; |
| m_buffer_end = section->buffer + section->size; |
| m_abbrev_table = abbrev_table; |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| Read in the rest of a CU/TU top level DIE from DWO_UNIT. |
| There's just a lot of work to do, and cutu_reader is big enough |
| already. |
| |
| STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes |
| from it to the DIE in the DWO. If NULL we are skipping the stub. |
| |
| STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly |
| from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir |
| attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and |
| STUB_COMP_DIR may be non-NULL. |
| |
| *RESULT_READER and *RESULT_TOP_LEVEL_DIE are filled in with the info of the |
| DIE from the DWO file. |
| |
| *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated |
| from the dwo. Since *RESULT_READER references this abbrev table, it must be |
| kept around for at least as long as *RESULT_READER. |
| |
| The result is non-zero if a valid (non-dummy) DIE was found. */ |
| |
| int |
| cutu_reader::read_cutu_die_from_dwo (dwarf2_cu *cu, dwo_unit *dwo_unit, |
| die_info *stub_comp_unit_die, |
| const char *stub_comp_dir, |
| die_info **result_top_level_die, |
| abbrev_table_up *result_dwo_abbrev_table) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_cu *per_cu = cu->per_cu; |
| struct objfile *objfile = per_objfile->objfile; |
| bfd *abfd; |
| struct dwarf2_section_info *dwo_abbrev_section; |
| |
| /* At most one of these may be provided. */ |
| gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1); |
| |
| /* These attributes aren't processed until later: DW_AT_stmt_list, |
| DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges, DW_AT_comp_dir. |
| However, these attributes are found in the stub which we won't |
| have later. In order to not impose this complication on the rest |
| of the code, we read them here and copy them to the DWO CU/TU |
| die. */ |
| |
| /* We store them all in an array. */ |
| struct attribute *attributes[5] {}; |
| /* Next available element of the attributes array. */ |
| int next_attr_idx = 0; |
| |
| /* Push an element into ATTRIBUTES. */ |
| auto push_back = [&] (struct attribute *attr) |
| { |
| gdb_assert (next_attr_idx < ARRAY_SIZE (attributes)); |
| if (attr != nullptr) |
| attributes[next_attr_idx++] = attr; |
| }; |
| |
| if (stub_comp_unit_die != NULL) |
| { |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (!per_cu->is_debug_types) |
| push_back (dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu)); |
| push_back (dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu)); |
| push_back (dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu)); |
| push_back (dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu)); |
| push_back (dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu)); |
| |
| cu->addr_base = stub_comp_unit_die->addr_base (); |
| |
| /* There should be a DW_AT_GNU_ranges_base attribute here (if needed). |
| We need the value before we can process DW_AT_ranges values from the |
| DWO. */ |
| cu->gnu_ranges_base = stub_comp_unit_die->gnu_ranges_base (); |
| |
| /* For DWARF5: record the DW_AT_rnglists_base value from the skeleton. If |
| there are attributes of form DW_FORM_rnglistx in the skeleton, they'll |
| need the rnglists base. Attributes of form DW_FORM_rnglistx in the |
| split unit don't use it, as the DWO has its own .debug_rnglists.dwo |
| section. */ |
| cu->rnglists_base = stub_comp_unit_die->rnglists_base (); |
| } |
| else if (stub_comp_dir != NULL) |
| { |
| /* Reconstruct the comp_dir attribute to simplify the code below. */ |
| struct attribute *comp_dir = OBSTACK_ZALLOC (&cu->comp_unit_obstack, |
| struct attribute); |
| comp_dir->name = DW_AT_comp_dir; |
| comp_dir->form = DW_FORM_string; |
| comp_dir->set_string_noncanonical (stub_comp_dir); |
| push_back (comp_dir); |
| } |
| |
| /* Set up for reading the DWO CU/TU. */ |
| cu->dwo_unit = dwo_unit; |
| dwarf2_section_info *section = dwo_unit->section; |
| section->read (objfile); |
| abfd = section->get_bfd_owner (); |
| m_info_ptr = section->buffer + to_underlying (dwo_unit->sect_off); |
| const gdb_byte *begin_info_ptr = m_info_ptr; |
| dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev; |
| |
| if (per_cu->is_debug_types) |
| { |
| signatured_type *sig_type = (struct signatured_type *) per_cu; |
| |
| m_info_ptr = read_and_check_comp_unit_head (per_objfile, &cu->header, |
| section, dwo_abbrev_section, |
| m_info_ptr, rcuh_kind::TYPE); |
| /* This is not an assert because it can be caused by bad debug info. */ |
| if (sig_type->signature != cu->header.signature) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "signature mismatch %s vs %s while reading TU at offset %s" |
| " [in module %s]"), |
| hex_string (sig_type->signature), |
| hex_string (cu->header.signature), |
| sect_offset_str (dwo_unit->sect_off), |
| bfd_get_filename (abfd)); |
| } |
| gdb_assert (dwo_unit->sect_off == cu->header.sect_off); |
| /* For DWOs coming from DWP files, we don't know the CU length |
| nor the type's offset in the TU until now. */ |
| dwo_unit->length = cu->header.get_length_with_initial (); |
| dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu; |
| |
| /* Establish the type offset that can be used to lookup the type. |
| For DWO files, we don't know it until now. */ |
| sig_type->type_offset_in_section |
| = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu); |
| } |
| else |
| { |
| m_info_ptr |
| = read_and_check_comp_unit_head (per_objfile, &cu->header, section, |
| dwo_abbrev_section, m_info_ptr, |
| rcuh_kind::COMPILE); |
| gdb_assert (dwo_unit->sect_off == cu->header.sect_off); |
| /* For DWOs coming from DWP files, we don't know the CU length |
| until now. */ |
| dwo_unit->length = cu->header.get_length_with_initial (); |
| } |
| |
| dwo_abbrev_section->read (objfile); |
| *result_dwo_abbrev_table |
| = abbrev_table::read (dwo_abbrev_section, cu->header.abbrev_sect_off); |
| this->init_cu_die_reader (cu, section, dwo_unit->dwo_file, |
| result_dwo_abbrev_table->get ()); |
| |
| /* Read in the die, filling in the attributes from the stub. This |
| has the benefit of simplifying the rest of the code - all the |
| work to maintain the illusion of a single |
| DW_TAG_{compile,type}_unit DIE is done here. */ |
| *result_top_level_die |
| = this->read_toplevel_die (gdb::make_array_view (attributes, |
| next_attr_idx)); |
| |
| /* Skip dummy compilation units. */ |
| if (m_info_ptr >= begin_info_ptr + dwo_unit->length |
| || peek_abbrev_code (abfd, m_info_ptr) == 0) |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Return the signature of the compile unit, if found. In DWARF 4 and before, |
| the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the |
| signature is part of the header. */ |
| static std::optional<ULONGEST> |
| lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die) |
| { |
| if (cu->header.version >= 5) |
| return cu->header.signature; |
| struct attribute *attr; |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu); |
| if (attr == nullptr || !attr->form_is_unsigned ()) |
| return std::optional<ULONGEST> (); |
| return attr->as_unsigned (); |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU. |
| Returns NULL if the specified DWO unit cannot be found. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_unit (dwarf2_cu *cu, die_info *comp_unit_die, const char *dwo_name) |
| { |
| #if CXX_STD_THREAD |
| /* We need a lock here to handle the DWO hash table. */ |
| static std::mutex dwo_lock; |
| |
| std::lock_guard<std::mutex> guard (dwo_lock); |
| #endif |
| |
| dwarf2_per_cu *per_cu = cu->per_cu; |
| struct dwo_unit *dwo_unit; |
| const char *comp_dir; |
| |
| gdb_assert (cu != NULL); |
| |
| /* Yeah, we look dwo_name up again, but it simplifies the code. */ |
| dwo_name = dwarf2_dwo_name (comp_unit_die, cu); |
| comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu); |
| |
| if (per_cu->is_debug_types) |
| dwo_unit = lookup_dwo_type_unit (cu, dwo_name, comp_dir); |
| else |
| { |
| std::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die); |
| |
| if (!signature.has_value ()) |
| error (_(DWARF_ERROR_PREFIX |
| "missing dwo_id for dwo_name %s" |
| " [in module %s]"), |
| dwo_name, per_cu->per_bfd->filename ()); |
| |
| dwo_unit = lookup_dwo_comp_unit (cu, dwo_name, comp_dir, *signature); |
| } |
| |
| return dwo_unit; |
| } |
| |
| /* Subroutine of cutu_reader to simplify it. |
| See it for a description of the parameters. |
| Read a TU directly from a DWO file, bypassing the stub. */ |
| |
| void |
| cutu_reader::init_tu_and_read_dwo_dies (dwarf2_per_cu *this_cu, |
| dwarf2_per_objfile *per_objfile, |
| dwarf2_cu *existing_cu, |
| enum language pretend_language) |
| { |
| struct signatured_type *sig_type; |
| |
| /* Verify we can do the following downcast, and that we have the |
| data we need. */ |
| gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly); |
| sig_type = (struct signatured_type *) this_cu; |
| gdb_assert (sig_type->dwo_unit != NULL); |
| |
| dwarf2_cu *cu; |
| |
| if (existing_cu != nullptr) |
| { |
| cu = existing_cu; |
| gdb_assert (cu->dwo_unit == sig_type->dwo_unit); |
| /* There's no need to do the rereading_dwo_cu handling that |
| cutu_reader does since we don't read the stub. */ |
| } |
| else |
| { |
| /* If an existing_cu is provided, a dwarf2_cu must not exist for this_cu |
| in per_objfile yet. */ |
| gdb_assert (per_objfile->get_cu (this_cu) == nullptr); |
| m_new_cu = std::make_unique<dwarf2_cu> (this_cu, per_objfile); |
| cu = m_new_cu.get (); |
| } |
| |
| /* A future optimization, if needed, would be to use an existing |
| abbrev table. When reading DWOs with skeletonless TUs, all the TUs |
| could share abbrev tables. */ |
| |
| if (read_cutu_die_from_dwo (cu, sig_type->dwo_unit, |
| NULL /* stub_comp_unit_die */, |
| sig_type->dwo_unit->dwo_file->comp_dir, |
| &m_top_level_die, &m_dwo_abbrev_table) |
| == 0) |
| { |
| /* Dummy die. */ |
| m_dummy_p = true; |
| } |
| |
| prepare_one_comp_unit (cu, pretend_language); |
| } |
| |
| /* Initialize a CU (or TU) and read its DIEs. |
| If the CU defers to a DWO file, read the DWO file as well. |
| |
| ABBREV_TABLE, if non-NULL, is the abbreviation table to use. |
| Otherwise the table specified in the comp unit header is read in and used. |
| This is an optimization for when we already have the abbrev table. |
| |
| If EXISTING_CU is non-NULL, then use it. Otherwise, a new CU is |
| allocated. */ |
| |
| cutu_reader::cutu_reader (dwarf2_per_cu *this_cu, |
| dwarf2_per_objfile *per_objfile, |
| const struct abbrev_table *abbrev_table, |
| dwarf2_cu *existing_cu, |
| bool skip_partial, |
| enum language pretend_language, |
| const abbrev_table_cache *cache) |
| : m_this_cu (this_cu) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->section; |
| bfd *abfd = section->get_bfd_owner (); |
| const gdb_byte *begin_info_ptr; |
| struct signatured_type *sig_type = NULL; |
| struct dwarf2_section_info *abbrev_section; |
| /* Non-zero if CU currently points to a DWO file and we need to |
| reread it. When this happens we need to reread the skeleton die |
| before we can reread the DWO file (this only applies to CUs, not TUs). */ |
| int rereading_dwo_cu = 0; |
| |
| if (dwarf_die_debug) |
| gdb_printf (gdb_stdlog, "Reading %s unit at offset %s\n", |
| this_cu->is_debug_types ? "type" : "comp", |
| sect_offset_str (this_cu->sect_off)); |
| |
| /* If we're reading a TU directly from a DWO file, including a virtual DWO |
| file (instead of going through the stub), short-circuit all of this. */ |
| if (this_cu->reading_dwo_directly) |
| { |
| /* Narrow down the scope of possibilities to have to understand. */ |
| gdb_assert (this_cu->is_debug_types); |
| gdb_assert (abbrev_table == NULL); |
| init_tu_and_read_dwo_dies (this_cu, per_objfile, existing_cu, |
| pretend_language); |
| return; |
| } |
| |
| /* This is cheap if the section is already read in. */ |
| section->read (objfile); |
| |
| begin_info_ptr = m_info_ptr |
| = section->buffer + to_underlying (this_cu->sect_off); |
| |
| abbrev_section = get_abbrev_section_for_cu (this_cu); |
| |
| dwarf2_cu *cu; |
| |
| if (existing_cu != nullptr) |
| { |
| cu = existing_cu; |
| /* If this CU is from a DWO file we need to start over, we need to |
| refetch the attributes from the skeleton CU. |
| This could be optimized by retrieving those attributes from when we |
| were here the first time: the previous comp_unit_die was stored in |
| comp_unit_obstack. But there's no data yet that we need this |
| optimization. */ |
| if (cu->dwo_unit != NULL) |
| rereading_dwo_cu = 1; |
| } |
| else |
| { |
| /* If an existing_cu is provided, a dwarf2_cu must not exist for |
| this_cu in per_objfile yet. Here, CACHE doubles as a flag to |
| let us know that the CU is being scanned using the parallel |
| indexer. This assert is avoided in this case because (1) it |
| is irrelevant, and (2) the get_cu method is not |
| thread-safe. */ |
| gdb_assert (cache != nullptr |
| || per_objfile->get_cu (this_cu) == nullptr); |
| m_new_cu = std::make_unique<dwarf2_cu> (this_cu, per_objfile); |
| cu = m_new_cu.get (); |
| } |
| |
| /* Get the header. */ |
| if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu) |
| { |
| /* We already have the header, there's no need to read it in again. */ |
| m_info_ptr += to_underlying (cu->header.first_die_cu_offset); |
| } |
| else |
| { |
| if (this_cu->is_debug_types) |
| { |
| m_info_ptr |
| = read_and_check_comp_unit_head (per_objfile, &cu->header, section, |
| abbrev_section, m_info_ptr, |
| rcuh_kind::TYPE); |
| |
| /* Since per_cu is the first member of struct signatured_type, |
| we can go from a pointer to one to a pointer to the other. */ |
| sig_type = (struct signatured_type *) this_cu; |
| gdb_assert (sig_type->signature == cu->header.signature); |
| gdb_assert (sig_type->type_offset_in_tu |
| == cu->header.type_cu_offset_in_tu); |
| gdb_assert (this_cu->sect_off == cu->header.sect_off); |
| |
| /* LENGTH has not been set yet for type units if we're |
| using .gdb_index. */ |
| this_cu->set_length (cu->header.get_length_with_initial ()); |
| |
| /* Establish the type offset that can be used to lookup the type. */ |
| sig_type->type_offset_in_section = |
| this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu); |
| } |
| else |
| { |
| m_info_ptr |
| = read_and_check_comp_unit_head (per_objfile, &cu->header, section, |
| abbrev_section, m_info_ptr, |
| rcuh_kind::COMPILE); |
| |
| gdb_assert (this_cu->sect_off == cu->header.sect_off); |
| this_cu->set_length (cu->header.get_length_with_initial ()); |
| } |
| } |
| |
| /* Skip dummy compilation units. */ |
| if (m_info_ptr >= begin_info_ptr + this_cu->length () |
| || peek_abbrev_code (abfd, m_info_ptr) == 0) |
| m_dummy_p = true; |
| else |
| { |
| /* If we don't have them yet, read the abbrevs for this |
| compilation unit. And if we need to read them now, make sure |
| they're freed when we're done. */ |
| if (abbrev_table != NULL) |
| gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off); |
| else |
| { |
| if (cache != nullptr) |
| abbrev_table = cache->find (abbrev_section, |
| cu->header.abbrev_sect_off); |
| if (abbrev_table == nullptr) |
| { |
| abbrev_section->read (objfile); |
| m_abbrev_table_holder |
| = abbrev_table::read (abbrev_section, |
| cu->header.abbrev_sect_off); |
| abbrev_table = m_abbrev_table_holder.get (); |
| } |
| } |
| |
| /* Read the top level CU/TU die. */ |
| this->init_cu_die_reader (cu, section, NULL, abbrev_table); |
| m_top_level_die = this->read_toplevel_die (); |
| |
| if (skip_partial && m_top_level_die->tag == DW_TAG_partial_unit) |
| m_dummy_p = true; |
| else |
| { |
| /* If we are in a DWO stub, process it and then read in the |
| "real" CU/TU from the DWO file. read_cutu_die_from_dwo |
| will allocate the abbreviation table from the DWO file |
| and pass the ownership over to us. It will be referenced |
| from READER, so we must make sure to free it after we're |
| done with READER. |
| |
| Note that if USE_EXISTING_OK != 0, and THIS_CU->cu |
| already contains a DWO CU, that this test will fail (the |
| attribute will not be present). */ |
| const char *dwo_name = dwarf2_dwo_name (m_top_level_die, cu); |
| if (dwo_name != nullptr) |
| { |
| struct dwo_unit *dwo_unit; |
| struct die_info *dwo_comp_unit_die; |
| |
| if (m_top_level_die->has_children) |
| { |
| complaint (_("compilation unit with DW_AT_GNU_dwo_name" |
| " has children (offset %s) [in module %s]"), |
| sect_offset_str (this_cu->sect_off), |
| bfd_get_filename (abfd)); |
| } |
| dwo_unit = lookup_dwo_unit (cu, m_top_level_die, dwo_name); |
| if (dwo_unit != NULL) |
| { |
| if (read_cutu_die_from_dwo (cu, dwo_unit, m_top_level_die, |
| nullptr, &dwo_comp_unit_die, |
| &m_dwo_abbrev_table) |
| == 0) |
| { |
| /* Dummy die. */ |
| m_dummy_p = true; |
| } |
| else |
| m_top_level_die = dwo_comp_unit_die; |
| } |
| else |
| { |
| /* Yikes, we couldn't find the rest of the DIE, we only have |
| the stub. A complaint has already been logged. There's |
| not much more we can do except pass on the stub DIE to |
| die_reader_func. We don't want to throw an error on bad |
| debug info. */ |
| } |
| } |
| } |
| } |
| |
| /* Only a dummy unit can be missing the compunit DIE. */ |
| gdb_assert (m_dummy_p || m_top_level_die != nullptr); |
| prepare_one_comp_unit (cu, pretend_language); |
| } |
| |
| /* See read.h. */ |
| |
| dwarf2_cu_up |
| cutu_reader::release_cu () |
| { |
| gdb_assert (!m_dummy_p); |
| |
| return std::move (m_new_cu); |
| } |
| |
| /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name) |
| if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is |
| assumed to have already done the lookup to find the DWO file). |
| |
| The caller is required to fill in THIS_CU->section, THIS_CU->offset, and |
| THIS_CU->is_debug_types, but nothing else. |
| |
| We fill in THIS_CU->length. |
| |
| THIS_CU->cu is always freed when done. |
| This is done in order to not leave THIS_CU->cu in a state where we have |
| to care whether it refers to the "main" CU or the DWO CU. |
| |
| When parent_cu is passed, it is used to provide a default value for |
| str_offsets_base and addr_base from the parent. */ |
| |
| cutu_reader::cutu_reader (dwarf2_per_cu *this_cu, |
| dwarf2_per_objfile *per_objfile, |
| enum language pretend_language, |
| struct dwarf2_cu *parent_cu, |
| struct dwo_file *dwo_file) |
| : m_this_cu (this_cu) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->section; |
| bfd *abfd = section->get_bfd_owner (); |
| |
| gdb_assert (parent_cu != nullptr); |
| gdb_assert (dwo_file != nullptr); |
| |
| if (dwarf_die_debug) |
| gdb_printf (gdb_stdlog, "Reading %s unit at offset %s\n", |
| this_cu->is_debug_types ? "type" : "comp", |
| sect_offset_str (this_cu->sect_off)); |
| |
| gdb_assert (per_objfile->get_cu (this_cu) == nullptr); |
| |
| dwarf2_section_info *abbrev_section = &dwo_file->sections.abbrev; |
| |
| /* This is cheap if the section is already read in. */ |
| section->read (objfile); |
| |
| m_new_cu = std::make_unique<dwarf2_cu> (this_cu, per_objfile); |
| |
| m_info_ptr = section->buffer + to_underlying (this_cu->sect_off); |
| const gdb_byte *begin_info_ptr = m_info_ptr; |
| m_info_ptr |
| = read_and_check_comp_unit_head (per_objfile, &m_new_cu->header, section, |
| abbrev_section, m_info_ptr, |
| (this_cu->is_debug_types |
| ? rcuh_kind::TYPE |
| : rcuh_kind::COMPILE)); |
| |
| m_new_cu->str_offsets_base = parent_cu->str_offsets_base; |
| m_new_cu->addr_base = parent_cu->addr_base; |
| |
| this_cu->set_length (m_new_cu->header.get_length_with_initial ()); |
| |
| /* Skip dummy compilation units. */ |
| if (m_info_ptr >= begin_info_ptr + this_cu->length () |
| || peek_abbrev_code (abfd, m_info_ptr) == 0) |
| m_dummy_p = true; |
| else |
| { |
| abbrev_section->read (objfile); |
| m_abbrev_table_holder |
| = abbrev_table::read (abbrev_section, |
| m_new_cu->header.abbrev_sect_off); |
| |
| this->init_cu_die_reader (m_new_cu.get (), section, dwo_file, |
| m_abbrev_table_holder.get ()); |
| m_top_level_die = this->read_toplevel_die (); |
| } |
| |
| prepare_one_comp_unit (m_new_cu.get (), pretend_language); |
| } |
| |
| |
| /* Type Unit Groups. |
| |
| Type Unit Groups are a way to collapse the set of all TUs (type units) into |
| a more manageable set. The grouping is done by DW_AT_stmt_list entry |
| so that all types coming from the same compilation (.o file) are grouped |
| together. A future step could be to put the types in the same symtab as |
| the CU the types ultimately came from. */ |
| |
| static hashval_t |
| hash_type_unit_group (const void *item) |
| { |
| const struct type_unit_group *tu_group |
| = (const struct type_unit_group *) item; |
| |
| return hash_stmt_list_entry (&tu_group->hash); |
| } |
| |
| static int |
| eq_type_unit_group (const void *item_lhs, const void *item_rhs) |
| { |
| const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs; |
| const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs; |
| |
| return eq_stmt_list_entry (&lhs->hash, &rhs->hash); |
| } |
| |
| /* Allocate a hash table for type unit groups. */ |
| |
| static htab_up |
| allocate_type_unit_groups_table () |
| { |
| return htab_up (htab_create_alloc (3, |
| hash_type_unit_group, |
| eq_type_unit_group, |
| htab_delete_entry<type_unit_group>, |
| xcalloc, xfree)); |
| } |
| |
| /* Type units that don't have DW_AT_stmt_list are grouped into their own |
| partial symtabs. We combine several TUs per psymtab to not let the size |
| of any one psymtab grow too big. */ |
| #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31) |
| #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10 |
| |
| /* Helper routine for get_type_unit_group. |
| Create the type_unit_group object used to hold one or more TUs. */ |
| |
| static type_unit_group_up |
| create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct) |
| { |
| auto tu_group = std::make_unique<type_unit_group> (); |
| |
| tu_group->hash.dwo_unit = cu->dwo_unit; |
| tu_group->hash.line_sect_off = line_offset_struct; |
| |
| return tu_group; |
| } |
| |
| /* Look up the type_unit_group for type unit CU, and create it if necessary. |
| STMT_LIST is a DW_AT_stmt_list attribute. */ |
| |
| static struct type_unit_group * |
| get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats; |
| struct type_unit_group *tu_group; |
| void **slot; |
| unsigned int line_offset; |
| struct type_unit_group type_unit_group_for_lookup; |
| |
| if (per_objfile->per_bfd->type_unit_groups == NULL) |
| per_objfile->per_bfd->type_unit_groups = allocate_type_unit_groups_table (); |
| |
| /* Do we need to create a new group, or can we use an existing one? */ |
| |
| if (stmt_list != nullptr && stmt_list->form_is_unsigned ()) |
| { |
| line_offset = stmt_list->as_unsigned (); |
| ++tu_stats->nr_symtab_sharers; |
| } |
| else |
| { |
| /* Ugh, no stmt_list. Rare, but we have to handle it. |
| We can do various things here like create one group per TU or |
| spread them over multiple groups to split up the expansion work. |
| To avoid worst case scenarios (too many groups or too large groups) |
| we, umm, group them in bunches. */ |
| line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB |
| | (tu_stats->nr_stmt_less_type_units |
| / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE)); |
| ++tu_stats->nr_stmt_less_type_units; |
| } |
| |
| type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit; |
| type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset; |
| slot = htab_find_slot (per_objfile->per_bfd->type_unit_groups.get (), |
| &type_unit_group_for_lookup, INSERT); |
| if (*slot == nullptr) |
| { |
| sect_offset line_offset_struct = (sect_offset) line_offset; |
| auto grp = create_type_unit_group (cu, line_offset_struct); |
| *slot = grp.release (); |
| ++tu_stats->nr_symtabs; |
| } |
| |
| tu_group = (struct type_unit_group *) *slot; |
| gdb_assert (tu_group != nullptr); |
| return tu_group; |
| } |
| |
| /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. |
| Process compilation unit THIS_CU for a psymtab. */ |
| |
| static void |
| process_psymtab_comp_unit (dwarf2_per_cu *this_cu, |
| dwarf2_per_objfile *per_objfile, |
| cooked_index_storage *storage) |
| { |
| cutu_reader *reader = storage->get_reader (this_cu); |
| if (reader == nullptr) |
| { |
| cutu_reader new_reader (this_cu, per_objfile, nullptr, nullptr, false, |
| language_minimal, |
| &storage->get_abbrev_table_cache ()); |
| |
| if (new_reader.cu () == nullptr || new_reader.is_dummy ()) |
| return; |
| |
| auto copy = std::make_unique<cutu_reader> (std::move (new_reader)); |
| reader = storage->preserve (std::move (copy)); |
| } |
| |
| if (reader->top_level_die () == nullptr || reader->is_dummy ()) |
| return; |
| |
| if (this_cu->is_debug_types) |
| build_type_psymtabs_reader (reader, storage); |
| else if (reader->top_level_die ()->tag != DW_TAG_partial_unit) |
| { |
| bool nope = false; |
| if (this_cu->scanned.compare_exchange_strong (nope, true)) |
| { |
| gdb_assert (storage != nullptr); |
| cooked_indexer indexer (storage, this_cu, reader->cu ()->lang ()); |
| indexer.make_index (reader); |
| } |
| } |
| } |
| |
| /* Reader function for build_type_psymtabs. */ |
| |
| static void |
| build_type_psymtabs_reader (cutu_reader *reader, |
| cooked_index_storage *storage) |
| { |
| struct dwarf2_cu *cu = reader->cu (); |
| dwarf2_per_cu *per_cu = cu->per_cu; |
| die_info *type_unit_die = reader->top_level_die (); |
| |
| gdb_assert (per_cu->is_debug_types); |
| |
| if (! type_unit_die->has_children) |
| return; |
| |
| gdb_assert (storage != nullptr); |
| cooked_indexer indexer (storage, per_cu, cu->lang ()); |
| indexer.make_index (reader); |
| } |
| |
| /* Struct used to sort TUs by their abbreviation table offset. */ |
| |
| struct tu_abbrev_offset |
| { |
| tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_) |
| : sig_type (sig_type_), abbrev_offset (abbrev_offset_) |
| {} |
| |
| /* This is used when sorting. */ |
| bool operator< (const tu_abbrev_offset &other) const |
| { |
| return abbrev_offset < other.abbrev_offset; |
| } |
| |
| signatured_type *sig_type; |
| sect_offset abbrev_offset; |
| }; |
| |
| /* Efficiently read all the type units. |
| |
| The efficiency is because we sort TUs by the abbrev table they use and |
| only read each abbrev table once. In one program there are 200K TUs |
| sharing 8K abbrev tables. |
| |
| The main purpose of this function is to support building the |
| dwarf2_per_objfile->per_bfd->type_unit_groups table. |
| TUs typically share the DW_AT_stmt_list of the CU they came from, so we |
| can collapse the search space by grouping them by stmt_list. |
| The savings can be significant, in the same program from above the 200K TUs |
| share 8K stmt_list tables. |
| |
| FUNC is expected to call get_type_unit_group, which will create the |
| struct type_unit_group if necessary and add it to |
| dwarf2_per_objfile->per_bfd->type_unit_groups. */ |
| |
| static void |
| build_type_psymtabs (dwarf2_per_objfile *per_objfile, |
| cooked_index_storage *storage) |
| { |
| struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats; |
| abbrev_table_up abbrev_table; |
| sect_offset abbrev_offset; |
| |
| /* It's up to the caller to not call us multiple times. */ |
| gdb_assert (per_objfile->per_bfd->type_unit_groups == NULL); |
| |
| if (per_objfile->per_bfd->all_type_units.size () == 0) |
| return; |
| |
| /* TUs typically share abbrev tables, and there can be way more TUs than |
| abbrev tables. Sort by abbrev table to reduce the number of times we |
| read each abbrev table in. |
| Alternatives are to punt or to maintain a cache of abbrev tables. |
| This is simpler and efficient enough for now. |
| |
| Later we group TUs by their DW_AT_stmt_list value (as this defines the |
| symtab to use). Typically TUs with the same abbrev offset have the same |
| stmt_list value too so in practice this should work well. |
| |
| The basic algorithm here is: |
| |
| sort TUs by abbrev table |
| for each TU with same abbrev table: |
| read abbrev table if first user |
| read TU top level DIE |
| [IWBN if DWO skeletons had DW_AT_stmt_list] |
| call FUNC */ |
| |
| dwarf_read_debug_printf ("Building type unit groups ..."); |
| |
| /* Sort in a separate table to maintain the order of all_units |
| for .gdb_index: TU indices directly index all_type_units. */ |
| std::vector<tu_abbrev_offset> sorted_by_abbrev; |
| sorted_by_abbrev.reserve (per_objfile->per_bfd->all_type_units.size ()); |
| |
| for (const auto &cu : per_objfile->per_bfd->all_units) |
| if (cu->is_debug_types) |
| { |
| auto sig_type = static_cast<signatured_type *> (cu.get ()); |
| sorted_by_abbrev.emplace_back (sig_type, |
| read_abbrev_offset (per_objfile, |
| sig_type->section, |
| sig_type->sect_off)); |
| } |
| |
| std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end ()); |
| |
| abbrev_offset = (sect_offset) ~(unsigned) 0; |
| |
| for (const tu_abbrev_offset &tu : sorted_by_abbrev) |
| { |
| /* Switch to the next abbrev table if necessary. */ |
| if (abbrev_table == NULL |
| || tu.abbrev_offset != abbrev_offset) |
| { |
| abbrev_offset = tu.abbrev_offset; |
| per_objfile->per_bfd->abbrev.read (per_objfile->objfile); |
| abbrev_table = |
| abbrev_table::read (&per_objfile->per_bfd->abbrev, abbrev_offset); |
| ++tu_stats->nr_uniq_abbrev_tables; |
| } |
| |
| cutu_reader reader (tu.sig_type, per_objfile, |
| abbrev_table.get (), nullptr, false, |
| language_minimal); |
| if (!reader.is_dummy ()) |
| build_type_psymtabs_reader (&reader, storage); |
| } |
| } |
| |
| /* Print collected type unit statistics. */ |
| |
| static void |
| print_tu_stats (dwarf2_per_objfile *per_objfile) |
| { |
| struct tu_stats *tu_stats = &per_objfile->per_bfd->tu_stats; |
| |
| dwarf_read_debug_printf ("Type unit statistics:"); |
| dwarf_read_debug_printf (" %d TUs", tu_stats->nr_tus); |
| dwarf_read_debug_printf (" %d uniq abbrev tables", |
| tu_stats->nr_uniq_abbrev_tables); |
| dwarf_read_debug_printf (" %d symtabs from stmt_list entries", |
| tu_stats->nr_symtabs); |
| dwarf_read_debug_printf (" %d symtab sharers", |
| tu_stats->nr_symtab_sharers); |
| dwarf_read_debug_printf (" %d type units without a stmt_list", |
| tu_stats->nr_stmt_less_type_units); |
| dwarf_read_debug_printf (" %d all_type_units reallocs", |
| tu_stats->nr_all_type_units_reallocs); |
| } |
| |
| /* Traversal function for process_skeletonless_type_units. |
| Read a TU in a DWO file and build partial symbols for it. */ |
| |
| static void |
| process_skeletonless_type_unit (dwo_unit *dwo_unit, |
| dwarf2_per_objfile *per_objfile, |
| cooked_index_storage *storage) |
| { |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| /* If this TU doesn't exist in the global table, add it and read it in. */ |
| auto sig_type_it = per_bfd->signatured_types.find (dwo_unit->signature); |
| |
| /* If we've already seen this type there's nothing to do. What's happening |
| is we're doing our own version of comdat-folding here. */ |
| if (sig_type_it != per_bfd->signatured_types.end ()) |
| return; |
| |
| /* This does the job that create_all_units would have done for |
| this TU. */ |
| sig_type_it = add_type_unit (per_bfd, dwo_unit->section, dwo_unit->sect_off, |
| dwo_unit->length, dwo_unit->signature); |
| fill_in_sig_entry_from_dwo_entry (per_objfile, *sig_type_it, dwo_unit); |
| |
| /* This does the job that build_type_psymtabs would have done. */ |
| cutu_reader reader (*sig_type_it, per_objfile, nullptr, nullptr, false, |
| language_minimal); |
| if (!reader.is_dummy ()) |
| build_type_psymtabs_reader (&reader, storage); |
| } |
| |
| /* Scan all TUs of DWO files, verifying we've processed them. |
| This is needed in case a TU was emitted without its skeleton. |
| Note: This can't be done until we know what all the DWO files are. */ |
| |
| static void |
| process_skeletonless_type_units (dwarf2_per_objfile *per_objfile, |
| cooked_index_storage *storage) |
| { |
| /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */ |
| if (get_dwp_file (per_objfile) == nullptr) |
| for (const dwo_file_up &file : per_objfile->per_bfd->dwo_files) |
| for (dwo_unit *unit : file->tus) |
| process_skeletonless_type_unit (unit, per_objfile, storage); |
| } |
| |
| /* A subclass of cooked_index_worker that handles scanning |
| .debug_info. */ |
| |
| class cooked_index_worker_debug_info : public cooked_index_worker |
| { |
| public: |
| cooked_index_worker_debug_info (dwarf2_per_objfile *per_objfile) |
| : cooked_index_worker (per_objfile) |
| { |
| gdb_assert (is_main_thread ()); |
| |
| struct objfile *objfile = per_objfile->objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| dwarf_read_debug_printf ("Building psymtabs of objfile %s ...", |
| objfile_name (objfile)); |
| |
| per_bfd->map_info_sections (objfile); |
| } |
| |
| private: |
| |
| void do_reading () override; |
| |
| void print_stats () override |
| { |
| if (dwarf_read_debug > 0) |
| print_tu_stats (m_per_objfile); |
| if (dwarf_read_debug > 1) |
| { |
| dwarf_read_debug_printf_v ("Final m_all_parents_map:"); |
| m_all_parents_map.dump (m_per_objfile->per_bfd); |
| } |
| } |
| |
| /* After the last DWARF-reading task has finished, this function |
| does the remaining work to finish the scan. */ |
| void done_reading (); |
| |
| /* An iterator for the comp units. */ |
| using unit_iterator = std::vector<dwarf2_per_cu_up>::iterator; |
| |
| /* Process a batch of CUs. This may be called multiple times in |
| separate threads. TASK_NUMBER indicates which task this is -- |
| the result is stored in that slot of M_RESULTS. */ |
| void process_cus (size_t task_number, unit_iterator first, |
| unit_iterator end); |
| |
| /* A storage object for "leftovers" -- see the 'start' method, but |
| essentially things not parsed during the normal CU parsing |
| passes. */ |
| cooked_index_storage m_index_storage; |
| }; |
| |
| void |
| cooked_index_worker_debug_info::process_cus (size_t task_number, unit_iterator first, |
| unit_iterator end) |
| { |
| SCOPE_EXIT { bfd_thread_cleanup (); }; |
| |
| /* Ensure that complaints are handled correctly. */ |
| complaint_interceptor complaint_handler; |
| |
| std::vector<gdb_exception> errors; |
| cooked_index_storage thread_storage; |
| for (auto inner = first; inner != end; ++inner) |
| { |
| dwarf2_per_cu *per_cu = inner->get (); |
| |
| try |
| { |
| process_psymtab_comp_unit (per_cu, m_per_objfile, &thread_storage); |
| } |
| catch (gdb_exception &except) |
| { |
| errors.push_back (std::move (except)); |
| } |
| } |
| |
| m_results[task_number] = result_type (thread_storage.release (), |
| complaint_handler.release (), |
| std::move (errors), |
| thread_storage.release_parent_map ()); |
| } |
| |
| void |
| cooked_index_worker_debug_info::done_reading () |
| { |
| /* Only handle the scanning results here. Complaints and exceptions |
| can only be dealt with on the main thread. */ |
| std::vector<cooked_index_shard_up> shards; |
| |
| for (auto &one_result : m_results) |
| { |
| shards.push_back (std::move (std::get<0> (one_result))); |
| m_all_parents_map.add_map (std::get<3> (one_result)); |
| } |
| |
| /* This has to wait until we read the CUs, we need the list of DWOs. */ |
| process_skeletonless_type_units (m_per_objfile, &m_index_storage); |
| |
| shards.push_back (m_index_storage.release ()); |
| shards.shrink_to_fit (); |
| |
| m_all_parents_map.add_map (m_index_storage.release_parent_map ()); |
| |
| dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd; |
| cooked_index *table |
| = (gdb::checked_static_cast<cooked_index *> |
| (per_bfd->index_table.get ())); |
| table->set_contents (std::move (shards), &m_warnings, |
| &m_all_parents_map); |
| } |
| |
| void |
| cooked_index_worker_debug_info::do_reading () |
| { |
| dwarf2_per_bfd *per_bfd = m_per_objfile->per_bfd; |
| |
| create_all_units (m_per_objfile); |
| build_type_psymtabs (m_per_objfile, &m_index_storage); |
| |
| per_bfd->quick_file_names_table |
| = create_quick_file_names_table (per_bfd->all_units.size ()); |
| if (!per_bfd->debug_aranges.empty ()) |
| read_addrmap_from_aranges (m_per_objfile, &per_bfd->debug_aranges, |
| m_index_storage.get_addrmap (), |
| &m_warnings); |
| |
| /* We want to balance the load between the worker threads. This is |
| done by using the size of each CU as a rough estimate of how |
| difficult it will be to operate on. This isn't ideal -- for |
| example if dwz is used, the early CUs will all tend to be |
| "included" and won't be parsed independently. However, this |
| heuristic works well for typical compiler output. */ |
| |
| size_t total_size = 0; |
| for (const auto &per_cu : per_bfd->all_units) |
| total_size += per_cu->length (); |
| |
| /* How many worker threads we plan to use. We may not actually use |
| this many. We use 1 as the minimum to avoid division by zero, |
| and anyway in the N==0 case the work will be done |
| synchronously. */ |
| const size_t n_worker_threads |
| = std::max (gdb::thread_pool::g_thread_pool->thread_count (), (size_t) 1); |
| |
| /* How much effort should be put into each worker. */ |
| const size_t size_per_thread |
| = std::max (total_size / n_worker_threads, (size_t) 1); |
| |
| /* Work is done in a task group. */ |
| gdb::task_group workers ([this] () |
| { |
| this->done_reading (); |
| }); |
| |
| auto end = per_bfd->all_units.end (); |
| size_t task_count = 0; |
| for (auto iter = per_bfd->all_units.begin (); iter != end; ) |
| { |
| auto last = iter; |
| /* Put all remaining CUs into the last task. */ |
| if (task_count == n_worker_threads - 1) |
| last = end; |
| else |
| { |
| size_t chunk_size = 0; |
| for (; last != end && chunk_size < size_per_thread; ++last) |
| chunk_size += (*last)->length (); |
| } |
| |
| gdb_assert (iter != last); |
| workers.add_task ([this, task_count, iter, last] () |
| { |
| process_cus (task_count, iter, last); |
| }); |
| |
| ++task_count; |
| iter = last; |
| } |
| |
| m_results.resize (task_count); |
| workers.start (); |
| } |
| |
| static void |
| read_comp_units_from_section (dwarf2_per_objfile *per_objfile, |
| struct dwarf2_section_info *section, |
| struct dwarf2_section_info *abbrev_section, |
| unsigned int is_dwz, |
| signatured_type_set &sig_types, |
| rcuh_kind section_kind) |
| { |
| const gdb_byte *info_ptr; |
| struct objfile *objfile = per_objfile->objfile; |
| |
| dwarf_read_debug_printf ("Reading %s for %s", |
| section->get_name (), |
| section->get_file_name ()); |
| |
| section->read (objfile); |
| |
| info_ptr = section->buffer; |
| |
| while (info_ptr < section->buffer + section->size) |
| { |
| dwarf2_per_cu_up this_cu; |
| |
| sect_offset sect_off = (sect_offset) (info_ptr - section->buffer); |
| |
| comp_unit_head cu_header; |
| read_and_check_comp_unit_head (per_objfile, &cu_header, section, |
| abbrev_section, info_ptr, |
| section_kind); |
| |
| unsigned int length = cu_header.get_length_with_initial (); |
| |
| /* Save the compilation unit for later lookup. */ |
| if (cu_header.unit_type != DW_UT_type) |
| this_cu |
| = per_objfile->per_bfd->allocate_per_cu (section, sect_off, length, is_dwz); |
| else |
| { |
| auto sig_type = per_objfile->per_bfd->allocate_signatured_type |
| (section, sect_off, length, is_dwz, cu_header.signature); |
| signatured_type *sig_ptr = sig_type.get (); |
| sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu; |
| this_cu.reset (sig_type.release ()); |
| |
| auto inserted = sig_types.emplace (sig_ptr).second; |
| |
| if (!inserted) |
| complaint (_("debug type entry at offset %s is duplicate to" |
| " the entry at offset %s, signature %s"), |
| sect_offset_str (sect_off), |
| sect_offset_str (sig_ptr->sect_off), |
| hex_string (sig_ptr->signature)); |
| } |
| |
| info_ptr = info_ptr + this_cu->length (); |
| per_objfile->per_bfd->all_units.push_back (std::move (this_cu)); |
| } |
| } |
| |
| /* Initialize the views on all_units. */ |
| |
| void |
| finalize_all_units (dwarf2_per_bfd *per_bfd) |
| { |
| size_t nr_tus = per_bfd->tu_stats.nr_tus; |
| size_t nr_cus = per_bfd->all_units.size () - nr_tus; |
| gdb::array_view<dwarf2_per_cu_up> tmp = per_bfd->all_units; |
| per_bfd->all_comp_units = tmp.slice (0, nr_cus); |
| per_bfd->all_type_units = tmp.slice (nr_cus, nr_tus); |
| } |
| |
| /* See read.h. */ |
| |
| void |
| create_all_units (dwarf2_per_objfile *per_objfile) |
| { |
| gdb_assert (per_objfile->per_bfd->all_units.empty ()); |
| |
| signatured_type_set sig_types; |
| |
| for (dwarf2_section_info §ion : per_objfile->per_bfd->infos) |
| read_comp_units_from_section (per_objfile, §ion, |
| &per_objfile->per_bfd->abbrev, 0, sig_types, |
| rcuh_kind::COMPILE); |
| for (dwarf2_section_info §ion : per_objfile->per_bfd->types) |
| read_comp_units_from_section (per_objfile, §ion, |
| &per_objfile->per_bfd->abbrev, 0, sig_types, |
| rcuh_kind::TYPE); |
| |
| dwz_file *dwz = per_objfile->per_bfd->get_dwz_file (); |
| if (dwz != NULL) |
| { |
| read_comp_units_from_section (per_objfile, &dwz->info, &dwz->abbrev, 1, |
| sig_types, rcuh_kind::COMPILE); |
| |
| if (!dwz->types.empty ()) |
| { |
| per_objfile->per_bfd->all_units.clear (); |
| |
| /* See enhancement PR symtab/30838. */ |
| error (_(DWARF_ERROR_PREFIX |
| ".debug_types section not supported in dwz file")); |
| } |
| } |
| |
| per_objfile->per_bfd->signatured_types = std::move (sig_types); |
| |
| finalize_all_units (per_objfile->per_bfd); |
| } |
| |
| /* Return the initial uleb128 in the die at INFO_PTR. */ |
| |
| static unsigned int |
| peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr) |
| { |
| unsigned int bytes_read; |
| |
| return read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| } |
| |
| /* Read the initial uleb128 in the die at INFO_PTR in compilation unit |
| READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation. |
| |
| Return the corresponding abbrev, or NULL if the number is zero (indicating |
| an empty DIE). In either case *BYTES_READ will be set to the length of |
| the initial number. */ |
| |
| const abbrev_info * |
| cutu_reader::peek_die_abbrev (const gdb_byte *info_ptr, |
| unsigned int *bytes_read) |
| { |
| unsigned int abbrev_number |
| = read_unsigned_leb128 (m_abfd, info_ptr, bytes_read); |
| |
| if (abbrev_number == 0) |
| return NULL; |
| |
| const abbrev_info *abbrev = m_abbrev_table->lookup_abbrev (abbrev_number); |
| if (!abbrev) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "Could not find abbrev number %d in %s at offset %s" |
| " [in module %s]"), |
| abbrev_number, m_cu->per_cu->is_debug_types ? "TU" : "CU", |
| sect_offset_str (m_cu->header.sect_off), |
| bfd_get_filename (m_abfd)); |
| } |
| |
| return abbrev; |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| Returns a pointer to the end of a series of DIEs, terminated by an empty |
| DIE. Any children of the skipped DIEs will also be skipped. */ |
| |
| const gdb_byte * |
| cutu_reader::skip_children (const gdb_byte *info_ptr) |
| { |
| while (1) |
| { |
| unsigned int bytes_read; |
| const abbrev_info *abbrev = this->peek_die_abbrev (info_ptr, &bytes_read); |
| |
| if (abbrev == NULL) |
| return info_ptr + bytes_read; |
| else |
| info_ptr = this->skip_one_die (info_ptr + bytes_read, abbrev); |
| } |
| } |
| |
| /* See read.h. */ |
| |
| const gdb_byte * |
| cutu_reader::skip_one_attribute (dwarf_form form, const gdb_byte *info_ptr) |
| { |
| unsigned int bytes_read; |
| |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3 |
| and later it is offset sized. */ |
| if (m_cu->header.version == 2) |
| return info_ptr + m_cu->header.addr_size; |
| else |
| return info_ptr + m_cu->header.offset_size; |
| |
| case DW_FORM_GNU_ref_alt: |
| return info_ptr + m_cu->header.offset_size; |
| |
| case DW_FORM_addr: |
| return info_ptr + m_cu->header.addr_size; |
| |
| case DW_FORM_data1: |
| case DW_FORM_ref1: |
| case DW_FORM_flag: |
| case DW_FORM_strx1: |
| return info_ptr + 1; |
| |
| case DW_FORM_flag_present: |
| case DW_FORM_implicit_const: |
| return info_ptr; |
| |
| case DW_FORM_data2: |
| case DW_FORM_ref2: |
| case DW_FORM_strx2: |
| return info_ptr + 2; |
| |
| case DW_FORM_strx3: |
| return info_ptr + 3; |
| |
| case DW_FORM_data4: |
| case DW_FORM_ref4: |
| case DW_FORM_strx4: |
| return info_ptr + 4; |
| |
| case DW_FORM_data8: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_sig8: |
| return info_ptr + 8; |
| |
| case DW_FORM_data16: |
| return info_ptr + 16; |
| |
| case DW_FORM_string: |
| read_direct_string (m_abfd, info_ptr, &bytes_read); |
| return info_ptr + bytes_read; |
| |
| case DW_FORM_sec_offset: |
| case DW_FORM_strp: |
| case DW_FORM_GNU_strp_alt: |
| return info_ptr + m_cu->header.offset_size; |
| |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| info_ptr += read_unsigned_leb128 (m_abfd, info_ptr, &bytes_read); |
| return info_ptr + bytes_read; |
| |
| case DW_FORM_block1: |
| return info_ptr + 1 + read_1_byte (m_abfd, info_ptr); |
| |
| case DW_FORM_block2: |
| return info_ptr + 2 + read_2_bytes (m_abfd, info_ptr); |
| |
| case DW_FORM_block4: |
| return info_ptr + 4 + read_4_bytes (m_abfd, info_ptr); |
| |
| case DW_FORM_addrx: |
| case DW_FORM_strx: |
| case DW_FORM_sdata: |
| case DW_FORM_udata: |
| case DW_FORM_ref_udata: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_rnglistx: |
| case DW_FORM_loclistx: |
| return safe_skip_leb128 (info_ptr, m_buffer_end); |
| |
| case DW_FORM_indirect: |
| form = static_cast<dwarf_form> (read_unsigned_leb128 (m_abfd, info_ptr, |
| &bytes_read)); |
| return this->skip_one_attribute(form, info_ptr + bytes_read); |
| |
| default: |
| error (_ (DWARF_ERROR_PREFIX |
| "Cannot handle %s in DWARF reader [in module %s]"), |
| dwarf_form_name (form), bfd_get_filename (m_abfd)); |
| } |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| INFO_PTR should point just after the initial uleb128 of a DIE, and the |
| abbrev corresponding to that skipped uleb128 should be passed in |
| ABBREV. |
| |
| If DO_SKIP_CHILDREN is true, or if the DIE has no children, this |
| returns a pointer to this DIE's sibling, skipping any children. |
| Otherwise, returns a pointer to the DIE's first child. */ |
| |
| const gdb_byte * |
| cutu_reader::skip_one_die (const gdb_byte *info_ptr, const abbrev_info *abbrev, |
| bool do_skip_children) |
| { |
| if (do_skip_children && abbrev->sibling_offset != (unsigned short) -1) |
| { |
| /* We only handle DW_FORM_ref4 here. */ |
| const gdb_byte *sibling_data = info_ptr + abbrev->sibling_offset; |
| unsigned int offset = read_4_bytes (m_abfd, sibling_data); |
| const gdb_byte *sibling_ptr |
| = m_buffer + to_underlying (m_cu->header.sect_off) + offset; |
| if (sibling_ptr >= info_ptr && sibling_ptr < m_buffer_end) |
| return sibling_ptr; |
| /* Fall through to the slow way. */ |
| } |
| else if (abbrev->size_if_constant != 0) |
| { |
| info_ptr += abbrev->size_if_constant; |
| if (do_skip_children && abbrev->has_children) |
| return this->skip_children (info_ptr); |
| return info_ptr; |
| } |
| |
| for (unsigned int i = 0; i < abbrev->num_attrs; i++) |
| { |
| /* The only abbrev we care about is DW_AT_sibling. */ |
| if (do_skip_children && abbrev->attrs[i].name == DW_AT_sibling) |
| { |
| /* Note there is no need for the extra work of |
| "reprocessing" here, so we pass false for that |
| argument. */ |
| attribute attr; |
| this->read_attribute (&attr, &abbrev->attrs[i], info_ptr, false); |
| if (attr.form == DW_FORM_ref_addr) |
| complaint (_("ignoring absolute DW_AT_sibling")); |
| else |
| { |
| sect_offset off = attr.get_ref_die_offset (); |
| const gdb_byte *sibling_ptr = m_buffer + to_underlying (off); |
| |
| if (sibling_ptr < info_ptr) |
| complaint (_("DW_AT_sibling points backwards")); |
| else if (sibling_ptr > m_buffer_end) |
| m_die_section->overflow_complaint (); |
| else |
| return sibling_ptr; |
| } |
| } |
| |
| /* If it isn't DW_AT_sibling, skip this attribute. */ |
| info_ptr = this->skip_one_attribute (abbrev->attrs[i].form, info_ptr); |
| } |
| |
| if (do_skip_children && abbrev->has_children) |
| return this->skip_children (info_ptr); |
| else |
| return info_ptr; |
| } |
| |
| /* Reading in full CUs. */ |
| |
| /* Add PER_CU to the queue. */ |
| |
| static void |
| queue_comp_unit (dwarf2_per_cu *per_cu, dwarf2_per_objfile *per_objfile) |
| { |
| per_cu->queued = 1; |
| |
| gdb_assert (per_objfile->queue.has_value ()); |
| per_objfile->queue->emplace (per_cu, per_objfile); |
| } |
| |
| /* If PER_CU is not yet expanded of queued for expansion, add it to the queue. |
| |
| If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a |
| dependency. |
| |
| Return true if maybe_queue_comp_unit requires the caller to load the CU's |
| DIEs, false otherwise. |
| |
| Explanation: there is an invariant that if a CU is queued for expansion |
| (present in `dwarf2_per_bfd::queue`), then its DIEs are loaded |
| (a dwarf2_cu object exists for this CU, and `dwarf2_per_objfile::get_cu` |
| returns non-nullptr). If the CU gets enqueued by this function but its DIEs |
| are not yet loaded, the the caller must load the CU's DIEs to ensure the |
| invariant is respected. |
| |
| The caller is therefore not required to load the CU's DIEs (we return false) |
| if: |
| |
| - the CU is already expanded, and therefore does not get enqueued |
| - the CU gets enqueued for expansion, but its DIEs are already loaded |
| |
| Note that the caller should not use this function's return value as an |
| indicator of whether the CU's DIEs are loaded right now, it should check |
| that by calling `dwarf2_per_objfile::get_cu` instead. */ |
| |
| static bool |
| maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile) |
| { |
| /* Mark the dependence relation so that we don't flush PER_CU |
| too early. */ |
| if (dependent_cu != NULL) |
| dependent_cu->add_dependence (per_cu); |
| |
| /* If it's already on the queue, we have nothing to do. */ |
| if (per_cu->queued) |
| { |
| /* Verify the invariant that if a CU is queued for expansion, its DIEs are |
| loaded. */ |
| gdb_assert (per_objfile->get_cu (per_cu) != nullptr); |
| |
| /* If the CU is queued for expansion, it should not already be |
| expanded. */ |
| gdb_assert (!per_objfile->symtab_set_p (per_cu)); |
| |
| /* The DIEs are already loaded, the caller doesn't need to do it. */ |
| return false; |
| } |
| |
| bool queued = false; |
| if (!per_objfile->symtab_set_p (per_cu)) |
| { |
| /* Add it to the queue. */ |
| queue_comp_unit (per_cu, per_objfile); |
| queued = true; |
| |
| dwarf_read_debug_printf ("Queuing CU for expansion: " |
| "section offset = 0x%" PRIx64 ", " |
| "queue size = %zu", |
| to_underlying (per_cu->sect_off), |
| per_objfile->queue->size ()); |
| } |
| |
| /* If the compilation unit is already loaded, just mark it as |
| used. */ |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| if (cu != nullptr) |
| cu->last_used = 0; |
| |
| /* Ask the caller to load the CU's DIEs if the CU got enqueued for expansion |
| and the DIEs are not already loaded. */ |
| return queued && cu == nullptr; |
| } |
| |
| /* Process the queue. */ |
| |
| static void |
| process_queue (dwarf2_per_objfile *per_objfile) |
| { |
| DWARF_READ_SCOPED_DEBUG_START_END |
| ("Expanding one or more symtabs of objfile %s ...", |
| objfile_name (per_objfile->objfile)); |
| |
| unsigned int expanded_count = 0; |
| |
| /* The queue starts out with one item, but following a DIE reference |
| may load a new CU, adding it to the end of the queue. */ |
| while (!per_objfile->queue->empty ()) |
| { |
| dwarf2_queue_item &item = per_objfile->queue->front (); |
| dwarf2_per_cu *per_cu = item.per_cu; |
| |
| if (!per_objfile->symtab_set_p (per_cu)) |
| { |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| |
| /* Skip dummy CUs. */ |
| if (cu != nullptr) |
| { |
| namespace chr = std::chrono; |
| |
| unsigned int debug_print_threshold; |
| char buf[100]; |
| std::optional<chr::time_point<chr::steady_clock>> start_time; |
| |
| if (per_cu->is_debug_types) |
| { |
| struct signatured_type *sig_type = |
| (struct signatured_type *) per_cu; |
| |
| sprintf (buf, "TU %s at offset %s", |
| hex_string (sig_type->signature), |
| sect_offset_str (per_cu->sect_off)); |
| /* There can be 100s of TUs. |
| Only print them in verbose mode. */ |
| debug_print_threshold = 2; |
| } |
| else |
| { |
| sprintf (buf, "CU at offset %s", |
| sect_offset_str (per_cu->sect_off)); |
| debug_print_threshold = 1; |
| } |
| |
| if (dwarf_read_debug >= debug_print_threshold) |
| { |
| dwarf_read_debug_printf ("Expanding symtab of %s", buf); |
| start_time = chr::steady_clock::now (); |
| } |
| |
| ++expanded_count; |
| |
| if (per_cu->is_debug_types) |
| process_full_type_unit (cu); |
| else |
| process_full_comp_unit (cu); |
| |
| if (dwarf_read_debug >= debug_print_threshold) |
| { |
| const auto end_time = chr::steady_clock::now (); |
| const auto time_spent = end_time - *start_time; |
| const auto ms |
| = chr::duration_cast<chr::milliseconds> (time_spent); |
| |
| dwarf_read_debug_printf ("Done expanding %s, took %.3fs", buf, |
| ms.count () / 1000.0); |
| } |
| } |
| } |
| |
| per_cu->queued = 0; |
| per_objfile->queue->pop (); |
| } |
| |
| dwarf_read_debug_printf ("Done expanding %u symtabs.", expanded_count); |
| } |
| |
| /* Load the DIEs associated with PER_CU into memory. |
| |
| In some cases, the caller, while reading partial symbols, will need to load |
| the full symbols for the CU for some reason. It will already have a |
| dwarf2_cu object for THIS_CU and pass it as EXISTING_CU, so it can be re-used |
| rather than creating a new one. */ |
| |
| static void |
| load_full_comp_unit (dwarf2_per_cu *this_cu, |
| dwarf2_per_objfile *per_objfile, |
| dwarf2_cu *existing_cu, |
| bool skip_partial, |
| enum language pretend_language) |
| { |
| gdb_assert (! this_cu->is_debug_types); |
| |
| cutu_reader reader (this_cu, per_objfile, NULL, existing_cu, skip_partial, |
| pretend_language); |
| if (reader.is_dummy ()) |
| return; |
| |
| reader.read_all_dies (); |
| |
| if (auto new_cu = reader.release_cu (); |
| new_cu != nullptr) |
| { |
| /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it |
| now. */ |
| per_objfile->set_cu (this_cu, std::move (new_cu)); |
| } |
| } |
| |
| /* Add a DIE to the delayed physname list. */ |
| |
| static void |
| add_to_method_list (struct type *type, int fnfield_index, int index, |
| const char *name, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct delayed_method_info mi; |
| mi.type = type; |
| mi.fnfield_index = fnfield_index; |
| mi.index = index; |
| mi.name = name; |
| mi.die = die; |
| cu->method_list.push_back (mi); |
| } |
| |
| /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like |
| "const" / "volatile". If so, decrements LEN by the length of the |
| modifier and return true. Otherwise return false. */ |
| |
| template<size_t N> |
| static bool |
| check_modifier (const char *physname, size_t &len, const char (&mod)[N]) |
| { |
| size_t mod_len = sizeof (mod) - 1; |
| if (len > mod_len && startswith (physname + (len - mod_len), mod)) |
| { |
| len -= mod_len; |
| return true; |
| } |
| return false; |
| } |
| |
| /* Compute the physnames of any methods on the CU's method list. |
| |
| The computation of method physnames is delayed in order to avoid the |
| (bad) condition that one of the method's formal parameters is of an as yet |
| incomplete type. */ |
| |
| static void |
| compute_delayed_physnames (struct dwarf2_cu *cu) |
| { |
| /* Only C++ delays computing physnames. */ |
| if (cu->method_list.empty ()) |
| return; |
| gdb_assert (cu->lang () == language_cplus); |
| |
| for (const delayed_method_info &mi : cu->method_list) |
| { |
| const char *physname; |
| struct fn_fieldlist *fn_flp |
| = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index); |
| physname = dwarf2_physname (mi.name, mi.die, cu); |
| TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index) |
| = physname ? physname : ""; |
| |
| /* Since there's no tag to indicate whether a method is a |
| const/volatile overload, extract that information out of the |
| demangled name. */ |
| if (physname != NULL) |
| { |
| size_t len = strlen (physname); |
| |
| while (1) |
| { |
| if (physname[len - 1] == ')') /* shortcut */ |
| break; |
| else if (check_modifier (physname, len, " const")) |
| TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1; |
| else if (check_modifier (physname, len, " volatile")) |
| TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1; |
| else |
| break; |
| } |
| } |
| } |
| |
| /* The list is no longer needed. */ |
| cu->method_list.clear (); |
| } |
| |
| /* Go objects should be embedded in a DW_TAG_module DIE, |
| and it's not clear if/how imported objects will appear. |
| To keep Go support simple until that's worked out, |
| go back through what we've read and create something usable. |
| We could do this while processing each DIE, and feels kinda cleaner, |
| but that way is more invasive. |
| This is to, for example, allow the user to type "p var" or "b main" |
| without having to specify the package name, and allow lookups |
| of module.object to work in contexts that use the expression |
| parser. */ |
| |
| static void |
| fixup_go_packaging (struct dwarf2_cu *cu) |
| { |
| gdb::unique_xmalloc_ptr<char> package_name; |
| struct pending *list; |
| int i; |
| |
| for (list = *cu->get_builder ()->get_global_symbols (); |
| list != NULL; |
| list = list->next) |
| { |
| for (i = 0; i < list->nsyms; ++i) |
| { |
| struct symbol *sym = list->symbol[i]; |
| |
| if (sym->language () == language_go |
| && sym->aclass () == LOC_BLOCK) |
| { |
| gdb::unique_xmalloc_ptr<char> this_package_name |
| = go_symbol_package_name (sym); |
| |
| if (this_package_name == NULL) |
| continue; |
| if (package_name == NULL) |
| package_name = std::move (this_package_name); |
| else |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| if (strcmp (package_name.get (), this_package_name.get ()) != 0) |
| complaint (_("Symtab %s has objects from two different Go packages: %s and %s"), |
| (sym->symtab () != NULL |
| ? symtab_to_filename_for_display |
| (sym->symtab ()) |
| : objfile_name (objfile)), |
| this_package_name.get (), package_name.get ()); |
| } |
| } |
| } |
| } |
| |
| if (package_name != NULL) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| const char *saved_package_name = objfile->intern (package_name.get ()); |
| struct type *type |
| = type_allocator (objfile, cu->lang ()).new_type (TYPE_CODE_MODULE, 0, |
| saved_package_name); |
| struct symbol *sym; |
| |
| sym = new (&objfile->objfile_obstack) symbol; |
| sym->set_language (language_go, &objfile->objfile_obstack); |
| sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd); |
| sym->set_domain (TYPE_DOMAIN); |
| sym->set_aclass_index (LOC_TYPEDEF); |
| sym->set_type (type); |
| |
| add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ()); |
| } |
| } |
| |
| /* Allocate a fully-qualified name consisting of the two parts on the |
| obstack. */ |
| |
| static const char * |
| rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2) |
| { |
| return obconcat (obstack, p1, "::", p2, (char *) NULL); |
| } |
| |
| /* A helper that allocates a variant part to attach to a Rust enum |
| type. OBSTACK is where the results should be allocated. TYPE is |
| the type we're processing. DISCRIMINANT_INDEX is the index of the |
| discriminant. It must be the index of one of the fields of TYPE, |
| or -1 to mean there is no discriminant (univariant enum). |
| DEFAULT_INDEX is the index of the default field; or -1 if there is |
| no default. RANGES is indexed by "effective" field number (the |
| field index, but omitting the discriminant and default fields) and |
| must hold the discriminant values used by the variants. Note that |
| RANGES must have a lifetime at least as long as OBSTACK -- either |
| already allocated on it, or static. */ |
| |
| static void |
| alloc_rust_variant (struct obstack *obstack, struct type *type, |
| int discriminant_index, int default_index, |
| gdb::array_view<discriminant_range> ranges) |
| { |
| /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. */ |
| gdb_assert (discriminant_index == -1 |
| || (discriminant_index >= 0 |
| && discriminant_index < type->num_fields ())); |
| gdb_assert (default_index == -1 |
| || (default_index >= 0 && default_index < type->num_fields ())); |
| |
| /* We have one variant for each non-discriminant field. */ |
| int n_variants = type->num_fields (); |
| if (discriminant_index != -1) |
| --n_variants; |
| |
| variant *variants = new (obstack) variant[n_variants]; |
| int var_idx = 0; |
| int range_idx = 0; |
| for (int i = 0; i < type->num_fields (); ++i) |
| { |
| if (i == discriminant_index) |
| continue; |
| |
| variants[var_idx].first_field = i; |
| variants[var_idx].last_field = i + 1; |
| |
| /* The default field does not need a range, but other fields do. |
| We skipped the discriminant above. */ |
| if (i != default_index) |
| { |
| variants[var_idx].discriminants = ranges.slice (range_idx, 1); |
| ++range_idx; |
| } |
| |
| ++var_idx; |
| } |
| |
| gdb_assert (range_idx == ranges.size ()); |
| gdb_assert (var_idx == n_variants); |
| |
| variant_part *part = new (obstack) variant_part; |
| part->discriminant_index = discriminant_index; |
| /* If there is no discriminant, then whether it is signed is of no |
| consequence. */ |
| part->is_unsigned |
| = (discriminant_index == -1 |
| ? false |
| : type->field (discriminant_index).type ()->is_unsigned ()); |
| part->variants = gdb::array_view<variant> (variants, n_variants); |
| |
| void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>)); |
| gdb::array_view<variant_part> *prop_value |
| = new (storage) gdb::array_view<variant_part> (part, 1); |
| |
| struct dynamic_prop prop; |
| prop.set_variant_parts (prop_value); |
| |
| type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop); |
| } |
| |
| /* Some versions of rustc emitted enums in an unusual way. |
| |
| Ordinary enums were emitted as unions. The first element of each |
| structure in the union was named "RUST$ENUM$DISR". This element |
| held the discriminant. |
| |
| These versions of Rust also implemented the "non-zero" |
| optimization. When the enum had two values, and one is empty and |
| the other holds a pointer that cannot be zero, the pointer is used |
| as the discriminant, with a zero value meaning the empty variant. |
| Here, the union's first member is of the form |
| RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname> |
| where the fieldnos are the indices of the fields that should be |
| traversed in order to find the field (which may be several fields deep) |
| and the variantname is the name of the variant of the case when the |
| field is zero. |
| |
| This function recognizes whether TYPE is of one of these forms, |
| and, if so, smashes it to be a variant type. */ |
| |
| static void |
| quirk_rust_enum (struct type *type, struct objfile *objfile) |
| { |
| gdb_assert (type->code () == TYPE_CODE_UNION); |
| |
| /* We don't need to deal with empty enums. */ |
| if (type->num_fields () == 0) |
| return; |
| |
| #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$" |
| if (type->num_fields () == 1 |
| && startswith (type->field (0).name (), RUST_ENUM_PREFIX)) |
| { |
| const char *name = type->field (0).name () + strlen (RUST_ENUM_PREFIX); |
| |
| /* Decode the field name to find the offset of the |
| discriminant. */ |
| ULONGEST bit_offset = 0; |
| struct type *field_type = type->field (0).type (); |
| while (name[0] >= '0' && name[0] <= '9') |
| { |
| char *tail; |
| unsigned long index = strtoul (name, &tail, 10); |
| name = tail; |
| if (*name != '$' |
| || index >= field_type->num_fields () |
| || (field_type->field (index).loc_kind () |
| != FIELD_LOC_KIND_BITPOS)) |
| { |
| complaint (_("Could not parse Rust enum encoding string \"%s\"" |
| "[in module %s]"), |
| type->field (0).name (), |
| objfile_name (objfile)); |
| return; |
| } |
| ++name; |
| |
| bit_offset += field_type->field (index).loc_bitpos (); |
| field_type = field_type->field (index).type (); |
| } |
| |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| type->set_code (TYPE_CODE_STRUCT); |
| /* Save the field we care about. */ |
| struct field saved_field = type->field (0); |
| type->alloc_fields (3); |
| |
| /* Put the discriminant at index 0. */ |
| type->field (0).set_type (field_type); |
| type->field (0).set_is_artificial (true); |
| type->field (0).set_name ("<<discriminant>>"); |
| type->field (0).set_loc_bitpos (bit_offset); |
| |
| /* The order of fields doesn't really matter, so put the real |
| field at index 1 and the data-less field at index 2. */ |
| type->field (1) = saved_field; |
| type->field (1).set_name |
| (rust_last_path_segment (type->field (1).type ()->name ())); |
| type->field (1).type ()->set_name |
| (rust_fully_qualify (&objfile->objfile_obstack, type->name (), |
| type->field (1).name ())); |
| |
| const char *dataless_name |
| = rust_fully_qualify (&objfile->objfile_obstack, type->name (), |
| name); |
| struct type *dataless_type |
| = type_allocator (type).new_type (TYPE_CODE_VOID, 0, |
| dataless_name); |
| type->field (2).set_type (dataless_type); |
| /* NAME points into the original discriminant name, which |
| already has the correct lifetime. */ |
| type->field (2).set_name (name); |
| type->field (2).set_loc_bitpos (0); |
| |
| /* Indicate that this is a variant type. */ |
| static discriminant_range ranges[1] = { { 0, 0 } }; |
| alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges); |
| } |
| /* A union with a single anonymous field is probably an old-style |
| univariant enum. */ |
| else if (type->num_fields () == 1 && streq (type->field (0).name (), "")) |
| { |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| type->set_code (TYPE_CODE_STRUCT); |
| |
| struct type *field_type = type->field (0).type (); |
| const char *variant_name |
| = rust_last_path_segment (field_type->name ()); |
| type->field (0).set_name (variant_name); |
| field_type->set_name |
| (rust_fully_qualify (&objfile->objfile_obstack, |
| type->name (), variant_name)); |
| |
| alloc_rust_variant (&objfile->objfile_obstack, type, -1, 0, {}); |
| } |
| else |
| { |
| struct type *disr_type = nullptr; |
| for (int i = 0; i < type->num_fields (); ++i) |
| { |
| disr_type = type->field (i).type (); |
| |
| if (disr_type->code () != TYPE_CODE_STRUCT) |
| { |
| /* All fields of a true enum will be structs. */ |
| return; |
| } |
| else if (disr_type->num_fields () == 0) |
| { |
| /* Could be data-less variant, so keep going. */ |
| disr_type = nullptr; |
| } |
| else if (strcmp (disr_type->field (0).name (), |
| "RUST$ENUM$DISR") != 0) |
| { |
| /* Not a Rust enum. */ |
| return; |
| } |
| else |
| { |
| /* Found one. */ |
| break; |
| } |
| } |
| |
| /* If we got here without a discriminant, then it's probably |
| just a union. */ |
| if (disr_type == nullptr) |
| return; |
