|  | /* ELF executable support for BFD. | 
|  |  | 
|  | Copyright (C) 1993-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of BFD, the Binary File Descriptor library. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the Free Software | 
|  | Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | MA 02110-1301, USA.  */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | SECTION | 
|  | ELF backends | 
|  |  | 
|  | BFD support for ELF formats is being worked on. | 
|  | Currently, the best supported back ends are for sparc and i386 | 
|  | (running svr4 or Solaris 2). | 
|  |  | 
|  | Documentation of the internals of the support code still needs | 
|  | to be written.  The code is changing quickly enough that we | 
|  | haven't bothered yet.  */ | 
|  |  | 
|  | /* For sparc64-cross-sparc32.  */ | 
|  | #define _SYSCALL32 | 
|  | #include "sysdep.h" | 
|  | #include <limits.h> | 
|  | #include "bfd.h" | 
|  | #include "bfdlink.h" | 
|  | #include "libbfd.h" | 
|  | #define ARCH_SIZE 0 | 
|  | #include "elf-bfd.h" | 
|  | #include "libiberty.h" | 
|  | #include "safe-ctype.h" | 
|  | #include "elf-linux-core.h" | 
|  |  | 
|  | #ifdef CORE_HEADER | 
|  | #include CORE_HEADER | 
|  | #endif | 
|  |  | 
|  | static int elf_sort_sections (const void *, const void *); | 
|  | static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); | 
|  | static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int, | 
|  | struct bfd_link_info *); | 
|  | static bool elf_parse_notes (bfd *abfd, char *buf, size_t size, | 
|  | file_ptr offset, size_t align); | 
|  |  | 
|  | /* Swap version information in and out.  The version information is | 
|  | currently size independent.  If that ever changes, this code will | 
|  | need to move into elfcode.h.  */ | 
|  |  | 
|  | /* Swap in a Verdef structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verdef_in (bfd *abfd, | 
|  | const Elf_External_Verdef *src, | 
|  | Elf_Internal_Verdef *dst) | 
|  | { | 
|  | dst->vd_version = H_GET_16 (abfd, src->vd_version); | 
|  | dst->vd_flags   = H_GET_16 (abfd, src->vd_flags); | 
|  | dst->vd_ndx     = H_GET_16 (abfd, src->vd_ndx); | 
|  | dst->vd_cnt     = H_GET_16 (abfd, src->vd_cnt); | 
|  | dst->vd_hash    = H_GET_32 (abfd, src->vd_hash); | 
|  | dst->vd_aux     = H_GET_32 (abfd, src->vd_aux); | 
|  | dst->vd_next    = H_GET_32 (abfd, src->vd_next); | 
|  | } | 
|  |  | 
|  | /* Swap out a Verdef structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verdef_out (bfd *abfd, | 
|  | const Elf_Internal_Verdef *src, | 
|  | Elf_External_Verdef *dst) | 
|  | { | 
|  | H_PUT_16 (abfd, src->vd_version, dst->vd_version); | 
|  | H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); | 
|  | H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); | 
|  | H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); | 
|  | H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); | 
|  | H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); | 
|  | H_PUT_32 (abfd, src->vd_next, dst->vd_next); | 
|  | } | 
|  |  | 
|  | /* Swap in a Verdaux structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verdaux_in (bfd *abfd, | 
|  | const Elf_External_Verdaux *src, | 
|  | Elf_Internal_Verdaux *dst) | 
|  | { | 
|  | dst->vda_name = H_GET_32 (abfd, src->vda_name); | 
|  | dst->vda_next = H_GET_32 (abfd, src->vda_next); | 
|  | } | 
|  |  | 
|  | /* Swap out a Verdaux structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verdaux_out (bfd *abfd, | 
|  | const Elf_Internal_Verdaux *src, | 
|  | Elf_External_Verdaux *dst) | 
|  | { | 
|  | H_PUT_32 (abfd, src->vda_name, dst->vda_name); | 
|  | H_PUT_32 (abfd, src->vda_next, dst->vda_next); | 
|  | } | 
|  |  | 
|  | /* Swap in a Verneed structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verneed_in (bfd *abfd, | 
|  | const Elf_External_Verneed *src, | 
|  | Elf_Internal_Verneed *dst) | 
|  | { | 
|  | dst->vn_version = H_GET_16 (abfd, src->vn_version); | 
|  | dst->vn_cnt     = H_GET_16 (abfd, src->vn_cnt); | 
|  | dst->vn_file    = H_GET_32 (abfd, src->vn_file); | 
|  | dst->vn_aux     = H_GET_32 (abfd, src->vn_aux); | 
|  | dst->vn_next    = H_GET_32 (abfd, src->vn_next); | 
|  | } | 
|  |  | 
|  | /* Swap out a Verneed structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_verneed_out (bfd *abfd, | 
|  | const Elf_Internal_Verneed *src, | 
|  | Elf_External_Verneed *dst) | 
|  | { | 
|  | H_PUT_16 (abfd, src->vn_version, dst->vn_version); | 
|  | H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); | 
|  | H_PUT_32 (abfd, src->vn_file, dst->vn_file); | 
|  | H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); | 
|  | H_PUT_32 (abfd, src->vn_next, dst->vn_next); | 
|  | } | 
|  |  | 
|  | /* Swap in a Vernaux structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_vernaux_in (bfd *abfd, | 
|  | const Elf_External_Vernaux *src, | 
|  | Elf_Internal_Vernaux *dst) | 
|  | { | 
|  | dst->vna_hash  = H_GET_32 (abfd, src->vna_hash); | 
|  | dst->vna_flags = H_GET_16 (abfd, src->vna_flags); | 
|  | dst->vna_other = H_GET_16 (abfd, src->vna_other); | 
|  | dst->vna_name  = H_GET_32 (abfd, src->vna_name); | 
|  | dst->vna_next  = H_GET_32 (abfd, src->vna_next); | 
|  | } | 
|  |  | 
|  | /* Swap out a Vernaux structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_vernaux_out (bfd *abfd, | 
|  | const Elf_Internal_Vernaux *src, | 
|  | Elf_External_Vernaux *dst) | 
|  | { | 
|  | H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); | 
|  | H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); | 
|  | H_PUT_16 (abfd, src->vna_other, dst->vna_other); | 
|  | H_PUT_32 (abfd, src->vna_name, dst->vna_name); | 
|  | H_PUT_32 (abfd, src->vna_next, dst->vna_next); | 
|  | } | 
|  |  | 
|  | /* Swap in a Versym structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_versym_in (bfd *abfd, | 
|  | const Elf_External_Versym *src, | 
|  | Elf_Internal_Versym *dst) | 
|  | { | 
|  | dst->vs_vers = H_GET_16 (abfd, src->vs_vers); | 
|  | } | 
|  |  | 
|  | /* Swap out a Versym structure.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_swap_versym_out (bfd *abfd, | 
|  | const Elf_Internal_Versym *src, | 
|  | Elf_External_Versym *dst) | 
|  | { | 
|  | H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); | 
|  | } | 
|  |  | 
|  | /* Standard ELF hash function.  Do not change this function; you will | 
|  | cause invalid hash tables to be generated.  */ | 
|  |  | 
|  | unsigned long | 
|  | bfd_elf_hash (const char *namearg) | 
|  | { | 
|  | uint32_t h = 0; | 
|  |  | 
|  | for (const unsigned char *name = (const unsigned char *) namearg; | 
|  | *name; name++) | 
|  | { | 
|  | h = (h << 4) + *name; | 
|  | h ^= (h >> 24) & 0xf0; | 
|  | } | 
|  | return h & 0x0fffffff; | 
|  | } | 
|  |  | 
|  | /* DT_GNU_HASH hash function.  Do not change this function; you will | 
|  | cause invalid hash tables to be generated.  */ | 
|  |  | 
|  | unsigned long | 
|  | bfd_elf_gnu_hash (const char *namearg) | 
|  | { | 
|  | uint32_t h = 5381; | 
|  |  | 
|  | for (const unsigned char *name = (const unsigned char *) namearg; | 
|  | *name; name++) | 
|  | h = (h << 5) + h + *name; | 
|  | return h; | 
|  | } | 
|  |  | 
|  | /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with | 
|  | the object_id field of an elf_obj_tdata field set to OBJECT_ID.  */ | 
|  | bool | 
|  | bfd_elf_allocate_object (bfd *abfd, | 
|  | size_t object_size, | 
|  | enum elf_target_id object_id) | 
|  | { | 
|  | BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); | 
|  | abfd->tdata.any = bfd_zalloc (abfd, object_size); | 
|  | if (abfd->tdata.any == NULL) | 
|  | return false; | 
|  |  | 
|  | elf_object_id (abfd) = object_id; | 
|  | if (abfd->direction != read_direction) | 
|  | { | 
|  | struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o); | 
|  | if (o == NULL) | 
|  | return false; | 
|  | elf_tdata (abfd)->o = o; | 
|  | elf_program_header_size (abfd) = (bfd_size_type) -1; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool | 
|  | bfd_elf_make_object (bfd *abfd) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), | 
|  | bed->target_id); | 
|  | } | 
|  |  | 
|  | bool | 
|  | bfd_elf_mkcorefile (bfd *abfd) | 
|  | { | 
|  | /* I think this can be done just like an object file.  */ | 
|  | if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd)) | 
|  | return false; | 
|  | elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core)); | 
|  | return elf_tdata (abfd)->core != NULL; | 
|  | } | 
|  |  | 
|  | char * | 
|  | bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) | 
|  | { | 
|  | Elf_Internal_Shdr **i_shdrp; | 
|  | bfd_byte *shstrtab = NULL; | 
|  | file_ptr offset; | 
|  | bfd_size_type shstrtabsize; | 
|  |  | 
|  | i_shdrp = elf_elfsections (abfd); | 
|  | if (i_shdrp == 0 | 
|  | || shindex >= elf_numsections (abfd) | 
|  | || i_shdrp[shindex] == 0) | 
|  | return NULL; | 
|  |  | 
|  | shstrtab = i_shdrp[shindex]->contents; | 
|  | if (shstrtab == NULL) | 
|  | { | 
|  | /* No cached one, attempt to read, and cache what we read.  */ | 
|  | offset = i_shdrp[shindex]->sh_offset; | 
|  | shstrtabsize = i_shdrp[shindex]->sh_size; | 
|  |  | 
|  | if (shstrtabsize == 0 | 
|  | || bfd_seek (abfd, offset, SEEK_SET) != 0 | 
|  | || (shstrtab | 
|  | = _bfd_mmap_readonly_persistent (abfd, shstrtabsize)) == NULL) | 
|  | { | 
|  | /* Once we've failed to read it, make sure we don't keep | 
|  | trying.  Otherwise, we'll keep allocating space for | 
|  | the string table over and over.  */ | 
|  | i_shdrp[shindex]->sh_size = 0; | 
|  | } | 
|  | else if (shstrtab[shstrtabsize - 1] != 0) | 
|  | { | 
|  | /* It is an error if a string table isn't terminated.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: string table [%u] is corrupt"), abfd, shindex); | 
|  | shstrtab[shstrtabsize - 1] = 0; | 
|  | } | 
|  | i_shdrp[shindex]->contents = shstrtab; | 
|  | } | 
|  | return (char *) shstrtab; | 
|  | } | 
|  |  | 
|  | char * | 
|  | bfd_elf_string_from_elf_section (bfd *abfd, | 
|  | unsigned int shindex, | 
|  | unsigned int strindex) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  |  | 
|  | if (strindex == 0) | 
|  | return ""; | 
|  |  | 
|  | if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) | 
|  | return NULL; | 
|  |  | 
|  | hdr = elf_elfsections (abfd)[shindex]; | 
|  |  | 
|  | if (hdr->contents == NULL) | 
|  | { | 
|  | if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS) | 
|  | { | 
|  | /* PR 17512: file: f057ec89.  */ | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: attempt to load strings from" | 
|  | " a non-string section (number %d)"), | 
|  | abfd, shindex); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (bfd_elf_get_str_section (abfd, shindex) == NULL) | 
|  | return NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* PR 24273: The string section's contents may have already | 
|  | been loaded elsewhere, eg because a corrupt file has the | 
|  | string section index in the ELF header pointing at a group | 
|  | section.  So be paranoid, and test that the last byte of | 
|  | the section is zero.  */ | 
|  | if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (strindex >= hdr->sh_size) | 
|  | { | 
|  | unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"), | 
|  | abfd, strindex, (uint64_t) hdr->sh_size, | 
|  | (shindex == shstrndx && strindex == hdr->sh_name | 
|  | ? ".shstrtab" | 
|  | : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return ((char *) hdr->contents) + strindex; | 
|  | } | 
|  |  | 
|  | /* Read and convert symbols to internal format. | 
|  | SYMCOUNT specifies the number of symbols to read, starting from | 
|  | symbol SYMOFFSET.  If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF | 
|  | are non-NULL, they are used to store the internal symbols, external | 
|  | symbols, and symbol section index extensions, respectively. | 
|  | Returns a pointer to the internal symbol buffer (malloced if necessary) | 
|  | or NULL if there were no symbols or some kind of problem.  */ | 
|  |  | 
|  | Elf_Internal_Sym * | 
|  | bfd_elf_get_elf_syms (bfd *ibfd, | 
|  | Elf_Internal_Shdr *symtab_hdr, | 
|  | size_t symcount, | 
|  | size_t symoffset, | 
|  | Elf_Internal_Sym *intsym_buf, | 
|  | void *extsym_buf, | 
|  | Elf_External_Sym_Shndx *extshndx_buf) | 
|  | { | 
|  | Elf_Internal_Shdr *shndx_hdr; | 
|  | void *alloc_ext; | 
|  | const bfd_byte *esym; | 
|  | Elf_External_Sym_Shndx *alloc_extshndx; | 
|  | Elf_External_Sym_Shndx *shndx; | 
|  | Elf_Internal_Sym *alloc_intsym; | 
|  | Elf_Internal_Sym *isym; | 
|  | Elf_Internal_Sym *isymend; | 
|  | const struct elf_backend_data *bed; | 
|  | size_t extsym_size; | 
|  | size_t amt; | 
|  | file_ptr pos; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | 
|  | abort (); | 
|  |  | 
|  | if (symcount == 0) | 
|  | return intsym_buf; | 
|  |  | 
|  | if (elf_use_dt_symtab_p (ibfd)) | 
|  | { | 
|  | /* Use dynamic symbol table.  */ | 
|  | if (elf_tdata (ibfd)->dt_symtab_count != symcount + symoffset) | 
|  | { | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return NULL; | 
|  | } | 
|  | return elf_tdata (ibfd)->dt_symtab + symoffset; | 
|  | } | 
|  |  | 
|  | /* Normal syms might have section extension entries.  */ | 
|  | shndx_hdr = NULL; | 
|  | if (elf_symtab_shndx_list (ibfd) != NULL) | 
|  | { | 
|  | elf_section_list * entry; | 
|  | Elf_Internal_Shdr **sections = elf_elfsections (ibfd); | 
|  |  | 
|  | /* Find an index section that is linked to this symtab section.  */ | 
|  | for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next) | 
|  | { | 
|  | /* PR 20063.  */ | 
|  | if (entry->hdr.sh_link >= elf_numsections (ibfd)) | 
|  | continue; | 
|  |  | 
|  | if (sections[entry->hdr.sh_link] == symtab_hdr) | 
|  | { | 
|  | shndx_hdr = & entry->hdr; | 
|  | break; | 
|  | }; | 
|  | } | 
|  |  | 
|  | if (shndx_hdr == NULL) | 
|  | { | 
|  | if (symtab_hdr == &elf_symtab_hdr (ibfd)) | 
|  | /* Not really accurate, but this was how the old code used | 
|  | to work.  */ | 
|  | shndx_hdr = &elf_symtab_shndx_list (ibfd)->hdr; | 
|  | /* Otherwise we do nothing.  The assumption is that | 
|  | the index table will not be needed.  */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Read the symbols.  */ | 
|  | alloc_ext = NULL; | 
|  | alloc_extshndx = NULL; | 
|  | alloc_intsym = NULL; | 
|  | bed = get_elf_backend_data (ibfd); | 
|  | extsym_size = bed->s->sizeof_sym; | 
|  | if (_bfd_mul_overflow (symcount, extsym_size, &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return NULL; | 
|  | } | 
|  | pos = symtab_hdr->sh_offset + symoffset * extsym_size; | 
|  | size_t alloc_ext_size = amt; | 
|  | if (bfd_seek (ibfd, pos, SEEK_SET) != 0 | 
|  | || !_bfd_mmap_read_temporary (&extsym_buf, &alloc_ext_size, | 
|  | &alloc_ext, ibfd, false)) | 
|  | { | 
|  | intsym_buf = NULL; | 
|  | goto out2; | 
|  | } | 
|  |  | 
|  | size_t alloc_extshndx_size = 0; | 
|  | if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) | 
|  | extshndx_buf = NULL; | 
|  | else | 
|  | { | 
|  | if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | intsym_buf = NULL; | 
|  | goto out1; | 
|  | } | 
|  | alloc_extshndx_size = amt; | 
|  | pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); | 
|  | if (bfd_seek (ibfd, pos, SEEK_SET) != 0 | 
|  | || !_bfd_mmap_read_temporary ((void **) &extshndx_buf, | 
|  | &alloc_extshndx_size, | 
|  | (void **) &alloc_extshndx, | 
|  | ibfd, false)) | 
|  | { | 
|  | intsym_buf = NULL; | 
|  | goto out1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (intsym_buf == NULL) | 
|  | { | 
|  | if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto out1; | 
|  | } | 
|  | alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt); | 
|  | intsym_buf = alloc_intsym; | 
|  | if (intsym_buf == NULL) | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | /* Convert the symbols to internal form.  */ | 
|  | isymend = intsym_buf + symcount; | 
|  | for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, | 
|  | shndx = extshndx_buf; | 
|  | isym < isymend; | 
|  | esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) | 
|  | if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) | 
|  | { | 
|  | symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB symbol number %lu references" | 
|  | " nonexistent SHT_SYMTAB_SHNDX section"), | 
|  | ibfd, (unsigned long) symoffset); | 
|  | free (alloc_intsym); | 
|  | intsym_buf = NULL; | 
|  | goto out1; | 
|  | } | 
|  |  | 
|  | out1: | 
|  | _bfd_munmap_readonly_temporary (alloc_extshndx, alloc_extshndx_size); | 
|  | out2: | 
|  | _bfd_munmap_readonly_temporary (alloc_ext, alloc_ext_size); | 
|  |  | 
|  | return intsym_buf; | 
|  | } | 
|  |  | 
|  | /* Look up a symbol name.  */ | 
|  | const char * | 
|  | bfd_elf_sym_name (bfd *abfd, | 
|  | Elf_Internal_Shdr *symtab_hdr, | 
|  | Elf_Internal_Sym *isym, | 
|  | asection *sym_sec) | 
|  | { | 
|  | const char *name; | 
|  | unsigned int iname = isym->st_name; | 
|  | unsigned int shindex = symtab_hdr->sh_link; | 
|  |  | 
|  | if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION | 
|  | /* Check for a bogus st_shndx to avoid crashing.  */ | 
|  | && isym->st_shndx < elf_numsections (abfd)) | 
|  | { | 
|  | iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; | 
|  | shindex = elf_elfheader (abfd)->e_shstrndx; | 
|  | } | 
|  |  | 
|  | name = bfd_elf_string_from_elf_section (abfd, shindex, iname); | 
|  | if (name == NULL) | 
|  | name = "(null)"; | 
|  | else if (sym_sec && *name == '\0') | 
|  | name = bfd_section_name (sym_sec); | 
|  |  | 
|  | return name; | 
|  | } | 
|  |  | 
|  | /* Return the name of the group signature symbol.  Why isn't the | 
|  | signature just a string?  */ | 
|  |  | 
|  | static const char * | 
|  | group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  | unsigned char esym[sizeof (Elf64_External_Sym)]; | 
|  | Elf_External_Sym_Shndx eshndx; | 
|  | Elf_Internal_Sym isym; | 
|  |  | 
|  | /* First we need to ensure the symbol table is available.  Make sure | 
|  | that it is a symbol table section.  */ | 
|  | if (ghdr->sh_link >= elf_numsections (abfd)) | 
|  | return NULL; | 
|  | hdr = elf_elfsections (abfd) [ghdr->sh_link]; | 
|  | if (hdr->sh_type != SHT_SYMTAB | 
|  | || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) | 