| |
| /* Smash this type to be a structure type. We have to do this |
| because the type has already been recorded. */ |
| type->set_code (TYPE_CODE_STRUCT); |
| |
| /* Make space for the discriminant field. */ |
| struct field *disr_field = &disr_type->field (0); |
| field *new_fields |
| = (struct field *) TYPE_ZALLOC (type, ((type->num_fields () + 1) |
| * sizeof (struct field))); |
| memcpy (new_fields + 1, type->fields (), |
| type->num_fields () * sizeof (struct field)); |
| type->set_fields (new_fields); |
| type->set_num_fields (type->num_fields () + 1); |
| |
| /* Install the discriminant at index 0 in the union. */ |
| type->field (0) = *disr_field; |
| type->field (0).set_is_artificial (true); |
| type->field (0).set_name ("<<discriminant>>"); |
| |
| /* We need a way to find the correct discriminant given a |
| variant name. For convenience we build a map here. */ |
| struct type *enum_type = disr_field->type (); |
| gdb::unordered_map<std::string_view, ULONGEST> discriminant_map; |
| for (int i = 0; i < enum_type->num_fields (); ++i) |
| { |
| if (enum_type->field (i).loc_kind () == FIELD_LOC_KIND_ENUMVAL) |
| { |
| const char *name |
| = rust_last_path_segment (enum_type->field (i).name ()); |
| discriminant_map[name] = enum_type->field (i).loc_enumval (); |
| } |
| } |
| |
| int n_fields = type->num_fields (); |
| /* We don't need a range entry for the discriminant, but we do |
| need one for every other field, as there is no default |
| variant. */ |
| discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack, |
| discriminant_range, |
| n_fields - 1); |
| /* Skip the discriminant here. */ |
| for (int i = 1; i < n_fields; ++i) |
| { |
| /* Find the final word in the name of this variant's type. |
| That name can be used to look up the correct |
| discriminant. */ |
| const char *variant_name |
| = rust_last_path_segment (type->field (i).type ()->name ()); |
| |
| auto iter = discriminant_map.find (variant_name); |
| if (iter != discriminant_map.end ()) |
| { |
| ranges[i - 1].low = iter->second; |
| ranges[i - 1].high = iter->second; |
| } |
| |
| /* In Rust, each element should have the size of the |
| enclosing enum. */ |
| type->field (i).type ()->set_length (type->length ()); |
| |
| /* Remove the discriminant field, if it exists. */ |
| struct type *sub_type = type->field (i).type (); |
| if (sub_type->num_fields () > 0) |
| { |
| sub_type->set_num_fields (sub_type->num_fields () - 1); |
| sub_type->set_fields (sub_type->fields () + 1); |
| } |
| type->field (i).set_name (variant_name); |
| sub_type->set_name |
| (rust_fully_qualify (&objfile->objfile_obstack, |
| type->name (), variant_name)); |
| } |
| |
| /* Indicate that this is a variant type. */ |
| alloc_rust_variant (&objfile->objfile_obstack, type, 0, -1, |
| gdb::array_view<discriminant_range> (ranges, |
| n_fields - 1)); |
| } |
| } |
| |
| /* Rewrite some Rust unions to be structures with variants parts. */ |
| |
| static void |
| rust_union_quirks (struct dwarf2_cu *cu) |
| { |
| gdb_assert (cu->lang () == language_rust); |
| for (type *type_ : cu->rust_unions) |
| quirk_rust_enum (type_, cu->per_objfile->objfile); |
| /* We don't need this any more. */ |
| cu->rust_unions.clear (); |
| } |
| |
| /* See read.h. */ |
| |
| type_unit_group_unshareable * |
| dwarf2_per_objfile::get_type_unit_group_unshareable (type_unit_group *tu_group) |
| { |
| auto iter = m_type_units.find (tu_group); |
| if (iter != m_type_units.end ()) |
| return iter->second.get (); |
| |
| type_unit_group_unshareable_up uniq (new type_unit_group_unshareable); |
| type_unit_group_unshareable *result = uniq.get (); |
| m_type_units[tu_group] = std::move (uniq); |
| return result; |
| } |
| |
| struct type * |
| dwarf2_per_objfile::get_type_for_signatured_type |
| (signatured_type *sig_type) const |
| { |
| auto iter = m_type_map.find (sig_type); |
| if (iter == m_type_map.end ()) |
| return nullptr; |
| |
| return iter->second; |
| } |
| |
| void dwarf2_per_objfile::set_type_for_signatured_type |
| (signatured_type *sig_type, struct type *type) |
| { |
| gdb_assert (m_type_map.find (sig_type) == m_type_map.end ()); |
| |
| m_type_map[sig_type] = type; |
| } |
| |
| /* A helper function for computing the list of all symbol tables |
| included by PER_CU. */ |
| |
| static void |
| recursively_compute_inclusions |
| (std::vector<compunit_symtab *> *result, |
| gdb::unordered_set<dwarf2_per_cu *> &all_children, |
| gdb::unordered_set<compunit_symtab *> &all_type_symtabs, |
| dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| struct compunit_symtab *immediate_parent) |
| { |
| if (bool inserted = all_children.emplace (per_cu).second; |
| !inserted) |
| { |
| /* This inclusion and its children have been processed. */ |
| return; |
| } |
| |
| /* Only add a CU if it has a symbol table. */ |
| compunit_symtab *cust = per_objfile->get_symtab (per_cu); |
| if (cust != NULL) |
| { |
| /* If this is a type unit only add its symbol table if we haven't |
| seen it yet (type unit per_cu's can share symtabs). */ |
| if (per_cu->is_debug_types) |
| { |
| if (bool inserted = all_type_symtabs.insert (cust).second; |
| inserted) |
| { |
| result->push_back (cust); |
| if (cust->user == NULL) |
| cust->user = immediate_parent; |
| } |
| } |
| else |
| { |
| result->push_back (cust); |
| if (cust->user == NULL) |
| cust->user = immediate_parent; |
| } |
| } |
| |
| for (dwarf2_per_cu *ptr : per_cu->imported_symtabs) |
| recursively_compute_inclusions (result, all_children, |
| all_type_symtabs, ptr, per_objfile, |
| cust); |
| } |
| |
| /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of |
| PER_CU. */ |
| |
| static void |
| compute_compunit_symtab_includes (dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile) |
| { |
| gdb_assert (! per_cu->is_debug_types); |
| |
| if (!per_cu->imported_symtabs.empty ()) |
| { |
| int len; |
| std::vector<compunit_symtab *> result_symtabs; |
| compunit_symtab *cust = per_objfile->get_symtab (per_cu); |
| |
| /* If we don't have a symtab, we can just skip this case. */ |
| if (cust == NULL) |
| return; |
| |
| gdb::unordered_set<dwarf2_per_cu *> all_children; |
| gdb::unordered_set<compunit_symtab *> all_type_symtabs; |
| |
| for (dwarf2_per_cu *ptr : per_cu->imported_symtabs) |
| recursively_compute_inclusions (&result_symtabs, all_children, |
| all_type_symtabs, ptr, |
| per_objfile, cust); |
| |
| /* Now we have a transitive closure of all the included symtabs. */ |
| len = result_symtabs.size (); |
| cust->includes |
| = XOBNEWVEC (&per_objfile->objfile->objfile_obstack, |
| struct compunit_symtab *, len + 1); |
| memcpy (cust->includes, result_symtabs.data (), |
| len * sizeof (compunit_symtab *)); |
| cust->includes[len] = NULL; |
| } |
| } |
| |
| /* Compute the 'includes' field for the symtabs of all the CUs we just |
| read. */ |
| |
| static void |
| process_cu_includes (dwarf2_per_objfile *per_objfile) |
| { |
| for (dwarf2_per_cu *iter : per_objfile->per_bfd->just_read_cus) |
| { |
| if (! iter->is_debug_types) |
| compute_compunit_symtab_includes (iter, per_objfile); |
| } |
| |
| per_objfile->per_bfd->just_read_cus.clear (); |
| } |
| |
| /* Generate full symbol information for CU, whose DIEs have |
| already been loaded into memory. */ |
| |
| static void |
| process_full_comp_unit (dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| unrelocated_addr lowpc, highpc; |
| struct compunit_symtab *cust; |
| struct block *static_block; |
| CORE_ADDR addr; |
| |
| /* Clear the list here in case something was left over. */ |
| cu->method_list.clear (); |
| |
| dwarf2_find_base_address (cu->dies, cu); |
| |
| /* Before we start reading the top-level DIE, ensure it has a valid tag |
| type. */ |
| switch (cu->dies->tag) |
| { |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| case DW_TAG_type_unit: |
| break; |
| default: |
| error (_(DWARF_ERROR_PREFIX |
| "unexpected tag '%s' at offset %s [in module %s]"), |
| dwarf_tag_name (cu->dies->tag), |
| sect_offset_str (cu->per_cu->sect_off), |
| objfile_name (per_objfile->objfile)); |
| } |
| |
| /* Do line number decoding in read_file_scope () */ |
| process_die (cu->dies, cu); |
| |
| /* For now fudge the Go package. */ |
| if (cu->lang () == language_go) |
| fixup_go_packaging (cu); |
| |
| /* Now that we have processed all the DIEs in the CU, all the types |
| should be complete, and it should now be safe to compute all of the |
| physnames. */ |
| compute_delayed_physnames (cu); |
| |
| if (cu->lang () == language_rust) |
| rust_union_quirks (cu); |
| |
| /* Some compilers don't define a DW_AT_high_pc attribute for the |
| compilation unit. If the DW_AT_high_pc is missing, synthesize |
| it, by scanning the DIE's below the compilation unit. */ |
| get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu); |
| |
| addr = per_objfile->relocate (highpc); |
| static_block |
| = cu->get_builder ()->end_compunit_symtab_get_static_block (addr, 0, 1); |
| |
| /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges. |
| Also, DW_AT_ranges may record ranges not belonging to any child DIEs |
| (such as virtual method tables). Record the ranges in STATIC_BLOCK's |
| addrmap to help ensure it has an accurate map of pc values belonging to |
| this comp unit. */ |
| dwarf2_record_block_ranges (cu->dies, static_block, cu); |
| |
| cust = cu->get_builder ()->end_compunit_symtab_from_static_block |
| (static_block, 0); |
| |
| if (cust != NULL) |
| { |
| /* Set symtab language to language from DW_AT_language. If the |
| compilation is from a C file generated by language preprocessors, do |
| not set the language if it was already deduced by start_subfile. */ |
| if (!(cu->lang () == language_c |
| && cust->primary_filetab ()->language () != language_unknown)) |
| cust->primary_filetab ()->set_language (cu->lang ()); |
| |
| /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can |
| produce DW_AT_location with location lists but it can be possibly |
| invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0 |
| there were bugs in prologue debug info, fixed later in GCC-4.5 |
| by "unwind info for epilogues" patch (which is not directly related). |
| |
| For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not |
| needed, it would be wrong due to missing DW_AT_producer there. |
| |
| Still one can confuse GDB by using non-standard GCC compilation |
| options - this waits on GCC PR other/32998 (-frecord-gcc-switches). |
| */ |
| /* Note that this code traditionally did not accept non-GCC |
| compilers; that is preserved but seems potentially wrong. */ |
| if (cu->has_loclist && cu->producer_is_gcc () |
| && !cu->producer_is_gcc_lt_4_5 ()) |
| cust->set_locations_valid (true); |
| |
| if (cu->producer_is_gcc_lt_4_5 ()) |
| /* Don't trust gcc < 4.5.x. */ |
| cust->set_epilogue_unwind_valid (false); |
| else |
| cust->set_epilogue_unwind_valid (true); |
| |
| cust->set_call_site_htab (std::move (cu->call_site_htab)); |
| } |
| |
| per_objfile->set_symtab (cu->per_cu, cust); |
| |
| /* Push it for inclusion processing later. */ |
| per_objfile->per_bfd->just_read_cus.push_back (cu->per_cu); |
| |
| /* Not needed any more. */ |
| cu->reset_builder (); |
| } |
| |
| /* Generate full symbol information for type unit CU, whose DIEs have |
| already been loaded into memory. */ |
| |
| static void |
| process_full_type_unit (dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct compunit_symtab *cust; |
| struct signatured_type *sig_type; |
| |
| gdb_assert (cu->per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) cu->per_cu; |
| |
| /* Clear the list here in case something was left over. */ |
| cu->method_list.clear (); |
| |
| /* The symbol tables are set up in read_type_unit_scope. */ |
| process_die (cu->dies, cu); |
| |
| /* For now fudge the Go package. */ |
| if (cu->lang () == language_go) |
| fixup_go_packaging (cu); |
| |
| /* Now that we have processed all the DIEs in the CU, all the types |
| should be complete, and it should now be safe to compute all of the |
| physnames. */ |
| compute_delayed_physnames (cu); |
| |
| if (cu->lang () == language_rust) |
| rust_union_quirks (cu); |
| |
| /* TUs share symbol tables. |
| If this is the first TU to use this symtab, complete the construction |
| of it with end_expandable_symtab. Otherwise, complete the addition of |
| this TU's symbols to the existing symtab. */ |
| type_unit_group_unshareable *tug_unshare = |
| per_objfile->get_type_unit_group_unshareable (sig_type->type_unit_group); |
| if (tug_unshare->compunit_symtab == NULL) |
| { |
| buildsym_compunit *builder = cu->get_builder (); |
| cust = builder->end_expandable_symtab (0); |
| tug_unshare->compunit_symtab = cust; |
| |
| if (cust != NULL) |
| { |
| /* Set symtab language to language from DW_AT_language. If the |
| compilation is from a C file generated by language preprocessors, |
| do not set the language if it was already deduced by |
| start_subfile. */ |
| if (!(cu->lang () == language_c |
| && cust->primary_filetab ()->language () != language_c)) |
| cust->primary_filetab ()->set_language (cu->lang ()); |
| } |
| } |
| else |
| { |
| cu->get_builder ()->augment_type_symtab (); |
| cust = tug_unshare->compunit_symtab; |
| } |
| |
| per_objfile->set_symtab (cu->per_cu, cust); |
| |
| /* Not needed any more. */ |
| cu->reset_builder (); |
| } |
| |
| /* Process an imported unit DIE. */ |
| |
| static void |
| process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| /* For now we don't handle imported units in type units. */ |
| if (cu->per_cu->is_debug_types) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "DW_TAG_imported_unit is not supported in type units" |
| " [in module %s]"), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (attr != NULL) |
| { |
| sect_offset sect_off = attr->get_ref_die_offset (); |
| bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz); |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_cu *per_cu |
| = dwarf2_find_containing_comp_unit (sect_off, is_dwz, |
| per_objfile->per_bfd); |
| |
| /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit |
| into another compilation unit, at root level. Regard this as a hint, |
| and ignore it. This is a best effort, it only works if unit_type and |
| lang are already set. */ |
| if (die->parent && die->parent->parent == NULL |
| && per_cu->unit_type (false) == DW_UT_compile |
| && per_cu->lang (false) == language_cplus) |
| return; |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| if (maybe_queue_comp_unit (cu, per_cu, per_objfile)) |
| load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu), |
| false, cu->lang ()); |
| |
| cu->per_cu->imported_symtabs.push_back (per_cu); |
| } |
| } |
| |
| /* RAII object that represents a process_die scope: i.e., |
| starts/finishes processing a DIE. */ |
| class process_die_scope |
| { |
| public: |
| process_die_scope (die_info *die, dwarf2_cu *cu) |
| : m_die (die), m_cu (cu) |
| { |
| /* We should only be processing DIEs not already in process. */ |
| gdb_assert (!m_die->in_process); |
| m_die->in_process = true; |
| } |
| |
| ~process_die_scope () |
| { |
| m_die->in_process = false; |
| |
| /* If we're done processing the DIE for the CU that owns the line |
| header, we don't need the line header anymore. */ |
| if (m_cu->line_header_die_owner == m_die) |
| { |
| delete m_cu->line_header; |
| m_cu->line_header = NULL; |
| m_cu->line_header_die_owner = NULL; |
| } |
| } |
| |
| private: |
| die_info *m_die; |
| dwarf2_cu *m_cu; |
| }; |
| |
| /* Process a die and its children. */ |
| |
| static void |
| process_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| process_die_scope scope (die, cu); |
| |
| switch (die->tag) |
| { |
| case DW_TAG_padding: |
| break; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| read_file_scope (die, cu); |
| break; |
| case DW_TAG_type_unit: |
| read_type_unit_scope (die, cu); |
| break; |
| case DW_TAG_subprogram: |
| /* Nested subprograms in Fortran get a prefix. */ |
| if (cu->lang () == language_fortran |
| && die->parent != NULL |
| && die->parent->tag == DW_TAG_subprogram) |
| cu->processing_has_namespace_info = true; |
| [[fallthrough]]; |
| /* Fall through. */ |
| case DW_TAG_entry_point: |
| case DW_TAG_inlined_subroutine: |
| read_func_scope (die, cu); |
| break; |
| case DW_TAG_lexical_block: |
| case DW_TAG_try_block: |
| case DW_TAG_catch_block: |
| read_lexical_block_scope (die, cu); |
| break; |
| case DW_TAG_call_site: |
| case DW_TAG_GNU_call_site: |
| read_call_site_scope (die, cu); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_namelist: |
| process_structure_scope (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| process_enumeration_scope (die, cu); |
| break; |
| |
| /* These dies have a type, but processing them does not create |
| a symbol or recurse to process the children. Therefore we can |
| read them on-demand through read_type_die. */ |
| case DW_TAG_subroutine_type: |
| case DW_TAG_set_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_reference_type: |
| case DW_TAG_rvalue_reference_type: |
| case DW_TAG_string_type: |
| break; |
| |
| case DW_TAG_array_type: |
| /* We only need to handle this case for Ada -- in other |
| languages, it's normal for the compiler to emit a typedef |
| instead. */ |
| if (cu->lang () != language_ada) |
| break; |
| [[fallthrough]]; |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_generic_subrange: |
| case DW_TAG_typedef: |
| case DW_TAG_unspecified_type: |
| /* Add a typedef symbol for the type definition, if it has a |
| DW_AT_name. */ |
| new_symbol (die, read_type_die (die, cu), cu); |
| break; |
| case DW_TAG_common_block: |
| read_common_block (die, cu); |
| break; |
| case DW_TAG_common_inclusion: |
| break; |
| case DW_TAG_namespace: |
| cu->processing_has_namespace_info = true; |
| read_namespace (die, cu); |
| break; |
| case DW_TAG_module: |
| cu->processing_has_namespace_info = true; |
| read_module (die, cu); |
| break; |
| case DW_TAG_imported_declaration: |
| cu->processing_has_namespace_info = true; |
| if (read_alias (die, cu)) |
| break; |
| /* The declaration is neither a global namespace nor a variable |
| alias. */ |
| [[fallthrough]]; |
| case DW_TAG_imported_module: |
| cu->processing_has_namespace_info = true; |
| if (die->child != NULL && (die->tag == DW_TAG_imported_declaration |
| || cu->lang () != language_fortran)) |
| complaint (_("Tag '%s' has unexpected children"), |
| dwarf_tag_name (die->tag)); |
| read_import_statement (die, cu); |
| break; |
| |
| case DW_TAG_imported_unit: |
| process_imported_unit_die (die, cu); |
| break; |
| |
| case DW_TAG_variable: |
| read_variable (die, cu); |
| break; |
| |
| default: |
| new_symbol (die, NULL, cu); |
| break; |
| } |
| } |
| |
| /* DWARF name computation. */ |
| |
| /* A helper function for dwarf2_compute_name which determines whether DIE |
| needs to have the name of the scope prepended to the name listed in the |
| die. */ |
| |
| static int |
| die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| if (tag_is_type (die->tag) && die->tag != DW_TAG_template_type_param) |
| { |
| /* Historically GNAT emitted some types in funny scopes. For |
| example, in one test case, where the first use of Natural was |
| as the type of a field in a record, GNAT emitted: |
| |
| <2>: DW_TAG_structure_type |
| ... variant parts and whatnot |
| <5>: DW_TAG_subrange_type |
| . DW_AT_name: natural |
| |
| To detect this, we look up the DIE tree for a node that has |
| a name; and if that name is fully qualified, we return 0 |
| here. */ |
| if (cu->lang () == language_ada) |
| { |
| for (die_info *iter = die->parent; |
| iter != nullptr; |
| iter = iter->parent) |
| { |
| if (tag_is_type (iter->tag)) |
| { |
| const char *name = dwarf2_name (iter, cu); |
| if (name != nullptr) |
| return strstr (name, "__") == nullptr; |
| } |
| } |
| } |
| return 1; |
| } |
| |
| switch (die->tag) |
| { |
| case DW_TAG_enumerator: |
| case DW_TAG_subprogram: |
| case DW_TAG_inlined_subroutine: |
| case DW_TAG_entry_point: |
| case DW_TAG_member: |
| case DW_TAG_imported_declaration: |
| return 1; |
| |
| case DW_TAG_module: |
| /* We don't need the namespace for Fortran modules, but we do |
| for Ada packages. */ |
| return cu->lang () == language_ada; |
| |
| case DW_TAG_variable: |
| case DW_TAG_constant: |
| /* We only need to prefix "globally" visible variables. These include |
| any variable marked with DW_AT_external or any variable that |
| lives in a namespace. [Variables in anonymous namespaces |
| require prefixing, but they are not DW_AT_external.] */ |
| |
| if (dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| |
| return die_needs_namespace (die_specification (die, &spec_cu), |
| spec_cu); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| if (attr == NULL && die->parent->tag != DW_TAG_namespace |
| && die->parent->tag != DW_TAG_module) |
| return 0; |
| /* A variable in a lexical block of some kind does not need a |
| namespace, even though in C++ such variables may be external |
| and have a mangled name. */ |
| if (die->parent->tag == DW_TAG_lexical_block |
| || die->parent->tag == DW_TAG_try_block |
| || die->parent->tag == DW_TAG_catch_block |
| || die->parent->tag == DW_TAG_subprogram) |
| return 0; |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the DIE's linkage name attribute, either DW_AT_linkage_name |
| or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not |
| defined for the given DIE. */ |
| |
| static struct attribute * |
| dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| return attr; |
| } |
| |
| /* Return the DIE's linkage name as a string, either DW_AT_linkage_name |
| or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not |
| defined for the given DIE. */ |
| |
| static const char * |
| dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *linkage_name; |
| |
| linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu); |
| if (linkage_name == NULL) |
| linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| /* rustc emits invalid values for DW_AT_linkage_name. Ignore these. |
| See https://github.com/rust-lang/rust/issues/32925. */ |
| if (cu->lang () == language_rust && linkage_name != NULL |
| && strchr (linkage_name, '{') != NULL) |
| linkage_name = NULL; |
| |
| return linkage_name; |
| } |
| |
| /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero, |
| compute the physname for the object, which include a method's: |
| - formal parameters (C++), |
| - receiver type (Go), |
| |
| The term "physname" is a bit confusing. |
| For C++, for example, it is the demangled name. |
| For Go, for example, it's the mangled name. |
| |
| For Ada, return the DIE's linkage name rather than the fully qualified |
| name. PHYSNAME is ignored.. |
| |
| The result is allocated on the objfile->per_bfd's obstack and |
| canonicalized. */ |
| |
| static const char * |
| dwarf2_compute_name (const char *name, |
| struct die_info *die, struct dwarf2_cu *cu, |
| int physname) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| if (name == NULL) |
| name = dwarf2_name (die, cu); |
| |
| enum language lang = cu->lang (); |
| |
| /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present |
| but otherwise compute it by typename_concat inside GDB. |
| FIXME: Actually this is not really true, or at least not always true. |
| It's all very confusing. compute_and_set_names doesn't try to demangle |
| Fortran names because there is no mangling standard. So new_symbol |
| will set the demangled name to the result of dwarf2_full_name, and it is |
| the demangled name that GDB uses if it exists. */ |
| if ((lang == language_ada || lang == language_fortran) && physname) |
| { |
| /* For Ada unit, we prefer the linkage name over the name, as |
| the former contains the exported name, which the user expects |
| to be able to reference. Ideally, we want the user to be able |
| to reference this entity using either natural or linkage name, |
| but we haven't started looking at this enhancement yet. */ |
| const char *linkage_name = dw2_linkage_name (die, cu); |
| |
| if (linkage_name != NULL) |
| return linkage_name; |
| } |
| |
| /* Some versions of GNAT emit fully-qualified names already. These |
| have "__" separating the components -- something ordinary names |
| will never have. */ |
| if (lang == language_ada |
| && name != nullptr |
| && strstr (name, "__") != nullptr) |
| return name; |
| |
| /* These are the only languages we know how to qualify names in. */ |
| if (name != NULL |
| && (lang == language_cplus |
| || lang == language_fortran |
| || lang == language_d |
| || lang == language_rust |
| || lang == language_ada)) |
| { |
| if (die_needs_namespace (die, cu)) |
| { |
| const char *prefix; |
| |
| string_file buf; |
| |
| prefix = determine_prefix (die, cu); |
| if (*prefix != '\0') |
| { |
| gdb::unique_xmalloc_ptr<char> prefixed_name |
| = typename_concat (prefix, name, physname, cu); |
| |
| buf.puts (prefixed_name.get ()); |
| } |
| else |
| buf.puts (name); |
| |
| /* Template parameters may be specified in the DIE's DW_AT_name, or |
| as children with DW_TAG_template_type_param or |
| DW_TAG_value_type_param. If the latter, add them to the name |
| here. If the name already has template parameters, then |
| skip this step; some versions of GCC emit both, and |
| it is more efficient to use the pre-computed name. |
| |
| Something to keep in mind about this process: it is very |
| unlikely, or in some cases downright impossible, to produce |
| something that will match the mangled name of a function. |
| If the definition of the function has the same debug info, |
| we should be able to match up with it anyway. But fallbacks |
| using the minimal symbol, for instance to find a method |
| implemented in a stripped copy of libstdc++, will not work. |
| If we do not have debug info for the definition, we will have to |
| match them up some other way. |
| |
| When we do name matching there is a related problem with function |
| templates; two instantiated function templates are allowed to |
| differ only by their return types, which we do not add here. */ |
| |
| if (lang == language_cplus && strchr (name, '<') == NULL) |
| { |
| struct attribute *attr; |
| struct die_info *child; |
| int first = 1; |
| |
| die->building_fullname = 1; |
| |
| for (child = die->child; child != NULL; child = child->sibling) |
| { |
| struct type *type; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| struct value *v; |
| |
| if (child->tag != DW_TAG_template_type_param |
| && child->tag != DW_TAG_template_value_param) |
| continue; |
| |
| if (first) |
| { |
| buf.puts ("<"); |
| first = 0; |
| } |
| else |
| buf.puts (", "); |
| |
| attr = dwarf2_attr (child, DW_AT_type, cu); |
| if (attr == NULL) |
| { |
| complaint (_("template parameter missing DW_AT_type")); |
| buf.puts ("UNKNOWN_TYPE"); |
| continue; |
| } |
| type = die_type (child, cu); |
| |
| if (child->tag == DW_TAG_template_type_param) |
| { |
| cu->language_defn->print_type (type, "", &buf, -1, 0, |
| &type_print_raw_options); |
| continue; |
| } |
| |
| attr = dwarf2_attr (child, DW_AT_const_value, cu); |
| if (attr == NULL) |
| { |
| complaint (_("template parameter missing " |
| "DW_AT_const_value")); |
| buf.puts ("UNKNOWN_VALUE"); |
| continue; |
| } |
| |
| dwarf2_const_value_attr (attr, type, name, |
| &cu->comp_unit_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (type->has_no_signedness ()) |
| /* GDB prints characters as NUMBER 'CHAR'. If that's |
| changed, this can use value_print instead. */ |
| cu->language_defn->printchar (value, type, &buf); |
| else |
| { |
| struct value_print_options opts; |
| |
| if (baton != NULL) |
| v = dwarf2_evaluate_loc_desc (type, NULL, |
| baton->data, |
| baton->size, |
| baton->per_cu, |
| baton->per_objfile); |
| else if (bytes != NULL) |
| { |
| v = value::allocate (type); |
| memcpy (v->contents_writeable ().data (), bytes, |
| type->length ()); |
| } |
| else |
| v = value_from_longest (type, value); |
| |
| /* Specify decimal so that we do not depend on |
| the radix. */ |
| get_formatted_print_options (&opts, 'd'); |
| opts.raw = true; |
| value_print (v, &buf, &opts); |
| release_value (v); |
| } |
| } |
| |
| die->building_fullname = 0; |
| |
| if (!first) |
| { |
| /* Close the argument list, with a space if necessary |
| (nested templates). */ |
| if (!buf.empty () && buf.string ().back () == '>') |
| buf.puts (" >"); |
| else |
| buf.puts (">"); |
| } |
| } |
| |
| /* For C++ methods, append formal parameter type |
| information, if PHYSNAME. */ |
| |
| if (physname && die->tag == DW_TAG_subprogram |
| && lang == language_cplus) |
| { |
| struct type *type = read_type_die (die, cu); |
| |
| c_type_print_args (type, &buf, 1, lang, |
| &type_print_raw_options); |
| |
| if (lang == language_cplus) |
| { |
| /* Assume that an artificial first parameter is |
| "this", but do not crash if it is not. RealView |
| marks unnamed (and thus unused) parameters as |
| artificial; there is no way to differentiate |
| the two cases. */ |
| if (type->num_fields () > 0 |
| && type->field (0).is_artificial () |
| && type->field (0).type ()->code () == TYPE_CODE_PTR |
| && TYPE_CONST (type->field (0).type ()->target_type ())) |
| buf.puts (" const"); |
| } |
| } |
| |
| const std::string &intermediate_name = buf.string (); |
| |
| const char *canonical_name |
| = dwarf2_canonicalize_name (intermediate_name.c_str (), cu, |
| objfile); |
| |
| /* If we only computed INTERMEDIATE_NAME, or if |
| INTERMEDIATE_NAME is already canonical, then we need to |
| intern it. */ |
| if (canonical_name == NULL || canonical_name == intermediate_name.c_str ()) |
| name = objfile->intern (intermediate_name); |
| else |
| name = canonical_name; |
| } |
| } |
| |
| return name; |
| } |
| |
| /* Return the fully qualified name of DIE, based on its DW_AT_name. |
| If scope qualifiers are appropriate they will be added. The result |
| will be allocated on the storage_obstack, or NULL if the DIE does |
| not have a name. NAME may either be from a previous call to |
| dwarf2_name or NULL. |
| |
| The output string will be canonicalized (if C++). */ |
| |
| static const char * |
| dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return dwarf2_compute_name (name, die, cu, 0); |
| } |
| |
| /* Construct a physname for the given DIE in CU. NAME may either be |
| from a previous call to dwarf2_name or NULL. The result will be |
| allocated on the objfile_obstack or NULL if the DIE does not have a |
| name. |
| |
| The output string will be canonicalized (if C++). */ |
| |
| static const char * |
| dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| const char *retval, *mangled = NULL, *canon = NULL; |
| int need_copy = 1; |
| |
| /* In this case dwarf2_compute_name is just a shortcut not building anything |
| on its own. */ |
| if (!die_needs_namespace (die, cu)) |
| return dwarf2_compute_name (name, die, cu, 1); |
| |
| if (cu->lang () != language_rust) |
| mangled = dw2_linkage_name (die, cu); |
| |
| /* DW_AT_linkage_name is missing in some cases - depend on what GDB |
| has computed. */ |
| gdb::unique_xmalloc_ptr<char> demangled; |
| if (mangled != NULL) |
| { |
| if (cu->language_defn->store_sym_names_in_linkage_form_p ()) |
| { |
| /* Do nothing (do not demangle the symbol name). */ |
| } |
| else |
| { |
| /* Use DMGL_RET_DROP for C++ template functions to suppress |
| their return type. It is easier for GDB users to search |
| for such functions as `name(params)' than `long name(params)'. |
| In such case the minimal symbol names do not match the full |
| symbol names but for template functions there is never a need |
| to look up their definition from their declaration so |
| the only disadvantage remains the minimal symbol variant |
| `long name(params)' does not have the proper inferior type. */ |
| demangled = gdb_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI |
| | DMGL_RET_DROP)); |
| } |
| if (demangled) |
| canon = demangled.get (); |
| else |
| { |
| canon = mangled; |
| need_copy = 0; |
| } |
| } |
| |
| if (canon == NULL || check_physname) |
| { |
| const char *physname = dwarf2_compute_name (name, die, cu, 1); |
| |
| if (canon != NULL && strcmp (physname, canon) != 0) |
| { |
| /* It may not mean a bug in GDB. The compiler could also |
| compute DW_AT_linkage_name incorrectly. But in such case |
| GDB would need to be bug-to-bug compatible. */ |
| |
| complaint (_("Computed physname <%s> does not match demangled <%s> " |
| "(from linkage <%s>) - DIE at %s [in module %s]"), |
| physname, canon, mangled, sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| |
| /* Prefer DW_AT_linkage_name (in the CANON form) - when it |
| is available here - over computed PHYSNAME. It is safer |
| against both buggy GDB and buggy compilers. */ |
| |
| retval = canon; |
| } |
| else |
| { |
| retval = physname; |
| need_copy = 0; |
| } |
| } |
| else |
| retval = canon; |
| |
| if (need_copy) |
| retval = objfile->intern (retval); |
| |
| return retval; |
| } |
| |
| /* Inspect DIE in CU for a namespace alias or a variable with alias |
| attribute. If one exists, record a new symbol for it. |
| |
| Returns true if an alias was recorded, false otherwise. */ |
| |
| static bool |
| read_alias (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| /* If the die does not have a name, this is neither a namespace |
| alias nor a variable alias. */ |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr != NULL) |
| { |
| int num; |
| struct die_info *d = die; |
| struct dwarf2_cu *imported_cu = cu; |
| |
| /* If the compiler has nested DW_AT_imported_declaration DIEs, |
| keep inspecting DIEs until we hit the underlying import. */ |
| #define MAX_NESTED_IMPORTED_DECLARATIONS 100 |
| for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num) |
| { |
| attr = dwarf2_attr (d, DW_AT_import, cu); |
| if (attr == NULL) |
| break; |
| |
| d = follow_die_ref (d, attr, &imported_cu); |
| if (d->tag != DW_TAG_imported_declaration) |
| break; |
| } |
| |
| if (num == MAX_NESTED_IMPORTED_DECLARATIONS) |
| { |
| complaint (_("DIE at %s has too many recursively imported " |
| "declarations"), sect_offset_str (d->sect_off)); |
| return false; |
| } |
| |
| if (attr != NULL) |
| { |
| struct type *type; |
| if (d->tag == DW_TAG_variable) |
| { |
| /* This declaration is a C/C++ global variable alias. |
| Add a symbol for it whose type is the same as the |
| aliased variable's. */ |
| type = die_type (d, imported_cu); |
| struct symbol *sym = new_symbol (die, type, cu); |
| attr = dwarf2_attr (d, DW_AT_location, imported_cu); |
| sym->set_aclass_index (LOC_UNRESOLVED); |
| if (attr != nullptr) |
| var_decode_location (attr, sym, cu); |
| return true; |
| } |
| else |
| { |
| sect_offset sect_off = attr->get_ref_die_offset (); |
| type = get_die_type_at_offset (sect_off, cu->per_cu, |
| cu->per_objfile); |
| if (type != nullptr && type->code () == TYPE_CODE_NAMESPACE) |
| { |
| /* This declaration is a global namespace alias. Add |
| a symbol for it whose type is the aliased |
| namespace. */ |
| new_symbol (die, type, cu); |
| return true; |
| } |
| } |
| } |
| } |
| return false; |
| } |
| |
| /* Return the using directives repository (global or local?) to use in the |
| current context for CU. |
| |
| For Ada, imported declarations can materialize renamings, which *may* be |
| global. However it is impossible (for now?) in DWARF to distinguish |
| "external" imported declarations and "static" ones. As all imported |
| declarations seem to be static in all other languages, make them all CU-wide |
| global only in Ada. */ |
| |
| static struct using_direct ** |
| using_directives (struct dwarf2_cu *cu) |
| { |
| if (cu->lang () == language_ada |
| && cu->get_builder ()->outermost_context_p ()) |
| return cu->get_builder ()->get_global_using_directives (); |
| else |
| return cu->get_builder ()->get_local_using_directives (); |
| } |
| |
| /* Read the DW_ATTR_decl_line attribute for the given DIE in the |
| given CU. If the format is not recognized or the attribute is |
| not present, set it to 0. */ |
| |
| static unsigned int |
| read_decl_line (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *decl_line = dwarf2_attr (die, DW_AT_decl_line, cu); |
| if (decl_line == nullptr) |
| return 0; |
| if (decl_line->form_is_constant ()) |
| { |
| LONGEST val = decl_line->constant_value (0); |
| if (0 <= val && val <= UINT_MAX) |
| return (unsigned int) val; |
| |
| complaint (_("Declared line for using directive is too large")); |
| return 0; |
| } |
| |
| complaint (_("Declared line for using directive is of incorrect format")); |
| return 0; |
| } |
| |
| /* Read the import statement specified by the given die and record it. */ |
| |
| static void |
| read_import_statement (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct attribute *import_attr; |
| struct die_info *imported_die, *child_die; |
| struct dwarf2_cu *imported_cu; |
| const char *imported_name; |
| const char *imported_name_prefix; |
| const char *canonical_name; |
| const char *import_alias; |
| const char *imported_declaration = NULL; |
| const char *import_prefix; |
| std::vector<const char *> excludes; |
| |
| import_attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (_("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (die->tag)); |
| return; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524 |
| |
| The import in the following code: |
| namespace A |
| { |
| typedef int B; |
| } |
| |
| int main () |
| { |
| using A::B; |
| B b; |
| return b; |
| } |
| |
| ... |
| <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration) |
| <52> DW_AT_decl_file : 1 |
| <53> DW_AT_decl_line : 6 |
| <54> DW_AT_import : <0x75> |
| <2><58>: Abbrev Number: 4 (DW_TAG_typedef) |
| <59> DW_AT_name : B |
| <5b> DW_AT_decl_file : 1 |
| <5c> DW_AT_decl_line : 2 |
| <5d> DW_AT_type : <0x6e> |
| ... |
| <1><75>: Abbrev Number: 7 (DW_TAG_base_type) |
| <76> DW_AT_byte_size : 4 |
| <77> DW_AT_encoding : 5 (signed) |
| |
| imports the wrong die ( 0x75 instead of 0x58 ). |
| This case will be ignored until the gcc bug is fixed. */ |
| return; |
| } |
| |
| /* Figure out the local name after import. */ |
| import_alias = dwarf2_name (die, cu); |
| |
| /* Figure out where the statement is being imported to. */ |
| import_prefix = determine_prefix (die, cu); |
| |
| /* Figure out what the scope of the imported die is and prepend it |
| to the name of the imported die. */ |
| imported_name_prefix = determine_prefix (imported_die, imported_cu); |
| |
| if (imported_die->tag != DW_TAG_namespace |
| && imported_die->tag != DW_TAG_module) |
| { |
| imported_declaration = imported_name; |
| canonical_name = imported_name_prefix; |
| } |
| else if (strlen (imported_name_prefix) > 0) |
| { |
| gdb::unique_xmalloc_ptr<char> temp; |
| temp = typename_concat (imported_name_prefix, imported_name, 0, cu); |
| canonical_name = obstack_strdup (&objfile->objfile_obstack, temp.get ()); |
| } |
| else |
| canonical_name = imported_name; |
| |
| if (die->tag == DW_TAG_imported_module |
| && cu->lang () == language_fortran) |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| /* DWARF-4: A Fortran use statement with a “rename list” may be |
| represented by an imported module entry with an import attribute |
| referring to the module and owned entries corresponding to those |
| entities that are renamed as part of being imported. */ |
| |
| if (child_die->tag != DW_TAG_imported_declaration) |
| { |
| complaint (_("child DW_TAG_imported_declaration expected " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| import_attr = dwarf2_attr (child_die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (_("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (child_die->tag)); |
| continue; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (child_die, import_attr, |
| &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| complaint (_("child DW_TAG_imported_declaration has unknown " |
| "imported name - DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| excludes.push_back (imported_name); |
| |
| process_die (child_die, cu); |
| } |
| |
| add_using_directive (using_directives (cu), |
| import_prefix, |
| canonical_name, |
| import_alias, |
| imported_declaration, |
| excludes, |
| read_decl_line (die, cu), |
| &objfile->objfile_obstack); |
| } |
| |
| file_and_directory & |
| find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (cu->per_cu->fnd != nullptr) |
| return *cu->per_cu->fnd; |
| |
| /* Find the filename. Do not use dwarf2_name here, since the filename |
| is not a source language identifier. */ |
| file_and_directory res (dwarf2_string_attr (die, DW_AT_name, cu), |
| dwarf2_string_attr (die, DW_AT_comp_dir, cu)); |
| |
| if (res.get_comp_dir () == nullptr |
| && cu->producer_is_gcc_lt_4_3 () |
| && res.get_name () != nullptr |
| && IS_ABSOLUTE_PATH (res.get_name ())) |
| { |
| res.set_comp_dir (ldirname (res.get_name ())); |
| res.set_name (make_unique_xstrdup (lbasename (res.get_name ()))); |
| } |
| |
| cu->per_cu->fnd = std::make_unique<file_and_directory> (std::move (res)); |
| return *cu->per_cu->fnd; |
| } |
| |
| /* Handle DW_AT_stmt_list for a compilation unit. |
| DIE is the DW_TAG_compile_unit die for CU. |
| COMP_DIR is the compilation directory. LOWPC is passed to |
| dwarf_decode_lines. See dwarf_decode_lines comments about it. */ |
| |
| static void |
| handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu, |
| const file_and_directory &fnd, unrelocated_addr lowpc, |
| bool have_code) /* ARI: editCase function */ |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct attribute *attr; |
| hashval_t line_header_local_hash; |
| void **slot; |
| int decode_mapping; |
| |
| gdb_assert (! cu->per_cu->is_debug_types); |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr == NULL || !attr->form_is_unsigned ()) |
| return; |
| |
| sect_offset line_offset = (sect_offset) attr->as_unsigned (); |
| |
| /* The line header hash table is only created if needed (it exists to |
| prevent redundant reading of the line table for partial_units). |
| If we're given a partial_unit, we'll need it. If we're given a |
| compile_unit, then use the line header hash table if it's already |
| created, but don't create one just yet. */ |
| |
| if (per_objfile->line_header_hash == NULL |
| && die->tag == DW_TAG_partial_unit) |
| { |
| per_objfile->line_header_hash |
| .reset (htab_create_alloc (127, line_header_hash_voidp, |
| line_header_eq_voidp, |
| htab_delete_entry<line_header>, |
| xcalloc, xfree)); |
| } |
| |
| line_header line_header_local (line_offset, cu->per_cu->is_dwz); |
| line_header_local_hash = line_header_hash (&line_header_local); |
| if (per_objfile->line_header_hash != NULL) |
| { |
| slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (), |
| &line_header_local, |
| line_header_local_hash, NO_INSERT); |
| |
| /* For DW_TAG_compile_unit we need info like symtab::linetable which |
| is not present in *SLOT (since if there is something in *SLOT then |
| it will be for a partial_unit). */ |
| if (die->tag == DW_TAG_partial_unit && slot != NULL) |
| { |
| gdb_assert (*slot != NULL); |
| cu->line_header = (struct line_header *) *slot; |
| return; |
| } |
| } |
| |
| /* dwarf_decode_line_header does not yet provide sufficient information. |
| We always have to call also dwarf_decode_lines for it. */ |
| line_header_up lh = dwarf_decode_line_header (line_offset, cu, |
| fnd.get_comp_dir ()); |
| if (lh == NULL) |
| return; |
| |
| cu->line_header = lh.release (); |
| cu->line_header_die_owner = die; |
| |
| if (per_objfile->line_header_hash == NULL) |
| slot = NULL; |
| else |
| { |
| slot = htab_find_slot_with_hash (per_objfile->line_header_hash.get (), |
| &line_header_local, |
| line_header_local_hash, INSERT); |
| gdb_assert (slot != NULL); |
| } |
| if (slot != NULL && *slot == NULL) |
| { |
| /* This newly decoded line number information unit will be owned |
| by line_header_hash hash table. */ |
| *slot = cu->line_header; |
| cu->line_header_die_owner = NULL; |
| } |
| else |
| { |
| /* We cannot free any current entry in (*slot) as that struct line_header |
| may be already used by multiple CUs. Create only temporary decoded |
| line_header for this CU - it may happen at most once for each line |
| number information unit. And if we're not using line_header_hash |
| then this is what we want as well. */ |
| gdb_assert (die->tag != DW_TAG_partial_unit); |
| } |
| decode_mapping = (die->tag != DW_TAG_partial_unit); |
| /* The have_code check is here because, if LOWPC and HIGHPC are both 0x0, |
| then there won't be any interesting code in the CU, but a check later on |
| (in lnp_state_machine::check_line_address) will fail to properly exclude |
| an entry that was removed via --gc-sections. */ |
| dwarf_decode_lines (cu->line_header, cu, lowpc, decode_mapping && have_code); |
| } |
| |
| /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */ |
| |
| static void |
| read_file_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| CORE_ADDR lowpc; |
| struct attribute *attr; |
| struct die_info *child_die; |
| |
| unrelocated_addr unrel_low, unrel_high; |
| get_scope_pc_bounds (die, &unrel_low, &unrel_high, cu); |
| |
| /* If we didn't find a lowpc, set it to highpc to avoid complaints |
| from finish_block. */ |
| if (unrel_low == ((unrelocated_addr) -1)) |
| unrel_low = unrel_high; |
| lowpc = per_objfile->relocate (unrel_low); |
| |
| file_and_directory &fnd = find_file_and_directory (die, cu); |
| |
| /* GAS supports generating dwarf-5 info starting version 2.35. Versions |
| 2.35-2.37 generate an incorrect CU name attribute: it's relative, |
| implicitly prefixing it with the compilation dir. Work around this by |
| prefixing it with the source dir instead. */ |
| if (cu->header.version == 5 && !IS_ABSOLUTE_PATH (fnd.get_name ()) |
| && cu->producer_is_gas_lt_2_38 ()) |
| { |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| { |
| sect_offset line_offset = (sect_offset) attr->as_unsigned (); |
| line_header_up lh = dwarf_decode_line_header (line_offset, cu, |
| fnd.get_comp_dir ()); |
| if (lh->version == 5 && lh->is_valid_file_index (1)) |
| { |
| std::string dir = lh->include_dir_at (1); |
| fnd.set_comp_dir (std::move (dir)); |
| } |
| } |
| } |
| |
| cu->start_compunit_symtab (fnd.get_name (), fnd.intern_comp_dir (objfile), |
| lowpc); |
| |
| gdb_assert (per_objfile->sym_cu == nullptr); |
| scoped_restore restore_sym_cu |
| = make_scoped_restore (&per_objfile->sym_cu, cu); |
| |
| /* Decode line number information if present. We do this before |
| processing child DIEs, so that the line header table is available |
| for DW_AT_decl_file. */ |
| handle_DW_AT_stmt_list (die, cu, fnd, unrel_low, unrel_low != unrel_high); |
| |
| /* Process all dies in compilation unit. */ |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| per_objfile->sym_cu = nullptr; |
| |
| /* Decode macro information, if present. Dwarf 2 macro information |
| refers to information in the line number info statement program |
| header, so we can only read it if we've read the header |
| successfully. */ |
| attr = dwarf2_attr (die, DW_AT_macros, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_GNU_macros, cu); |
| if (attr != nullptr && attr->form_is_unsigned () && cu->line_header) |
| { |
| if (dwarf2_attr (die, DW_AT_macro_info, cu)) |
| complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info")); |
| |
| dwarf_decode_macros (cu, attr->as_unsigned (), 1); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_macro_info, cu); |
| if (attr != nullptr && attr->form_is_unsigned () && cu->line_header) |
| { |
| unsigned int macro_offset = attr->as_unsigned (); |
| |
| dwarf_decode_macros (cu, macro_offset, 0); |
| } |
| } |
| } |
| |
| void |
| dwarf2_cu::setup_type_unit_groups (struct die_info *die) |
| { |
| struct type_unit_group *tu_group; |
| int first_time; |
| struct attribute *attr; |
| unsigned int i; |
| struct signatured_type *sig_type; |
| |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, this); |
| |
| /* If we're using .gdb_index (includes -readnow) then |
| per_cu->type_unit_group may not have been set up yet. */ |
| if (sig_type->type_unit_group == NULL) |
| sig_type->type_unit_group = get_type_unit_group (this, attr); |
| tu_group = sig_type->type_unit_group; |
| |
| /* If we've already processed this stmt_list there's no real need to |
| do it again, we could fake it and just recreate the part we need |
| (file name,index -> symtab mapping). If data shows this optimization |
| is useful we can do it then. */ |
| type_unit_group_unshareable *tug_unshare |
| = per_objfile->get_type_unit_group_unshareable (tu_group); |
| first_time = tug_unshare->compunit_symtab == NULL; |
| |
| /* We have to handle the case of both a missing DW_AT_stmt_list or bad |
| debug info. */ |
| line_header_up lh; |
| if (attr != NULL && attr->form_is_unsigned ()) |
| { |
| sect_offset line_offset = (sect_offset) attr->as_unsigned (); |
| lh = dwarf_decode_line_header (line_offset, this, nullptr); |
| } |
| if (lh == NULL) |
| { |
| if (first_time) |
| start_compunit_symtab ("", NULL, 0); |
| else |
| { |
| gdb_assert (tug_unshare->symtabs == NULL); |
| gdb_assert (m_builder == nullptr); |
| struct compunit_symtab *cust = tug_unshare->compunit_symtab; |
| m_builder = std::make_unique<buildsym_compunit> |
| (cust->objfile (), "", |
| cust->dirname (), |
| cust->language (), |
| 0, cust); |
| list_in_scope = get_builder ()->get_file_symbols (); |
| } |
| return; |
| } |
| |
| line_header = lh.release (); |
| line_header_die_owner = die; |
| |
| if (first_time) |
| { |
| struct compunit_symtab *cust = start_compunit_symtab ("", NULL, 0); |
| |
| /* Note: We don't assign tu_group->compunit_symtab yet because we're |
| still initializing it, and our caller (a few levels up) |
| process_full_type_unit still needs to know if this is the first |
| time. */ |
| |
| tug_unshare->symtabs |
| = XOBNEWVEC (&cust->objfile ()->objfile_obstack, |
| struct symtab *, line_header->file_names_size ()); |
| |
| auto &file_names = line_header->file_names (); |
| for (i = 0; i < file_names.size (); ++i) |
| { |
| file_entry &fe = file_names[i]; |
| dwarf2_start_subfile (this, fe, *line_header); |
| buildsym_compunit *b = get_builder (); |
| subfile *sf = b->get_current_subfile (); |
| |
| if (sf->symtab == nullptr) |
| { |
| /* NOTE: start_subfile will recognize when it's been |
| passed a file it has already seen. So we can't |
| assume there's a simple mapping from |
| cu->line_header->file_names to subfiles, plus |
| cu->line_header->file_names may contain dups. */ |
| const char *name = sf->name.c_str (); |
| const char *name_for_id = sf->name_for_id.c_str (); |
| sf->symtab = allocate_symtab (cust, name, name_for_id); |
| } |
| |
| fe.symtab = b->get_current_subfile ()->symtab; |
| tug_unshare->symtabs[i] = fe.symtab; |
| } |
| } |
| else |
| { |
| gdb_assert (m_builder == nullptr); |
| struct compunit_symtab *cust = tug_unshare->compunit_symtab; |
| m_builder = std::make_unique<buildsym_compunit> |
| (cust->objfile (), "", |
| cust->dirname (), |
| cust->language (), |
| 0, cust); |
| list_in_scope = get_builder ()->get_file_symbols (); |
| |
| auto &file_names = line_header->file_names (); |
| for (i = 0; i < file_names.size (); ++i) |
| { |
| file_entry &fe = file_names[i]; |
| fe.symtab = tug_unshare->symtabs[i]; |
| } |
| } |
| |
| /* The main symtab is allocated last. Type units don't have DW_AT_name |
| so they don't have a "real" (so to speak) symtab anyway. |
| There is later code that will assign the main symtab to all symbols |
| that don't have one. We need to handle the case of a symbol with a |
| missing symtab (DW_AT_decl_file) anyway. */ |
| } |
| |
| /* Process DW_TAG_type_unit. |
| For TUs we want to skip the first top level sibling if it's not the |
| actual type being defined by this TU. In this case the first top |
| level sibling is there to provide context only. */ |
| |
| static void |
| read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| |
| /* Initialize (or reinitialize) the machinery for building symtabs. |
| We do this before processing child DIEs, so that the line header table |
| is available for DW_AT_decl_file. */ |
| cu->setup_type_unit_groups (die); |
| |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| } |
| |
| /* DWO/DWP files. |
| |
| http://gcc.gnu.org/wiki/DebugFission |
| http://gcc.gnu.org/wiki/DebugFissionDWP |
| |
| To simplify handling of both DWO files ("object" files with the DWARF info) |
| and DWP files (a file with the DWOs packaged up into one file), we treat |
| DWP files as having a collection of virtual DWO files. */ |
| |
| /* Lookup DWO file DWO_NAME. */ |
| |
| static dwo_file * |
| lookup_dwo_file (dwarf2_per_bfd *per_bfd, const char *dwo_name, |
| const char *comp_dir) |
| { |
| auto it = per_bfd->dwo_files.find (dwo_file_search {dwo_name, comp_dir}); |
| |
| return it != per_bfd->dwo_files.end () ? it->get() : nullptr; |
| } |
| |
| /* die_reader_func for create_dwo_cu. */ |
| |
| static void |
| create_dwo_cu_reader (dwarf2_cu *cu, die_info *comp_unit_die, |
| dwo_file *dwo_file, dwo_unit *dwo_unit) |
| { |
| sect_offset sect_off = cu->per_cu->sect_off; |
| struct dwarf2_section_info *section = cu->per_cu->section; |
| |
| std::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die); |
| if (!signature.has_value ()) |
| { |
| complaint (_(DWARF_ERROR_PREFIX |
| "debug entry at offset %s is missing its dwo_id" |
| " [in module %s]"), |
| sect_offset_str (sect_off), dwo_file->dwo_name.c_str ()); |
| return; |
| } |
| |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = *signature; |
| dwo_unit->section = section; |
| dwo_unit->sect_off = sect_off; |
| dwo_unit->length = cu->per_cu->length (); |
| |
| dwarf_read_debug_printf (" offset %s, dwo_id %s", |
| sect_offset_str (sect_off), |
| hex_string (dwo_unit->signature)); |
| } |
| |
| /* Create the dwo_units for the CUs in a DWO_FILE. |
| Note: This function processes DWO files only, not DWP files. */ |
| |
| static void |
| create_cus_hash_table (dwarf2_cu *cu, dwo_file &dwo_file) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| const gdb_byte *info_ptr, *end_ptr; |
| auto §ion = dwo_file.sections.info; |
| |
| section.read (objfile); |
| info_ptr = section.buffer; |
| |
| if (info_ptr == NULL) |
| return; |
| |
| dwarf_read_debug_printf ("Reading %s for %s:", |
| section.get_name (), |
| section.get_file_name ()); |
| |
| end_ptr = info_ptr + section.size; |
| while (info_ptr < end_ptr) |
| { |
| struct dwo_unit read_unit {}; |
| sect_offset sect_off = (sect_offset) (info_ptr - section.buffer); |
| |
| /* The length of the CU gets set by the cutu_reader just below. */ |
| dwarf2_per_cu per_cu (per_bfd, §ion, sect_off, 0 /* length */, |
| false /* is_dwz */); |
| cutu_reader reader (&per_cu, per_objfile, language_minimal, |
| cu, &dwo_file); |
| |
| if (!reader.is_dummy ()) |
| create_dwo_cu_reader (reader.cu (), reader.top_level_die (), &dwo_file, |
| &read_unit); |
| info_ptr += per_cu.length (); |
| |
| /* If the unit could not be parsed, skip it. */ |
| if (read_unit.dwo_file == NULL) |
| continue; |
| |
| dwo_unit *dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack, struct dwo_unit); |
| *dwo_unit = read_unit; |
| |
| auto [it, inserted] = dwo_file.cus.emplace (dwo_unit); |
| if (!inserted) |
| complaint (_("debug cu entry at offset %s is duplicate to" |
| " the entry at offset %s, signature %s"), |
| sect_offset_str (sect_off), |
| sect_offset_str ((*it)->sect_off), |
| hex_string (dwo_unit->signature)); |
| } |
| } |
| |
| /* DWP file .debug_{cu,tu}_index section format: |
| [ref: http://gcc.gnu.org/wiki/DebugFissionDWP] |
| [ref: http://dwarfstd.org/doc/DWARF5.pdf, sect 7.3.5 "DWARF Package Files"] |
| |
| DWP Versions 1 & 2 are older, pre-standard format versions. The first |
| officially standard DWP format was published with DWARF v5 and is called |
| Version 5. There are no versions 3 or 4. |
| |
| DWP Version 1: |
| |
| Both index sections have the same format, and serve to map a 64-bit |
| signature to a set of section numbers. Each section begins with a header, |
| followed by a hash table of 64-bit signatures, a parallel table of 32-bit |
| indexes, and a pool of 32-bit section numbers. The index sections will be |
| aligned at 8-byte boundaries in the file. |
| |
| The index section header consists of: |
| |
| V, 32 bit version number |
| -, 32 bits unused |
| N, 32 bit number of compilation units or type units in the index |
| M, 32 bit number of slots in the hash table |
| |
| Numbers are recorded using the byte order of the application binary. |
| |
| The hash table begins at offset 16 in the section, and consists of an array |
| of M 64-bit slots. Each slot contains a 64-bit signature (using the byte |
| order of the application binary). Unused slots in the hash table are 0. |
| (We rely on the extreme unlikeliness of a signature being exactly 0.) |
| |
| The parallel table begins immediately after the hash table |
| (at offset 16 + 8 * M from the beginning of the section), and consists of an |
| array of 32-bit indexes (using the byte order of the application binary), |
| corresponding 1-1 with slots in the hash table. Each entry in the parallel |
| table contains a 32-bit index into the pool of section numbers. For unused |
| hash table slots, the corresponding entry in the parallel table will be 0. |
| |
| The pool of section numbers begins immediately following the hash table |
| (at offset 16 + 12 * M from the beginning of the section). The pool of |
| section numbers consists of an array of 32-bit words (using the byte order |
| of the application binary). Each item in the array is indexed starting |
| from 0. The hash table entry provides the index of the first section |
| number in the set. Additional section numbers in the set follow, and the |
| set is terminated by a 0 entry (section number 0 is not used in ELF). |
| |
| In each set of section numbers, the .debug_info.dwo or .debug_types.dwo |
| section must be the first entry in the set, and the .debug_abbrev.dwo must |
| be the second entry. Other members of the set may follow in any order. |
| |
| --- |
| |
| DWP Versions 2 and 5: |
| |
| DWP Versions 2 and 5 combine all the .debug_info, etc. sections into one, |
| and the entries in the index tables are now offsets into these sections. |
| CU offsets begin at 0. TU offsets begin at the size of the .debug_info |
| section. |
| |
| Index Section Contents: |
| Header |
| Hash Table of Signatures dwp_hash_table.hash_table |
| Parallel Table of Indices dwp_hash_table.unit_table |
| Table of Section Offsets dwp_hash_table.{v2|v5}.{section_ids,offsets} |
| Table of Section Sizes dwp_hash_table.{v2|v5}.sizes |
| |
| The index section header consists of: |
| |
| V, 32 bit version number |
| L, 32 bit number of columns in the table of section offsets |
| N, 32 bit number of compilation units or type units in the index |
| M, 32 bit number of slots in the hash table |
| |
| Numbers are recorded using the byte order of the application binary. |
| |
| The hash table has the same format as version 1. |
| The parallel table of indices has the same format as version 1, |
| except that the entries are origin-1 indices into the table of sections |
| offsets and the table of section sizes. |
| |
| The table of offsets begins immediately following the parallel table |
| (at offset 16 + 12 * M from the beginning of the section). The table is |
| a two-dimensional array of 32-bit words (using the byte order of the |
| application binary), with L columns and N+1 rows, in row-major order. |
| Each row in the array is indexed starting from 0. The first row provides |
| a key to the remaining rows: each column in this row provides an identifier |
| for a debug section, and the offsets in the same column of subsequent rows |
| refer to that section. The section identifiers for Version 2 are: |
| |
| DW_SECT_INFO 1 .debug_info.dwo |
| DW_SECT_TYPES 2 .debug_types.dwo |
| DW_SECT_ABBREV 3 .debug_abbrev.dwo |
| DW_SECT_LINE 4 .debug_line.dwo |
| DW_SECT_LOC 5 .debug_loc.dwo |
| DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo |
| DW_SECT_MACINFO 7 .debug_macinfo.dwo |
| DW_SECT_MACRO 8 .debug_macro.dwo |
| |
| The section identifiers for Version 5 are: |
| |
| DW_SECT_INFO_V5 1 .debug_info.dwo |
| DW_SECT_RESERVED_V5 2 -- |
| DW_SECT_ABBREV_V5 3 .debug_abbrev.dwo |
| DW_SECT_LINE_V5 4 .debug_line.dwo |
| DW_SECT_LOCLISTS_V5 5 .debug_loclists.dwo |
| DW_SECT_STR_OFFSETS_V5 6 .debug_str_offsets.dwo |
| DW_SECT_MACRO_V5 7 .debug_macro.dwo |
| DW_SECT_RNGLISTS_V5 8 .debug_rnglists.dwo |
| |
| The offsets provided by the CU and TU index sections are the base offsets |
| for the contributions made by each CU or TU to the corresponding section |
| in the package file. Each CU and TU header contains an abbrev_offset |
| field, used to find the abbreviations table for that CU or TU within the |
| contribution to the .debug_abbrev.dwo section for that CU or TU, and should |
| be interpreted as relative to the base offset given in the index section. |
| Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes |
| should be interpreted as relative to the base offset for .debug_line.dwo, |
| and offsets into other debug sections obtained from DWARF attributes should |
| also be interpreted as relative to the corresponding base offset. |
| |
| The table of sizes begins immediately following the table of offsets. |
| Like the table of offsets, it is a two-dimensional array of 32-bit words, |
| with L columns and N rows, in row-major order. Each row in the array is |
| indexed starting from 1 (row 0 is shared by the two tables). |
| |
| --- |
| |
| Hash table lookup is handled the same in version 1 and 2: |
| |
| We assume that N and M will not exceed 2^32 - 1. |
| The size of the hash table, M, must be 2^k such that 2^k > 3*N/2. |
| |
| Given a 64-bit compilation unit signature or a type signature S, an entry |
| in the hash table is located as follows: |
| |
| 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with |
| the low-order k bits all set to 1. |
| |
| 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1). |
| |
| 3) If the hash table entry at index H matches the signature, use that |
| entry. If the hash table entry at index H is unused (all zeroes), |
| terminate the search: the signature is not present in the table. |
| |
| 4) Let H = (H + H') modulo M. Repeat at Step 3. |
| |
| Because M > N and H' and M are relatively prime, the search is guaranteed |
| to stop at an unused slot or find the match. */ |
| |
| /* Create a hash table to map DWO IDs to their CU/TU entry in |
| .debug_{info,types}.dwo in DWP_FILE. |
| Returns NULL if there isn't one. |
| Note: This function processes DWP files only, not DWO files. */ |
| |
| static struct dwp_hash_table * |
| create_dwp_hash_table (dwarf2_per_objfile *per_objfile, |
| struct dwp_file *dwp_file, int is_debug_types) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const gdb_byte *index_ptr, *index_end; |
| struct dwarf2_section_info *index; |
| uint32_t version, nr_columns, nr_units, nr_slots; |
| struct dwp_hash_table *htab; |
| |
| if (is_debug_types) |
| index = &dwp_file->sections.tu_index; |
| else |
| index = &dwp_file->sections.cu_index; |
| |
| if (index->empty ()) |
| return NULL; |
| index->read (objfile); |
| |
| index_ptr = index->buffer; |
| index_end = index_ptr + index->size; |
| |
| /* For Version 5, the version is really 2 bytes of data & 2 bytes of padding. |
| For now it's safe to just read 4 bytes (particularly as it's difficult to |
| tell if you're dealing with Version 5 before you've read the version). */ |
| version = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| if (version == 2 || version == 5) |
| nr_columns = read_4_bytes (dbfd, index_ptr); |
| else |
| nr_columns = 0; |
| index_ptr += 4; |
| nr_units = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| nr_slots = read_4_bytes (dbfd, index_ptr); |
| index_ptr += 4; |
| |
| if (version != 1 && version != 2 && version != 5) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "unsupported DWP file version (%s) [in module %s]"), |
| pulongest (version), dwp_file->name); |
| } |
| if (nr_slots != (nr_slots & -nr_slots)) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "number of slots in DWP hash table (%s) is not power of 2" |
| " [in module %s]"), |
| pulongest (nr_slots), dwp_file->name); |
| } |
| |
| htab = OBSTACK_ZALLOC (&per_objfile->per_bfd->obstack, struct dwp_hash_table); |
| htab->version = version; |
| htab->nr_columns = nr_columns; |
| htab->nr_units = nr_units; |
| htab->nr_slots = nr_slots; |
| htab->hash_table = index_ptr; |
| htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots; |
| |
| /* Exit early if the table is empty. */ |
| if (nr_slots == 0 || nr_units == 0 |
| || (version == 2 && nr_columns == 0) |
| || (version == 5 && nr_columns == 0)) |
| { |
| /* All must be zero. */ |
| if (nr_slots != 0 || nr_units != 0 |
| || (version == 2 && nr_columns != 0) |
| || (version == 5 && nr_columns != 0)) |
| { |
| complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not" |
| " all zero [in modules %s]"), |
| dwp_file->name); |
| } |
| return htab; |
| } |
| |
| if (version == 1) |
| { |
| htab->section_pool.v1.indices = |
| htab->unit_table + sizeof (uint32_t) * nr_slots; |
| /* It's harder to decide whether the section is too small in v1. |
| V1 is deprecated anyway so we punt. */ |
| } |
| else if (version == 2) |
| { |
| const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots; |
| int *ids = htab->section_pool.v2.section_ids; |
| size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids); |
| /* Reverse map for error checking. */ |
| int ids_seen[DW_SECT_MAX + 1]; |
| int i; |
| |
| if (nr_columns < 2) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, too few columns in section table" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| if (nr_columns > MAX_NR_V2_DWO_SECTIONS) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, too many columns in section table" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| memset (ids, 255, sizeof_ids); |
| memset (ids_seen, 255, sizeof (ids_seen)); |
| for (i = 0; i < nr_columns; ++i) |
| { |
| int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t)); |
| |
| if (id < DW_SECT_MIN || id > DW_SECT_MAX) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, bad section id %d in section table" |
| " [in module %s]"), |
| id, dwp_file->name); |
| } |
| if (ids_seen[id] != -1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, duplicate section" |
| " id %d in section table [in module %s]"), |
| id, dwp_file->name); |
| } |
| ids_seen[id] = i; |
| ids[i] = id; |
| } |
| /* Must have exactly one info or types section. */ |
| if (((ids_seen[DW_SECT_INFO] != -1) |
| + (ids_seen[DW_SECT_TYPES] != -1)) |
| != 1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, missing/duplicate" |
| " DWO info/types section [in module %s]"), |
| dwp_file->name); |
| } |
| /* Must have an abbrev section. */ |
| if (ids_seen[DW_SECT_ABBREV] == -1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, missing DWO abbrev section" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns; |
| htab->section_pool.v2.sizes = |
| htab->section_pool.v2.offsets + (sizeof (uint32_t) |
| * nr_units * nr_columns); |
| if ((htab->section_pool.v2.sizes + (sizeof (uint32_t) |
| * nr_units * nr_columns)) |
| > index_end) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "DWP index section is corrupt (too small) [in module %s]"), |
| dwp_file->name); |
| } |
| } |
| else /* version == 5 */ |
| { |
| const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots; |
| int *ids = htab->section_pool.v5.section_ids; |
| size_t sizeof_ids = sizeof (htab->section_pool.v5.section_ids); |
| /* Reverse map for error checking. */ |
| int ids_seen[DW_SECT_MAX_V5 + 1]; |
| |
| if (nr_columns < 2) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, too few columns in section table" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| if (nr_columns > MAX_NR_V5_DWO_SECTIONS) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, too many columns in section table" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| memset (ids, 255, sizeof_ids); |
| memset (ids_seen, 255, sizeof (ids_seen)); |
| for (int i = 0; i < nr_columns; ++i) |
| { |
| int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t)); |
| |
| if (id < DW_SECT_MIN || id > DW_SECT_MAX_V5) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, bad section id %d in section table" |
| " [in module %s]"), |
| id, dwp_file->name); |
| } |
| if (ids_seen[id] != -1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, duplicate section" |
| " id %d in section table [in module %s]"), |
| id, dwp_file->name); |
| } |
| ids_seen[id] = i; |
| ids[i] = id; |
| } |
| /* Must have seen an info section. */ |
| if (ids_seen[DW_SECT_INFO_V5] == -1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, missing/duplicate" |
| " DWO info/types section [in module %s]"), |
| dwp_file->name); |
| } |
| /* Must have an abbrev section. */ |
| if (ids_seen[DW_SECT_ABBREV_V5] == -1) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, missing DWO abbrev section" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| htab->section_pool.v5.offsets = ids_ptr + sizeof (uint32_t) * nr_columns; |
| htab->section_pool.v5.sizes |
| = htab->section_pool.v5.offsets + (sizeof (uint32_t) |
| * nr_units * nr_columns); |
| if ((htab->section_pool.v5.sizes + (sizeof (uint32_t) |
| * nr_units * nr_columns)) |
| > index_end) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "DWP index section is corrupt (too small) [in module %s]"), |
| dwp_file->name); |
| } |
| } |
| |
| return htab; |
| } |
| |
| /* Update SECTIONS with the data from SECTP. |
| |
| This function is like the other "locate" section routines, but in |
| this context the sections to read comes from the DWP V1 hash table, |
| not the full ELF section table. |
| |
| The result is non-zero for success, or zero if an error was found. */ |
| |
| static int |
| locate_v1_virtual_dwo_sections (asection *sectp, |
| struct virtual_v1_dwo_sections *sections) |
| { |
| const struct dwop_section_names *names = &dwop_section_names; |
| |
| if (names->abbrev_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->abbrev.s.section != NULL) |
| return 0; |
| sections->abbrev.s.section = sectp; |
| sections->abbrev.size = bfd_section_size (sectp); |
| } |
| else if (names->info_dwo.matches (sectp->name) |
| || names->types_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->info_or_types.s.section != NULL) |
| return 0; |
| sections->info_or_types.s.section = sectp; |
| sections->info_or_types.size = bfd_section_size (sectp); |
| } |
| else if (names->line_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->line.s.section != NULL) |
| return 0; |
| sections->line.s.section = sectp; |
| sections->line.size = bfd_section_size (sectp); |
| } |
| else if (names->loc_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->loc.s.section != NULL) |
| return 0; |
| sections->loc.s.section = sectp; |
| sections->loc.size = bfd_section_size (sectp); |
| } |
| else if (names->macinfo_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->macinfo.s.section != NULL) |
| return 0; |
| sections->macinfo.s.section = sectp; |
| sections->macinfo.size = bfd_section_size (sectp); |
| } |
| else if (names->macro_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->macro.s.section != NULL) |
| return 0; |
| sections->macro.s.section = sectp; |
| sections->macro.size = bfd_section_size (sectp); |
| } |
| else if (names->str_offsets_dwo.matches (sectp->name)) |
| { |
| /* There can be only one. */ |
| if (sections->str_offsets.s.section != NULL) |
| return 0; |
| sections->str_offsets.s.section = sectp; |
| sections->str_offsets.size = bfd_section_size (sectp); |
| } |
| else |
| { |
| /* No other kind of section is valid. */ |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* Create a dwo_unit object for the DWO unit with signature SIGNATURE. |
| UNIT_INDEX is the index of the DWO unit in the DWP hash table. |
| COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. |
| This is for DWP version 1 files. */ |
| |
| static struct dwo_unit * |
| create_dwo_unit_in_dwp_v1 (dwarf2_per_bfd *per_bfd, |
| struct dwp_file *dwp_file, |
| uint32_t unit_index, |
| const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct virtual_v1_dwo_sections sections; |
| int i; |
| |
| gdb_assert (dwp_file->version == 1); |
| |
| dwarf_read_debug_printf ("Reading %s %s/%s in DWP V1 file: %s", |
| kind, pulongest (unit_index), hex_string (signature), |
| dwp_file->name); |
| |
| /* Fetch the sections of this DWO unit. |
| Put a limit on the number of sections we look for so that bad data |
| doesn't cause us to loop forever. */ |
| |
| #define MAX_NR_V1_DWO_SECTIONS \ |
| (1 /* .debug_info or .debug_types */ \ |
| + 1 /* .debug_abbrev */ \ |
| + 1 /* .debug_line */ \ |
| + 1 /* .debug_loc */ \ |
| + 1 /* .debug_str_offsets */ \ |
| + 1 /* .debug_macro or .debug_macinfo */ \ |
| + 1 /* trailing zero */) |
| |
| memset (§ions, 0, sizeof (sections)); |
| |
| for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i) |
| { |
| asection *sectp; |
| uint32_t section_nr = |
| read_4_bytes (dbfd, |
| dwp_htab->section_pool.v1.indices |
| + (unit_index + i) * sizeof (uint32_t)); |
| |
| if (section_nr == 0) |
| break; |
| if (section_nr >= dwp_file->num_sections) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, section number too large" |
| " [in module %s]"), |
| dwp_file->name); |
| } |
| |
| sectp = dwp_file->elf_sections[section_nr]; |
| if (! locate_v1_virtual_dwo_sections (sectp, §ions)) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, invalid section found [in module %s]"), |
| dwp_file->name); |
| } |
| } |
| |
| if (i < 2 |
| || sections.info_or_types.empty () |
| || sections.abbrev.empty ()) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, missing DWO sections [in module %s]"), |
| dwp_file->name); |
| } |
| if (i == MAX_NR_V1_DWO_SECTIONS) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, too many DWO sections [in module %s]"), |
| dwp_file->name); |
| } |
| |
| /* It's easier for the rest of the code if we fake a struct dwo_file and |
| have dwo_unit "live" in that. At least for now. |
| |
| The DWP file can be made up of a random collection of CUs and TUs. |
| However, for each CU + set of TUs that came from the same original DWO |
| file, we can combine them back into a virtual DWO file to save space |
| (fewer struct dwo_file objects to allocate). Remember that for really |
| large apps there can be on the order of 8K CUs and 200K TUs, or more. */ |
| |
| std::string virtual_dwo_name = |
| string_printf ("virtual-dwo/%d-%d-%d-%d", |
| sections.abbrev.get_id (), |
| sections.line.get_id (), |
| sections.loc.get_id (), |
| sections.str_offsets.get_id ()); |
| |
| /* Can we use an existing virtual DWO file? */ |
| dwo_file *dwo_file |
| = lookup_dwo_file (per_bfd, virtual_dwo_name.c_str (), comp_dir); |
| |
| /* Create one if necessary. */ |
| if (dwo_file == nullptr) |
| { |
| dwarf_read_debug_printf ("Creating virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_file_up new_dwo_file = std::make_unique<struct dwo_file> (); |
| new_dwo_file->dwo_name = std::move (virtual_dwo_name); |
| new_dwo_file->comp_dir = comp_dir; |
| new_dwo_file->sections.abbrev = sections.abbrev; |
| new_dwo_file->sections.line = sections.line; |
| new_dwo_file->sections.loc = sections.loc; |
| new_dwo_file->sections.macinfo = sections.macinfo; |
| new_dwo_file->sections.macro = sections.macro; |
| new_dwo_file->sections.str_offsets = sections.str_offsets; |
| |
| /* The "str" section is global to the entire DWP file. */ |
| new_dwo_file->sections.str = dwp_file->sections.str; |
| |
| /* The info or types section is assigned below to dwo_unit, |
| there's no need to record it in dwo_file. |
| Also, we can't simply record type sections in dwo_file because |
| we record a pointer into the vector in dwo_unit. As we collect more |
| types we'll grow the vector and eventually have to reallocate space |
| for it, invalidating all copies of pointers into the previous |
| contents. */ |
| auto [it, inserted] |
| = per_bfd->dwo_files.emplace (std::move (new_dwo_file)); |
| gdb_assert (inserted); |
| dwo_file = it->get (); |
| } |
| else |
| dwarf_read_debug_printf ("Using existing virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_unit *dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = signature; |
| dwo_unit->section = XOBNEW (&per_bfd->obstack, struct dwarf2_section_info); |
| *dwo_unit->section = sections.info_or_types; |
| /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */ |
| |
| return dwo_unit; |
| } |
| |
| /* Subroutine of create_dwo_unit_in_dwp_v2 and create_dwo_unit_in_dwp_v5 to |
| simplify them. Given a pointer to the containing section SECTION, and |
| OFFSET,SIZE of the piece within that section used by a TU/CU, return a |
| virtual section of just that piece. */ |
| |
| static struct dwarf2_section_info |
| create_dwp_v2_or_v5_section (dwarf2_per_bfd *per_bfd, |
| struct dwarf2_section_info *section, |
| bfd_size_type offset, bfd_size_type size) |
| { |
| struct dwarf2_section_info result; |
| asection *sectp; |
| |
| gdb_assert (section != NULL); |
| gdb_assert (!section->is_virtual); |
| |
| memset (&result, 0, sizeof (result)); |
| result.s.containing_section = section; |
| result.is_virtual = true; |
| |
| if (size == 0) |
| return result; |
| |
| sectp = section->get_bfd_section (); |
| |
| /* Flag an error if the piece denoted by OFFSET,SIZE is outside the |
| bounds of the real section. This is a pretty-rare event, so just |
| flag an error (easier) instead of a warning and trying to cope. */ |
| if (sectp == NULL |
| || offset + size > bfd_section_size (sectp)) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "Bad DWP V2 or V5 section info, doesn't fit in section %s" |
| " [in module %s]"), |
| sectp ? bfd_section_name (sectp) : "<unknown>", |
| per_bfd->filename ()); |
| } |
| |
| result.virtual_offset = offset; |
| result.size = size; |
| gdb_assert (section->readin); |
| result.readin = true; |
| result.buffer = section->buffer + offset; |
| return result; |
| } |
| |
| /* Create a dwo_unit object for the DWO unit with signature SIGNATURE. |
| UNIT_INDEX is the index of the DWO unit in the DWP hash table. |
| COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. |
| This is for DWP version 2 files. */ |
| |
| static struct dwo_unit * |
| create_dwo_unit_in_dwp_v2 (dwarf2_per_bfd *per_bfd, |
| struct dwp_file *dwp_file, |
| uint32_t unit_index, |
| const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct virtual_v2_or_v5_dwo_sections sections; |
| int i; |
| |
| gdb_assert (dwp_file->version == 2); |
| |
| dwarf_read_debug_printf ("Reading %s %s/%s in DWP V2 file: %s", |
| kind, pulongest (unit_index), hex_string (signature), |
| dwp_file->name); |
| |
| /* Fetch the section offsets of this DWO unit. */ |
| |
| memset (§ions, 0, sizeof (sections)); |
| |
| for (i = 0; i < dwp_htab->nr_columns; ++i) |
| { |
| uint32_t offset = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v2.offsets |
| + (((unit_index - 1) * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| uint32_t size = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v2.sizes |
| + (((unit_index - 1) * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| |
| switch (dwp_htab->section_pool.v2.section_ids[i]) |
| { |
| case DW_SECT_INFO: |
| case DW_SECT_TYPES: |
| sections.info_or_types_offset = offset; |
| sections.info_or_types_size = size; |
| break; |
| case DW_SECT_ABBREV: |
| sections.abbrev_offset = offset; |
| sections.abbrev_size = size; |
| break; |
| case DW_SECT_LINE: |
| sections.line_offset = offset; |
| sections.line_size = size; |
| break; |
| case DW_SECT_LOC: |
| sections.loc_offset = offset; |
| sections.loc_size = size; |
| break; |
| case DW_SECT_STR_OFFSETS: |
| sections.str_offsets_offset = offset; |
| sections.str_offsets_size = size; |
| break; |
| case DW_SECT_MACINFO: |
| sections.macinfo_offset = offset; |
| sections.macinfo_size = size; |
| break; |
| case DW_SECT_MACRO: |
| sections.macro_offset = offset; |
| sections.macro_size = size; |
| break; |
| } |
| } |
| |
| /* It's easier for the rest of the code if we fake a struct dwo_file and |
| have dwo_unit "live" in that. At least for now. |
| |
| The DWP file can be made up of a random collection of CUs and TUs. |
| However, for each CU + set of TUs that came from the same original DWO |
| file, we can combine them back into a virtual DWO file to save space |
| (fewer struct dwo_file objects to allocate). Remember that for really |
| large apps there can be on the order of 8K CUs and 200K TUs, or more. */ |
| |
| std::string virtual_dwo_name = |
| string_printf ("virtual-dwo/%ld-%ld-%ld-%ld", |
| (long) (sections.abbrev_size ? sections.abbrev_offset : 0), |
| (long) (sections.line_size ? sections.line_offset : 0), |
| (long) (sections.loc_size ? sections.loc_offset : 0), |
| (long) (sections.str_offsets_size |
| ? sections.str_offsets_offset : 0)); |
| |
| /* Can we use an existing virtual DWO file? */ |
| dwo_file *dwo_file |
| = lookup_dwo_file (per_bfd, virtual_dwo_name.c_str (), comp_dir); |
| |
| /* Create one if necessary. */ |
| if (dwo_file == nullptr) |
| { |
| dwarf_read_debug_printf ("Creating virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_file_up new_dwo_file = std::make_unique<struct dwo_file> (); |
| new_dwo_file->dwo_name = std::move (virtual_dwo_name); |
| new_dwo_file->comp_dir = comp_dir; |
| new_dwo_file->sections.abbrev |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.abbrev, |
| sections.abbrev_offset, |
| sections.abbrev_size); |
| new_dwo_file->sections.line |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.line, |
| sections.line_offset, |
| sections.line_size); |
| new_dwo_file->sections.loc |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.loc, |
| sections.loc_offset, sections.loc_size); |
| new_dwo_file->sections.macinfo |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.macinfo, |
| sections.macinfo_offset, |
| sections.macinfo_size); |
| new_dwo_file->sections.macro |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.macro, |
| sections.macro_offset, |
| sections.macro_size); |
| new_dwo_file->sections.str_offsets |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.str_offsets, |
| sections.str_offsets_offset, |
| sections.str_offsets_size); |
| |
| /* The "str" section is global to the entire DWP file. */ |
| new_dwo_file->sections.str = dwp_file->sections.str; |
| |
| /* The info or types section is assigned below to dwo_unit, |
| there's no need to record it in dwo_file. |
| Also, we can't simply record type sections in dwo_file because |
| we record a pointer into the vector in dwo_unit. As we collect more |
| types we'll grow the vector and eventually have to reallocate space |
| for it, invalidating all copies of pointers into the previous |
| contents. */ |
| auto [it, inserted] |
| = per_bfd->dwo_files.emplace (std::move (new_dwo_file)); |
| gdb_assert (inserted); |
| dwo_file = it->get (); |
| } |
| else |
| dwarf_read_debug_printf ("Using existing virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_unit *dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = signature; |
| dwo_unit->section = XOBNEW (&per_bfd->obstack, struct dwarf2_section_info); |
| *dwo_unit->section = create_dwp_v2_or_v5_section |
| (per_bfd, |
| is_debug_types |
| ? &dwp_file->sections.types |
| : &dwp_file->sections.info, |
| sections.info_or_types_offset, |
| sections.info_or_types_size); |
| /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */ |
| |
| return dwo_unit; |
| } |
| |
| /* Create a dwo_unit object for the DWO unit with signature SIGNATURE. |
| UNIT_INDEX is the index of the DWO unit in the DWP hash table. |
| COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU. |
| This is for DWP version 5 files. */ |
| |
| static struct dwo_unit * |
| create_dwo_unit_in_dwp_v5 (dwarf2_per_bfd *per_bfd, |
| struct dwp_file *dwp_file, |
| uint32_t unit_index, |
| const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| const struct dwp_hash_table *dwp_htab |
| = is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct virtual_v2_or_v5_dwo_sections sections {}; |
| |
| gdb_assert (dwp_file->version == 5); |
| |
| dwarf_read_debug_printf ("Reading %s %s/%s in DWP V5 file: %s", |
| kind, pulongest (unit_index), hex_string (signature), |
| dwp_file->name); |
| |
| /* Fetch the section offsets of this DWO unit. */ |
| |
| /* memset (§ions, 0, sizeof (sections)); */ |
| |
| for (int i = 0; i < dwp_htab->nr_columns; ++i) |
| { |
| uint32_t offset = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v5.offsets |
| + (((unit_index - 1) |
| * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| uint32_t size = read_4_bytes (dbfd, |
| dwp_htab->section_pool.v5.sizes |
| + (((unit_index - 1) * dwp_htab->nr_columns |
| + i) |
| * sizeof (uint32_t))); |
| |
| switch (dwp_htab->section_pool.v5.section_ids[i]) |
| { |
| case DW_SECT_ABBREV_V5: |
| sections.abbrev_offset = offset; |
| sections.abbrev_size = size; |
| break; |
| case DW_SECT_INFO_V5: |
| sections.info_or_types_offset = offset; |
| sections.info_or_types_size = size; |
| break; |
| case DW_SECT_LINE_V5: |
| sections.line_offset = offset; |
| sections.line_size = size; |
| break; |
| case DW_SECT_LOCLISTS_V5: |
| sections.loclists_offset = offset; |
| sections.loclists_size = size; |
| break; |
| case DW_SECT_MACRO_V5: |
| sections.macro_offset = offset; |
| sections.macro_size = size; |
| break; |
| case DW_SECT_RNGLISTS_V5: |
| sections.rnglists_offset = offset; |
| sections.rnglists_size = size; |
| break; |
| case DW_SECT_STR_OFFSETS_V5: |
| sections.str_offsets_offset = offset; |
| sections.str_offsets_size = size; |
| break; |
| case DW_SECT_RESERVED_V5: |
| default: |
| break; |
| } |
| } |
| |
| /* It's easier for the rest of the code if we fake a struct dwo_file and |
| have dwo_unit "live" in that. At least for now. |
| |
| The DWP file can be made up of a random collection of CUs and TUs. |
| However, for each CU + set of TUs that came from the same original DWO |
| file, we can combine them back into a virtual DWO file to save space |
| (fewer struct dwo_file objects to allocate). Remember that for really |
| large apps there can be on the order of 8K CUs and 200K TUs, or more. */ |
| |
| std::string virtual_dwo_name = |
| string_printf ("virtual-dwo/%ld-%ld-%ld-%ld-%ld-%ld", |
| (long) (sections.abbrev_size ? sections.abbrev_offset : 0), |
| (long) (sections.line_size ? sections.line_offset : 0), |
| (long) (sections.loclists_size ? sections.loclists_offset : 0), |
| (long) (sections.str_offsets_size |
| ? sections.str_offsets_offset : 0), |
| (long) (sections.macro_size ? sections.macro_offset : 0), |
| (long) (sections.rnglists_size ? sections.rnglists_offset: 0)); |
| |
| /* Can we use an existing virtual DWO file? */ |
| dwo_file *dwo_file |
| = lookup_dwo_file (per_bfd, virtual_dwo_name.c_str (), comp_dir); |
| |
| /* Create one if necessary. */ |
| if (dwo_file == nullptr) |
| { |
| dwarf_read_debug_printf ("Creating virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_file_up new_dwo_file = std::make_unique<struct dwo_file> (); |
| new_dwo_file->dwo_name = std::move (virtual_dwo_name); |
| new_dwo_file->comp_dir = comp_dir; |
| new_dwo_file->sections.abbrev |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.abbrev, |
| sections.abbrev_offset, |
| sections.abbrev_size); |
| new_dwo_file->sections.line |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.line, |
| sections.line_offset, |
| sections.line_size); |
| new_dwo_file->sections.macro |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.macro, |
| sections.macro_offset, |
| sections.macro_size); |
| new_dwo_file->sections.loclists |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.loclists, |
| sections.loclists_offset, |
| sections.loclists_size); |
| new_dwo_file->sections.rnglists |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.rnglists, |
| sections.rnglists_offset, |
| sections.rnglists_size); |
| new_dwo_file->sections.str_offsets |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.str_offsets, |
| sections.str_offsets_offset, |
| sections.str_offsets_size); |
| |
| /* The "str" section is global to the entire DWP file. */ |
| new_dwo_file->sections.str = dwp_file->sections.str; |
| |
| /* The info or types section is assigned below to dwo_unit, |
| there's no need to record it in dwo_file. |
| Also, we can't simply record type sections in dwo_file because |
| we record a pointer into the vector in dwo_unit. As we collect more |
| types we'll grow the vector and eventually have to reallocate space |
| for it, invalidating all copies of pointers into the previous |
| contents. */ |
| auto [it, inserted] |
| = per_bfd->dwo_files.emplace (std::move (new_dwo_file)); |
| gdb_assert (inserted); |
| dwo_file = it->get (); |
| } |
| else |
| dwarf_read_debug_printf ("Using existing virtual DWO: %s", |
| virtual_dwo_name.c_str ()); |
| |
| dwo_unit *dwo_unit = OBSTACK_ZALLOC (&per_bfd->obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = signature; |
| dwo_unit->section |
| = XOBNEW (&per_bfd->obstack, struct dwarf2_section_info); |
| *dwo_unit->section |
| = create_dwp_v2_or_v5_section (per_bfd, &dwp_file->sections.info, |
| sections.info_or_types_offset, |
| sections.info_or_types_size); |
| /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */ |
| |
| return dwo_unit; |
| } |
| |
| /* Lookup the DWO unit with SIGNATURE in DWP_FILE. |
| Returns NULL if the signature isn't found. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_unit_in_dwp (dwarf2_per_bfd *per_bfd, |
| struct dwp_file *dwp_file, const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| bfd *dbfd = dwp_file->dbfd.get (); |
| uint32_t mask = dwp_htab->nr_slots - 1; |
| uint32_t hash = signature & mask; |
| uint32_t hash2 = ((signature >> 32) & mask) | 1; |
| auto &dwo_unit_set |
| = is_debug_types ? dwp_file->loaded_tus : dwp_file->loaded_cus; |
| |
| if (auto it = dwo_unit_set.find (signature); |
| it != dwo_unit_set.end ()) |
| return *it; |
| |
| /* Use a for loop so that we don't loop forever on bad debug info. */ |
| for (unsigned int i = 0; i < dwp_htab->nr_slots; ++i) |
| { |
| ULONGEST signature_in_table; |
| |
| signature_in_table = |
| read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t)); |
| if (signature_in_table == signature) |
| { |
| uint32_t unit_index = |
| read_4_bytes (dbfd, |
| dwp_htab->unit_table + hash * sizeof (uint32_t)); |
| dwo_unit *dwo_unit; |
| |
| if (dwp_file->version == 1) |
| dwo_unit |
| = create_dwo_unit_in_dwp_v1 (per_bfd, dwp_file, unit_index, |
| comp_dir, signature, is_debug_types); |
| else if (dwp_file->version == 2) |
| dwo_unit |
| = create_dwo_unit_in_dwp_v2 (per_bfd, dwp_file, unit_index, |
| comp_dir, signature, is_debug_types); |
| else /* version == 5 */ |
| dwo_unit |
| = create_dwo_unit_in_dwp_v5 (per_bfd, dwp_file, unit_index, |
| comp_dir, signature, is_debug_types); |
| |
| auto [it, inserted] = dwo_unit_set.emplace (dwo_unit); |
| gdb_assert (inserted); |
| return *it; |
| } |
| |
| if (signature_in_table == 0) |
| return NULL; |
| |
| hash = (hash + hash2) & mask; |
| } |
| |
| error (_(DWARF_ERROR_PREFIX |
| "bad DWP hash table, lookup didn't terminate [in module %s]"), |
| dwp_file->name); |
| } |
| |
| /* Subroutine of open_dwo_file,open_dwp_file to simplify them. |
| Open the file specified by FILE_NAME and hand it off to BFD for |
| preliminary analysis. Return a newly initialized bfd *, which |
| includes a canonicalized copy of FILE_NAME. |
| If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file. |
| SEARCH_CWD is true if the current directory is to be searched. |
| It will be searched before debug-file-directory. |
| If successful, the file is added to the bfd include table of the |
| objfile's bfd (see gdb_bfd_record_inclusion). |
| If unable to find/open the file, return NULL. |
| NOTE: This function is derived from symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| try_open_dwop_file (dwarf2_per_bfd *per_bfd, const char *file_name, int is_dwp, |
| int search_cwd) |
| { |
| int desc; |
| /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if |
| FILE_NAME contains a '/'. So we can't use it. Instead prepend "." |
| to debug_file_directory. */ |
| const char *search_path; |
| static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' }; |
| |
| gdb::unique_xmalloc_ptr<char> search_path_holder; |
| if (search_cwd) |
| { |
| const std::string &debug_dir = per_bfd->captured_debug_dir; |
| |
| if (!debug_dir.empty ()) |
| { |
| search_path_holder.reset (concat (".", dirname_separator_string, |
| debug_dir.c_str (), |
| (char *) NULL)); |
| search_path = search_path_holder.get (); |
| } |
| else |
| search_path = "."; |
| } |
| else |
| search_path = per_bfd->captured_debug_dir.c_str (); |
| |
| /* Add the path for the executable binary to the list of search paths. */ |
| std::string objfile_dir = ldirname (per_bfd->filename ()); |
| search_path_holder.reset (concat (objfile_dir.c_str (), |
| dirname_separator_string, |
| search_path, nullptr)); |
| search_path = search_path_holder.get (); |
| |
| openp_flags flags = OPF_RETURN_REALPATH; |
| if (is_dwp) |
| flags |= OPF_SEARCH_IN_PATH; |
| |
| gdb::unique_xmalloc_ptr<char> absolute_name; |
| desc = openp (search_path, flags, file_name, O_RDONLY | O_BINARY, |
| &absolute_name, per_bfd->captured_cwd.c_str ()); |
| if (desc < 0) |
| return NULL; |
| |
| gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (), |
| gnutarget, desc)); |
| if (sym_bfd == NULL) |
| return NULL; |
| |
| if (!bfd_check_format (sym_bfd.get (), bfd_object)) |
| return NULL; |
| |
| /* Success. Record the bfd as having been included by the objfile's bfd. |
| This is important because things like demangled_names_hash lives in the |
| objfile's per_bfd space and may have references to things like symbol |
| names that live in the DWO/DWP file's per_bfd space. PR 16426. */ |
| gdb_bfd_record_inclusion (per_bfd->obfd, sym_bfd.get ()); |
| |
| return sym_bfd; |
| } |
| |
| /* Try to open DWO file FILE_NAME. |
| COMP_DIR is the DW_AT_comp_dir attribute. |
| The result is the bfd handle of the file. |
| If there is a problem finding or opening the file, return NULL. |
| Upon success, the canonicalized path of the file is stored in the bfd, |
| same as symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| open_dwo_file (dwarf2_per_bfd *per_bfd, const char *file_name, |
| const char *comp_dir) |
| { |
| if (IS_ABSOLUTE_PATH (file_name)) |
| return try_open_dwop_file (per_bfd, file_name, |
| 0 /*is_dwp*/, 0 /*search_cwd*/); |
| |
| /* Before trying the search path, try DWO_NAME in COMP_DIR. */ |
| |
| if (comp_dir != NULL) |
| { |
| std::string path_to_try = path_join (comp_dir, file_name); |
| |
| /* NOTE: If comp_dir is a relative path, this will also try the |
| search path, which seems useful. */ |
| gdb_bfd_ref_ptr abfd |
| = try_open_dwop_file (per_bfd, path_to_try.c_str (), 0 /* is_dwp */, |
| 1 /* search_cwd */); |
| |
| if (abfd != NULL) |
| return abfd; |
| } |
| |
| /* That didn't work, try debug-file-directory, which, despite its name, |
| is a list of paths. */ |
| |
| if (per_bfd->captured_debug_dir.empty ()) |
| return NULL; |
| |
| return try_open_dwop_file (per_bfd, file_name, 0 /* is_dwp */, |
| 1 /* search_cwd */); |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWO debugging sections we are interested in. */ |
| |
| static void |
| dwarf2_locate_dwo_sections (struct objfile *objfile, bfd *abfd, |
| asection *sectp, dwo_sections *dwo_sections) |
| { |
| const struct dwop_section_names *names = &dwop_section_names; |
| |
| struct dwarf2_section_info *dw_sect = nullptr; |
| |
| if (names->abbrev_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->abbrev; |
| else if (names->info_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->info; |
| else if (names->line_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->line; |
| else if (names->loc_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->loc; |
| else if (names->loclists_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->loclists; |
| else if (names->macinfo_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->macinfo; |
| else if (names->macro_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->macro; |
| else if (names->rnglists_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->rnglists; |
| else if (names->str_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->str; |
| else if (names->str_offsets_dwo.matches (sectp->name)) |
| dw_sect = &dwo_sections->str_offsets; |
| else if (names->types_dwo.matches (sectp->name)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| dwo_sections->types.push_back (type_section); |
| dw_sect = &dwo_sections->types.back (); |
| } |
| |
| if (dw_sect != nullptr) |
| { |
| dw_sect->s.section = sectp; |
| dw_sect->size = bfd_section_size (sectp); |
| dw_sect->read (objfile); |
| } |
| } |
| |
| /* Initialize the use of the DWO file specified by DWO_NAME and referenced |
| by PER_CU. This is for the non-DWP case. |
| The result is NULL if DWO_NAME can't be found. */ |
| |
| static dwo_file_up |
| open_and_init_dwo_file (dwarf2_cu *cu, const char *dwo_name, |
| const char *comp_dir) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| gdb_bfd_ref_ptr dbfd |
| = open_dwo_file (per_objfile->per_bfd, dwo_name, comp_dir); |
| if (dbfd == NULL) |
| { |
| dwarf_read_debug_printf ("DWO file not found: %s", dwo_name); |
| |
| return NULL; |
| } |
| |
| dwo_file_up dwo_file = std::make_unique<struct dwo_file> (); |
| dwo_file->dwo_name = dwo_name; |
| dwo_file->comp_dir = comp_dir; |
| dwo_file->dbfd = std::move (dbfd); |
| |
| for (asection *sec : gdb_bfd_sections (dwo_file->dbfd)) |
| dwarf2_locate_dwo_sections (per_objfile->objfile, dwo_file->dbfd.get (), |
| sec, &dwo_file->sections); |
| |
| create_cus_hash_table (cu, *dwo_file); |
| |
| if (cu->header.version < 5) |
| create_debug_types_hash_table (per_objfile, dwo_file.get (), |
| dwo_file->sections.types); |
| else |
| create_debug_type_hash_table (per_objfile, dwo_file.get (), |
| &dwo_file->sections.info, rcuh_kind::COMPILE); |
| |
| dwarf_read_debug_printf ("DWO file found: %s", dwo_name); |
| |
| bfd_cache_close (dwo_file->dbfd.get ()); |
| |
| return dwo_file; |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWP debugging sections common to version 1 and 2 that |
| we are interested in. */ |
| |
| static void |
| dwarf2_locate_common_dwp_sections (struct objfile *objfile, bfd *abfd, |
| asection *sectp, dwp_file *dwp_file) |
| { |
| const struct dwop_section_names *names = &dwop_section_names; |
| unsigned int elf_section_nr = elf_section_data (sectp)->this_idx; |
| |
| /* Record the ELF section number for later lookup: this is what the |
| .debug_cu_index,.debug_tu_index tables use in DWP V1. */ |
| gdb_assert (elf_section_nr < dwp_file->num_sections); |
| dwp_file->elf_sections[elf_section_nr] = sectp; |
| |
| /* Look for specific sections that we need. */ |
| struct dwarf2_section_info *dw_sect = nullptr; |
| if (names->str_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.str; |
| else if (names->cu_index.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.cu_index; |
| else if (names->tu_index.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.tu_index; |
| |
| if (dw_sect != nullptr) |
| { |
| dw_sect->s.section = sectp; |
| dw_sect->size = bfd_section_size (sectp); |
| dw_sect->read (objfile); |
| } |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWP version 2 debugging sections that we are interested |
| in. This is split into a separate function because we don't know if we |
| have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */ |
| |
| static void |
| dwarf2_locate_v2_dwp_sections (struct objfile *objfile, bfd *abfd, |
| asection *sectp, void *dwp_file_ptr) |
| { |
| struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr; |
| const struct dwop_section_names *names = &dwop_section_names; |
| unsigned int elf_section_nr = elf_section_data (sectp)->this_idx; |
| |
| /* Record the ELF section number for later lookup: this is what the |
| .debug_cu_index,.debug_tu_index tables use in DWP V1. */ |
| gdb_assert (elf_section_nr < dwp_file->num_sections); |
| dwp_file->elf_sections[elf_section_nr] = sectp; |
| |
| /* Look for specific sections that we need. */ |
| struct dwarf2_section_info *dw_sect = nullptr; |
| if (names->abbrev_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.abbrev; |
| else if (names->info_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.info; |
| else if (names->line_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.line; |
| else if (names->loc_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.loc; |
| else if (names->macinfo_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.macinfo; |
| else if (names->macro_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.macro; |
| else if (names->str_offsets_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.str_offsets; |
| else if (names->types_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.types; |
| |
| if (dw_sect != nullptr) |
| { |
| dw_sect->s.section = sectp; |
| dw_sect->size = bfd_section_size (sectp); |
| dw_sect->read (objfile); |
| } |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWP version 5 debugging sections that we are interested |
| in. This is split into a separate function because we don't know if we |
| have version 1 or 2 or 5 until we parse the cu_index/tu_index sections. */ |
| |
| static void |
| dwarf2_locate_v5_dwp_sections (struct objfile *objfile, bfd *abfd, |
| asection *sectp, void *dwp_file_ptr) |
| { |
| struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr; |
| const struct dwop_section_names *names = &dwop_section_names; |
| unsigned int elf_section_nr = elf_section_data (sectp)->this_idx; |
| |
| /* Record the ELF section number for later lookup: this is what the |
| .debug_cu_index,.debug_tu_index tables use in DWP V1. */ |
| gdb_assert (elf_section_nr < dwp_file->num_sections); |
| dwp_file->elf_sections[elf_section_nr] = sectp; |
| |
| /* Look for specific sections that we need. */ |
| struct dwarf2_section_info *dw_sect = nullptr; |
| if (names->abbrev_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.abbrev; |
| else if (names->info_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.info; |
| else if (names->line_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.line; |
| else if (names->loclists_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.loclists; |
| else if (names->macro_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.macro; |
| else if (names->rnglists_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.rnglists; |
| else if (names->str_offsets_dwo.matches (sectp->name)) |
| dw_sect = &dwp_file->sections.str_offsets; |
| |
| if (dw_sect != nullptr) |
| { |
| dw_sect->s.section = sectp; |
| dw_sect->size = bfd_section_size (sectp); |
| dw_sect->read (objfile); |
| } |
| } |
| |
| /* Try to open DWP file FILE_NAME. |
| The result is the bfd handle of the file. |
| If there is a problem finding or opening the file, return NULL. |
| Upon success, the canonicalized path of the file is stored in the bfd, |
| same as symfile_bfd_open. */ |
| |
| static gdb_bfd_ref_ptr |
| open_dwp_file (dwarf2_per_bfd *per_bfd, const char *file_name) |
| { |
| gdb_bfd_ref_ptr abfd |
| = try_open_dwop_file (per_bfd, file_name, 1 /* is_dwp */, |
| 1 /* search_cwd */); |
| if (abfd != NULL) |
| return abfd; |
| |
| /* Work around upstream bug 15652. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15652 |
| [Whether that's a "bug" is debatable, but it is getting in our way.] |
| We have no real idea where the dwp file is, because gdb's realpath-ing |
| of the executable's path may have discarded the needed info. |
| [IWBN if the dwp file name was recorded in the executable, akin to |
| .gnu_debuglink, but that doesn't exist yet.] |
| Strip the directory from FILE_NAME and search again. */ |
| if (!per_bfd->captured_debug_dir.empty ()) |
| { |
| /* Don't implicitly search the current directory here. |
| If the user wants to search "." to handle this case, |
| it must be added to debug-file-directory. */ |
| return try_open_dwop_file (per_bfd, lbasename (file_name), |
| 1 /* is_dwp */, 0 /* search_cwd */); |
| } |
| |
| return NULL; |
| } |
| |
| /* Initialize the use of the DWP file for the current objfile. |
| By convention the name of the DWP file is ${objfile}.dwp. |
| The result is NULL if it can't be found. */ |
| |
| static dwp_file_up |
| open_and_init_dwp_file (dwarf2_per_objfile *per_objfile) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| |
| /* Try to find first .dwp for the binary file before any symbolic links |
| resolving. */ |
| |
| /* If the objfile is a debug file, find the name of the real binary |
| file and get the name of dwp file from there. */ |
| std::string dwp_name; |
| if (objfile->separate_debug_objfile_backlink != NULL) |
| { |
| struct objfile *backlink = objfile->separate_debug_objfile_backlink; |
| const char *backlink_basename = lbasename (backlink->original_name); |
| |
| dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename; |
| } |
| else |
| dwp_name = objfile->original_name; |
| |
| dwp_name += ".dwp"; |
| |
| gdb_bfd_ref_ptr dbfd (open_dwp_file (per_bfd, dwp_name.c_str ())); |
| if (dbfd == NULL |
| && strcmp (objfile->original_name, objfile_name (objfile)) != 0) |
| { |
| /* Try to find .dwp for the binary file after gdb_realpath resolving. */ |
| dwp_name = objfile_name (objfile); |
| dwp_name += ".dwp"; |
| dbfd = open_dwp_file (per_bfd, dwp_name.c_str ()); |
| } |
| |
| if (dbfd == NULL) |
| { |
| dwarf_read_debug_printf ("DWP file not found: %s", dwp_name.c_str ()); |
| |
| return dwp_file_up (); |
| } |
| |
| const char *name = bfd_get_filename (dbfd.get ()); |
| auto dwp_file = std::make_unique<struct dwp_file> (name, std::move (dbfd)); |
| |
| dwp_file->num_sections = elf_numsections (dwp_file->dbfd); |
| dwp_file->elf_sections |
| = OBSTACK_CALLOC (&per_bfd->obstack, dwp_file->num_sections, asection *); |
| |
| for (asection *sec : gdb_bfd_sections (dwp_file->dbfd)) |
| dwarf2_locate_common_dwp_sections (objfile, dwp_file->dbfd.get (), sec, |
| dwp_file.get ()); |
| |
| dwp_file->cus = create_dwp_hash_table (per_objfile, dwp_file.get (), 0); |
| |
| dwp_file->tus = create_dwp_hash_table (per_objfile, dwp_file.get (), 1); |
| |
| /* The DWP file version is stored in the hash table. Oh well. */ |
| if (dwp_file->cus && dwp_file->tus |
| && dwp_file->cus->version != dwp_file->tus->version) |
| { |
| /* Technically speaking, we should try to limp along, but this is |
| pretty bizarre. We use pulongest here because that's the established |
| portability solution (e.g, we cannot use %u for uint32_t). */ |
| error (_(DWARF_ERROR_PREFIX |
| "DWP file CU version %s doesn't match TU version %s" |
| " [in DWP file %s]"), |
| pulongest (dwp_file->cus->version), |
| pulongest (dwp_file->tus->version), dwp_name.c_str ()); |
| } |
| |
| if (dwp_file->cus) |
| dwp_file->version = dwp_file->cus->version; |
| else if (dwp_file->tus) |
| dwp_file->version = dwp_file->tus->version; |
| else |
| dwp_file->version = 2; |
| |
| for (asection *sec : gdb_bfd_sections (dwp_file->dbfd)) |
| { |
| if (dwp_file->version == 2) |
| dwarf2_locate_v2_dwp_sections (objfile, dwp_file->dbfd.get (), sec, |
| dwp_file.get ()); |
| else |
| dwarf2_locate_v5_dwp_sections (objfile, dwp_file->dbfd.get (), sec, |
| dwp_file.get ()); |
| } |
| |
| dwarf_read_debug_printf ("DWP file found: %s", dwp_file->name); |
| dwarf_read_debug_printf (" %s CUs, %s TUs", |
| pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0), |
| pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0)); |
| |
| bfd_cache_close (dwp_file->dbfd.get ()); |
| |
| return dwp_file; |
| } |
| |
| /* Wrapper around open_and_init_dwp_file, only open it once. */ |
| |
| static struct dwp_file * |
| get_dwp_file (dwarf2_per_objfile *per_objfile) |
| { |
| if (!per_objfile->per_bfd->dwp_checked) |
| { |
| per_objfile->per_bfd->dwp_file = open_and_init_dwp_file (per_objfile); |
| per_objfile->per_bfd->dwp_checked = 1; |
| } |
| return per_objfile->per_bfd->dwp_file.get (); |
| } |
| |
| /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit. |
| Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME |
| or in the DWP file for the objfile, referenced by THIS_UNIT. |
| If non-NULL, comp_dir is the DW_AT_comp_dir attribute. |
| IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU. |
| |
| This is called, for example, when wanting to read a variable with a |
| complex location. Therefore we don't want to do file i/o for every call. |
| Therefore we don't want to look for a DWO file on every call. |
| Therefore we first see if we've already seen SIGNATURE in a DWP file, |
| then we check if we've already seen DWO_NAME, and only THEN do we check |
| for a DWO file. |
| |
| The result is a pointer to the dwo_unit object or NULL if we didn't find it |
| (dwo_id mismatch or couldn't find the DWO/DWP file). */ |
| |
| static struct dwo_unit * |
| lookup_dwo_cutu (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir, |
| ULONGEST signature, int is_debug_types) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| struct objfile *objfile = per_objfile->objfile; |
| const char *kind = is_debug_types ? "TU" : "CU"; |
| struct dwp_file *dwp_file; |
| |
| /* First see if there's a DWP file. |
| If we have a DWP file but didn't find the DWO inside it, don't |
| look for the original DWO file. It makes gdb behave differently |
| depending on whether one is debugging in the build tree. */ |
| |
| dwp_file = get_dwp_file (per_objfile); |
| if (dwp_file != NULL) |
| { |
| const struct dwp_hash_table *dwp_htab = |
| is_debug_types ? dwp_file->tus : dwp_file->cus; |
| |
| if (dwp_htab != NULL) |
| { |
| struct dwo_unit *dwo_cutu = |
| lookup_dwo_unit_in_dwp (per_bfd, dwp_file, comp_dir, signature, |
| is_debug_types); |
| |
| if (dwo_cutu != NULL) |
| { |
| dwarf_read_debug_printf ("Virtual DWO %s %s found: @%s", |
| kind, hex_string (signature), |
| host_address_to_string (dwo_cutu)); |
| |
| return dwo_cutu; |
| } |
| } |
| } |
| else |
| { |
| /* No DWP file, look for the DWO file. */ |
| dwo_file *dwo_file = lookup_dwo_file (per_bfd, dwo_name, comp_dir); |
| |
| if (dwo_file == nullptr) |
| { |
| /* Read in the file and build a table of the CUs/TUs it contains. |
| |
| NOTE: This will be nullptr if unable to open the file. */ |
| dwo_file_up new_dwo_file |
| = open_and_init_dwo_file (cu, dwo_name, comp_dir); |
| |
| if (new_dwo_file != nullptr) |
| { |
| auto [it, inserted] |
| = per_bfd->dwo_files.emplace (std::move (new_dwo_file)); |
| gdb_assert (inserted); |
| dwo_file = (*it).get (); |
| } |
| } |
| |
| if (dwo_file != NULL) |
| { |
| struct dwo_unit *dwo_cutu = NULL; |
| |
| if (is_debug_types && !dwo_file->tus.empty ()) |
| { |
| if (auto it = dwo_file->tus.find (signature); |
| it != dwo_file->tus.end ()) |
| dwo_cutu = *it; |
| } |
| else if (!is_debug_types && !dwo_file->cus.empty ()) |
| { |
| if (auto it = dwo_file->cus.find (signature); |
| it != dwo_file->cus.end ()) |
| dwo_cutu = *it; |
| } |
| |
| if (dwo_cutu != NULL) |
| { |
| dwarf_read_debug_printf ("DWO %s %s(%s) found: @%s", |
| kind, dwo_name, hex_string (signature), |
| host_address_to_string (dwo_cutu)); |
| |
| return dwo_cutu; |
| } |
| } |
| } |
| |
| /* We didn't find it. This could mean a dwo_id mismatch, or |
| someone deleted the DWO/DWP file, or the search path isn't set up |
| correctly to find the file. */ |
| |
| dwarf_read_debug_printf ("DWO %s %s(%s) not found", |
| kind, dwo_name, hex_string (signature)); |
| |
| /* This is a warning and not a complaint because it can be caused by |
| pilot error (e.g., user accidentally deleting the DWO). */ |
| { |
| /* Print the name of the DWP file if we looked there, helps the user |
| better diagnose the problem. */ |
| std::string dwp_text; |
| |
| if (dwp_file != NULL) |
| dwp_text = string_printf (" [in DWP file %s]", |
| lbasename (dwp_file->name)); |
| |
| warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s" |
| " [in module %s]"), |
| kind, dwo_name, hex_string (signature), dwp_text.c_str (), kind, |
| sect_offset_str (cu->per_cu->sect_off), objfile_name (objfile)); |
| } |
| return NULL; |
| } |
| |
| /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU. |
| See lookup_dwo_cutu_unit for details. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_comp_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir, |
| ULONGEST signature) |
| { |
| gdb_assert (!cu->per_cu->is_debug_types); |
| |
| return lookup_dwo_cutu (cu, dwo_name, comp_dir, signature, 0); |
| } |
| |
| /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU. |
| See lookup_dwo_cutu_unit for details. */ |
| |
| static struct dwo_unit * |
| lookup_dwo_type_unit (dwarf2_cu *cu, const char *dwo_name, const char *comp_dir) |
| { |
| gdb_assert (cu->per_cu->is_debug_types); |
| |
| signatured_type *sig_type = (signatured_type *) cu->per_cu; |
| |
| return lookup_dwo_cutu (cu, dwo_name, comp_dir, sig_type->signature, 1); |
| } |
| |
| /* Traversal function for queue_and_load_all_dwo_tus. */ |
| |
| static int |
| queue_and_load_dwo_tu (dwo_unit *dwo_unit, dwarf2_cu *cu) |
| { |
| ULONGEST signature = dwo_unit->signature; |
| signatured_type *sig_type = lookup_dwo_signatured_type (cu, signature); |
| |
| if (sig_type != NULL) |
| { |
| /* We pass NULL for DEPENDENT_CU because we don't yet know if there's |
| a real dependency of PER_CU on SIG_TYPE. That is detected later |
| while processing PER_CU. */ |
| if (maybe_queue_comp_unit (NULL, sig_type, cu->per_objfile)) |
| load_full_type_unit (sig_type, cu->per_objfile); |
| cu->per_cu->imported_symtabs.push_back (sig_type); |
| } |
| |
| return 1; |
| } |
| |
| /* Queue all TUs contained in the DWO of CU to be read in. |
| The DWO may have the only definition of the type, though it may not be |
| referenced anywhere in PER_CU. Thus we have to load *all* its TUs. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */ |
| |
| static void |
| queue_and_load_all_dwo_tus (dwarf2_cu *cu) |
| { |
| struct dwo_unit *dwo_unit; |
| struct dwo_file *dwo_file; |
| |
| gdb_assert (cu != nullptr); |
| gdb_assert (!cu->per_cu->is_debug_types); |
| gdb_assert (get_dwp_file (cu->per_objfile) == nullptr); |
| |
| dwo_unit = cu->dwo_unit; |
| gdb_assert (dwo_unit != NULL); |
| |
| dwo_file = dwo_unit->dwo_file; |
| |
| for (struct dwo_unit *unit : dwo_file->tus) |
| queue_and_load_dwo_tu (unit, cu); |
| } |
| |
| /* Read in various DIEs. */ |
| |
| /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes). |
| Inherit only the children of the DW_AT_abstract_origin DIE not being |
| already referenced by DW_AT_abstract_origin from the children of the |
| current DIE. */ |
| |
| static void |
| inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| attribute *attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| if (attr == nullptr) |
| return; |
| |
| /* Note that following die references may follow to a die in a |
| different CU. */ |
| dwarf2_cu *origin_cu = cu; |
| |
| /* Parent of DIE - referenced by DW_AT_abstract_origin. */ |
| die_info *origin_die = follow_die_ref (die, attr, &origin_cu); |
| |
| /* We're inheriting ORIGIN's children into the scope we'd put DIE's |
| symbols in. */ |
| struct pending **origin_previous_list_in_scope = origin_cu->list_in_scope; |
| origin_cu->list_in_scope = cu->list_in_scope; |
| |
| if (die->tag != origin_die->tag |
| && !(die->tag == DW_TAG_inlined_subroutine |
| && origin_die->tag == DW_TAG_subprogram)) |
| complaint (_("DIE %s and its abstract origin %s have different tags"), |
| sect_offset_str (die->sect_off), |
| sect_offset_str (origin_die->sect_off)); |
| |
| /* Find if the concrete and abstract trees are structurally the |
| same. This is a shallow traversal and it is not bullet-proof; |
| the compiler can trick the debugger into believing that the trees |
| are isomorphic, whereas they actually are not. However, the |
| likelihood of this happening is pretty low, and a full-fledged |
| check would be an overkill. */ |
| bool are_isomorphic = true; |
| die_info *concrete_child = die->child; |
| die_info *abstract_child = origin_die->child; |
| while (concrete_child != nullptr || abstract_child != nullptr) |
| { |
| if (concrete_child == nullptr |
| || abstract_child == nullptr |
| || concrete_child->tag != abstract_child->tag) |
| { |
| are_isomorphic = false; |
| break; |
| } |
| |
| concrete_child = concrete_child->sibling; |
| abstract_child = abstract_child->sibling; |
| } |
| |
| /* Walk the origin's children in parallel to the concrete children. |
| This helps match an origin child in case the debug info misses |
| DW_AT_abstract_origin attributes. Keep in mind that the abstract |
| origin tree may not have the same tree structure as the concrete |
| DIE, though. */ |
| die_info *corresponding_abstract_child |
| = are_isomorphic ? origin_die->child : nullptr; |
| |
| std::vector<sect_offset> offsets; |
| |
| for (die_info *child_die = die->child; |
| child_die && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| /* We are trying to process concrete instance entries: |
| DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but |
| it's not relevant to our analysis here. i.e. detecting DIEs that are |
| present in the abstract instance but not referenced in the concrete |
| one. */ |
| if (child_die->tag == DW_TAG_call_site |
| || child_die->tag == DW_TAG_GNU_call_site) |
| { |
| if (are_isomorphic) |
| corresponding_abstract_child |
| = corresponding_abstract_child->sibling; |
| continue; |
| } |
| |
| /* For each CHILD_DIE, find the corresponding child of |
| ORIGIN_DIE. If there is more than one layer of |
| DW_AT_abstract_origin, follow them all; there shouldn't be, |
| but GCC versions at least through 4.4 generate this (GCC PR |
| 40573). */ |
| die_info *child_origin_die = child_die; |
| dwarf2_cu *child_origin_cu = cu; |
| while (true) |
| { |
| attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, |
| child_origin_cu); |
| if (attr == nullptr) |
| break; |
| |
| die_info *prev_child_origin_die = child_origin_die; |
| child_origin_die = follow_die_ref (child_origin_die, attr, |
| &child_origin_cu); |
| |
| if (prev_child_origin_die == child_origin_die) |
| { |
| /* Handle DIE with self-reference. */ |
| break; |
| } |
| } |
| |
| /* If missing DW_AT_abstract_origin, try the corresponding child |
| of the origin. Clang emits such lexical scopes. */ |
| if (child_origin_die == child_die |
| && dwarf2_attr (child_die, DW_AT_abstract_origin, cu) == nullptr |
| && are_isomorphic |
| && child_die->tag == DW_TAG_lexical_block) |
| child_origin_die = corresponding_abstract_child; |
| |
| /* According to DWARF3 3.3.8.2 #3 new entries without their abstract |
| counterpart may exist. */ |
| if (child_origin_die != child_die) |
| { |
| if (child_die->tag != child_origin_die->tag |
| && !(child_die->tag == DW_TAG_inlined_subroutine |
| && child_origin_die->tag == DW_TAG_subprogram)) |
| complaint (_("Child DIE %s and its abstract origin %s have " |
| "different tags"), |
| sect_offset_str (child_die->sect_off), |
| sect_offset_str (child_origin_die->sect_off)); |
| if (child_origin_die->parent != origin_die) |
| complaint (_("Child DIE %s and its abstract origin %s have " |
| "different parents"), |
| sect_offset_str (child_die->sect_off), |
| sect_offset_str (child_origin_die->sect_off)); |
| else |
| offsets.push_back (child_origin_die->sect_off); |
| } |
| |
| if (are_isomorphic) |
| corresponding_abstract_child = corresponding_abstract_child->sibling; |
| } |
| |
| if (!offsets.empty ()) |
| { |
| std::sort (offsets.begin (), offsets.end ()); |
| |
| for (auto offsets_it = offsets.begin () + 1; |
| offsets_it < offsets.end (); |
| ++offsets_it) |
| if (*(offsets_it - 1) == *offsets_it) |
| complaint (_("Multiple children of DIE %s refer " |
| "to DIE %s as their abstract origin"), |
| sect_offset_str (die->sect_off), |
| sect_offset_str (*offsets_it)); |
| } |
| |
| auto offsets_it = offsets.begin (); |
| die_info *origin_child_die = origin_die->child; |
| while (origin_child_die != nullptr && origin_child_die->tag != 0) |
| { |
| /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */ |
| while (offsets_it < offsets.end () |
| && *offsets_it < origin_child_die->sect_off) |
| ++offsets_it; |
| |
| if (offsets_it == offsets.end () |
| || *offsets_it > origin_child_die->sect_off) |
| { |
| /* Found that ORIGIN_CHILD_DIE is really not referenced. |
| Check whether we're already processing ORIGIN_CHILD_DIE. |
| This can happen with mutually referenced abstract_origins. |
| PR 16581. */ |
| if (!origin_child_die->in_process) |
| process_die (origin_child_die, origin_cu); |
| } |
| |
| origin_child_die = origin_child_die->sibling; |
| } |
| |
| origin_cu->list_in_scope = origin_previous_list_in_scope; |
| |
| if (cu != origin_cu) |
| compute_delayed_physnames (origin_cu); |
| } |
| |
| /* Return TRUE if the given DIE is the program's "main". DWARF 4 has |
| defined a dedicated DW_AT_main_subprogram attribute to indicate the |
| starting function of the program, however with older versions the |
| DW_CC_program value of the DW_AT_calling_convention attribute was |
| used instead as the only means available. We handle both variants. */ |
| |
| static bool |
| dwarf2_func_is_main_p (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu)) |
| return true; |
| struct attribute *attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| return (attr != nullptr |
| && attr->constant_value (DW_CC_normal) == DW_CC_program); |
| } |
| |
| /* A helper to handle Ada's "Pragma Import" feature when it is applied |
| to a function. */ |
| |
| static bool |
| check_ada_pragma_import (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (cu->lang () != language_ada) |
| return false; |
| |
| /* A Pragma Import will have both a name and a linkage name. With a |
| newer version of GNAT, we have to examine the full name, because |
| the compiler might decide to emit a linkage name matching the |
| full name in some scenario. */ |
| const char *name = dwarf2_full_name (nullptr, die, cu); |
| if (name == nullptr) |
| return false; |
| |
| const char *linkage_name = dw2_linkage_name (die, cu); |
| /* Disallow the special Ada symbols. */ |
| if (!is_ada_import_or_export (cu, name, linkage_name)) |
| return false; |
| |
| /* A Pragma Import will be a declaration, while a Pragma Export will |
| not be. */ |
| if (!die_is_declaration (die, cu)) |
| return false; |
| |
| new_symbol (die, read_type_die (die, cu), cu); |
| return true; |
| } |
| |
| /* Apply fixups to LOW_PC and HIGH_PC due to an incorrect DIE in CU. */ |
| |
| static void |
| fixup_low_high_pc (struct dwarf2_cu *cu, struct die_info *die, CORE_ADDR *low_pc, |
| CORE_ADDR *high_pc) |
| { |
| if (die->tag != DW_TAG_subprogram) |
| return; |
| |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| |
| if (gdbarch_bfd_arch_info (gdbarch)->arch == bfd_arch_arm |
| && cu->producer_is_gas_ge_2_39 ()) |
| { |
| /* Gas version 2.39 produces DWARF for a Thumb subprogram with a low_pc |
| attribute with the thumb bit set (PR gas/31115). Work around this. */ |
| *low_pc = gdbarch_addr_bits_remove (gdbarch, *low_pc); |
| if (high_pc != nullptr) |
| *high_pc = gdbarch_addr_bits_remove (gdbarch, *high_pc); |
| } |
| } |
| |
| static void |
| read_func_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| struct context_stack *newobj; |
| CORE_ADDR lowpc; |
| CORE_ADDR highpc; |
| struct die_info *child_die; |
| struct attribute *attr, *call_line, *call_file; |
| const char *name; |
| struct block *block; |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| std::vector<struct symbol *> template_args; |
| struct template_symbol *templ_func = NULL; |
| |
| if (inlined_func) |
| { |
| /* If we do not have call site information, we can't show the |
| caller of this inlined function. That's too confusing, so |
| only use the scope for local variables. */ |
| call_line = dwarf2_attr (die, DW_AT_call_line, cu); |
| call_file = dwarf2_attr (die, DW_AT_call_file, cu); |
| if (call_line == NULL || call_file == NULL) |
| { |
| read_lexical_block_scope (die, cu); |
| return; |
| } |
| } |
| |
| name = dwarf2_name (die, cu); |
| if (name == nullptr) |
| name = dw2_linkage_name (die, cu); |
| |
| /* Ignore functions with missing or empty names. These are actually |
| illegal according to the DWARF standard. */ |
| if (name == NULL) |
| { |
| complaint (_("missing name for subprogram DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| return; |
| } |
| |
| if (check_ada_pragma_import (die, cu)) |
| { |
| /* We already made the symbol for the Pragma Import, and because |
| it is a declaration, we know it won't have any other |
| important information, so we can simply return. */ |
| return; |
| } |
| |
| /* Ignore functions with missing or invalid low and high pc attributes. */ |
| unrelocated_addr unrel_low, unrel_high; |
| if (dwarf2_get_pc_bounds (die, &unrel_low, &unrel_high, cu, nullptr, nullptr) |
| <= PC_BOUNDS_INVALID) |
| { |
| if (have_complaint ()) |
| { |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| bool external_p = attr != nullptr && attr->as_boolean (); |
| attr = dwarf2_attr (die, DW_AT_inline, cu); |
| bool inlined_p |
| = (attr != nullptr |
| && attr->is_nonnegative () |
| && (attr->as_nonnegative () == DW_INL_inlined |
| || attr->as_nonnegative () == DW_INL_declared_inlined)); |
| attr = dwarf2_attr (die, DW_AT_declaration, cu); |
| bool decl_p = attr != nullptr && attr->as_boolean (); |
| if (!external_p && !inlined_p && !decl_p) |
| complaint (_("cannot get low and high bounds " |
| "for subprogram DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| } |
| return; |
| } |
| |
| lowpc = per_objfile->relocate (unrel_low); |
| highpc = per_objfile->relocate (unrel_high); |
| fixup_low_high_pc (cu, die, &lowpc, &highpc); |
| |
| /* If we have any template arguments, then we must allocate a |
| different sort of symbol. */ |
| for (child_die = die->child; child_die; child_die = child_die->sibling) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| templ_func = new (&objfile->objfile_obstack) template_symbol; |
| templ_func->subclass = SYMBOL_TEMPLATE; |
| break; |
| } |
| } |
| |
| gdb_assert (cu->get_builder () != nullptr); |
| newobj = cu->get_builder ()->push_context (0, lowpc); |
| newobj->name = new_symbol (die, read_type_die (die, cu), cu, templ_func); |
| |
| if (dwarf2_func_is_main_p (die, cu)) |
| set_objfile_main_name (objfile, newobj->name->linkage_name (), |
| cu->lang ()); |
| |
| /* If there is a location expression for DW_AT_frame_base, record |
| it. */ |
| attr = dwarf2_attr (die, DW_AT_frame_base, cu); |
| if (attr != nullptr) |
| dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1); |
| |
| /* If there is a location for the static link, record it. */ |
| newobj->static_link = NULL; |
| attr = dwarf2_attr (die, DW_AT_static_link, cu); |
| if (attr != nullptr) |
| { |
| newobj->static_link |
| = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop); |
| attr_to_dynamic_prop (attr, die, cu, newobj->static_link, |
| cu->addr_type ()); |
| } |
| |
| cu->list_in_scope = cu->get_builder ()->get_local_symbols (); |
| |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| template_args.push_back (arg); |
| } |
| else |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| |
| inherit_abstract_dies (die, cu); |
| |
| /* If we have a DW_AT_specification, we might need to import using |
| directives from the context of the specification DIE. See the |
| comment in determine_prefix. */ |
| if (cu->lang () == language_cplus |
| && dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| struct die_info *spec_die = die_specification (die, &spec_cu); |
| |
| while (spec_die) |
| { |
| child_die = spec_die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_imported_module) |
| process_die (child_die, spec_cu); |
| child_die = child_die->sibling; |
| } |
| |
| /* In some cases, GCC generates specification DIEs that |
| themselves contain DW_AT_specification attributes. */ |
| spec_die = die_specification (spec_die, &spec_cu); |
| } |
| } |
| |
| struct context_stack cstk = cu->get_builder ()->pop_context (); |
| /* Make a block for the local symbols within. */ |
| block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks, |
| cstk.static_link, lowpc, highpc); |
| |
| /* For C++, set the block's scope. */ |
| if ((cu->lang () == language_cplus |
| || cu->lang () == language_fortran |
| || cu->lang () == language_d |
| || cu->lang () == language_rust) |
| && cu->processing_has_namespace_info) |
| block->set_scope (determine_prefix (die, cu), |
| &objfile->objfile_obstack); |
| |
| /* If we have address ranges, record them. */ |
| dwarf2_record_block_ranges (die, block, cu); |
| |
| gdbarch_make_symbol_special (gdbarch, cstk.name, objfile); |
| |
| /* Attach template arguments to function. */ |
| if (!template_args.empty ()) |
| { |
| gdb_assert (templ_func != NULL); |
| |
| templ_func->n_template_arguments = template_args.size (); |
| templ_func->template_arguments |
| = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *, |
| templ_func->n_template_arguments); |
| memcpy (templ_func->template_arguments, |
| template_args.data (), |
| (templ_func->n_template_arguments * sizeof (struct symbol *))); |
| |
| /* Make sure that the symtab is set on the new symbols. Even |
| though they don't appear in this symtab directly, other parts |
| of gdb assume that symbols do, and this is reasonably |
| true. */ |
| for (symbol *sym : template_args) |
| sym->set_symtab (templ_func->symtab ()); |
| } |
| |
| /* In C++, we can have functions nested inside functions (e.g., when |
| a function declares a class that has methods). This means that |
| when we finish processing a function scope, we may need to go |
| back to building a containing block's symbol lists. */ |
| *cu->get_builder ()->get_local_symbols () = cstk.locals; |
| cu->get_builder ()->set_local_using_directives (cstk.local_using_directives); |
| |
| /* If we've finished processing a top-level function, subsequent |
| symbols go in the file symbol list. */ |
| if (cu->get_builder ()->outermost_context_p ()) |
| cu->list_in_scope = cu->get_builder ()->get_file_symbols (); |
| } |
| |
| /* Process all the DIES contained within a lexical block scope. Start |
| a new scope, process the dies, and then close the scope. */ |
| |
| static void |
| read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| CORE_ADDR lowpc, highpc; |
| struct die_info *child_die; |
| |
| /* Ignore blocks with missing or invalid low and high pc attributes. */ |
| /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges |
| as multiple lexical blocks? Handling children in a sane way would |
| be nasty. Might be easier to properly extend generic blocks to |
| describe ranges. */ |
| unrelocated_addr unrel_low, unrel_high; |
| switch (dwarf2_get_pc_bounds (die, &unrel_low, &unrel_high, cu, |
| nullptr, nullptr)) |
| { |
| case PC_BOUNDS_NOT_PRESENT: |
| /* DW_TAG_lexical_block has no attributes, process its children as if |
| there was no wrapping by that DW_TAG_lexical_block. |
| GCC does no longer produces such DWARF since GCC r224161. */ |
| for (child_die = die->child; |
| child_die != NULL && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| /* We might already be processing this DIE. This can happen |
| in an unusual circumstance -- where a subroutine A |
| appears lexically in another subroutine B, but A actually |
| inlines B. The recursion is broken here, rather than in |
| inherit_abstract_dies, because it seems better to simply |
| drop concrete children here. */ |
| if (!child_die->in_process) |
| process_die (child_die, cu); |
| } |
| return; |
| case PC_BOUNDS_INVALID: |
| return; |
| } |
| lowpc = per_objfile->relocate (unrel_low); |
| highpc = per_objfile->relocate (unrel_high); |
| |
| cu->get_builder ()->push_context (0, lowpc); |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| inherit_abstract_dies (die, cu); |
| struct context_stack cstk = cu->get_builder ()->pop_context (); |
| |
| if (*cu->get_builder ()->get_local_symbols () != NULL |
| || (*cu->get_builder ()->get_local_using_directives ()) != NULL) |
| { |
| struct block *block |
| = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL, |
| cstk.start_addr, highpc); |
| |
| /* Note that recording ranges after traversing children, as we |
| do here, means that recording a parent's ranges entails |
| walking across all its children's ranges as they appear in |
| the address map, which is quadratic behavior. |
| |
| It would be nicer to record the parent's ranges before |
| traversing its children, simply overriding whatever you find |
| there. But since we don't even decide whether to create a |
| block until after we've traversed its children, that's hard |
| to do. */ |
| dwarf2_record_block_ranges (die, block, cu); |
| } |
| *cu->get_builder ()->get_local_symbols () = cstk.locals; |
| cu->get_builder ()->set_local_using_directives (cstk.local_using_directives); |
| } |
| |
| static void dwarf2_ranges_read_low_addrs |
| (unsigned offset, |
| struct dwarf2_cu *cu, |
| dwarf_tag tag, |
| std::vector<unrelocated_addr> &result); |
| |
| /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */ |
| |
| static void |
| read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| struct attribute *attr; |