|  | return NULL; | 
|  |  | 
|  | /* Go read the symbol.  */ | 
|  | hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, | 
|  | &isym, esym, &eshndx) == NULL) | 
|  | return NULL; | 
|  |  | 
|  | return bfd_elf_sym_name (abfd, hdr, &isym, NULL); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | is_valid_group_section_header (Elf_Internal_Shdr *shdr, size_t minsize) | 
|  | { | 
|  | return (shdr->sh_size >= minsize | 
|  | && shdr->sh_entsize == GRP_ENTRY_SIZE | 
|  | && shdr->sh_size % GRP_ENTRY_SIZE == 0 | 
|  | && shdr->bfd_section != NULL); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Set next_in_group, sec_group list pointers, and group names.  */ | 
|  |  | 
|  | static bool | 
|  | process_sht_group_entries (bfd *abfd, | 
|  | Elf_Internal_Shdr *ghdr, unsigned int gidx) | 
|  | { | 
|  | unsigned char *contents; | 
|  |  | 
|  | /* Read the raw contents.  */ | 
|  | if (!bfd_malloc_and_get_section (abfd, ghdr->bfd_section, &contents)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: could not read contents of group [%u]"), abfd, gidx); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | asection *last_elt = NULL; | 
|  | const char *gname = NULL; | 
|  | unsigned char *p = contents + ghdr->sh_size; | 
|  | while (1) | 
|  | { | 
|  | unsigned int idx; | 
|  | Elf_Internal_Shdr *shdr; | 
|  | asection *elt; | 
|  |  | 
|  | p -= 4; | 
|  | idx = H_GET_32 (abfd, p); | 
|  | if (p == contents) | 
|  | { | 
|  | if ((idx & GRP_COMDAT) != 0) | 
|  | ghdr->bfd_section->flags | 
|  | |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (idx == 0 | 
|  | || idx >= elf_numsections (abfd) | 
|  | || (shdr = elf_elfsections (abfd)[idx])->sh_type == SHT_GROUP | 
|  | || ((elt = shdr->bfd_section) != NULL | 
|  | && elf_sec_group (elt) != NULL | 
|  | && elf_sec_group (elt) != ghdr->bfd_section)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: invalid entry (%#x) in group [%u]"), | 
|  | abfd, idx, gidx); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* PR binutils/23199: According to the ELF gABI all sections in | 
|  | a group must be marked with SHF_GROUP, but some tools | 
|  | generate broken objects.  Fix them up here.  */ | 
|  | shdr->sh_flags |= SHF_GROUP; | 
|  |  | 
|  | if (elt == NULL) | 
|  | { | 
|  | if (shdr->sh_type != SHT_RELA && shdr->sh_type != SHT_REL) | 
|  | { | 
|  | const char *name = bfd_elf_string_from_elf_section | 
|  | (abfd, elf_elfheader (abfd)->e_shstrndx, shdr->sh_name); | 
|  |  | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unexpected type (%#x) section `%s' in group [%u]"), | 
|  | abfd, shdr->sh_type, name, gidx); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Don't try to add a section to elf_next_in_group list twice.  */ | 
|  | if (elf_sec_group (elt) != NULL) | 
|  | continue; | 
|  |  | 
|  | if (last_elt == NULL) | 
|  | { | 
|  | /* Start a circular list with one element. | 
|  | It will be in reverse order to match what gas does.  */ | 
|  | elf_next_in_group (elt) = elt; | 
|  | /* Point the group section to it.  */ | 
|  | elf_next_in_group (ghdr->bfd_section) = elt; | 
|  | gname = group_signature (abfd, ghdr); | 
|  | if (gname == NULL) | 
|  | { | 
|  | free (contents); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | elf_next_in_group (elt) = elf_next_in_group (last_elt); | 
|  | elf_next_in_group (last_elt) = elt; | 
|  | } | 
|  | last_elt = elt; | 
|  | elf_group_name (elt) = gname; | 
|  | elf_sec_group (elt) = ghdr->bfd_section; | 
|  | } | 
|  |  | 
|  | free (contents); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_setup_sections (bfd *abfd) | 
|  | { | 
|  | bool result = true; | 
|  |  | 
|  | /* Process SHF_LINK_ORDER.  */ | 
|  | for (asection *s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; | 
|  | if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) | 
|  | { | 
|  | unsigned int elfsec = this_hdr->sh_link; | 
|  | /* An sh_link value of 0 is now allowed.  It indicates that linked | 
|  | to section has already been discarded, but that the current | 
|  | section has been retained for some other reason.  This linking | 
|  | section is still a candidate for later garbage collection | 
|  | however.  */ | 
|  | if (elfsec == 0) | 
|  | { | 
|  | elf_linked_to_section (s) = NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | asection *linksec = NULL; | 
|  |  | 
|  | if (elfsec < elf_numsections (abfd)) | 
|  | { | 
|  | this_hdr = elf_elfsections (abfd)[elfsec]; | 
|  | linksec = this_hdr->bfd_section; | 
|  | } | 
|  |  | 
|  | /* PR 1991, 2008: | 
|  | Some strip/objcopy may leave an incorrect value in | 
|  | sh_link.  We don't want to proceed.  */ | 
|  | if (linksec == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: sh_link [%d] in section `%pA' is incorrect"), | 
|  | s->owner, elfsec, s); | 
|  | result = false; | 
|  | } | 
|  |  | 
|  | elf_linked_to_section (s) = linksec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Process section groups.  */ | 
|  | for (unsigned int i = 1; i < elf_numsections (abfd); i++) | 
|  | { | 
|  | Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; | 
|  |  | 
|  | if (shdr && shdr->sh_type == SHT_GROUP) | 
|  | { | 
|  | if (is_valid_group_section_header (shdr, GRP_ENTRY_SIZE)) | 
|  | { | 
|  | if (shdr->sh_size >= 2 * GRP_ENTRY_SIZE | 
|  | && !process_sht_group_entries (abfd, shdr, i)) | 
|  | result = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* PR binutils/18758: Beware of corrupt binaries with | 
|  | invalid group data.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: section group entry number %u is corrupt"), abfd, i); | 
|  | result = false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool | 
|  | bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) | 
|  | { | 
|  | return elf_next_in_group (sec) != NULL; | 
|  | } | 
|  |  | 
|  | const char * | 
|  | bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) | 
|  | { | 
|  | if (elf_sec_group (sec) != NULL) | 
|  | return elf_group_name (sec); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Make a BFD section from an ELF section.  We store a pointer to the | 
|  | BFD section in the bfd_section field of the header.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_make_section_from_shdr (bfd *abfd, | 
|  | Elf_Internal_Shdr *hdr, | 
|  | const char *name, | 
|  | int shindex) | 
|  | { | 
|  | asection *newsect; | 
|  | flagword flags; | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
|  |  | 
|  | if (hdr->bfd_section != NULL) | 
|  | return true; | 
|  |  | 
|  | newsect = bfd_make_section_anyway (abfd, name); | 
|  | if (newsect == NULL) | 
|  | return false; | 
|  |  | 
|  | hdr->bfd_section = newsect; | 
|  | elf_section_data (newsect)->this_hdr = *hdr; | 
|  | elf_section_data (newsect)->this_idx = shindex; | 
|  |  | 
|  | /* Always use the real type/flags.  */ | 
|  | elf_section_type (newsect) = hdr->sh_type; | 
|  | elf_section_flags (newsect) = hdr->sh_flags; | 
|  |  | 
|  | newsect->filepos = hdr->sh_offset; | 
|  |  | 
|  | flags = SEC_NO_FLAGS; | 
|  | if (hdr->sh_type != SHT_NOBITS) | 
|  | flags |= SEC_HAS_CONTENTS; | 
|  | if (hdr->sh_type == SHT_GROUP) | 
|  | flags |= SEC_GROUP; | 
|  | if ((hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | { | 
|  | flags |= SEC_ALLOC; | 
|  | if (hdr->sh_type != SHT_NOBITS) | 
|  | flags |= SEC_LOAD; | 
|  | } | 
|  | if ((hdr->sh_flags & SHF_WRITE) == 0) | 
|  | flags |= SEC_READONLY; | 
|  | if ((hdr->sh_flags & SHF_EXECINSTR) != 0) | 
|  | flags |= SEC_CODE; | 
|  | else if ((flags & SEC_LOAD) != 0) | 
|  | flags |= SEC_DATA; | 
|  | if ((hdr->sh_flags & SHF_MERGE) != 0) | 
|  | { | 
|  | flags |= SEC_MERGE; | 
|  | newsect->entsize = hdr->sh_entsize; | 
|  | } | 
|  | if ((hdr->sh_flags & SHF_STRINGS) != 0) | 
|  | flags |= SEC_STRINGS; | 
|  | if ((hdr->sh_flags & SHF_TLS) != 0) | 
|  | flags |= SEC_THREAD_LOCAL; | 
|  | if ((hdr->sh_flags & SHF_EXCLUDE) != 0) | 
|  | flags |= SEC_EXCLUDE; | 
|  |  | 
|  | switch (elf_elfheader (abfd)->e_ident[EI_OSABI]) | 
|  | { | 
|  | /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE, | 
|  | but binutils as of 2019-07-23 did not set the EI_OSABI header | 
|  | byte.  */ | 
|  | case ELFOSABI_GNU: | 
|  | case ELFOSABI_FREEBSD: | 
|  | if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0) | 
|  | elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain; | 
|  | /* Fall through */ | 
|  | case ELFOSABI_NONE: | 
|  | if ((hdr->sh_flags & SHF_GNU_MBIND) != 0) | 
|  | elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((flags & SEC_ALLOC) == 0) | 
|  | { | 
|  | /* The debugging sections appear to be recognized only by name, | 
|  | not any sort of flag.  Their SEC_ALLOC bits are cleared.  */ | 
|  | if (name [0] == '.') | 
|  | { | 
|  | if (startswith (name, ".debug") | 
|  | || startswith (name, ".gnu.debuglto_.debug_") | 
|  | || startswith (name, ".gnu.linkonce.wi.") | 
|  | || startswith (name, ".zdebug")) | 
|  | flags |= SEC_DEBUGGING | SEC_ELF_OCTETS; | 
|  | else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME) | 
|  | || startswith (name, ".note.gnu")) | 
|  | { | 
|  | flags |= SEC_ELF_OCTETS; | 
|  | opb = 1; | 
|  | } | 
|  | else if (startswith (name, ".line") | 
|  | || startswith (name, ".stab") | 
|  | || strcmp (name, ".gdb_index") == 0) | 
|  | flags |= SEC_DEBUGGING; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb) | 
|  | || !bfd_set_section_size (newsect, hdr->sh_size) | 
|  | || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign | 
|  | & -hdr->sh_addralign))) | 
|  | return false; | 
|  |  | 
|  | /* As a GNU extension, if the name begins with .gnu.linkonce, we | 
|  | only link a single copy of the section.  This is used to support | 
|  | g++.  g++ will emit each template expansion in its own section. | 
|  | The symbols will be defined as weak, so that multiple definitions | 
|  | are permitted.  The GNU linker extension is to actually discard | 
|  | all but one of the sections.  */ | 
|  | if (startswith (name, ".gnu.linkonce") | 
|  | && elf_next_in_group (newsect) == NULL) | 
|  | flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; | 
|  |  | 
|  | if (!bfd_set_section_flags (newsect, flags)) | 
|  | return false; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | if (bed->elf_backend_section_flags) | 
|  | if (!bed->elf_backend_section_flags (hdr)) | 
|  | return false; | 
|  |  | 
|  | /* We do not parse the PT_NOTE segments as we are interested even in the | 
|  | separate debug info files which may have the segments offsets corrupted. | 
|  | PT_NOTEs from the core files are currently not parsed using BFD.  */ | 
|  | if (hdr->sh_type == SHT_NOTE && hdr->sh_size != 0) | 
|  | { | 
|  | bfd_byte *contents; | 
|  |  | 
|  | if (!_bfd_elf_mmap_section_contents (abfd, newsect, &contents)) | 
|  | return false; | 
|  |  | 
|  | elf_parse_notes (abfd, (char *) contents, hdr->sh_size, | 
|  | hdr->sh_offset, hdr->sh_addralign); | 
|  | _bfd_elf_munmap_section_contents (newsect, contents); | 
|  | } | 
|  |  | 
|  | if ((newsect->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | Elf_Internal_Phdr *phdr; | 
|  | unsigned int i, nload; | 
|  |  | 
|  | /* Some ELF linkers produce binaries with all the program header | 
|  | p_paddr fields zero.  If we have such a binary with more than | 
|  | one PT_LOAD header, then leave the section lma equal to vma | 
|  | so that we don't create sections with overlapping lma.  */ | 
|  | phdr = elf_tdata (abfd)->phdr; | 
|  | for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) | 
|  | if (phdr->p_paddr != 0) | 
|  | break; | 
|  | else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) | 
|  | ++nload; | 
|  | if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) | 
|  | return true; | 
|  |  | 
|  | phdr = elf_tdata (abfd)->phdr; | 
|  | for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) | 
|  | { | 
|  | if (((phdr->p_type == PT_LOAD | 
|  | && (hdr->sh_flags & SHF_TLS) == 0) | 
|  | || phdr->p_type == PT_TLS) | 
|  | && ELF_SECTION_IN_SEGMENT (hdr, phdr)) | 
|  | { | 
|  | if ((newsect->flags & SEC_LOAD) == 0) | 
|  | newsect->lma = (phdr->p_paddr | 
|  | + hdr->sh_addr - phdr->p_vaddr) / opb; | 
|  | else | 
|  | /* We used to use the same adjustment for SEC_LOAD | 
|  | sections, but that doesn't work if the segment | 
|  | is packed with code from multiple VMAs. | 
|  | Instead we calculate the section LMA based on | 
|  | the segment LMA.  It is assumed that the | 
|  | segment will contain sections with contiguous | 
|  | LMAs, even if the VMAs are not.  */ | 
|  | newsect->lma = (phdr->p_paddr | 
|  | + hdr->sh_offset - phdr->p_offset) / opb; | 
|  |  | 
|  | /* With contiguous segments, we can't tell from file | 
|  | offsets whether a section with zero size should | 
|  | be placed at the end of one segment or the | 
|  | beginning of the next.  Decide based on vaddr.  */ | 
|  | if (hdr->sh_addr >= phdr->p_vaddr | 
|  | && (hdr->sh_addr + hdr->sh_size | 
|  | <= phdr->p_vaddr + phdr->p_memsz)) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compress/decompress DWARF debug sections with names: .debug_*, | 
|  | .zdebug_*, .gnu.debuglto_.debug_, after the section flags is set.  */ | 
|  | if ((newsect->flags & SEC_DEBUGGING) != 0 | 
|  | && (newsect->flags & SEC_HAS_CONTENTS) != 0 | 
|  | && (newsect->flags & SEC_ELF_OCTETS) != 0) | 
|  | { | 
|  | enum { nothing, compress, decompress } action = nothing; | 
|  | int compression_header_size; | 
|  | bfd_size_type uncompressed_size; | 
|  | unsigned int uncompressed_align_power; | 
|  | enum compression_type ch_type = ch_none; | 
|  | bool compressed | 
|  | = bfd_is_section_compressed_info (abfd, newsect, | 
|  | &compression_header_size, | 
|  | &uncompressed_size, | 
|  | &uncompressed_align_power, | 
|  | &ch_type); | 
|  |  | 
|  | /* Should we decompress?  */ | 
|  | if ((abfd->flags & BFD_DECOMPRESS) != 0 && compressed) | 
|  | action = decompress; | 
|  |  | 
|  | /* Should we compress?  Or convert to a different compression?  */ | 
|  | else if ((abfd->flags & BFD_COMPRESS) != 0 | 
|  | && newsect->size != 0 | 
|  | && compression_header_size >= 0 | 
|  | && uncompressed_size > 0) | 
|  | { | 
|  | if (!compressed) | 
|  | action = compress; | 
|  | else | 
|  | { | 
|  | enum compression_type new_ch_type = ch_none; | 
|  | if ((abfd->flags & BFD_COMPRESS_GABI) != 0) | 
|  | new_ch_type = ((abfd->flags & BFD_COMPRESS_ZSTD) != 0 | 
|  | ? ch_compress_zstd : ch_compress_zlib); | 
|  | if (new_ch_type != ch_type) | 
|  | action = compress; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (action == compress) | 
|  | { | 
|  | if (!bfd_init_section_compress_status (abfd, newsect)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unable to compress section %s"), abfd, name); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | else if (action == decompress) | 
|  | { | 
|  | if (!bfd_init_section_decompress_status (abfd, newsect)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unable to decompress section %s"), abfd, name); | 
|  | return false; | 
|  | } | 
|  | #ifndef HAVE_ZSTD | 
|  | if (newsect->compress_status == DECOMPRESS_SECTION_ZSTD) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_ ("%pB: section %s is compressed with zstd, but BFD " | 
|  | "is not built with zstd support"), | 
|  | abfd, name); | 
|  | newsect->compress_status = COMPRESS_SECTION_NONE; | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  | if (abfd->is_linker_input | 
|  | && name[1] == 'z') | 
|  | { | 
|  | /* Rename section from .zdebug_* to .debug_* so that ld | 
|  | scripts will see this section as a debug section.  */ | 
|  | char *new_name = bfd_zdebug_name_to_debug (abfd, name); | 
|  | if (new_name == NULL) | 
|  | return false; | 
|  | bfd_rename_section (newsect, new_name); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const char *const bfd_elf_section_type_names[] = | 
|  | { | 
|  | "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", | 
|  | "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", | 
|  | "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", | 
|  | }; | 
|  |  | 
|  | /* ELF relocs are against symbols.  If we are producing relocatable | 
|  | output, and the reloc is against an external symbol, and nothing | 
|  | has given us any additional addend, the resulting reloc will also | 
|  | be against the same symbol.  In such a case, we don't want to | 
|  | change anything about the way the reloc is handled, since it will | 
|  | all be done at final link time.  Rather than put special case code | 
|  | into bfd_perform_relocation, all the reloc types use this howto | 
|  | function, or should call this function for relocatable output.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | arelent *reloc_entry, | 
|  | asymbol *symbol, | 
|  | void *data ATTRIBUTE_UNUSED, | 
|  | asection *input_section, | 
|  | bfd *output_bfd, | 
|  | char **error_message ATTRIBUTE_UNUSED) | 
|  | { | 
|  | if (output_bfd != NULL | 
|  | && (symbol->flags & BSF_SECTION_SYM) == 0 | 
|  | && (! reloc_entry->howto->partial_inplace | 
|  | || reloc_entry->addend == 0)) | 
|  | { | 
|  | reloc_entry->address += input_section->output_offset; | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* In some cases the relocation should be treated as output section | 
|  | relative, as when linking ELF DWARF into PE COFF.  Many ELF | 
|  | targets lack section relative relocations and instead use | 
|  | ordinary absolute relocations for references between DWARF | 
|  | sections.  That is arguably a bug in those targets but it happens | 
|  | to work for the usual case of linking to non-loaded ELF debug | 
|  | sections with VMAs forced to zero.  PE COFF on the other hand | 
|  | doesn't allow a section VMA of zero.  */ | 
|  | if (output_bfd == NULL | 
|  | && !reloc_entry->howto->pc_relative | 
|  | && (symbol->section->flags & SEC_DEBUGGING) != 0 | 
|  | && (input_section->flags & SEC_DEBUGGING) != 0) | 
|  | reloc_entry->addend -= symbol->section->output_section->vma; | 
|  |  | 
|  | return bfd_reloc_continue; | 
|  | } | 
|  |  | 
|  | /* Returns TRUE if section A matches section B. | 
|  | Names, addresses and links may be different, but everything else | 
|  | should be the same.  */ | 
|  |  | 
|  | static bool | 
|  | section_match (const Elf_Internal_Shdr * a, | 
|  | const Elf_Internal_Shdr * b) | 
|  | { | 
|  | if (a->sh_type != b->sh_type | 
|  | || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0 | 
|  | || a->sh_addralign != b->sh_addralign | 
|  | || a->sh_entsize != b->sh_entsize) | 
|  | return false; | 
|  | if (a->sh_type == SHT_SYMTAB | 
|  | || a->sh_type == SHT_STRTAB) | 
|  | return true; | 
|  | return a->sh_size == b->sh_size; | 
|  | } | 
|  |  | 
|  | /* Find a section in OBFD that has the same characteristics | 
|  | as IHEADER.  Return the index of this section or SHN_UNDEF if | 
|  | none can be found.  Check's section HINT first, as this is likely | 
|  | to be the correct section.  */ | 
|  |  | 
|  | static unsigned int | 
|  | find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader, | 
|  | const unsigned int hint) | 
|  | { | 
|  | Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd); | 
|  | unsigned int i; | 
|  |  | 
|  | BFD_ASSERT (iheader != NULL); | 
|  |  | 
|  | /* See PR 20922 for a reproducer of the NULL test.  */ | 
|  | if (hint < elf_numsections (obfd) | 
|  | && oheaders[hint] != NULL | 
|  | && section_match (oheaders[hint], iheader)) | 
|  | return hint; | 
|  |  | 
|  | for (i = 1; i < elf_numsections (obfd); i++) | 
|  | { | 
|  | Elf_Internal_Shdr * oheader = oheaders[i]; | 
|  |  | 
|  | if (oheader == NULL) | 
|  | continue; | 
|  | if (section_match (oheader, iheader)) | 
|  | /* FIXME: Do we care if there is a potential for | 
|  | multiple matches ?  */ | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return SHN_UNDEF; | 
|  | } | 
|  |  | 
|  | /* PR 19938: Attempt to set the ELF section header fields of an OS or | 
|  | Processor specific section, based upon a matching input section. | 
|  | Returns TRUE upon success, FALSE otherwise.  */ | 
|  |  | 
|  | static bool | 
|  | copy_special_section_fields (const bfd *ibfd, | 
|  | bfd *obfd, | 
|  | const Elf_Internal_Shdr *iheader, | 
|  | Elf_Internal_Shdr *oheader, | 
|  | const unsigned int secnum) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (obfd); | 
|  | const Elf_Internal_Shdr **iheaders | 
|  | = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); | 
|  | bool changed = false; | 
|  | unsigned int sh_link; | 
|  |  | 
|  | if (oheader->sh_type == SHT_NOBITS) | 
|  | { | 
|  | /* This is a feature for objcopy --only-keep-debug: | 
|  | When a section's type is changed to NOBITS, we preserve | 
|  | the sh_link and sh_info fields so that they can be | 
|  | matched up with the original. | 
|  |  | 
|  | Note: Strictly speaking these assignments are wrong. | 
|  | The sh_link and sh_info fields should point to the | 
|  | relevent sections in the output BFD, which may not be in | 
|  | the same location as they were in the input BFD.  But | 
|  | the whole point of this action is to preserve the | 
|  | original values of the sh_link and sh_info fields, so | 
|  | that they can be matched up with the section headers in | 
|  | the original file.  So strictly speaking we may be | 
|  | creating an invalid ELF file, but it is only for a file | 
|  | that just contains debug info and only for sections | 
|  | without any contents.  */ | 
|  | if (oheader->sh_link == 0) | 
|  | oheader->sh_link = iheader->sh_link; | 
|  | if (oheader->sh_info == 0) | 
|  | oheader->sh_info = iheader->sh_info; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allow the target a chance to decide how these fields should be set.  */ | 
|  | if (bed->elf_backend_copy_special_section_fields (ibfd, obfd, | 
|  | iheader, oheader)) | 
|  | return true; | 
|  |  | 
|  | /* We have an iheader which might match oheader, and which has non-zero | 
|  | sh_info and/or sh_link fields.  Attempt to follow those links and find | 
|  | the section in the output bfd which corresponds to the linked section | 
|  | in the input bfd.  */ | 
|  | if (iheader->sh_link != SHN_UNDEF) | 
|  | { | 
|  | /* See PR 20931 for a reproducer.  */ | 
|  | if (iheader->sh_link >= elf_numsections (ibfd)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: invalid sh_link field (%d) in section number %d"), | 
|  | ibfd, iheader->sh_link, secnum); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link); | 
|  | if (sh_link != SHN_UNDEF) | 
|  | { | 
|  | oheader->sh_link = sh_link; | 
|  | changed = true; | 
|  | } | 
|  | else | 
|  | /* FIXME: Should we install iheader->sh_link | 
|  | if we could not find a match ?  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: failed to find link section for section %d"), obfd, secnum); | 
|  | } | 
|  |  | 
|  | if (iheader->sh_info) | 
|  | { | 
|  | /* The sh_info field can hold arbitrary information, but if the | 
|  | SHF_LINK_INFO flag is set then it should be interpreted as a | 
|  | section index.  */ | 
|  | if (iheader->sh_flags & SHF_INFO_LINK) | 
|  | { | 
|  | sh_link = find_link (obfd, iheaders[iheader->sh_info], | 
|  | iheader->sh_info); | 
|  | if (sh_link != SHN_UNDEF) | 
|  | oheader->sh_flags |= SHF_INFO_LINK; | 
|  | } | 
|  | else | 
|  | /* No idea what it means - just copy it.  */ | 
|  | sh_link = iheader->sh_info; | 
|  |  | 
|  | if (sh_link != SHN_UNDEF) | 
|  | { | 
|  | oheader->sh_info = sh_link; | 
|  | changed = true; | 
|  | } | 
|  | else | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: failed to find info section for section %d"), obfd, secnum); | 
|  | } | 
|  |  | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | /* Copy the program header and other data from one object module to | 
|  | another.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | const Elf_Internal_Shdr **iheaders | 
|  | = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); | 
|  | Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned int i; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | if (!elf_flags_init (obfd)) | 
|  | { | 
|  | elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; | 
|  | elf_flags_init (obfd) = true; | 
|  | } | 
|  |  | 
|  | elf_gp (obfd) = elf_gp (ibfd); | 
|  |  | 
|  | /* Also copy the EI_OSABI field.  */ | 
|  | elf_elfheader (obfd)->e_ident[EI_OSABI] = | 
|  | elf_elfheader (ibfd)->e_ident[EI_OSABI]; | 
|  |  | 
|  | /* If set, copy the EI_ABIVERSION field.  */ | 
|  | if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]) | 
|  | elf_elfheader (obfd)->e_ident[EI_ABIVERSION] | 
|  | = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]; | 
|  |  | 
|  | /* Copy object attributes.  */ | 
|  | _bfd_elf_copy_obj_attributes (ibfd, obfd); | 
|  |  | 
|  | if (iheaders == NULL || oheaders == NULL) | 
|  | return true; | 
|  |  | 
|  | bed = get_elf_backend_data (obfd); | 
|  |  | 
|  | /* Possibly copy other fields in the section header.  */ | 
|  | for (i = 1; i < elf_numsections (obfd); i++) | 
|  | { | 
|  | unsigned int j; | 
|  | Elf_Internal_Shdr * oheader = oheaders[i]; | 
|  |  | 
|  | /* Ignore ordinary sections.  SHT_NOBITS sections are considered however | 
|  | because of a special case need for generating separate debug info | 
|  | files.  See below for more details.  */ | 
|  | if (oheader == NULL | 
|  | || (oheader->sh_type != SHT_NOBITS | 
|  | && oheader->sh_type < SHT_LOOS)) | 
|  | continue; | 
|  |  | 
|  | /* Ignore empty sections, and sections whose | 
|  | fields have already been initialised.  */ | 
|  | if (oheader->sh_size == 0 | 
|  | || (oheader->sh_info != 0 && oheader->sh_link != 0)) | 
|  | continue; | 
|  |  | 
|  | /* Scan for the matching section in the input bfd. | 
|  | First we try for a direct mapping between the input and | 
|  | output sections.  */ | 
|  | for (j = 1; j < elf_numsections (ibfd); j++) | 
|  | { | 
|  | const Elf_Internal_Shdr * iheader = iheaders[j]; | 
|  |  | 
|  | if (iheader == NULL) | 
|  | continue; | 
|  |  | 
|  | if (oheader->bfd_section != NULL | 
|  | && iheader->bfd_section != NULL | 
|  | && iheader->bfd_section->output_section != NULL | 
|  | && iheader->bfd_section->output_section == oheader->bfd_section) | 
|  | { | 
|  | /* We have found a connection from the input section to | 
|  | the output section.  Attempt to copy the header fields. | 
|  | If this fails then do not try any further sections - | 
|  | there should only be a one-to-one mapping between | 
|  | input and output.  */ | 
|  | if (!copy_special_section_fields (ibfd, obfd, | 
|  | iheader, oheader, i)) | 
|  | j = elf_numsections (ibfd); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (j < elf_numsections (ibfd)) | 
|  | continue; | 
|  |  | 
|  | /* That failed.  So try to deduce the corresponding input section. | 
|  | Unfortunately we cannot compare names as the output string table | 
|  | is empty, so instead we check size, address and type.  */ | 
|  | for (j = 1; j < elf_numsections (ibfd); j++) | 
|  | { | 
|  | const Elf_Internal_Shdr * iheader = iheaders[j]; | 
|  |  | 
|  | if (iheader == NULL) | 
|  | continue; | 
|  |  | 
|  | /* Try matching fields in the input section's header. | 
|  | Since --only-keep-debug turns all non-debug sections into | 
|  | SHT_NOBITS sections, the output SHT_NOBITS type matches any | 
|  | input type.  */ | 
|  | if ((oheader->sh_type == SHT_NOBITS | 
|  | || iheader->sh_type == oheader->sh_type) | 
|  | && (iheader->sh_flags & ~ SHF_INFO_LINK) | 
|  | == (oheader->sh_flags & ~ SHF_INFO_LINK) | 
|  | && iheader->sh_addralign == oheader->sh_addralign | 
|  | && iheader->sh_entsize == oheader->sh_entsize | 
|  | && iheader->sh_size == oheader->sh_size | 
|  | && iheader->sh_addr == oheader->sh_addr | 
|  | && (iheader->sh_info != oheader->sh_info | 
|  | || iheader->sh_link != oheader->sh_link)) | 
|  | { | 
|  | if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i)) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS) | 
|  | { | 
|  | /* Final attempt.  Call the backend copy function | 
|  | with a NULL input section.  */ | 
|  | (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd, | 
|  | NULL, oheader); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char * | 
|  | get_segment_type (unsigned int p_type) | 
|  | { | 
|  | const char *pt; | 
|  | switch (p_type) | 
|  | { | 
|  | case PT_NULL: pt = "NULL"; break; | 
|  | case PT_LOAD: pt = "LOAD"; break; | 
|  | case PT_DYNAMIC: pt = "DYNAMIC"; break; | 
|  | case PT_INTERP: pt = "INTERP"; break; | 
|  | case PT_NOTE: pt = "NOTE"; break; | 
|  | case PT_SHLIB: pt = "SHLIB"; break; | 
|  | case PT_PHDR: pt = "PHDR"; break; | 
|  | case PT_TLS: pt = "TLS"; break; | 
|  | case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; | 
|  | case PT_GNU_STACK: pt = "STACK"; break; | 
|  | case PT_GNU_RELRO: pt = "RELRO"; break; | 
|  | case PT_GNU_SFRAME: pt = "SFRAME"; break; | 
|  | default: pt = NULL; break; | 
|  | } | 
|  | return pt; | 
|  | } | 
|  |  | 
|  | /* Print out the program headers.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) | 
|  | { | 
|  | FILE *f = (FILE *) farg; | 
|  | Elf_Internal_Phdr *p; | 
|  | asection *s; | 
|  | bfd_byte *dynbuf = NULL; | 
|  |  | 
|  | p = elf_tdata (abfd)->phdr; | 
|  | if (p != NULL) | 
|  | { | 
|  | unsigned int i, c; | 
|  |  | 
|  | fprintf (f, _("\nProgram Header:\n")); | 
|  | c = elf_elfheader (abfd)->e_phnum; | 
|  | for (i = 0; i < c; i++, p++) | 
|  | { | 
|  | const char *pt = get_segment_type (p->p_type); | 
|  | char buf[20]; | 
|  |  | 
|  | if (pt == NULL) | 
|  | { | 
|  | sprintf (buf, "0x%lx", p->p_type); | 
|  | pt = buf; | 
|  | } | 
|  | fprintf (f, "%8s off    0x", pt); | 
|  | bfd_fprintf_vma (abfd, f, p->p_offset); | 
|  | fprintf (f, " vaddr 0x"); | 
|  | bfd_fprintf_vma (abfd, f, p->p_vaddr); | 
|  | fprintf (f, " paddr 0x"); | 
|  | bfd_fprintf_vma (abfd, f, p->p_paddr); | 
|  | fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); | 
|  | fprintf (f, "         filesz 0x"); | 
|  | bfd_fprintf_vma (abfd, f, p->p_filesz); | 
|  | fprintf (f, " memsz 0x"); | 
|  | bfd_fprintf_vma (abfd, f, p->p_memsz); | 
|  | fprintf (f, " flags %c%c%c", | 
|  | (p->p_flags & PF_R) != 0 ? 'r' : '-', | 
|  | (p->p_flags & PF_W) != 0 ? 'w' : '-', | 
|  | (p->p_flags & PF_X) != 0 ? 'x' : '-'); | 
|  | if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) | 
|  | fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); | 
|  | fprintf (f, "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | s = bfd_get_section_by_name (abfd, ".dynamic"); | 
|  | if (s != NULL && (s->flags & SEC_HAS_CONTENTS) != 0) | 
|  | { | 
|  | unsigned int elfsec; | 
|  | unsigned long shlink; | 
|  | bfd_byte *extdyn, *extdynend; | 
|  | size_t extdynsize; | 
|  | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | 
|  |  | 
|  | fprintf (f, _("\nDynamic Section:\n")); | 
|  |  | 
|  | if (!_bfd_elf_mmap_section_contents (abfd, s, &dynbuf)) | 
|  | goto error_return; | 
|  |  | 
|  | elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | 
|  | if (elfsec == SHN_BAD) | 
|  | goto error_return; | 
|  | shlink = elf_elfsections (abfd)[elfsec]->sh_link; | 
|  |  | 
|  | extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; | 
|  | swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | 
|  |  | 
|  | for (extdyn = dynbuf, extdynend = dynbuf + s->size; | 
|  | (size_t) (extdynend - extdyn) >= extdynsize; | 
|  | extdyn += extdynsize) | 
|  | { | 
|  | Elf_Internal_Dyn dyn; | 
|  | const char *name = ""; | 
|  | char ab[20]; | 
|  | bool stringp; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | (*swap_dyn_in) (abfd, extdyn, &dyn); | 
|  |  | 
|  | if (dyn.d_tag == DT_NULL) | 
|  | break; | 
|  |  | 
|  | stringp = false; | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | default: | 
|  | if (bed->elf_backend_get_target_dtag) | 
|  | name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); | 
|  |  | 
|  | if (!strcmp (name, "")) | 
|  | { | 
|  | sprintf (ab, "%#" PRIx64, (uint64_t) dyn.d_tag); | 
|  | name = ab; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DT_NEEDED: name = "NEEDED"; stringp = true; break; | 
|  | case DT_PLTRELSZ: name = "PLTRELSZ"; break; | 
|  | case DT_PLTGOT: name = "PLTGOT"; break; | 
|  | case DT_HASH: name = "HASH"; break; | 
|  | case DT_STRTAB: name = "STRTAB"; break; | 
|  | case DT_SYMTAB: name = "SYMTAB"; break; | 
|  | case DT_RELA: name = "RELA"; break; | 
|  | case DT_RELASZ: name = "RELASZ"; break; | 
|  | case DT_RELAENT: name = "RELAENT"; break; | 
|  | case DT_STRSZ: name = "STRSZ"; break; | 
|  | case DT_SYMENT: name = "SYMENT"; break; | 
|  | case DT_INIT: name = "INIT"; break; | 
|  | case DT_FINI: name = "FINI"; break; | 
|  | case DT_SONAME: name = "SONAME"; stringp = true; break; | 
|  | case DT_RPATH: name = "RPATH"; stringp = true; break; | 
|  | case DT_SYMBOLIC: name = "SYMBOLIC"; break; | 
|  | case DT_REL: name = "REL"; break; | 
|  | case DT_RELSZ: name = "RELSZ"; break; | 
|  | case DT_RELENT: name = "RELENT"; break; | 
|  | case DT_RELR: name = "RELR"; break; | 
|  | case DT_RELRSZ: name = "RELRSZ"; break; | 
|  | case DT_RELRENT: name = "RELRENT"; break; | 
|  | case DT_PLTREL: name = "PLTREL"; break; | 
|  | case DT_DEBUG: name = "DEBUG"; break; | 
|  | case DT_TEXTREL: name = "TEXTREL"; break; | 
|  | case DT_JMPREL: name = "JMPREL"; break; | 
|  | case DT_BIND_NOW: name = "BIND_NOW"; break; | 
|  | case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; | 
|  | case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; | 
|  | case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; | 
|  | case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; | 
|  | case DT_RUNPATH: name = "RUNPATH"; stringp = true; break; | 
|  | case DT_FLAGS: name = "FLAGS"; break; | 
|  | case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; | 
|  | case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; | 
|  | case DT_CHECKSUM: name = "CHECKSUM"; break; | 
|  | case DT_PLTPADSZ: name = "PLTPADSZ"; break; | 
|  | case DT_MOVEENT: name = "MOVEENT"; break; | 
|  | case DT_MOVESZ: name = "MOVESZ"; break; | 
|  | case DT_FEATURE: name = "FEATURE"; break; | 
|  | case DT_POSFLAG_1: name = "POSFLAG_1"; break; | 
|  | case DT_SYMINSZ: name = "SYMINSZ"; break; | 
|  | case DT_SYMINENT: name = "SYMINENT"; break; | 
|  | case DT_CONFIG: name = "CONFIG"; stringp = true; break; | 
|  | case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break; | 
|  | case DT_AUDIT: name = "AUDIT"; stringp = true; break; | 
|  | case DT_PLTPAD: name = "PLTPAD"; break; | 
|  | case DT_MOVETAB: name = "MOVETAB"; break; | 
|  | case DT_SYMINFO: name = "SYMINFO"; break; | 
|  | case DT_RELACOUNT: name = "RELACOUNT"; break; | 
|  | case DT_RELCOUNT: name = "RELCOUNT"; break; | 
|  | case DT_FLAGS_1: name = "FLAGS_1"; break; | 
|  | case DT_VERSYM: name = "VERSYM"; break; | 
|  | case DT_VERDEF: name = "VERDEF"; break; | 
|  | case DT_VERDEFNUM: name = "VERDEFNUM"; break; | 
|  | case DT_VERNEED: name = "VERNEED"; break; | 
|  | case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; | 
|  | case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break; | 
|  | case DT_USED: name = "USED"; break; | 
|  | case DT_FILTER: name = "FILTER"; stringp = true; break; | 
|  | case DT_GNU_HASH: name = "GNU_HASH"; break; | 
|  | } | 
|  |  | 
|  | fprintf (f, "  %-20s ", name); | 
|  | if (! stringp) | 
|  | { | 
|  | fprintf (f, "0x"); | 
|  | bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); | 
|  | } | 
|  | else | 
|  | { | 
|  | const char *string; | 
|  | unsigned int tagv = dyn.d_un.d_val; | 
|  |  | 
|  | string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
|  | if (string == NULL) | 
|  | goto error_return; | 
|  | fprintf (f, "%s", string); | 
|  | } | 
|  | fprintf (f, "\n"); | 
|  | } | 
|  |  | 
|  | _bfd_elf_munmap_section_contents (s, dynbuf); | 
|  | dynbuf = NULL; | 
|  | } | 
|  |  | 
|  | if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) | 
|  | || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) | 
|  | { | 
|  | if (! _bfd_elf_slurp_version_tables (abfd, false)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (elf_dynverdef (abfd) != 0) | 
|  | { | 
|  | Elf_Internal_Verdef *t; | 
|  |  | 
|  | fprintf (f, _("\nVersion definitions:\n")); | 
|  | for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) | 
|  | { | 
|  | fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, | 
|  | t->vd_flags, t->vd_hash, | 
|  | t->vd_nodename ? t->vd_nodename : "<corrupt>"); | 
|  | if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) | 
|  | { | 