| int nparams; |
| struct die_info *child_die; |
| |
| attr = dwarf2_attr (die, DW_AT_call_return_pc, cu); |
| if (attr == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias |
| for DW_AT_call_return_pc. */ |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| } |
| if (!attr) |
| { |
| complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| return; |
| } |
| unrelocated_addr pc = attr->as_address (); |
| |
| /* Count parameters at the caller. */ |
| |
| nparams = 0; |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| if (child_die->tag != DW_TAG_call_site_parameter |
| && child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| complaint (_("Tag %d is not DW_TAG_call_site_parameter in " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| child_die->tag, sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| nparams++; |
| } |
| |
| struct call_site *call_site |
| = new (XOBNEWVAR (&objfile->objfile_obstack, |
| struct call_site, |
| sizeof (*call_site) + sizeof (call_site->parameter[0]) * nparams)) |
| struct call_site (pc, cu->per_cu, per_objfile); |
| |
| if (!cu->call_site_htab.emplace (call_site).second) |
| { |
| complaint (_("Duplicate PC %s for DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| paddress (gdbarch, (CORE_ADDR) pc), sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| return; |
| } |
| |
| /* We never call the destructor of call_site, so we must ensure it is |
| trivially destructible. */ |
| static_assert(std::is_trivially_destructible<struct call_site>::value); |
| |
| if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu) |
| || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu)) |
| { |
| struct die_info *func_die; |
| |
| /* Skip also over DW_TAG_inlined_subroutine. */ |
| for (func_die = die->parent; |
| func_die && func_die->tag != DW_TAG_subprogram |
| && func_die->tag != DW_TAG_subroutine_type; |
| func_die = func_die->parent); |
| |
| /* DW_AT_call_all_calls is a superset |
| of DW_AT_call_all_tail_calls. */ |
| if (func_die |
| && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu)) |
| { |
| /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is |
| not complete. But keep CALL_SITE for look ups via call_site_htab, |
| both the initial caller containing the real return address PC and |
| the final callee containing the current PC of a chain of tail |
| calls do not need to have the tail call list complete. But any |
| function candidate for a virtual tail call frame searched via |
| TYPE_TAIL_CALL_LIST must have the tail call list complete to be |
| determined unambiguously. */ |
| } |
| else |
| { |
| struct type *func_type = NULL; |
| |
| if (func_die) |
| func_type = get_die_type (func_die, cu); |
| if (func_type != NULL) |
| { |
| gdb_assert (func_type->code () == TYPE_CODE_FUNC); |
| |
| /* Enlist this call site to the function. */ |
| call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type); |
| TYPE_TAIL_CALL_LIST (func_type) = call_site; |
| } |
| else |
| complaint (_("Cannot find function owning DW_TAG_call_site " |
| "DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_call_target, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_call_origin, cu); |
| if (attr == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */ |
| attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| } |
| |
| call_site->target.set_loc_dwarf_block (nullptr); |
| if (!attr || (attr->form_is_block () && attr->as_block ()->size == 0)) |
| /* Keep NULL DWARF_BLOCK. */; |
| else if (attr->form_is_block ()) |
| { |
| struct dwarf2_locexpr_baton *dlbaton; |
| struct dwarf_block *block = attr->as_block (); |
| |
| dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| dlbaton->data = block->data; |
| dlbaton->size = block->size; |
| dlbaton->per_objfile = per_objfile; |
| dlbaton->per_cu = cu->per_cu; |
| |
| call_site->target.set_loc_dwarf_block (dlbaton); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die; |
| |
| target_die = follow_die_ref (die, attr, &target_cu); |
| gdb_assert (target_cu->per_objfile->objfile == objfile); |
| |
| struct attribute *ranges_attr |
| = dwarf2_attr (target_die, DW_AT_ranges, target_cu); |
| |
| if (die_is_declaration (target_die, target_cu)) |
| { |
| const char *target_physname; |
| |
| /* Prefer the mangled name; otherwise compute the demangled one. */ |
| target_physname = dw2_linkage_name (target_die, target_cu); |
| if (target_physname == NULL) |
| target_physname = dwarf2_physname (NULL, target_die, target_cu); |
| if (target_physname == NULL) |
| complaint (_("DW_AT_call_target target DIE has invalid " |
| "physname, for referencing DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| else |
| call_site->target.set_loc_physname (target_physname); |
| } |
| else if (ranges_attr != nullptr && ranges_attr->form_is_unsigned ()) |
| { |
| ULONGEST ranges_offset = (ranges_attr->as_unsigned () |
| + target_cu->gnu_ranges_base); |
| std::vector<unrelocated_addr> addresses; |
| dwarf2_ranges_read_low_addrs (ranges_offset, target_cu, |
| target_die->tag, addresses); |
| unrelocated_addr *saved = XOBNEWVEC (&objfile->objfile_obstack, |
| unrelocated_addr, |
| addresses.size ()); |
| std::copy (addresses.begin (), addresses.end (), saved); |
| call_site->target.set_loc_array (addresses.size (), saved); |
| } |
| else |
| { |
| unrelocated_addr lowpc; |
| |
| /* DW_AT_entry_pc should be preferred. */ |
| if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, |
| nullptr, nullptr) |
| <= PC_BOUNDS_INVALID) |
| complaint (_("DW_AT_call_target target DIE has invalid " |
| "low pc, for referencing DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| else |
| call_site->target.set_loc_physaddr (lowpc); |
| } |
| } |
| else |
| complaint (_("DW_TAG_call_site DW_AT_call_target is neither " |
| "block nor reference, for DIE %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| struct call_site_parameter *parameter; |
| struct attribute *loc, *origin; |
| |
| if (child_die->tag != DW_TAG_call_site_parameter |
| && child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| /* Already printed the complaint above. */ |
| continue; |
| } |
| |
| gdb_assert (call_site->parameter_count < nparams); |
| parameter = &call_site->parameter[call_site->parameter_count]; |
| |
| /* DW_AT_location specifies the register number or DW_AT_abstract_origin |
| specifies DW_TAG_formal_parameter. Value of the data assumed for the |
| register is contained in DW_AT_call_value. */ |
| |
| loc = dwarf2_attr (child_die, DW_AT_location, cu); |
| origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu); |
| if (origin == NULL) |
| { |
| /* This was a pre-DWARF-5 GNU extension alias |
| for DW_AT_call_parameter. */ |
| origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu); |
| } |
| if (loc == NULL && origin != NULL && origin->form_is_ref ()) |
| { |
| parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET; |
| |
| sect_offset sect_off = origin->get_ref_die_offset (); |
| if (!cu->header.offset_in_cu_p (sect_off)) |
| { |
| /* As DW_OP_GNU_parameter_ref uses CU-relative offset this |
| binding can be done only inside one CU. Such referenced DIE |
| therefore cannot be even moved to DW_TAG_partial_unit. */ |
| complaint (_("DW_AT_call_parameter offset is not in CU for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| parameter->u.param_cu_off |
| = (cu_offset) (sect_off - cu->header.sect_off); |
| } |
| else if (loc == NULL || origin != NULL || !loc->form_is_block ()) |
| { |
| complaint (_("No DW_FORM_block* DW_AT_location for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), objfile_name (objfile)); |
| continue; |
| } |
| else |
| { |
| struct dwarf_block *block = loc->as_block (); |
| |
| parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg |
| (block->data, &block->data[block->size]); |
| if (parameter->u.dwarf_reg != -1) |
| parameter->kind = CALL_SITE_PARAMETER_DWARF_REG; |
| else if (dwarf_block_to_sp_offset (gdbarch, block->data, |
| &block->data[block->size], |
| ¶meter->u.fb_offset)) |
| parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET; |
| else |
| { |
| complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported " |
| "for DW_FORM_block* DW_AT_location is supported for " |
| "DW_TAG_call_site child DIE %s " |
| "[in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| } |
| |
| attr = dwarf2_attr (child_die, DW_AT_call_value, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu); |
| if (attr == NULL || !attr->form_is_block ()) |
| { |
| complaint (_("No DW_FORM_block* DW_AT_call_value for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| continue; |
| } |
| |
| struct dwarf_block *block = attr->as_block (); |
| parameter->value = block->data; |
| parameter->value_size = block->size; |
| |
| /* Parameters are not pre-cleared by memset above. */ |
| parameter->data_value = NULL; |
| parameter->data_value_size = 0; |
| call_site->parameter_count++; |
| |
| attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu); |
| if (attr != nullptr) |
| { |
| if (!attr->form_is_block ()) |
| complaint (_("No DW_FORM_block* DW_AT_call_data_value for " |
| "DW_TAG_call_site child DIE %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| else |
| { |
| block = attr->as_block (); |
| parameter->data_value = block->data; |
| parameter->data_value_size = block->size; |
| } |
| } |
| } |
| } |
| |
| /* Helper function for read_variable. If DIE represents a virtual |
| table, then return the type of the concrete object that is |
| associated with the virtual table. Otherwise, return NULL. */ |
| |
| static struct type * |
| rust_containing_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (attr == NULL) |
| return NULL; |
| |
| /* Find the type DIE. */ |
| struct die_info *type_die = NULL; |
| struct dwarf2_cu *type_cu = cu; |
| |
| if (attr->form_is_ref ()) |
| type_die = follow_die_ref (die, attr, &type_cu); |
| if (type_die == NULL) |
| return NULL; |
| |
| if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL) |
| return NULL; |
| return die_containing_type (type_die, type_cu); |
| } |
| |
| /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */ |
| |
| static void |
| read_variable (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct rust_vtable_symbol *storage = NULL; |
| |
| if (cu->lang () == language_rust) |
| { |
| struct type *containing_type = rust_containing_type (die, cu); |
| |
| if (containing_type != NULL) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| storage = new (&objfile->objfile_obstack) rust_vtable_symbol; |
| storage->concrete_type = containing_type; |
| storage->subclass = SYMBOL_RUST_VTABLE; |
| } |
| } |
| |
| struct symbol *res = new_symbol (die, NULL, cu, storage); |
| struct attribute *abstract_origin |
| = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu); |
| if (res == NULL && loc && abstract_origin) |
| { |
| /* We have a variable without a name, but with a location and an abstract |
| origin. This may be a concrete instance of an abstract variable |
| referenced from an DW_OP_GNU_variable_value, so save it to find it back |
| later. */ |
| struct dwarf2_cu *origin_cu = cu; |
| struct die_info *origin_die |
| = follow_die_ref (die, abstract_origin, &origin_cu); |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| per_objfile->per_bfd->abstract_to_concrete |
| [origin_die->sect_off].push_back (die->sect_off); |
| } |
| } |
| |
| /* Call CALLBACK from DW_AT_ranges attribute value OFFSET |
| reading .debug_rnglists. |
| Callback's type should be: |
| void (CORE_ADDR range_beginning, CORE_ADDR range_end) |
| Return true if the attributes are present and valid, otherwise, |
| return false. */ |
| |
| template <typename Callback> |
| static bool |
| dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu, |
| dwarf_tag tag, Callback &&callback) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| bfd *obfd = objfile->obfd.get (); |
| /* Base address selection entry. */ |
| std::optional<unrelocated_addr> base; |
| const gdb_byte *buffer; |
| bool overflow = false; |
| ULONGEST addr_index; |
| struct dwarf2_section_info *rnglists_section; |
| |
| base = cu->base_address; |
| rnglists_section = cu_debug_rnglists_section (cu, tag); |
| rnglists_section->read (objfile); |
| |
| if (offset >= rnglists_section->size) |
| { |
| complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return false; |
| } |
| buffer = rnglists_section->buffer + offset; |
| |
| while (1) |
| { |
| /* Initialize it due to a false compiler warning. */ |
| unrelocated_addr range_beginning = {}, range_end = {}; |
| const gdb_byte *buf_end = (rnglists_section->buffer |
| + rnglists_section->size); |
| unsigned int bytes_read; |
| |
| if (buffer == buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++); |
| switch (rlet) |
| { |
| case DW_RLE_end_of_list: |
| break; |
| case DW_RLE_base_address: |
| if (buffer + cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| base = cu->header.read_address (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| break; |
| case DW_RLE_base_addressx: |
| addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| base = read_addr_index (cu, addr_index); |
| break; |
| case DW_RLE_start_length: |
| if (buffer + cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_beginning = cu->header.read_address (obfd, buffer, |
| &bytes_read); |
| buffer += bytes_read; |
| range_end |
| = (unrelocated_addr) ((CORE_ADDR) range_beginning |
| + read_unsigned_leb128 (obfd, buffer, |
| &bytes_read)); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| break; |
| case DW_RLE_startx_length: |
| addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| range_beginning = read_addr_index (cu, addr_index); |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_end |
| = (unrelocated_addr) ((CORE_ADDR) range_beginning |
| + read_unsigned_leb128 (obfd, buffer, |
| &bytes_read)); |
| buffer += bytes_read; |
| break; |
| case DW_RLE_offset_pair: |
| range_beginning = (unrelocated_addr) read_unsigned_leb128 (obfd, buffer, |
| &bytes_read); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_end = (unrelocated_addr) read_unsigned_leb128 (obfd, buffer, |
| &bytes_read); |
| buffer += bytes_read; |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| break; |
| case DW_RLE_start_end: |
| if (buffer + 2 * cu->header.addr_size > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| range_beginning = cu->header.read_address (obfd, buffer, |
| &bytes_read); |
| buffer += bytes_read; |
| range_end = cu->header.read_address (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| break; |
| case DW_RLE_startx_endx: |
| addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| range_beginning = read_addr_index (cu, addr_index); |
| if (buffer > buf_end) |
| { |
| overflow = true; |
| break; |
| } |
| addr_index = read_unsigned_leb128 (obfd, buffer, &bytes_read); |
| buffer += bytes_read; |
| range_end = read_addr_index (cu, addr_index); |
| break; |
| default: |
| complaint (_("Invalid .debug_rnglists data (no base address)")); |
| return false; |
| } |
| if (rlet == DW_RLE_end_of_list || overflow) |
| break; |
| if (rlet == DW_RLE_base_address) |
| continue; |
| |
| if (range_beginning > range_end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (_("Invalid .debug_rnglists data (inverted range)")); |
| return false; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (range_beginning == range_end) |
| continue; |
| |
| /* Only DW_RLE_offset_pair needs the base address added. */ |
| if (rlet == DW_RLE_offset_pair) |
| { |
| if (!base.has_value ()) |
| { |
| /* We have no valid base address for the DW_RLE_offset_pair. */ |
| complaint (_("Invalid .debug_rnglists data (no base address for " |
| "DW_RLE_offset_pair)")); |
| return false; |
| } |
| |
| range_beginning = (unrelocated_addr) ((CORE_ADDR) range_beginning |
| + (CORE_ADDR) *base); |
| range_end = (unrelocated_addr) ((CORE_ADDR) range_end |
| + (CORE_ADDR) *base); |
| } |
| |
| /* A not-uncommon case of bad debug info. |
| Don't pollute the addrmap with bad data. */ |
| if (range_beginning == (unrelocated_addr) 0 |
| && !per_objfile->per_bfd->has_section_at_zero) |
| { |
| complaint (_(".debug_rnglists entry has start address of zero" |
| " [in module %s]"), objfile_name (objfile)); |
| continue; |
| } |
| |
| callback (range_beginning, range_end); |
| } |
| |
| if (overflow) |
| { |
| complaint (_("Offset %d is not terminated " |
| "for DW_AT_ranges attribute"), |
| offset); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges. |
| Callback's type should be: |
| void (unrelocated_addr range_beginning, unrelocated_addr range_end) |
| Return 1 if the attributes are present and valid, otherwise, return 0. */ |
| |
| template <typename Callback> |
| static int |
| dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu, dwarf_tag tag, |
| Callback &&callback) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| bfd *obfd = objfile->obfd.get (); |
| unsigned int addr_size = cu_header->addr_size; |
| CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); |
| /* Base address selection entry. */ |
| std::optional<unrelocated_addr> base; |
| unsigned int dummy; |
| const gdb_byte *buffer; |
| |
| if (cu_header->version >= 5) |
| return dwarf2_rnglists_process (offset, cu, tag, callback); |
| |
| base = cu->base_address; |
| |
| per_objfile->per_bfd->ranges.read (objfile); |
| if (offset >= per_objfile->per_bfd->ranges.size) |
| { |
| complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return 0; |
| } |
| buffer = per_objfile->per_bfd->ranges.buffer + offset; |
| |
| while (1) |
| { |
| unrelocated_addr range_beginning, range_end; |
| |
| range_beginning = cu->header.read_address (obfd, buffer, &dummy); |
| buffer += addr_size; |
| range_end = cu->header.read_address (obfd, buffer, &dummy); |
| buffer += addr_size; |
| offset += 2 * addr_size; |
| |
| /* An end of list marker is a pair of zero addresses. */ |
| if (range_beginning == (unrelocated_addr) 0 |
| && range_end == (unrelocated_addr) 0) |
| /* Found the end of list entry. */ |
| break; |
| |
| /* Each base address selection entry is a pair of 2 values. |
| The first is the largest possible address, the second is |
| the base address. Check for a base address here. */ |
| if (((CORE_ADDR) range_beginning & mask) == mask) |
| { |
| /* If we found the largest possible address, then we already |
| have the base address in range_end. */ |
| base = range_end; |
| continue; |
| } |
| |
| if (!base.has_value ()) |
| { |
| /* We have no valid base address for the ranges |
| data. */ |
| complaint (_("Invalid .debug_ranges data (no base address)")); |
| return 0; |
| } |
| |
| if (range_beginning > range_end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (_("Invalid .debug_ranges data (inverted range)")); |
| return 0; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (range_beginning == range_end) |
| continue; |
| |
| range_beginning = (unrelocated_addr) ((CORE_ADDR) range_beginning |
| + (CORE_ADDR) *base); |
| range_end = (unrelocated_addr) ((CORE_ADDR) range_end |
| + (CORE_ADDR) *base); |
| |
| /* A not-uncommon case of bad debug info. |
| Don't pollute the addrmap with bad data. */ |
| if (range_beginning == (unrelocated_addr) 0 |
| && !per_objfile->per_bfd->has_section_at_zero) |
| { |
| complaint (_(".debug_ranges entry has start address of zero" |
| " [in module %s]"), objfile_name (objfile)); |
| continue; |
| } |
| |
| callback (range_beginning, range_end); |
| } |
| |
| return 1; |
| } |
| |
| /* See read.h. */ |
| |
| int |
| dwarf2_ranges_read (unsigned offset, unrelocated_addr *low_return, |
| unrelocated_addr *high_return, struct dwarf2_cu *cu, |
| addrmap_mutable *map, void *datum, dwarf_tag tag) |
| { |
| int low_set = 0; |
| unrelocated_addr low = {}; |
| unrelocated_addr high = {}; |
| int retval; |
| |
| retval = dwarf2_ranges_process (offset, cu, tag, |
| [&] (unrelocated_addr range_beginning, unrelocated_addr range_end) |
| { |
| if (map != nullptr) |
| { |
| /* addrmap only accepts CORE_ADDR, so we must cast here. */ |
| map->set_empty ((CORE_ADDR) range_beginning, |
| (CORE_ADDR) range_end - 1, |
| datum); |
| } |
| |
| /* FIXME: This is recording everything as a low-high |
| segment of consecutive addresses. We should have a |
| data structure for discontiguous block ranges |
| instead. */ |
| if (! low_set) |
| { |
| low = range_beginning; |
| high = range_end; |
| low_set = 1; |
| } |
| else |
| { |
| if (range_beginning < low) |
| low = range_beginning; |
| if (range_end > high) |
| high = range_end; |
| } |
| }); |
| if (!retval) |
| return 0; |
| |
| if (! low_set) |
| /* If the first entry is an end-of-list marker, the range |
| describes an empty scope, i.e. no instructions. */ |
| return 0; |
| |
| if (low_return) |
| *low_return = low; |
| if (high_return) |
| *high_return = high; |
| return 1; |
| } |
| |
| /* Process ranges and fill in a vector of the low PC values only. */ |
| |
| static void |
| dwarf2_ranges_read_low_addrs (unsigned offset, struct dwarf2_cu *cu, |
| dwarf_tag tag, |
| std::vector<unrelocated_addr> &result) |
| { |
| dwarf2_ranges_process (offset, cu, tag, |
| [&] (unrelocated_addr start, unrelocated_addr end) |
| { |
| result.push_back (start); |
| }); |
| } |
| |
| /* Determine the low and high pc of a DW_TAG_entry_point. */ |
| |
| static pc_bounds_kind |
| dwarf2_get_pc_bounds_entry_point (die_info *die, unrelocated_addr *low, |
| unrelocated_addr *high, dwarf2_cu *cu) |
| { |
| gdb_assert (low != nullptr); |
| gdb_assert (high != nullptr); |
| |
| if (die->parent->tag != DW_TAG_subprogram) |
| { |
| complaint (_("DW_TAG_entry_point not embedded in DW_TAG_subprogram")); |
| return PC_BOUNDS_INVALID; |
| } |
| |
| /* A DW_TAG_entry_point is embedded in an subprogram. Therefore, we can use |
| the highpc from its enveloping subprogram and get the lowpc from |
| DWARF. */ |
| const enum pc_bounds_kind bounds_kind = dwarf2_get_pc_bounds (die->parent, |
| low, high, |
| cu, nullptr, |
| nullptr); |
| if (bounds_kind == PC_BOUNDS_INVALID || bounds_kind == PC_BOUNDS_NOT_PRESENT) |
| return bounds_kind; |
| |
| attribute *attr_low = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (!attr_low) |
| { |
| complaint (_("DW_TAG_entry_point is missing DW_AT_low_pc")); |
| return PC_BOUNDS_INVALID; |
| } |
| *low = attr_low->as_address (); |
| return bounds_kind; |
| } |
| |
| /* Determine the low and high pc using the DW_AT_low_pc and DW_AT_high_pc or |
| DW_AT_ranges attributes of a DIE. */ |
| |
| static pc_bounds_kind |
| dwarf_get_pc_bounds_ranges_or_highlow_pc (die_info *die, unrelocated_addr *low, |
| unrelocated_addr *high, dwarf2_cu *cu, |
| addrmap_mutable *map, void *datum) |
| { |
| gdb_assert (low != nullptr); |
| gdb_assert (high != nullptr); |
| |
| struct attribute *attr; |
| struct attribute *attr_high; |
| enum pc_bounds_kind ret; |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| *low = attr->as_address (); |
| *high = attr_high->as_address (); |
| if (cu->header.version >= 4 && attr_high->form_is_constant ()) |
| *high = (unrelocated_addr) ((ULONGEST) *high + (ULONGEST) *low); |
| |
| /* Found consecutive range of addresses. */ |
| ret = PC_BOUNDS_HIGH_LOW; |
| } |
| else |
| { |
| /* Found high w/o low attribute. */ |
| ret = PC_BOUNDS_INVALID; |
| } |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| { |
| /* Offset in the .debug_ranges or .debug_rnglist section (depending |
| on DWARF version). */ |
| ULONGEST ranges_offset = attr->as_unsigned (); |
| |
| /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add |
| this value. */ |
| if (die->tag != DW_TAG_compile_unit) |
| ranges_offset += cu->gnu_ranges_base; |
| |
| /* Value of the DW_AT_ranges attribute is the offset in the |
| .debug_ranges section. */ |
| if (!dwarf2_ranges_read (ranges_offset, low, high, cu, |
| map, datum, die->tag)) |
| return PC_BOUNDS_INVALID; |
| /* Found discontinuous range of addresses. */ |
| ret = PC_BOUNDS_RANGES; |
| } |
| else |
| { |
| /* Could not find high_pc or ranges attributed and thus no bounds |
| pair. */ |
| ret = PC_BOUNDS_NOT_PRESENT; |
| } |
| } |
| |
| return ret; |
| } |
| |
| /* See read.h. */ |
| |
| pc_bounds_kind |
| dwarf2_get_pc_bounds (struct die_info *die, unrelocated_addr *lowpc, |
| unrelocated_addr *highpc, struct dwarf2_cu *cu, |
| addrmap_mutable *map, void *datum) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| unrelocated_addr low = {}; |
| unrelocated_addr high = {}; |
| enum pc_bounds_kind ret; |
| |
| if (die->tag == DW_TAG_entry_point) |
| ret = dwarf2_get_pc_bounds_entry_point (die, &low, &high, cu); |
| else |
| ret = dwarf_get_pc_bounds_ranges_or_highlow_pc (die, &low, &high, cu, map, |
| datum); |
| |
| if (ret == PC_BOUNDS_NOT_PRESENT || ret == PC_BOUNDS_INVALID) |
| return ret; |
| |
| /* partial_die_info::read has also the strict LOW < HIGH requirement. */ |
| if (high <= low) |
| return PC_BOUNDS_INVALID; |
| |
| /* When using the GNU linker, .gnu.linkonce. sections are used to |
| eliminate duplicate copies of functions and vtables and such. |
| The linker will arbitrarily choose one and discard the others. |
| The AT_*_pc values for such functions refer to local labels in |
| these sections. If the section from that file was discarded, the |
| labels are not in the output, so the relocs get a value of 0. |
| If this is a discarded function, mark the pc bounds as invalid, |
| so that GDB will ignore it. */ |
| if (low == (unrelocated_addr) 0 |
| && !per_objfile->per_bfd->has_section_at_zero) |
| return PC_BOUNDS_INVALID; |
| |
| gdb_assert (lowpc != nullptr); |
| *lowpc = low; |
| if (highpc != nullptr) |
| *highpc = high; |
| return ret; |
| } |
| |
| /* Assuming that DIE represents a subprogram DIE or a lexical block, get |
| its low and high PC addresses. Do nothing if these addresses could not |
| be determined. Otherwise, set LOWPC to the low address if it is smaller, |
| and HIGHPC to the high address if greater than HIGHPC. */ |
| |
| static void |
| dwarf2_get_subprogram_pc_bounds (struct die_info *die, |
| unrelocated_addr *lowpc, |
| unrelocated_addr *highpc, |
| struct dwarf2_cu *cu) |
| { |
| unrelocated_addr low, high; |
| struct die_info *child = die->child; |
| |
| if (dwarf2_get_pc_bounds (die, &low, &high, cu, nullptr, nullptr) |
| >= PC_BOUNDS_RANGES) |
| { |
| *lowpc = std::min (*lowpc, low); |
| *highpc = std::max (*highpc, high); |
| } |
| |
| /* If the language does not allow nested subprograms (either inside |
| subprograms or lexical blocks), we're done. */ |
| if (cu->lang () != language_ada) |
| return; |
| |
| /* Check all the children of the given DIE. If it contains nested |
| subprograms, then check their pc bounds. Likewise, we need to |
| check lexical blocks as well, as they may also contain subprogram |
| definitions. */ |
| while (child && child->tag) |
| { |
| if (child->tag == DW_TAG_subprogram |
| || child->tag == DW_TAG_lexical_block) |
| dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu); |
| child = child->sibling; |
| } |
| } |
| |
| /* Get the low and high pc's represented by the scope DIE, and store |
| them in *LOWPC and *HIGHPC. If the correct values can't be |
| determined, set *LOWPC to -1 and *HIGHPC to 0. */ |
| |
| static void |
| get_scope_pc_bounds (struct die_info *die, |
| unrelocated_addr *lowpc, unrelocated_addr *highpc, |
| struct dwarf2_cu *cu) |
| { |
| unrelocated_addr best_low = (unrelocated_addr) -1; |
| unrelocated_addr best_high = {}; |
| unrelocated_addr current_low, current_high; |
| |
| if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, |
| nullptr, nullptr) |
| >= PC_BOUNDS_RANGES) |
| { |
| best_low = current_low; |
| best_high = current_high; |
| } |
| else |
| { |
| struct die_info *child = die->child; |
| |
| while (child && child->tag) |
| { |
| switch (child->tag) { |
| case DW_TAG_subprogram: |
| dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu); |
| break; |
| case DW_TAG_namespace: |
| case DW_TAG_module: |
| /* FIXME: carlton/2004-01-16: Should we do this for |
| DW_TAG_class_type/DW_TAG_structure_type, too? I think |
| that current GCC's always emit the DIEs corresponding |
| to definitions of methods of classes as children of a |
| DW_TAG_compile_unit or DW_TAG_namespace (as opposed to |
| the DIEs giving the declarations, which could be |
| anywhere). But I don't see any reason why the |
| standards says that they have to be there. */ |
| get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu); |
| |
| if (current_low != ((unrelocated_addr) -1)) |
| { |
| best_low = std::min (best_low, current_low); |
| best_high = std::max (best_high, current_high); |
| } |
| break; |
| default: |
| /* Ignore. */ |
| break; |
| } |
| |
| child = child->sibling; |
| } |
| } |
| |
| *lowpc = best_low; |
| *highpc = best_high; |
| } |
| |
| /* Return the base address for DIE (which is represented by BLOCK) within |
| CU. The base address is the DW_AT_low_pc, or if that is not present, |
| the first address in the first range defined by DW_AT_ranges. |
| |
| The DWARF standard actually says that if DIE has neither DW_AT_low_pc or |
| DW_AT_ranges then we should search in the parent of DIE for those |
| properties, and so on up the hierarchy, until we find a die with one of |
| those attributes, and use that as the base address. We don't implement |
| that yet simply because we've never encountered a need for it. */ |
| |
| static std::optional<CORE_ADDR> |
| dwarf2_die_base_address (struct die_info *die, struct block *block, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| struct attribute *attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| CORE_ADDR res = per_objfile->relocate (attr->as_address ()); |
| fixup_low_high_pc (cu, die, &res, nullptr); |
| return res; |
| } |
| else if (block->ranges ().size () > 0) |
| return block->ranges ()[0].start (); |
| |
| return {}; |
| } |
| |
| /* Return true if ADDR is within any of the ranges covered by BLOCK. If |
| there are no sub-ranges then just check against the block's start and |
| end addresses, otherwise, check each sub-range covered by the block. */ |
| |
| static bool |
| dwarf2_addr_in_block_ranges (CORE_ADDR addr, struct block *block) |
| { |
| if (block->ranges ().size () == 0) |
| return addr >= block->start () && addr < block->end (); |
| |
| /* Check if ADDR is within any of the block's sub-ranges. */ |
| for (const blockrange &br : block->ranges ()) |
| { |
| if (addr >= br.start () && addr < br.end ()) |
| return true; |
| } |
| |
| /* ADDR is not within any of the block's sub-ranges. */ |
| return false; |
| } |
| |
| |
| /* Set the entry PC for BLOCK which represents DIE from CU. Relies on the |
| range information (if present) already having been read from DIE and |
| stored into BLOCK. */ |
| |
| static void |
| dwarf2_record_block_entry_pc (struct die_info *die, struct block *block, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| /* Filled with the entry-pc if we can find it. */ |
| std::optional<CORE_ADDR> entry; |
| |
| /* Set the block's entry PC where possible. */ |
| struct attribute *attr = dwarf2_attr (die, DW_AT_entry_pc, cu); |
| if (attr != nullptr) |
| { |
| /* DWARF-5 allows for the DW_AT_entry_pc to be an unsigned constant |
| offset from the containing DIE's base address. We don't limit the |
| constant handling to DWARF-5 though. If a broken compiler emits |
| this for DWARF-4 then we handle it just as we would for DWARF-5. */ |
| if (attr->form_is_constant ()) |
| { |
| if (attr->form_is_unsigned ()) |
| { |
| CORE_ADDR offset = attr->as_unsigned (); |
| |
| std::optional<CORE_ADDR> base |
| = dwarf2_die_base_address (die, block, cu); |
| |
| if (base.has_value ()) |
| entry.emplace (base.value () + offset); |
| } |
| else |
| { |
| /* We could possibly handle signed constants, but this is out |
| of spec, so for now, just complain and ignore it. */ |
| complaint (_("Unhandled constant for DW_AT_entry_pc, value (%s)"), |
| plongest (attr->as_nonnegative ())); |
| } |
| } |
| else |
| entry.emplace (per_objfile->relocate (attr->as_address ())); |
| } |
| else |
| entry = dwarf2_die_base_address (die, block, cu); |
| |
| if (entry.has_value ()) |
| { |
| CORE_ADDR entry_pc = entry.value (); |
| |
| /* Some compilers (e.g. GCC) will have the DW_AT_entry_pc point at an |
| empty sub-range, which by a strict reading of the DWARF means that |
| the entry-pc is outside the blocks code range. If we continue |
| using this address then GDB will confuse itself, breakpoints will |
| be placed at the entry-pc, but once stopped there, GDB will not |
| recognise that it is inside this block. |
| |
| To avoid this, ignore entry-pc values that are outside the block's |
| range, GDB will then select a suitable default entry-pc. */ |
| if (dwarf2_addr_in_block_ranges (entry_pc, block)) |
| block->set_entry_pc (entry_pc); |
| else |
| complaint (_("in %s, DIE %s, DW_AT_entry_pc (%s) outside " |
| "block range (%s -> %s)"), |
| objfile_name (per_objfile->objfile), |
| sect_offset_str (die->sect_off), |
| paddress (per_objfile->objfile->arch (), entry_pc), |
| paddress (per_objfile->objfile->arch (), block->start ()), |
| paddress (per_objfile->objfile->arch (), block->end ())); |
| } |
| } |
| |
| /* Record the address ranges for BLOCK, offset by BASEADDR, as given |
| in DIE. Also set the entry PC for BLOCK. */ |
| |
| static void |
| dwarf2_record_block_ranges (struct die_info *die, struct block *block, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct attribute *attr; |
| struct attribute *attr_high; |
| |
| /* Like dwarf_get_pc_bounds_ranges_or_highlow_pc, we read either the |
| low/high pc attributes, OR the ranges attribute, but not both. If we |
| parse both here then we open up the possibility that, due to invalid |
| DWARF, a block's start() and end() might not contain all of the ranges. |
| |
| We have seen this in the wild with older (pre v9) versions of GCC. In |
| this case a GCC bug meant that a DIE was linked via DW_AT_abstract_origin |
| to the wrong DIE. Instead of pointing at the abstract DIE, GCC was |
| linking one instance DIE to an earlier instance DIE. The first instance |
| DIE had low/high pc attributes, while the second instance DIE had a |
| ranges attribute. When processing the incorrectly linked instance GDB |
| would see a DIE with both a low/high pc and some ranges data. However, |
| the ranges data was all outside the low/high range, which would trigger |
| asserts when setting the entry-pc. */ |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| unrelocated_addr unrel_low = attr->as_address (); |
| unrelocated_addr unrel_high = attr_high->as_address (); |
| |
| if (cu->header.version >= 4 && attr_high->form_is_constant ()) |
| unrel_high = (unrelocated_addr) ((ULONGEST) unrel_high |
| + (ULONGEST) unrel_low); |
| |
| CORE_ADDR low = per_objfile->relocate (unrel_low); |
| CORE_ADDR high = per_objfile->relocate (unrel_high); |
| fixup_low_high_pc (cu, die, &low, &high); |
| cu->get_builder ()->record_block_range (block, low, high - 1); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| complaint (_("in %s, DIE %s, DW_AT_ranges ignored due to DW_AT_low_pc"), |
| objfile_name (per_objfile->objfile), |
| sect_offset_str (die->sect_off)); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| { |
| /* Offset in the .debug_ranges or .debug_rnglist section (depending |
| on DWARF version). */ |
| ULONGEST ranges_offset = attr->as_unsigned (); |
| |
| /* See dwarf2_cu::gnu_ranges_base's doc for why we might want to add |
| this value. */ |
| if (die->tag != DW_TAG_compile_unit) |
| ranges_offset += cu->gnu_ranges_base; |
| |
| std::vector<blockrange> blockvec; |
| dwarf2_ranges_process (ranges_offset, cu, die->tag, |
| [&] (unrelocated_addr start, |
| unrelocated_addr end) |
| { |
| CORE_ADDR abs_start = per_objfile->relocate (start); |
| CORE_ADDR abs_end = per_objfile->relocate (end); |
| cu->get_builder ()->record_block_range (block, abs_start, |
| abs_end - 1); |
| blockvec.emplace_back (abs_start, abs_end); |
| }); |
| |
| block->set_ranges (make_blockranges (objfile, blockvec)); |
| } |
| } |
| |
| dwarf2_record_block_entry_pc (die, block, cu); |
| } |
| |
| /* Return the accessibility of DIE, as given by DW_AT_accessibility. |
| If that attribute is not available, return the appropriate |
| default. */ |
| |
| static enum dwarf_access_attribute |
| dwarf2_access_attribute (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr != nullptr) |
| { |
| LONGEST value = attr->constant_value (-1); |
| if (value == DW_ACCESS_public |
| || value == DW_ACCESS_protected |
| || value == DW_ACCESS_private) |
| return (dwarf_access_attribute) value; |
| complaint (_("Unhandled DW_AT_accessibility value (%s)"), |
| plongest (value)); |
| } |
| |
| if (cu->header.version < 3 || cu->producer_is_gxx_lt_4_6 ()) |
| { |
| /* The default DWARF 2 accessibility for members is public, the default |
| accessibility for inheritance is private. */ |
| |
| if (die->tag != DW_TAG_inheritance) |
| return DW_ACCESS_public; |
| else |
| return DW_ACCESS_private; |
| } |
| else |
| { |
| /* DWARF 3+ defines the default accessibility a different way. The same |
| rules apply now for DW_TAG_inheritance as for the members and it only |
| depends on the container kind. */ |
| |
| if (die->parent->tag == DW_TAG_class_type) |
| return DW_ACCESS_private; |
| else |
| return DW_ACCESS_public; |
| } |
| } |
| |
| /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset. Set |
| *OFFSET to the byte offset. If the attribute was not found return |
| 0, otherwise return 1. If it was found but could not properly be |
| handled, set *OFFSET to 0. */ |
| |
| static int |
| handle_member_location (struct die_info *die, struct dwarf2_cu *cu, |
| LONGEST *offset) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_data_member_location, cu); |
| if (attr != NULL) |
| { |
| *offset = 0; |
| CORE_ADDR temp; |
| |
| /* Note that we do not check for a section offset first here. |
| This is because DW_AT_data_member_location is new in DWARF 4, |
| so if we see it, we can assume that a constant form is really |
| a constant and not a section offset. */ |
| if (attr->form_is_constant ()) |
| *offset = attr->constant_value (0); |
| else if (attr->form_is_section_offset ()) |
| dwarf2_complex_location_expr_complaint (); |
| else if (attr->form_is_block () |
| && decode_locdesc (attr->as_block (), cu, &temp)) |
| { |
| *offset = temp; |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| return 1; |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu); |
| if (attr != nullptr) |
| { |
| *offset = attr->constant_value (0); |
| return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Look for DW_AT_data_member_location or DW_AT_data_bit_offset and |
| store the results in FIELD. */ |
| |
| static void |
| handle_member_location (struct die_info *die, struct dwarf2_cu *cu, |
| struct field *field) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_data_member_location, cu); |
| if (attr != NULL) |
| { |
| if (attr->form_is_constant ()) |
| { |
| LONGEST offset = attr->constant_value (0); |
| |
| /* Work around this GCC 11 bug, where it would erroneously use -1 |
| data member locations, instead of 0: |
| |
| Negative DW_AT_data_member_location |
| https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101378 |
| */ |
| if (offset == -1 && cu->producer_is_gcc_11 ()) |
| { |
| complaint (_("DW_AT_data_member_location value of -1, assuming 0")); |
| offset = 0; |
| } |
| |
| field->set_loc_bitpos (offset * bits_per_byte); |
| } |
| else if (attr->form_is_section_offset ()) |
| dwarf2_complex_location_expr_complaint (); |
| else if (attr->form_is_block ()) |
| { |
| CORE_ADDR offset; |
| if (decode_locdesc (attr->as_block (), cu, &offset)) |
| field->set_loc_bitpos (offset * bits_per_byte); |
| else |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_locexpr_baton *dlbaton |
| = XOBNEW (&objfile->objfile_obstack, |
| struct dwarf2_locexpr_baton); |
| dlbaton->data = attr->as_block ()->data; |
| dlbaton->size = attr->as_block ()->size; |
| /* When using this baton, we want to compute the address |
| of the field, not the value. This is why |
| is_reference is set to false here. */ |
| dlbaton->is_reference = false; |
| dlbaton->per_objfile = per_objfile; |
| dlbaton->per_cu = cu->per_cu; |
| |
| field->set_loc_dwarf_block (dlbaton); |
| } |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu); |
| if (attr != nullptr) |
| field->set_loc_bitpos (attr->constant_value (0)); |
| } |
| } |
| |
| /* Add an aggregate field to the field list. */ |
| |
| static void |
| dwarf2_add_field (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| struct nextfield *new_field; |
| struct attribute *attr; |
| struct field *fp; |
| const char *fieldname = ""; |
| |
| if (die->tag == DW_TAG_inheritance) |
| new_field = &fip->baseclasses.emplace_back (); |
| else |
| new_field = &fip->fields.emplace_back (); |
| |
| new_field->offset = die->sect_off; |
| |
| switch (dwarf2_access_attribute (die, cu)) |
| { |
| case DW_ACCESS_public: |
| break; |
| case DW_ACCESS_private: |
| new_field->field.set_accessibility (accessibility::PRIVATE); |
| break; |
| case DW_ACCESS_protected: |
| new_field->field.set_accessibility (accessibility::PROTECTED); |
| break; |
| default: |
| gdb_assert_not_reached ("invalid accessibility"); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr != nullptr && attr->as_virtuality ()) |
| new_field->field.set_virtual (); |
| |
| fp = &new_field->field; |
| |
| if ((die->tag == DW_TAG_member || die->tag == DW_TAG_namelist_item) |
| && !die_is_declaration (die, cu)) |
| { |
| if (die->tag == DW_TAG_namelist_item) |
| { |
| /* Typically, DW_TAG_namelist_item are references to namelist items. |
| If so, follow that reference. */ |
| struct attribute *attr1 = dwarf2_attr (die, DW_AT_namelist_item, cu); |
| struct die_info *item_die = nullptr; |
| struct dwarf2_cu *item_cu = cu; |
| if (attr1->form_is_ref ()) |
| item_die = follow_die_ref (die, attr1, &item_cu); |
| if (item_die != nullptr) |
| die = item_die; |
| } |
| /* Data member other than a C++ static data member. */ |
| |
| /* Get type of field. */ |
| fp->set_type (die_type (die, cu)); |
| |
| fp->set_loc_bitpos (0); |
| |
| /* Get bit size of field (zero if none). */ |
| attr = dwarf2_attr (die, DW_AT_bit_size, cu); |
| if (attr != nullptr) |
| fp->set_bitsize (attr->constant_value (0)); |
| else |
| fp->set_bitsize (0); |
| |
| /* Get bit offset of field. */ |
| handle_member_location (die, cu, fp); |
| attr = dwarf2_attr (die, DW_AT_bit_offset, cu); |
| if (attr != nullptr && attr->form_is_constant ()) |
| { |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| { |
| /* For big endian bits, the DW_AT_bit_offset gives the |
| additional bit offset from the MSB of the containing |
| anonymous object to the MSB of the field. We don't |
| have to do anything special since we don't need to |
| know the size of the anonymous object. */ |
| fp->set_loc_bitpos (fp->loc_bitpos () + attr->constant_value (0)); |
| } |
| else |
| { |
| /* For little endian bits, compute the bit offset to the |
| MSB of the anonymous object, subtract off the number of |
| bits from the MSB of the field to the MSB of the |
| object, and then subtract off the number of bits of |
| the field itself. The result is the bit offset of |
| the LSB of the field. */ |
| int anonymous_size; |
| int bit_offset = attr->constant_value (0); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr && attr->form_is_constant ()) |
| { |
| /* The size of the anonymous object containing |
| the bit field is explicit, so use the |
| indicated size (in bytes). */ |
| anonymous_size = attr->constant_value (0); |
| } |
| else |
| { |
| /* The size of the anonymous object containing |
| the bit field must be inferred from the type |
| attribute of the data member containing the |
| bit field. */ |
| anonymous_size = fp->type ()->length (); |
| } |
| fp->set_loc_bitpos (fp->loc_bitpos () |
| + anonymous_size * bits_per_byte |
| - bit_offset - fp->bitsize ()); |
| } |
| } |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| fieldname = ""; |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| fp->set_name (fieldname); |
| |
| /* Change accessibility for artificial fields (e.g. virtual table |
| pointer or virtual base class pointer) to private. */ |
| if (dwarf2_attr (die, DW_AT_artificial, cu)) |
| { |
| fp->set_is_artificial (true); |
| fp->set_accessibility (accessibility::PRIVATE); |
| } |
| } |
| else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable) |
| { |
| /* C++ static member. */ |
| |
| /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that |
| is a declaration, but all versions of G++ as of this writing |
| (so through at least 3.2.1) incorrectly generate |
| DW_TAG_variable tags. */ |
| |
| const char *physname; |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr |
| /* Only create a symbol if this is an external value. |
| new_symbol checks this and puts the value in the global symbol |
| table, which we want. If it is not external, new_symbol |
| will try to put the value in cu->list_in_scope which is wrong. */ |
| && dwarf2_flag_true_p (die, DW_AT_external, cu)) |
| { |
| /* A static const member, not much different than an enum as far as |
| we're concerned, except that we can support more types. */ |
| new_symbol (die, NULL, cu); |
| } |
| |
| /* Get physical name. */ |
| physname = dwarf2_physname (fieldname, die, cu); |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| fp->set_loc_physname (physname ? physname : ""); |
| fp->set_type (die_type (die, cu)); |
| fp->set_name (fieldname); |
| } |
| else if (die->tag == DW_TAG_inheritance) |
| { |
| /* C++ base class field. */ |
| handle_member_location (die, cu, fp); |
| fp->set_bitsize (0); |
| fp->set_type (die_type (die, cu)); |
| fp->set_name (fp->type ()->name ()); |
| } |
| else |
| gdb_assert_not_reached ("missing case in dwarf2_add_field"); |
| } |
| |
| /* Can the type given by DIE define another type? */ |
| |
| static bool |
| type_can_define_types (const struct die_info *die) |
| { |
| switch (die->tag) |
| { |
| case DW_TAG_typedef: |
| case DW_TAG_class_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| return true; |
| |
| default: |
| return false; |
| } |
| } |
| |
| /* Add a type definition defined in the scope of the FIP's class. */ |
| |
| static void |
| dwarf2_add_type_defn (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct decl_field fp; |
| memset (&fp, 0, sizeof (fp)); |
| |
| gdb_assert (type_can_define_types (die)); |
| |
| /* Get name of field. NULL is okay here, meaning an anonymous type. */ |
| fp.name = dwarf2_name (die, cu); |
| fp.type = read_type_die (die, cu); |
| |
| /* Save accessibility. */ |
| dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu); |
| switch (accessibility) |
| { |
| case DW_ACCESS_public: |
| /* The assumed value if neither private nor protected. */ |
| break; |
| case DW_ACCESS_private: |
| fp.accessibility = accessibility::PRIVATE; |
| break; |
| case DW_ACCESS_protected: |
| fp.accessibility = accessibility::PROTECTED; |
| break; |
| } |
| |
| if (die->tag == DW_TAG_typedef) |
| fip->typedef_field_list.push_back (fp); |
| else |
| fip->nested_types_list.push_back (fp); |
| } |
| |
| /* A convenience typedef that's used when finding the discriminant |
| field for a variant part. */ |
| using offset_map_type = gdb::unordered_map<sect_offset, int>; |
| |
| /* Compute the discriminant range for a given variant. OBSTACK is |
| where the results will be stored. VARIANT is the variant to |
| process. IS_UNSIGNED indicates whether the discriminant is signed |
| or unsigned. */ |
| |
| static const gdb::array_view<discriminant_range> |
| convert_variant_range (struct obstack *obstack, const variant_field &variant, |
| bool is_unsigned) |
| { |
| std::vector<discriminant_range> ranges; |
| |
| if (variant.default_branch) |
| return {}; |
| |
| if (variant.discr_list_data == nullptr) |
| { |
| discriminant_range r |
| = {variant.discriminant_value, variant.discriminant_value}; |
| ranges.push_back (r); |
| } |
| else |
| { |
| gdb::array_view<const gdb_byte> data (variant.discr_list_data->data, |
| variant.discr_list_data->size); |
| while (!data.empty ()) |
| { |
| if (data[0] != DW_DSC_range && data[0] != DW_DSC_label) |
| { |
| complaint (_("invalid discriminant marker: %d"), data[0]); |
| break; |
| } |
| bool is_range = data[0] == DW_DSC_range; |
| data = data.slice (1); |
| |
| ULONGEST low, high; |
| unsigned int bytes_read; |
| |
| if (data.empty ()) |
| { |
| complaint (_("DW_AT_discr_list missing low value")); |
| break; |
| } |
| if (is_unsigned) |
| low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read); |
| else |
| low = (ULONGEST) read_signed_leb128 (nullptr, data.data (), |
| &bytes_read); |
| data = data.slice (bytes_read); |
| |
| if (is_range) |
| { |
| if (data.empty ()) |
| { |
| complaint (_("DW_AT_discr_list missing high value")); |
| break; |
| } |
| if (is_unsigned) |
| high = read_unsigned_leb128 (nullptr, data.data (), |
| &bytes_read); |
| else |
| high = (LONGEST) read_signed_leb128 (nullptr, data.data (), |
| &bytes_read); |
| data = data.slice (bytes_read); |
| } |
| else |
| high = low; |
| |
| ranges.push_back ({ low, high }); |
| } |
| } |
| |
| discriminant_range *result = XOBNEWVEC (obstack, discriminant_range, |
| ranges.size ()); |
| std::copy (ranges.begin (), ranges.end (), result); |
| return gdb::array_view<discriminant_range> (result, ranges.size ()); |
| } |
| |
| static const gdb::array_view<variant_part> create_variant_parts |
| (struct obstack *obstack, |
| const offset_map_type &offset_map, |
| struct field_info *fi, |
| const std::vector<variant_part_builder> &variant_parts); |
| |
| /* Fill in a "struct variant" for a given variant field. RESULT is |
| the variant to fill in. OBSTACK is where any needed allocations |
| will be done. OFFSET_MAP holds the mapping from section offsets to |
| fields for the type. FI describes the fields of the type we're |
| processing. FIELD is the variant field we're converting. */ |
| |
| static void |
| create_one_variant (variant &result, struct obstack *obstack, |
| const offset_map_type &offset_map, |
| struct field_info *fi, const variant_field &field) |
| { |
| result.discriminants = convert_variant_range (obstack, field, false); |
| result.first_field = field.first_field + fi->baseclasses.size (); |
| result.last_field = field.last_field + fi->baseclasses.size (); |
| result.parts = create_variant_parts (obstack, offset_map, fi, |
| field.variant_parts); |
| } |
| |
| /* Fill in a "struct variant_part" for a given variant part. RESULT |
| is the variant part to fill in. OBSTACK is where any needed |
| allocations will be done. OFFSET_MAP holds the mapping from |
| section offsets to fields for the type. FI describes the fields of |
| the type we're processing. BUILDER is the variant part to be |
| converted. */ |
| |
| static void |
| create_one_variant_part (variant_part &result, |
| struct obstack *obstack, |
| const offset_map_type &offset_map, |
| struct field_info *fi, |
| const variant_part_builder &builder) |
| { |
| auto iter = offset_map.find (builder.discriminant_offset); |
| if (iter == offset_map.end ()) |
| { |
| result.discriminant_index = -1; |
| /* Doesn't matter. */ |
| result.is_unsigned = false; |
| } |
| else |
| { |
| result.discriminant_index = iter->second; |
| result.is_unsigned |
| = fi->fields[result.discriminant_index].field.type ()->is_unsigned (); |
| } |
| |
| size_t n = builder.variants.size (); |
| variant *output = new (obstack) variant[n]; |
| for (size_t i = 0; i < n; ++i) |
| create_one_variant (output[i], obstack, offset_map, fi, |
| builder.variants[i]); |
| |
| result.variants = gdb::array_view<variant> (output, n); |
| } |
| |
| /* Create a vector of variant parts that can be attached to a type. |
| OBSTACK is where any needed allocations will be done. OFFSET_MAP |
| holds the mapping from section offsets to fields for the type. FI |
| describes the fields of the type we're processing. VARIANT_PARTS |
| is the vector to convert. */ |
| |
| static const gdb::array_view<variant_part> |
| create_variant_parts (struct obstack *obstack, |
| const offset_map_type &offset_map, |
| struct field_info *fi, |
| const std::vector<variant_part_builder> &variant_parts) |
| { |
| if (variant_parts.empty ()) |
| return {}; |
| |
| size_t n = variant_parts.size (); |
| variant_part *result = new (obstack) variant_part[n]; |
| for (size_t i = 0; i < n; ++i) |
| create_one_variant_part (result[i], obstack, offset_map, fi, |
| variant_parts[i]); |
| |
| return gdb::array_view<variant_part> (result, n); |
| } |
| |
| /* Compute the variant part vector for FIP, attaching it to TYPE when |
| done. */ |
| |
| static void |
| add_variant_property (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| /* Map section offsets of fields to their field index. Note the |
| field index here does not take the number of baseclasses into |
| account. */ |
| offset_map_type offset_map; |
| for (int i = 0; i < fip->fields.size (); ++i) |
| offset_map[fip->fields[i].offset] = i; |
| |
| struct objfile *objfile = cu->per_objfile->objfile; |
| gdb::array_view<const variant_part> parts |
| = create_variant_parts (&objfile->objfile_obstack, offset_map, fip, |
| fip->variant_parts); |
| |
| struct dynamic_prop prop; |
| prop.set_variant_parts ((gdb::array_view<variant_part> *) |
| obstack_copy (&objfile->objfile_obstack, &parts, |
| sizeof (parts))); |
| |
| type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop); |
| } |
| |
| /* Create the vector of fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| int nfields = fip->nfields (); |
| |
| /* Record the field count, allocate space for the array of fields, |
| and create blank accessibility bitfields if necessary. */ |
| type->alloc_fields (nfields); |
| |
| if (!fip->baseclasses.empty () && cu->lang () != language_ada) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_N_BASECLASSES (type) = fip->baseclasses.size (); |
| } |
| |
| if (!fip->variant_parts.empty ()) |
| add_variant_property (fip, type, cu); |
| |
| /* Copy the saved-up fields into the field vector. */ |
| for (int i = 0; i < nfields; ++i) |
| { |
| struct nextfield &field |
| = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i] |
| : fip->fields[i - fip->baseclasses.size ()]); |
| |
| type->field (i) = field.field; |
| } |
| } |
| |
| /* Return true if this member function is a constructor, false |
| otherwise. */ |
| |
| static int |
| dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *fieldname; |
| const char *type_name; |
| int len; |
| |
| if (die->parent == NULL) |
| return 0; |
| |
| if (die->parent->tag != DW_TAG_structure_type |
| && die->parent->tag != DW_TAG_union_type |
| && die->parent->tag != DW_TAG_class_type) |
| return 0; |
| |
| fieldname = dwarf2_name (die, cu); |
| type_name = dwarf2_name (die->parent, cu); |
| if (fieldname == NULL || type_name == NULL) |
| return 0; |
| |
| len = strlen (fieldname); |
| return (strncmp (fieldname, type_name, len) == 0 |
| && (type_name[len] == '\0' || type_name[len] == '<')); |
| } |
| |
| /* Add a member function to the proper fieldlist. */ |
| |
| static void |
| dwarf2_add_member_fn (struct field_info *fip, struct die_info *die, |
| struct type *type, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct attribute *attr; |
| int i; |
| struct fnfieldlist *flp = nullptr; |
| struct fn_field *fnp; |
| const char *fieldname; |
| struct type *this_type; |
| |
| if (cu->lang () == language_ada) |
| error (_("unexpected member function in Ada type")); |
| |
| /* Get name of member function. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| /* Look up member function name in fieldlist. */ |
| for (i = 0; i < fip->fnfieldlists.size (); i++) |
| { |
| if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0) |
| { |
| flp = &fip->fnfieldlists[i]; |
| break; |
| } |
| } |
| |
| /* Create a new fnfieldlist if necessary. */ |
| if (flp == nullptr) |
| { |
| flp = &fip->fnfieldlists.emplace_back (); |
| flp->name = fieldname; |
| i = fip->fnfieldlists.size () - 1; |
| } |
| |
| /* Create a new member function field and add it to the vector of |
| fnfieldlists. */ |
| fnp = &flp->fnfields.emplace_back (); |
| |
| /* Delay processing of the physname until later. */ |
| if (cu->lang () == language_cplus) |
| add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname, |
| die, cu); |
| else |
| { |
| const char *physname = dwarf2_physname (fieldname, die, cu); |
| fnp->physname = physname ? physname : ""; |
| } |
| |
| fnp->type = type_allocator (objfile, cu->lang ()).new_type (); |
| this_type = read_type_die (die, cu); |
| if (this_type && this_type->code () == TYPE_CODE_FUNC) |
| { |
| int nparams = this_type->num_fields (); |
| |
| /* TYPE is the domain of this method, and THIS_TYPE is the type |
| of the method itself (TYPE_CODE_METHOD). */ |
| smash_to_method_type (fnp->type, type, |
| this_type->target_type (), |
| this_type->fields (), |
| this_type->num_fields (), |
| this_type->has_varargs ()); |
| |
| /* Handle static member functions. |
| Dwarf2 has no clean way to discern C++ static and non-static |
| member functions. G++ helps GDB by marking the first |
| parameter for non-static member functions (which is the this |
| pointer) as artificial. We obtain this information from |
| read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */ |
| if (nparams == 0 || this_type->field (0).is_artificial () == 0) |
| fnp->voffset = VOFFSET_STATIC; |
| } |
| else |
| complaint (_("member function type missing for '%s'"), |
| dwarf2_full_name (fieldname, die, cu)); |
| |
| /* Get fcontext from DW_AT_containing_type if present. */ |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| fnp->fcontext = die_containing_type (die, cu); |
| |
| /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and |
| is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */ |
| |
| /* Get accessibility. */ |
| dwarf_access_attribute accessibility = dwarf2_access_attribute (die, cu); |
| switch (accessibility) |
| { |
| case DW_ACCESS_private: |
| fnp->accessibility = accessibility::PRIVATE; |
| break; |
| case DW_ACCESS_protected: |
| fnp->accessibility = accessibility::PROTECTED; |
| break; |
| } |
| |
| /* Check for artificial methods. */ |
| attr = dwarf2_attr (die, DW_AT_artificial, cu); |
| if (attr && attr->as_boolean ()) |
| fnp->is_artificial = 1; |
| |
| /* Check for defaulted methods. */ |
| attr = dwarf2_attr (die, DW_AT_defaulted, cu); |
| if (attr != nullptr) |
| fnp->defaulted = attr->defaulted (); |
| |
| /* Check for deleted methods. */ |
| attr = dwarf2_attr (die, DW_AT_deleted, cu); |
| if (attr != nullptr && attr->as_boolean ()) |
| fnp->is_deleted = 1; |
| |
| fnp->is_constructor = dwarf2_is_constructor (die, cu); |
| |
| /* Get index in virtual function table if it is a virtual member |
| function. For older versions of GCC, this is an offset in the |
| appropriate virtual table, as specified by DW_AT_containing_type. |
| For everyone else, it is an expression to be evaluated relative |
| to the object address. */ |
| |
| attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu); |
| if (attr != nullptr) |
| { |
| if (attr->form_is_block () && attr->as_block ()->size > 0) |
| { |
| struct dwarf_block *block = attr->as_block (); |
| CORE_ADDR offset; |
| |
| if (block->data[0] == DW_OP_constu |
| && decode_locdesc (block, cu, &offset)) |
| { |
| /* "Old"-style GCC. See |
| https://gcc.gnu.org/bugzilla/show_bug.cgi?id=44126 |
| for discussion. This was known and a patch available |
| in 2010, but as of 2023, both GCC and clang still |
| emit this. */ |
| fnp->voffset = offset + 2; |
| } |
| else if ((block->data[0] == DW_OP_deref |
| || (block->size > 1 |
| && block->data[0] == DW_OP_deref_size |
| && block->data[1] == cu->header.addr_size)) |
| && decode_locdesc (block, cu, &offset)) |
| { |
| fnp->voffset = offset; |
| if ((fnp->voffset % cu->header.addr_size) != 0) |
| dwarf2_complex_location_expr_complaint (); |
| else |
| fnp->voffset /= cu->header.addr_size; |
| fnp->voffset += 2; |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| if (!fnp->fcontext) |
| { |
| /* If there is no `this' field and no DW_AT_containing_type, |
| we cannot actually find a base class context for the |
| vtable! */ |
| if (this_type->num_fields () == 0 |
| || !this_type->field (0).is_artificial ()) |
| { |
| complaint (_("cannot determine context for virtual member " |
| "function \"%s\" (offset %s)"), |
| fieldname, sect_offset_str (die->sect_off)); |
| } |
| else |
| { |
| fnp->fcontext = this_type->field (0).type ()->target_type (); |
| } |
| } |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location", |
| fieldname); |
| } |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr != nullptr && attr->as_virtuality () != DW_VIRTUALITY_none) |
| { |
| /* GCC does this, as of 2008-08-25; PR debug/37237. */ |
| complaint (_("Member function \"%s\" (offset %s) is virtual " |
| "but the vtable offset is not specified"), |
| fieldname, sect_offset_str (die->sect_off)); |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_CPLUS_DYNAMIC (type) = 1; |
| } |
| } |
| } |
| |
| /* Create the vector of member function fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| if (cu->lang () == language_ada) |
| error (_("unexpected member functions in Ada type")); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *) |
| TYPE_ZALLOC (type, |
| sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ()); |
| |
| for (int i = 0; i < fip->fnfieldlists.size (); i++) |
| { |
| struct fnfieldlist &nf = fip->fnfieldlists[i]; |
| struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i); |
| |
| TYPE_FN_FIELDLIST_NAME (type, i) = nf.name; |
| TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size (); |
| /* No need to zero-initialize, initialization is done by the copy in |
| the loop below. */ |
| fn_flp->fn_fields = (struct fn_field *) |
| TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ()); |
| |
| for (int k = 0; k < nf.fnfields.size (); ++k) |
| fn_flp->fn_fields[k] = nf.fnfields[k]; |
| } |
| |
| TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size (); |
| } |
| |
| /* Returns non-zero if NAME is the name of a vtable member in CU's |
| language, zero otherwise. */ |
| static int |
| is_vtable_name (const char *name, struct dwarf2_cu *cu) |
| { |
| static const char vptr[] = "_vptr"; |
| |
| /* Look for the C++ form of the vtable. */ |
| if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1])) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* GCC outputs unnamed structures that are really pointers to member |
| functions, with the ABI-specified layout. If TYPE describes |
| such a structure, smash it into a member function type. |
| |
| GCC shouldn't do this; it should just output pointer to member DIEs. |
| This is GCC PR debug/28767. */ |
| |
| static void |
| quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile) |
| { |
| struct type *pfn_type, *self_type, *new_type; |
| |
| /* Check for a structure with no name and two children. */ |
| if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2) |
| return; |
| |
| /* Check for __pfn and __delta members. */ |
| if (type->field (0).name () == NULL |
| || strcmp (type->field (0).name (), "__pfn") != 0 |
| || type->field (1).name () == NULL |
| || strcmp (type->field (1).name (), "__delta") != 0) |
| return; |
| |
| /* Find the type of the method. */ |
| pfn_type = type->field (0).type (); |
| if (pfn_type == NULL |
| || pfn_type->code () != TYPE_CODE_PTR |
| || pfn_type->target_type ()->code () != TYPE_CODE_FUNC) |
| return; |
| |
| /* Look for the "this" argument. */ |
| pfn_type = pfn_type->target_type (); |
| if (pfn_type->num_fields () == 0 |
| /* || pfn_type->field (0).type () == NULL */ |
| || pfn_type->field (0).type ()->code () != TYPE_CODE_PTR) |
| return; |
| |
| self_type = pfn_type->field (0).type ()->target_type (); |
| new_type = type_allocator (type).new_type (); |
| smash_to_method_type (new_type, self_type, pfn_type->target_type (), |
| pfn_type->fields (), pfn_type->num_fields (), |
| pfn_type->has_varargs ()); |
| smash_to_methodptr_type (type, new_type); |
| } |
| |
| /* Helper for quirk_ada_thick_pointer. If TYPE is an array type that |
| requires rewriting, then copy it and return the updated copy. |
| Otherwise return nullptr. */ |
| |
| static struct type * |
| rewrite_array_type (struct type *type) |
| { |
| if (type->code () != TYPE_CODE_ARRAY) |
| return nullptr; |
| |
| struct type *index_type = type->index_type (); |
| range_bounds *current_bounds = index_type->bounds (); |
| |
| /* Handle multi-dimensional arrays. */ |
| struct type *new_target = rewrite_array_type (type->target_type ()); |
| if (new_target == nullptr) |
| { |
| /* Maybe we don't need to rewrite this array. */ |
| if (current_bounds->low.is_constant () |
| && current_bounds->high.is_constant ()) |
| return nullptr; |
| } |
| |
| /* Either the target type was rewritten, or the bounds have to be |
| updated. Either way we want to copy the type and update |
| everything. */ |
| struct type *copy = copy_type (type); |
| copy->copy_fields (type); |
| if (new_target != nullptr) |
| copy->set_target_type (new_target); |
| |
| struct type *index_copy = copy_type (index_type); |
| range_bounds *bounds |
| = (struct range_bounds *) TYPE_ZALLOC (index_copy, |
| sizeof (range_bounds)); |
| *bounds = *current_bounds; |
| bounds->low.set_const_val (1); |
| bounds->high.set_const_val (0); |
| index_copy->set_bounds (bounds); |
| copy->set_index_type (index_copy); |
| |
| return copy; |
| } |
| |
| /* While some versions of GCC will generate complicated DWARF for an |
| array (see quirk_ada_thick_pointer), more recent versions were |
| modified to emit an explicit thick pointer structure. However, in |
| this case, the array still has DWARF expressions for its ranges, |
| and these must be ignored. */ |
| |
| static void |
| quirk_ada_thick_pointer_struct (struct die_info *die, struct dwarf2_cu *cu, |
| struct type *type) |
| { |
| gdb_assert (cu->lang () == language_ada); |
| |
| /* Check for a structure with two children. */ |
| if (type->code () != TYPE_CODE_STRUCT || type->num_fields () != 2) |
| return; |
| |
| /* Check for P_ARRAY and P_BOUNDS members. */ |
| if (type->field (0).name () == NULL |
| || strcmp (type->field (0).name (), "P_ARRAY") != 0 |
| || type->field (1).name () == NULL |
| || strcmp (type->field (1).name (), "P_BOUNDS") != 0) |
| return; |
| |
| /* Make sure we're looking at a pointer to an array. */ |
| if (type->field (0).type ()->code () != TYPE_CODE_PTR) |
| return; |
| |
| /* The Ada code already knows how to handle these types, so all that |
| we need to do is turn the bounds into static bounds. However, we |
| don't want to rewrite existing array or index types in-place, |