|  | Elf_Internal_Verdaux *a; | 
|  |  | 
|  | fprintf (f, "\t"); | 
|  | for (a = t->vd_auxptr->vda_nextptr; | 
|  | a != NULL; | 
|  | a = a->vda_nextptr) | 
|  | fprintf (f, "%s ", | 
|  | a->vda_nodename ? a->vda_nodename : "<corrupt>"); | 
|  | fprintf (f, "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_dynverref (abfd) != 0) | 
|  | { | 
|  | Elf_Internal_Verneed *t; | 
|  |  | 
|  | fprintf (f, _("\nVersion References:\n")); | 
|  | for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) | 
|  | { | 
|  | Elf_Internal_Vernaux *a; | 
|  |  | 
|  | fprintf (f, _("  required from %s:\n"), | 
|  | t->vn_filename ? t->vn_filename : "<corrupt>"); | 
|  | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
|  | fprintf (f, "    0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, | 
|  | a->vna_flags, a->vna_other, | 
|  | a->vna_nodename ? a->vna_nodename : "<corrupt>"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | _bfd_elf_munmap_section_contents (s, dynbuf); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Find the file offset corresponding to VMA by using the program | 
|  | headers.  */ | 
|  |  | 
|  | static file_ptr | 
|  | offset_from_vma (Elf_Internal_Phdr *phdrs, size_t phnum, bfd_vma vma, | 
|  | size_t size, size_t *max_size_p) | 
|  | { | 
|  | Elf_Internal_Phdr *seg; | 
|  | size_t i; | 
|  |  | 
|  | for (seg = phdrs, i = 0; i < phnum; ++seg, ++i) | 
|  | if (seg->p_type == PT_LOAD | 
|  | && vma >= (seg->p_vaddr & -seg->p_align) | 
|  | && vma + size <= seg->p_vaddr + seg->p_filesz) | 
|  | { | 
|  | if (max_size_p) | 
|  | *max_size_p = seg->p_vaddr + seg->p_filesz - vma; | 
|  | return vma - seg->p_vaddr + seg->p_offset; | 
|  | } | 
|  |  | 
|  | if (max_size_p) | 
|  | *max_size_p = 0; | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return (file_ptr) -1; | 
|  | } | 
|  |  | 
|  | /* Convert hash table to internal form.  */ | 
|  |  | 
|  | static bfd_vma * | 
|  | get_hash_table_data (bfd *abfd, bfd_size_type number, | 
|  | unsigned int ent_size, bfd_size_type filesize) | 
|  | { | 
|  | unsigned char *e_data = NULL; | 
|  | bfd_vma *i_data = NULL; | 
|  | bfd_size_type size; | 
|  | void *e_data_addr; | 
|  | size_t e_data_size ATTRIBUTE_UNUSED; | 
|  |  | 
|  | if (ent_size != 4 && ent_size != 8) | 
|  | return NULL; | 
|  |  | 
|  | if ((size_t) number != number) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | size = ent_size * number; | 
|  | /* Be kind to memory checkers (eg valgrind, address sanitizer) by not | 
|  | attempting to allocate memory when the read is bound to fail.  */ | 
|  | if (size > filesize | 
|  | || number >= ~(size_t) 0 / ent_size | 
|  | || number >= ~(size_t) 0 / sizeof (*i_data)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | e_data = _bfd_mmap_readonly_temporary (abfd, size, &e_data_addr, | 
|  | &e_data_size); | 
|  | if (e_data == NULL) | 
|  | return NULL; | 
|  |  | 
|  | i_data = (bfd_vma *) bfd_malloc (number * sizeof (*i_data)); | 
|  | if (i_data == NULL) | 
|  | { | 
|  | free (e_data); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (ent_size == 4) | 
|  | while (number--) | 
|  | i_data[number] = bfd_get_32 (abfd, e_data + number * ent_size); | 
|  | else | 
|  | while (number--) | 
|  | i_data[number] = bfd_get_64 (abfd, e_data + number * ent_size); | 
|  |  | 
|  | _bfd_munmap_readonly_temporary (e_data_addr, e_data_size); | 
|  | return i_data; | 
|  | } | 
|  |  | 
|  | /* Address of .MIPS.xhash section.  FIXME: What is the best way to | 
|  | support DT_MIPS_XHASH?  */ | 
|  | #define DT_MIPS_XHASH	       0x70000036 | 
|  |  | 
|  | /* Reconstruct dynamic symbol table from PT_DYNAMIC segment.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_get_dynamic_symbols (bfd *abfd, Elf_Internal_Phdr *phdr, | 
|  | Elf_Internal_Phdr *phdrs, size_t phnum, | 
|  | bfd_size_type filesize) | 
|  | { | 
|  | bfd_byte *extdyn, *extdynend; | 
|  | size_t extdynsize; | 
|  | void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | 
|  | bool (*swap_symbol_in) (bfd *, const void *, const void *, | 
|  | Elf_Internal_Sym *); | 
|  | Elf_Internal_Dyn dyn; | 
|  | bfd_vma dt_hash = 0; | 
|  | bfd_vma dt_gnu_hash = 0; | 
|  | bfd_vma dt_mips_xhash = 0; | 
|  | bfd_vma dt_strtab = 0; | 
|  | bfd_vma dt_symtab = 0; | 
|  | size_t dt_strsz = 0; | 
|  | bfd_vma dt_versym = 0; | 
|  | bfd_vma dt_verdef = 0; | 
|  | bfd_vma dt_verneed = 0; | 
|  | bfd_byte *dynbuf = NULL; | 
|  | char *strbuf = NULL; | 
|  | bfd_vma *gnubuckets = NULL; | 
|  | bfd_vma *gnuchains = NULL; | 
|  | bfd_vma *mipsxlat = NULL; | 
|  | file_ptr saved_filepos, filepos; | 
|  | bool res = false; | 
|  | size_t amt; | 
|  | bfd_byte *esymbuf = NULL, *esym; | 
|  | bfd_size_type symcount; | 
|  | Elf_Internal_Sym *isymbuf = NULL; | 
|  | Elf_Internal_Sym *isym, *isymend; | 
|  | bfd_byte *versym = NULL; | 
|  | bfd_byte *verdef = NULL; | 
|  | bfd_byte *verneed = NULL; | 
|  | size_t verdef_size = 0; | 
|  | size_t verneed_size = 0; | 
|  | size_t extsym_size; | 
|  | const struct elf_backend_data *bed; | 
|  | void *dynbuf_addr = NULL; | 
|  | void *esymbuf_addr = NULL; | 
|  | size_t dynbuf_size = 0; | 
|  | size_t esymbuf_size = 0; | 
|  |  | 
|  | /* Return TRUE if symbol table is bad.  */ | 
|  | if (elf_bad_symtab (abfd)) | 
|  | return true; | 
|  |  | 
|  | /* Return TRUE if DT_HASH/DT_GNU_HASH have bee processed before.  */ | 
|  | if (elf_tdata (abfd)->dt_strtab != NULL) | 
|  | return true; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | /* Save file position for elf_object_p.  */ | 
|  | saved_filepos = bfd_tell (abfd); | 
|  |  | 
|  | if (bfd_seek (abfd, phdr->p_offset, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | dynbuf_size = phdr->p_filesz; | 
|  | dynbuf = _bfd_mmap_readonly_temporary (abfd, dynbuf_size, | 
|  | &dynbuf_addr, &dynbuf_size); | 
|  | if (dynbuf == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | extsym_size = bed->s->sizeof_sym; | 
|  | extdynsize = bed->s->sizeof_dyn; | 
|  | swap_dyn_in = bed->s->swap_dyn_in; | 
|  |  | 
|  | extdyn = dynbuf; | 
|  | if (phdr->p_filesz < extdynsize) | 
|  | goto error_return; | 
|  | extdynend = extdyn + phdr->p_filesz; | 
|  | for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize) | 
|  | { | 
|  | swap_dyn_in (abfd, extdyn, &dyn); | 
|  |  | 
|  | if (dyn.d_tag == DT_NULL) | 
|  | break; | 
|  |  | 
|  | switch (dyn.d_tag) | 
|  | { | 
|  | case DT_HASH: | 
|  | dt_hash = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_GNU_HASH: | 
|  | if (bed->elf_machine_code != EM_MIPS | 
|  | && bed->elf_machine_code != EM_MIPS_RS3_LE) | 
|  | dt_gnu_hash = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_STRTAB: | 
|  | dt_strtab = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_SYMTAB: | 
|  | dt_symtab = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_STRSZ: | 
|  | dt_strsz = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_SYMENT: | 
|  | if (dyn.d_un.d_val != extsym_size) | 
|  | goto error_return; | 
|  | break; | 
|  | case DT_VERSYM: | 
|  | dt_versym = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_VERDEF: | 
|  | dt_verdef = dyn.d_un.d_val; | 
|  | break; | 
|  | case DT_VERNEED: | 
|  | dt_verneed = dyn.d_un.d_val; | 
|  | break; | 
|  | default: | 
|  | if (dyn.d_tag == DT_MIPS_XHASH | 
|  | && (bed->elf_machine_code == EM_MIPS | 
|  | || bed->elf_machine_code == EM_MIPS_RS3_LE)) | 
|  | { | 
|  | dt_gnu_hash = dyn.d_un.d_val; | 
|  | dt_mips_xhash = dyn.d_un.d_val; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check if we can reconstruct dynamic symbol table from PT_DYNAMIC | 
|  | segment.  */ | 
|  | if ((!dt_hash && !dt_gnu_hash) | 
|  | || !dt_strtab | 
|  | || !dt_symtab | 
|  | || !dt_strsz) | 
|  | goto error_return; | 
|  |  | 
|  | /* Get dynamic string table.  */ | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_strtab, dt_strsz, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | /* Dynamic string table must be valid until ABFD is closed.  */ | 
|  | strbuf = (char *) _bfd_mmap_readonly_persistent (abfd, dt_strsz); | 
|  | if (strbuf == NULL) | 
|  | goto error_return; | 
|  | if (strbuf[dt_strsz - 1] != 0) | 
|  | { | 
|  | /* It is an error if a string table is't terminated.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: DT_STRTAB table is corrupt"), abfd); | 
|  | strbuf[dt_strsz - 1] = 0; | 
|  | } | 
|  |  | 
|  | /* Get the real symbol count from DT_HASH or DT_GNU_HASH.  Prefer | 
|  | DT_HASH since it is simpler than DT_GNU_HASH.  */ | 
|  | if (dt_hash) | 
|  | { | 
|  | unsigned char nb[16]; | 
|  | unsigned int hash_ent_size; | 
|  |  | 
|  | switch (bed->elf_machine_code) | 
|  | { | 
|  | case EM_ALPHA: | 
|  | case EM_S390: | 
|  | case EM_S390_OLD: | 
|  | if (bed->s->elfclass == ELFCLASS64) | 
|  | { | 
|  | hash_ent_size = 8; | 
|  | break; | 
|  | } | 
|  | /* FALLTHROUGH */ | 
|  | default: | 
|  | hash_ent_size = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_hash, sizeof (nb), | 
|  | NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0 | 
|  | || bfd_read (nb, 2 * hash_ent_size, abfd) != 2 * hash_ent_size) | 
|  | goto error_return; | 
|  |  | 
|  | /* The number of dynamic symbol table entries equals the number | 
|  | of chains.  */ | 
|  | if (hash_ent_size == 8) | 
|  | symcount = bfd_get_64 (abfd, nb + hash_ent_size); | 
|  | else | 
|  | symcount = bfd_get_32 (abfd, nb + hash_ent_size); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* For DT_GNU_HASH, only defined symbols with non-STB_LOCAL | 
|  | bindings are in hash table.  Since in dynamic symbol table, | 
|  | all symbols with STB_LOCAL binding are placed before symbols | 
|  | with other bindings and all undefined symbols are placed | 
|  | before defined ones, the highest symbol index in DT_GNU_HASH | 
|  | is the highest dynamic symbol table index.  */ | 
|  | unsigned char nb[16]; | 
|  | bfd_vma ngnubuckets; | 
|  | bfd_vma gnusymidx; | 
|  | size_t i, ngnuchains; | 
|  | bfd_vma maxchain = 0xffffffff, bitmaskwords; | 
|  | bfd_vma buckets_vma; | 
|  |  | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_gnu_hash, | 
|  | sizeof (nb), NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0 | 
|  | || bfd_read (nb, sizeof (nb), abfd) != sizeof (nb)) | 
|  | goto error_return; | 
|  |  | 
|  | ngnubuckets = bfd_get_32 (abfd, nb); | 
|  | gnusymidx = bfd_get_32 (abfd, nb + 4); | 
|  | bitmaskwords = bfd_get_32 (abfd, nb + 8); | 
|  | buckets_vma = dt_gnu_hash + 16; | 
|  | if (bed->s->elfclass == ELFCLASS32) | 
|  | buckets_vma += bitmaskwords * 4; | 
|  | else | 
|  | buckets_vma += bitmaskwords * 8; | 
|  | filepos = offset_from_vma (phdrs, phnum, buckets_vma, 4, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | gnubuckets = get_hash_table_data (abfd, ngnubuckets, 4, filesize); | 
|  | if (gnubuckets == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | for (i = 0; i < ngnubuckets; i++) | 
|  | if (gnubuckets[i] != 0) | 
|  | { | 
|  | if (gnubuckets[i] < gnusymidx) | 
|  | goto error_return; | 
|  |  | 
|  | if (maxchain == 0xffffffff || gnubuckets[i] > maxchain) | 
|  | maxchain = gnubuckets[i]; | 
|  | } | 
|  |  | 
|  | if (maxchain == 0xffffffff) | 
|  | { | 
|  | symcount = 0; | 
|  | goto empty_gnu_hash; | 
|  | } | 
|  |  | 
|  | maxchain -= gnusymidx; | 
|  | filepos = offset_from_vma (phdrs, phnum, | 
|  | (buckets_vma + | 
|  | 4 * (ngnubuckets + maxchain)), | 
|  | 4, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | do | 
|  | { | 
|  | if (bfd_read (nb, 4, abfd) != 4) | 
|  | goto error_return; | 
|  | ++maxchain; | 
|  | if (maxchain == 0) | 
|  | goto error_return; | 
|  | } | 
|  | while ((bfd_get_32 (abfd, nb) & 1) == 0); | 
|  |  | 
|  | filepos = offset_from_vma (phdrs, phnum, | 
|  | (buckets_vma + 4 * ngnubuckets), | 
|  | 4, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | gnuchains = get_hash_table_data (abfd, maxchain, 4, filesize); | 
|  | if (gnuchains == NULL) | 
|  | goto error_return; | 
|  | ngnuchains = maxchain; | 
|  |  | 
|  | if (dt_mips_xhash) | 
|  | { | 
|  | filepos = offset_from_vma (phdrs, phnum, | 
|  | (buckets_vma | 
|  | + 4 * (ngnubuckets + maxchain)), | 
|  | 4, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | mipsxlat = get_hash_table_data (abfd, maxchain, 4, filesize); | 
|  | if (mipsxlat == NULL) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | symcount = 0; | 
|  | for (i = 0; i < ngnubuckets; ++i) | 
|  | if (gnubuckets[i] != 0) | 
|  | { | 
|  | bfd_vma si = gnubuckets[i]; | 
|  | bfd_vma off = si - gnusymidx; | 
|  | do | 
|  | { | 
|  | if (mipsxlat) | 
|  | { | 
|  | if (mipsxlat[off] >= symcount) | 
|  | symcount = mipsxlat[off] + 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (si >= symcount) | 
|  | symcount = si + 1; | 
|  | } | 
|  | si++; | 
|  | } | 
|  | while (off < ngnuchains && (gnuchains[off++] & 1) == 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Swap in dynamic symbol table.  */ | 
|  | if (_bfd_mul_overflow (symcount, extsym_size, &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_symtab, amt, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  | esymbuf_size = amt; | 
|  | esymbuf = _bfd_mmap_readonly_temporary (abfd, esymbuf_size, | 
|  | &esymbuf_addr, | 
|  | &esymbuf_size); | 
|  | if (esymbuf == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | /* Dynamic symbol table must be valid until ABFD is closed.  */ | 
|  | isymbuf = (Elf_Internal_Sym *) bfd_alloc (abfd, amt); | 
|  | if (isymbuf == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | swap_symbol_in = bed->s->swap_symbol_in; | 
|  |  | 
|  | /* Convert the symbols to internal form.  */ | 
|  | isymend = isymbuf + symcount; | 
|  | for (esym = esymbuf, isym = isymbuf; | 
|  | isym < isymend; | 
|  | esym += extsym_size, isym++) | 
|  | if (!swap_symbol_in (abfd, esym, NULL, isym) | 
|  | || isym->st_name >= dt_strsz) | 
|  | { | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (dt_versym) | 
|  | { | 
|  | /* Swap in DT_VERSYM.  */ | 
|  | if (_bfd_mul_overflow (symcount, 2, &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_versym, amt, NULL); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | /* DT_VERSYM info must be valid until ABFD is closed.  */ | 
|  | versym = _bfd_mmap_readonly_persistent (abfd, amt); | 
|  |  | 
|  | if (dt_verdef) | 
|  | { | 
|  | /* Read in DT_VERDEF.  */ | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_verdef, | 
|  | 0, &verdef_size); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | /* DT_VERDEF info must be valid until ABFD is closed.  */ | 
|  | verdef = _bfd_mmap_readonly_persistent (abfd, verdef_size); | 
|  | } | 
|  |  | 
|  | if (dt_verneed) | 
|  | { | 
|  | /* Read in DT_VERNEED.  */ | 
|  | filepos = offset_from_vma (phdrs, phnum, dt_verneed, | 
|  | 0, &verneed_size); | 
|  | if (filepos == (file_ptr) -1 | 
|  | || bfd_seek (abfd, filepos, SEEK_SET) != 0) | 
|  | goto error_return; | 
|  |  | 
|  | /* DT_VERNEED info must be valid until ABFD is closed.  */ | 
|  | verneed = _bfd_mmap_readonly_persistent (abfd, verneed_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | empty_gnu_hash: | 
|  | elf_tdata (abfd)->dt_strtab = strbuf; | 
|  | elf_tdata (abfd)->dt_strsz = dt_strsz; | 
|  | elf_tdata (abfd)->dt_symtab = isymbuf; | 
|  | elf_tdata (abfd)->dt_symtab_count = symcount; | 
|  | elf_tdata (abfd)->dt_versym = versym; | 
|  | elf_tdata (abfd)->dt_verdef = verdef; | 
|  | elf_tdata (abfd)->dt_verneed = verneed; | 
|  | elf_tdata (abfd)->dt_verdef_count | 
|  | = verdef_size / sizeof (Elf_External_Verdef); | 
|  | elf_tdata (abfd)->dt_verneed_count | 
|  | = verneed_size / sizeof (Elf_External_Verneed); | 
|  |  | 
|  | res = true; | 
|  |  | 
|  | error_return: | 
|  | /* Restore file position for elf_object_p.  */ | 
|  | if (bfd_seek (abfd, saved_filepos, SEEK_SET) != 0) | 
|  | res = false; | 
|  | _bfd_munmap_readonly_temporary (dynbuf_addr, dynbuf_size); | 
|  | _bfd_munmap_readonly_temporary (esymbuf_addr, esymbuf_size); | 
|  | free (gnubuckets); | 
|  | free (gnuchains); | 
|  | free (mipsxlat); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* Reconstruct section from dynamic symbol.  */ | 
|  |  | 
|  | asection * | 
|  | _bfd_elf_get_section_from_dynamic_symbol (bfd *abfd, | 
|  | Elf_Internal_Sym *isym) | 
|  | { | 
|  | asection *sec; | 
|  | flagword flags; | 
|  |  | 
|  | if (!elf_use_dt_symtab_p (abfd)) | 
|  | return NULL; | 
|  |  | 
|  | flags = SEC_ALLOC | SEC_LOAD; | 
|  | switch (ELF_ST_TYPE (isym->st_info)) | 
|  | { | 
|  | case STT_FUNC: | 
|  | case STT_GNU_IFUNC: | 
|  | sec = bfd_get_section_by_name (abfd, ".text"); | 
|  | if (sec == NULL) | 
|  | sec = bfd_make_section_with_flags (abfd, | 
|  | ".text", | 
|  | flags | SEC_CODE); | 
|  | break; | 
|  | case STT_COMMON: | 
|  | sec = bfd_com_section_ptr; | 
|  | break; | 
|  | case STT_OBJECT: | 
|  | sec = bfd_get_section_by_name (abfd, ".data"); | 
|  | if (sec == NULL) | 
|  | sec = bfd_make_section_with_flags (abfd, | 
|  | ".data", | 
|  | flags | SEC_DATA); | 
|  | break; | 
|  | case STT_TLS: | 
|  | sec = bfd_get_section_by_name (abfd, ".tdata"); | 
|  | if (sec == NULL) | 
|  | sec = bfd_make_section_with_flags (abfd, | 
|  | ".tdata", | 
|  | (flags | 
|  | | SEC_DATA | 
|  | | SEC_THREAD_LOCAL)); | 
|  | break; | 
|  | default: | 
|  | sec = bfd_abs_section_ptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return sec; | 
|  | } | 
|  |  | 
|  | /* Get version name.  If BASE_P is TRUE, return "Base" for VER_FLG_BASE | 
|  | and return symbol version for symbol version itself.   */ | 
|  |  | 
|  | const char * | 
|  | _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol, | 
|  | bool base_p, | 
|  | bool *hidden) | 
|  | { | 
|  | const char *version_string = NULL; | 
|  | if ((elf_dynversym (abfd) != 0 | 
|  | && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0)) | 
|  | || (elf_tdata (abfd)->dt_versym != NULL | 
|  | && (elf_tdata (abfd)->dt_verdef != NULL | 
|  | || elf_tdata (abfd)->dt_verneed != NULL))) | 
|  | { | 
|  | unsigned int vernum = ((elf_symbol_type *) symbol)->version; | 
|  |  | 
|  | *hidden = (vernum & VERSYM_HIDDEN) != 0; | 
|  | vernum &= VERSYM_VERSION; | 
|  |  | 
|  | if (vernum == 0) | 
|  | version_string = ""; | 
|  | else if (vernum == 1 | 
|  | && (vernum > elf_tdata (abfd)->cverdefs | 
|  | || (elf_tdata (abfd)->verdef[0].vd_flags | 
|  | == VER_FLG_BASE))) | 
|  | version_string = base_p ? "Base" : ""; | 
|  | else if (vernum <= elf_tdata (abfd)->cverdefs) | 
|  | { | 
|  | const char *nodename | 
|  | = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | 
|  | version_string = ""; | 
|  | if (base_p | 
|  | || nodename == NULL | 
|  | || symbol->name == NULL | 
|  | || strcmp (symbol->name, nodename) != 0) | 
|  | version_string = nodename; | 
|  | } | 
|  | else | 
|  | { | 
|  | Elf_Internal_Verneed *t; | 
|  |  | 
|  | version_string = _("<corrupt>"); | 
|  | for (t = elf_tdata (abfd)->verref; | 
|  | t != NULL; | 
|  | t = t->vn_nextref) | 
|  | { | 
|  | Elf_Internal_Vernaux *a; | 
|  |  | 
|  | for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
|  | { | 
|  | if (a->vna_other == vernum) | 
|  | { | 
|  | *hidden = true; | 
|  | version_string = a->vna_nodename; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return version_string; | 
|  | } | 
|  |  | 
|  | /* Display ELF-specific fields of a symbol.  */ | 
|  |  | 
|  | void | 
|  | bfd_elf_print_symbol (bfd *abfd, | 
|  | void *filep, | 
|  | asymbol *symbol, | 
|  | bfd_print_symbol_type how) | 
|  | { | 
|  | FILE *file = (FILE *) filep; | 
|  | switch (how) | 
|  | { | 
|  | case bfd_print_symbol_name: | 
|  | fprintf (file, "%s", symbol->name); | 
|  | break; | 
|  | case bfd_print_symbol_more: | 
|  | fprintf (file, "elf "); | 
|  | bfd_fprintf_vma (abfd, file, symbol->value); | 
|  | fprintf (file, " %x", symbol->flags); | 
|  | break; | 
|  | case bfd_print_symbol_all: | 
|  | { | 
|  | const char *section_name; | 
|  | const char *name = NULL; | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned char st_other; | 
|  | bfd_vma val; | 
|  | const char *version_string; | 
|  | bool hidden; | 
|  |  | 
|  | section_name = symbol->section ? symbol->section->name : "(*none*)"; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | if (bed->elf_backend_print_symbol_all) | 
|  | name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); | 
|  |  | 
|  | if (name == NULL) | 
|  | { | 
|  | name = symbol->name; | 
|  | bfd_print_symbol_vandf (abfd, file, symbol); | 
|  | } | 
|  |  | 
|  | fprintf (file, " %s\t", section_name); | 
|  | /* Print the "other" value for a symbol.  For common symbols, | 
|  | we've already printed the size; now print the alignment. | 
|  | For other symbols, we have no specified alignment, and | 
|  | we've printed the address; now print the size.  */ | 
|  | if (symbol->section && bfd_is_com_section (symbol->section)) | 
|  | val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; | 
|  | else | 
|  | val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; | 
|  | bfd_fprintf_vma (abfd, file, val); | 
|  |  | 
|  | /* If we have version information, print it.  */ | 
|  | version_string = _bfd_elf_get_symbol_version_string (abfd, | 
|  | symbol, | 
|  | true, | 
|  | &hidden); | 
|  | if (version_string) | 
|  | { | 
|  | if (!hidden) | 
|  | fprintf (file, "  %-11s", version_string); | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | fprintf (file, " (%s)", version_string); | 
|  | for (i = 10 - strlen (version_string); i > 0; --i) | 
|  | putc (' ', file); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the st_other field is not zero, print it.  */ | 
|  | st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; | 
|  |  | 
|  | switch (st_other) | 
|  | { | 
|  | case 0: break; | 
|  | case STV_INTERNAL:  fprintf (file, " .internal");  break; | 
|  | case STV_HIDDEN:    fprintf (file, " .hidden");    break; | 
|  | case STV_PROTECTED: fprintf (file, " .protected"); break; | 
|  | default: | 
|  | /* Some other non-defined flags are also present, so print | 
|  | everything hex.  */ | 
|  | fprintf (file, " 0x%02x", (unsigned int) st_other); | 
|  | } | 
|  |  | 
|  | fprintf (file, " %s", name); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ELF .o/exec file reading */ | 
|  |  | 
|  | /* Create a new bfd section from an ELF section header.  */ | 
|  |  | 
|  | bool | 
|  | bfd_section_from_shdr (bfd *abfd, unsigned int shindex) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  | Elf_Internal_Ehdr *ehdr; | 
|  | const struct elf_backend_data *bed; | 
|  | const char *name; | 
|  | bool ret = true; | 
|  |  | 
|  | if (shindex >= elf_numsections (abfd)) | 
|  | return false; | 
|  |  | 
|  | /* PR17512: A corrupt ELF binary might contain a loop of sections via | 
|  | sh_link or sh_info.  Detect this here, by refusing to load a | 
|  | section that we are already in the process of loading.  */ | 
|  | if (elf_tdata (abfd)->being_created[shindex]) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: loop in section dependencies detected"), abfd); | 
|  | return false; | 
|  | } | 
|  | elf_tdata (abfd)->being_created[shindex] = true; | 
|  |  | 
|  | hdr = elf_elfsections (abfd)[shindex]; | 
|  | ehdr = elf_elfheader (abfd); | 
|  | name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, | 
|  | hdr->sh_name); | 
|  | if (name == NULL) | 
|  | goto fail; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | switch (hdr->sh_type) | 
|  | { | 
|  | case SHT_NULL: | 
|  | /* Inactive section. Throw it away.  */ | 
|  | goto success; | 
|  |  | 
|  | case SHT_PROGBITS:		/* Normal section with contents.  */ | 
|  | case SHT_NOBITS:		/* .bss section.  */ | 
|  | case SHT_HASH:		/* .hash section.  */ | 
|  | case SHT_NOTE:		/* .note section.  */ | 
|  | case SHT_INIT_ARRAY:	/* .init_array section.  */ | 
|  | case SHT_FINI_ARRAY:	/* .fini_array section.  */ | 
|  | case SHT_PREINIT_ARRAY:	/* .preinit_array section.  */ | 
|  | case SHT_GNU_LIBLIST:	/* .gnu.liblist section.  */ | 
|  | case SHT_GNU_HASH:		/* .gnu.hash section.  */ | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_DYNAMIC:	/* Dynamic linking information.  */ | 
|  | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | goto fail; | 
|  |  | 
|  | if (hdr->sh_link > elf_numsections (abfd)) | 
|  | { | 
|  | /* PR 10478: Accept Solaris binaries with a sh_link field | 
|  | set to SHN_BEFORE (LORESERVE) or SHN_AFTER (LORESERVE+1).  */ | 
|  | switch (bfd_get_arch (abfd)) | 
|  | { | 
|  | case bfd_arch_i386: | 
|  | case bfd_arch_sparc: | 
|  | if (hdr->sh_link == (SHN_LORESERVE & 0xffff) | 
|  | || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff)) | 
|  | break; | 
|  | /* Otherwise fall through.  */ | 
|  | default: | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) | 
|  | goto fail; | 
|  | else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) | 
|  | { | 
|  | Elf_Internal_Shdr *dynsymhdr; | 
|  |  | 
|  | /* The shared libraries distributed with hpux11 have a bogus | 
|  | sh_link field for the ".dynamic" section.  Find the | 
|  | string table for the ".dynsym" section instead.  */ | 
|  | if (elf_dynsymtab (abfd) != 0) | 
|  | { | 
|  | dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; | 
|  | hdr->sh_link = dynsymhdr->sh_link; | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int i, num_sec; | 
|  |  | 
|  | num_sec = elf_numsections (abfd); | 
|  | for (i = 1; i < num_sec; i++) | 
|  | { | 
|  | dynsymhdr = elf_elfsections (abfd)[i]; | 
|  | if (dynsymhdr->sh_type == SHT_DYNSYM) | 
|  | { | 
|  | hdr->sh_link = dynsymhdr->sh_link; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | goto success; | 
|  |  | 
|  | case SHT_SYMTAB:		/* A symbol table.  */ | 
|  | if (elf_onesymtab (abfd) == shindex) | 
|  | goto success; | 
|  |  | 
|  | if (hdr->sh_entsize != bed->s->sizeof_sym) | 
|  | goto fail; | 
|  |  | 
|  | if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) | 
|  | { | 
|  | if (hdr->sh_size != 0) | 
|  | goto fail; | 
|  | /* Some assemblers erroneously set sh_info to one with a | 
|  | zero sh_size.  ld sees this as a global symbol count | 
|  | of (unsigned) -1.  Fix it here.  */ | 
|  | hdr->sh_info = 0; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* PR 18854: A binary might contain more than one symbol table. | 
|  | Unusual, but possible.  Warn, but continue.  */ | 
|  | if (elf_onesymtab (abfd) != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: multiple symbol tables detected" | 
|  | " - ignoring the table in section %u"), | 
|  | abfd, shindex); | 
|  | goto success; | 
|  | } | 
|  | elf_onesymtab (abfd) = shindex; | 
|  | elf_symtab_hdr (abfd) = *hdr; | 
|  | elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd); | 
|  | abfd->flags |= HAS_SYMS; | 
|  |  | 
|  | /* Sometimes a shared object will map in the symbol table.  If | 
|  | SHF_ALLOC is set, and this is a shared object, then we also | 
|  | treat this section as a BFD section.  We can not base the | 
|  | decision purely on SHF_ALLOC, because that flag is sometimes | 
|  | set in a relocatable object file, which would confuse the | 
|  | linker.  */ | 
|  | if ((hdr->sh_flags & SHF_ALLOC) != 0 | 
|  | && (abfd->flags & DYNAMIC) != 0 | 
|  | && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, | 
|  | shindex)) | 
|  | goto fail; | 
|  |  | 
|  | /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we | 
|  | can't read symbols without that section loaded as well.  It | 
|  | is most likely specified by the next section header.  */ | 
|  | { | 
|  | elf_section_list * entry; | 
|  | unsigned int i, num_sec; | 
|  |  | 
|  | for (entry = elf_symtab_shndx_list (abfd); entry; entry = entry->next) | 
|  | if (entry->hdr.sh_link == shindex) | 
|  | goto success; | 
|  |  | 
|  | num_sec = elf_numsections (abfd); | 
|  | for (i = shindex + 1; i < num_sec; i++) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; | 
|  |  | 
|  | if (hdr2->sh_type == SHT_SYMTAB_SHNDX | 
|  | && hdr2->sh_link == shindex) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == num_sec) | 
|  | for (i = 1; i < shindex; i++) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; | 
|  |  | 
|  | if (hdr2->sh_type == SHT_SYMTAB_SHNDX | 
|  | && hdr2->sh_link == shindex) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i != shindex) | 
|  | ret = bfd_section_from_shdr (abfd, i); | 
|  | /* else FIXME: we have failed to find the symbol table. | 
|  | Should we issue an error?  */ | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | case SHT_DYNSYM:		/* A dynamic symbol table.  */ | 
|  | if (elf_dynsymtab (abfd) == shindex) | 
|  | goto success; | 
|  |  | 
|  | if (hdr->sh_entsize != bed->s->sizeof_sym) | 
|  | goto fail; | 
|  |  | 
|  | if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) | 
|  | { | 
|  | if (hdr->sh_size != 0) | 
|  | goto fail; | 
|  |  | 
|  | /* Some linkers erroneously set sh_info to one with a | 
|  | zero sh_size.  ld sees this as a global symbol count | 
|  | of (unsigned) -1.  Fix it here.  */ | 
|  | hdr->sh_info = 0; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* PR 18854: A binary might contain more than one dynamic symbol table. | 
|  | Unusual, but possible.  Warn, but continue.  */ | 
|  | if (elf_dynsymtab (abfd) != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: multiple dynamic symbol tables detected" | 
|  | " - ignoring the table in section %u"), | 
|  | abfd, shindex); | 
|  | goto success; | 
|  | } | 
|  | elf_dynsymtab (abfd) = shindex; | 
|  | elf_tdata (abfd)->dynsymtab_hdr = *hdr; | 
|  | elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; | 
|  | abfd->flags |= HAS_SYMS; | 
|  |  | 
|  | /* Besides being a symbol table, we also treat this as a regular | 
|  | section, so that objcopy can handle it.  */ | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections.  */ | 
|  | { | 
|  | elf_section_list * entry; | 
|  |  | 
|  | for (entry = elf_symtab_shndx_list (abfd); entry; entry = entry->next) | 
|  | if (entry->ndx == shindex) | 
|  | goto success; | 
|  |  | 
|  | entry = bfd_alloc (abfd, sizeof (*entry)); | 
|  | if (entry == NULL) | 
|  | goto fail; | 
|  | entry->ndx = shindex; | 
|  | entry->hdr = * hdr; | 
|  | entry->next = elf_symtab_shndx_list (abfd); | 
|  | elf_symtab_shndx_list (abfd) = entry; | 
|  | elf_elfsections (abfd)[shindex] = & entry->hdr; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | case SHT_STRTAB:		/* A string table.  */ | 
|  | if (hdr->bfd_section != NULL) | 
|  | goto success; | 
|  |  | 
|  | if (ehdr->e_shstrndx == shindex) | 
|  | { | 
|  | elf_tdata (abfd)->shstrtab_hdr = *hdr; | 
|  | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) | 
|  | { | 
|  | symtab_strtab: | 
|  | elf_tdata (abfd)->strtab_hdr = *hdr; | 
|  | elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) | 
|  | { | 
|  | dynsymtab_strtab: | 
|  | elf_tdata (abfd)->dynstrtab_hdr = *hdr; | 
|  | hdr = &elf_tdata (abfd)->dynstrtab_hdr; | 
|  | elf_elfsections (abfd)[shindex] = hdr; | 
|  | /* We also treat this as a regular section, so that objcopy | 
|  | can handle it.  */ | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, | 
|  | shindex); | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* If the string table isn't one of the above, then treat it as a | 
|  | regular section.  We need to scan all the headers to be sure, | 
|  | just in case this strtab section appeared before the above.  */ | 
|  | if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) | 
|  | { | 
|  | unsigned int i, num_sec; | 
|  |  | 
|  | num_sec = elf_numsections (abfd); | 
|  | for (i = 1; i < num_sec; i++) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; | 
|  | if (hdr2->sh_link == shindex) | 
|  | { | 
|  | /* Prevent endless recursion on broken objects.  */ | 
|  | if (i == shindex) | 
|  | goto fail; | 
|  | if (! bfd_section_from_shdr (abfd, i)) | 
|  | goto fail; | 
|  | if (elf_onesymtab (abfd) == i) | 
|  | goto symtab_strtab; | 
|  | if (elf_dynsymtab (abfd) == i) | 
|  | goto dynsymtab_strtab; | 
|  | } | 
|  | } | 
|  | } | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_REL: | 
|  | case SHT_RELA: | 
|  | case SHT_RELR: | 
|  | /* *These* do a lot of work -- but build no sections!  */ | 
|  | { | 
|  | asection *target_sect; | 
|  | Elf_Internal_Shdr *hdr2, **p_hdr; | 
|  | unsigned int num_sec = elf_numsections (abfd); | 
|  | struct bfd_elf_section_data *esdt; | 
|  | bfd_size_type size; | 
|  |  | 
|  | if (hdr->sh_type == SHT_REL) | 
|  | size = bed->s->sizeof_rel; | 
|  | else if (hdr->sh_type == SHT_RELA) | 
|  | size = bed->s->sizeof_rela; | 
|  | else | 
|  | size = bed->s->arch_size / 8; | 
|  | if (hdr->sh_entsize != size) | 
|  | goto fail; | 
|  |  | 
|  | /* Check for a bogus link to avoid crashing.  */ | 
|  | if (hdr->sh_link >= num_sec) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: invalid link %u for reloc section %s (index %u)"), | 
|  | abfd, hdr->sh_link, name, shindex); | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* Get the symbol table.  */ | 
|  | if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB | 
|  | || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) | 
|  | && ! bfd_section_from_shdr (abfd, hdr->sh_link)) | 
|  | goto fail; | 
|  |  | 
|  | /* If this is an alloc section in an executable or shared | 
|  | library, or the reloc section does not use the main symbol | 
|  | table we don't treat it as a reloc section.  BFD can't | 
|  | adequately represent such a section, so at least for now, | 
|  | we don't try.  We just present it as a normal section.  We | 
|  | also can't use it as a reloc section if it points to the | 
|  | null section, an invalid section, another reloc section, or | 
|  | its sh_link points to the null section.  */ | 
|  | if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0 | 
|  | && (hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | || (hdr->sh_flags & SHF_COMPRESSED) != 0 | 
|  | || hdr->sh_type == SHT_RELR | 
|  | || hdr->sh_link == SHN_UNDEF | 
|  | || hdr->sh_link != elf_onesymtab (abfd) | 
|  | || hdr->sh_info == SHN_UNDEF | 
|  | || hdr->sh_info >= num_sec | 
|  | || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL | 
|  | || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) | 
|  | { | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | if (! bfd_section_from_shdr (abfd, hdr->sh_info)) | 
|  | goto fail; | 
|  |  | 
|  | target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); | 
|  | if (target_sect == NULL) | 
|  | goto fail; | 
|  |  | 
|  | esdt = elf_section_data (target_sect); | 
|  | if (hdr->sh_type == SHT_RELA) | 
|  | p_hdr = &esdt->rela.hdr; | 
|  | else | 
|  | p_hdr = &esdt->rel.hdr; | 
|  |  | 
|  | /* PR 17512: file: 0b4f81b7. | 
|  | Also see PR 24456, for a file which deliberately has two reloc | 
|  | sections.  */ | 
|  | if (*p_hdr != NULL) | 
|  | { | 
|  | if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: secondary relocation section '%s' " | 
|  | "for section %pA found - ignoring"), | 
|  | abfd, name, target_sect); | 
|  | } | 
|  | else | 
|  | esdt->has_secondary_relocs = true; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); | 
|  | if (hdr2 == NULL) | 
|  | goto fail; | 
|  | *hdr2 = *hdr; | 
|  | *p_hdr = hdr2; | 
|  | elf_elfsections (abfd)[shindex] = hdr2; | 
|  | target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr) | 
|  | * bed->s->int_rels_per_ext_rel); | 
|  | target_sect->flags |= SEC_RELOC; | 
|  | target_sect->relocation = NULL; | 
|  | target_sect->rel_filepos = hdr->sh_offset; | 
|  | /* In the section to which the relocations apply, mark whether | 
|  | its relocations are of the REL or RELA variety.  */ | 
|  | if (hdr->sh_size != 0) | 
|  | { | 
|  | if (hdr->sh_type == SHT_RELA) | 
|  | target_sect->use_rela_p = 1; | 
|  | } | 
|  | abfd->flags |= HAS_RELOC; | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | case SHT_GNU_verdef: | 
|  | if (hdr->sh_info != 0) | 
|  | elf_dynverdef (abfd) = shindex; | 
|  | elf_tdata (abfd)->dynverdef_hdr = *hdr; | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_GNU_versym: | 
|  | if (hdr->sh_entsize != sizeof (Elf_External_Versym)) | 
|  | goto fail; | 
|  |  | 
|  | elf_dynversym (abfd) = shindex; | 
|  | elf_tdata (abfd)->dynversym_hdr = *hdr; | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_GNU_verneed: | 
|  | if (hdr->sh_info != 0) | 
|  | elf_dynverref (abfd) = shindex; | 
|  | elf_tdata (abfd)->dynverref_hdr = *hdr; | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  |  | 
|  | case SHT_SHLIB: | 
|  | goto success; | 
|  |  | 
|  | case SHT_GROUP: | 
|  | if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | goto fail; | 
|  |  | 
|  | goto success; | 