| because those may be referenced in other contexts where this |
| rewriting is undesirable. */ |
| struct type *new_ary_type |
| = rewrite_array_type (type->field (0).type ()->target_type ()); |
| if (new_ary_type != nullptr) |
| type->field (0).set_type (lookup_pointer_type (new_ary_type)); |
| } |
| |
| /* If the DIE has a DW_AT_alignment attribute, return its value, doing |
| appropriate error checking and issuing complaints if there is a |
| problem. */ |
| |
| static ULONGEST |
| get_alignment (struct dwarf2_cu *cu, struct die_info *die) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu); |
| |
| if (attr == nullptr) |
| return 0; |
| |
| if (!attr->form_is_constant ()) |
| { |
| complaint (_("DW_AT_alignment must have constant form" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return 0; |
| } |
| |
| LONGEST val = attr->constant_value (0); |
| if (val < 0) |
| { |
| complaint (_("DW_AT_alignment value must not be negative" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return 0; |
| } |
| ULONGEST align = val; |
| |
| if (align == 0) |
| { |
| complaint (_("DW_AT_alignment value must not be zero" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return 0; |
| } |
| if ((align & (align - 1)) != 0) |
| { |
| complaint (_("DW_AT_alignment value must be a power of 2" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return 0; |
| } |
| |
| return align; |
| } |
| |
| /* If the DIE has a DW_AT_alignment attribute, use its value to set |
| the alignment for TYPE. */ |
| |
| static void |
| maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die, |
| struct type *type) |
| { |
| if (!set_type_align (type, get_alignment (cu, die))) |
| complaint (_("DW_AT_alignment value too large" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| |
| /* Check if the given VALUE is a valid enum dwarf_calling_convention |
| constant for a type, according to DWARF5 spec, Table 5.5. */ |
| |
| static bool |
| is_valid_DW_AT_calling_convention_for_type (ULONGEST value) |
| { |
| switch (value) |
| { |
| case DW_CC_normal: |
| case DW_CC_pass_by_reference: |
| case DW_CC_pass_by_value: |
| return true; |
| |
| default: |
| complaint (_("unrecognized DW_AT_calling_convention value " |
| "(%s) for a type"), pulongest (value)); |
| return false; |
| } |
| } |
| |
| /* Check if the given VALUE is a valid enum dwarf_calling_convention |
| constant for a subroutine, according to DWARF5 spec, Table 3.3, and |
| also according to GNU-specific values (see include/dwarf2.h). */ |
| |
| static bool |
| is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value) |
| { |
| switch (value) |
| { |
| case DW_CC_normal: |
| case DW_CC_program: |
| case DW_CC_nocall: |
| return true; |
| |
| case DW_CC_GNU_renesas_sh: |
| case DW_CC_GNU_borland_fastcall_i386: |
| case DW_CC_GDB_IBM_OpenCL: |
| return true; |
| |
| default: |
| complaint (_("unrecognized DW_AT_calling_convention value " |
| "(%s) for a subroutine"), pulongest (value)); |
| return false; |
| } |
| } |
| |
| /* Called when we find the DIE that starts a structure or union scope |
| (definition) to create a type for the structure or union. Fill in |
| the type's name and general properties; the members will not be |
| processed until process_structure_scope. A symbol table entry for |
| the type will also not be done until process_structure_scope (assuming |
| the type has a name). |
| |
| NOTE: we need to call these functions regardless of whether or not the |
| DIE has a DW_AT_name attribute, since it might be an anonymous |
| structure or union. This gets the type entered into our set of |
| user defined types. */ |
| |
| static struct type * |
| read_structure_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| const char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = die->attr (DW_AT_signature); |
| if (attr != nullptr) |
| { |
| type = get_DW_AT_signature_type (die, attr, cu); |
| |
| /* The type's CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = type_allocator (objfile, cu->lang ()).new_type (); |
| INIT_CPLUS_SPECIFIC (type); |
| |
| name = dwarf2_name (die, cu); |
| if (name != NULL) |
| { |
| if (cu->lang () == language_cplus |
| || cu->lang () == language_d |
| || cu->lang () == language_rust |
| || cu->lang () == language_ada) |
| { |
| const char *full_name = dwarf2_full_name (name, die, cu); |
| |
| /* dwarf2_full_name might have already finished building the DIE's |
| type. If so, there is no need to continue. */ |
| if (get_die_type (die, cu) != NULL) |
| return get_die_type (die, cu); |
| |
| type->set_name (full_name); |
| } |
| else |
| { |
| /* The name is already allocated along with this objfile, so |
| we don't need to duplicate it for the type. */ |
| type->set_name (name); |
| } |
| } |
| |
| if (die->tag == DW_TAG_structure_type) |
| { |
| type->set_code (TYPE_CODE_STRUCT); |
| } |
| else if (die->tag == DW_TAG_union_type) |
| { |
| type->set_code (TYPE_CODE_UNION); |
| } |
| else if (die->tag == DW_TAG_namelist) |
| { |
| type->set_code (TYPE_CODE_NAMELIST); |
| } |
| else |
| { |
| type->set_code (TYPE_CODE_STRUCT); |
| } |
| |
| if (cu->lang () == language_cplus && die->tag == DW_TAG_class_type) |
| type->set_is_declared_class (true); |
| |
| /* Store the calling convention in the type if it's available in |
| the die. Otherwise the calling convention remains set to |
| the default value DW_CC_normal. */ |
| attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| if (attr != nullptr |
| && is_valid_DW_AT_calling_convention_for_type (attr->constant_value (0))) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_CPLUS_CALLING_CONVENTION (type) |
| = (enum dwarf_calling_convention) (attr->constant_value (0)); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| { |
| if (attr->form_is_constant ()) |
| type->set_length (attr->constant_value (0)); |
| else |
| { |
| struct dynamic_prop prop; |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ())) |
| type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop); |
| |
| type->set_length (0); |
| } |
| } |
| else |
| type->set_length (0); |
| |
| maybe_set_alignment (cu, die, type); |
| |
| if (cu->producer_is_icc_lt_14 () && type->length () == 0) |
| { |
| /* ICC<14 does not output the required DW_AT_declaration on |
| incomplete types, but gives them a size of zero. */ |
| type->set_is_stub (true); |
| } |
| else |
| type->set_stub_is_supported (true); |
| |
| if (die_is_declaration (die, cu)) |
| type->set_is_stub (true); |
| else if (attr == NULL && die->child == NULL |
| && cu->producer_is_realview ()) |
| /* RealView does not output the required DW_AT_declaration |
| on incomplete types. */ |
| type->set_is_stub (true); |
| |
| /* We need to add the type field to the die immediately so we don't |
| infinitely recurse when dealing with pointers to the structure |
| type within the structure itself. */ |
| set_die_type (die, type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| return type; |
| } |
| |
| static void handle_struct_member_die |
| (struct die_info *child_die, |
| struct type *type, |
| struct field_info *fi, |
| std::vector<struct symbol *> *template_args, |
| struct dwarf2_cu *cu); |
| |
| /* A helper for handle_struct_member_die that handles |
| DW_TAG_variant_part. */ |
| |
| static void |
| handle_variant_part (struct die_info *die, struct type *type, |
| struct field_info *fi, |
| std::vector<struct symbol *> *template_args, |
| struct dwarf2_cu *cu) |
| { |
| variant_part_builder *new_part; |
| if (fi->current_variant_part == nullptr) |
| new_part = &fi->variant_parts.emplace_back (); |
| else if (!fi->current_variant_part->processing_variant) |
| { |
| complaint (_("nested DW_TAG_variant_part seen " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return; |
| } |
| else |
| { |
| variant_field ¤t = fi->current_variant_part->variants.back (); |
| new_part = ¤t.variant_parts.emplace_back (); |
| } |
| |
| /* When we recurse, we want callees to add to this new variant |
| part. */ |
| scoped_restore save_current_variant_part |
| = make_scoped_restore (&fi->current_variant_part, new_part); |
| |
| struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu); |
| if (discr == NULL) |
| { |
| /* It's a univariant form, an extension we support. */ |
| } |
| else if (discr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die = follow_die_ref (die, discr, &target_cu); |
| |
| new_part->discriminant_offset = target_die->sect_off; |
| } |
| else |
| { |
| complaint (_("DW_AT_discr does not have DIE reference form" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| |
| for (die_info *child_die = die->child; |
| child_die != NULL; |
| child_die = child_die->sibling) |
| handle_struct_member_die (child_die, type, fi, template_args, cu); |
| } |
| |
| /* A helper for handle_struct_member_die that handles |
| DW_TAG_variant. */ |
| |
| static void |
| handle_variant (struct die_info *die, struct type *type, |
| struct field_info *fi, |
| std::vector<struct symbol *> *template_args, |
| struct dwarf2_cu *cu) |
| { |
| if (fi->current_variant_part == nullptr) |
| { |
| complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return; |
| } |
| if (fi->current_variant_part->processing_variant) |
| { |
| complaint (_("nested DW_TAG_variant seen " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return; |
| } |
| |
| scoped_restore save_processing_variant |
| = make_scoped_restore (&fi->current_variant_part->processing_variant, |
| true); |
| |
| variant_field &variant = fi->current_variant_part->variants.emplace_back (); |
| variant.first_field = fi->fields.size (); |
| |
| /* In a variant we want to get the discriminant and also add a |
| field for our sole member child. */ |
| struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu); |
| if (discr == nullptr || !discr->form_is_constant ()) |
| { |
| discr = dwarf2_attr (die, DW_AT_discr_list, cu); |
| if (discr == nullptr || discr->as_block ()->size == 0) |
| variant.default_branch = true; |
| else |
| variant.discr_list_data = discr->as_block (); |
| } |
| else |
| variant.discriminant_value = discr->constant_value (0); |
| |
| for (die_info *variant_child = die->child; |
| variant_child != NULL; |
| variant_child = variant_child->sibling) |
| handle_struct_member_die (variant_child, type, fi, template_args, cu); |
| |
| variant.last_field = fi->fields.size (); |
| } |
| |
| /* A helper for process_structure_scope that handles a single member |
| DIE. */ |
| |
| static void |
| handle_struct_member_die (struct die_info *child_die, struct type *type, |
| struct field_info *fi, |
| std::vector<struct symbol *> *template_args, |
| struct dwarf2_cu *cu) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable |
| || child_die->tag == DW_TAG_namelist_item) |
| { |
| /* NOTE: carlton/2002-11-05: A C++ static data member |
| should be a DW_TAG_member that is a declaration, but |
| all versions of G++ as of this writing (so through at |
| least 3.2.1) incorrectly generate DW_TAG_variable |
| tags for them instead. */ |
| dwarf2_add_field (fi, child_die, cu); |
| } |
| else if (child_die->tag == DW_TAG_subprogram) |
| { |
| /* Rust doesn't have member functions in the C++ sense. |
| However, it does emit ordinary functions as children |
| of a struct DIE. */ |
| if (cu->lang () == language_rust) |
| read_func_scope (child_die, cu); |
| else |
| { |
| /* C++ member function. */ |
| dwarf2_add_member_fn (fi, child_die, type, cu); |
| } |
| } |
| else if (child_die->tag == DW_TAG_inheritance) |
| { |
| /* C++ base class field. */ |
| dwarf2_add_field (fi, child_die, cu); |
| } |
| else if (type_can_define_types (child_die)) |
| dwarf2_add_type_defn (fi, child_die, cu); |
| else if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| template_args->push_back (arg); |
| } |
| else if (child_die->tag == DW_TAG_variant_part) |
| handle_variant_part (child_die, type, fi, template_args, cu); |
| else if (child_die->tag == DW_TAG_variant) |
| handle_variant (child_die, type, fi, template_args, cu); |
| } |
| |
| /* Finish creating a structure or union type, including filling in its |
| members and creating a symbol for it. This function also handles Fortran |
| namelist variables, their items or members and creating a symbol for |
| them. */ |
| |
| static void |
| process_structure_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct die_info *child_die; |
| struct type *type; |
| |
| type = get_die_type (die, cu); |
| if (type == NULL) |
| type = read_structure_type (die, cu); |
| |
| bool has_template_parameters = false; |
| if (die->child != NULL && ! die_is_declaration (die, cu)) |
| { |
| struct field_info fi; |
| std::vector<struct symbol *> template_args; |
| |
| child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| handle_struct_member_die (child_die, type, &fi, &template_args, cu); |
| child_die = child_die->sibling; |
| } |
| |
| /* Attach template arguments to type. */ |
| if (!template_args.empty ()) |
| { |
| has_template_parameters = true; |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size (); |
| TYPE_TEMPLATE_ARGUMENTS (type) |
| = XOBNEWVEC (&objfile->objfile_obstack, |
| struct symbol *, |
| TYPE_N_TEMPLATE_ARGUMENTS (type)); |
| memcpy (TYPE_TEMPLATE_ARGUMENTS (type), |
| template_args.data (), |
| (TYPE_N_TEMPLATE_ARGUMENTS (type) |
| * sizeof (struct symbol *))); |
| } |
| |
| /* Attach fields and member functions to the type. */ |
| if (fi.nfields () > 0) |
| dwarf2_attach_fields_to_type (&fi, type, cu); |
| if (!fi.fnfieldlists.empty ()) |
| { |
| dwarf2_attach_fn_fields_to_type (&fi, type, cu); |
| |
| /* Get the type which refers to the base class (possibly this |
| class itself) which contains the vtable pointer for the current |
| class from the DW_AT_containing_type attribute. This use of |
| DW_AT_containing_type is a GNU extension. */ |
| |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| { |
| struct type *t = die_containing_type (die, cu); |
| |
| set_type_vptr_basetype (type, t); |
| if (type == t) |
| { |
| int i; |
| |
| /* Our own class provides vtbl ptr. */ |
| for (i = t->num_fields () - 1; |
| i >= TYPE_N_BASECLASSES (t); |
| --i) |
| { |
| const char *fieldname = t->field (i).name (); |
| |
| if (is_vtable_name (fieldname, cu)) |
| { |
| set_type_vptr_fieldno (type, i); |
| break; |
| } |
| } |
| |
| /* Complain if virtual function table field not found. */ |
| if (i < TYPE_N_BASECLASSES (t)) |
| complaint (_("virtual function table pointer " |
| "not found when defining class '%s'"), |
| type->name () ? type->name () : ""); |
| } |
| else |
| { |
| set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t)); |
| } |
| } |
| else if (cu->producer_is_xlc ()) |
| { |
| /* The IBM XLC compiler does not provide direct indication |
| of the containing type, but the vtable pointer is |
| always named __vfp. */ |
| |
| int i; |
| |
| for (i = type->num_fields () - 1; |
| i >= TYPE_N_BASECLASSES (type); |
| --i) |
| { |
| if (strcmp (type->field (i).name (), "__vfp") == 0) |
| { |
| set_type_vptr_fieldno (type, i); |
| set_type_vptr_basetype (type, type); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Copy fi.typedef_field_list linked list elements content into the |
| allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */ |
| if (!fi.typedef_field_list.empty ()) |
| { |
| int count = fi.typedef_field_list.size (); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| /* No zero-initialization is needed, the elements are initialized by |
| the copy in the loop below. */ |
| TYPE_TYPEDEF_FIELD_ARRAY (type) |
| = ((struct decl_field *) |
| TYPE_ALLOC (type, |
| sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count)); |
| TYPE_TYPEDEF_FIELD_COUNT (type) = count; |
| |
| for (int i = 0; i < fi.typedef_field_list.size (); ++i) |
| TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i]; |
| } |
| |
| /* Copy fi.nested_types_list linked list elements content into the |
| allocated array TYPE_NESTED_TYPES_ARRAY (type). */ |
| if (!fi.nested_types_list.empty () |
| && cu->lang () != language_ada) |
| { |
| int count = fi.nested_types_list.size (); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| /* No zero-initialization is needed, the elements are initialized by |
| the copy in the loop below. */ |
| TYPE_NESTED_TYPES_ARRAY (type) |
| = ((struct decl_field *) |
| TYPE_ALLOC (type, sizeof (struct decl_field) * count)); |
| TYPE_NESTED_TYPES_COUNT (type) = count; |
| |
| for (int i = 0; i < fi.nested_types_list.size (); ++i) |
| TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i]; |
| } |
| } |
| |
| quirk_gcc_member_function_pointer (type, objfile); |
| if (cu->lang () == language_rust && die->tag == DW_TAG_union_type) |
| cu->rust_unions.push_back (type); |
| else if (cu->lang () == language_ada) |
| quirk_ada_thick_pointer_struct (die, cu, type); |
| |
| /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its |
| snapshots) has been known to create a die giving a declaration |
| for a class that has, as a child, a die giving a definition for a |
| nested class. So we have to process our children even if the |
| current die is a declaration. Normally, of course, a declaration |
| won't have any children at all. */ |
| |
| child_die = die->child; |
| |
| while (child_die != NULL && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable |
| || child_die->tag == DW_TAG_inheritance |
| || child_die->tag == DW_TAG_template_value_param |
| || child_die->tag == DW_TAG_template_type_param) |
| { |
| /* Do nothing. */ |
| } |
| else |
| process_die (child_die, cu); |
| |
| child_die = child_die->sibling; |
| } |
| |
| /* Do not consider external references. According to the DWARF standard, |
| these DIEs are identified by the fact that they have no byte_size |
| attribute, and a declaration attribute. */ |
| if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL |
| || !die_is_declaration (die, cu) |
| || dwarf2_attr (die, DW_AT_signature, cu) != NULL) |
| { |
| struct symbol *sym = new_symbol (die, type, cu); |
| |
| if (has_template_parameters) |
| { |
| struct symtab *symtab; |
| if (sym != nullptr) |
| symtab = sym->symtab (); |
| else if (cu->line_header != nullptr) |
| { |
| /* Any related symtab will do. */ |
| symtab |
| = cu->line_header->file_names ()[0].symtab; |
| } |
| else |
| { |
| symtab = nullptr; |
| complaint (_("could not find suitable " |
| "symtab for template parameter" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| } |
| |
| if (symtab != nullptr) |
| { |
| /* Make sure that the symtab is set on the new symbols. |
| Even though they don't appear in this symtab directly, |
| other parts of gdb assume that symbols do, and this is |
| reasonably true. */ |
| for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i) |
| TYPE_TEMPLATE_ARGUMENT (type, i)->set_symtab (symtab); |
| } |
| } |
| } |
| } |
| |
| /* Read DW_AT_endianity from DIE and compute the byte order that |
| should be used. The CU's arch is used as the default. The result |
| is true if the returned arch differs from the default, and false if |
| they are the same. If provided, the out parameter BYTE_ORDER is |
| also set. */ |
| |
| static bool |
| die_byte_order (die_info *die, dwarf2_cu *cu, enum bfd_endian *byte_order) |
| { |
| gdbarch *arch = cu->per_objfile->objfile->arch (); |
| enum bfd_endian arch_order = gdbarch_byte_order (arch); |
| enum bfd_endian new_order = arch_order; |
| |
| attribute *attr = dwarf2_attr (die, DW_AT_endianity, cu); |
| if (attr != nullptr && attr->form_is_constant ()) |
| { |
| int endianity = attr->constant_value (0); |
| |
| switch (endianity) |
| { |
| case DW_END_big: |
| new_order = BFD_ENDIAN_BIG; |
| break; |
| case DW_END_little: |
| new_order = BFD_ENDIAN_LITTLE; |
| break; |
| default: |
| complaint (_("DW_AT_endianity has unrecognized value %d"), endianity); |
| break; |
| } |
| } |
| |
| if (byte_order != nullptr) |
| *byte_order = new_order; |
| |
| return new_order != arch_order; |
| } |
| |
| /* Assuming DIE is an enumeration type, and TYPE is its associated |
| type, update TYPE using some information only available in DIE's |
| children. In particular, the fields are computed. */ |
| |
| static void |
| update_enumeration_type_from_children (struct die_info *die, |
| struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| int unsigned_enum = 1; |
| int flag_enum = 1; |
| |
| auto_obstack obstack; |
| std::vector<struct field> fields; |
| |
| for (child_die = die->child; |
| child_die != NULL && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| struct attribute *attr; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| const char *name; |
| |
| if (child_die->tag != DW_TAG_enumerator) |
| continue; |
| |
| attr = dwarf2_attr (child_die, DW_AT_const_value, cu); |
| if (attr == NULL) |
| continue; |
| |
| name = dwarf2_name (child_die, cu); |
| if (name == NULL) |
| name = "<anonymous enumerator>"; |
| |
| dwarf2_const_value_attr (attr, type, name, &obstack, cu, |
| &value, &bytes, &baton); |
| if (value < 0) |
| { |
| unsigned_enum = 0; |
| flag_enum = 0; |
| } |
| else |
| { |
| if (count_one_bits_ll (value) >= 2) |
| flag_enum = 0; |
| } |
| |
| struct field &field = fields.emplace_back (); |
| field.set_name (dwarf2_physname (name, child_die, cu)); |
| field.set_loc_enumval (value); |
| } |
| |
| if (!fields.empty ()) |
| type->copy_fields (fields); |
| else |
| flag_enum = 0; |
| |
| if (unsigned_enum) |
| type->set_is_unsigned (true); |
| |
| if (flag_enum) |
| type->set_is_flag_enum (true); |
| } |
| |
| /* Given a DW_AT_enumeration_type die, set its type. We do not |
| complete the type's fields yet, or create any symbols. */ |
| |
| static struct type * |
| read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| const char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = die->attr (DW_AT_signature); |
| if (attr != nullptr) |
| { |
| type = get_DW_AT_signature_type (die, attr, cu); |
| |
| /* The type's CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = type_allocator (objfile, cu->lang ()).new_type (); |
| |
| type->set_code (TYPE_CODE_ENUM); |
| name = dwarf2_full_name (NULL, die, cu); |
| if (name != NULL) |
| type->set_name (name); |
| |
| attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (attr != NULL) |
| { |
| struct type *underlying_type = die_type (die, cu); |
| |
| type->set_target_type (underlying_type); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| type->set_length (attr->constant_value (0)); |
| else |
| type->set_length (0); |
| |
| maybe_set_alignment (cu, die, type); |
| |
| /* The enumeration DIE can be incomplete. In Ada, any type can be |
| declared as private in the package spec, and then defined only |
| inside the package body. Such types are known as Taft Amendment |
| Types. When another package uses such a type, an incomplete DIE |
| may be generated by the compiler. */ |
| if (die_is_declaration (die, cu)) |
| type->set_is_stub (true); |
| |
| /* If this type has an underlying type that is not a stub, then we |
| may use its attributes. We always use the "unsigned" attribute |
| in this situation, because ordinarily we guess whether the type |
| is unsigned -- but the guess can be wrong and the underlying type |
| can tell us the reality. However, we defer to a local size |
| attribute if one exists, because this lets the compiler override |
| the underlying type if needed. */ |
| if (type->target_type () != NULL && !type->target_type ()->is_stub ()) |
| { |
| struct type *underlying_type = type->target_type (); |
| underlying_type = check_typedef (underlying_type); |
| |
| type->set_is_unsigned (underlying_type->is_unsigned ()); |
| |
| if (type->length () == 0) |
| type->set_length (underlying_type->length ()); |
| |
| if (TYPE_RAW_ALIGN (type) == 0 |
| && TYPE_RAW_ALIGN (underlying_type) != 0) |
| set_type_align (type, TYPE_RAW_ALIGN (underlying_type)); |
| } |
| |
| type->set_is_declared_class (dwarf2_flag_true_p (die, DW_AT_enum_class, cu)); |
| |
| type->set_endianity_is_not_default (die_byte_order (die, cu, nullptr)); |
| |
| set_die_type (die, type, cu); |
| |
| /* Finish the creation of this type by using the enum's children. |
| Note that, as usual, this must come after set_die_type to avoid |
| infinite recursion when trying to compute the names of the |
| enumerators. */ |
| update_enumeration_type_from_children (die, type, cu); |
| |
| return type; |
| } |
| |
| /* Given a pointer to a die which begins an enumeration, process all |
| the dies that define the members of the enumeration, and create the |
| symbol for the enumeration type. |
| |
| NOTE: We reverse the order of the element list. */ |
| |
| static void |
| process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type == NULL) |
| this_type = read_enumeration_type (die, cu); |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die; |
| |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag != DW_TAG_enumerator) |
| { |
| process_die (child_die, cu); |
| } |
| else |
| new_symbol (child_die, this_type, cu); |
| |
| child_die = child_die->sibling; |
| } |
| } |
| |
| /* If we are reading an enum from a .debug_types unit, and the enum |
| is a declaration, and the enum is not the signatured type in the |
| unit, then we do not want to add a symbol for it. Adding a |
| symbol would in some cases obscure the true definition of the |
| enum, giving users an incomplete type when the definition is |
| actually available. Note that we do not want to do this for all |
| enums which are just declarations, because C++0x allows forward |
| enum declarations. */ |
| if (cu->per_cu->is_debug_types |
| && die_is_declaration (die, cu)) |
| { |
| struct signatured_type *sig_type; |
| |
| sig_type = (struct signatured_type *) cu->per_cu; |
| gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0); |
| if (sig_type->type_offset_in_section != die->sect_off) |
| return; |
| } |
| |
| new_symbol (die, this_type, cu); |
| } |
| |
| /* Helper function for quirk_ada_thick_pointer that examines a bounds |
| expression for an index type and finds the corresponding field |
| offset in the hidden "P_BOUNDS" structure. Returns true on success |
| and updates *FIELD, false if it fails to recognize an |
| expression. */ |
| |
| static bool |
| recognize_bound_expression (struct die_info *die, enum dwarf_attribute name, |
| int *bounds_offset, struct field *field, |
| struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, name, cu); |
| if (attr == nullptr || !attr->form_is_block ()) |
| return false; |
| |
| const struct dwarf_block *block = attr->as_block (); |
| const gdb_byte *start = block->data; |
| const gdb_byte *end = block->data + block->size; |
| |
| /* The expression to recognize generally looks like: |
| |
| (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref; |
| DW_OP_plus_uconst: 4; DW_OP_deref_size: 4) |
| |
| However, the second "plus_uconst" may be missing: |
| |
| (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref; |
| DW_OP_deref_size: 4) |
| |
| This happens when the field is at the start of the structure. |
| |
| Also, the final deref may not be sized: |
| |
| (DW_OP_push_object_address; DW_OP_plus_uconst: 4; DW_OP_deref; |
| DW_OP_deref) |
| |
| This happens when the size of the index type happens to be the |
| same as the architecture's word size. This can occur with or |
| without the second plus_uconst. */ |
| |
| if (end - start < 2) |
| return false; |
| if (*start++ != DW_OP_push_object_address) |
| return false; |
| if (*start++ != DW_OP_plus_uconst) |
| return false; |
| |
| uint64_t this_bound_off; |
| start = gdb_read_uleb128 (start, end, &this_bound_off); |
| if (start == nullptr || (int) this_bound_off != this_bound_off) |
| return false; |
| /* Update *BOUNDS_OFFSET if needed, or alternatively verify that it |
| is consistent among all bounds. */ |
| if (*bounds_offset == -1) |
| *bounds_offset = this_bound_off; |
| else if (*bounds_offset != this_bound_off) |
| return false; |
| |
| if (start == end || *start++ != DW_OP_deref) |
| return false; |
| |
| int offset = 0; |
| if (start ==end) |
| return false; |
| else if (*start == DW_OP_deref_size || *start == DW_OP_deref) |
| { |
| /* This means an offset of 0. */ |
| } |
| else if (*start++ != DW_OP_plus_uconst) |
| return false; |
| else |
| { |
| /* The size is the parameter to DW_OP_plus_uconst. */ |
| uint64_t val; |
| start = gdb_read_uleb128 (start, end, &val); |
| if (start == nullptr) |
| return false; |
| if ((int) val != val) |
| return false; |
| offset = val; |
| } |
| |
| if (start == end) |
| return false; |
| |
| uint64_t size; |
| if (*start == DW_OP_deref_size) |
| { |
| start = gdb_read_uleb128 (start + 1, end, &size); |
| if (start == nullptr) |
| return false; |
| } |
| else if (*start == DW_OP_deref) |
| { |
| size = cu->header.addr_size; |
| ++start; |
| } |
| else |
| return false; |
| |
| field->set_loc_bitpos (8 * offset); |
| if (size != field->type ()->length ()) |
| field->set_bitsize (8 * size); |
| |
| return true; |
| } |
| |
| /* With -fgnat-encodings=minimal, gcc will emit some unusual DWARF for |
| some kinds of Ada arrays: |
| |
| <1><11db>: Abbrev Number: 7 (DW_TAG_array_type) |
| <11dc> DW_AT_name : (indirect string, offset: 0x1bb8): string |
| <11e0> DW_AT_data_location: 2 byte block: 97 6 |
| (DW_OP_push_object_address; DW_OP_deref) |
| <11e3> DW_AT_type : <0x1173> |
| <11e7> DW_AT_sibling : <0x1201> |
| <2><11eb>: Abbrev Number: 8 (DW_TAG_subrange_type) |
| <11ec> DW_AT_type : <0x1206> |
| <11f0> DW_AT_lower_bound : 6 byte block: 97 23 8 6 94 4 |
| (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref; |
| DW_OP_deref_size: 4) |
| <11f7> DW_AT_upper_bound : 8 byte block: 97 23 8 6 23 4 94 4 |
| (DW_OP_push_object_address; DW_OP_plus_uconst: 8; DW_OP_deref; |
| DW_OP_plus_uconst: 4; DW_OP_deref_size: 4) |
| |
| This actually represents a "thick pointer", which is a structure |
| with two elements: one that is a pointer to the array data, and one |
| that is a pointer to another structure; this second structure holds |
| the array bounds. |
| |
| This returns a new type on success, or nullptr if this didn't |
| recognize the type. */ |
| |
| static struct type * |
| quirk_ada_thick_pointer (struct die_info *die, struct dwarf2_cu *cu, |
| struct type *type) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_data_location, cu); |
| /* So far we've only seen this with block form. */ |
| if (attr == nullptr || !attr->form_is_block ()) |
| return nullptr; |
| |
| /* Note that this will fail if the structure layout is changed by |
| the compiler. However, we have no good way to recognize some |
| other layout, because we don't know what expression the compiler |
| might choose to emit should this happen. */ |
| struct dwarf_block *blk = attr->as_block (); |
| if (blk->size != 2 |
| || blk->data[0] != DW_OP_push_object_address |
| || blk->data[1] != DW_OP_deref) |
| return nullptr; |
| |
| int bounds_offset = -1; |
| int max_align = -1; |
| std::vector<struct field> range_fields; |
| for (struct die_info *child_die = die->child; |
| child_die; |
| child_die = child_die->sibling) |
| { |
| if (child_die->tag == DW_TAG_subrange_type) |
| { |
| struct type *underlying = read_subrange_index_type (child_die, cu); |
| |
| int this_align = type_align (underlying); |
| if (this_align > max_align) |
| max_align = this_align; |
| |
| range_fields.emplace_back (); |
| range_fields.emplace_back (); |
| |
| struct field &lower = range_fields[range_fields.size () - 2]; |
| struct field &upper = range_fields[range_fields.size () - 1]; |
| |
| lower.set_type (underlying); |
| lower.set_is_artificial (true); |
| |
| upper.set_type (underlying); |
| upper.set_is_artificial (true); |
| |
| if (!recognize_bound_expression (child_die, DW_AT_lower_bound, |
| &bounds_offset, &lower, cu) |
| || !recognize_bound_expression (child_die, DW_AT_upper_bound, |
| &bounds_offset, &upper, cu)) |
| return nullptr; |
| } |
| } |
| |
| /* This shouldn't really happen, but double-check that we found |
| where the bounds are stored. */ |
| if (bounds_offset == -1) |
| return nullptr; |
| |
| struct objfile *objfile = cu->per_objfile->objfile; |
| for (int i = 0; i < range_fields.size (); i += 2) |
| { |
| char name[20]; |
| |
| /* Set the name of each field in the bounds. */ |
| xsnprintf (name, sizeof (name), "LB%d", i / 2); |
| range_fields[i].set_name (objfile->intern (name)); |
| xsnprintf (name, sizeof (name), "UB%d", i / 2); |
| range_fields[i + 1].set_name (objfile->intern (name)); |
| } |
| |
| type_allocator alloc (objfile, cu->lang ()); |
| struct type *bounds = alloc.new_type (); |
| bounds->set_code (TYPE_CODE_STRUCT); |
| |
| bounds->copy_fields (range_fields); |
| |
| int last_fieldno = range_fields.size () - 1; |
| int bounds_size = (bounds->field (last_fieldno).loc_bitpos () / 8 |
| + bounds->field (last_fieldno).type ()->length ()); |
| bounds->set_length (align_up (bounds_size, max_align)); |
| |
| /* Rewrite the existing array type in place. Specifically, we |
| remove any dynamic properties we might have read, and we replace |
| the index types. */ |
| struct type *iter = type; |
| for (int i = 0; i < range_fields.size (); i += 2) |
| { |
| gdb_assert (iter->code () == TYPE_CODE_ARRAY); |
| iter->main_type->dyn_prop_list = nullptr; |
| iter->set_index_type |
| (create_static_range_type (alloc, bounds->field (i).type (), 1, 0)); |
| iter = iter->target_type (); |
| } |
| |
| struct type *result = type_allocator (objfile, cu->lang ()).new_type (); |
| result->set_code (TYPE_CODE_STRUCT); |
| |
| result->alloc_fields (2); |
| |
| /* The names are chosen to coincide with what the compiler does with |
| -fgnat-encodings=all, which the Ada code in gdb already |
| understands. */ |
| result->field (0).set_name ("P_ARRAY"); |
| result->field (0).set_type (lookup_pointer_type (type)); |
| |
| result->field (1).set_name ("P_BOUNDS"); |
| result->field (1).set_type (lookup_pointer_type (bounds)); |
| result->field (1).set_loc_bitpos (8 * bounds_offset); |
| |
| result->set_name (type->name ()); |
| result->set_length (result->field (0).type ()->length () |
| + result->field (1).type ()->length ()); |
| |
| return result; |
| } |
| |
| /* Extract all information from a DW_TAG_array_type DIE and put it in |
| the DIE's type field. For now, this only handles one dimensional |
| arrays. */ |
| |
| static struct type * |
| read_array_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct die_info *child_die; |
| struct type *type; |
| struct type *element_type, *range_type, *index_type; |
| struct attribute *attr; |
| const char *name; |
| struct dynamic_prop *byte_stride_prop = NULL; |
| unsigned int bit_stride = 0; |
| |
| element_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_stride, cu); |
| if (attr != NULL) |
| { |
| int stride_ok; |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| |
| byte_stride_prop |
| = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop)); |
| stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop, |
| prop_type); |
| if (!stride_ok) |
| { |
| complaint (_("unable to read array DW_AT_byte_stride " |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| /* Ignore this attribute. We will likely not be able to print |
| arrays of this type correctly, but there is little we can do |
| to help if we cannot read the attribute's value. */ |
| byte_stride_prop = NULL; |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_bit_stride, cu); |
| if (attr != NULL) |
| bit_stride = attr->constant_value (0); |
| |
| /* Irix 6.2 native cc creates array types without children for |
| arrays with unspecified length. */ |
| if (die->child == NULL) |
| { |
| index_type = builtin_type (objfile)->builtin_int; |
| type_allocator alloc (objfile, cu->lang ()); |
| range_type = create_static_range_type (alloc, index_type, 0, -1); |
| type = create_array_type_with_stride (alloc, element_type, range_type, |
| byte_stride_prop, bit_stride); |
| return set_die_type (die, type, cu); |
| } |
| |
| std::vector<struct type *> range_types; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_subrange_type |
| || child_die->tag == DW_TAG_generic_subrange) |
| { |
| struct type *child_type = read_type_die (child_die, cu); |
| |
| if (child_type != NULL) |
| { |
| /* The range type was successfully read. Save it for the |
| array type creation. */ |
| range_types.push_back (child_type); |
| } |
| } |
| child_die = child_die->sibling; |
| } |
| |
| if (range_types.empty ()) |
| { |
| complaint (_("unable to find array range - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| return NULL; |
| } |
| |
| /* Dwarf2 dimensions are output from left to right, create the |
| necessary array types in backwards order. */ |
| |
| type = element_type; |
| |
| type_allocator alloc (cu->per_objfile->objfile, cu->lang ()); |
| if (read_array_order (die, cu) == DW_ORD_col_major) |
| { |
| int i = 0; |
| |
| while (i < range_types.size ()) |
| { |
| type = create_array_type_with_stride (alloc, type, range_types[i++], |
| byte_stride_prop, bit_stride); |
| type->set_is_multi_dimensional (true); |
| bit_stride = 0; |
| byte_stride_prop = nullptr; |
| } |
| } |
| else |
| { |
| size_t ndim = range_types.size (); |
| while (ndim-- > 0) |
| { |
| type = create_array_type_with_stride (alloc, type, range_types[ndim], |
| byte_stride_prop, bit_stride); |
| type->set_is_multi_dimensional (true); |
| bit_stride = 0; |
| byte_stride_prop = nullptr; |
| } |
| } |
| |
| /* Clear the flag on the outermost array type. */ |
| type->set_is_multi_dimensional (false); |
| gdb_assert (type != element_type); |
| |
| /* Understand Dwarf2 support for vector types (like they occur on |
| the PowerPC w/ AltiVec). Gcc just adds another attribute to the |
| array type. This is not part of the Dwarf2/3 standard yet, but a |
| custom vendor extension. The main difference between a regular |
| array and the vector variant is that vectors are passed by value |
| to functions. */ |
| attr = dwarf2_attr (die, DW_AT_GNU_vector, cu); |
| if (attr != nullptr) |
| make_vector_type (type); |
| |
| /* The DIE may have DW_AT_byte_size set. For example an OpenCL |
| implementation may choose to implement triple vectors using this |
| attribute. */ |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| { |
| if (attr->as_unsigned () >= type->length ()) |
| type->set_length (attr->as_unsigned ()); |
| else |
| complaint (_("DW_AT_byte_size for array type smaller " |
| "than the total size of elements")); |
| } |
| |
| name = dwarf2_full_name (nullptr, die, cu); |
| if (name) |
| type->set_name (name); |
| |
| maybe_set_alignment (cu, die, type); |
| |
| struct type *replacement_type = nullptr; |
| if (cu->lang () == language_ada) |
| { |
| replacement_type = quirk_ada_thick_pointer (die, cu, type); |
| if (replacement_type != nullptr) |
| type = replacement_type; |
| } |
| |
| /* Install the type in the die. */ |
| set_die_type (die, type, cu, replacement_type != nullptr); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| return type; |
| } |
| |
| static enum dwarf_array_dim_ordering |
| read_array_order (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_ordering, cu); |
| |
| if (attr != nullptr) |
| { |
| LONGEST val = attr->constant_value (-1); |
| if (val == DW_ORD_row_major || val == DW_ORD_col_major) |
| return (enum dwarf_array_dim_ordering) val; |
| } |
| |
| /* GNU F77 is a special case, as at 08/2004 array type info is the |
| opposite order to the dwarf2 specification, but data is still |
| laid out as per normal fortran. |
| |
| FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need |
| version checking. */ |
| |
| if (cu->lang () == language_fortran && cu->producer_is_gf77 ()) |
| { |
| return DW_ORD_row_major; |
| } |
| |
| switch (cu->language_defn->array_ordering ()) |
| { |
| case array_column_major: |
| return DW_ORD_col_major; |
| case array_row_major: |
| default: |
| return DW_ORD_row_major; |
| }; |
| } |
| |
| /* Extract all information from a DW_TAG_set_type DIE and put it in |
| the DIE's type field. */ |
| |
| static struct type * |
| read_set_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *domain_type, *set_type; |
| struct attribute *attr; |
| |
| domain_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| set_type = get_die_type (die, cu); |
| if (set_type) |
| return set_type; |
| |
| type_allocator alloc (cu->per_objfile->objfile, cu->lang ()); |
| set_type = create_set_type (alloc, domain_type); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| set_type->set_length (attr->as_unsigned ()); |
| |
| maybe_set_alignment (cu, die, set_type); |
| |
| return set_die_type (die, set_type, cu); |
| } |
| |
| /* A helper for read_common_block that creates a locexpr baton. |
| SYM is the symbol which we are marking as computed. |
| COMMON_DIE is the DIE for the common block. |
| COMMON_LOC is the location expression attribute for the common |
| block itself. |
| MEMBER_LOC is the location expression attribute for the particular |
| member of the common block that we are processing. |
| CU is the CU from which the above come. */ |
| |
| static void |
| mark_common_block_symbol_computed (struct symbol *sym, |
| struct die_info *common_die, |
| struct attribute *common_loc, |
| struct attribute *member_loc, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_locexpr_baton *baton; |
| gdb_byte *ptr; |
| unsigned int cu_off; |
| enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ()); |
| LONGEST offset = 0; |
| |
| gdb_assert (common_loc && member_loc); |
| gdb_assert (common_loc->form_is_block ()); |
| gdb_assert (member_loc->form_is_block () |
| || member_loc->form_is_constant ()); |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| baton->per_objfile = per_objfile; |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| |
| baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */; |
| |
| if (member_loc->form_is_constant ()) |
| { |
| offset = member_loc->constant_value (0); |
| baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size; |
| } |
| else |
| baton->size += member_loc->as_block ()->size; |
| |
| ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size); |
| baton->data = ptr; |
| |
| *ptr++ = DW_OP_call4; |
| cu_off = common_die->sect_off - cu->per_cu->sect_off; |
| store_unsigned_integer (ptr, 4, byte_order, cu_off); |
| ptr += 4; |
| |
| if (member_loc->form_is_constant ()) |
| { |
| *ptr++ = DW_OP_addr; |
| store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset); |
| ptr += cu->header.addr_size; |
| } |
| else |
| { |
| /* We have to copy the data here, because DW_OP_call4 will only |
| use a DW_AT_location attribute. */ |
| struct dwarf_block *block = member_loc->as_block (); |
| memcpy (ptr, block->data, block->size); |
| ptr += block->size; |
| } |
| |
| *ptr++ = DW_OP_plus; |
| gdb_assert (ptr - baton->data == baton->size); |
| |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| sym->set_aclass_index (dwarf2_locexpr_index); |
| } |
| |
| /* Create appropriate locally-scoped variables for all the |
| DW_TAG_common_block entries. Also create a struct common_block |
| listing all such variables for `info common'. COMMON_BLOCK_DOMAIN |
| is used to separate the common blocks name namespace from regular |
| variable names. */ |
| |
| static void |
| read_common_block (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| /* Support the .debug_loc offsets. */ |
| if (attr->form_is_block ()) |
| { |
| /* Ok. */ |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| attr = NULL; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "common block member"); |
| attr = NULL; |
| } |
| } |
| |
| if (die->child != NULL) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct die_info *child_die; |
| size_t n_entries = 0, size; |
| struct common_block *common_block; |
| struct symbol *sym; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = child_die->sibling) |
| ++n_entries; |
| |
| size = (sizeof (struct common_block) |
| + (n_entries - 1) * sizeof (struct symbol *)); |
| common_block |
| = (struct common_block *) obstack_alloc (&objfile->objfile_obstack, |
| size); |
| memset (common_block->contents, 0, n_entries * sizeof (struct symbol *)); |
| common_block->n_entries = 0; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = child_die->sibling) |
| { |
| /* Create the symbol in the DW_TAG_common_block block in the current |
| symbol scope. */ |
| sym = new_symbol (child_die, NULL, cu); |
| if (sym != NULL) |
| { |
| struct attribute *member_loc; |
| |
| common_block->contents[common_block->n_entries++] = sym; |
| |
| member_loc = dwarf2_attr (child_die, DW_AT_data_member_location, |
| cu); |
| if (member_loc) |
| { |
| /* GDB has handled this for a long time, but it is |
| not specified by DWARF. It seems to have been |
| emitted by gfortran at least as recently as: |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */ |
| complaint (_("Variable in common block has " |
| "DW_AT_data_member_location " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (child_die->sect_off), |
| objfile_name (objfile)); |
| |
| if (member_loc->form_is_section_offset ()) |
| dwarf2_complex_location_expr_complaint (); |
| else if (member_loc->form_is_constant () |
| || member_loc->form_is_block ()) |
| { |
| if (attr != nullptr) |
| mark_common_block_symbol_computed (sym, die, attr, |
| member_loc, cu); |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| } |
| } |
| } |
| |
| sym = new_symbol (die, builtin_type (objfile)->builtin_void, cu); |
| sym->set_value_common_block (common_block); |
| } |
| } |
| |
| /* Create a type for a C++ namespace. */ |
| |
| static struct type * |
| read_namespace_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| const char *previous_prefix, *name; |
| int is_anonymous; |
| struct type *type; |
| |
| /* For extensions, reuse the type of the original namespace. */ |
| if (dwarf2_attr (die, DW_AT_extension, cu) != NULL) |
| { |
| struct die_info *ext_die; |
| struct dwarf2_cu *ext_cu = cu; |
| |
| ext_die = dwarf2_extension (die, &ext_cu); |
| type = read_type_die (ext_die, ext_cu); |
| |
| /* EXT_CU may not be the same as CU. |
| Ensure TYPE is recorded with CU in die_type_hash. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| name = namespace_name (die, &is_anonymous, cu); |
| |
| /* Now build the name of the current namespace. */ |
| |
| previous_prefix = determine_prefix (die, cu); |
| gdb::unique_xmalloc_ptr<char> name_storage; |
| if (previous_prefix[0] != '\0') |
| { |
| name_storage = typename_concat (previous_prefix, name, 0, cu); |
| name = name_storage.get (); |
| } |
| |
| /* Create the type. */ |
| type = type_allocator (objfile, cu->lang ()).new_type (TYPE_CODE_NAMESPACE, |
| 0, name); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a namespace scope. */ |
| |
| static void |
| read_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| int is_anonymous; |
| |
| /* Add a symbol associated to this if we haven't seen the namespace |
| before. Also, add a using directive if it's an anonymous |
| namespace. */ |
| |
| if (dwarf2_attr (die, DW_AT_extension, cu) == NULL) |
| { |
| struct type *type; |
| |
| type = read_type_die (die, cu); |
| new_symbol (die, type, cu); |
| |
| namespace_name (die, &is_anonymous, cu); |
| if (is_anonymous) |
| { |
| const char *previous_prefix = determine_prefix (die, cu); |
| |
| std::vector<const char *> excludes; |
| add_using_directive (using_directives (cu), |
| previous_prefix, type->name (), NULL, |
| NULL, excludes, |
| read_decl_line (die, cu), |
| &objfile->objfile_obstack); |
| } |
| } |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| } |
| |
| /* Read a Fortran module or Ada package as type. For Fortran, This |
| DIE can be only a declaration used for imported module. Still we |
| need that type as local Fortran "use ... only" declaration imports |
| depend on the created type in determine_prefix. */ |
| |
| static struct type * |
| read_module_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| enum language lang = cu->lang (); |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct type *type; |
| |
| if (lang == language_ada) |
| { |
| const char *pkg_name = dwarf2_full_name (nullptr, die, cu); |
| type = type_allocator (objfile, lang).new_type (TYPE_CODE_NAMESPACE, |
| 0, pkg_name); |
| } |
| else |
| { |
| const char *module_name = dwarf2_name (die, cu); |
| type = type_allocator (objfile, lang).new_type (TYPE_CODE_MODULE, |
| 0, module_name); |
| } |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a module. This tag is used by Fortran (for modules), but also |
| by Ada (for packages). */ |
| |
| static void |
| read_module (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die = die->child; |
| struct type *type; |
| |
| type = read_type_die (die, cu); |
| new_symbol (die, type, cu); |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = child_die->sibling; |
| } |
| } |
| |
| /* Return the name of the namespace represented by DIE. Set |
| *IS_ANONYMOUS to tell whether or not the namespace is an anonymous |
| namespace. */ |
| |
| static const char * |
| namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu) |
| { |
| struct die_info *current_die; |
| const char *name = NULL; |
| |
| /* Loop through the extensions until we find a name. */ |
| |
| for (current_die = die; |
| current_die != NULL; |
| current_die = dwarf2_extension (die, &cu)) |
| { |
| /* We don't use dwarf2_name here so that we can detect the absence |
| of a name -> anonymous namespace. */ |
| name = dwarf2_string_attr (die, DW_AT_name, cu); |
| |
| if (name != NULL) |
| break; |
| } |
| |
| /* Is it an anonymous namespace? */ |
| |
| *is_anonymous = (name == NULL); |
| if (*is_anonymous) |
| name = CP_ANONYMOUS_NAMESPACE_STR; |
| |
| return name; |
| } |
| |
| /* Extract all information from a DW_TAG_pointer_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct gdbarch *gdbarch = cu->per_objfile->objfile->arch (); |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type; |
| struct attribute *attr_byte_size; |
| struct attribute *attr_address_class; |
| int byte_size, addr_class; |
| struct type *target_type; |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_pointer_type (target_type); |
| |
| attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr_byte_size) |
| byte_size = attr_byte_size->constant_value (cu_header->addr_size); |
| else |
| byte_size = cu_header->addr_size; |
| |
| attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu); |
| if (attr_address_class) |
| addr_class = attr_address_class->constant_value (DW_ADDR_none); |
| else |
| addr_class = DW_ADDR_none; |
| |
| ULONGEST alignment = get_alignment (cu, die); |
| |
| /* If the pointer size, alignment, or address class is different |
| than the default, create a type variant marked as such and set |
| the length accordingly. */ |
| if (type->length () != byte_size |
| || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0 |
| && alignment != TYPE_RAW_ALIGN (type)) |
| || addr_class != DW_ADDR_none) |
| { |
| if (gdbarch_address_class_type_flags_p (gdbarch)) |
| { |
| type_instance_flags type_flags |
| = gdbarch_address_class_type_flags (gdbarch, byte_size, |
| addr_class); |
| gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
| == 0); |
| type = make_type_with_address_space (type, type_flags); |
| } |
| else if (type->length () != byte_size) |
| { |
| complaint (_("invalid pointer size %d"), byte_size); |
| } |
| else if (TYPE_RAW_ALIGN (type) != alignment) |
| { |
| complaint (_("Invalid DW_AT_alignment" |
| " - DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| else |
| { |
| /* Should we also complain about unhandled address classes? */ |
| } |
| } |
| |
| type->set_length (byte_size); |
| set_type_align (type, alignment); |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| struct type *to_type; |
| struct type *domain; |
| |
| to_type = die_type (die, cu); |
| domain = die_containing_type (die, cu); |
| |
| /* The calls above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| if (check_typedef (to_type)->code () == TYPE_CODE_METHOD) |
| type = lookup_methodptr_type (to_type); |
| else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC) |
| { |
| struct type *new_type |
| = type_allocator (cu->per_objfile->objfile, cu->lang ()).new_type (); |
| |
| smash_to_method_type (new_type, domain, to_type->target_type (), |
| to_type->fields (), to_type->num_fields (), |
| to_type->has_varargs ()); |
| type = lookup_methodptr_type (new_type); |
| } |
| else |
| type = lookup_memberptr_type (to_type, domain); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu, |
| enum type_code refcode) |
| { |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type, *target_type; |
| struct attribute *attr; |
| |
| gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF); |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_reference_type (target_type, refcode); |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| type->set_length (attr->constant_value (cu_header->addr_size)); |
| else |
| type->set_length (cu_header->addr_size); |
| |
| maybe_set_alignment (cu, die, type); |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Add the given cv-qualifiers to the element type of the array. GCC |
| outputs DWARF type qualifiers that apply to an array, not the |
| element type. But GDB relies on the array element type to carry |
| the cv-qualifiers. This mimics section 6.7.3 of the C99 |
| specification. */ |
| |
| static struct type * |
| add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu, |
| struct type *base_type, int cnst, int voltl) |
| { |
| struct type *el_type, *inner_array; |
| |
| base_type = copy_type (base_type); |
| inner_array = base_type; |
| |
| while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY) |
| { |
| inner_array->set_target_type (copy_type (inner_array->target_type ())); |
| inner_array = inner_array->target_type (); |
| } |
| |
| el_type = inner_array->target_type (); |
| cnst |= TYPE_CONST (el_type); |
| voltl |= TYPE_VOLATILE (el_type); |
| inner_array->set_target_type (make_cv_type (cnst, voltl, el_type, NULL)); |
| |
| return set_die_type (die, base_type, cu); |
| } |
| |
| static struct type * |
| read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| /* In case the const qualifier is applied to an array type, the element type |
| is so qualified, not the array type (section 6.7.3 of C99). */ |
| if (base_type->code () == TYPE_CODE_ARRAY) |
| return add_array_cv_type (die, cu, base_type, 1, 0); |
| |
| cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| static struct type * |
| read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| /* In case the volatile qualifier is applied to an array type, the |
| element type is so qualified, not the array type (section 6.7.3 |
| of C99). */ |
| if (base_type->code () == TYPE_CODE_ARRAY) |
| return add_array_cv_type (die, cu, base_type, 0, 1); |
| |
| cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Handle DW_TAG_restrict_type. */ |
| |
| static struct type * |
| read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| cv_type = make_restrict_type (base_type); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Handle DW_TAG_atomic_type. */ |
| |
| static struct type * |
| read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| cv_type = make_atomic_type (base_type); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_string_type DIE and add to |
| the user defined type vector. It isn't really a user defined type, |
| but it behaves like one, with other DIE's using an AT_user_def_type |
| attribute to reference it. */ |
| |
| static struct type * |
| read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| struct type *type, *range_type, *index_type, *char_type; |
| struct attribute *attr; |
| struct dynamic_prop prop; |
| bool length_is_constant = true; |
| LONGEST length; |
| |
| /* There are a couple of places where bit sizes might be made use of |
| when parsing a DW_TAG_string_type, however, no producer that we know |
| of make use of these. Handling bit sizes that are a multiple of the |
| byte size is easy enough, but what about other bit sizes? Lets deal |
| with that problem when we have to. Warn about these attributes being |
| unsupported, then parse the type and ignore them like we always |
| have. */ |
| if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr |
| || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr) |
| { |
| static bool warning_printed = false; |
| if (!warning_printed) |
| { |
| warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not " |
| "currently supported on DW_TAG_string_type.")); |
| warning_printed = true; |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_string_length, cu); |
| if (attr != nullptr && !attr->form_is_constant ()) |
| { |
| /* The string length describes the location at which the length of |
| the string can be found. The size of the length field can be |
| specified with one of the attributes below. */ |
| struct type *prop_type; |
| struct attribute *len |
| = dwarf2_attr (die, DW_AT_string_length_byte_size, cu); |
| if (len == nullptr) |
| len = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (len != nullptr && len->form_is_constant ()) |
| { |
| /* Pass 0 as the default as we know this attribute is constant |
| and the default value will not be returned. */ |
| LONGEST sz = len->constant_value (0); |
| prop_type = objfile_int_type (objfile, sz, true); |
| } |
| else |
| { |
| /* If the size is not specified then we assume it is the size of |
| an address on this target. */ |
| prop_type = cu->addr_sized_int_type (true); |
| } |
| |
| /* Convert the attribute into a dynamic property. */ |
| if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| length = 1; |
| else |
| length_is_constant = false; |
| } |
| else if (attr != nullptr) |
| { |
| /* This DW_AT_string_length just contains the length with no |
| indirection. There's no need to create a dynamic property in this |
| case. Pass 0 for the default value as we know it will not be |
| returned in this case. */ |
| length = attr->constant_value (0); |
| } |
| else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr) |
| { |
| /* We don't currently support non-constant byte sizes for strings. */ |
| length = attr->constant_value (1); |
| } |
| else |
| { |
| /* Use 1 as a fallback length if we have nothing else. */ |
| length = 1; |
| } |
| |
| index_type = builtin_type (objfile)->builtin_int; |
| type_allocator alloc (objfile, cu->lang ()); |
| if (length_is_constant) |
| range_type = create_static_range_type (alloc, index_type, 1, length); |
| else |
| { |
| struct dynamic_prop low_bound; |
| |
| low_bound.set_const_val (1); |
| range_type = create_range_type (alloc, index_type, &low_bound, &prop, 0); |
| } |
| char_type = language_string_char_type (cu->language_defn, gdbarch); |
| type = create_string_type (alloc, char_type, range_type); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Assuming that DIE corresponds to a function, returns nonzero |
| if the function is prototyped. */ |
| |
| static int |
| prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_prototyped, cu); |
| if (attr && attr->as_boolean ()) |
| return 1; |
| |
| /* The DWARF standard implies that the DW_AT_prototyped attribute |
| is only meaningful for C, but the concept also extends to other |
| languages that allow unprototyped functions (Eg: Objective C). |
| For all other languages, assume that functions are always |
| prototyped. */ |
| if (cu->lang () != language_c |
| && cu->lang () != language_objc |
| && cu->lang () != language_opencl) |
| return 1; |
| |
| /* RealView does not emit DW_AT_prototyped. We can not distinguish |
| prototyped and unprototyped functions; default to prototyped, |
| since that is more common in modern code (and RealView warns |
| about unprototyped functions). */ |
| if (cu->producer_is_realview ()) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Handle DIES due to C code like: |
| |
| struct foo |
| { |
| int (*funcp)(int a, long l); |
| int b; |
| }; |
| |
| ('funcp' generates a DW_TAG_subroutine_type DIE). */ |
| |
| static struct type * |
| read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct type *type; /* Type that this function returns. */ |
| struct type *ftype; /* Function that returns above type. */ |
| struct attribute *attr; |
| |
| type = die_type (die, cu); |
| |
| /* PR gas/29517 occurs in 2.39, and is fixed in 2.40, but it's only fixed |
| for dwarf version >= 3 which supports DW_TAG_unspecified_type. */ |
| if (type->code () == TYPE_CODE_VOID |
| && !type->is_stub () |
| && die->child == nullptr |
| && (cu->header.version == 2 || cu->producer_is_gas_2_39 ())) |
| { |
| /* Work around PR gas/29517, pretend we have an DW_TAG_unspecified_type |
| return type. */ |
| type = (type_allocator (cu->per_objfile->objfile, cu->lang ()) |
| .new_type (TYPE_CODE_VOID, 0, nullptr)); |
| type->set_is_stub (true); |
| } |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| ftype = get_die_type (die, cu); |
| if (ftype) |
| return ftype; |
| |
| ftype = lookup_function_type (type); |
| |
| if (prototyped_function_p (die, cu)) |
| ftype->set_is_prototyped (true); |
| |
| /* Store the calling convention in the type if it's available in |
| the subroutine die. Otherwise set the calling convention to |
| the default value DW_CC_normal. */ |
| attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| if (attr != nullptr |
| && is_valid_DW_AT_calling_convention_for_subroutine (attr->constant_value (0))) |
| TYPE_CALLING_CONVENTION (ftype) |
| = (enum dwarf_calling_convention) attr->constant_value (0); |
| else if (cu->producer_is_xlc_opencl ()) |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL; |
| else |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal; |
| |
| /* Record whether the function returns normally to its caller or not |
| if the DWARF producer set that information. */ |
| attr = dwarf2_attr (die, DW_AT_noreturn, cu); |
| if (attr && attr->as_boolean ()) |
| TYPE_NO_RETURN (ftype) = 1; |
| |
| /* We need to add the subroutine type to the die immediately so |
| we don't infinitely recurse when dealing with parameters |
| declared as the same subroutine type. */ |
| set_die_type (die, ftype, cu); |
| |
| if (die->child != NULL) |
| { |
| struct type *void_type = builtin_type (objfile)->builtin_void; |
| struct die_info *child_die; |
| int nparams, iparams; |
| |
| /* Count the number of parameters. |
| FIXME: GDB currently ignores vararg functions, but knows about |
| vararg member functions. */ |
| nparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| nparams++; |
| else if (child_die->tag == DW_TAG_unspecified_parameters) |
| ftype->set_has_varargs (true); |
| |
| child_die = child_die->sibling; |
| } |
| |
| /* Allocate storage for parameters and fill them in. */ |
| ftype->alloc_fields (nparams); |
| |
| /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it |
| even if we error out during the parameters reading below. */ |
| for (iparams = 0; iparams < nparams; iparams++) |
| ftype->field (iparams).set_type (void_type); |
| |
| iparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| { |
| struct type *arg_type; |
| |
| /* DWARF version 2 has no clean way to discern C++ |
| static and non-static member functions. G++ helps |
| GDB by marking the first parameter for non-static |
| member functions (which is the this pointer) as |
| artificial. We pass this information to |
| dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. |
| |
| DWARF version 3 added DW_AT_object_pointer, which GCC |
| 4.5 does not yet generate. */ |
| attr = dwarf2_attr (child_die, DW_AT_artificial, cu); |
| if (attr != nullptr) |
| ftype->field (iparams).set_is_artificial (attr->as_boolean ()); |
| else |
| ftype->field (iparams).set_is_artificial (false); |
| arg_type = die_type (child_die, cu); |
| |
| /* RealView does not mark THIS as const, which the testsuite |
| expects. GCC marks THIS as const in method definitions, |
| but not in the class specifications (GCC PR 43053). */ |
| if (cu->lang () == language_cplus |
| && !TYPE_CONST (arg_type) |
| && ftype->field (iparams).is_artificial ()) |
| { |
| int is_this = 0; |
| struct dwarf2_cu *arg_cu = cu; |
| const char *name = dwarf2_name (child_die, cu); |
| |
| attr = dwarf2_attr (die, DW_AT_object_pointer, cu); |
| if (attr != nullptr) |
| { |
| /* If the compiler emits this, use it. */ |
| if (follow_die_ref (die, attr, &arg_cu) == child_die) |
| is_this = 1; |
| } |
| else if (name && strcmp (name, "this") == 0) |
| /* Function definitions will have the argument names. */ |
| is_this = 1; |
| else if (name == NULL && iparams == 0) |
| /* Declarations may not have the names, so like |
| elsewhere in GDB, assume an artificial first |
| argument is "this". */ |
| is_this = 1; |
| |
| if (is_this) |
| arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type), |
| arg_type, 0); |
| } |
| |
| ftype->field (iparams).set_type (arg_type); |
| iparams++; |
| } |
| child_die = child_die->sibling; |
| } |
| } |
| |
| return ftype; |
| } |
| |
| static struct type * |
| read_typedef (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| const char *name = dwarf2_full_name (NULL, die, cu); |
| struct type *this_type; |
| struct gdbarch *gdbarch = objfile->arch (); |
| struct type *target_type = die_type (die, cu); |
| |
| if (gdbarch_dwarf2_omit_typedef_p (gdbarch, target_type, |
| cu->get_producer (), name)) |
| { |
| /* The long double is defined as a base type in C. GCC creates a long |
| double typedef with target-type _Float128 for the long double to |
| identify it as the IEEE Float128 value. This is a GCC hack since the |
| DWARF doesn't distinguish between the IBM long double and IEEE |
| 128-bit float. Replace the GCC workaround for the long double |
| typedef with the actual type information copied from the target-type |
| with the correct long double base type name. */ |
| this_type = copy_type (target_type); |
| this_type->set_name (name); |
| set_die_type (die, this_type, cu); |
| return this_type; |
| } |
| |
| type_allocator alloc (objfile, cu->lang ()); |
| this_type = alloc.new_type (TYPE_CODE_TYPEDEF, 0, name); |
| this_type->set_target_is_stub (true); |
| set_die_type (die, this_type, cu); |
| if (target_type != this_type) |
| this_type->set_target_type (target_type); |
| else |
| { |
| /* Self-referential typedefs are, it seems, not allowed by the DWARF |
| spec and cause infinite loops in GDB. */ |
| complaint (_("Self-referential DW_TAG_typedef " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), objfile_name (objfile)); |
| this_type->set_target_type (nullptr); |
| } |
| if (name == NULL) |
| { |
| /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates |
| anonymous typedefs, which is, strictly speaking, invalid DWARF. |
| Handle these by just returning the target type, rather than |
| constructing an anonymous typedef type and trying to handle this |
| elsewhere. */ |