|  |  | 
|  | default: | 
|  | /* Possibly an attributes section.  */ | 
|  | if (hdr->sh_type == SHT_GNU_ATTRIBUTES | 
|  | || hdr->sh_type == bed->obj_attrs_section_type) | 
|  | { | 
|  | if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | goto fail; | 
|  | _bfd_elf_parse_attributes (abfd, hdr); | 
|  | goto success; | 
|  | } | 
|  |  | 
|  | /* Check for any processor-specific section types.  */ | 
|  | if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) | 
|  | goto success; | 
|  |  | 
|  | if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) | 
|  | { | 
|  | if ((hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | /* FIXME: How to properly handle allocated section reserved | 
|  | for applications?  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unknown type [%#x] section `%s'"), | 
|  | abfd, hdr->sh_type, name); | 
|  | else | 
|  | { | 
|  | /* Allow sections reserved for applications.  */ | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  | } | 
|  | } | 
|  | else if (hdr->sh_type >= SHT_LOPROC | 
|  | && hdr->sh_type <= SHT_HIPROC) | 
|  | /* FIXME: We should handle this section.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unknown type [%#x] section `%s'"), | 
|  | abfd, hdr->sh_type, name); | 
|  | else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) | 
|  | { | 
|  | /* Unrecognised OS-specific sections.  */ | 
|  | if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) | 
|  | /* SHF_OS_NONCONFORMING indicates that special knowledge is | 
|  | required to correctly process the section and the file should | 
|  | be rejected with an error message.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unknown type [%#x] section `%s'"), | 
|  | abfd, hdr->sh_type, name); | 
|  | else | 
|  | { | 
|  | /* Otherwise it should be processed.  */ | 
|  | ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | goto success; | 
|  | } | 
|  | } | 
|  | else | 
|  | /* FIXME: We should handle this section.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: unknown type [%#x] section `%s'"), | 
|  | abfd, hdr->sh_type, name); | 
|  |  | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | fail: | 
|  | ret = false; | 
|  | success: | 
|  | elf_tdata (abfd)->being_created[shindex] = false; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Return the local symbol specified by ABFD, R_SYMNDX.  */ | 
|  |  | 
|  | Elf_Internal_Sym * | 
|  | bfd_sym_from_r_symndx (struct sym_cache *cache, | 
|  | bfd *abfd, | 
|  | unsigned long r_symndx) | 
|  | { | 
|  | unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; | 
|  |  | 
|  | if (cache->abfd != abfd || cache->indx[ent] != r_symndx) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | unsigned char esym[sizeof (Elf64_External_Sym)]; | 
|  | Elf_External_Sym_Shndx eshndx; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, | 
|  | &cache->sym[ent], esym, &eshndx) == NULL) | 
|  | return NULL; | 
|  |  | 
|  | if (cache->abfd != abfd) | 
|  | { | 
|  | memset (cache->indx, -1, sizeof (cache->indx)); | 
|  | cache->abfd = abfd; | 
|  | } | 
|  | cache->indx[ent] = r_symndx; | 
|  | } | 
|  |  | 
|  | return &cache->sym[ent]; | 
|  | } | 
|  |  | 
|  | /* Given an ELF section number, retrieve the corresponding BFD | 
|  | section.  */ | 
|  |  | 
|  | asection * | 
|  | bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index) | 
|  | { | 
|  | if (sec_index >= elf_numsections (abfd)) | 
|  | return NULL; | 
|  | return elf_elfsections (abfd)[sec_index]->bfd_section; | 
|  | } | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_b[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE }, | 
|  | { NULL,		    0,	0, 0,		 0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_c[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".ctf"),	0, SHT_PROGBITS,    0 }, | 
|  | { NULL,			0, 0, 0,	    0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_d[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".data"),		-2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".data1"),	 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, | 
|  | /* There are more DWARF sections than these, but they needn't be added here | 
|  | unless you have to cope with broken compilers that don't emit section | 
|  | attributes or you want to help the user writing assembler.  */ | 
|  | { STRING_COMMA_LEN (".debug"),	 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".debug_line"),	 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".debug_info"),	 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".debug_abbrev"),	 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".dynamic"),	 0, SHT_DYNAMIC,  SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".dynstr"),	 0, SHT_STRTAB,	  SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".dynsym"),	 0, SHT_DYNSYM,	  SHF_ALLOC }, | 
|  | { NULL,		       0,	 0, 0,		  0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_f[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".fini"),	       0, SHT_PROGBITS,	  SHF_ALLOC + SHF_EXECINSTR }, | 
|  | { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, | 
|  | { NULL,			   0 , 0, 0,		  0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_g[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS,      SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS,      SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS,    SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".gnu.lto_"),	  -1, SHT_PROGBITS,    SHF_EXCLUDE }, | 
|  | { STRING_COMMA_LEN (".got"),		   0, SHT_PROGBITS,    SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".gnu.version"),	   0, SHT_GNU_versym,  0 }, | 
|  | { STRING_COMMA_LEN (".gnu.version_d"),   0, SHT_GNU_verdef,  0 }, | 
|  | { STRING_COMMA_LEN (".gnu.version_r"),   0, SHT_GNU_verneed, 0 }, | 
|  | { STRING_COMMA_LEN (".gnu.liblist"),	   0, SHT_GNU_LIBLIST, SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".gnu.conflict"),	   0, SHT_RELA,	       SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".gnu.hash"),	   0, SHT_GNU_HASH,    SHF_ALLOC }, | 
|  | { NULL,			 0,	   0, 0,	       0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_h[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".hash"), 0, SHT_HASH,	 SHF_ALLOC }, | 
|  | { NULL,		     0, 0, 0,		 0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_i[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".init"),	       0, SHT_PROGBITS,	  SHF_ALLOC + SHF_EXECINSTR }, | 
|  | { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".interp"),      0, SHT_PROGBITS,	  0 }, | 
|  | { NULL,		       0,      0, 0,		  0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_l[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, | 
|  | { NULL,		     0, 0, 0,		 0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_n[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".noinit"),	 -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".note"),		 -1, SHT_NOTE,	   0 }, | 
|  | { NULL,		     0,		  0, 0,		   0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_p[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS,	SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".persistent"),	 -2, SHT_PROGBITS,	SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".plt"),		  0, SHT_PROGBITS,	SHF_ALLOC + SHF_EXECINSTR }, | 
|  | { NULL,		    0,		  0, 0,			0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_r[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".relr.dyn"), 0, SHT_RELR, SHF_ALLOC }, | 
|  | { STRING_COMMA_LEN (".rela"),	  -1, SHT_RELA,	    0 }, | 
|  | /* .relro_padding is generated by lld.  It should not be confused with a | 
|  | reloc containing section, because otherwise elf_fake_sections() will | 
|  | set the entsize to 8, which may not be an actual multiple of the | 
|  | section's size. | 
|  | Note - this entry must appear before the ".rel" entry below.  */ | 
|  | { STRING_COMMA_LEN (".relro_padding"), 0, SHT_NOBITS, SHF_ALLOC | SHF_WRITE }, | 
|  | { STRING_COMMA_LEN (".rel"),	  -1, SHT_REL,	    0 }, | 
|  | { NULL,		    0,	   0, 0,	    0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_s[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, | 
|  | { STRING_COMMA_LEN (".strtab"),   0, SHT_STRTAB, 0 }, | 
|  | { STRING_COMMA_LEN (".symtab"),   0, SHT_SYMTAB, 0 }, | 
|  | /* See struct bfd_elf_special_section declaration for the semantics of | 
|  | this special case where .prefix_length != strlen (.prefix).  */ | 
|  | { ".stabstr",			5,  3, SHT_STRTAB, 0 }, | 
|  | { NULL,			0,  0, 0,	   0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_t[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".text"),	 -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, | 
|  | { STRING_COMMA_LEN (".tbss"),	 -2, SHT_NOBITS,   SHF_ALLOC + SHF_WRITE + SHF_TLS }, | 
|  | { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, | 
|  | { NULL,		      0,  0, 0,		   0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section special_sections_z[] = | 
|  | { | 
|  | { STRING_COMMA_LEN (".zdebug_line"),	  0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".zdebug_info"),	  0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".zdebug_abbrev"),  0, SHT_PROGBITS, 0 }, | 
|  | { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, | 
|  | { NULL,		      0,  0, 0,		   0 } | 
|  | }; | 
|  |  | 
|  | static const struct bfd_elf_special_section * const special_sections[] = | 
|  | { | 
|  | special_sections_b,		/* 'b' */ | 
|  | special_sections_c,		/* 'c' */ | 
|  | special_sections_d,		/* 'd' */ | 
|  | NULL,				/* 'e' */ | 
|  | special_sections_f,		/* 'f' */ | 
|  | special_sections_g,		/* 'g' */ | 
|  | special_sections_h,		/* 'h' */ | 
|  | special_sections_i,		/* 'i' */ | 
|  | NULL,				/* 'j' */ | 
|  | NULL,				/* 'k' */ | 
|  | special_sections_l,		/* 'l' */ | 
|  | NULL,				/* 'm' */ | 
|  | special_sections_n,		/* 'n' */ | 
|  | NULL,				/* 'o' */ | 
|  | special_sections_p,		/* 'p' */ | 
|  | NULL,				/* 'q' */ | 
|  | special_sections_r,		/* 'r' */ | 
|  | special_sections_s,		/* 's' */ | 
|  | special_sections_t,		/* 't' */ | 
|  | NULL,				/* 'u' */ | 
|  | NULL,				/* 'v' */ | 
|  | NULL,				/* 'w' */ | 
|  | NULL,				/* 'x' */ | 
|  | NULL,				/* 'y' */ | 
|  | special_sections_z		/* 'z' */ | 
|  | }; | 
|  |  | 
|  | const struct bfd_elf_special_section * | 
|  | _bfd_elf_get_special_section (const char *name, | 
|  | const struct bfd_elf_special_section *spec, | 
|  | unsigned int rela) | 
|  | { | 
|  | int i; | 
|  | int len; | 
|  |  | 
|  | len = strlen (name); | 
|  |  | 
|  | for (i = 0; spec[i].prefix != NULL; i++) | 
|  | { | 
|  | int suffix_len; | 
|  | int prefix_len = spec[i].prefix_length; | 
|  |  | 
|  | if (len < prefix_len) | 
|  | continue; | 
|  | if (memcmp (name, spec[i].prefix, prefix_len) != 0) | 
|  | continue; | 
|  |  | 
|  | suffix_len = spec[i].suffix_length; | 
|  | if (suffix_len <= 0) | 
|  | { | 
|  | if (name[prefix_len] != 0) | 
|  | { | 
|  | if (suffix_len == 0) | 
|  | continue; | 
|  | if (name[prefix_len] != '.' | 
|  | && (suffix_len == -2 | 
|  | || (rela && spec[i].type == SHT_REL))) | 
|  | continue; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (len < prefix_len + suffix_len) | 
|  | continue; | 
|  | if (memcmp (name + len - suffix_len, | 
|  | spec[i].prefix + prefix_len, | 
|  | suffix_len) != 0) | 
|  | continue; | 
|  | } | 
|  | return &spec[i]; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | const struct bfd_elf_special_section * | 
|  | _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) | 
|  | { | 
|  | int i; | 
|  | const struct bfd_elf_special_section *spec; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | /* See if this is one of the special sections.  */ | 
|  | if (sec->name == NULL) | 
|  | return NULL; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | spec = bed->special_sections; | 
|  | if (spec) | 
|  | { | 
|  | spec = _bfd_elf_get_special_section (sec->name, | 
|  | bed->special_sections, | 
|  | sec->use_rela_p); | 
|  | if (spec != NULL) | 
|  | return spec; | 
|  | } | 
|  |  | 
|  | if (sec->name[0] != '.') | 
|  | return NULL; | 
|  |  | 
|  | i = sec->name[1] - 'b'; | 
|  | if (i < 0 || i > 'z' - 'b') | 
|  | return NULL; | 
|  |  | 
|  | spec = special_sections[i]; | 
|  |  | 
|  | if (spec == NULL) | 
|  | return NULL; | 
|  |  | 
|  | return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_new_section_hook (bfd *abfd, asection *sec) | 
|  | { | 
|  | struct bfd_elf_section_data *sdata; | 
|  | const struct elf_backend_data *bed; | 
|  | const struct bfd_elf_special_section *ssect; | 
|  |  | 
|  | sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; | 
|  | if (sdata == NULL) | 
|  | { | 
|  | sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, | 
|  | sizeof (*sdata)); | 
|  | if (sdata == NULL) | 
|  | return false; | 
|  | sec->used_by_bfd = sdata; | 
|  | } | 
|  |  | 
|  | /* Indicate whether or not this section should use RELA relocations.  */ | 
|  | bed = get_elf_backend_data (abfd); | 
|  | sec->use_rela_p = bed->default_use_rela_p; | 
|  |  | 
|  | /* Set up ELF section type and flags for newly created sections, if | 
|  | there is an ABI mandated section.  */ | 
|  | ssect = (*bed->get_sec_type_attr) (abfd, sec); | 
|  | if (ssect != NULL) | 
|  | { | 
|  | elf_section_type (sec) = ssect->type; | 
|  | elf_section_flags (sec) = ssect->attr; | 
|  | } | 
|  |  | 
|  | return _bfd_generic_new_section_hook (abfd, sec); | 
|  | } | 
|  |  | 
|  | /* Create a new bfd section from an ELF program header. | 
|  |  | 
|  | Since program segments have no names, we generate a synthetic name | 
|  | of the form segment<NUM>, where NUM is generally the index in the | 
|  | program header table.  For segments that are split (see below) we | 
|  | generate the names segment<NUM>a and segment<NUM>b. | 
|  |  | 
|  | Note that some program segments may have a file size that is different than | 
|  | (less than) the memory size.  All this means is that at execution the | 
|  | system must allocate the amount of memory specified by the memory size, | 
|  | but only initialize it with the first "file size" bytes read from the | 
|  | file.  This would occur for example, with program segments consisting | 
|  | of combined data+bss. | 
|  |  | 
|  | To handle the above situation, this routine generates TWO bfd sections | 
|  | for the single program segment.  The first has the length specified by | 
|  | the file size of the segment, and the second has the length specified | 
|  | by the difference between the two sizes.  In effect, the segment is split | 
|  | into its initialized and uninitialized parts.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_make_section_from_phdr (bfd *abfd, | 
|  | Elf_Internal_Phdr *hdr, | 
|  | int hdr_index, | 
|  | const char *type_name) | 
|  | { | 
|  | asection *newsect; | 
|  | char *name; | 
|  | char namebuf[64]; | 
|  | size_t len; | 
|  | int split; | 
|  | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
|  |  | 
|  | split = ((hdr->p_memsz > 0) | 
|  | && (hdr->p_filesz > 0) | 
|  | && (hdr->p_memsz > hdr->p_filesz)); | 
|  |  | 
|  | if (hdr->p_filesz > 0) | 
|  | { | 
|  | sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : ""); | 
|  | len = strlen (namebuf) + 1; | 
|  | name = (char *) bfd_alloc (abfd, len); | 
|  | if (!name) | 
|  | return false; | 
|  | memcpy (name, namebuf, len); | 
|  | newsect = bfd_make_section (abfd, name); | 
|  | if (newsect == NULL) | 
|  | return false; | 
|  | newsect->vma = hdr->p_vaddr / opb; | 
|  | newsect->lma = hdr->p_paddr / opb; | 
|  | newsect->size = hdr->p_filesz; | 
|  | newsect->filepos = hdr->p_offset; | 
|  | newsect->flags |= SEC_HAS_CONTENTS; | 
|  | newsect->alignment_power = bfd_log2 (hdr->p_align); | 
|  | if (hdr->p_type == PT_LOAD) | 
|  | { | 
|  | newsect->flags |= SEC_ALLOC; | 
|  | newsect->flags |= SEC_LOAD; | 
|  | if (hdr->p_flags & PF_X) | 
|  | { | 
|  | /* FIXME: all we known is that it has execute PERMISSION, | 
|  | may be data.  */ | 
|  | newsect->flags |= SEC_CODE; | 
|  | } | 
|  | } | 
|  | if (!(hdr->p_flags & PF_W)) | 
|  | { | 
|  | newsect->flags |= SEC_READONLY; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hdr->p_memsz > hdr->p_filesz) | 
|  | { | 
|  | bfd_vma align; | 
|  |  | 
|  | sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : ""); | 
|  | len = strlen (namebuf) + 1; | 
|  | name = (char *) bfd_alloc (abfd, len); | 
|  | if (!name) | 
|  | return false; | 
|  | memcpy (name, namebuf, len); | 
|  | newsect = bfd_make_section (abfd, name); | 
|  | if (newsect == NULL) | 
|  | return false; | 
|  | newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb; | 
|  | newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb; | 
|  | newsect->size = hdr->p_memsz - hdr->p_filesz; | 
|  | newsect->filepos = hdr->p_offset + hdr->p_filesz; | 
|  | align = newsect->vma & -newsect->vma; | 
|  | if (align == 0 || align > hdr->p_align) | 
|  | align = hdr->p_align; | 
|  | newsect->alignment_power = bfd_log2 (align); | 
|  | if (hdr->p_type == PT_LOAD) | 
|  | { | 
|  | newsect->flags |= SEC_ALLOC; | 
|  | if (hdr->p_flags & PF_X) | 
|  | newsect->flags |= SEC_CODE; | 
|  | } | 
|  | if (!(hdr->p_flags & PF_W)) | 
|  | newsect->flags |= SEC_READONLY; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset) | 
|  | { | 
|  | /* The return value is ignored.  Build-ids are considered optional.  */ | 
|  | if (templ->xvec->flavour == bfd_target_elf_flavour) | 
|  | return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id) | 
|  | (templ, offset); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index) | 
|  | { | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | switch (hdr->p_type) | 
|  | { | 
|  | case PT_NULL: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null"); | 
|  |  | 
|  | case PT_LOAD: | 
|  | if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load")) | 
|  | return false; | 
|  | if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL) | 
|  | _bfd_elf_core_find_build_id (abfd, hdr->p_offset); | 
|  | return true; | 
|  |  | 
|  | case PT_DYNAMIC: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic"); | 
|  |  | 
|  | case PT_INTERP: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp"); | 
|  |  | 
|  | case PT_NOTE: | 
|  | if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note")) | 