| set_die_type (die, target_type, cu); |
| return target_type; |
| } |
| return this_type; |
| } |
| |
| /* Helper for get_dwarf2_rational_constant that computes the value of |
| a given gmp_mpz given an attribute. */ |
| |
| static void |
| get_mpz (struct dwarf2_cu *cu, gdb_mpz *value, struct attribute *attr) |
| { |
| /* GCC will sometimes emit a 16-byte constant value as a DWARF |
| location expression that pushes an implicit value. */ |
| if (attr->form == DW_FORM_exprloc) |
| { |
| dwarf_block *blk = attr->as_block (); |
| if (blk->size > 0 && blk->data[0] == DW_OP_implicit_value) |
| { |
| uint64_t len; |
| const gdb_byte *ptr = safe_read_uleb128 (blk->data + 1, |
| blk->data + blk->size, |
| &len); |
| if (ptr - blk->data + len <= blk->size) |
| { |
| value->read (gdb::make_array_view (ptr, len), |
| bfd_big_endian (cu->per_objfile->objfile->obfd.get ()) |
| ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE, |
| true); |
| return; |
| } |
| } |
| |
| /* On failure set it to 1. */ |
| *value = gdb_mpz (1); |
| } |
| else if (attr->form_is_block ()) |
| { |
| dwarf_block *blk = attr->as_block (); |
| value->read (gdb::make_array_view (blk->data, blk->size), |
| bfd_big_endian (cu->per_objfile->objfile->obfd.get ()) |
| ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE, |
| true); |
| } |
| else if (attr->form_is_unsigned ()) |
| *value = gdb_mpz (attr->as_unsigned ()); |
| else |
| *value = gdb_mpz (attr->constant_value (1)); |
| } |
| |
| /* Assuming DIE is a rational DW_TAG_constant, read the DIE's |
| numerator and denominator into NUMERATOR and DENOMINATOR (resp). |
| |
| If the numerator and/or numerator attribute is missing, |
| a complaint is filed, and NUMERATOR and DENOMINATOR are left |
| untouched. */ |
| |
| static void |
| get_dwarf2_rational_constant (struct die_info *die, struct dwarf2_cu *cu, |
| gdb_mpz *numerator, gdb_mpz *denominator) |
| { |
| struct attribute *num_attr, *denom_attr; |
| |
| num_attr = dwarf2_attr (die, DW_AT_GNU_numerator, cu); |
| if (num_attr == nullptr) |
| complaint (_("DW_AT_GNU_numerator missing in %s DIE at %s"), |
| dwarf_tag_name (die->tag), sect_offset_str (die->sect_off)); |
| |
| denom_attr = dwarf2_attr (die, DW_AT_GNU_denominator, cu); |
| if (denom_attr == nullptr) |
| complaint (_("DW_AT_GNU_denominator missing in %s DIE at %s"), |
| dwarf_tag_name (die->tag), sect_offset_str (die->sect_off)); |
| |
| if (num_attr == nullptr || denom_attr == nullptr) |
| return; |
| |
| get_mpz (cu, numerator, num_attr); |
| get_mpz (cu, denominator, denom_attr); |
| } |
| |
| /* Same as get_dwarf2_rational_constant, but extracting an unsigned |
| rational constant, rather than a signed one. |
| |
| If the rational constant has a negative value, a complaint |
| is filed, and NUMERATOR and DENOMINATOR are left untouched. */ |
| |
| static void |
| get_dwarf2_unsigned_rational_constant (struct die_info *die, |
| struct dwarf2_cu *cu, |
| gdb_mpz *numerator, |
| gdb_mpz *denominator) |
| { |
| gdb_mpz num (1); |
| gdb_mpz denom (1); |
| |
| get_dwarf2_rational_constant (die, cu, &num, &denom); |
| if (num < 0 && denom < 0) |
| { |
| num.negate (); |
| denom.negate (); |
| } |
| else if (num < 0) |
| { |
| complaint (_("unexpected negative value for DW_AT_GNU_numerator" |
| " in DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| return; |
| } |
| else if (denom < 0) |
| { |
| complaint (_("unexpected negative value for DW_AT_GNU_denominator" |
| " in DIE at %s"), |
| sect_offset_str (die->sect_off)); |
| return; |
| } |
| |
| *numerator = std::move (num); |
| *denominator = std::move (denom); |
| } |
| |
| /* Assuming that ENCODING is a string whose contents starting at the |
| K'th character is "_nn" where "nn" is a decimal number, scan that |
| number and set RESULT to the value. K is updated to point to the |
| character immediately following the number. |
| |
| If the string does not conform to the format described above, false |
| is returned, and K may or may not be changed. */ |
| |
| static bool |
| ada_get_gnat_encoded_number (const char *encoding, int &k, gdb_mpz *result) |
| { |
| /* The next character should be an underscore ('_') followed |
| by a digit. */ |
| if (encoding[k] != '_' || !isdigit (encoding[k + 1])) |
| return false; |
| |
| /* Skip the underscore. */ |
| k++; |
| int start = k; |
| |
| /* Determine the number of digits for our number. */ |
| while (isdigit (encoding[k])) |
| k++; |
| if (k == start) |
| return false; |
| |
| std::string copy (&encoding[start], k - start); |
| return result->set (copy.c_str (), 10); |
| } |
| |
| /* Scan two numbers from ENCODING at OFFSET, assuming the string is of |
| the form _NN_DD, where NN and DD are decimal numbers. Set NUM and |
| DENOM, update OFFSET, and return true on success. Return false on |
| failure. */ |
| |
| static bool |
| ada_get_gnat_encoded_ratio (const char *encoding, int &offset, |
| gdb_mpz *num, gdb_mpz *denom) |
| { |
| if (!ada_get_gnat_encoded_number (encoding, offset, num)) |
| return false; |
| return ada_get_gnat_encoded_number (encoding, offset, denom); |
| } |
| |
| /* Assuming DIE corresponds to a fixed point type, finish the creation |
| of the corresponding TYPE by setting its type-specific data. CU is |
| the DIE's CU. SUFFIX is the "XF" type name suffix coming from GNAT |
| encodings. It is nullptr if the GNAT encoding should be |
| ignored. */ |
| |
| static void |
| finish_fixed_point_type (struct type *type, const char *suffix, |
| struct die_info *die, struct dwarf2_cu *cu) |
| { |
| gdb_assert (type->code () == TYPE_CODE_FIXED_POINT |
| && TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FIXED_POINT); |
| |
| /* If GNAT encodings are preferred, don't examine the |
| attributes. */ |
| struct attribute *attr = nullptr; |
| if (suffix == nullptr) |
| { |
| attr = dwarf2_attr (die, DW_AT_binary_scale, cu); |
| if (attr == nullptr) |
| attr = dwarf2_attr (die, DW_AT_decimal_scale, cu); |
| if (attr == nullptr) |
| attr = dwarf2_attr (die, DW_AT_small, cu); |
| } |
| |
| /* Numerator and denominator of our fixed-point type's scaling factor. |
| The default is a scaling factor of 1, which we use as a fallback |
| when we are not able to decode it (problem with the debugging info, |
| unsupported forms, bug in GDB, etc...). Using that as the default |
| allows us to at least print the unscaled value, which might still |
| be useful to a user. */ |
| gdb_mpz scale_num (1); |
| gdb_mpz scale_denom (1); |
| |
| if (attr == nullptr) |
| { |
| int offset = 0; |
| if (suffix != nullptr |
| && ada_get_gnat_encoded_ratio (suffix, offset, &scale_num, |
| &scale_denom) |
| /* The number might be encoded as _nn_dd_nn_dd, where the |
| second ratio is the 'small value. In this situation, we |
| want the second value. */ |
| && (suffix[offset] != '_' |
| || ada_get_gnat_encoded_ratio (suffix, offset, &scale_num, |
| &scale_denom))) |
| { |
| /* Found it. */ |
| } |
| else |
| { |
| /* Scaling factor not found. Assume a scaling factor of 1, |
| and hope for the best. At least the user will be able to |
| see the encoded value. */ |
| scale_num = 1; |
| scale_denom = 1; |
| complaint (_("no scale found for fixed-point type (DIE at %s)"), |
| sect_offset_str (die->sect_off)); |
| } |
| } |
| else if (attr->name == DW_AT_binary_scale) |
| { |
| LONGEST scale_exp = attr->constant_value (0); |
| gdb_mpz &num_or_denom = scale_exp > 0 ? scale_num : scale_denom; |
| |
| num_or_denom <<= std::abs (scale_exp); |
| } |
| else if (attr->name == DW_AT_decimal_scale) |
| { |
| LONGEST scale_exp = attr->constant_value (0); |
| gdb_mpz &num_or_denom = scale_exp > 0 ? scale_num : scale_denom; |
| |
| num_or_denom = gdb_mpz::pow (10, std::abs (scale_exp)); |
| } |
| else if (attr->name == DW_AT_small) |
| { |
| struct die_info *scale_die; |
| struct dwarf2_cu *scale_cu = cu; |
| |
| scale_die = follow_die_ref (die, attr, &scale_cu); |
| if (scale_die->tag == DW_TAG_constant) |
| get_dwarf2_unsigned_rational_constant (scale_die, scale_cu, |
| &scale_num, &scale_denom); |
| else |
| complaint (_("%s DIE not supported as target of DW_AT_small attribute" |
| " (DIE at %s)"), |
| dwarf_tag_name (die->tag), sect_offset_str (die->sect_off)); |
| } |
| else |
| { |
| complaint (_("unsupported scale attribute %s for fixed-point type" |
| " (DIE at %s)"), |
| dwarf_attr_name (attr->name), |
| sect_offset_str (die->sect_off)); |
| } |
| |
| type->fixed_point_info ().scaling_factor = gdb_mpq (scale_num, scale_denom); |
| } |
| |
| /* The gnat-encoding suffix for fixed point. */ |
| |
| #define GNAT_FIXED_POINT_SUFFIX "___XF_" |
| |
| /* If NAME encodes an Ada fixed-point type, return a pointer to the |
| "XF" suffix of the name. The text after this is what encodes the |
| 'small and 'delta information. Otherwise, return nullptr. */ |
| |
| static const char * |
| gnat_encoded_fixed_point_type_info (const char *name) |
| { |
| return strstr (name, GNAT_FIXED_POINT_SUFFIX); |
| } |
| |
| /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT |
| (which may be different from NAME) to the architecture back-end to allow |
| it to guess the correct format if necessary. */ |
| |
| static struct type * |
| dwarf2_init_float_type (struct dwarf2_cu *cu, int bits, const char *name, |
| const char *name_hint, enum bfd_endian byte_order) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct gdbarch *gdbarch = objfile->arch (); |
| const struct floatformat **format; |
| struct type *type; |
| |
| type_allocator alloc (objfile, cu->lang ()); |
| format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits); |
| if (format) |
| type = init_float_type (alloc, bits, name, format, byte_order); |
| else |
| type = alloc.new_type (TYPE_CODE_ERROR, bits, name); |
| |
| return type; |
| } |
| |
| /* Allocate an integer type of size BITS and name NAME. */ |
| |
| static struct type * |
| dwarf2_init_integer_type (struct dwarf2_cu *cu, int bits, int unsigned_p, |
| const char *name) |
| { |
| struct type *type; |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| /* Versions of Intel's C Compiler generate an integer type called "void" |
| instead of using DW_TAG_unspecified_type. This has been seen on |
| at least versions 14, 17, and 18. */ |
| if (bits == 0 && cu->producer_is_icc () && name != nullptr |
| && strcmp (name, "void") == 0) |
| type = builtin_type (objfile)->builtin_void; |
| else |
| { |
| type_allocator alloc (objfile, cu->lang ()); |
| type = init_integer_type (alloc, bits, unsigned_p, name); |
| } |
| |
| return type; |
| } |
| |
| /* Return true if DIE has a DW_AT_small attribute whose value is |
| a constant rational, where both the numerator and denominator |
| are equal to zero. |
| |
| CU is the DIE's Compilation Unit. */ |
| |
| static bool |
| has_zero_over_zero_small_attribute (struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, DW_AT_small, cu); |
| if (attr == nullptr) |
| return false; |
| |
| struct dwarf2_cu *scale_cu = cu; |
| struct die_info *scale_die |
| = follow_die_ref (die, attr, &scale_cu); |
| |
| if (scale_die->tag != DW_TAG_constant) |
| return false; |
| |
| gdb_mpz num (1), denom (1); |
| get_dwarf2_rational_constant (scale_die, cu, &num, &denom); |
| return num == 0 && denom == 0; |
| } |
| |
| /* Initialise and return a floating point type of size BITS suitable for |
| use as a component of a complex number. The NAME_HINT is passed through |
| when initialising the floating point type and is the name of the complex |
| type. |
| |
| As DWARF doesn't currently provide an explicit name for the components |
| of a complex number, but it can be helpful to have these components |
| named, we try to select a suitable name based on the size of the |
| component. */ |
| static struct type * |
| dwarf2_init_complex_target_type (struct dwarf2_cu *cu, |
| int bits, const char *name_hint, |
| enum bfd_endian byte_order) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| gdbarch *gdbarch = objfile->arch (); |
| struct type *tt = nullptr; |
| |
| /* Try to find a suitable floating point builtin type of size BITS. |
| We're going to use the name of this type as the name for the complex |
| target type that we are about to create. */ |
| switch (cu->lang ()) |
| { |
| case language_fortran: |
| switch (bits) |
| { |
| case 32: |
| tt = builtin_f_type (gdbarch)->builtin_real; |
| break; |
| case 64: |
| tt = builtin_f_type (gdbarch)->builtin_real_s8; |
| break; |
| case 96: /* The x86-32 ABI specifies 96-bit long double. */ |
| case 128: |
| tt = builtin_f_type (gdbarch)->builtin_real_s16; |
| break; |
| } |
| break; |
| default: |
| switch (bits) |
| { |
| case 32: |
| tt = builtin_type (gdbarch)->builtin_float; |
| break; |
| case 64: |
| if (builtin_type (gdbarch)->builtin_long_double->length () == 8 |
| && name_hint != nullptr |
| && strstr (name_hint, "long") != nullptr) |
| { |
| /* Use "long double" for "complex long double". */ |
| tt = builtin_type (gdbarch)->builtin_long_double; |
| } |
| else |
| tt = builtin_type (gdbarch)->builtin_double; |
| break; |
| case 96: /* The x86-32 ABI specifies 96-bit long double. */ |
| case 128: |
| tt = builtin_type (gdbarch)->builtin_long_double; |
| break; |
| } |
| break; |
| } |
| |
| /* If the type we found doesn't match the size we were looking for, then |
| pretend we didn't find a type at all, the complex target type we |
| create will then be nameless. */ |
| if (tt != nullptr && tt->length () * TARGET_CHAR_BIT != bits) |
| tt = nullptr; |
| |
| const char *name = (tt == nullptr) ? nullptr : tt->name (); |
| return dwarf2_init_float_type (cu, bits, name, name_hint, byte_order); |
| } |
| |
| /* Find a representation of a given base type and install |
| it in the TYPE field of the die. */ |
| |
| static struct type * |
| read_base_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct type *type; |
| struct attribute *attr; |
| int encoding = 0, bits = 0; |
| const char *name; |
| |
| attr = dwarf2_attr (die, DW_AT_encoding, cu); |
| if (attr != nullptr && attr->form_is_constant ()) |
| encoding = attr->constant_value (0); |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| bits = attr->constant_value (0) * TARGET_CHAR_BIT; |
| name = dwarf2_full_name (nullptr, die, cu); |
| if (!name) |
| complaint (_("DW_AT_name missing from DW_TAG_base_type")); |
| |
| enum bfd_endian byte_order; |
| bool not_default = die_byte_order (die, cu, &byte_order); |
| |
| if ((encoding == DW_ATE_signed_fixed || encoding == DW_ATE_unsigned_fixed) |
| && cu->lang () == language_ada |
| && has_zero_over_zero_small_attribute (die, cu)) |
| { |
| /* brobecker/2018-02-24: This is a fixed point type for which |
| the scaling factor is represented as fraction whose value |
| does not make sense (zero divided by zero), so we should |
| normally never see these. However, there is a small category |
| of fixed point types for which GNAT is unable to provide |
| the scaling factor via the standard DWARF mechanisms, and |
| for which the info is provided via the GNAT encodings instead. |
| This is likely what this DIE is about. */ |
| encoding = (encoding == DW_ATE_signed_fixed |
| ? DW_ATE_signed |
| : DW_ATE_unsigned); |
| } |
| |
| /* With GNAT encodings, fixed-point information will be encoded in |
| the type name. Note that this can also occur with the above |
| zero-over-zero case, which is why this is a separate "if" rather |
| than an "else if". */ |
| const char *gnat_encoding_suffix = nullptr; |
| if ((encoding == DW_ATE_signed || encoding == DW_ATE_unsigned) |
| && cu->lang () == language_ada |
| && name != nullptr) |
| { |
| gnat_encoding_suffix = gnat_encoded_fixed_point_type_info (name); |
| if (gnat_encoding_suffix != nullptr) |
| { |
| gdb_assert (startswith (gnat_encoding_suffix, |
| GNAT_FIXED_POINT_SUFFIX)); |
| name = obstack_strndup (&cu->per_objfile->objfile->objfile_obstack, |
| name, gnat_encoding_suffix - name); |
| /* Use -1 here so that SUFFIX points at the "_" after the |
| "XF". */ |
| gnat_encoding_suffix += strlen (GNAT_FIXED_POINT_SUFFIX) - 1; |
| |
| encoding = (encoding == DW_ATE_signed |
| ? DW_ATE_signed_fixed |
| : DW_ATE_unsigned_fixed); |
| } |
| } |
| |
| type_allocator alloc (objfile, cu->lang ()); |
| switch (encoding) |
| { |
| case DW_ATE_address: |
| /* Turn DW_ATE_address into a void * pointer. */ |
| type = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL); |
| type = init_pointer_type (alloc, bits, name, type); |
| break; |
| case DW_ATE_boolean: |
| type = init_boolean_type (alloc, bits, 1, name); |
| break; |
| case DW_ATE_complex_float: |
| type = dwarf2_init_complex_target_type (cu, bits / 2, name, |
| byte_order); |
| if (type->code () == TYPE_CODE_ERROR) |
| { |
| if (name == nullptr) |
| { |
| struct obstack *obstack |
| = &cu->per_objfile->objfile->objfile_obstack; |
| name = obconcat (obstack, "_Complex ", type->name (), |
| nullptr); |
| } |
| type = alloc.new_type (TYPE_CODE_ERROR, bits, name); |
| } |
| else |
| type = init_complex_type (name, type); |
| break; |
| case DW_ATE_decimal_float: |
| type = init_decfloat_type (alloc, bits, name); |
| break; |
| case DW_ATE_float: |
| type = dwarf2_init_float_type (cu, bits, name, name, byte_order); |
| break; |
| case DW_ATE_signed: |
| type = dwarf2_init_integer_type (cu, bits, 0, name); |
| break; |
| case DW_ATE_unsigned: |
| if (cu->lang () == language_fortran |
| && name |
| && startswith (name, "character(")) |
| type = init_character_type (alloc, bits, 1, name); |
| else |
| type = dwarf2_init_integer_type (cu, bits, 1, name); |
| break; |
| case DW_ATE_signed_char: |
| if (cu->lang () == language_ada |
| || cu->lang () == language_m2 |
| || cu->lang () == language_pascal |
| || cu->lang () == language_fortran) |
| type = init_character_type (alloc, bits, 0, name); |
| else |
| type = dwarf2_init_integer_type (cu, bits, 0, name); |
| break; |
| case DW_ATE_unsigned_char: |
| if (cu->lang () == language_ada |
| || cu->lang () == language_m2 |
| || cu->lang () == language_pascal |
| || cu->lang () == language_fortran |
| || cu->lang () == language_rust) |
| type = init_character_type (alloc, bits, 1, name); |
| else |
| type = dwarf2_init_integer_type (cu, bits, 1, name); |
| break; |
| case DW_ATE_UTF: |
| { |
| type = init_character_type (alloc, bits, 1, name); |
| return set_die_type (die, type, cu); |
| } |
| break; |
| case DW_ATE_signed_fixed: |
| type = init_fixed_point_type (alloc, bits, 0, name); |
| finish_fixed_point_type (type, gnat_encoding_suffix, die, cu); |
| break; |
| case DW_ATE_unsigned_fixed: |
| type = init_fixed_point_type (alloc, bits, 1, name); |
| finish_fixed_point_type (type, gnat_encoding_suffix, die, cu); |
| break; |
| |
| default: |
| complaint (_("unsupported DW_AT_encoding: '%s'"), |
| dwarf_type_encoding_name (encoding)); |
| type = alloc.new_type (TYPE_CODE_ERROR, bits, name); |
| break; |
| } |
| |
| if (type->code () == TYPE_CODE_INT |
| && name != nullptr |
| && strcmp (name, "char") == 0) |
| type->set_has_no_signedness (true); |
| |
| maybe_set_alignment (cu, die, type); |
| |
| type->set_endianity_is_not_default (not_default); |
| |
| if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_INT) |
| { |
| attr = dwarf2_attr (die, DW_AT_bit_size, cu); |
| if (attr != nullptr && attr->form_is_constant ()) |
| { |
| unsigned real_bit_size = attr->constant_value (0); |
| if (real_bit_size >= 0 && real_bit_size <= 8 * type->length ()) |
| { |
| attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu); |
| /* Only use the attributes if they make sense together. */ |
| if (attr == nullptr |
| || (attr->form_is_constant () |
| && attr->constant_value (0) >= 0 |
| && (attr->constant_value (0) + real_bit_size |
| <= 8 * type->length ()))) |
| { |
| TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_size |
| = real_bit_size; |
| if (attr != nullptr) |
| TYPE_MAIN_TYPE (type)->type_specific.int_stuff.bit_offset |
| = attr->constant_value (0); |
| } |
| } |
| } |
| } |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* A helper function that returns the name of DIE, if it refers to a |
| variable declaration. */ |
| |
| static const char * |
| var_decl_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (die->tag != DW_TAG_variable) |
| return nullptr; |
| |
| attribute *attr = dwarf2_attr (die, DW_AT_declaration, cu); |
| if (attr == nullptr || !attr->as_boolean ()) |
| return nullptr; |
| |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr == nullptr) |
| return nullptr; |
| return attr->as_string (); |
| } |
| |
| /* Parse dwarf attribute if it's a block, reference or constant and put the |
| resulting value of the attribute into struct bound_prop. |
| Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */ |
| |
| static int |
| attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die, |
| struct dwarf2_cu *cu, struct dynamic_prop *prop, |
| struct type *default_type) |
| { |
| struct dwarf2_property_baton *baton; |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct obstack *obstack = &objfile->objfile_obstack; |
| |
| gdb_assert (default_type != NULL); |
| |
| if (attr == NULL || prop == NULL) |
| return 0; |
| |
| if (attr->form_is_block ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = default_type; |
| baton->locexpr.per_cu = cu->per_cu; |
| baton->locexpr.per_objfile = per_objfile; |
| |
| struct dwarf_block block; |
| if (attr->form == DW_FORM_data16) |
| { |
| size_t data_size = 16; |
| block.size = (data_size |
| + 2 /* Extra bytes for DW_OP and arg. */); |
| gdb_byte *data = XOBNEWVEC (obstack, gdb_byte, block.size); |
| data[0] = DW_OP_implicit_value; |
| data[1] = data_size; |
| memcpy (&data[2], attr->as_block ()->data, data_size); |
| block.data = data; |
| } |
| else |
| block = *attr->as_block (); |
| |
| baton->locexpr.size = block.size; |
| baton->locexpr.data = block.data; |
| switch (attr->name) |
| { |
| case DW_AT_string_length: |
| baton->locexpr.is_reference = true; |
| break; |
| default: |
| baton->locexpr.is_reference = false; |
| break; |
| } |
| |
| prop->set_locexpr (baton); |
| gdb_assert (prop->baton () != NULL); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die; |
| struct attribute *target_attr; |
| |
| target_die = follow_die_ref (die, attr, &target_cu); |
| target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu); |
| if (target_attr == NULL) |
| target_attr = dwarf2_attr (target_die, DW_AT_data_member_location, |
| target_cu); |
| if (target_attr == nullptr) |
| target_attr = dwarf2_attr (target_die, DW_AT_data_bit_offset, |
| target_cu); |
| if (target_attr == NULL) |
| { |
| const char *name = var_decl_name (target_die, target_cu); |
| if (name != nullptr) |
| { |
| prop->set_variable_name (name); |
| return 1; |
| } |
| return 0; |
| } |
| |
| switch (target_attr->name) |
| { |
| case DW_AT_location: |
| if (target_attr->form_is_section_offset ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = die_type (target_die, target_cu); |
| fill_in_loclist_baton (cu, &baton->loclist, target_attr); |
| prop->set_loclist (baton); |
| gdb_assert (prop->baton () != NULL); |
| } |
| else if (target_attr->form_is_block ()) |
| { |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = die_type (target_die, target_cu); |
| baton->locexpr.per_cu = cu->per_cu; |
| baton->locexpr.per_objfile = per_objfile; |
| struct dwarf_block *block = target_attr->as_block (); |
| baton->locexpr.size = block->size; |
| baton->locexpr.data = block->data; |
| baton->locexpr.is_reference = true; |
| prop->set_locexpr (baton); |
| gdb_assert (prop->baton () != NULL); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "dynamic property"); |
| return 0; |
| } |
| break; |
| case DW_AT_data_member_location: |
| case DW_AT_data_bit_offset: |
| { |
| LONGEST offset; |
| |
| if (!handle_member_location (target_die, target_cu, &offset)) |
| return 0; |
| |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = read_type_die (target_die->parent, |
| target_cu); |
| baton->offset_info.offset = offset; |
| baton->offset_info.type = die_type (target_die, target_cu); |
| prop->set_addr_offset (baton); |
| break; |
| } |
| } |
| } |
| else if (attr->form_is_constant ()) |
| prop->set_const_val (attr->constant_value (0)); |
| else if (attr->form_is_section_offset ()) |
| { |
| switch (attr->name) |
| { |
| case DW_AT_string_length: |
| baton = XOBNEW (obstack, struct dwarf2_property_baton); |
| baton->property_type = default_type; |
| fill_in_loclist_baton (cu, &baton->loclist, attr); |
| prop->set_loclist (baton); |
| gdb_assert (prop->baton () != NULL); |
| break; |
| default: |
| goto invalid; |
| } |
| } |
| else |
| goto invalid; |
| |
| return 1; |
| |
| invalid: |
| dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form), |
| dwarf2_name (die, cu)); |
| return 0; |
| } |
| |
| /* See read.h. */ |
| |
| /* Read the DW_AT_type attribute for a sub-range. If this attribute is not |
| present (which is valid) then compute the default type based on the |
| compilation units address size. */ |
| |
| static struct type * |
| read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *index_type = die_type (die, cu); |
| |
| /* Dwarf-2 specifications explicitly allows to create subrange types |
| without specifying a base type. |
| In that case, the base type must be set to the type of |
| the lower bound, upper bound or count, in that order, if any of these |
| three attributes references an object that has a type. |
| If no base type is found, the Dwarf-2 specifications say that |
| a signed integer type of size equal to the size of an address should |
| be used. |
| For the following C code: `extern char gdb_int [];' |
| GCC produces an empty range DIE. |
| FIXME: muller/2010-05-28: Possible references to object for low bound, |
| high bound or count are not yet handled by this code. */ |
| if (index_type->code () == TYPE_CODE_VOID) |
| index_type = cu->addr_sized_int_type (false); |
| |
| return index_type; |
| } |
| |
| /* Read the given DW_AT_subrange DIE. */ |
| |
| static struct type * |
| read_subrange_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *orig_base_type; |
| struct type *range_type; |
| struct attribute *attr; |
| struct dynamic_prop low, high; |
| int low_default_is_valid; |
| int high_bound_is_count = 0; |
| const char *name; |
| |
| orig_base_type = read_subrange_index_type (die, cu); |
| |
| /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED, |
| whereas the real type might be. So, we use ORIG_BASE_TYPE when |
| creating the range type, but we use the result of check_typedef |
| when examining properties of the type. */ |
| base_type = check_typedef (orig_base_type); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| range_type = get_die_type (die, cu); |
| if (range_type) |
| return range_type; |
| |
| high.set_const_val (0); |
| |
| /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow |
| omitting DW_AT_lower_bound. */ |
| switch (cu->lang ()) |
| { |
| case language_c: |
| case language_cplus: |
| low.set_const_val (0); |
| low_default_is_valid = 1; |
| break; |
| case language_fortran: |
| low.set_const_val (1); |
| low_default_is_valid = 1; |
| break; |
| case language_d: |
| case language_objc: |
| case language_rust: |
| low.set_const_val (0); |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| case language_ada: |
| case language_m2: |
| case language_pascal: |
| low.set_const_val (1); |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| default: |
| low.set_const_val (0); |
| low_default_is_valid = 0; |
| break; |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_lower_bound, cu); |
| if (attr != nullptr) |
| attr_to_dynamic_prop (attr, die, cu, &low, base_type); |
| else if (!low_default_is_valid) |
| complaint (_("Missing DW_AT_lower_bound " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| |
| struct attribute *attr_ub, *attr_count; |
| attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu); |
| if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type)) |
| { |
| attr = attr_count = dwarf2_attr (die, DW_AT_count, cu); |
| if (attr_to_dynamic_prop (attr, die, cu, &high, base_type)) |
| { |
| /* If bounds are constant do the final calculation here. */ |
| if (low.is_constant () && high.is_constant ()) |
| high.set_const_val (low.const_val () + high.const_val () - 1); |
| else |
| high_bound_is_count = 1; |
| } |
| else |
| { |
| if (attr_ub != NULL) |
| complaint (_("Unresolved DW_AT_upper_bound " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| if (attr_count != NULL) |
| complaint (_("Unresolved DW_AT_count " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| } |
| |
| LONGEST bias = 0; |
| struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu); |
| if (bias_attr != nullptr && bias_attr->form_is_constant ()) |
| bias = bias_attr->constant_value (0); |
| |
| /* Normally, the DWARF producers are expected to use a signed |
| constant form (Eg. DW_FORM_sdata) to express negative bounds. |
| But this is unfortunately not always the case, as witnessed |
| with GCC, for instance, where the ambiguous DW_FORM_dataN form |
| is used instead. To work around that ambiguity, we treat |
| the bounds as signed, and thus sign-extend their values, when |
| the base type is signed. |
| |
| Skip it if the base type's length is larger than ULONGEST, to avoid |
| the undefined behavior of a too large left shift. We don't really handle |
| constants larger than 8 bytes anyway, at the moment. */ |
| |
| if (base_type->length () <= sizeof (ULONGEST)) |
| { |
| ULONGEST negative_mask |
| = -((ULONGEST) 1 << (base_type->length () * TARGET_CHAR_BIT - 1)); |
| |
| if (low.is_constant () |
| && !base_type->is_unsigned () && (low.const_val () & negative_mask)) |
| low.set_const_val (low.const_val () | negative_mask); |
| |
| if (high.is_constant () |
| && !base_type->is_unsigned () && (high.const_val () & negative_mask)) |
| high.set_const_val (high.const_val () | negative_mask); |
| } |
| |
| /* Check for bit and byte strides. */ |
| struct dynamic_prop byte_stride_prop; |
| attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu); |
| if (attr_byte_stride != nullptr) |
| { |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop, |
| prop_type); |
| } |
| |
| struct dynamic_prop bit_stride_prop; |
| attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu); |
| if (attr_bit_stride != nullptr) |
| { |
| /* It only makes sense to have either a bit or byte stride. */ |
| if (attr_byte_stride != nullptr) |
| { |
| complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride " |
| "- DIE at %s [in module %s]"), |
| sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| attr_bit_stride = nullptr; |
| } |
| else |
| { |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop, |
| prop_type); |
| } |
| } |
| |
| type_allocator alloc (cu->per_objfile->objfile, cu->lang ()); |
| if (attr_byte_stride != nullptr |
| || attr_bit_stride != nullptr) |
| { |
| bool byte_stride_p = (attr_byte_stride != nullptr); |
| struct dynamic_prop *stride |
| = byte_stride_p ? &byte_stride_prop : &bit_stride_prop; |
| |
| range_type |
| = create_range_type_with_stride (alloc, orig_base_type, &low, |
| &high, bias, stride, byte_stride_p); |
| } |
| else |
| range_type = create_range_type (alloc, orig_base_type, &low, &high, bias); |
| |
| if (high_bound_is_count) |
| range_type->bounds ()->flag_upper_bound_is_count = 1; |
| |
| /* Ada expects an empty array on no boundary attributes. */ |
| if (attr == NULL && cu->lang () != language_ada) |
| range_type->bounds ()->high.set_undefined (); |
| |
| name = dwarf2_full_name (nullptr, die, cu); |
| if (name) |
| range_type->set_name (name); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr != nullptr) |
| range_type->set_length (attr->constant_value (0)); |
| |
| maybe_set_alignment (cu, die, range_type); |
| |
| set_die_type (die, range_type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (range_type, die, cu); |
| |
| return range_type; |
| } |
| |
| static struct type * |
| read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| |
| type = (type_allocator (cu->per_objfile->objfile, cu->lang ()) |
| .new_type (TYPE_CODE_VOID, 0, nullptr)); |
| type->set_name (dwarf2_name (die, cu)); |
| |
| /* In Ada, an unspecified type is typically used when the description |
| of the type is deferred to a different unit. When encountering |
| such a type, we treat it as a stub, and try to resolve it later on, |
| when needed. |
| Mark this as a stub type for all languages though. */ |
| type->set_is_stub (true); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a single die and all its descendents. Set the die's sibling |
| field to NULL; set other fields in the die correctly, and set all |
| of the descendents' fields correctly. PARENT is the parent of the |
| die in question. */ |
| |
| die_info * |
| cutu_reader::read_die_and_children (die_info *parent) |
| { |
| die_info *die = this->read_full_die (0, true); |
| |
| if (die == nullptr) |
| return nullptr; |
| |
| bool inserted = m_cu->die_hash.emplace (die).second; |
| gdb_assert (inserted); |
| |
| if (die->has_children) |
| die->child = this->read_die_and_siblings (die); |
| else |
| die->child = nullptr; |
| |
| die->sibling = nullptr; |
| die->parent = parent; |
| return die; |
| } |
| |
| /* Read a die, all of its descendents, and all of its siblings; set |
| all of the fields of all of the dies correctly. Arguments are as |
| in read_die_and_children. */ |
| |
| die_info * |
| cutu_reader::read_die_and_siblings (die_info *parent) |
| { |
| die_info *first_die = nullptr; |
| die_info *last_sibling = nullptr; |
| |
| while (true) |
| { |
| die_info *die = this->read_die_and_children (parent); |
| |
| if (die == nullptr) |
| return first_die; |
| |
| if (first_die == nullptr) |
| first_die = die; |
| else |
| last_sibling->sibling = die; |
| |
| last_sibling = die; |
| } |
| } |
| |
| /* See read.h. */ |
| |
| void |
| cutu_reader::read_all_dies () |
| { |
| const gdb_byte *begin_info_ptr = m_info_ptr; |
| |
| if (m_top_level_die->has_children) |
| { |
| gdb_assert (m_cu->die_hash.empty ()); |
| m_cu->die_hash.reserve (m_cu->header.get_length_without_initial () / 12); |
| m_top_level_die->child = this->read_die_and_siblings (m_top_level_die); |
| } |
| |
| m_cu->dies = m_top_level_die; |
| |
| if (dwarf_die_debug) |
| { |
| gdb_printf (gdb_stdlog, "Read die from %s@0x%tx of %s:\n", |
| m_die_section->get_name (), |
| begin_info_ptr - m_die_section->buffer, |
| bfd_get_filename (m_abfd)); |
| m_top_level_die->child->dump (dwarf_die_debug); |
| } |
| } |
| |
| /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS |
| attributes. |
| |
| The caller is responsible for filling in the extra attributes |
| and updating die_info::num_attrs. |
| |
| Return a newly allocated die with its information, except for its |
| child, sibling, and parent fields. */ |
| |
| die_info * |
| cutu_reader::read_full_die (int num_extra_attrs, bool allow_reprocess) |
| { |
| unsigned int bytes_read, i; |
| const struct abbrev_info *abbrev; |
| |
| sect_offset sect_off = static_cast<sect_offset> (m_info_ptr - m_buffer); |
| unsigned int abbrev_number |
| = read_unsigned_leb128 (m_abfd, m_info_ptr, &bytes_read); |
| m_info_ptr += bytes_read; |
| |
| if (abbrev_number == 0) |
| return nullptr; |
| |
| abbrev = m_abbrev_table->lookup_abbrev (abbrev_number); |
| if (!abbrev) |
| error (_(DWARF_ERROR_PREFIX |
| "could not find abbrev number %d [in module %s]"), |
| abbrev_number, bfd_get_filename (m_abfd)); |
| |
| die_info *die = die_info::allocate (&m_cu->comp_unit_obstack, |
| abbrev->num_attrs + num_extra_attrs); |
| die->sect_off = sect_off; |
| die->tag = abbrev->tag; |
| die->abbrev = abbrev_number; |
| die->has_children = abbrev->has_children; |
| |
| /* Make the result usable. |
| The caller needs to update num_attrs after adding the extra |
| attributes. */ |
| die->num_attrs = abbrev->num_attrs; |
| |
| for (i = 0; i < abbrev->num_attrs; ++i) |
| m_info_ptr = this->read_attribute (&die->attrs[i], &abbrev->attrs[i], |
| m_info_ptr, allow_reprocess); |
| |
| return die; |
| } |
| |
| /* Read a die and all its attributes. |
| |
| Return a newly allocated die with its information, except for its |
| child, sibling, and parent fields. */ |
| |
| die_info * |
| cutu_reader::read_toplevel_die (gdb::array_view<attribute *> extra_attrs) |
| { |
| const gdb_byte *begin_info_ptr = m_info_ptr; |
| die_info *die = this->read_full_die (extra_attrs.size (), false); |
| |
| /* Copy in the extra attributes, if any. */ |
| attribute *next = &die->attrs[die->num_attrs]; |
| for (attribute *extra : extra_attrs) |
| *next++ = *extra; |
| |
| struct attribute *attr = die->attr (DW_AT_str_offsets_base); |
| if (attr != nullptr && attr->form_is_unsigned ()) |
| m_cu->str_offsets_base = attr->as_unsigned (); |
| |
| attr = die->attr (DW_AT_loclists_base); |
| if (attr != nullptr) |
| m_cu->loclist_base = attr->as_unsigned (); |
| |
| auto maybe_addr_base = die->addr_base (); |
| if (maybe_addr_base.has_value ()) |
| m_cu->addr_base = *maybe_addr_base; |
| |
| attr = die->attr (DW_AT_rnglists_base); |
| if (attr != nullptr) |
| m_cu->rnglists_base = attr->as_unsigned (); |
| |
| for (int i = 0; i < die->num_attrs; ++i) |
| { |
| if (die->attrs[i].form_requires_reprocessing ()) |
| this->read_attribute_reprocess (&die->attrs[i], die->tag); |
| } |
| |
| die->num_attrs += extra_attrs.size (); |
| |
| if (dwarf_die_debug) |
| { |
| gdb_printf (gdb_stdlog, "Read die from %s@0x%tx of %s:\n", |
| m_die_section->get_name (), |
| (begin_info_ptr - m_die_section->buffer), |
| bfd_get_filename (m_abfd)); |
| die->dump (dwarf_die_debug); |
| } |
| |
| return die; |
| } |
| |
| struct compunit_symtab * |
| cooked_index_functions::find_compunit_symtab_by_address |
| (struct objfile *objfile, CORE_ADDR address) |
| { |
| if (objfile->sect_index_data == -1) |
| return nullptr; |
| |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| cooked_index *table = wait (objfile, true); |
| |
| CORE_ADDR baseaddr = objfile->data_section_offset (); |
| dwarf2_per_cu *per_cu |
| = table->lookup ((unrelocated_addr) (address - baseaddr)); |
| if (per_cu == nullptr) |
| return nullptr; |
| |
| return dw2_instantiate_symtab (per_cu, per_objfile, false); |
| } |
| |
| bool |
| cooked_index_functions::expand_symtabs_matching |
| (objfile *objfile, |
| expand_symtabs_file_matcher file_matcher, |
| const lookup_name_info *lookup_name, |
| expand_symtabs_symbol_matcher symbol_matcher, |
| expand_symtabs_expansion_listener expansion_notify, |
| block_search_flags search_flags, |
| domain_search_flags domain, |
| expand_symtabs_lang_matcher lang_matcher) |
| { |
| dwarf2_per_objfile *per_objfile = get_dwarf2_per_objfile (objfile); |
| |
| cooked_index *table = wait (objfile, true); |
| |
| dw_expand_symtabs_matching_file_matcher (per_objfile, file_matcher); |
| |
| /* This invariant is documented in quick-functions.h. */ |
| gdb_assert (lookup_name != nullptr || symbol_matcher == nullptr); |
| if (lookup_name == nullptr) |
| { |
| for (dwarf2_per_cu *per_cu : all_units_range (per_objfile->per_bfd)) |
| { |
| QUIT; |
| |
| if (!dw2_expand_symtabs_matching_one (per_cu, per_objfile, |
| file_matcher, |
| expansion_notify, |
| lang_matcher)) |
| return false; |
| } |
| return true; |
| } |
| |
| lookup_name_info lookup_name_without_params |
| = lookup_name->make_ignore_params (); |
| bool completing = lookup_name->completion_mode (); |
| |
| /* Unique styles of language splitting. */ |
| static const enum language unique_styles[] = |
| { |
| /* No splitting is also a style. */ |
| language_c, |
| /* This includes Rust. */ |
| language_cplus, |
| /* This includes Go. */ |
| language_d, |
| language_ada |
| }; |
| |
| symbol_name_match_type match_type |
| = lookup_name_without_params.match_type (); |
| |
| std::bitset<nr_languages> unique_styles_used; |
| if (lang_matcher != nullptr) |
| for (unsigned iter = 0; iter < nr_languages; ++iter) |
| { |
| enum language lang = (enum language) iter; |
| if (!lang_matcher (lang)) |
| continue; |
| |
| switch (lang) |
| { |
| case language_cplus: |
| case language_rust: |
| unique_styles_used[language_cplus] = true; |
| break; |
| case language_d: |
| case language_go: |
| unique_styles_used[language_d] = true; |
| break; |
| case language_ada: |
| unique_styles_used[language_ada] = true; |
| break; |
| default: |
| unique_styles_used[language_c] = true; |
| } |
| |
| if (unique_styles_used.count () |
| == sizeof (unique_styles) / sizeof (unique_styles[0])) |
| break; |
| } |
| |
| for (enum language lang : unique_styles) |
| { |
| if (lang_matcher != nullptr |
| && !unique_styles_used.test (lang)) |
| continue; |
| |
| std::vector<std::string_view> name_vec |
| = lookup_name_without_params.split_name (lang); |
| std::vector<std::string> name_str_vec (name_vec.begin (), name_vec.end ()); |
| std::vector<lookup_name_info> segment_lookup_names; |
| segment_lookup_names.reserve (name_vec.size ()); |
| for (auto &segment_name : name_str_vec) |
| segment_lookup_names.emplace_back (segment_name, match_type, |
| completing, true); |
| |
| for (const cooked_index_entry *entry : table->find (name_str_vec.back (), |
| completing)) |
| { |
| QUIT; |
| |
| /* No need to consider symbols from expanded CUs. */ |
| if (per_objfile->symtab_set_p (entry->per_cu)) |
| continue; |
| |
| /* If file-matching was done, we don't need to consider |
| symbols from unmarked CUs. */ |
| if (file_matcher != nullptr && !entry->per_cu->mark) |
| continue; |
| |
| /* See if the symbol matches the type filter. */ |
| if (!entry->matches (search_flags) |
| || !entry->matches (domain)) |
| continue; |
| |
| if (lang_matcher != nullptr) |
| { |
| /* Try to skip CUs with non-matching language. */ |
| entry->per_cu->ensure_lang (per_objfile); |
| if (!entry->per_cu->maybe_multi_language () |
| && !lang_matcher (entry->per_cu->lang ())) |
| continue; |
| } |
| |
| /* We've found the base name of the symbol; now walk its |
| parentage chain, ensuring that each component |
| matches. */ |
| bool found = true; |
| |
| const cooked_index_entry *parent = entry->get_parent (); |
| const language_defn *lang_def = language_def (entry->lang); |
| for (int i = name_vec.size () - 1; i > 0; --i) |
| { |
| /* If we ran out of entries, or if this segment doesn't |
| match, this did not match. */ |
| if (parent == nullptr) |
| { |
| found = false; |
| break; |
| } |
| if (parent->lang != language_unknown) |
| { |
| symbol_name_matcher_ftype *name_matcher |
| = lang_def->get_symbol_name_matcher |
| (segment_lookup_names[i-1]); |
| if (!name_matcher (parent->canonical, |
| segment_lookup_names[i-1], nullptr)) |
| { |
| found = false; |
| break; |
| } |
| } |
| |
| parent = parent->get_parent (); |
| } |
| |
| if (!found) |
| continue; |
| |
| /* Might have been looking for "a::b" and found |
| "x::a::b". */ |
| if (((match_type == symbol_name_match_type::FULL |
| || (lang != language_ada |
| && match_type == symbol_name_match_type::EXPRESSION))) |
| && parent != nullptr) |
| continue; |
| |
| /* Check that the full name matches -- either by matching |
| the lookup name ourselves, or by passing the full name to |
| the symbol matcher. The former is a bit of a hack: it |
| seems like the loop above could just examine every |
| element of the name, avoiding the need to check here; but |
| this is hard. See PR symtab/32733. */ |
| if (symbol_matcher != nullptr || entry->lang != language_unknown) |
| { |
| auto_obstack temp_storage; |
| const char *full_name = entry->full_name (&temp_storage, |
| FOR_ADA_LINKAGE_NAME); |
| if (symbol_matcher == nullptr) |
| { |
| symbol_name_matcher_ftype *name_matcher |
| = (lang_def->get_symbol_name_matcher |
| (lookup_name_without_params)); |
| if (!name_matcher (full_name, lookup_name_without_params, |
| nullptr)) |
| continue; |
| } |
| else if (!symbol_matcher (full_name)) |
| continue; |
| } |
| |
| if (!dw2_expand_symtabs_matching_one (entry->per_cu, per_objfile, |
| file_matcher, |
| expansion_notify, nullptr)) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Start reading .debug_info using the indexer. */ |
| |
| static void |
| start_debug_info_reader (dwarf2_per_objfile *per_objfile) |
| { |
| /* Set the index table early so that sharing works even while |
| scanning; and then start the scanning. */ |
| dwarf2_per_bfd *per_bfd = per_objfile->per_bfd; |
| auto worker = std::make_unique<cooked_index_worker_debug_info> (per_objfile); |
| per_bfd->start_reading (std::make_unique<cooked_index> (per_objfile, |
| std::move (worker))); |
| } |
| |
| |
| |
| /* Read the .debug_loclists or .debug_rnglists header (they are the same format) |
| contents from the given SECTION in the HEADER. |
| |
| HEADER_OFFSET is the offset of the header in the section. */ |
| static void |
| read_loclists_rnglists_header (struct loclists_rnglists_header *header, |
| struct dwarf2_section_info *section, |
| sect_offset header_offset) |
| { |
| unsigned int bytes_read; |
| bfd *abfd = section->get_bfd_owner (); |
| const gdb_byte *info_ptr = section->buffer + to_underlying (header_offset); |
| |
| header->length = read_initial_length (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| |
| header->version = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| |
| header->addr_size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| |
| header->segment_collector_size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| |
| header->offset_entry_count = read_4_bytes (abfd, info_ptr); |
| } |
| |
| /* Return the DW_AT_loclists_base value for the CU. */ |
| static ULONGEST |
| lookup_loclist_base (struct dwarf2_cu *cu) |
| { |
| /* For the .dwo unit, the loclist_base points to the first offset following |
| the header. The header consists of the following entities- |
| 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64 |
| bit format) |
| 2. version (2 bytes) |
| 3. address size (1 byte) |
| 4. segment selector size (1 byte) |
| 5. offset entry count (4 bytes) |
| These sizes are derived as per the DWARFv5 standard. */ |
| if (cu->dwo_unit != nullptr) |
| { |
| if (cu->header.initial_length_size == 4) |
| return LOCLIST_HEADER_SIZE32; |
| return LOCLIST_HEADER_SIZE64; |
| } |
| return cu->loclist_base; |
| } |
| |
| /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the |
| array of offsets in the .debug_loclists section. */ |
| |
| static sect_offset |
| read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| bfd *abfd = objfile->obfd.get (); |
| ULONGEST loclist_header_size = |
| (cu->header.initial_length_size == 4 ? LOCLIST_HEADER_SIZE32 |
| : LOCLIST_HEADER_SIZE64); |
| ULONGEST loclist_base = lookup_loclist_base (cu); |
| |
| /* Offset in .debug_loclists of the offset for LOCLIST_INDEX. */ |
| ULONGEST start_offset = |
| loclist_base + loclist_index * cu->header.offset_size; |
| |
| /* Get loclists section. */ |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| /* Read the loclists section content. */ |
| section->read (objfile); |
| if (section->buffer == NULL) |
| error (_("DW_FORM_loclistx used without .debug_loclists " |
| "section [in module %s]"), objfile_name (objfile)); |
| |
| /* DW_AT_loclists_base points after the .debug_loclists contribution header, |
| so if loclist_base is smaller than the header size, we have a problem. */ |
| if (loclist_base < loclist_header_size) |
| error (_("DW_AT_loclists_base is smaller than header size [in module %s]"), |
| objfile_name (objfile)); |
| |
| /* Read the header of the loclists contribution. */ |
| struct loclists_rnglists_header header; |
| read_loclists_rnglists_header (&header, section, |
| (sect_offset) (loclist_base - loclist_header_size)); |
| |
| /* Verify the loclist index is valid. */ |
| if (loclist_index >= header.offset_entry_count) |
| error (_("DW_FORM_loclistx pointing outside of " |
| ".debug_loclists offset array [in module %s]"), |
| objfile_name (objfile)); |
| |
| /* Validate that reading won't go beyond the end of the section. */ |
| if (start_offset + cu->header.offset_size > section->size) |
| error (_("Reading DW_FORM_loclistx index beyond end of" |
| ".debug_loclists section [in module %s]"), |
| objfile_name (objfile)); |
| |
| const gdb_byte *info_ptr = section->buffer + start_offset; |
| |
| if (cu->header.offset_size == 4) |
| return (sect_offset) (bfd_get_32 (abfd, info_ptr) + loclist_base); |
| else |
| return (sect_offset) (bfd_get_64 (abfd, info_ptr) + loclist_base); |
| } |
| |
| /* Given a DW_FORM_rnglistx value RNGLIST_INDEX, fetch the offset from the |
| array of offsets in the .debug_rnglists section. */ |
| |
| static sect_offset |
| read_rnglist_index (struct dwarf2_cu *cu, ULONGEST rnglist_index, |
| dwarf_tag tag) |
| { |
| struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *abfd = objfile->obfd.get (); |
| ULONGEST rnglist_header_size = |
| (cu->header.initial_length_size == 4 ? RNGLIST_HEADER_SIZE32 |
| : RNGLIST_HEADER_SIZE64); |
| |
| /* When reading a DW_FORM_rnglistx from a DWO, we read from the DWO's |
| .debug_rnglists.dwo section. The rnglists base given in the skeleton |
| doesn't apply. */ |
| ULONGEST rnglist_base = |
| (cu->dwo_unit != nullptr) ? rnglist_header_size : cu->rnglists_base; |
| |
| /* Offset in .debug_rnglists of the offset for RNGLIST_INDEX. */ |
| ULONGEST start_offset = |
| rnglist_base + rnglist_index * cu->header.offset_size; |
| |
| /* Get rnglists section. */ |
| struct dwarf2_section_info *section = cu_debug_rnglists_section (cu, tag); |
| |
| /* Read the rnglists section content. */ |
| section->read (objfile); |
| if (section->buffer == nullptr) |
| error (_("DW_FORM_rnglistx used without .debug_rnglists section " |
| "[in module %s]"), |
| objfile_name (objfile)); |
| |
| /* DW_AT_rnglists_base points after the .debug_rnglists contribution header, |
| so if rnglist_base is smaller than the header size, we have a problem. */ |
| if (rnglist_base < rnglist_header_size) |
| error (_("DW_AT_rnglists_base is smaller than header size [in module %s]"), |
| objfile_name (objfile)); |
| |
| /* Read the header of the rnglists contribution. */ |
| struct loclists_rnglists_header header; |
| read_loclists_rnglists_header (&header, section, |
| (sect_offset) (rnglist_base - rnglist_header_size)); |
| |
| /* Verify the rnglist index is valid. */ |
| if (rnglist_index >= header.offset_entry_count) |
| error (_("DW_FORM_rnglistx index pointing outside of " |
| ".debug_rnglists offset array [in module %s]"), |
| objfile_name (objfile)); |
| |
| /* Validate that reading won't go beyond the end of the section. */ |
| if (start_offset + cu->header.offset_size > section->size) |
| error (_("Reading DW_FORM_rnglistx index beyond end of" |
| ".debug_rnglists section [in module %s]"), |
| objfile_name (objfile)); |
| |
| const gdb_byte *info_ptr = section->buffer + start_offset; |
| |
| if (cu->header.offset_size == 4) |
| return (sect_offset) (read_4_bytes (abfd, info_ptr) + rnglist_base); |
| else |
| return (sect_offset) (read_8_bytes (abfd, info_ptr) + rnglist_base); |
| } |
| |
| /* Process the attributes that had to be skipped in the first round. These |
| attributes are the ones that need str_offsets_base or addr_base attributes. |
| They could not have been processed in the first round, because at the time |
| the values of str_offsets_base or addr_base may not have been known. */ |
| |
| void |
| cutu_reader::read_attribute_reprocess (attribute *attr, dwarf_tag tag) |
| { |
| switch (attr->form) |
| { |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| attr->set_address (read_addr_index (m_cu, |
| attr->as_unsigned_reprocess ())); |
| break; |
| case DW_FORM_loclistx: |
| { |
| sect_offset loclists_sect_off |
| = read_loclist_index (m_cu, attr->as_unsigned_reprocess ()); |
| |
| attr->set_unsigned (to_underlying (loclists_sect_off)); |
| } |
| break; |
| case DW_FORM_rnglistx: |
| { |
| sect_offset rnglists_sect_off |
| = read_rnglist_index (m_cu, attr->as_unsigned_reprocess (), tag); |
| |
| attr->set_unsigned (to_underlying (rnglists_sect_off)); |
| } |
| break; |
| case DW_FORM_strx: |
| case DW_FORM_strx1: |
| case DW_FORM_strx2: |
| case DW_FORM_strx3: |
| case DW_FORM_strx4: |
| case DW_FORM_GNU_str_index: |
| { |
| unsigned int str_index = attr->as_unsigned_reprocess (); |
| gdb_assert (!attr->canonical_string_p ()); |
| if (m_dwo_file != NULL) |
| attr->set_string_noncanonical |
| (this->read_dwo_str_index (str_index)); |
| else |
| attr->set_string_noncanonical (read_stub_str_index (m_cu, |
| str_index)); |
| break; |
| } |
| default: |
| gdb_assert_not_reached ("Unexpected DWARF form."); |
| } |
| } |
| |
| /* Read an attribute value described by an attribute form. */ |
| |
| const gdb_byte * |
| cutu_reader::read_attribute_value (attribute *attr, unsigned form, |
| LONGEST implicit_const, |
| const gdb_byte *info_ptr, |
| bool allow_reprocess) |
| { |
| dwarf2_per_objfile *per_objfile = m_cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct comp_unit_head *cu_header = &m_cu->header; |
| unsigned int bytes_read; |
| struct dwarf_block *blk; |
| |
| attr->form = (enum dwarf_form) form; |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| if (cu_header->version == 2) |
| attr->set_unsigned ((ULONGEST) cu_header->read_address (m_abfd, |
| info_ptr, |
| &bytes_read)); |
| else |
| attr->set_unsigned (cu_header->read_offset (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_GNU_ref_alt: |
| attr->set_unsigned (cu_header->read_offset (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_addr: |
| { |
| unrelocated_addr addr |
| = cu_header->read_address (m_abfd, info_ptr, &bytes_read); |
| attr->set_address (addr); |
| info_ptr += bytes_read; |
| } |
| break; |
| case DW_FORM_block2: |
| blk = dwarf_alloc_block (m_cu); |
| blk->size = read_2_bytes (m_abfd, info_ptr); |
| info_ptr += 2; |
| blk->data = read_n_bytes (m_abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| attr->set_block (blk); |
| break; |
| case DW_FORM_block4: |
| blk = dwarf_alloc_block (m_cu); |
| blk->size = read_4_bytes (m_abfd, info_ptr); |
| info_ptr += 4; |
| blk->data = read_n_bytes (m_abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| attr->set_block (blk); |
| break; |
| case DW_FORM_data2: |
| attr->set_unsigned (read_2_bytes (m_abfd, info_ptr)); |
| info_ptr += 2; |
| break; |
| case DW_FORM_data4: |
| attr->set_unsigned (read_4_bytes (m_abfd, info_ptr)); |
| info_ptr += 4; |
| break; |
| case DW_FORM_data8: |
| attr->set_unsigned (read_8_bytes (m_abfd, info_ptr)); |
| info_ptr += 8; |
| break; |
| case DW_FORM_data16: |
| blk = dwarf_alloc_block (m_cu); |
| blk->size = 16; |
| blk->data = read_n_bytes (m_abfd, info_ptr, 16); |
| info_ptr += 16; |
| attr->set_block (blk); |
| break; |
| case DW_FORM_sec_offset: |
| attr->set_unsigned (cu_header->read_offset (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_loclistx: |
| { |
| attr->set_unsigned_reprocess (read_unsigned_leb128 (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| if (allow_reprocess) |
| this->read_attribute_reprocess (attr); |
| } |
| break; |
| case DW_FORM_string: |
| attr->set_string_noncanonical (read_direct_string (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_strp: |
| if (!m_cu->per_cu->is_dwz) |
| { |
| attr->set_string_noncanonical (read_indirect_string (per_objfile, |
| m_abfd, info_ptr, |
| cu_header, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| } |
| [[fallthrough]]; |
| case DW_FORM_line_strp: |
| if (!m_cu->per_cu->is_dwz) |
| { |
| attr->set_string_noncanonical |
| (per_objfile->read_line_string (info_ptr, cu_header, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| } |
| [[fallthrough]]; |
| case DW_FORM_GNU_strp_alt: |
| { |
| dwz_file *dwz = per_objfile->per_bfd->get_dwz_file (true); |
| LONGEST str_offset |
| = cu_header->read_offset (m_abfd, info_ptr, &bytes_read); |
| |
| attr->set_string_noncanonical |
| (dwz->read_string (objfile, str_offset)); |
| info_ptr += bytes_read; |
| } |
| break; |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| blk = dwarf_alloc_block (m_cu); |
| blk->size = read_unsigned_leb128 (m_abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| blk->data = read_n_bytes (m_abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| attr->set_block (blk); |
| break; |
| case DW_FORM_block1: |
| blk = dwarf_alloc_block (m_cu); |
| blk->size = read_1_byte (m_abfd, info_ptr); |
| info_ptr += 1; |
| blk->data = read_n_bytes (m_abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| attr->set_block (blk); |
| break; |
| case DW_FORM_data1: |
| case DW_FORM_flag: |
| attr->set_unsigned (read_1_byte (m_abfd, info_ptr)); |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag_present: |
| attr->set_unsigned (1); |
| break; |
| case DW_FORM_sdata: |
| attr->set_signed (read_signed_leb128 (m_abfd, info_ptr, &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_rnglistx: |
| { |
| attr->set_unsigned_reprocess (read_unsigned_leb128 (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| if (allow_reprocess) |
| this->read_attribute_reprocess (attr); |
| } |
| break; |
| case DW_FORM_udata: |
| attr->set_unsigned (read_unsigned_leb128 (m_abfd, info_ptr, &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_ref1: |
| attr->set_unsigned ((to_underlying (cu_header->sect_off) |
| + read_1_byte (m_abfd, info_ptr))); |
| info_ptr += 1; |
| break; |
| case DW_FORM_ref2: |
| attr->set_unsigned ((to_underlying (cu_header->sect_off) |
| + read_2_bytes (m_abfd, info_ptr))); |
| info_ptr += 2; |
| break; |
| case DW_FORM_ref4: |
| attr->set_unsigned ((to_underlying (cu_header->sect_off) |
| + read_4_bytes (m_abfd, info_ptr))); |
| info_ptr += 4; |
| break; |
| case DW_FORM_ref8: |
| attr->set_unsigned ((to_underlying (cu_header->sect_off) |
| + read_8_bytes (m_abfd, info_ptr))); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_sig8: |
| attr->set_signature (read_8_bytes (m_abfd, info_ptr)); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_udata: |
| attr->set_unsigned ((to_underlying (cu_header->sect_off) |
| + read_unsigned_leb128 (m_abfd, info_ptr, |
| &bytes_read))); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_indirect: |
| form = read_unsigned_leb128 (m_abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| if (form == DW_FORM_implicit_const) |
| { |
| implicit_const = read_signed_leb128 (m_abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| } |
| info_ptr = this->read_attribute_value (attr, form, implicit_const, |
| info_ptr, allow_reprocess); |
| break; |
| case DW_FORM_implicit_const: |
| attr->set_signed (implicit_const); |
| break; |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| attr->set_unsigned_reprocess (read_unsigned_leb128 (m_abfd, info_ptr, |
| &bytes_read)); |
| info_ptr += bytes_read; |
| if (allow_reprocess) |
| this->read_attribute_reprocess (attr); |
| break; |
| case DW_FORM_strx: |
| case DW_FORM_strx1: |
| case DW_FORM_strx2: |
| case DW_FORM_strx3: |
| case DW_FORM_strx4: |
| case DW_FORM_GNU_str_index: |
| { |
| ULONGEST str_index; |
| if (form == DW_FORM_strx1) |
| { |
| str_index = read_1_byte (m_abfd, info_ptr); |
| info_ptr += 1; |
| } |
| else if (form == DW_FORM_strx2) |
| { |
| str_index = read_2_bytes (m_abfd, info_ptr); |
| info_ptr += 2; |
| } |
| else if (form == DW_FORM_strx3) |
| { |
| str_index = read_3_bytes (m_abfd, info_ptr); |
| info_ptr += 3; |
| } |
| else if (form == DW_FORM_strx4) |
| { |
| str_index = read_4_bytes (m_abfd, info_ptr); |
| info_ptr += 4; |
| } |
| else |
| { |
| str_index = read_unsigned_leb128 (m_abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| } |
| attr->set_unsigned_reprocess (str_index); |
| if (allow_reprocess) |
| this->read_attribute_reprocess (attr); |
| } |
| break; |
| default: |
| error (_(DWARF_ERROR_PREFIX |
| "Cannot handle %s in DWARF reader [in module %s]"), |
| dwarf_form_name (form), bfd_get_filename (m_abfd)); |
| } |
| |
| /* Super hack. */ |
| if (m_cu->per_cu->is_dwz && attr->form_is_ref ()) |
| attr->form = DW_FORM_GNU_ref_alt; |
| |
| /* We have seen instances where the compiler tried to emit a byte |
| size attribute of -1 which ended up being encoded as an unsigned |
| 0xffffffff. Although 0xffffffff is technically a valid size value, |
| an object of this size seems pretty unlikely so we can relatively |
| safely treat these cases as if the size attribute was invalid and |
| treat them as zero by default. */ |
| if (attr->name == DW_AT_byte_size |
| && form == DW_FORM_data4 |
| && attr->as_unsigned () >= 0xffffffff) |
| { |
| complaint |
| (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"), |
| hex_string (attr->as_unsigned ())); |
| attr->set_unsigned (0); |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Read an attribute described by an abbreviated attribute. */ |
| |
| const gdb_byte * |
| cutu_reader::read_attribute (attribute *attr, const attr_abbrev *abbrev, |
| const gdb_byte *info_ptr, bool allow_reprocess) |
| { |
| attr->name = abbrev->name; |
| attr->string_is_canonical = 0; |
| return this->read_attribute_value (attr, abbrev->form, abbrev->implicit_const, |
| info_ptr, allow_reprocess); |
| } |
| |
| /* See read.h. */ |
| |
| const char * |
| read_indirect_string_at_offset (dwarf2_per_objfile *per_objfile, |
| LONGEST str_offset) |
| { |
| return per_objfile->per_bfd->str.read_string (per_objfile->objfile, |
| str_offset, "DW_FORM_strp"); |
| } |
| |
| /* Return pointer to string at .debug_str offset as read from BUF. |
| BUF is assumed to be in a compilation unit described by CU_HEADER. |
| Return *BYTES_READ_PTR count of bytes read from BUF. */ |
| |
| static const char * |
| read_indirect_string (dwarf2_per_objfile *per_objfile, bfd *abfd, |
| const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read_ptr) |
| { |
| LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr); |
| |
| return read_indirect_string_at_offset (per_objfile, str_offset); |
| } |
| |
| /* See read.h. */ |
| |
| const char * |
| dwarf2_per_objfile::read_line_string (const gdb_byte *buf, |
| unsigned int offset_size) |
| { |
| bfd *abfd = objfile->obfd.get (); |
| ULONGEST str_offset = read_offset (abfd, buf, offset_size); |
| |
| return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp"); |
| } |
| |
| /* See read.h. */ |
| |
| const char * |
| dwarf2_per_objfile::read_line_string (const gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read_ptr) |
| { |
| bfd *abfd = objfile->obfd.get (); |
| LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr); |
| |
| return per_bfd->line_str.read_string (objfile, str_offset, "DW_FORM_line_strp"); |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. |
| ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero. |
| ADDR_SIZE is the size of addresses from the CU header. */ |
| |
| static unrelocated_addr |
| read_addr_index_1 (dwarf2_per_objfile *per_objfile, unsigned int addr_index, |
| std::optional<ULONGEST> addr_base, int addr_size) |
| { |
| struct objfile *objfile = per_objfile->objfile; |
| bfd *abfd = objfile->obfd.get (); |
| const gdb_byte *info_ptr; |
| ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0; |
| |
| per_objfile->per_bfd->addr.read (objfile); |
| if (per_objfile->per_bfd->addr.buffer == NULL) |
| error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"), |
| objfile_name (objfile)); |
| if (addr_base_or_zero + addr_index * addr_size |
| >= per_objfile->per_bfd->addr.size) |
| error (_("DW_FORM_addr_index pointing outside of " |
| ".debug_addr section [in module %s]"), |
| objfile_name (objfile)); |
| info_ptr = (per_objfile->per_bfd->addr.buffer + addr_base_or_zero |
| + addr_index * addr_size); |
| if (addr_size == 4) |
| return (unrelocated_addr) bfd_get_32 (abfd, info_ptr); |
| else |
| return (unrelocated_addr) bfd_get_64 (abfd, info_ptr); |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. */ |
| |
| static unrelocated_addr |
| read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index) |
| { |
| return read_addr_index_1 (cu->per_objfile, addr_index, |
| cu->addr_base, cu->header.addr_size); |
| } |
| |
| /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */ |
| |
| static unrelocated_addr |
| read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr, |
| unsigned int *bytes_read) |
| { |
| bfd *abfd = cu->per_objfile->objfile->obfd.get (); |
| unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read); |
| |
| return read_addr_index (cu, addr_index); |
| } |
| |
| /* See read.h. */ |
| |
| unrelocated_addr |
| dwarf2_read_addr_index (dwarf2_per_cu *per_cu, dwarf2_per_objfile *per_objfile, |
| unsigned int addr_index) |
| { |
| struct dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| std::optional<ULONGEST> addr_base; |
| int addr_size; |
| |
| /* We need addr_base and addr_size. |
| If we don't have PER_CU->cu, we have to get it. |
| Nasty, but the alternative is storing the needed info in PER_CU, |
| which at this point doesn't seem justified: it's not clear how frequently |
| it would get used and it would increase the size of every PER_CU. |
| Entry points like dwarf2_per_cu_addr_size do a similar thing |
| so we're not in uncharted territory here. |
| Alas we need to be a bit more complicated as addr_base is contained |
| in the DIE. |
| |
| We don't need to read the entire CU(/TU). |
| We just need the header and top level die. |
| |
| IWBN to use the aging mechanism to let us lazily later discard the CU. |
| For now we skip this optimization. */ |
| |
| if (cu != NULL) |
| { |
| addr_base = cu->addr_base; |
| addr_size = cu->header.addr_size; |
| } |
| else |
| { |
| cutu_reader reader (per_cu, per_objfile, nullptr, nullptr, false, |
| language_minimal); |
| addr_base = reader.cu ()->addr_base; |
| addr_size = reader.cu ()->header.addr_size; |
| } |
| |
| return read_addr_index_1 (per_objfile, addr_index, addr_base, addr_size); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string. |
| STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a |
| DWO file. */ |
| |
| static const char * |
| read_str_index (struct dwarf2_cu *cu, |
| struct dwarf2_section_info *str_section, |
| struct dwarf2_section_info *str_offsets_section, |
| ULONGEST str_offsets_base, ULONGEST str_index, |
| unsigned offset_size) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| const char *objf_name = objfile_name (objfile); |
| bfd *abfd = objfile->obfd.get (); |
| const gdb_byte *info_ptr; |
| ULONGEST str_offset; |
| static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx"; |
| |
| str_section->read (objfile); |
| str_offsets_section->read (objfile); |
| if (str_section->buffer == NULL) |
| error (_("%s used without %s section" |
| " in CU at offset %s [in module %s]"), |
| form_name, str_section->get_name (), |
| sect_offset_str (cu->header.sect_off), objf_name); |
| if (str_offsets_section->buffer == NULL) |
| error (_("%s used without %s section" |
| " in CU at offset %s [in module %s]"), |
| form_name, str_section->get_name (), |
| sect_offset_str (cu->header.sect_off), objf_name); |
| info_ptr = (str_offsets_section->buffer |
| + str_offsets_base |