|  | return false; | 
|  | if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz, | 
|  | hdr->p_align)) | 
|  | return false; | 
|  | return true; | 
|  |  | 
|  | case PT_SHLIB: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib"); | 
|  |  | 
|  | case PT_PHDR: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr"); | 
|  |  | 
|  | case PT_GNU_EH_FRAME: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, | 
|  | "eh_frame_hdr"); | 
|  |  | 
|  | case PT_GNU_STACK: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack"); | 
|  |  | 
|  | case PT_GNU_RELRO: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro"); | 
|  |  | 
|  | case PT_GNU_SFRAME: | 
|  | return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, | 
|  | "sframe"); | 
|  |  | 
|  | default: | 
|  | /* Check for any processor-specific program segment types.  */ | 
|  | bed = get_elf_backend_data (abfd); | 
|  | return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return the REL_HDR for SEC, assuming there is only a single one, either | 
|  | REL or RELA.  */ | 
|  |  | 
|  | Elf_Internal_Shdr * | 
|  | _bfd_elf_single_rel_hdr (asection *sec) | 
|  | { | 
|  | if (elf_section_data (sec)->rel.hdr) | 
|  | { | 
|  | BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL); | 
|  | return elf_section_data (sec)->rel.hdr; | 
|  | } | 
|  | else | 
|  | return elf_section_data (sec)->rela.hdr; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | _bfd_elf_set_reloc_sh_name (bfd *abfd, | 
|  | Elf_Internal_Shdr *rel_hdr, | 
|  | const char *sec_name, | 
|  | bool use_rela_p) | 
|  | { | 
|  | char *name = (char *) bfd_alloc (abfd, | 
|  | sizeof ".rela" + strlen (sec_name)); | 
|  | if (name == NULL) | 
|  | return false; | 
|  |  | 
|  | sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name); | 
|  | rel_hdr->sh_name = | 
|  | (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, | 
|  | false); | 
|  | if (rel_hdr->sh_name == (unsigned int) -1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a section-header for a new reloc section, | 
|  | containing relocations against ASECT.  It is stored in RELDATA.  If | 
|  | USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL | 
|  | relocations.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_elf_init_reloc_shdr (bfd *abfd, | 
|  | struct bfd_elf_section_reloc_data *reldata, | 
|  | const char *sec_name, | 
|  | bool use_rela_p, | 
|  | bool delay_st_name_p) | 
|  | { | 
|  | Elf_Internal_Shdr *rel_hdr; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | BFD_ASSERT (reldata->hdr == NULL); | 
|  | rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr)); | 
|  | if (rel_hdr == NULL) | 
|  | return false; | 
|  | reldata->hdr = rel_hdr; | 
|  |  | 
|  | if (delay_st_name_p) | 
|  | rel_hdr->sh_name = (unsigned int) -1; | 
|  | else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name, | 
|  | use_rela_p)) | 
|  | return false; | 
|  | rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; | 
|  | rel_hdr->sh_entsize = (use_rela_p | 
|  | ? bed->s->sizeof_rela | 
|  | : bed->s->sizeof_rel); | 
|  | rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; | 
|  | rel_hdr->sh_flags = 0; | 
|  | rel_hdr->sh_addr = 0; | 
|  | rel_hdr->sh_size = 0; | 
|  | rel_hdr->sh_offset = 0; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the default section type based on the passed in section flags.  */ | 
|  |  | 
|  | int | 
|  | bfd_elf_get_default_section_type (flagword flags) | 
|  | { | 
|  | if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0 | 
|  | && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) | 
|  | return SHT_NOBITS; | 
|  | return SHT_PROGBITS; | 
|  | } | 
|  |  | 
|  | struct fake_section_arg | 
|  | { | 
|  | struct bfd_link_info *link_info; | 
|  | bool failed; | 
|  | }; | 
|  |  | 
|  | /* Set up an ELF internal section header for a section.  */ | 
|  |  | 
|  | static void | 
|  | elf_fake_sections (bfd *abfd, asection *asect, void *fsarg) | 
|  | { | 
|  | struct fake_section_arg *arg = (struct fake_section_arg *)fsarg; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | struct bfd_elf_section_data *esd = elf_section_data (asect); | 
|  | Elf_Internal_Shdr *this_hdr; | 
|  | unsigned int sh_type; | 
|  | const char *name = asect->name; | 
|  | bool delay_st_name_p = false; | 
|  | bfd_vma mask; | 
|  |  | 
|  | if (arg->failed) | 
|  | { | 
|  | /* We already failed; just get out of the bfd_map_over_sections | 
|  | loop.  */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | this_hdr = &esd->this_hdr; | 
|  |  | 
|  | /* ld: compress DWARF debug sections with names: .debug_*.  */ | 
|  | if (arg->link_info | 
|  | && (abfd->flags & BFD_COMPRESS) != 0 | 
|  | && (asect->flags & SEC_DEBUGGING) != 0 | 
|  | && name[1] == 'd' | 
|  | && name[6] == '_') | 
|  | { | 
|  | /* If this section will be compressed, delay adding section | 
|  | name to section name section after it is compressed in | 
|  | _bfd_elf_assign_file_positions_for_non_load.  */ | 
|  | delay_st_name_p = true; | 
|  | } | 
|  |  | 
|  | if (delay_st_name_p) | 
|  | this_hdr->sh_name = (unsigned int) -1; | 
|  | else | 
|  | { | 
|  | this_hdr->sh_name | 
|  | = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), | 
|  | name, false); | 
|  | if (this_hdr->sh_name == (unsigned int) -1) | 
|  | { | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't clear sh_flags. Assembler may set additional bits.  */ | 
|  |  | 
|  | if ((asect->flags & SEC_ALLOC) != 0 | 
|  | || asect->user_set_vma) | 
|  | this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect); | 
|  | else | 
|  | this_hdr->sh_addr = 0; | 
|  |  | 
|  | this_hdr->sh_offset = 0; | 
|  | this_hdr->sh_size = asect->size; | 
|  | this_hdr->sh_link = 0; | 
|  | /* PR 17512: file: 0eb809fe, 8b0535ee.  */ | 
|  | if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: error: alignment power %d of section `%pA' is too big"), | 
|  | abfd, asect->alignment_power, asect); | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  | /* Set sh_addralign to the highest power of two given by alignment | 
|  | consistent with the section VMA.  Linker scripts can force VMA.  */ | 
|  | mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr; | 
|  | this_hdr->sh_addralign = mask & -mask; | 
|  | /* The sh_entsize and sh_info fields may have been set already by | 
|  | copy_private_section_data.  */ | 
|  |  | 
|  | this_hdr->bfd_section = asect; | 
|  | this_hdr->contents = NULL; | 
|  |  | 
|  | /* If the section type is unspecified, we set it based on | 
|  | asect->flags.  */ | 
|  | if (asect->type != 0) | 
|  | sh_type = asect->type; | 
|  | else if ((asect->flags & SEC_GROUP) != 0) | 
|  | sh_type = SHT_GROUP; | 
|  | else | 
|  | sh_type = bfd_elf_get_default_section_type (asect->flags); | 
|  |  | 
|  | if (this_hdr->sh_type == SHT_NULL) | 
|  | this_hdr->sh_type = sh_type; | 
|  | else if (this_hdr->sh_type == SHT_NOBITS | 
|  | && sh_type == SHT_PROGBITS | 
|  | && (asect->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | /* Warn if we are changing a NOBITS section to PROGBITS, but | 
|  | allow the link to proceed.  This can happen when users link | 
|  | non-bss input sections to bss output sections, or emit data | 
|  | to a bss output section via a linker script.  */ | 
|  | _bfd_error_handler | 
|  | (_("warning: section `%pA' type changed to PROGBITS"), asect); | 
|  | this_hdr->sh_type = sh_type; | 
|  | } | 
|  |  | 
|  | switch (this_hdr->sh_type) | 
|  | { | 
|  | default: | 
|  | break; | 
|  |  | 
|  | case SHT_STRTAB: | 
|  | case SHT_NOTE: | 
|  | case SHT_NOBITS: | 
|  | case SHT_PROGBITS: | 
|  | break; | 
|  |  | 
|  | case SHT_INIT_ARRAY: | 
|  | case SHT_FINI_ARRAY: | 
|  | case SHT_PREINIT_ARRAY: | 
|  | this_hdr->sh_entsize = bed->s->arch_size / 8; | 
|  | break; | 
|  |  | 
|  | case SHT_HASH: | 
|  | this_hdr->sh_entsize = bed->s->sizeof_hash_entry; | 
|  | break; | 
|  |  | 
|  | case SHT_DYNSYM: | 
|  | this_hdr->sh_entsize = bed->s->sizeof_sym; | 
|  | break; | 
|  |  | 
|  | case SHT_DYNAMIC: | 
|  | this_hdr->sh_entsize = bed->s->sizeof_dyn; | 
|  | break; | 
|  |  | 
|  | case SHT_RELA: | 
|  | if (get_elf_backend_data (abfd)->may_use_rela_p) | 
|  | this_hdr->sh_entsize = bed->s->sizeof_rela; | 
|  | break; | 
|  |  | 
|  | case SHT_REL: | 
|  | if (get_elf_backend_data (abfd)->may_use_rel_p) | 
|  | this_hdr->sh_entsize = bed->s->sizeof_rel; | 
|  | break; | 
|  |  | 
|  | case SHT_GNU_versym: | 
|  | this_hdr->sh_entsize = sizeof (Elf_External_Versym); | 
|  | break; | 
|  |  | 
|  | case SHT_GNU_verdef: | 
|  | this_hdr->sh_entsize = 0; | 
|  | /* objcopy or strip will copy over sh_info, but may not set | 
|  | cverdefs.  The linker will set cverdefs, but sh_info will be | 
|  | zero.  */ | 
|  | if (this_hdr->sh_info == 0) | 
|  | this_hdr->sh_info = elf_tdata (abfd)->cverdefs; | 
|  | else | 
|  | BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 | 
|  | || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); | 
|  | break; | 
|  |  | 
|  | case SHT_GNU_verneed: | 
|  | this_hdr->sh_entsize = 0; | 
|  | /* objcopy or strip will copy over sh_info, but may not set | 
|  | cverrefs.  The linker will set cverrefs, but sh_info will be | 
|  | zero.  */ | 
|  | if (this_hdr->sh_info == 0) | 
|  | this_hdr->sh_info = elf_tdata (abfd)->cverrefs; | 
|  | else | 
|  | BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 | 
|  | || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); | 
|  | break; | 
|  |  | 
|  | case SHT_GROUP: | 
|  | this_hdr->sh_entsize = GRP_ENTRY_SIZE; | 
|  | break; | 
|  |  | 
|  | case SHT_GNU_HASH: | 
|  | this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((asect->flags & SEC_ALLOC) != 0) | 
|  | this_hdr->sh_flags |= SHF_ALLOC; | 
|  | if ((asect->flags & SEC_READONLY) == 0) | 
|  | this_hdr->sh_flags |= SHF_WRITE; | 
|  | if ((asect->flags & SEC_CODE) != 0) | 
|  | this_hdr->sh_flags |= SHF_EXECINSTR; | 
|  | if ((asect->flags & SEC_MERGE) != 0) | 
|  | { | 
|  | this_hdr->sh_flags |= SHF_MERGE; | 
|  | this_hdr->sh_entsize = asect->entsize; | 
|  | } | 
|  | if ((asect->flags & SEC_STRINGS) != 0) | 
|  | this_hdr->sh_flags |= SHF_STRINGS; | 
|  | if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) | 
|  | this_hdr->sh_flags |= SHF_GROUP; | 
|  | if ((asect->flags & SEC_THREAD_LOCAL) != 0) | 
|  | { | 
|  | this_hdr->sh_flags |= SHF_TLS; | 
|  | if (asect->size == 0 | 
|  | && (asect->flags & SEC_HAS_CONTENTS) == 0) | 
|  | { | 
|  | struct bfd_link_order *o = asect->map_tail.link_order; | 
|  |  | 
|  | this_hdr->sh_size = 0; | 
|  | if (o != NULL) | 
|  | { | 
|  | this_hdr->sh_size = o->offset + o->size; | 
|  | if (this_hdr->sh_size != 0) | 
|  | this_hdr->sh_type = SHT_NOBITS; | 
|  | } | 
|  | } | 
|  | } | 
|  | if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) | 
|  | this_hdr->sh_flags |= SHF_EXCLUDE; | 
|  |  | 
|  | /* If the section has relocs, set up a section header for the | 
|  | SHT_REL[A] section.  If two relocation sections are required for | 
|  | this section, it is up to the processor-specific back-end to | 
|  | create the other.  */ | 
|  | if ((asect->flags & SEC_RELOC) != 0) | 
|  | { | 
|  | /* When doing a relocatable link, create both REL and RELA sections if | 
|  | needed.  */ | 
|  | if (arg->link_info | 
|  | /* Do the normal setup if we wouldn't create any sections here.  */ | 
|  | && esd->rel.count + esd->rela.count > 0 | 
|  | && (bfd_link_relocatable (arg->link_info) | 
|  | || arg->link_info->emitrelocations)) | 
|  | { | 
|  | if (esd->rel.count && esd->rel.hdr == NULL | 
|  | && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, | 
|  | false, delay_st_name_p)) | 
|  | { | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  | if (esd->rela.count && esd->rela.hdr == NULL | 
|  | && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, | 
|  | true, delay_st_name_p)) | 
|  | { | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  | else if (!_bfd_elf_init_reloc_shdr (abfd, | 
|  | (asect->use_rela_p | 
|  | ? &esd->rela : &esd->rel), | 
|  | name, | 
|  | asect->use_rela_p, | 
|  | delay_st_name_p)) | 
|  | { | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for processor-specific section types.  */ | 
|  | sh_type = this_hdr->sh_type; | 
|  | if (bed->elf_backend_fake_sections | 
|  | && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) | 
|  | { | 
|  | arg->failed = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (sh_type == SHT_NOBITS && asect->size != 0) | 
|  | { | 
|  | /* Don't change the header type from NOBITS if we are being | 
|  | called for objcopy --only-keep-debug.  */ | 
|  | this_hdr->sh_type = sh_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill in the contents of a SHT_GROUP section.  Called from | 
|  | _bfd_elf_compute_section_file_positions for gas, objcopy, and | 
|  | when ELF targets use the generic linker, ld.  Called for ld -r | 
|  | from bfd_elf_final_link.  */ | 
|  |  | 
|  | void | 
|  | bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) | 
|  | { | 
|  | bool *failedptr = (bool *) failedptrarg; | 
|  | asection *elt, *first; | 
|  | unsigned char *loc; | 
|  | bool gas; | 
|  |  | 
|  | /* Ignore linker created group section.  See elfNN_ia64_object_p in | 
|  | elfxx-ia64.c.  */ | 
|  | if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP | 
|  | || sec->size == 0 | 
|  | || *failedptr) | 
|  | return; | 
|  |  | 
|  | if (elf_section_data (sec)->this_hdr.sh_info == 0) | 
|  | { | 
|  | unsigned long symindx = 0; | 
|  |  | 
|  | /* elf_group_id will have been set up by objcopy and the | 
|  | generic linker.  */ | 
|  | if (elf_group_id (sec) != NULL) | 
|  | symindx = elf_group_id (sec)->udata.i; | 
|  |  | 
|  | if (symindx == 0) | 
|  | { | 
|  | /* If called from the assembler, swap_out_syms will have set up | 
|  | elf_section_syms. | 
|  | PR 25699: A corrupt input file could contain bogus group info.  */ | 
|  | if (sec->index >= elf_num_section_syms (abfd) | 
|  | || elf_section_syms (abfd)[sec->index] == NULL) | 
|  | { | 
|  | *failedptr = true; | 
|  | return; | 
|  | } | 
|  | symindx = elf_section_syms (abfd)[sec->index]->udata.i; | 
|  | } | 
|  | elf_section_data (sec)->this_hdr.sh_info = symindx; | 
|  | } | 
|  | else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) | 
|  | { | 
|  | /* The ELF backend linker sets sh_info to -2 when the group | 
|  | signature symbol is global, and thus the index can't be | 
|  | set until all local symbols are output.  */ | 
|  | asection *igroup; | 
|  | struct bfd_elf_section_data *sec_data; | 
|  | unsigned long symndx; | 
|  | unsigned long extsymoff; | 
|  | struct elf_link_hash_entry *h; | 
|  |  | 
|  | /* The point of this little dance to the first SHF_GROUP section | 
|  | then back to the SHT_GROUP section is that this gets us to | 
|  | the SHT_GROUP in the input object.  */ | 
|  | igroup = elf_sec_group (elf_next_in_group (sec)); | 
|  | sec_data = elf_section_data (igroup); | 
|  | symndx = sec_data->this_hdr.sh_info; | 
|  | extsymoff = 0; | 
|  | if (!elf_bad_symtab (igroup->owner)) | 
|  | { | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  |  | 
|  | symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; | 
|  | extsymoff = symtab_hdr->sh_info; | 
|  | } | 
|  | h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; | 
|  | while (h->root.type == bfd_link_hash_indirect | 
|  | || h->root.type == bfd_link_hash_warning) | 
|  | h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
|  |  | 
|  | elf_section_data (sec)->this_hdr.sh_info = h->indx; | 
|  | } | 
|  |  | 
|  | /* The contents won't be allocated for "ld -r" or objcopy.  */ | 
|  | gas = true; | 
|  | if (sec->contents == NULL) | 
|  | { | 
|  | gas = false; | 
|  | sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); | 
|  |  | 
|  | /* Arrange for the section to be written out.  */ | 
|  | elf_section_data (sec)->this_hdr.contents = sec->contents; | 
|  | if (sec->contents == NULL) | 
|  | { | 
|  | *failedptr = true; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | loc = sec->contents + sec->size; | 
|  |  | 
|  | /* Get the pointer to the first section in the group that gas | 
|  | squirreled away here.  objcopy arranges for this to be set to the | 
|  | start of the input section group.  */ | 
|  | first = elt = elf_next_in_group (sec); | 
|  |  | 
|  | /* First element is a flag word.  Rest of section is elf section | 
|  | indices for all the sections of the group.  Write them backwards | 
|  | just to keep the group in the same order as given in .section | 
|  | directives, not that it matters.  */ | 
|  | while (elt != NULL) | 
|  | { | 
|  | asection *s; | 
|  |  | 
|  | s = elt; | 
|  | if (!gas) | 
|  | s = s->output_section; | 
|  | if (s != NULL | 
|  | && !bfd_is_abs_section (s)) | 
|  | { | 
|  | struct bfd_elf_section_data *elf_sec = elf_section_data (s); | 
|  | struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt); | 
|  |  | 
|  | if (elf_sec->rel.hdr != NULL | 
|  | && (gas | 
|  | || (input_elf_sec->rel.hdr != NULL | 
|  | && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)) | 
|  | { | 
|  | elf_sec->rel.hdr->sh_flags |= SHF_GROUP; | 
|  | loc -= 4; | 
|  | if (loc == sec->contents) | 
|  | break; | 
|  | H_PUT_32 (abfd, elf_sec->rel.idx, loc); | 
|  | } | 
|  | if (elf_sec->rela.hdr != NULL | 
|  | && (gas | 
|  | || (input_elf_sec->rela.hdr != NULL | 
|  | && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)) | 
|  | { | 
|  | elf_sec->rela.hdr->sh_flags |= SHF_GROUP; | 
|  | loc -= 4; | 
|  | if (loc == sec->contents) | 
|  | break; | 
|  | H_PUT_32 (abfd, elf_sec->rela.idx, loc); | 
|  | } | 
|  | loc -= 4; | 
|  | if (loc == sec->contents) | 
|  | break; | 
|  | H_PUT_32 (abfd, elf_sec->this_idx, loc); | 
|  | } | 
|  | elt = elf_next_in_group (elt); | 
|  | if (elt == first) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We should always get here with loc == sec->contents + 4, but it is | 
|  | possible to craft bogus SHT_GROUP sections that will cause segfaults | 
|  | in objcopy without checking loc here and in the loop above.  */ | 
|  | if (loc == sec->contents) | 
|  | BFD_ASSERT (0); | 
|  | else | 
|  | { | 
|  | loc -= 4; | 
|  | if (loc != sec->contents) | 
|  | { | 
|  | BFD_ASSERT (0); | 