| + str_index * offset_size); |
| if (offset_size == 4) |
| str_offset = bfd_get_32 (abfd, info_ptr); |
| else |
| str_offset = bfd_get_64 (abfd, info_ptr); |
| if (str_offset >= str_section->size) |
| error (_("Offset from %s pointing outside of" |
| " %s section in CU at offset %s [in module %s]"), |
| form_name, str_section->get_name (), |
| sect_offset_str (cu->header.sect_off), objf_name); |
| return (const char *) (str_section->buffer + str_offset); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */ |
| |
| const char * |
| cutu_reader::read_dwo_str_index (ULONGEST str_index) |
| { |
| unsigned offset_size; |
| ULONGEST str_offsets_base; |
| if (m_cu->header.version >= 5) |
| { |
| /* We have a DWARF5 CU with a reference to a .debug_str_offsets section, |
| so assume the .debug_str_offsets section is DWARF5 as well, and |
| parse the header. FIXME: Parse the header only once. */ |
| unsigned int bytes_read = 0; |
| bfd *abfd = m_dwo_file->sections.str_offsets.get_bfd_owner (); |
| const gdb_byte *p = m_dwo_file->sections.str_offsets.buffer; |
| |
| /* Header: Initial length. */ |
| read_initial_length (abfd, p + bytes_read, &bytes_read); |
| |
| /* Determine offset_size based on the .debug_str_offsets header. */ |
| const bool dwarf5_is_dwarf64 = bytes_read != 4; |
| offset_size = dwarf5_is_dwarf64 ? 8 : 4; |
| |
| /* Header: Version. */ |
| unsigned version = read_2_bytes (abfd, p + bytes_read); |
| bytes_read += 2; |
| |
| if (version <= 4) |
| { |
| /* We'd like one warning here about ignoring the section, but |
| because we parse the header more than once (see FIXME above) |
| we'd have many warnings, so use a complaint instead, which at |
| least has a limit. */ |
| complaint (_("Section .debug_str_offsets in %s has unsupported" |
| " version %d, use empty string."), |
| m_dwo_file->dwo_name.c_str (), version); |
| return ""; |
| } |
| |
| /* Header: Padding. */ |
| bytes_read += 2; |
| |
| str_offsets_base = bytes_read; |
| } |
| else |
| { |
| /* We have a pre-DWARF5 CU with a reference to a .debug_str_offsets |
| section, assume the .debug_str_offsets section is pre-DWARF5 as |
| well, which doesn't have a header. */ |
| str_offsets_base = 0; |
| |
| /* Determine offset_size based on the .debug_info header. */ |
| offset_size = m_cu->header.offset_size; |
| } |
| |
| return read_str_index (m_cu, &m_dwo_file->sections.str, |
| &m_dwo_file->sections.str_offsets, str_offsets_base, |
| str_index, offset_size); |
| } |
| |
| /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */ |
| |
| static const char * |
| read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| const char *objf_name = objfile_name (objfile); |
| static const char form_name[] = "DW_FORM_GNU_str_index"; |
| static const char str_offsets_attr_name[] = "DW_AT_str_offsets"; |
| |
| if (!cu->str_offsets_base.has_value ()) |
| error (_("%s used in Fission stub without %s" |
| " in CU at offset 0x%lx [in module %s]"), |
| form_name, str_offsets_attr_name, |
| (long) cu->header.offset_size, objf_name); |
| |
| return read_str_index (cu, |
| &cu->per_objfile->per_bfd->str, |
| &cu->per_objfile->per_bfd->str_offsets, |
| *cu->str_offsets_base, str_index, |
| cu->header.offset_size); |
| } |
| |
| /* Return the length of an LEB128 number in BUF. */ |
| |
| static int |
| leb128_size (const gdb_byte *buf) |
| { |
| const gdb_byte *begin = buf; |
| gdb_byte byte; |
| |
| while (1) |
| { |
| byte = *buf++; |
| if ((byte & 128) == 0) |
| return buf - begin; |
| } |
| } |
| |
| /* Converts DWARF language names to GDB language names. */ |
| |
| enum language |
| dwarf_lang_to_enum_language (unsigned int lang) |
| { |
| enum language language; |
| |
| switch (lang) |
| { |
| case DW_LANG_C89: |
| case DW_LANG_C99: |
| case DW_LANG_C11: |
| case DW_LANG_C17: |
| case DW_LANG_C23: |
| case DW_LANG_C: |
| case DW_LANG_UPC: |
| language = language_c; |
| break; |
| case DW_LANG_Java: |
| case DW_LANG_C_plus_plus: |
| case DW_LANG_C_plus_plus_11: |
| case DW_LANG_C_plus_plus_14: |
| case DW_LANG_C_plus_plus_17: |
| case DW_LANG_C_plus_plus_20: |
| case DW_LANG_C_plus_plus_23: |
| language = language_cplus; |
| break; |
| case DW_LANG_D: |
| language = language_d; |
| break; |
| case DW_LANG_Fortran77: |
| case DW_LANG_Fortran90: |
| case DW_LANG_Fortran95: |
| case DW_LANG_Fortran03: |
| case DW_LANG_Fortran08: |
| case DW_LANG_Fortran18: |
| case DW_LANG_Fortran23: |
| language = language_fortran; |
| break; |
| case DW_LANG_Go: |
| language = language_go; |
| break; |
| case DW_LANG_Assembly: |
| case DW_LANG_Mips_Assembler: |
| language = language_asm; |
| break; |
| case DW_LANG_Ada83: |
| case DW_LANG_Ada95: |
| case DW_LANG_Ada2005: |
| case DW_LANG_Ada2012: |
| language = language_ada; |
| break; |
| case DW_LANG_Modula2: |
| language = language_m2; |
| break; |
| case DW_LANG_Pascal83: |
| language = language_pascal; |
| break; |
| case DW_LANG_ObjC: |
| language = language_objc; |
| break; |
| case DW_LANG_Rust: |
| case DW_LANG_Rust_old: |
| language = language_rust; |
| break; |
| case DW_LANG_OpenCL: |
| language = language_opencl; |
| break; |
| case DW_LANG_Cobol74: |
| case DW_LANG_Cobol85: |
| default: |
| language = language_minimal; |
| break; |
| } |
| |
| return language; |
| } |
| |
| /* Return the NAME attribute of DIE in *CU, or return NULL if not there. Also |
| return in *CU the cu in which the attribute was actually found. */ |
| |
| static struct attribute * |
| dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu **cu) |
| { |
| for (;;) |
| { |
| unsigned int i; |
| struct attribute *spec = NULL; |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| { |
| if (die->attrs[i].name == name) |
| return &die->attrs[i]; |
| if (die->attrs[i].name == DW_AT_specification |
| || die->attrs[i].name == DW_AT_abstract_origin) |
| spec = &die->attrs[i]; |
| } |
| |
| if (!spec) |
| break; |
| |
| struct die_info *prev_die = die; |
| die = follow_die_ref (die, spec, cu); |
| if (die == prev_die) |
| /* Self-reference, we're done. */ |
| break; |
| } |
| |
| return NULL; |
| } |
| |
| /* Return the NAME attribute of DIE in CU, or return NULL if not there. */ |
| |
| static struct attribute * |
| dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) |
| { |
| return dwarf2_attr (die, name, &cu); |
| } |
| |
| /* Return the string associated with a string-typed attribute, or NULL if it |
| is either not found or is of an incorrect type. */ |
| |
| static const char * |
| dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| const char *str = NULL; |
| |
| attr = dwarf2_attr (die, name, cu); |
| |
| if (attr != NULL) |
| { |
| str = attr->as_string (); |
| if (str == nullptr) |
| complaint (_("string type expected for attribute %s for " |
| "DIE at %s [in module %s]"), |
| dwarf_attr_name (name), sect_offset_str (die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| } |
| |
| return str; |
| } |
| |
| /* Return the dwo name or NULL if not present. If present, it is in either |
| DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */ |
| static const char * |
| dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu); |
| if (dwo_name == nullptr) |
| dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu); |
| return dwo_name; |
| } |
| |
| /* Return non-zero iff the attribute NAME is defined for the given DIE, |
| and holds a non-zero value. This function should only be used for |
| DW_FORM_flag or DW_FORM_flag_present attributes. */ |
| |
| static int |
| dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, name, cu); |
| |
| return attr != nullptr && attr->as_boolean (); |
| } |
| |
| static int |
| die_is_declaration (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| /* A DIE is a declaration if it has a DW_AT_declaration attribute |
| which value is non-zero. However, we have to be careful with |
| DIEs having a DW_AT_specification attribute, because dwarf2_attr() |
| (via dwarf2_flag_true_p) follows this attribute. So we may |
| end up accidentally finding a declaration attribute that belongs |
| to a different DIE referenced by the specification attribute, |
| even though the given DIE does not have a declaration attribute. */ |
| return (dwarf2_flag_true_p (die, DW_AT_declaration, cu) |
| && dwarf2_attr (die, DW_AT_specification, cu) == NULL); |
| } |
| |
| /* Return the die giving the specification for DIE, if there is |
| one. *SPEC_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. If there is no |
| specification, but there is an abstract origin, that is |
| returned. */ |
| |
| static struct die_info * |
| die_specification (struct die_info *die, struct dwarf2_cu **spec_cu) |
| { |
| struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, |
| *spec_cu); |
| |
| if (spec_attr == NULL) |
| spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu); |
| |
| if (spec_attr == NULL) |
| return NULL; |
| else |
| return follow_die_ref (die, spec_attr, spec_cu); |
| } |
| |
| /* A convenience function to find the proper .debug_line section for a CU. */ |
| |
| static struct dwarf2_section_info * |
| get_debug_line_section (struct dwarf2_cu *cu) |
| { |
| struct dwarf2_section_info *section; |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| section = &cu->dwo_unit->dwo_file->sections.line; |
| else if (cu->per_cu->is_dwz) |
| section = &per_objfile->per_bfd->get_dwz_file (true)->line; |
| else |
| section = &per_objfile->per_bfd->line; |
| |
| return section; |
| } |
| |
| /* Read the statement program header starting at OFFSET in |
| .debug_line, or .debug_line.dwo. Return a pointer |
| to a struct line_header, allocated using xmalloc. |
| Returns NULL if there is a problem reading the header, e.g., if it |
| has a version we don't understand. |
| |
| NOTE: the strings in the include directory and file name tables of |
| the returned object point into the dwarf line section buffer, |
| and must not be freed. */ |
| |
| static line_header_up |
| dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu, |
| const char *comp_dir) |
| { |
| struct dwarf2_section_info *section; |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| section = get_debug_line_section (cu); |
| section->read (per_objfile->objfile); |
| if (section->buffer == NULL) |
| { |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| complaint (_("missing .debug_line.dwo section")); |
| else |
| complaint (_("missing .debug_line section")); |
| return 0; |
| } |
| |
| return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz, |
| per_objfile, section, &cu->header, |
| comp_dir); |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Return the file name for the given file_entry. |
| CU_INFO describes the CU's DW_AT_name and DW_AT_comp_dir. |
| If space for the result is malloc'd, *NAME_HOLDER will be set. |
| Returns NULL if FILE_INDEX should be ignored, i.e., it is |
| equivalent to CU_INFO. */ |
| |
| static const char * |
| compute_include_file_name (const struct line_header *lh, const file_entry &fe, |
| const file_and_directory &cu_info, |
| std::string &name_holder) |
| { |
| const char *include_name = fe.name; |
| const char *include_name_to_compare = include_name; |
| |
| const char *dir_name = fe.include_dir (lh); |
| |
| std::string hold_compare; |
| if (!IS_ABSOLUTE_PATH (include_name) |
| && (dir_name != nullptr || cu_info.get_comp_dir () != nullptr)) |
| { |
| /* Avoid creating a duplicate name for CU_INFO. |
| We do this by comparing INCLUDE_NAME and CU_INFO. |
| Before we do the comparison, however, we need to account |
| for DIR_NAME and COMP_DIR. |
| First prepend dir_name (if non-NULL). If we still don't |
| have an absolute path prepend comp_dir (if non-NULL). |
| However, the directory we record in the include-file's |
| psymtab does not contain COMP_DIR (to match the |
| corresponding symtab(s)). |
| |
| Example: |
| |
| bash$ cd /tmp |
| bash$ gcc -g ./hello.c |
| include_name = "hello.c" |
| dir_name = "." |
| DW_AT_comp_dir = comp_dir = "/tmp" |
| DW_AT_name = "./hello.c" |
| |
| */ |
| |
| if (dir_name != NULL) |
| { |
| name_holder = path_join (dir_name, include_name); |
| include_name = name_holder.c_str (); |
| include_name_to_compare = include_name; |
| } |
| if (!IS_ABSOLUTE_PATH (include_name) |
| && cu_info.get_comp_dir () != nullptr) |
| { |
| hold_compare = path_join (cu_info.get_comp_dir (), include_name); |
| include_name_to_compare = hold_compare.c_str (); |
| } |
| } |
| |
| std::string copied_name; |
| const char *cu_filename = cu_info.get_name (); |
| if (!IS_ABSOLUTE_PATH (cu_filename) && cu_info.get_comp_dir () != nullptr) |
| { |
| copied_name = path_join (cu_info.get_comp_dir (), cu_filename); |
| cu_filename = copied_name.c_str (); |
| } |
| |
| if (FILENAME_CMP (include_name_to_compare, cu_filename) == 0) |
| return nullptr; |
| return include_name; |
| } |
| |
| /* State machine to track the state of the line number program. */ |
| |
| class lnp_state_machine |
| { |
| public: |
| /* Initialize a machine state for the start of a line number |
| program. */ |
| lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh); |
| |
| file_entry *current_file () |
| { |
| /* lh->file_names is 0-based, but the file name numbers in the |
| statement program are 1-based. */ |
| return m_line_header->file_name_at (m_file); |
| } |
| |
| /* Record the line in the state machine. END_SEQUENCE is true if |
| we're processing the end of a sequence. */ |
| void record_line (bool end_sequence); |
| |
| /* Check ADDRESS is -1, -2, or zero and less than UNRELOCATED_LOWPC, and if |
| true nop-out rest of the lines in this sequence. */ |
| void check_line_address (struct dwarf2_cu *cu, |
| const gdb_byte *line_ptr, |
| unrelocated_addr unrelocated_lowpc, |
| unrelocated_addr address); |
| |
| void handle_set_discriminator (unsigned int discriminator) |
| { |
| m_discriminator = discriminator; |
| m_line_has_non_zero_discriminator |= discriminator != 0; |
| } |
| |
| /* Handle DW_LNE_set_address. */ |
| void handle_set_address (unrelocated_addr address) |
| { |
| m_op_index = 0; |
| m_address |
| = (unrelocated_addr) gdbarch_adjust_dwarf2_line (m_gdbarch, |
| (CORE_ADDR) address, |
| false); |
| } |
| |
| /* Handle DW_LNS_advance_pc. */ |
| void handle_advance_pc (CORE_ADDR adjust); |
| |
| /* Handle a special opcode. */ |
| void handle_special_opcode (unsigned char op_code); |
| |
| /* Handle DW_LNS_advance_line. */ |
| void handle_advance_line (int line_delta) |
| { |
| advance_line (line_delta); |
| } |
| |
| /* Handle DW_LNS_set_file. */ |
| void handle_set_file (file_name_index file); |
| |
| /* Handle DW_LNS_negate_stmt. */ |
| void handle_negate_stmt () |
| { |
| m_flags ^= LEF_IS_STMT; |
| } |
| |
| /* Handle DW_LNS_const_add_pc. */ |
| void handle_const_add_pc (); |
| |
| /* Handle DW_LNS_fixed_advance_pc. */ |
| void handle_fixed_advance_pc (CORE_ADDR addr_adj) |
| { |
| addr_adj = gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_address = (unrelocated_addr) ((CORE_ADDR) m_address + addr_adj); |
| m_op_index = 0; |
| } |
| |
| /* Handle DW_LNS_copy. */ |
| void handle_copy () |
| { |
| record_line (false); |
| m_discriminator = 0; |
| m_flags &= ~LEF_PROLOGUE_END; |
| m_flags &= ~LEF_EPILOGUE_BEGIN; |
| } |
| |
| /* Handle DW_LNE_end_sequence. */ |
| void handle_end_sequence () |
| { |
| m_currently_recording_lines = true; |
| } |
| |
| /* Handle DW_LNS_set_prologue_end. */ |
| void handle_set_prologue_end () |
| { |
| m_flags |= LEF_PROLOGUE_END; |
| } |
| |
| void handle_set_epilogue_begin () |
| { |
| m_flags |= LEF_EPILOGUE_BEGIN; |
| } |
| |
| private: |
| /* Advance the line by LINE_DELTA. */ |
| void advance_line (int line_delta) |
| { |
| m_line += line_delta; |
| |
| if (line_delta != 0) |
| m_line_has_non_zero_discriminator = m_discriminator != 0; |
| } |
| |
| struct dwarf2_cu *m_cu; |
| |
| gdbarch *m_gdbarch; |
| |
| /* The line number header. */ |
| line_header *m_line_header; |
| |
| /* These are part of the standard DWARF line number state machine, |
| and initialized according to the DWARF spec. */ |
| |
| unsigned char m_op_index = 0; |
| /* The line table index of the current file. */ |
| file_name_index m_file = 1; |
| unsigned int m_line = 1; |
| |
| /* These are initialized in the constructor. */ |
| |
| unrelocated_addr m_address; |
| linetable_entry_flags m_flags; |
| unsigned int m_discriminator = 0; |
| |
| /* Additional bits of state we need to track. */ |
| |
| /* The last file that we called dwarf2_start_subfile for. |
| This is only used for TLLs. */ |
| unsigned int m_last_file = 0; |
| /* The last file a line number was recorded for. */ |
| struct subfile *m_last_subfile = NULL; |
| |
| /* The address of the last line entry. */ |
| unrelocated_addr m_last_address; |
| |
| /* Set to true when a previous line at the same address (using |
| m_last_address) had LEF_IS_STMT set in m_flags. This is reset to false |
| when a line entry at a new address (m_address different to |
| m_last_address) is processed. */ |
| bool m_stmt_at_address = false; |
| |
| /* When true, record the lines we decode. */ |
| bool m_currently_recording_lines = true; |
| |
| /* The last line number that was recorded, used to coalesce |
| consecutive entries for the same line. This can happen, for |
| example, when discriminators are present. PR 17276. */ |
| unsigned int m_last_line = 0; |
| bool m_line_has_non_zero_discriminator = false; |
| }; |
| |
| void |
| lnp_state_machine::handle_advance_pc (CORE_ADDR adjust) |
| { |
| CORE_ADDR addr_adj = (((m_op_index + adjust) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| addr_adj = gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_address = (unrelocated_addr) ((CORE_ADDR) m_address + addr_adj); |
| m_op_index = ((m_op_index + adjust) |
| % m_line_header->maximum_ops_per_instruction); |
| } |
| |
| void |
| lnp_state_machine::handle_special_opcode (unsigned char op_code) |
| { |
| unsigned char adj_opcode = op_code - m_line_header->opcode_base; |
| unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range; |
| unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range; |
| CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| addr_adj = gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_address = (unrelocated_addr) ((CORE_ADDR) m_address + addr_adj); |
| m_op_index = ((m_op_index + adj_opcode_d) |
| % m_line_header->maximum_ops_per_instruction); |
| |
| int line_delta = m_line_header->line_base + adj_opcode_r; |
| advance_line (line_delta); |
| record_line (false); |
| m_discriminator = 0; |
| m_flags &= ~LEF_PROLOGUE_END; |
| m_flags &= ~LEF_EPILOGUE_BEGIN; |
| } |
| |
| void |
| lnp_state_machine::handle_set_file (file_name_index file) |
| { |
| m_file = file; |
| |
| const file_entry *fe = current_file (); |
| if (fe == NULL) |
| dwarf2_debug_line_missing_file_complaint (); |
| else |
| { |
| m_line_has_non_zero_discriminator = m_discriminator != 0; |
| dwarf2_start_subfile (m_cu, *fe, *m_line_header); |
| } |
| } |
| |
| void |
| lnp_state_machine::handle_const_add_pc () |
| { |
| CORE_ADDR adjust |
| = (255 - m_line_header->opcode_base) / m_line_header->line_range; |
| |
| CORE_ADDR addr_adj |
| = (((m_op_index + adjust) |
| / m_line_header->maximum_ops_per_instruction) |
| * m_line_header->minimum_instruction_length); |
| |
| addr_adj = gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true); |
| m_address = (unrelocated_addr) ((CORE_ADDR) m_address + addr_adj); |
| m_op_index = ((m_op_index + adjust) |
| % m_line_header->maximum_ops_per_instruction); |
| } |
| |
| /* Return non-zero if we should add LINE to the line number table. |
| LINE is the line to add, LAST_LINE is the last line that was added, |
| LAST_SUBFILE is the subfile for LAST_LINE. |
| LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever |
| had a non-zero discriminator. |
| |
| We have to be careful in the presence of discriminators. |
| E.g., for this line: |
| |
| for (i = 0; i < 100000; i++); |
| |
| clang can emit four line number entries for that one line, |
| each with a different discriminator. |
| See gdb.dwarf2/dw2-single-line-discriminators.exp for an example. |
| |
| However, we want gdb to coalesce all four entries into one. |
| Otherwise the user could stepi into the middle of the line and |
| gdb would get confused about whether the pc really was in the |
| middle of the line. |
| |
| Things are further complicated by the fact that two consecutive |
| line number entries for the same line is a heuristic used by gcc |
| to denote the end of the prologue. So we can't just discard duplicate |
| entries, we have to be selective about it. The heuristic we use is |
| that we only collapse consecutive entries for the same line if at least |
| one of those entries has a non-zero discriminator. PR 17276. |
| |
| Note: Addresses in the line number state machine can never go backwards |
| within one sequence, thus this coalescing is ok. */ |
| |
| static int |
| dwarf_record_line_p (struct dwarf2_cu *cu, |
| unsigned int line, unsigned int last_line, |
| int line_has_non_zero_discriminator, |
| struct subfile *last_subfile) |
| { |
| if (cu->get_builder ()->get_current_subfile () != last_subfile) |
| return 1; |
| if (line != last_line) |
| return 1; |
| /* Same line for the same file that we've seen already. |
| As a last check, for pr 17276, only record the line if the line |
| has never had a non-zero discriminator. */ |
| if (!line_has_non_zero_discriminator) |
| return 1; |
| return 0; |
| } |
| |
| /* Use the CU's builder to record line number LINE beginning at |
| address ADDRESS in the line table of subfile SUBFILE. */ |
| |
| static void |
| dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile, |
| unsigned int line, unrelocated_addr address, |
| linetable_entry_flags flags, |
| struct dwarf2_cu *cu) |
| { |
| unrelocated_addr addr |
| = unrelocated_addr (gdbarch_addr_bits_remove (gdbarch, |
| (CORE_ADDR) address)); |
| |
| if (cu != nullptr) |
| { |
| if (dwarf_line_debug) |
| gdb_printf (gdb_stdlog, "Recording line %u, file %s, address %s\n", |
| line, lbasename (subfile->name.c_str ()), |
| paddress (gdbarch, (CORE_ADDR) address)); |
| |
| cu->get_builder ()->record_line (subfile, line, addr, flags); |
| } |
| } |
| |
| /* Subroutine of dwarf_decode_lines_1 to simplify it. |
| Mark the end of a set of line number records. |
| The arguments are the same as for dwarf_record_line_1. |
| If SUBFILE is NULL the request is ignored. */ |
| |
| static void |
| dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile, |
| unrelocated_addr address, struct dwarf2_cu *cu) |
| { |
| if (subfile == NULL) |
| return; |
| |
| if (dwarf_line_debug) |
| { |
| gdb_printf (gdb_stdlog, |
| "Finishing current line, file %s, address %s\n", |
| lbasename (subfile->name.c_str ()), |
| paddress (gdbarch, (CORE_ADDR) address)); |
| } |
| |
| dwarf_record_line_1 (gdbarch, subfile, 0, address, LEF_IS_STMT, cu); |
| } |
| |
| void |
| lnp_state_machine::record_line (bool end_sequence) |
| { |
| if (dwarf_line_debug) |
| { |
| gdb_printf (gdb_stdlog, |
| "Processing actual line %u: file %u," |
| " address %s, is_stmt %u, prologue_end %u," |
| " epilogue_begin %u, discrim %u%s\n", |
| m_line, m_file, |
| paddress (m_gdbarch, (CORE_ADDR) m_address), |
| (m_flags & LEF_IS_STMT) != 0, |
| (m_flags & LEF_PROLOGUE_END) != 0, |
| (m_flags & LEF_EPILOGUE_BEGIN) != 0, |
| m_discriminator, |
| (end_sequence ? "\t(end sequence)" : "")); |
| } |
| |
| file_entry *fe = current_file (); |
| |
| if (fe == NULL) |
| dwarf2_debug_line_missing_file_complaint (); |
| /* For now we ignore lines not starting on an instruction boundary. |
| But not when processing end_sequence for compatibility with the |
| previous version of the code. */ |
| else if (m_op_index == 0 || end_sequence) |
| { |
| /* When we switch files we insert an end maker in the first file, |
| switch to the second file and add a new line entry. The |
| problem is that the end marker inserted in the first file will |
| discard any previous line entries at the same address. If the |
| line entries in the first file are marked as is-stmt, while |
| the new line in the second file is non-stmt, then this means |
| the end marker will discard is-stmt lines so we can have a |
| non-stmt line. This means that there are less addresses at |
| which the user can insert a breakpoint. |
| |
| To improve this we track the last address in m_last_address, |
| and whether we have seen an is-stmt at this address. Then |
| when switching files, if we have seen a stmt at the current |
| address, and we are switching to create a non-stmt line, then |
| discard the new line. */ |
| bool file_changed |
| = m_last_subfile != m_cu->get_builder ()->get_current_subfile (); |
| bool ignore_this_line |
| = ((file_changed && !end_sequence && m_last_address == m_address |
| && ((m_flags & LEF_IS_STMT) == 0) |
| && m_stmt_at_address) |
| || (!end_sequence && m_line == 0)); |
| |
| if ((file_changed && !ignore_this_line) || end_sequence) |
| { |
| dwarf_finish_line (m_gdbarch, m_last_subfile, m_address, |
| m_currently_recording_lines ? m_cu : nullptr); |
| } |
| |
| if (!end_sequence && !ignore_this_line) |
| { |
| linetable_entry_flags lte_flags = m_flags; |
| if (m_cu->producer_is_codewarrior ()) |
| lte_flags |= LEF_IS_STMT; |
| |
| if (dwarf_record_line_p (m_cu, m_line, m_last_line, |
| m_line_has_non_zero_discriminator, |
| m_last_subfile)) |
| { |
| buildsym_compunit *builder = m_cu->get_builder (); |
| dwarf_record_line_1 (m_gdbarch, |
| builder->get_current_subfile (), |
| m_line, m_address, lte_flags, |
| m_currently_recording_lines ? m_cu : nullptr); |
| |
| m_last_subfile = m_cu->get_builder ()->get_current_subfile (); |
| m_last_line = m_line; |
| } |
| } |
| } |
| |
| /* Track whether we have seen any IS_STMT true at m_address in case we |
| have multiple line table entries all at m_address. */ |
| if (m_last_address != m_address) |
| { |
| m_stmt_at_address = false; |
| m_last_address = m_address; |
| } |
| m_stmt_at_address |= (m_flags & LEF_IS_STMT) != 0; |
| } |
| |
| lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, |
| line_header *lh) |
| : m_cu (cu), |
| m_gdbarch (arch), |
| m_line_header (lh), |
| /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as |
| if there was a line entry for it so that the backend has a |
| chance to adjust it and also record it in case it needs it. |
| This is currently used by MIPS code, |
| cf. `mips_adjust_dwarf2_line'. */ |
| m_address ((unrelocated_addr) gdbarch_adjust_dwarf2_line (arch, 0, 0)), |
| m_flags (lh->default_is_stmt ? LEF_IS_STMT : (linetable_entry_flags) 0), |
| m_last_address (m_address) |
| { |
| } |
| |
| void |
| lnp_state_machine::check_line_address (struct dwarf2_cu *cu, |
| const gdb_byte *line_ptr, |
| unrelocated_addr unrelocated_lowpc, |
| unrelocated_addr address) |
| { |
| /* Linkers resolve a symbolic relocation referencing a GC'd function to 0, |
| -1 or -2 (-2 is used by certain lld versions, see |
| https://github.com/llvm/llvm-project/commit/e618ccbf431f6730edb6d1467a127c3a52fd57f7). |
| If ADDRESS is 0, ignoring the opcode will err if the text section is |
| located at 0x0. In this case, additionally check that if |
| ADDRESS < UNRELOCATED_LOWPC. */ |
| |
| if ((address == (unrelocated_addr) 0 && address < unrelocated_lowpc) |
| || address == (unrelocated_addr) -1 |
| || address == (unrelocated_addr) -2) |
| { |
| /* This line table is for a function which has been |
| GCd by the linker. Ignore it. PR gdb/12528 */ |
| |
| struct objfile *objfile = cu->per_objfile->objfile; |
| long line_offset = line_ptr - get_debug_line_section (cu)->buffer; |
| |
| complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"), |
| line_offset, objfile_name (objfile)); |
| m_currently_recording_lines = false; |
| /* Note: m_currently_recording_lines is left as false until we see |
| DW_LNE_end_sequence. */ |
| } |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Process the line number information in LH. */ |
| |
| static void |
| dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu, |
| unrelocated_addr lowpc) |
| { |
| const gdb_byte *line_ptr, *extended_end; |
| const gdb_byte *line_end; |
| unsigned int bytes_read, extended_len; |
| unsigned char op_code, extended_op; |
| struct objfile *objfile = cu->per_objfile->objfile; |
| bfd *abfd = objfile->obfd.get (); |
| struct gdbarch *gdbarch = objfile->arch (); |
| |
| line_ptr = lh->statement_program_start; |
| line_end = lh->statement_program_end; |
| |
| /* Read the statement sequences until there's nothing left. */ |
| while (line_ptr < line_end) |
| { |
| /* The DWARF line number program state machine. Reset the state |
| machine at the start of each sequence. */ |
| lnp_state_machine state_machine (cu, gdbarch, lh); |
| bool end_sequence = false; |
| |
| /* Start a subfile for the current file of the state |
| machine. */ |
| const file_entry *fe = state_machine.current_file (); |
| |
| if (fe != NULL) |
| dwarf2_start_subfile (cu, *fe, *lh); |
| |
| /* Decode the table. */ |
| while (line_ptr < line_end && !end_sequence) |
| { |
| op_code = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| |
| if (op_code >= lh->opcode_base) |
| { |
| /* Special opcode. */ |
| state_machine.handle_special_opcode (op_code); |
| } |
| else switch (op_code) |
| { |
| case DW_LNS_extended_op: |
| extended_len = read_unsigned_leb128 (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| extended_end = line_ptr + extended_len; |
| extended_op = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| if (DW_LNE_lo_user <= extended_op |
| && extended_op <= DW_LNE_hi_user) |
| { |
| /* Vendor extension, ignore. */ |
| line_ptr = extended_end; |
| break; |
| } |
| switch (extended_op) |
| { |
| case DW_LNE_end_sequence: |
| state_machine.handle_end_sequence (); |
| end_sequence = true; |
| break; |
| case DW_LNE_set_address: |
| { |
| unrelocated_addr address |
| = cu->header.read_address (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.check_line_address (cu, line_ptr, lowpc, |
| address); |
| state_machine.handle_set_address (address); |
| } |
| break; |
| case DW_LNE_define_file: |
| { |
| const char *cur_file; |
| unsigned int mod_time, length; |
| dir_index dindex; |
| |
| cur_file = read_direct_string (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| dindex = (dir_index) |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| mod_time = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| length = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| lh->add_file_name (cur_file, dindex, mod_time, length); |
| } |
| break; |
| case DW_LNE_set_discriminator: |
| { |
| /* The discriminator is not interesting to the |
| debugger; just ignore it. We still need to |
| check its value though: |
| if there are consecutive entries for the same |
| (non-prologue) line we want to coalesce them. |
| PR 17276. */ |
| unsigned int discr |
| = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_set_discriminator (discr); |
| } |
| break; |
| default: |
| complaint (_("mangled .debug_line section")); |
| return; |
| } |
| /* Make sure that we parsed the extended op correctly. If e.g. |
| we expected a different address size than the producer used, |
| we may have read the wrong number of bytes. */ |
| if (line_ptr != extended_end) |
| { |
| complaint (_("mangled .debug_line section")); |
| return; |
| } |
| break; |
| case DW_LNS_copy: |
| state_machine.handle_copy (); |
| break; |
| case DW_LNS_advance_pc: |
| { |
| CORE_ADDR adjust |
| = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_advance_pc (adjust); |
| } |
| break; |
| case DW_LNS_advance_line: |
| { |
| int line_delta |
| = read_signed_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_advance_line (line_delta); |
| } |
| break; |
| case DW_LNS_set_file: |
| { |
| file_name_index file |
| = (file_name_index) read_unsigned_leb128 (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| |
| state_machine.handle_set_file (file); |
| } |
| break; |
| case DW_LNS_set_column: |
| (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| break; |
| case DW_LNS_negate_stmt: |
| state_machine.handle_negate_stmt (); |
| break; |
| case DW_LNS_set_basic_block: |
| break; |
| /* Add to the address register of the state machine the |
| address increment value corresponding to special opcode |
| 255. I.e., this value is scaled by the minimum |
| instruction length since special opcode 255 would have |
| scaled the increment. */ |
| case DW_LNS_const_add_pc: |
| state_machine.handle_const_add_pc (); |
| break; |
| case DW_LNS_fixed_advance_pc: |
| { |
| CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr); |
| line_ptr += 2; |
| |
| state_machine.handle_fixed_advance_pc (addr_adj); |
| } |
| break; |
| case DW_LNS_set_prologue_end: |
| state_machine.handle_set_prologue_end (); |
| break; |
| case DW_LNS_set_epilogue_begin: |
| state_machine.handle_set_epilogue_begin (); |
| break; |
| default: |
| { |
| /* Unknown standard opcode, ignore it. */ |
| int i; |
| |
| for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++) |
| { |
| (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| } |
| } |
| } |
| } |
| |
| if (!end_sequence) |
| dwarf2_debug_line_missing_end_sequence_complaint (); |
| |
| /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer, |
| in which case we still finish recording the last line). */ |
| state_machine.record_line (true); |
| } |
| } |
| |
| /* Decode the Line Number Program (LNP) for the given line_header |
| structure and CU. The actual information extracted and the type |
| of structures created from the LNP depends on the value of PST. |
| |
| FND holds the CU file name and directory, if known. |
| It is used for relative paths in the line table. |
| |
| NOTE: It is important that psymtabs have the same file name (via |
| strcmp) as the corresponding symtab. Since the directory is not |
| used in the name of the symtab we don't use it in the name of the |
| psymtabs we create. E.g. expand_line_sal requires this when |
| finding psymtabs to expand. A good testcase for this is |
| mb-inline.exp. |
| |
| LOWPC is the lowest address in CU (or 0 if not known). |
| |
| Boolean DECODE_MAPPING specifies we need to fully decode .debug_line |
| for its PC<->lines mapping information. Otherwise only the filename |
| table is read in. */ |
| |
| static void |
| dwarf_decode_lines (struct line_header *lh, struct dwarf2_cu *cu, |
| unrelocated_addr lowpc, int decode_mapping) |
| { |
| if (decode_mapping) |
| dwarf_decode_lines_1 (lh, cu, lowpc); |
| |
| /* Make sure a symtab is created for every file, even files |
| which contain only variables (i.e. no code with associated |
| line numbers). */ |
| buildsym_compunit *builder = cu->get_builder (); |
| struct compunit_symtab *cust = builder->get_compunit_symtab (); |
| |
| for (auto &fe : lh->file_names ()) |
| { |
| dwarf2_start_subfile (cu, fe, *lh); |
| subfile *sf = builder->get_current_subfile (); |
| |
| if (sf->symtab == nullptr) |
| sf->symtab = allocate_symtab (cust, sf->name.c_str (), |
| sf->name_for_id.c_str ()); |
| |
| fe.symtab = sf->symtab; |
| } |
| } |
| |
| /* Start a subfile for DWARF. FILENAME is the name of the file and |
| DIRNAME the name of the source directory which contains FILENAME |
| or NULL if not known. |
| This routine tries to keep line numbers from identical absolute and |
| relative file names in a common subfile. |
| |
| Using the `list' example from the GDB testsuite, which resides in |
| /srcdir and compiling it with Irix6.2 cc in /compdir using a filename |
| of /srcdir/list0.c yields the following debugging information for list0.c: |
| |
| DW_AT_name: /srcdir/list0.c |
| DW_AT_comp_dir: /compdir |
| files.files[0].name: list0.h |
| files.files[0].dir: /srcdir |
| files.files[1].name: list0.c |
| files.files[1].dir: /srcdir |
| |
| The line number information for list0.c has to end up in a single |
| subfile, so that `break /srcdir/list0.c:1' works as expected. |
| start_subfile will ensure that this happens provided that we pass the |
| concatenation of files.files[1].dir and files.files[1].name as the |
| subfile's name. */ |
| |
| static void |
| dwarf2_start_subfile (dwarf2_cu *cu, const file_entry &fe, |
| const line_header &lh) |
| { |
| std::string filename_holder; |
| const char *filename = fe.name; |
| const char *dirname = lh.include_dir_at (fe.d_index); |
| |
| /* In order not to lose the line information directory, |
| we concatenate it to the filename when it makes sense. |
| Note that the Dwarf3 standard says (speaking of filenames in line |
| information): ``The directory index is ignored for file names |
| that represent full path names''. Thus ignoring dirname in the |
| `else' branch below isn't an issue. */ |
| |
| if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL) |
| { |
| filename_holder = path_join (dirname, filename); |
| filename = filename_holder.c_str (); |
| } |
| |
| std::string filename_for_id = lh.file_file_name (fe); |
| cu->get_builder ()->start_subfile (filename, filename_for_id.c_str ()); |
| } |
| |
| static void |
| var_decode_location (struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| |
| /* NOTE drow/2003-01-30: There used to be a comment and some special |
| code here to turn a symbol with DW_AT_external and a |
| SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was |
| necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux |
| with some versions of binutils) where shared libraries could have |
| relocations against symbols in their debug information - the |
| minimal symbol would have the right address, but the debug info |
| would not. It's no longer necessary, because we will explicitly |
| apply relocations when we read in the debug information now. */ |
| |
| /* A DW_AT_location attribute with no contents indicates that a |
| variable has been optimized away. */ |
| if (attr->form_is_block () && attr->as_block ()->size == 0) |
| { |
| sym->set_aclass_index (LOC_OPTIMIZED_OUT); |
| return; |
| } |
| |
| /* Handle one degenerate form of location expression specially, to |
| preserve GDB's previous behavior when section offsets are |
| specified. If this is just a DW_OP_addr, DW_OP_addrx, or |
| DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */ |
| |
| if (attr->form_is_block ()) |
| { |
| struct dwarf_block *block = attr->as_block (); |
| |
| if ((block->data[0] == DW_OP_addr |
| && block->size == 1 + cu_header->addr_size) |
| || ((block->data[0] == DW_OP_GNU_addr_index |
| || block->data[0] == DW_OP_addrx) |
| && (block->size |
| == 1 + leb128_size (&block->data[1])))) |
| { |
| unsigned int dummy; |
| |
| unrelocated_addr tem; |
| if (block->data[0] == DW_OP_addr) |
| tem = cu->header.read_address (objfile->obfd.get (), |
| block->data + 1, |
| &dummy); |
| else |
| tem = read_addr_index_from_leb128 (cu, block->data + 1, &dummy); |
| sym->set_value_address ((CORE_ADDR) tem); |
| sym->set_aclass_index (LOC_STATIC); |
| fixup_symbol_section (sym, objfile); |
| sym->set_value_address |
| (sym->value_address () |
| + objfile->section_offsets[sym->section_index ()]); |
| return; |
| } |
| } |
| |
| /* NOTE drow/2002-01-30: It might be worthwhile to have a static |
| expression evaluator, and use LOC_COMPUTED only when necessary |
| (i.e. when the value of a register or memory location is |
| referenced, or a thread-local block, etc.). Then again, it might |
| not be worthwhile. I'm assuming that it isn't unless performance |
| or memory numbers show me otherwise. */ |
| |
| dwarf2_symbol_mark_computed (attr, sym, cu, 0); |
| |
| if (sym->computed_ops ()->location_has_loclist) |
| cu->has_loclist = true; |
| } |
| |
| /* A helper function to add an "export" symbol. The new symbol starts |
| as a clone of ORIG, but is modified to defer to the symbol named |
| ORIG_NAME. The original symbol uses the name given in the source |
| code, and the symbol that is created here uses the linkage name as |
| its name. See ada-imported.c. */ |
| |
| static void |
| add_ada_export_symbol (struct symbol *orig, const char *new_name, |
| const char *orig_name, struct dwarf2_cu *cu, |
| struct pending **list_to_add) |
| { |
| struct symbol *copy |
| = new (&cu->per_objfile->objfile->objfile_obstack) symbol (*orig); |
| copy->set_linkage_name (new_name); |
| SYMBOL_LOCATION_BATON (copy) = (void *) orig_name; |
| copy->set_aclass_index (copy->aclass () == LOC_BLOCK |
| ? ada_block_index |
| : ada_imported_index); |
| add_symbol_to_list (copy, list_to_add); |
| } |
| |
| /* A helper function that decides if a given symbol is an Ada Pragma |
| Import or Pragma Export. */ |
| |
| static bool |
| is_ada_import_or_export (dwarf2_cu *cu, const char *name, |
| const char *linkagename) |
| { |
| return (cu->lang () == language_ada |
| && linkagename != nullptr |
| && !streq (name, linkagename) |
| /* The following exclusions are necessary because symbols |
| with names or linkage names that match here will meet the |
| other criteria but are not in fact caused by Pragma |
| Import or Pragma Export, and applying the import/export |
| treatment to them will introduce problems. Some of these |
| checks only apply to functions, but it is simpler and |
| harmless to always do them all. */ |
| && !startswith (name, "__builtin") |
| && !startswith (linkagename, "___ghost_") |
| && !startswith (linkagename, "__gnat") |
| && !startswith (linkagename, "_ada_") |
| && !streq (linkagename, "adainit")); |
| } |
| |
| /* Given a pointer to a DWARF information entry, figure out if we need |
| to make a symbol table entry for it, and if so, create a new entry |
| and return a pointer to it. |
| If TYPE is NULL, determine symbol type from the die, otherwise |
| used the passed type. |
| If SPACE is not NULL, use it to hold the new symbol. If it is |
| NULL, allocate a new symbol on the objfile's obstack. */ |
| |
| static struct symbol * |
| new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu, |
| struct symbol *space) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct symbol *sym = NULL; |
| const char *name; |
| struct attribute *attr = NULL; |
| struct attribute *attr2 = NULL; |
| struct pending **list_to_add = NULL; |
| |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| |
| name = dwarf2_name (die, cu); |
| if (name == nullptr && (die->tag == DW_TAG_subprogram |
| || die->tag == DW_TAG_inlined_subroutine |
| || die->tag == DW_TAG_entry_point)) |
| name = dw2_linkage_name (die, cu); |
| |
| if (name) |
| { |
| int suppress_add = 0; |
| |
| if (space) |
| sym = space; |
| else |
| sym = new (&objfile->objfile_obstack) symbol; |
| OBJSTAT (objfile, n_syms++); |
| |
| /* Cache this symbol's name and the name's demangled form (if any). */ |
| sym->set_language (cu->lang (), &objfile->objfile_obstack); |
| /* Fortran does not have mangling standard and the mangling does differ |
| between gfortran, iFort etc. */ |
| const char *physname |
| = ((cu->lang () == language_fortran || cu->lang () == language_ada) |
| ? dwarf2_full_name (name, die, cu) |
| : dwarf2_physname (name, die, cu)); |
| const char *linkagename = dw2_linkage_name (die, cu); |
| |
| if (linkagename == nullptr) |
| sym->set_linkage_name (physname); |
| else if (cu->lang () == language_ada) |
| sym->set_linkage_name (linkagename); |
| else |
| { |
| if (physname == linkagename) |
| sym->set_demangled_name (name, &objfile->objfile_obstack); |
| else |
| sym->set_demangled_name (physname, &objfile->objfile_obstack); |
| |
| sym->set_linkage_name (linkagename); |
| } |
| |
| /* Handle DW_AT_artificial. */ |
| attr = dwarf2_attr (die, DW_AT_artificial, cu); |
| if (attr != nullptr) |
| sym->set_is_artificial (attr->as_boolean ()); |
| |
| /* Default assumptions. |
| Use the passed type or decode it from the die. */ |
| sym->set_domain (UNDEF_DOMAIN); |
| sym->set_aclass_index (LOC_OPTIMIZED_OUT); |
| if (type != NULL) |
| sym->set_type (type); |
| else |
| sym->set_type (die_type (die, cu)); |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_line : DW_AT_decl_line, |
| cu); |
| if (attr != nullptr) |
| sym->set_line (attr->constant_value (0)); |
| |
| struct dwarf2_cu *file_cu = cu; |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_file : DW_AT_decl_file, |
| &file_cu); |
| if (attr != nullptr && attr->is_nonnegative ()) |
| { |
| file_name_index file_index |
| = (file_name_index) attr->as_nonnegative (); |
| struct file_entry *fe; |
| |
| if (file_cu->line_header == nullptr) |
| { |
| file_and_directory fnd (nullptr, nullptr); |
| handle_DW_AT_stmt_list (file_cu->dies, file_cu, fnd, {}, false); |
| } |
| |
| if (file_cu->line_header != nullptr) |
| fe = file_cu->line_header->file_name_at (file_index); |
| else |
| fe = NULL; |
| |
| if (fe == NULL) |
| complaint (_("file index out of range")); |
| else |
| sym->set_symtab (fe->symtab); |
| } |
| |
| switch (die->tag) |
| { |
| case DW_TAG_label: |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr != nullptr) |
| { |
| CORE_ADDR addr = per_objfile->relocate (attr->as_address ()); |
| sym->set_section_index (SECT_OFF_TEXT (objfile)); |
| sym->set_value_address (addr); |
| sym->set_aclass_index (LOC_LABEL); |
| } |
| else |
| sym->set_aclass_index (LOC_OPTIMIZED_OUT); |
| sym->set_type (builtin_type (objfile)->builtin_core_addr); |
| sym->set_domain (LABEL_DOMAIN); |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_entry_point: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| sym->set_domain (FUNCTION_DOMAIN); |
| sym->set_aclass_index (LOC_BLOCK); |
| /* DW_TAG_entry_point provides an additional entry_point to an |
| existing sub_program. Therefore, we inherit the "external" |
| attribute from the sub_program to which the entry_point |
| belongs to. */ |
| attr2 = dwarf2_attr (die->parent, DW_AT_external, cu); |
| if (attr2 != nullptr && attr2->as_boolean ()) |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| else |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_subprogram: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| sym->set_domain (FUNCTION_DOMAIN); |
| sym->set_aclass_index (LOC_BLOCK); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if ((attr2 != nullptr && attr2->as_boolean ()) |
| || cu->lang () == language_ada |
| || cu->lang () == language_fortran) |
| { |
| /* Subprograms marked external are stored as a global symbol. |
| Ada and Fortran subprograms, whether marked external or |
| not, are always stored as a global symbol, because we want |
| to be able to access them globally. For instance, we want |
| to be able to break on a nested subprogram without having |
| to specify the context. */ |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| } |
| else |
| { |
| list_to_add = cu->list_in_scope; |
| } |
| |
| if (is_ada_import_or_export (cu, physname, linkagename)) |
| { |
| /* This is either a Pragma Import or Export. They can |
| be distinguished by the declaration flag. */ |
| sym->set_linkage_name (physname); |
| if (die_is_declaration (die, cu)) |
| { |
| /* For Import, create a symbol using the source |
| name, and have it refer to the linkage name. */ |
| SYMBOL_LOCATION_BATON (sym) = (void *) linkagename; |
| sym->set_aclass_index (ada_block_index); |
| } |
| else |
| { |
| /* For Export, create a symbol using the source |
| name, then create a second symbol that refers |
| back to it. */ |
| add_ada_export_symbol (sym, linkagename, physname, cu, |
| list_to_add); |
| } |
| } |
| break; |
| case DW_TAG_inlined_subroutine: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| sym->set_domain (FUNCTION_DOMAIN); |
| sym->set_aclass_index (LOC_BLOCK); |
| sym->set_is_inlined (1); |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_template_value_param: |
| suppress_add = 1; |
| [[fallthrough]]; |
| case DW_TAG_constant: |
| case DW_TAG_variable: |
| case DW_TAG_member: |
| sym->set_domain (VAR_DOMAIN); |
| /* Compilation with minimal debug info may result in |
| variables with missing type entries. Change the |
| misleading `void' type to something sensible. */ |
| if (sym->type ()->code () == TYPE_CODE_VOID) |
| sym->set_type (builtin_type (objfile)->builtin_int); |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| /* In the case of DW_TAG_member, we should only be called for |
| static const members. */ |
| if (die->tag == DW_TAG_member) |
| { |
| /* dwarf2_add_field uses die_is_declaration, |
| so we do the same. */ |
| gdb_assert (die_is_declaration (die, cu)); |
| gdb_assert (attr); |
| } |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if (!suppress_add) |
| { |
| if (attr2 != nullptr && attr2->as_boolean ()) |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| else |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| } |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| var_decode_location (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| |
| /* Fortran explicitly imports any global symbols to the local |
| scope by DW_TAG_common_block. */ |
| if (cu->lang () == language_fortran && die->parent |
| && die->parent->tag == DW_TAG_common_block) |
| attr2 = NULL; |
| |
| if (sym->aclass () == LOC_STATIC |
| && sym->value_address () == 0 |
| && !per_objfile->per_bfd->has_section_at_zero) |
| { |
| /* When a static variable is eliminated by the linker, |
| the corresponding debug information is not stripped |
| out, but the variable address is set to null; |
| do not add such variables into symbol table. */ |
| } |
| else if (attr2 != nullptr && attr2->as_boolean ()) |
| { |
| if (sym->aclass () == LOC_STATIC |
| && (objfile->flags & OBJF_MAINLINE) == 0 |
| && per_objfile->per_bfd->can_copy) |
| { |
| /* A global static variable might be subject to |
| copy relocation. We first check for a local |
| minsym, though, because maybe the symbol was |
| marked hidden, in which case this would not |
| apply. */ |
| bound_minimal_symbol found |
| = (lookup_minimal_symbol_linkage |
| (sym->linkage_name (), objfile, false)); |
| if (found.minsym != nullptr) |
| sym->maybe_copied = 1; |
| } |
| |
| /* A variable with DW_AT_external is never static, |
| but it may be block-scoped. */ |
| list_to_add |
| = ((cu->list_in_scope |
| == cu->get_builder ()->get_file_symbols ()) |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| } |
| else |
| list_to_add = cu->list_in_scope; |
| |
| if (list_to_add != nullptr |
| && is_ada_import_or_export (cu, physname, linkagename)) |
| { |
| /* This is a Pragma Export. A Pragma Import won't |
| be seen here, because it will not have a location |
| and so will be handled below. */ |
| add_ada_export_symbol (sym, physname, linkagename, cu, |
| list_to_add); |
| } |
| } |
| else |
| { |
| /* We do not know the address of this symbol. |
| If it is an external symbol and we have type information |
| for it, enter the symbol as a LOC_UNRESOLVED symbol. |
| The address of the variable will then be determined from |
| the minimal symbol table whenever the variable is |
| referenced. */ |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| |
| /* Fortran explicitly imports any global symbols to the local |
| scope by DW_TAG_common_block. */ |
| if (cu->lang () == language_fortran && die->parent |
| && die->parent->tag == DW_TAG_common_block) |
| { |
| /* SYMBOL_CLASS doesn't matter here because |
| read_common_block is going to reset it. */ |
| if (!suppress_add) |
| list_to_add = cu->list_in_scope; |
| } |
| else if (is_ada_import_or_export (cu, physname, linkagename)) |
| { |
| /* This is a Pragma Import. A Pragma Export won't |
| be seen here, because it will have a location and |
| so will be handled above. */ |
| sym->set_linkage_name (physname); |
| list_to_add |
| = ((cu->list_in_scope |
| == cu->get_builder ()->get_file_symbols ()) |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| SYMBOL_LOCATION_BATON (sym) = (void *) linkagename; |
| sym->set_aclass_index (ada_imported_index); |
| } |
| else if (attr2 != nullptr && attr2->as_boolean () |
| && dwarf2_attr (die, DW_AT_type, cu) != NULL) |
| { |
| /* A variable with DW_AT_external is never static, but it |
| may be block-scoped. */ |
| list_to_add |
| = ((cu->list_in_scope |
| == cu->get_builder ()->get_file_symbols ()) |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| |
| sym->set_aclass_index (LOC_UNRESOLVED); |
| } |
| else if (!die_is_declaration (die, cu)) |
| { |
| /* Use the default LOC_OPTIMIZED_OUT class. */ |
| gdb_assert (sym->aclass () == LOC_OPTIMIZED_OUT); |
| if (!suppress_add) |
| list_to_add = cu->list_in_scope; |
| } |
| } |
| break; |
| case DW_TAG_formal_parameter: |
| { |
| /* If we are inside a function, mark this as an argument. If |
| not, we might be looking at an argument to an inlined function |
| when we do not have enough information to show inlined frames; |
| pretend it's a local variable in that case so that the user can |
| still see it. */ |
| sym->set_domain (VAR_DOMAIN); |
| struct context_stack *curr |
| = cu->get_builder ()->get_current_context_stack (); |
| if (curr != nullptr && curr->name != nullptr) |
| sym->set_is_argument (1); |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr != nullptr) |
| { |
| var_decode_location (attr, sym, cu); |
| } |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| case DW_TAG_unspecified_parameters: |
| /* From varargs functions; gdb doesn't seem to have any |
| interest in this information, so just ignore it for now. |
| (FIXME?) */ |
| break; |
| case DW_TAG_template_type_param: |
| suppress_add = 1; |
| [[fallthrough]]; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_set_type: |
| case DW_TAG_enumeration_type: |
| if (cu->lang () == language_c |
| || cu->lang () == language_cplus |
| || cu->lang () == language_objc |
| || cu->lang () == language_opencl |
| || cu->lang () == language_minimal) |
| { |
| /* These languages have a tag namespace. Note that |
| there's a special hack for C++ in the matching code, |
| so we don't need to enter a separate typedef for the |
| tag. */ |
| sym->set_aclass_index (LOC_TYPEDEF); |
| sym->set_domain (STRUCT_DOMAIN); |
| } |
| else |
| { |
| /* Other languages don't have a tag namespace. */ |
| sym->set_aclass_index (LOC_TYPEDEF); |
| sym->set_domain (TYPE_DOMAIN); |
| } |
| |
| /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't |
| really ever be static objects: otherwise, if you try |
| to, say, break of a class's method and you're in a file |
| which doesn't mention that class, it won't work unless |
| the check for all static symbols in lookup_symbol_aux |
| saves you. See the OtherFileClass tests in |
| gdb.c++/namespace.exp. */ |
| |
| if (!suppress_add) |
| { |
| buildsym_compunit *builder = cu->get_builder (); |
| list_to_add |
| = (cu->list_in_scope == builder->get_file_symbols () |
| && cu->lang () == language_cplus |
| ? builder->get_global_symbols () |
| : cu->list_in_scope); |
| |
| /* The semantics of C++ state that "struct foo { |
| ... }" also defines a typedef for "foo". */ |
| if (cu->lang () == language_cplus |
| || cu->lang () == language_ada |
| || cu->lang () == language_d |
| || cu->lang () == language_rust) |
| { |
| /* The symbol's name is already allocated along |
| with this objfile, so we don't need to |
| duplicate it for the type. */ |
| if (sym->type ()->name () == 0) |
| sym->type ()->set_name (sym->search_name ()); |
| } |
| } |
| break; |
| case DW_TAG_unspecified_type: |
| if (cu->lang () == language_ada) |
| break; |
| [[fallthrough]]; |
| case DW_TAG_typedef: |
| case DW_TAG_array_type: |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_generic_subrange: |
| sym->set_aclass_index (LOC_TYPEDEF); |
| sym->set_domain (TYPE_DOMAIN); |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_enumerator: |
| sym->set_domain (VAR_DOMAIN); |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr != nullptr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| |
| /* NOTE: carlton/2003-11-10: See comment above in the |
| DW_TAG_class_type, etc. block. */ |
| |
| list_to_add |
| = (cu->list_in_scope == cu->get_builder ()->get_file_symbols () |
| && cu->lang () == language_cplus |
| ? cu->get_builder ()->get_global_symbols () |
| : cu->list_in_scope); |
| break; |
| case DW_TAG_imported_declaration: |
| case DW_TAG_namespace: |
| sym->set_domain (TYPE_DOMAIN); |
| sym->set_aclass_index (LOC_TYPEDEF); |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| break; |
| case DW_TAG_module: |
| sym->set_aclass_index (LOC_TYPEDEF); |
| sym->set_domain (MODULE_DOMAIN); |
| list_to_add = cu->get_builder ()->get_global_symbols (); |
| break; |
| case DW_TAG_common_block: |
| sym->set_aclass_index (LOC_COMMON_BLOCK); |
| sym->set_domain (COMMON_BLOCK_DOMAIN); |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_namelist: |
| sym->set_aclass_index (LOC_STATIC); |
| sym->set_domain (VAR_DOMAIN); |
| list_to_add = cu->list_in_scope; |
| break; |
| default: |
| /* Not a tag we recognize. Hopefully we aren't processing |
| trash data, but since we must specifically ignore things |
| we don't recognize, there is nothing else we should do at |
| this point. */ |
| complaint (_("unsupported tag: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| if (suppress_add) |
| { |
| sym->hash_next = objfile->template_symbols; |
| objfile->template_symbols = sym; |
| list_to_add = NULL; |
| } |
| |
| if (list_to_add != NULL) |
| add_symbol_to_list (sym, list_to_add); |
| |
| /* For the benefit of old versions of GCC, check for anonymous |
| namespaces based on the demangled name. */ |
| if (!cu->processing_has_namespace_info |
| && cu->lang () == language_cplus) |
| cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile); |
| } |
| return (sym); |
| } |
| |
| /* Given an attr with a DW_FORM_dataN value in host byte order, |
| zero-extend it as appropriate for the symbol's type. The DWARF |
| standard (v4) is not entirely clear about the meaning of using |
| DW_FORM_dataN for a constant with a signed type, where the type is |
| wider than the data. The conclusion of a discussion on the DWARF |
| list was that this is unspecified. We choose to always zero-extend |
| because that is the interpretation long in use by GCC. */ |
| |
| static gdb_byte * |
| dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, int bits) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| enum bfd_endian byte_order = bfd_big_endian (objfile->obfd.get ()) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; |
| LONGEST l = attr->constant_value (0); |
| |
| if (bits < sizeof (*value) * 8) |
| { |
| l &= ((LONGEST) 1 << bits) - 1; |
| *value = l; |
| } |
| else if (bits == sizeof (*value) * 8) |
| *value = l; |
| else |
| { |
| gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8); |
| store_unsigned_integer (bytes, bits / 8, byte_order, l); |
| return bytes; |
| } |
| |
| return NULL; |
| } |
| |
| /* Read a constant value from an attribute. Either set *VALUE, or if |
| the value does not fit in *VALUE, set *BYTES - either already |
| allocated on the objfile obstack, or newly allocated on OBSTACK, |
| or, set *BATON, if we translated the constant to a location |
| expression. */ |
| |
| static void |
| dwarf2_const_value_attr (const struct attribute *attr, struct type *type, |
| const char *name, struct obstack *obstack, |
| struct dwarf2_cu *cu, |
| LONGEST *value, const gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| struct dwarf_block *blk; |
| enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd.get ()) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); |
| |
| *value = 0; |
| *bytes = NULL; |
| *baton = NULL; |
| |
| switch (attr->form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| { |
| gdb_byte *data; |
| |
| if (type->length () != cu_header->addr_size) |
| dwarf2_const_value_length_mismatch_complaint (name, |
| cu_header->addr_size, |
| type->length ()); |
| /* Symbols of this form are reasonably rare, so we just |
| piggyback on the existing location code rather than writing |
| a new implementation of symbol_computed_ops. */ |
| *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton); |
| (*baton)->per_objfile = per_objfile; |
| (*baton)->per_cu = cu->per_cu; |
| gdb_assert ((*baton)->per_cu); |
| |
| (*baton)->size = 2 + cu_header->addr_size; |
| data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size); |
| (*baton)->data = data; |
| |
| data[0] = DW_OP_addr; |
| store_unsigned_integer (&data[1], cu_header->addr_size, |
| byte_order, (ULONGEST) attr->as_address ()); |
| data[cu_header->addr_size + 1] = DW_OP_stack_value; |
| } |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_strp_alt: |
| /* The string is already allocated on the objfile obstack, point |
| directly to it. */ |
| *bytes = (const gdb_byte *) attr->as_string (); |
| break; |
| case DW_FORM_block1: |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_exprloc: |
| case DW_FORM_data16: |
| blk = attr->as_block (); |
| if (type->length () != blk->size) |
| dwarf2_const_value_length_mismatch_complaint (name, blk->size, |
| type->length ()); |
| *bytes = blk->data; |
| break; |
| |
| /* The DW_AT_const_value attributes are supposed to carry the |
| symbol's value "represented as it would be on the target |
| architecture." By the time we get here, it's already been |
| converted to host endianness, so we just need to sign- or |
| zero-extend it as appropriate. */ |
| case DW_FORM_data1: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8); |
| break; |
| case DW_FORM_data2: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16); |
| break; |
| case DW_FORM_data4: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32); |
| break; |
| case DW_FORM_data8: |
| *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64); |
| break; |
| |
| case DW_FORM_sdata: |
| case DW_FORM_implicit_const: |
| *value = attr->as_signed (); |
| break; |
| |
| case DW_FORM_udata: |
| *value = attr->as_unsigned (); |
| break; |
| |
| default: |
| complaint (_("unsupported const value attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| *value = 0; |
| break; |
| } |
| } |
| |
| |
| /* Copy constant value from an attribute to a symbol. */ |
| |
| static void |
| dwarf2_const_value (const struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| LONGEST value; |
| const gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| |
| dwarf2_const_value_attr (attr, sym->type (), |
| sym->print_name (), |
| &objfile->objfile_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (baton != NULL) |
| { |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| sym->set_aclass_index (dwarf2_locexpr_index); |
| } |
| else if (bytes != NULL) |
| { |
| sym->set_value_bytes (bytes); |
| sym->set_aclass_index (LOC_CONST_BYTES); |
| } |
| else |
| { |
| sym->set_value_longest (value); |
| sym->set_aclass_index (LOC_CONST); |
| } |
| } |
| |
| /* Return the type of the die in question using its DW_AT_type attribute. */ |
| |
| static struct type * |
| die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (!type_attr) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| /* A missing DW_AT_type represents a void type. */ |
| return builtin_type (objfile)->builtin_void; |
| } |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* True iff CU's producer generates GNAT Ada auxiliary information |
| that allows to find parallel types through that information instead |
| of having to do expensive parallel lookups by type name. */ |
| |
| static int |
| need_gnat_info (struct dwarf2_cu *cu) |
| { |
| /* Assume that the Ada compiler was GNAT, which always produces |
| the auxiliary information. */ |
| return (cu->lang () == language_ada); |
| } |
| |
| /* Return the auxiliary type of the die in question using its |
| DW_AT_GNAT_descriptive_type attribute. Returns NULL if the |
| attribute is not present. */ |
| |
| static struct type * |
| die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu); |
| if (!type_attr) |
| return NULL; |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* If DIE has a descriptive_type attribute, then set the TYPE's |
| descriptive type accordingly. */ |
| |
| static void |
| set_descriptive_type (struct type *type, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct type *descriptive_type = die_descriptive_type (die, cu); |
| |
| if (descriptive_type) |
| { |
| ALLOCATE_GNAT_AUX_TYPE (type); |
| TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type; |
| } |
| } |
| |
| /* Return the containing type of the die in question using its |
| DW_AT_containing_type attribute. */ |
| |
| static struct type * |
| die_containing_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| type_attr = dwarf2_attr (die, DW_AT_containing_type, cu); |
| if (!type_attr) |
| error (_(DWARF_ERROR_PREFIX |
| "Problem turning containing type into gdb type " |
| "[in module %s]"), |
| objfile_name (objfile)); |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* Return an error marker type to use for the ill formed type in DIE/CU. */ |
| |
| static struct type * |
| build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| char *saved; |
| |
| std::string message |
| = string_printf (_("<unknown type in %s, CU %s, DIE %s>"), |
| objfile_name (objfile), |
| sect_offset_str (cu->header.sect_off), |
| sect_offset_str (die->sect_off)); |
| saved = obstack_strdup (&objfile->objfile_obstack, message); |
| |
| return type_allocator (objfile, cu->lang ()).new_type (TYPE_CODE_ERROR, |
| 0, saved); |
| } |
| |
| /* Look up the type of DIE in CU using its type attribute ATTR. |
| ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type, |
| DW_AT_containing_type. |
| If there is no type substitute an error marker. */ |
| |
| static struct type * |
| lookup_die_type (struct die_info *die, const struct attribute *attr, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct type *this_type; |
| |
| gdb_assert (attr->name == DW_AT_type |
| || attr->name == DW_AT_GNAT_descriptive_type |
| || attr->name == DW_AT_containing_type); |
| |
| /* First see if we have it cached. */ |
| |
| if (attr->form == DW_FORM_GNU_ref_alt) |
| { |
| sect_offset sect_off = attr->get_ref_die_offset (); |
| dwarf2_per_cu *per_cu |
| = dwarf2_find_containing_comp_unit (sect_off, 1, per_objfile->per_bfd); |
| |
| this_type = get_die_type_at_offset (sect_off, per_cu, per_objfile); |
| } |
| else if (attr->form_is_ref ()) |
| { |
| sect_offset sect_off = attr->get_ref_die_offset (); |
| |
| this_type = get_die_type_at_offset (sect_off, cu->per_cu, per_objfile); |
| } |
| else if (attr->form == DW_FORM_ref_sig8) |
| { |
| ULONGEST signature = attr->as_signature (); |
| |
| return get_signatured_type (die, signature, cu); |
| } |
| else |
| { |
| complaint (_(DWARF_ERROR_PREFIX |
| "Bad type attribute %s in DIE at %s [in module %s]"), |
| dwarf_attr_name (attr->name), sect_offset_str (die->sect_off), |
| objfile_name (objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| |
| /* If not cached we need to read it in. */ |
| |
| if (this_type == NULL) |
| { |
| struct die_info *type_die = NULL; |
| struct dwarf2_cu *type_cu = cu; |
| |
| if (attr->form_is_ref ()) |
| type_die = follow_die_ref (die, attr, &type_cu); |
| if (type_die == NULL) |
| return build_error_marker_type (cu, die); |
| /* If we find the type now, it's probably because the type came |
| from an inter-CU reference and the type's CU got expanded before |
| ours. */ |
| this_type = read_type_die (type_die, type_cu); |
| } |
| |
| /* If we still don't have a type use an error marker. */ |
| |
| if (this_type == NULL) |
| return build_error_marker_type (cu, die); |
| |
| return this_type; |
| } |
| |
| /* Return the type in DIE, CU. |
| Returns NULL for invalid types. |
| |
| This first does a lookup in die_type_hash, |
| and only reads the die in if necessary. |
| |
| NOTE: This can be called when reading in partial or full symbols. */ |
| |
| static struct type * |
| read_type_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type) |
| return this_type; |
| |
| return read_type_die_1 (die, cu); |
| } |
| |
| /* Read the type in DIE, CU. |
| Returns NULL for invalid types. */ |
| |
| static struct type * |
| read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type = NULL; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| this_type = read_structure_type (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| this_type = read_enumeration_type (die, cu); |
| break; |
| case DW_TAG_entry_point: |
| case DW_TAG_subprogram: |
| case DW_TAG_subroutine_type: |
| case DW_TAG_inlined_subroutine: |
| this_type = read_subroutine_type (die, cu); |
| break; |
| case DW_TAG_array_type: |
| this_type = read_array_type (die, cu); |
| break; |
| case DW_TAG_set_type: |
| this_type = read_set_type (die, cu); |
| break; |
| case DW_TAG_pointer_type: |
| this_type = read_tag_pointer_type (die, cu); |
| break; |
| case DW_TAG_ptr_to_member_type: |
| this_type = read_tag_ptr_to_member_type (die, cu); |
| break; |
| case DW_TAG_reference_type: |
| this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF); |
| break; |
| case DW_TAG_rvalue_reference_type: |
| this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF); |
| break; |
| case DW_TAG_const_type: |
| this_type = read_tag_const_type (die, cu); |
| break; |
| case DW_TAG_volatile_type: |
| this_type = read_tag_volatile_type (die, cu); |
| break; |
| case DW_TAG_restrict_type: |
| this_type = read_tag_restrict_type (die, cu); |
| break; |
| case DW_TAG_string_type: |
| this_type = read_tag_string_type (die, cu); |
| break; |
| case DW_TAG_typedef: |
| this_type = read_typedef (die, cu); |
| break; |
| case DW_TAG_generic_subrange: |
| case DW_TAG_subrange_type: |
| this_type = read_subrange_type (die, cu); |
| break; |
| case DW_TAG_base_type: |
| this_type = read_base_type (die, cu); |
| break; |
| case DW_TAG_unspecified_type: |
| this_type = read_unspecified_type (die, cu); |
| break; |
| case DW_TAG_namespace: |
| this_type = read_namespace_type (die, cu); |
| break; |
| case DW_TAG_module: |
| this_type = read_module_type (die, cu); |
| break; |
| case DW_TAG_atomic_type: |
| this_type = read_tag_atomic_type (die, cu); |
| break; |
| default: |
| complaint (_("unexpected tag in read_type_die: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| return this_type; |
| } |
| |
| /* See if we can figure out if the class lives in a namespace. We do |
| this by looking for a member function; its demangled name will |
| contain namespace info, if there is any. |
| Return the computed name or NULL. |
| Space for the result is allocated on the objfile's obstack. |
| This is the full-die version of guess_partial_die_structure_name. |
| In this case we know DIE has no useful parent. */ |
| |
| static const char * |
| guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct die_info *child; |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die != NULL) |
| { |
| die = spec_die; |
| cu = spec_cu; |
| } |
| |
| for (child = die->child; |
| child != NULL; |
| child = child->sibling) |
| { |
| if (child->tag == DW_TAG_subprogram) |
| { |
| const char *linkage_name = dw2_linkage_name (child, cu); |
| |
| if (linkage_name != NULL) |
| { |
| gdb::unique_xmalloc_ptr<char> actual_name |
| (cu->language_defn->class_name_from_physname (linkage_name)); |
| const char *name = NULL; |
| |
| if (actual_name != NULL) |
| { |
| const char *die_name = dwarf2_name (die, cu); |
| |
| if (die_name != NULL |
| && strcmp (die_name, actual_name.get ()) != 0) |
| { |
| /* Strip off the class name from the full name. |
| We want the prefix. */ |
| int die_name_len = strlen (die_name); |
| int actual_name_len = strlen (actual_name.get ()); |
| const char *ptr = actual_name.get (); |
| |
| /* Test for '::' as a sanity check. */ |
| if (actual_name_len > die_name_len + 2 |
| && ptr[actual_name_len - die_name_len - 1] == ':') |
| name = obstack_strndup ( |
| &objfile->per_bfd->storage_obstack, |
| ptr, actual_name_len - die_name_len - 2); |
| } |
| } |
| return name; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* GCC might emit a nameless typedef that has a linkage name. Determine the |
| prefix part in such case. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| |
| static const char * |
| anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| const char *base; |
| |
| if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type) |
| return NULL; |
| |
| if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL) |
| return NULL; |
| |
| attr = dw2_linkage_name_attr (die, cu); |
| const char *attr_name = attr->as_string (); |
| if (attr == NULL || attr_name == NULL) |
| return NULL; |
| |
| /* dwarf2_name had to be already called. */ |
| gdb_assert (attr->canonical_string_p ()); |
| |
| /* Strip the base name, keep any leading namespaces/classes. */ |
| base = strrchr (attr_name, ':'); |
| if (base == NULL || base == attr_name || base[-1] != ':') |
| return ""; |
| |
| struct objfile *objfile = cu->per_objfile->objfile; |
| return obstack_strndup (&objfile->per_bfd->storage_obstack, |
| attr_name, |
| &base[-1] - attr_name); |
| } |
| |
| /* Return the name of the namespace/class that DIE is defined within, |
| or "" if we can't tell. The caller should not xfree the result. |
| |
| For example, if we're within the method foo() in the following |
| code: |
| |
| namespace N { |
| class C { |
| void foo () { |
| } |
| }; |
| } |
| |
| then determine_prefix on foo's die will return "N::C". */ |
| |
| static const char * |
| determine_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct die_info *parent, *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct type *parent_type; |
| const char *retval; |
| |
| if (cu->lang () != language_cplus |
| && cu->lang () != language_fortran |
| && cu->lang () != language_d |
| && cu->lang () != language_rust |
| && cu->lang () != language_ada) |
| return ""; |
| |
| retval = anonymous_struct_prefix (die, cu); |
| if (retval) |
| return retval; |
| |
| /* We have to be careful in the presence of DW_AT_specification. |
| For example, with GCC 3.4, given the code |
| |
| namespace N { |
| void foo() { |
| // Definition of N::foo. |
| } |
| } |
| |
| then we'll have a tree of DIEs like this: |
| |
| 1: DW_TAG_compile_unit |
| 2: DW_TAG_namespace // N |
| 3: DW_TAG_subprogram // declaration of N::foo |
| 4: DW_TAG_subprogram // definition of N::foo |
| DW_AT_specification // refers to die #3 |
| |
| Thus, when processing die #4, we have to pretend that we're in |
| the context of its DW_AT_specification, namely the context of die |
| #3. */ |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die == NULL) |
| parent = die->parent; |
| else |
| { |
| parent = spec_die->parent; |
| cu = spec_cu; |
| } |
| |
| if (parent == NULL) |
| return ""; |
| else if (parent->building_fullname) |
| { |
| const char *name; |
| const char *parent_name; |
| |
| /* It has been seen on RealView 2.2 built binaries, |
| DW_TAG_template_type_param types actually _defined_ as |
| children of the parent class: |
| |
| enum E {}; |
| template class <class Enum> Class{}; |
| Class<enum E> class_e; |
| |
| 1: DW_TAG_class_type (Class) |
| 2: DW_TAG_enumeration_type (E) |
| 3: DW_TAG_enumerator (enum1:0) |
| 3: DW_TAG_enumerator (enum2:1) |
| ... |
| 2: DW_TAG_template_type_param |
| DW_AT_type DW_FORM_ref_udata (E) |
| |
| Besides being broken debug info, it can put GDB into an |
| infinite loop. Consider: |
| |
| When we're building the full name for Class<E>, we'll start |
| at Class, and go look over its template type parameters, |
| finding E. We'll then try to build the full name of E, and |
| reach here. We're now trying to build the full name of E, |
| and look over the parent DIE for containing scope. In the |
| broken case, if we followed the parent DIE of E, we'd again |
| find Class, and once again go look at its template type |
| arguments, etc., etc. Simply don't consider such parent die |
| as source-level parent of this die (it can't be, the language |
| doesn't allow it), and break the loop here. */ |
| name = dwarf2_name (die, cu); |
| parent_name = dwarf2_name (parent, cu); |
| complaint (_("template param type '%s' defined within parent '%s'"), |
| name ? name : "<unknown>", |
| parent_name ? parent_name : "<unknown>"); |
| return ""; |
| } |
| else |
| switch (parent->tag) |
| { |
| case DW_TAG_namespace: |
| parent_type = read_type_die (parent, cu); |
| /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus |
| DW_TAG_namespace DIEs with a name of "::" for the global namespace. |
| Work around this problem here. */ |
| if (cu->lang () == language_cplus |
| && strcmp (parent_type->name (), "::") == 0) |
| return ""; |
| /* We give a name to even anonymous namespaces. */ |
| return parent_type->name (); |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_module: |
| parent_type = read_type_die (parent, cu); |
| if (parent_type->name () != NULL) |
| return parent_type->name (); |
| else |
| /* An anonymous structure is only allowed non-static data |
| members; no typedefs, no member functions, et cetera. |
| So it does not need a prefix. */ |
| return ""; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */ |
| if (cu->lang () == language_cplus |
| && !per_objfile->per_bfd->types.empty () |
| && die->child != NULL |
| && (die->tag == DW_TAG_class_type |
| || die->tag == DW_TAG_structure_type |
| || die->tag == DW_TAG_union_type)) |
| { |
| const char *name = guess_full_die_structure_name (die, cu); |
| if (name != NULL) |
| return name; |
| } |
| return ""; |
| case DW_TAG_subprogram: |
| /* Nested subroutines in Fortran get a prefix with the name |
| of the parent's subroutine. Entry points are prefixed by the |
| parent's namespace. */ |
| if (cu->lang () == language_fortran) |
| { |
| if ((die->tag == DW_TAG_subprogram) |
| && (dwarf2_name (parent, cu) != NULL)) |
| return dwarf2_name (parent, cu); |
| else if (die->tag == DW_TAG_entry_point) |
| return determine_prefix (parent, cu); |
| } |
| else if (cu->lang () == language_ada |
| && (die->tag == DW_TAG_subprogram |
| || die->tag == DW_TAG_inlined_subroutine |
| || die->tag == DW_TAG_lexical_block)) |
| return dwarf2_full_name (nullptr, parent, cu); |
| return ""; |
| case DW_TAG_enumeration_type: |
| parent_type = read_type_die (parent, cu); |
| if (parent_type->is_declared_class ()) |
| { |
| if (parent_type->name () != NULL) |
| return parent_type->name (); |
| return ""; |
| } |
| [[fallthrough]]; |
| default: |
| return determine_prefix (parent, cu); |
| } |
| } |
| |
| /* Return a newly-allocated string formed by concatenating PREFIX and |
| SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or |
| empty, then simply copy the SUFFIX or PREFIX, respectively. The CU |
| argument is used to determine the language and hence, the |
| appropriate separator. */ |
| |
| static gdb::unique_xmalloc_ptr<char> |
| typename_concat (const char *prefix, const char *suffix, int physname, |
| struct dwarf2_cu *cu) |
| { |
| const char *lead = ""; |
| const char *sep; |
| |
| if (suffix == NULL || suffix[0] == '\0' |
| || prefix == NULL || prefix[0] == '\0') |
| sep = ""; |
| else if (cu->lang () == language_d) |
| { |
| /* For D, the 'main' function could be defined in any module, but it |
| should never be prefixed. */ |
| if (strcmp (suffix, "D main") == 0) |
| { |
| prefix = ""; |
| sep = ""; |
| } |
| else |
| sep = "."; |
| } |
| else if (cu->lang () == language_fortran && physname) |
| { |
| /* This is gfortran specific mangling. Normally DW_AT_linkage_name or |
| DW_AT_MIPS_linkage_name is preferred and used instead. */ |
| |
| lead = "__"; |
| sep = "_MOD_"; |
| } |
| else if (cu->lang () == language_ada) |
| sep = "__"; |
| else |
| sep = "::"; |
| |
| if (prefix == NULL) |
| prefix = ""; |
| if (suffix == NULL) |
| suffix = ""; |
| |
| return gdb::unique_xmalloc_ptr<char> (concat (lead, prefix, sep, suffix, |
| nullptr)); |
| } |
| |
| /* Return a generic name for a DW_TAG_template_type_param or |
| DW_TAG_template_value_param tag, missing a DW_AT_name attribute. We do this |
| per parent, so each function/class/struct template will have their own set |
| of template parameters named <unnnamed0>, <unnamed1>, ... where the |
| enumeration starts at 0 and represents the position of the template tag in |
| the list of unnamed template tags for this parent, counting both, type and |
| value tags. */ |
| |
| static const char * |
| unnamed_template_tag_name (die_info *die, dwarf2_cu *cu) |
| { |
| if (die->parent == nullptr) |
| return nullptr; |
| |
| /* Count the parent types unnamed template type and value children until, we |
| arrive at our entry. */ |
| size_t nth_unnamed = 0; |
| |
| die_info *child = die->parent->child; |
| while (child != die) |
| { |
| gdb_assert (child != nullptr); |
| if (child->tag == DW_TAG_template_type_param |
| || child->tag == DW_TAG_template_value_param) |
| { |
| if (dwarf2_attr (child, DW_AT_name, cu) == nullptr) |
| ++nth_unnamed; |
| } |
| child = child->sibling; |
| } |
| |
| const std::string name_str = "<unnamed" + std::to_string (nth_unnamed) + ">"; |
| return cu->per_objfile->objfile->intern (name_str.c_str ()); |
| } |
| |
| /* Get name of a die, return NULL if not found. */ |
| |
| static const char * |
| dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu, |
| struct objfile *objfile) |
| { |
| if (name == nullptr) |
| return name; |
| |
| if (cu->lang () == language_cplus) |
| { |
| gdb::unique_xmalloc_ptr<char> canon_name |
| = cp_canonicalize_string (name); |
| |
| if (canon_name != nullptr) |
| name = objfile->intern (canon_name.get ()); |
| } |
| else if (cu->lang () == language_c) |
| { |
| gdb::unique_xmalloc_ptr<char> canon_name |
| = c_canonicalize_name (name); |
| |
| if (canon_name != nullptr) |
| name = objfile->intern (canon_name.get ()); |
| } |
| |
| return name; |
| } |
| |
| /* Get name of a die, return NULL if not found. |
| Anonymous namespaces are converted to their magic string. */ |
| |
| static const char * |
| dwarf2_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| struct objfile *objfile = cu->per_objfile->objfile; |
| |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| const char *attr_name = attr == nullptr ? nullptr : attr->as_string (); |
| if (attr_name == nullptr |
| && die->tag != DW_TAG_namespace |
| && die->tag != DW_TAG_class_type |
| && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type |
| && die->tag != DW_TAG_namelist |
| && die->tag != DW_TAG_union_type |
| && die->tag != DW_TAG_template_type_param |
| && die->tag != DW_TAG_template_value_param |
| && die->tag != DW_TAG_module) |
| return NULL; |
| |
| switch (die->tag) |
| { |
| /* A member's name should not be canonicalized. This is a bit |
| of a hack, in that normally it should not be possible to run |
| into this situation; however, the dw2-unusual-field-names.exp |
| test creates custom DWARF that does. */ |
| case DW_TAG_member: |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* Compilation units have a DW_AT_name that is a filename, not |
| a source language identifier. */ |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| /* These tags always have simple identifiers already; no need |
| to canonicalize them. */ |
| return attr_name; |
| |
| case DW_TAG_namespace: |
| if (attr_name != nullptr) |
| return attr_name; |
| return CP_ANONYMOUS_NAMESPACE_STR; |
| |
| /* DWARF does not actually require template tags to have a name. */ |
| case DW_TAG_template_type_param: |
| case DW_TAG_template_value_param: |
| if (attr_name == nullptr) |
| return unnamed_template_tag_name (die, cu); |
| [[fallthrough]]; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_namelist: |
| /* Some GCC versions emit spurious DW_AT_name attributes for unnamed |
| structures or unions. These were of the form "._%d" in GCC 4.1, |
| or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3 |
| and GCC 4.4. We work around this problem by ignoring these. */ |
| if (attr_name != nullptr |
| && (startswith (attr_name, "._") |
| || startswith (attr_name, "<anonymous"))) |
| return NULL; |
| |
| /* GCC might emit a nameless typedef that has a linkage name. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| if (!attr || attr_name == NULL) |
| { |
| attr = dw2_linkage_name_attr (die, cu); |
| attr_name = attr == nullptr ? nullptr : attr->as_string (); |
| if (attr == NULL || attr_name == NULL) |
| return NULL; |
| |
| /* Avoid demangling attr_name the second time on a second |
| call for the same DIE. */ |
| if (!attr->canonical_string_p ()) |
| { |
| gdb::unique_xmalloc_ptr<char> demangled |
| (gdb_demangle (attr_name, DMGL_TYPES)); |
| if (demangled == nullptr) |
| return nullptr; |
| |
| attr->set_string_canonical (objfile->intern (demangled.get ())); |
| attr_name = attr->as_string (); |
| } |
| |
| /* Strip any leading namespaces/classes, keep only the |
| base name. DW_AT_name for named DIEs does not |
| contain the prefixes. */ |
| const char *base = strrchr (attr_name, ':'); |
| if (base && base > attr_name && base[-1] == ':') |
| return &base[1]; |
| else |
| return attr_name; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (!attr->canonical_string_p ()) |
| attr->set_string_canonical (dwarf2_canonicalize_name (attr_name, cu, |
| objfile)); |
| return attr->as_string (); |
| } |
| |
| /* Return the die that this die in an extension of, or NULL if there |
| is none. *EXT_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. */ |
| |
| static struct die_info * |
| dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_extension, *ext_cu); |
| if (attr == NULL) |
| return NULL; |
| |
| return follow_die_ref (die, attr, ext_cu); |
| } |
| |
| /* Follow reference or signature attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct die_info *die; |
| |
| if (attr->form_is_ref ()) |
| die = follow_die_ref (src_die, attr, ref_cu); |
| else if (attr->form == DW_FORM_ref_sig8) |
| die = follow_die_sig (src_die, attr, ref_cu); |
| else |
| { |
| src_die->error_dump (); |
| error (_(DWARF_ERROR_PREFIX |
| "Expected reference attribute [in module %s]"), |
| objfile_name ((*ref_cu)->per_objfile->objfile)); |
| } |
| |
| return die; |
| } |
| |
| /* Follow reference OFFSET. |
| On entry *REF_CU is the CU of the source die referencing OFFSET. |
| On exit *REF_CU is the CU of the result. |
| Returns NULL if OFFSET is invalid. */ |
| |
| static struct die_info * |
| follow_die_offset (sect_offset sect_off, int offset_in_dwz, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct dwarf2_cu *target_cu, *cu = *ref_cu; |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| gdb_assert (cu->per_cu != NULL); |
| |
| target_cu = cu; |
| |
| dwarf_read_debug_printf_v ("source CU offset: %s, target offset: %s, " |
| "source CU contains target offset: %d", |
| sect_offset_str (cu->per_cu->sect_off), |
| sect_offset_str (sect_off), |
| cu->header.offset_in_cu_p (sect_off)); |
| |
| if (cu->per_cu->is_debug_types) |
| { |
| /* .debug_types CUs cannot reference anything outside their CU. |
| If they need to, they have to reference a signatured type via |
| DW_FORM_ref_sig8. */ |
| if (!cu->header.offset_in_cu_p (sect_off)) |
| return NULL; |
| } |
| else if (offset_in_dwz != cu->per_cu->is_dwz |
| || !cu->header.offset_in_cu_p (sect_off)) |
| { |
| dwarf2_per_cu *per_cu |
| = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz, |
| per_objfile->per_bfd); |
| |
| dwarf_read_debug_printf_v ("target CU offset: %s, " |
| "target CU DIEs loaded: %d", |
| sect_offset_str (per_cu->sect_off), |
| per_objfile->get_cu (per_cu) != nullptr); |
| |
| /* If necessary, add it to the queue and load its DIEs. |
| |
| Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs, |
| it doesn't mean they are currently loaded. Since we require them |
| to be loaded, we must check for ourselves. */ |
| if (maybe_queue_comp_unit (cu, per_cu, per_objfile) |
| || per_objfile->get_cu (per_cu) == nullptr) |
| load_full_comp_unit (per_cu, per_objfile, per_objfile->get_cu (per_cu), |
| false, cu->lang ()); |
| |
| target_cu = per_objfile->get_cu (per_cu); |
| if (target_cu == nullptr) |
| error (_(DWARF_ERROR_PREFIX |
| "cannot follow reference to DIE at %s" |
| " [in module %s]"), |
| sect_offset_str (sect_off), |
| objfile_name (per_objfile->objfile)); |
| } |
| else if (cu->dies == NULL) |
| { |
| /* We're loading full DIEs during partial symbol reading. */ |
| load_full_comp_unit (cu->per_cu, per_objfile, cu, false, |
| language_minimal); |
| } |
| |
| *ref_cu = target_cu; |
| |
| auto it = target_cu->die_hash.find (sect_off); |
| return it != target_cu->die_hash.end () ? *it : nullptr; |
| } |
| |
| /* Follow reference attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| sect_offset sect_off = attr->get_ref_die_offset (); |
| struct dwarf2_cu *cu = *ref_cu; |
| struct die_info *die; |
| |
| if (attr->form != DW_FORM_GNU_ref_alt && src_die->sect_off == sect_off) |
| { |
| /* Self-reference, we're done. */ |
| return src_die; |
| } |
| |
| die = follow_die_offset (sect_off, |
| (attr->form == DW_FORM_GNU_ref_alt |
| || cu->per_cu->is_dwz), |
| ref_cu); |
| if (!die) |
| error (_(DWARF_ERROR_PREFIX |
| "Cannot find DIE at %s referenced from DIE at %s [in module %s]"), |
| sect_offset_str (sect_off), sect_offset_str (src_die->sect_off), |
| objfile_name (cu->per_objfile->objfile)); |
| |
| return die; |
| } |
| |
| /* See read.h. */ |
| |
| struct dwarf2_locexpr_baton |
| dwarf2_fetch_die_loc_sect_off (sect_offset sect_off, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| gdb::function_view<CORE_ADDR ()> get_frame_pc, |
| bool resolve_abstract_p) |
| { |
| struct die_info *die; |
| struct attribute *attr; |
| struct dwarf2_locexpr_baton retval; |
| struct objfile *objfile = per_objfile->objfile; |
| |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| if (cu == nullptr) |
| cu = load_cu (per_cu, per_objfile, false); |
| |
| if (cu == nullptr) |
| { |
| /* We shouldn't get here for a dummy CU, but don't crash on the user. |
| Instead just throw an error, not much else we can do. */ |
| error (_(DWARF_ERROR_PREFIX |
| "Dummy CU at %s referenced [in module %s]"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| } |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| error (_(DWARF_ERROR_PREFIX |
| "Cannot find DIE at %s referenced [in module %s]"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (!attr && resolve_abstract_p |
| && (per_objfile->per_bfd->abstract_to_concrete.find (die->sect_off) |
| != per_objfile->per_bfd->abstract_to_concrete.end ())) |
| { |
| CORE_ADDR pc = get_frame_pc (); |
| |
| for (const auto &cand_off |
| : per_objfile->per_bfd->abstract_to_concrete[die->sect_off]) |
| { |
| struct dwarf2_cu *cand_cu = cu; |
| struct die_info *cand |
| = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu); |
| if (!cand |
| || !cand->parent |
| || cand->parent->tag != DW_TAG_subprogram) |
| continue; |
| |
| unrelocated_addr unrel_low, unrel_high; |
| get_scope_pc_bounds (cand->parent, &unrel_low, &unrel_high, cu); |
| if (unrel_low == ((unrelocated_addr) -1)) |
| continue; |
| CORE_ADDR pc_low = per_objfile->relocate (unrel_low); |
| CORE_ADDR pc_high = per_objfile->relocate (unrel_high); |
| if (!(pc_low <= pc && pc < pc_high)) |
| continue; |
| |
| die = cand; |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| break; |
| } |
| } |
| |
| if (!attr) |
| { |
| /* DWARF: "If there is no such attribute, then there is no effect.". |
| DATA is ignored if SIZE is 0. */ |
| |
| retval.data = NULL; |
| retval.size = 0; |
| } |
| else if (attr->form_is_section_offset ()) |
| { |
| struct dwarf2_loclist_baton loclist_baton; |
| CORE_ADDR pc = get_frame_pc (); |
| size_t size; |
| |
| fill_in_loclist_baton (cu, &loclist_baton, attr); |
| |
| retval.data = dwarf2_find_location_expression (&loclist_baton, |
| &size, pc); |
| retval.size = size; |
| } |
| else |
| { |
| if (!attr->form_is_block ()) |
| error (_(DWARF_ERROR_PREFIX |
| "DIE at %s is neither DW_FORM_block* nor DW_FORM_exprloc" |
| " [in module %s]"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| struct dwarf_block *block = attr->as_block (); |
| retval.data = block->data; |
| retval.size = block->size; |
| } |
| retval.per_objfile = per_objfile; |
| retval.per_cu = cu->per_cu; |
| |
| per_objfile->age_comp_units (); |
| |
| return retval; |
| } |
| |
| /* See read.h. */ |
| |
| struct dwarf2_locexpr_baton |
| dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| gdb::function_view<CORE_ADDR ()> get_frame_pc) |
| { |
| sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu); |
| |
| return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, per_objfile, |
| get_frame_pc); |
| } |
| |
| /* Write a constant of a given type as target-ordered bytes into |
| OBSTACK. */ |
| |
| static const gdb_byte * |
| write_constant_as_bytes (struct obstack *obstack, |
| enum bfd_endian byte_order, |
| struct type *type, |
| ULONGEST value, |
| LONGEST *len) |
| { |
| gdb_byte *result; |
| |
| *len = type->length (); |
| result = (gdb_byte *) obstack_alloc (obstack, *len); |
| store_unsigned_integer (result, *len, byte_order, value); |
| |
| return result; |
| } |
| |
| /* See read.h. */ |
| |
| const gdb_byte * |
| dwarf2_fetch_constant_bytes (sect_offset sect_off, |
| dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| obstack *obstack, |
| LONGEST *len) |
| { |
| struct die_info *die; |
| struct attribute *attr; |
| const gdb_byte *result = NULL; |
| struct type *type; |
| LONGEST value; |
| enum bfd_endian byte_order; |
| struct objfile *objfile = per_objfile->objfile; |
| |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| if (cu == nullptr) |
| cu = load_cu (per_cu, per_objfile, false); |
| |
| if (cu == nullptr) |
| { |
| /* We shouldn't get here for a dummy CU, but don't crash on the user. |
| Instead just throw an error, not much else we can do. */ |
| error (_(DWARF_ERROR_PREFIX |
| "Dummy CU at %s referenced [in module %s]"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| } |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| error (_(DWARF_ERROR_PREFIX |
| "Cannot find DIE at %s referenced [in module %s]"), |
| sect_offset_str (sect_off), objfile_name (objfile)); |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr == NULL) |
| return NULL; |
| |
| byte_order = (bfd_big_endian (objfile->obfd.get ()) |
| ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); |
| |
| switch (attr->form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_addrx: |
| case DW_FORM_GNU_addr_index: |
| { |
| gdb_byte *tem; |
| |
| *len = cu->header.addr_size; |
| tem = (gdb_byte *) obstack_alloc (obstack, *len); |
| store_unsigned_integer (tem, *len, byte_order, |
| (ULONGEST) attr->as_address ()); |
| result = tem; |
| } |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_strx: |
| case DW_FORM_GNU_str_index: |
| case DW_FORM_GNU_strp_alt: |
| /* The string is already allocated on the objfile obstack, point |
| directly to it. */ |
| { |
| const char *attr_name = attr->as_string (); |
| result = (const gdb_byte *) attr_name; |
| *len = strlen (attr_name); |
| } |
| break; |
| case DW_FORM_block1: |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_exprloc: |
| case DW_FORM_data16: |
| { |
| struct dwarf_block *block = attr->as_block (); |
| result = block->data; |
| *len = block->size; |
| } |
| break; |
| |
| /* The DW_AT_const_value attributes are supposed to carry the |
| symbol's value "represented as it would be on the target |
| architecture." By the time we get here, it's already been |
| converted to host endianness, so we just need to sign- or |
| zero-extend it as appropriate. */ |
| case DW_FORM_data1: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 8); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data2: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 16); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data4: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 32); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| case DW_FORM_data8: |
| type = die_type (die, cu); |
| result = dwarf2_const_value_data (attr, obstack, cu, &value, 64); |
| if (result == NULL) |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, value, len); |
| break; |
| |
| case DW_FORM_sdata: |
| case DW_FORM_implicit_const: |
| type = die_type (die, cu); |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, attr->as_signed (), len); |
| break; |
| |
| case DW_FORM_udata: |
| type = die_type (die, cu); |
| result = write_constant_as_bytes (obstack, byte_order, |
| type, attr->as_unsigned (), len); |
| break; |
| |
| default: |
| complaint (_("unsupported const value attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| break; |
| } |
| |
| return result; |
| } |
| |
| /* See read.h. */ |
| |
| struct type * |
| dwarf2_fetch_die_type_sect_off (sect_offset sect_off, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile, |
| const char **var_name) |
| { |
| struct die_info *die; |
| |
| dwarf2_cu *cu = per_objfile->get_cu (per_cu); |
| if (cu == nullptr) |
| cu = load_cu (per_cu, per_objfile, false); |
| |
| if (cu == nullptr) |
| return nullptr; |
| |
| die = follow_die_offset (sect_off, per_cu->is_dwz, &cu); |
| if (!die) |
| return NULL; |
| |
| if (var_name != nullptr) |
| *var_name = var_decl_name (die, cu); |
| return die_type (die, cu); |
| } |
| |
| /* See read.h. */ |
| |
| struct type * |
| dwarf2_get_die_type (cu_offset die_offset, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile) |
| { |
| sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset); |
| return get_die_type_at_offset (die_offset_sect, per_cu, per_objfile); |
| } |
| |
| /* Follow type unit SIG_TYPE referenced by SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. |
| Returns NULL if the referenced DIE isn't found. */ |
| |
| static struct die_info * |
| follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct dwarf2_cu *sig_cu; |
| dwarf2_per_objfile *per_objfile = (*ref_cu)->per_objfile; |
| |
| |
| /* While it might be nice to assert sig_type->type == NULL here, |
| we can get here for DW_AT_imported_declaration where we need |
| the DIE not the type. */ |
| |
| /* If necessary, add it to the queue and load its DIEs. |
| |
| Even if maybe_queue_comp_unit doesn't require us to load the CU's DIEs, |
| it doesn't mean they are currently loaded. Since we require them |
| to be loaded, we must check for ourselves. */ |
| if (maybe_queue_comp_unit (*ref_cu, sig_type, per_objfile) |
| || per_objfile->get_cu (sig_type) == nullptr) |
| read_signatured_type (sig_type, per_objfile); |
| |
| sig_cu = per_objfile->get_cu (sig_type); |
| gdb_assert (sig_cu != NULL); |
| gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0); |
| |
| if (auto die_it = sig_cu->die_hash.find (sig_type->type_offset_in_section); |
| die_it != sig_cu->die_hash.end ()) |
| { |
| /* For .gdb_index version 7 keep track of included TUs. |
| http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */ |
| if (per_objfile->per_bfd->index_table != NULL |
| && !per_objfile->per_bfd->index_table->version_check ()) |
| (*ref_cu)->per_cu->imported_symtabs.push_back (sig_cu->per_cu); |
| |
| *ref_cu = sig_cu; |
| return *die_it; |
| } |
| |
| return NULL; |
| } |
| |
| /* Follow signatured type referenced by ATTR in SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. |
| The result is the DIE of the type. |
| If the referenced type cannot be found an error is thrown. */ |
| |
| static struct die_info * |
| follow_die_sig (struct die_info *src_die, const struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| ULONGEST signature = attr->as_signature (); |
| struct signatured_type *sig_type; |
| struct die_info *die; |
| |
| gdb_assert (attr->form == DW_FORM_ref_sig8); |
| |
| sig_type = lookup_signatured_type (*ref_cu, signature); |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| { |
| error (_(DWARF_ERROR_PREFIX |
| "Cannot find signatured DIE %s referenced from DIE at %s" |
| " [in module %s]"), |
| hex_string (signature), sect_offset_str (src_die->sect_off), |
| objfile_name ((*ref_cu)->per_objfile->objfile)); |
| } |
| |
| die = follow_die_sig_1 (src_die, sig_type, ref_cu); |
| if (die == NULL) |
| { |
| src_die->error_dump (); |
| error (_(DWARF_ERROR_PREFIX |
| "Problem reading signatured DIE %s referenced from DIE at %s" |
| " [in module %s]"), |
| hex_string (signature), sect_offset_str (src_die->sect_off), |
| objfile_name ((*ref_cu)->per_objfile->objfile)); |
| } |
| |
| return die; |
| } |
| |
| /* Get the type specified by SIGNATURE referenced in DIE/CU, |
| reading in and processing the type unit if necessary. */ |
| |
| static struct type * |
| get_signatured_type (struct die_info *die, ULONGEST signature, |
| struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct signatured_type *sig_type; |
| struct dwarf2_cu *type_cu; |
| struct die_info *type_die; |
| struct type *type; |
| |
| sig_type = lookup_signatured_type (cu, signature); |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| { |
| complaint (_(DWARF_ERROR_PREFIX |
| "Cannot find signatured DIE %s referenced from DIE at %s" |
| " [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (per_objfile->objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| |
| /* If we already know the type we're done. */ |
| type = per_objfile->get_type_for_signatured_type (sig_type); |
| if (type != nullptr) |
| return type; |
| |
| type_cu = cu; |
| type_die = follow_die_sig_1 (die, sig_type, &type_cu); |
| if (type_die != NULL) |
| { |
| /* N.B. We need to call get_die_type to ensure only one type for this DIE |
| is created. This is important, for example, because for c++ classes |
| we need TYPE_NAME set which is only done by new_symbol. Blech. */ |
| type = read_type_die (type_die, type_cu); |
| if (type == NULL) |
| { |
| complaint (_(DWARF_ERROR_PREFIX |
| "Cannot build signatured type %s" |
| " referenced from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (per_objfile->objfile)); |
| type = build_error_marker_type (cu, die); |
| } |
| } |
| else |
| { |
| complaint (_(DWARF_ERROR_PREFIX |
| "Problem reading signatured DIE %s referenced" |
| " from DIE at %s [in module %s]"), |
| hex_string (signature), sect_offset_str (die->sect_off), |
| objfile_name (per_objfile->objfile)); |
| type = build_error_marker_type (cu, die); |
| } |
| |
| per_objfile->set_type_for_signatured_type (sig_type, type); |
| |
| return type; |
| } |
| |
| /* Get the type specified by the DW_AT_signature ATTR in DIE/CU, |
| reading in and processing the type unit if necessary. */ |
| |
| static struct type * |
| get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr, |
| struct dwarf2_cu *cu) /* ARI: editCase function */ |
| { |
| /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */ |
| if (attr->form_is_ref ()) |
| { |
| struct dwarf2_cu *type_cu = cu; |
| struct die_info *type_die = follow_die_ref (die, attr, &type_cu); |
| |
| return read_type_die (type_die, type_cu); |
| } |
| else if (attr->form == DW_FORM_ref_sig8) |
| { |
| return get_signatured_type (die, attr->as_signature (), cu); |
| } |
| else |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| complaint (_(DWARF_ERROR_PREFIX |
| "DW_AT_signature has bad form %s in DIE at %s" |
| " [in module %s]"), |
| dwarf_form_name (attr->form), sect_offset_str (die->sect_off), |
| objfile_name (per_objfile->objfile)); |
| return build_error_marker_type (cu, die); |
| } |
| } |
| |
| /* Load the DIEs associated with type unit PER_CU into memory. */ |
| |
| static void |
| load_full_type_unit (dwarf2_per_cu *per_cu, dwarf2_per_objfile *per_objfile) |
| { |
| struct signatured_type *sig_type; |
| |
| /* We have the per_cu, but we need the signatured_type. |
| Fortunately this is an easy translation. */ |
| gdb_assert (per_cu->is_debug_types); |
| sig_type = (struct signatured_type *) per_cu; |
| |
| gdb_assert (per_objfile->get_cu (per_cu) == nullptr); |
| |
| read_signatured_type (sig_type, per_objfile); |
| |
| gdb_assert (per_objfile->get_cu (per_cu) != nullptr); |
| } |
| |
| /* Read in a signatured type and build its CU and DIEs. |
| If the type is a stub for the real type in a DWO file, |
| read in the real type from the DWO file as well. */ |
| |
| static void |
| read_signatured_type (signatured_type *sig_type, |
| dwarf2_per_objfile *per_objfile) |
| { |
| gdb_assert (sig_type->is_debug_types); |
| gdb_assert (per_objfile->get_cu (sig_type) == nullptr); |
| |
| cutu_reader reader (sig_type, per_objfile, nullptr, nullptr, false, |
| language_minimal); |
| |
| if (!reader.is_dummy ()) |
| { |
| reader.read_all_dies (); |
| |
| /* Save this dwarf2_cu in the per_objfile. The per_objfile owns it |
| now. */ |
| dwarf2_cu_up new_cu = reader.release_cu (); |
| gdb_assert (new_cu != nullptr); |
| per_objfile->set_cu (sig_type, std::move (new_cu)); |
| } |
| |
| sig_type->tu_read = 1; |
| } |
| |
| /* See read.h. */ |
| |
| bool |
| decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, |
| CORE_ADDR *result) |
| { |
| struct objfile *objfile = cu->per_objfile->objfile; |
| size_t i; |
| size_t size = blk->size; |
| const gdb_byte *data = blk->data; |
| CORE_ADDR stack[64]; |
| int stacki; |
| unsigned int bytes_read; |
| gdb_byte op; |
| |
| *result = 0; |
| i = 0; |
| stacki = 0; |
| stack[stacki] = 0; |
| stack[++stacki] = 0; |
| |
| while (i < size) |
| { |
| op = data[i++]; |
| switch (op) |
| { |
| case DW_OP_lit0: |
| case DW_OP_lit1: |
| case DW_OP_lit2: |
| case DW_OP_lit3: |
| case DW_OP_lit4: |
| case DW_OP_lit5: |
| case DW_OP_lit6: |
| case DW_OP_lit7: |
| case DW_OP_lit8: |
| case DW_OP_lit9: |
| case DW_OP_lit10: |
| case DW_OP_lit11: |
| case DW_OP_lit12: |
| case DW_OP_lit13: |
| case DW_OP_lit14: |
| case DW_OP_lit15: |
| case DW_OP_lit16: |
| case DW_OP_lit17: |
| case DW_OP_lit18: |
| case DW_OP_lit19: |
| case DW_OP_lit20: |
| case DW_OP_lit21: |
| case DW_OP_lit22: |
| case DW_OP_lit23: |
| case DW_OP_lit24: |
| case DW_OP_lit25: |
| case DW_OP_lit26: |
| case DW_OP_lit27: |
| case DW_OP_lit28: |
| case DW_OP_lit29: |
| case DW_OP_lit30: |
| case DW_OP_lit31: |
| stack[++stacki] = op - DW_OP_lit0; |
| break; |
| |
| case DW_OP_addr: |
| stack[++stacki] |
| = (CORE_ADDR) cu->header.read_address (objfile->obfd.get (), |
| &data[i], |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_const1u: |
| stack[++stacki] = read_1_byte (objfile->obfd.get (), &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const1s: |
| stack[++stacki] = read_1_signed_byte (objfile->obfd.get (), &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const2u: |
| stack[++stacki] = read_2_bytes (objfile->obfd.get (), &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const2s: |
| stack[++stacki] = read_2_signed_bytes (objfile->obfd.get (), &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const4u: |
| stack[++stacki] = read_4_bytes (objfile->obfd.get (), &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const4s: |
| stack[++stacki] = read_4_signed_bytes (objfile->obfd.get (), &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const8u: |
| stack[++stacki] = read_8_bytes (objfile->obfd.get (), &data[i]); |
| i += 8; |
| break; |
| |
| case DW_OP_constu: |
| stack[++stacki] = read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_consts: |
| stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_dup: |
| stack[stacki + 1] = stack[stacki]; |
| stacki++; |
| break; |
| |
| case DW_OP_plus: |
| stack[stacki - 1] += stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_plus_uconst: |
| stack[stacki] += read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_minus: |
| stack[stacki - 1] -= stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_deref: |
| /* If we're not the last op, then we definitely can't encode |
| this using GDB's address_class enum. This is valid for partial |
| global symbols, although the variable's address will be bogus |
| in the psymtab. */ |
| if (i < size) |
| return false; |
| break; |
| |
| case DW_OP_addrx: |
| case DW_OP_GNU_addr_index: |
| case DW_OP_constx: |
| case DW_OP_GNU_const_index: |
| stack[++stacki] |
| = (CORE_ADDR) read_addr_index_from_leb128 (cu, &data[i], |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| /* Enforce maximum stack depth of SIZE-1 to avoid writing |
| outside of the allocated space. Also enforce minimum>0. */ |
| if (stacki >= ARRAY_SIZE (stack) - 1) |
| { |
| complaint (_("location description stack overflow")); |
| return false; |
| } |
| |
| if (stacki <= 0) |
| { |
| complaint (_("location description stack underflow")); |
| return false; |
| } |
| } |
| |
| *result = stack[stacki]; |
| return true; |
| } |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block * |
| dwarf_alloc_block (struct dwarf2_cu *cu) |
| { |
| return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block); |
| } |
| |
| |
| |
| /* Macro support. */ |
| |
| /* An overload of dwarf_decode_macros that finds the correct section |
| and ensures it is read in before calling the other overload. */ |
| |
| static void |
| dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset, |
| int section_is_gnu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| const struct line_header *lh = cu->line_header; |
| unsigned int offset_size = cu->header.offset_size; |
| struct dwarf2_section_info *section; |
| const char *section_name; |
| |
| if (cu->dwo_unit != nullptr) |
| { |
| if (section_is_gnu) |
| { |
| section = &cu->dwo_unit->dwo_file->sections.macro; |
| section_name = ".debug_macro.dwo"; |
| } |
| else |
| { |
| section = &cu->dwo_unit->dwo_file->sections.macinfo; |
| section_name = ".debug_macinfo.dwo"; |
| } |
| } |
| else |
| { |
| if (section_is_gnu) |
| { |
| section = &per_objfile->per_bfd->macro; |
| section_name = ".debug_macro"; |
| } |
| else |
| { |
| section = &per_objfile->per_bfd->macinfo; |
| section_name = ".debug_macinfo"; |
| } |
| } |
| |
| section->read (objfile); |
| if (section->buffer == nullptr) |
| { |
| complaint (_("missing %s section"), section_name); |
| return; |
| } |
| |
| buildsym_compunit *builder = cu->get_builder (); |
| |
| struct dwarf2_section_info *str_offsets_section; |
| struct dwarf2_section_info *str_section; |
| std::optional<ULONGEST> str_offsets_base; |
| |
| if (cu->dwo_unit != nullptr) |
| { |
| str_offsets_section = &cu->dwo_unit->dwo_file |
| ->sections.str_offsets; |
| str_section = &cu->dwo_unit->dwo_file->sections.str; |
| if (cu->header.version <= 4) |
| str_offsets_base = 0; |
| else |
| { |
| bfd *abfd = str_offsets_section->get_bfd_owner (); |
| unsigned int bytes_read = 0; |
| read_initial_length (abfd, str_offsets_section->buffer, &bytes_read, |
| false); |
| const bool is_dwarf64 = bytes_read != 4; |
| str_offsets_base = is_dwarf64 ? 16 : 8; |
| } |
| } |
| else |
| { |
| str_offsets_section = &per_objfile->per_bfd->str_offsets; |
| str_section = &per_objfile->per_bfd->str; |
| str_offsets_base = cu->str_offsets_base; |
| } |
| |
| try |
| { |
| dwarf_decode_macros (per_objfile, builder, section, lh, offset_size, |
| offset, str_section, str_offsets_section, |
| str_offsets_base, section_is_gnu, cu); |
| } |
| catch (const gdb_exception_error &error) |
| { |
| /* Print the error and carry on with no (or partial) macro |
| information. */ |
| exception_fprintf (gdb_stderr, error, _("While reading section %s: "), |
| section->get_name ()); |
| } |
| } |
| |
| /* Return the .debug_loc section to use for CU. |
| For DWO files use .debug_loc.dwo. */ |
| |
| static struct dwarf2_section_info * |
| cu_debug_loc_section (struct dwarf2_cu *cu) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| |
| if (cu->dwo_unit) |
| { |
| struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections; |
| |
| return cu->header.version >= 5 ? §ions->loclists : §ions->loc; |
| } |
| return (cu->header.version >= 5 ? &per_objfile->per_bfd->loclists |
| : &per_objfile->per_bfd->loc); |
| } |
| |
| /* Return the .debug_rnglists section to use for CU. */ |
| static struct dwarf2_section_info * |
| cu_debug_rnglists_section (struct dwarf2_cu *cu, dwarf_tag tag) |
| { |
| if (cu->header.version < 5) |
| error (_(".debug_rnglists section cannot be used in DWARF %d"), |
| cu->header.version); |
| struct dwarf2_per_objfile *dwarf2_per_objfile = cu->per_objfile; |
| |
| /* Make sure we read the .debug_rnglists section from the file that |
| contains the DW_AT_ranges attribute we are reading. Normally that |
| would be the .dwo file, if there is one. However for DW_TAG_compile_unit |
| or DW_TAG_skeleton unit, we always want to read from objfile/linked |
| program. */ |
| if (cu->dwo_unit != nullptr |
| && tag != DW_TAG_compile_unit |
| && tag != DW_TAG_skeleton_unit) |
| { |
| struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections; |
| |
| if (sections->rnglists.size > 0) |
| return §ions->rnglists; |
| else |
| error (_(".debug_rnglists section is missing from .dwo file.")); |
| } |
| return &dwarf2_per_objfile->per_bfd->rnglists; |
| } |
| |
| /* A helper function that fills in a dwarf2_loclist_baton. */ |
| |
| static void |
| fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| const struct attribute *attr) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| section->read (per_objfile->objfile); |
| |
| baton->per_objfile = per_objfile; |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| /* We don't know how long the location list is, but make sure we |
| don't run off the edge of the section. */ |
| baton->size = section->size - attr->as_unsigned (); |
| baton->data = section->buffer + attr->as_unsigned (); |
| if (cu->base_address.has_value ()) |
| baton->base_address = *cu->base_address; |
| else |
| baton->base_address = {}; |
| baton->from_dwo = cu->dwo_unit != NULL; |
| baton->dwarf_version = cu->header.version; |
| } |
| |
| static void |
| dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu, int is_block) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct objfile *objfile = per_objfile->objfile; |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| if (attr->form_is_section_offset () |
| /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside |
| the section. If so, fall through to the complaint in the |
| other branch. */ |
| && attr->as_unsigned () < section->get_size (objfile)) |
| { |
| struct dwarf2_loclist_baton *baton; |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton); |
| |
| fill_in_loclist_baton (cu, baton, attr); |
| |
| if (!cu->base_address.has_value ()) |
| complaint (_("Location list used without " |
| "specifying the CU base address.")); |
| |
| sym->set_aclass_index ((is_block |
| ? dwarf2_loclist_block_index |
| : dwarf2_loclist_index)); |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| else |
| { |
| struct dwarf2_locexpr_baton *baton; |
| |
| baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton); |
| baton->per_objfile = per_objfile; |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| |
| if (attr->form_is_block ()) |
| { |
| /* Note that we're just copying the block's data pointer |
| here, not the actual data. We're still pointing into the |
| info_buffer for SYM's objfile; right now we never release |
| that buffer, but when we do clean up properly this may |
| need to change. */ |
| struct dwarf_block *block = attr->as_block (); |
| baton->size = block->size; |
| baton->data = block->data; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("location description", |
| sym->natural_name ()); |
| baton->size = 0; |
| } |
| |
| sym->set_aclass_index ((is_block |
| ? dwarf2_locexpr_block_index |
| : dwarf2_locexpr_index)); |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| } |
| |
| /* See read.h. */ |
| |
| const comp_unit_head * |
| dwarf2_per_cu::get_header () const |
| { |
| if (!m_header_read_in) |
| { |
| const gdb_byte *info_ptr |
| = this->section->buffer + to_underlying (this->sect_off); |
| |
| read_comp_unit_head (&m_header, info_ptr, this->section, |
| rcuh_kind::COMPILE); |
| |
| m_header_read_in = true; |
| } |
| |
| return &m_header; |
| } |
| |
| /* See read.h. */ |
| |
| int |
| dwarf2_per_cu::addr_size () const |
| { |
| return this->get_header ()->addr_size; |
| } |
| |
| /* See read.h. */ |
| |
| int |
| dwarf2_per_cu::offset_size () const |
| { |
| return this->get_header ()->offset_size; |
| } |
| |
| /* See read.h. */ |
| |
| int |
| dwarf2_per_cu::ref_addr_size () const |
| { |
| const comp_unit_head *header = this->get_header (); |
| |
| if (header->version == 2) |
| return header->addr_size; |
| else |
| return header->offset_size; |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_cu::set_lang (enum language lang, dwarf_source_language dw_lang) |
| { |
| if (unit_type () == DW_UT_partial) |
| return; |
| |
| /* Set if not set already. */ |
| packed<language, LANGUAGE_BYTES> new_value = lang; |
| packed<language, LANGUAGE_BYTES> old_value = m_lang.exchange (new_value); |
| /* If already set, verify that it's the same value. */ |
| gdb_assert (old_value == language_unknown |
| || old_value == language_minimal |
| || old_value == lang); |
| |
| packed<dwarf_source_language, 2> new_dw = dw_lang; |
| packed<dwarf_source_language, 2> old_dw = m_dw_lang.exchange (new_dw); |
| gdb_assert (old_dw == 0 || old_dw == dw_lang); |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_cu::ensure_lang (dwarf2_per_objfile *per_objfile) |
| { |
| if (lang (false) != language_unknown) |
| return; |
| |
| /* Constructing this object will set the language as a side |
| effect. */ |
| cutu_reader reader (this, per_objfile, nullptr, per_objfile->get_cu (this), |
| true, language_minimal, nullptr); |
| } |
| |
| /* A helper function for dwarf2_find_containing_comp_unit that returns |
| the index of the result, and that searches a vector. It will |
| return a result even if the offset in question does not actually |
| occur in any CU. This is separate so that it can be unit |
| tested. */ |
| |
| static int |
| dwarf2_find_containing_comp_unit |
| (sect_offset sect_off, |
| unsigned int offset_in_dwz, |
| const std::vector<dwarf2_per_cu_up> &all_units) |
| { |
| int low, high; |
| |
| low = 0; |
| high = all_units.size () - 1; |
| while (high > low) |
| { |
| int mid = low + (high - low) / 2; |
| dwarf2_per_cu *mid_cu = all_units[mid].get (); |
| |
| if (mid_cu->is_dwz > offset_in_dwz |
| || (mid_cu->is_dwz == offset_in_dwz |
| && mid_cu->sect_off + mid_cu->length () > sect_off)) |
| high = mid; |
| else |
| low = mid + 1; |
| } |
| gdb_assert (low == high); |
| return low; |
| } |
| |
| /* See read.h. */ |
| |
| dwarf2_per_cu * |
| dwarf2_find_containing_comp_unit (sect_offset sect_off, |
| unsigned int offset_in_dwz, |
| dwarf2_per_bfd *per_bfd) |
| { |
| int low = dwarf2_find_containing_comp_unit |
| (sect_off, offset_in_dwz, per_bfd->all_units); |
| dwarf2_per_cu *this_cu = per_bfd->all_units[low].get (); |
| |
| if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off) |
| { |
| if (low == 0 || this_cu->is_dwz != offset_in_dwz) |
| error (_(DWARF_ERROR_PREFIX |
| "could not find CU containing offset %s [in module %s]"), |
| sect_offset_str (sect_off), |
| per_bfd->filename ()); |
| |
| gdb_assert (per_bfd->all_units[low-1]->sect_off |
| <= sect_off); |
| return per_bfd->all_units[low - 1].get (); |
| } |
| else |
| { |
| if (low == per_bfd->all_units.size () - 1 |
| && sect_off >= this_cu->sect_off + this_cu->length ()) |
| error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off)); |
| gdb_assert (sect_off < this_cu->sect_off + this_cu->length ()); |
| return this_cu; |
| } |
| } |
| |
| #if GDB_SELF_TEST |
| |
| namespace selftests { |
| namespace find_containing_comp_unit { |
| |
| static void |
| run_test () |
| { |
| char dummy_per_bfd; |
| char dummy_section; |
| |
| const auto create_dummy_per_cu = [&] (sect_offset sect_off, |
| unsigned int length, |
| bool is_dwz) |
| { |
| auto per_bfd = reinterpret_cast<dwarf2_per_bfd *> (&dummy_per_bfd); |
| auto section = reinterpret_cast<dwarf2_section_info *> (&dummy_section); |
| |
| return dwarf2_per_cu_up (new dwarf2_per_cu (per_bfd, section, sect_off, |
| length, is_dwz)); |
| }; |
| |
| /* Units in the main file. */ |
| dwarf2_per_cu_up one = create_dummy_per_cu (sect_offset (0), 5, false); |
| dwarf2_per_cu *one_ptr = one.get (); |
| dwarf2_per_cu_up two |
| = create_dummy_per_cu (sect_offset (one->length ()), 7, false); |
| dwarf2_per_cu *two_ptr = two.get (); |
| |
| /* Units in the supplementary (dwz) file. */ |
| dwarf2_per_cu_up three = create_dummy_per_cu (sect_offset (0), 5, true); |
| dwarf2_per_cu *three_ptr = three.get (); |
| dwarf2_per_cu_up four |
| = create_dummy_per_cu (sect_offset (three->length ()), 7, true); |
| dwarf2_per_cu *four_ptr = four.get (); |
| |
| std::vector<dwarf2_per_cu_up> units; |
| units.push_back (std::move (one)); |
| units.push_back (std::move (two)); |
| units.push_back (std::move (three)); |
| units.push_back (std::move (four)); |
| |
| int result; |
| |
| result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units); |
| SELF_CHECK (units[result].get () == one_ptr); |
| result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units); |
| SELF_CHECK (units[result].get () == one_ptr); |
| result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units); |
| SELF_CHECK (units[result].get () == two_ptr); |
| |
| result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units); |
| SELF_CHECK (units[result].get () == three_ptr); |
| result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units); |
| SELF_CHECK (units[result].get () == three_ptr); |
| result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units); |
| SELF_CHECK (units[result].get () == four_ptr); |
| } |
| |
| } |
| } |
| |
| #endif /* GDB_SELF_TEST */ |
| |
| /* Initialize basic fields of dwarf_cu CU according to DIE |
| COMP_UNIT_DIE. If COMP_UNIT_DIE is NULL, the CU is assumed to be a |
| CU one with no contents; in this case default values are used for |
| the fields. */ |
| |
| void |
| cutu_reader::prepare_one_comp_unit (struct dwarf2_cu *cu, |
| enum language pretend_language) |
| { |
| struct attribute *attr; |
| |
| if (m_top_level_die == nullptr) |
| { |
| cu->set_producer (nullptr); |
| cu->language_defn = language_def (pretend_language); |
| cu->per_cu->set_unit_type (DW_UT_compile); |
| cu->per_cu->set_lang (pretend_language, (dwarf_source_language) 0); |
| return; |
| } |
| |
| cu->set_producer (dwarf2_string_attr (m_top_level_die, DW_AT_producer, cu)); |
| |
| /* Set the language we're debugging. */ |
| attr = dwarf2_attr (m_top_level_die, DW_AT_language, cu); |
| enum language lang; |
| dwarf_source_language dw_lang = (dwarf_source_language) 0; |
| if (cu->producer_is_xlc_opencl ()) |
| { |
| /* The XLCL doesn't generate DW_LANG_OpenCL because this |
| attribute is not standardised yet. As a workaround for the |
| language detection we fall back to the DW_AT_producer |
| string. */ |
| lang = language_opencl; |
| dw_lang = DW_LANG_OpenCL; |
| } |
| else if (cu->producer_is_ggo ()) |
| { |
| /* Similar hack for Go. */ |
| lang = language_go; |
| dw_lang = DW_LANG_Go; |
| } |
| else if (attr != nullptr) |
| { |
| lang = dwarf_lang_to_enum_language (attr->constant_value (0)); |
| dw_lang = (dwarf_source_language) attr->constant_value (0); |
| } |
| else |
| lang = pretend_language; |
| |
| cu->language_defn = language_def (lang); |
| |
| /* Initialize the lto_artificial field. */ |
| attr = dwarf2_attr (m_top_level_die, DW_AT_name, cu); |
| if (attr != nullptr |
| && cu->producer_is_gcc () |
| && attr->as_string () != nullptr |
| && strcmp (attr->as_string (), "<artificial>") == 0) |
| cu->per_cu->lto_artificial = true; |
| |
| switch (m_top_level_die->tag) |
| { |
| case DW_TAG_compile_unit: |
| cu->per_cu->set_unit_type (DW_UT_compile); |
| break; |
| case DW_TAG_partial_unit: |
| cu->per_cu->set_unit_type (DW_UT_partial); |
| break; |
| case DW_TAG_type_unit: |
| cu->per_cu->set_unit_type (DW_UT_type); |
| break; |
| default: |
| error (_(DWARF_ERROR_PREFIX "unexpected tag '%s' at offset %s"), |
| dwarf_tag_name (m_top_level_die->tag), |
| sect_offset_str (cu->per_cu->sect_off)); |
| } |
| |
| cu->per_cu->set_lang (lang, dw_lang); |
| } |
| |
| /* See read.h. */ |
| |
| dwarf2_cu * |
| dwarf2_per_objfile::get_cu (dwarf2_per_cu *per_cu) |
| { |
| auto it = m_dwarf2_cus.find (per_cu); |
| if (it == m_dwarf2_cus.end ()) |
| return nullptr; |
| |
| return it->second.get (); |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_objfile::set_cu (dwarf2_per_cu *per_cu, dwarf2_cu_up cu) |
| { |
| gdb_assert (this->get_cu (per_cu) == nullptr); |
| |
| m_dwarf2_cus[per_cu] = std::move (cu); |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_objfile::age_comp_units () |
| { |
| dwarf_read_debug_printf_v ("running"); |
| |
| /* This is not expected to be called in the middle of CU expansion. There is |
| an invariant that if a CU is in the CUs-to-expand queue, its DIEs are |
| loaded in memory. Calling age_comp_units while the queue is in use could |
| make us free the DIEs for a CU that is in the queue and therefore break |
| that invariant. */ |
| gdb_assert (!queue.has_value ()); |
| |
| /* Start by clearing all marks. */ |
| for (const auto &pair : m_dwarf2_cus) |
| pair.second->clear_mark (); |
| |
| /* Traverse all CUs, mark them and their dependencies if used recently |
| enough. */ |
| for (const auto &pair : m_dwarf2_cus) |
| { |
| dwarf2_cu *cu = pair.second.get (); |
| |
| cu->last_used++; |
| if (cu->last_used <= dwarf_max_cache_age) |
| cu->mark (); |
| } |
| |
| /* Delete all CUs still not marked. */ |
| for (auto it = m_dwarf2_cus.begin (); it != m_dwarf2_cus.end ();) |
| { |
| dwarf2_cu *cu = it->second.get (); |
| |
| if (!cu->is_marked ()) |
| { |
| dwarf_read_debug_printf_v ("deleting old CU %s", |
| sect_offset_str (cu->per_cu->sect_off)); |
| it = m_dwarf2_cus.erase (it); |
| } |
| else |
| it++; |
| } |
| } |
| |
| /* See read.h. */ |
| |
| void |
| dwarf2_per_objfile::remove_cu (dwarf2_per_cu *per_cu) |
| { |
| auto it = m_dwarf2_cus.find (per_cu); |
| if (it == m_dwarf2_cus.end ()) |
| return; |
| |
| m_dwarf2_cus.erase (it); |
| } |
| |
| dwarf2_per_objfile::~dwarf2_per_objfile () |
| { |
| remove_all_cus (); |
| } |
| |
| /* Set the type associated with DIE to TYPE. Save it in CU's hash |
| table if necessary. For convenience, return TYPE. |
| |
| The DIEs reading must have careful ordering to: |
| * Not cause infinite loops trying to read in DIEs as a prerequisite for |
| reading current DIE. |
| * Not trying to dereference contents of still incompletely read in types |
| while reading in other DIEs. |
| * Enable referencing still incompletely read in types just by a pointer to |
| the type without accessing its fields. |
| |
| Therefore caller should follow these rules: |
| * Try to fetch any prerequisite types we may need to build this DIE type |
| before building the type and calling set_die_type. |
| * After building type call set_die_type for current DIE as soon as |
| possible before fetching more types to complete the current type. |
| * Make the type as complete as possible before fetching more types. */ |
| |
| static struct type * |
| set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu, |
| bool skip_data_location) |
| { |
| dwarf2_per_objfile *per_objfile = cu->per_objfile; |
| struct attribute *attr; |
| struct dynamic_prop prop; |
| |
| /* For Ada types, make sure that the gnat-specific data is always |
| initialized (if not already set). There are a few types where |
| we should not be doing so, because the type-specific area is |
| already used to hold some other piece of info (eg: TYPE_CODE_FLT |
| where the type-specific area is used to store the floatformat). |
| But this is not a problem, because the gnat-specific information |
| is actually not needed for these types. */ |
| if (need_gnat_info (cu) |
| && type->code () != TYPE_CODE_FUNC |
| && type->code () != TYPE_CODE_FLT |
| && type->code () != TYPE_CODE_METHODPTR |
| && type->code () != TYPE_CODE_MEMBERPTR |
| && type->code () != TYPE_CODE_METHOD |
| && type->code () != TYPE_CODE_FIXED_POINT |
| && !HAVE_GNAT_AUX_INFO (type)) |
| INIT_GNAT_SPECIFIC (type); |
| |
| /* Read DW_AT_allocated and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_allocated, cu); |
| if (attr != NULL) |
| { |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| type->add_dyn_prop (DYN_PROP_ALLOCATED, prop); |
| } |
| |
| /* Read DW_AT_associated and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_associated, cu); |
| if (attr != NULL) |
| { |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop); |
| } |
| |
| /* Read DW_AT_rank and set in type. */ |
| attr = dwarf2_attr (die, DW_AT_rank, cu); |
| if (attr != NULL) |
| { |
| struct type *prop_type = cu->addr_sized_int_type (false); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type)) |
| type->add_dyn_prop (DYN_PROP_RANK, prop); |
| } |
| |
| /* Read DW_AT_data_location and set in type. */ |
| if (!skip_data_location) |
| { |
| attr = dwarf2_attr (die, DW_AT_data_location, cu); |
| if (attr_to_dynamic_prop (attr, die, cu, &prop, cu->addr_type ())) |
| type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop); |
| } |
| |
| bool inserted |
| = per_objfile->die_type_hash.emplace |
| (per_cu_and_offset {cu->per_cu, die->sect_off}, type).second; |
| if (!inserted) |
| complaint (_("A problem internal to GDB: DIE %s has type already set"), |
| sect_offset_str (die->sect_off)); |
| |
| return type; |
| } |
| |
| /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash, |
| or return NULL if the die does not have a saved type. */ |
| |
| static struct type * |
| get_die_type_at_offset (sect_offset sect_off, dwarf2_per_cu *per_cu, |
| dwarf2_per_objfile *per_objfile) |
| { |
| auto it = per_objfile->die_type_hash.find ({per_cu, sect_off}); |
| |
| return it != per_objfile->die_type_hash.end () ? it->second : nullptr; |
| } |
| |
| /* Look up the type for DIE in CU in die_type_hash, |
| or return NULL if DIE does not have a saved type. */ |
| |
| static struct type * |
| get_die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return get_die_type_at_offset (die->sect_off, cu->per_cu, cu->per_objfile); |
| } |
| |
| struct cmd_list_element *set_dwarf_cmdlist; |
| struct cmd_list_element *show_dwarf_cmdlist; |
| |
| static void |
| show_check_physname (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| gdb_printf (file, |
| _("Whether to check \"physname\" is %s.\n"), |
| value); |
| } |
| |
| void _initialize_dwarf2_read (); |
| void |
| _initialize_dwarf2_read () |
| { |
| add_setshow_prefix_cmd ("dwarf", class_maintenance, |
| _("\ |
| Set DWARF specific variables.\n\ |
| Configure DWARF variables such as the cache size."), |
| _("\ |
| Show DWARF specific variables.\n\ |
| Show DWARF variables such as the cache size."), |
| &set_dwarf_cmdlist, &show_dwarf_cmdlist, |
| &maintenance_set_cmdlist, &maintenance_show_cmdlist); |
| |
| add_setshow_zinteger_cmd ("max-cache-age", class_obscure, |
| &dwarf_max_cache_age, _("\ |
| Set the upper bound on the age of cached DWARF compilation units."), _("\ |
| Show the upper bound on the age of cached DWARF compilation units."), _("\ |
| A higher limit means that cached compilation units will be stored\n\ |
| in memory longer, and more total memory will be used. Zero disables\n\ |
| caching, which can slow down startup."), |
| NULL, |
| show_dwarf_max_cache_age, |
| &set_dwarf_cmdlist, |
| &show_dwarf_cmdlist); |
| |
| add_setshow_boolean_cmd ("synchronous", class_obscure, |
| &dwarf_synchronous, _("\ |
| Set whether DWARF is read synchronously."), _("\ |
| Show whether DWARF is read synchronously."), _("\ |
| By default, DWARF information is read in worker threads,\n\ |
| and gdb will not generally wait for the reading to complete\n\ |
| before continuing with other work, for example presenting a\n\ |
| prompt to the user.\n\ |
| Enabling this setting will cause the DWARF reader to always wait\n\ |
| for debug info processing to be finished before gdb can proceed."), |
| nullptr, |
| show_dwarf_synchronous, |
| &set_dwarf_cmdlist, |
| &show_dwarf_cmdlist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\ |
| Set debugging of the DWARF reader."), _("\ |
| Show debugging of the DWARF reader."), _("\ |
| When enabled (non-zero), debugging messages are printed during DWARF\n\ |
| reading and symtab expansion. A value of 1 (one) provides basic\n\ |
| information. A value greater than 1 provides more verbose information."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\ |
| Set debugging of the DWARF DIE reader."), _("\ |
| Show debugging of the DWARF DIE reader."), _("\ |
| When enabled (non-zero), DIEs are dumped after they are read in.\n\ |
| The value is the maximum depth to print."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\ |
| Set debugging of the dwarf line reader."), _("\ |
| Show debugging of the dwarf line reader."), _("\ |
| When enabled (non-zero), line number entries are dumped as they are read in.\n\ |
| A value of 1 (one) provides basic information.\n\ |
| A value greater than 1 provides more verbose information."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\ |
| Set cross-checking of \"physname\" code against demangler."), _("\ |
| Show cross-checking of \"physname\" code against demangler."), _("\ |
| When enabled, GDB's internal \"physname\" code is checked against\n\ |
| the demangler."), |
| NULL, show_check_physname, |
| &setdebuglist, &showdebuglist); |
| |
| dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED, |
| &dwarf2_locexpr_funcs); |
| dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED, |
| &dwarf2_loclist_funcs); |
| ada_imported_index = register_symbol_computed_impl (LOC_COMPUTED, |
| &ada_imported_funcs); |
| |
| dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK, |
| &dwarf2_block_frame_base_locexpr_funcs); |
| dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK, |
| &dwarf2_block_frame_base_loclist_funcs); |
| ada_block_index = register_symbol_block_impl (LOC_BLOCK, |
| &ada_function_alias_funcs); |
| |
| #if GDB_SELF_TEST |
| selftests::register_test ("dwarf2_find_containing_comp_unit", |
| selftests::find_containing_comp_unit::run_test); |
| #endif |
| } |