|  | memset (sec->contents + 4, 0, loc - sec->contents); | 
|  | loc = sec->contents; | 
|  | } | 
|  | } | 
|  |  | 
|  | H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); | 
|  | } | 
|  |  | 
|  | /* Given NAME, the name of a relocation section stripped of its | 
|  | .rel/.rela prefix, return the section in ABFD to which the | 
|  | relocations apply.  */ | 
|  |  | 
|  | asection * | 
|  | _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name) | 
|  | { | 
|  | /* If a target needs .got.plt section, relocations in rela.plt/rel.plt | 
|  | section likely apply to .got.plt or .got section.  */ | 
|  | if (get_elf_backend_data (abfd)->want_got_plt | 
|  | && strcmp (name, ".plt") == 0) | 
|  | { | 
|  | asection *sec; | 
|  |  | 
|  | name = ".got.plt"; | 
|  | sec = bfd_get_section_by_name (abfd, name); | 
|  | if (sec != NULL) | 
|  | return sec; | 
|  | name = ".got"; | 
|  | } | 
|  |  | 
|  | return bfd_get_section_by_name (abfd, name); | 
|  | } | 
|  |  | 
|  | /* Return the section to which RELOC_SEC applies.  */ | 
|  |  | 
|  | static asection * | 
|  | elf_get_reloc_section (asection *reloc_sec) | 
|  | { | 
|  | const char *name; | 
|  | unsigned int type; | 
|  | bfd *abfd; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | type = elf_section_data (reloc_sec)->this_hdr.sh_type; | 
|  | if (type != SHT_REL && type != SHT_RELA) | 
|  | return NULL; | 
|  |  | 
|  | /* We look up the section the relocs apply to by name.  */ | 
|  | name = reloc_sec->name; | 
|  | if (!startswith (name, ".rel")) | 
|  | return NULL; | 
|  | name += 4; | 
|  | if (type == SHT_RELA && *name++ != 'a') | 
|  | return NULL; | 
|  |  | 
|  | abfd = reloc_sec->owner; | 
|  | bed = get_elf_backend_data (abfd); | 
|  | return bed->get_reloc_section (abfd, name); | 
|  | } | 
|  |  | 
|  | /* Assign all ELF section numbers.  The dummy first section is handled here | 
|  | too.  The link/info pointers for the standard section types are filled | 
|  | in here too, while we're at it.  LINK_INFO will be 0 when arriving | 
|  | here for gas, objcopy, and when using the generic ELF linker.  */ | 
|  |  | 
|  | static bool | 
|  | assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) | 
|  | { | 
|  | struct elf_obj_tdata *t = elf_tdata (abfd); | 
|  | asection *sec; | 
|  | unsigned int section_number; | 
|  | Elf_Internal_Shdr **i_shdrp; | 
|  | struct bfd_elf_section_data *d; | 
|  | bool need_symtab; | 
|  | size_t amt; | 
|  |  | 
|  | section_number = 1; | 
|  |  | 
|  | _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); | 
|  |  | 
|  | /* SHT_GROUP sections are in relocatable files only.  */ | 
|  | if (link_info == NULL || !link_info->resolve_section_groups) | 
|  | { | 
|  | size_t reloc_count = 0; | 
|  |  | 
|  | /* Put SHT_GROUP sections first.  */ | 
|  | for (sec = abfd->sections; sec != NULL; sec = sec->next) | 
|  | { | 
|  | d = elf_section_data (sec); | 
|  |  | 
|  | if (d->this_hdr.sh_type == SHT_GROUP) | 
|  | { | 
|  | if (sec->flags & SEC_LINKER_CREATED) | 
|  | { | 
|  | /* Remove the linker created SHT_GROUP sections.  */ | 
|  | bfd_section_list_remove (abfd, sec); | 
|  | abfd->section_count--; | 
|  | } | 
|  | else | 
|  | d->this_idx = section_number++; | 
|  | } | 
|  |  | 
|  | /* Count relocations.  */ | 
|  | reloc_count += sec->reloc_count; | 
|  | } | 
|  |  | 
|  | /* Set/clear HAS_RELOC depending on whether there are relocations.  */ | 
|  | if (reloc_count == 0) | 
|  | abfd->flags &= ~HAS_RELOC; | 
|  | else | 
|  | abfd->flags |= HAS_RELOC; | 
|  | } | 
|  |  | 
|  | for (sec = abfd->sections; sec; sec = sec->next) | 
|  | { | 
|  | d = elf_section_data (sec); | 
|  |  | 
|  | if (d->this_hdr.sh_type != SHT_GROUP) | 
|  | d->this_idx = section_number++; | 
|  | if (d->this_hdr.sh_name != (unsigned int) -1) | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); | 
|  | if (d->rel.hdr) | 
|  | { | 
|  | d->rel.idx = section_number++; | 
|  | if (d->rel.hdr->sh_name != (unsigned int) -1) | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name); | 
|  | } | 
|  | else | 
|  | d->rel.idx = 0; | 
|  |  | 
|  | if (d->rela.hdr) | 
|  | { | 
|  | d->rela.idx = section_number++; | 
|  | if (d->rela.hdr->sh_name != (unsigned int) -1) | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name); | 
|  | } | 
|  | else | 
|  | d->rela.idx = 0; | 
|  | } | 
|  |  | 
|  | need_symtab = (bfd_get_symcount (abfd) > 0 | 
|  | || (link_info == NULL | 
|  | && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) | 
|  | == HAS_RELOC))); | 
|  | if (need_symtab) | 
|  | { | 
|  | elf_onesymtab (abfd) = section_number++; | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); | 
|  | if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) | 
|  | { | 
|  | elf_section_list *entry; | 
|  |  | 
|  | BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL); | 
|  |  | 
|  | entry = bfd_zalloc (abfd, sizeof (*entry)); | 
|  | entry->ndx = section_number++; | 
|  | elf_symtab_shndx_list (abfd) = entry; | 
|  | entry->hdr.sh_name | 
|  | = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), | 
|  | ".symtab_shndx", false); | 
|  | if (entry->hdr.sh_name == (unsigned int) -1) | 
|  | return false; | 
|  | } | 
|  | elf_strtab_sec (abfd) = section_number++; | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); | 
|  | } | 
|  |  | 
|  | elf_shstrtab_sec (abfd) = section_number++; | 
|  | _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); | 
|  | elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd); | 
|  |  | 
|  | if (section_number >= SHN_LORESERVE) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: too many sections: %u"), | 
|  | abfd, section_number); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | elf_numsections (abfd) = section_number; | 
|  | elf_elfheader (abfd)->e_shnum = section_number; | 
|  |  | 
|  | /* Set up the list of section header pointers, in agreement with the | 
|  | indices.  */ | 
|  | amt = section_number * sizeof (Elf_Internal_Shdr *); | 
|  | i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt); | 
|  | if (i_shdrp == NULL) | 
|  | return false; | 
|  |  | 
|  | i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, | 
|  | sizeof (Elf_Internal_Shdr)); | 
|  | if (i_shdrp[0] == NULL) | 
|  | { | 
|  | bfd_release (abfd, i_shdrp); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | elf_elfsections (abfd) = i_shdrp; | 
|  |  | 
|  | i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr; | 
|  | if (need_symtab) | 
|  | { | 
|  | i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr; | 
|  | if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) | 
|  | { | 
|  | elf_section_list * entry = elf_symtab_shndx_list (abfd); | 
|  | BFD_ASSERT (entry != NULL); | 
|  | i_shdrp[entry->ndx] = & entry->hdr; | 
|  | entry->hdr.sh_link = elf_onesymtab (abfd); | 
|  | } | 
|  | i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr; | 
|  | t->symtab_hdr.sh_link = elf_strtab_sec (abfd); | 
|  | } | 
|  |  | 
|  | for (sec = abfd->sections; sec; sec = sec->next) | 
|  | { | 
|  | asection *s; | 
|  |  | 
|  | d = elf_section_data (sec); | 
|  |  | 
|  | i_shdrp[d->this_idx] = &d->this_hdr; | 
|  | if (d->rel.idx != 0) | 
|  | i_shdrp[d->rel.idx] = d->rel.hdr; | 
|  | if (d->rela.idx != 0) | 
|  | i_shdrp[d->rela.idx] = d->rela.hdr; | 
|  |  | 
|  | /* Fill in the sh_link and sh_info fields while we're at it.  */ | 
|  |  | 
|  | /* sh_link of a reloc section is the section index of the symbol | 
|  | table.  sh_info is the section index of the section to which | 
|  | the relocation entries apply.  */ | 
|  | if (d->rel.idx != 0) | 
|  | { | 
|  | d->rel.hdr->sh_link = elf_onesymtab (abfd); | 
|  | d->rel.hdr->sh_info = d->this_idx; | 
|  | d->rel.hdr->sh_flags |= SHF_INFO_LINK; | 
|  | } | 
|  | if (d->rela.idx != 0) | 
|  | { | 
|  | d->rela.hdr->sh_link = elf_onesymtab (abfd); | 
|  | d->rela.hdr->sh_info = d->this_idx; | 
|  | d->rela.hdr->sh_flags |= SHF_INFO_LINK; | 
|  | } | 
|  |  | 
|  | /* We need to set up sh_link for SHF_LINK_ORDER.  */ | 
|  | if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) | 
|  | { | 
|  | s = elf_linked_to_section (sec); | 
|  | /* We can now have a NULL linked section pointer. | 
|  | This happens when the sh_link field is 0, which is done | 
|  | when a linked to section is discarded but the linking | 
|  | section has been retained for some reason.  */ | 
|  | if (s) | 
|  | { | 
|  | /* Check discarded linkonce section.  */ | 
|  | if (discarded_section (s)) | 
|  | { | 
|  | asection *kept; | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: sh_link of section `%pA' points to" | 
|  | " discarded section `%pA' of `%pB'"), | 
|  | abfd, d->this_hdr.bfd_section, s, s->owner); | 
|  | /* Point to the kept section if it has the same | 
|  | size as the discarded one.  */ | 
|  | kept = _bfd_elf_check_kept_section (s, link_info); | 
|  | if (kept == NULL) | 
|  | { | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | s = kept; | 
|  | } | 
|  | /* Handle objcopy. */ | 
|  | else if (s->output_section == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: sh_link of section `%pA' points to" | 
|  | " removed section `%pA' of `%pB'"), | 
|  | abfd, d->this_hdr.bfd_section, s, s->owner); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | s = s->output_section; | 
|  | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (d->this_hdr.sh_type) | 
|  | { | 
|  | case SHT_REL: | 
|  | case SHT_RELA: | 
|  | /* sh_link is the section index of the symbol table. | 
|  | sh_info is the section index of the section to which the | 
|  | relocation entries apply.  */ | 
|  | if (d->this_hdr.sh_link == 0) | 
|  | { | 
|  | /* FIXME maybe: If this is a reloc section which we are | 
|  | treating as a normal section then we likely should | 
|  | not be assuming its sh_link is .dynsym or .symtab.  */ | 
|  | if ((sec->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | s = bfd_get_section_by_name (abfd, ".dynsym"); | 
|  | if (s != NULL) | 
|  | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | 
|  | } | 
|  | else | 
|  | d->this_hdr.sh_link = elf_onesymtab (abfd); | 
|  | } | 
|  |  | 
|  | s = elf_get_reloc_section (sec); | 
|  | if (s != NULL) | 
|  | { | 
|  | d->this_hdr.sh_info = elf_section_data (s)->this_idx; | 
|  | d->this_hdr.sh_flags |= SHF_INFO_LINK; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SHT_STRTAB: | 
|  | /* We assume that a section named .stab*str is a stabs | 
|  | string section.  We look for a section with the same name | 
|  | but without the trailing ``str'', and set its sh_link | 
|  | field to point to this section.  */ | 
|  | if (startswith (sec->name, ".stab") | 
|  | && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) | 
|  | { | 
|  | size_t len; | 
|  | char *alc; | 
|  |  | 
|  | len = strlen (sec->name); | 
|  | alc = (char *) bfd_malloc (len - 2); | 
|  | if (alc == NULL) | 
|  | return false; | 
|  | memcpy (alc, sec->name, len - 3); | 
|  | alc[len - 3] = '\0'; | 
|  | s = bfd_get_section_by_name (abfd, alc); | 
|  | free (alc); | 
|  | if (s != NULL) | 
|  | { | 
|  | elf_section_data (s)->this_hdr.sh_link = d->this_idx; | 
|  |  | 
|  | /* This is a .stab section.  */ | 
|  | elf_section_data (s)->this_hdr.sh_entsize = 12; | 
|  | } | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SHT_DYNAMIC: | 
|  | case SHT_DYNSYM: | 
|  | case SHT_GNU_verneed: | 
|  | case SHT_GNU_verdef: | 
|  | /* sh_link is the section header index of the string table | 
|  | used for the dynamic entries, or the symbol table, or the | 
|  | version strings.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".dynstr"); | 
|  | if (s != NULL) | 
|  | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_GNU_LIBLIST: | 
|  | /* sh_link is the section header index of the prelink library | 
|  | list used for the dynamic entries, or the symbol table, or | 
|  | the version strings.  */ | 
|  | s = bfd_get_section_by_name (abfd, ((sec->flags & SEC_ALLOC) | 
|  | ? ".dynstr" : ".gnu.libstr")); | 
|  | if (s != NULL) | 
|  | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_HASH: | 
|  | case SHT_GNU_HASH: | 
|  | case SHT_GNU_versym: | 
|  | /* sh_link is the section header index of the symbol table | 
|  | this hash table or version table is for.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".dynsym"); | 
|  | if (s != NULL) | 
|  | d->this_hdr.sh_link = elf_section_data (s)->this_idx; | 
|  | break; | 
|  |  | 
|  | case SHT_GROUP: | 
|  | d->this_hdr.sh_link = elf_onesymtab (abfd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Delay setting sh_name to _bfd_elf_write_object_contents so that | 
|  | _bfd_elf_assign_file_positions_for_non_load can convert DWARF | 
|  | debug section name from .debug_* to .zdebug_* if needed.  */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | sym_is_global (bfd *abfd, asymbol *sym) | 
|  | { | 
|  | /* If the backend has a special mapping, use it.  */ | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | if (bed->elf_backend_sym_is_global) | 
|  | return (*bed->elf_backend_sym_is_global) (abfd, sym); | 
|  |  | 
|  | return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 | 
|  | || bfd_is_und_section (bfd_asymbol_section (sym)) | 
|  | || bfd_is_com_section (bfd_asymbol_section (sym))); | 
|  | } | 
|  |  | 
|  | /* Filter global symbols of ABFD to include in the import library.  All | 
|  | SYMCOUNT symbols of ABFD can be examined from their pointers in | 
|  | SYMS.  Pointers of symbols to keep should be stored contiguously at | 
|  | the beginning of that array. | 
|  |  | 
|  | Returns the number of symbols to keep.  */ | 
|  |  | 
|  | unsigned int | 
|  | _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info, | 
|  | asymbol **syms, long symcount) | 
|  | { | 
|  | long src_count, dst_count = 0; | 
|  |  | 
|  | for (src_count = 0; src_count < symcount; src_count++) | 
|  | { | 
|  | asymbol *sym = syms[src_count]; | 
|  | char *name = (char *) bfd_asymbol_name (sym); | 
|  | struct bfd_link_hash_entry *h; | 
|  |  | 
|  | if (!sym_is_global (abfd, sym)) | 
|  | continue; | 
|  |  | 
|  | h = bfd_link_hash_lookup (info->hash, name, false, false, false); | 
|  | if (h == NULL) | 
|  | continue; | 
|  | if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak) | 
|  | continue; | 
|  | if (h->linker_def || h->ldscript_def) | 
|  | continue; | 
|  |  | 
|  | syms[dst_count++] = sym; | 
|  | } | 
|  |  | 
|  | syms[dst_count] = NULL; | 
|  |  | 
|  | return dst_count; | 
|  | } | 
|  |  | 
|  | /* Don't output symbols for sections that are not going to be output, | 
|  | that are duplicates or there is no BFD section.  */ | 
|  |  | 
|  | static bool | 
|  | ignore_sym (asymbol *sym) | 
|  | { | 
|  | if (sym == NULL) | 
|  | return false; | 
|  |  | 
|  | if (sym->section == NULL) | 
|  | return true; | 
|  |  | 
|  | if ((sym->flags & BSF_SECTION_SYM) != 0) | 
|  | { | 
|  | if ((sym->flags & BSF_SECTION_SYM_USED) == 0) | 
|  | return true; | 
|  | /* With ld -r on generic elf targets it is possible to have | 
|  | multiple section symbols in the output for a given section. | 
|  | We'd like to get rid of all but the first one.  This drops | 
|  | them if the first input section is non-zero size, but fails | 
|  | to do so if the first input section is zero sized.  */ | 
|  | if (sym->section->output_offset != 0) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return discarded_section (sym->section); | 
|  | } | 
|  |  | 
|  | /* Map symbol from it's internal number to the external number, moving | 
|  | all local symbols to be at the head of the list.  */ | 
|  |  | 
|  | static bool | 
|  | elf_map_symbols (bfd *abfd, unsigned int *pnum_locals) | 
|  | { | 
|  | unsigned int symcount = bfd_get_symcount (abfd); | 
|  | asymbol **syms = bfd_get_outsymbols (abfd); | 
|  | asymbol **sect_syms; | 
|  | unsigned int num_locals = 0; | 
|  | unsigned int num_globals = 0; | 
|  | unsigned int max_index = 0; | 
|  | unsigned int idx; | 
|  | asection *asect; | 
|  | asymbol **new_syms; | 
|  | size_t amt; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | fprintf (stderr, "elf_map_symbols\n"); | 
|  | fflush (stderr); | 
|  | #endif | 
|  |  | 
|  | for (asect = abfd->sections; asect; asect = asect->next) | 
|  | { | 
|  | if (max_index < asect->index) | 
|  | max_index = asect->index; | 
|  | } | 
|  |  | 
|  | max_index++; | 
|  | amt = max_index * sizeof (asymbol *); | 
|  | sect_syms = (asymbol **) bfd_zalloc (abfd, amt); | 
|  | if (sect_syms == NULL) | 
|  | return false; | 
|  | elf_section_syms (abfd) = sect_syms; | 
|  | elf_num_section_syms (abfd) = max_index; | 
|  |  | 
|  | /* Init sect_syms entries for any section symbols we have already | 
|  | decided to output.  */ | 
|  | for (idx = 0; idx < symcount; idx++) | 
|  | { | 
|  | asymbol *sym = syms[idx]; | 
|  |  | 
|  | if ((sym->flags & BSF_SECTION_SYM) != 0 | 
|  | && sym->value == 0 | 
|  | && !ignore_sym (sym) | 
|  | && !bfd_is_abs_section (sym->section)) | 
|  | { | 
|  | asection *sec = sym->section; | 
|  |  | 
|  | if (sec->owner != abfd) | 
|  | sec = sec->output_section; | 
|  |  | 
|  | sect_syms[sec->index] = syms[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Classify all of the symbols.  */ | 
|  | for (idx = 0; idx < symcount; idx++) | 
|  | { | 
|  | if (ignore_sym (syms[idx])) | 
|  | continue; | 
|  | if (sym_is_global (abfd, syms[idx])) | 
|  | num_globals++; | 
|  | else | 
|  | num_locals++; | 
|  | } | 
|  |  | 
|  | /* We will be adding a section symbol for each normal BFD section.  Most | 
|  | sections will already have a section symbol in outsymbols, but | 
|  | eg. SHT_GROUP sections will not, and we need the section symbol mapped | 
|  | at least in that case.  */ | 
|  | for (asect = abfd->sections; asect; asect = asect->next) | 
|  | { | 
|  | asymbol *sym = asect->symbol; | 
|  | /* Don't include ignored section symbols.  */ | 
|  | if (!ignore_sym (sym) | 
|  | && sect_syms[asect->index] == NULL) | 
|  | { | 
|  | if (sym_is_global (abfd, asect->symbol)) | 
|  | num_globals++; | 
|  | else | 
|  | num_locals++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now sort the symbols so the local symbols are first.  */ | 
|  | amt = (num_locals + num_globals) * sizeof (asymbol *); | 
|  | new_syms = (asymbol **) bfd_alloc (abfd, amt); | 
|  | if (new_syms == NULL) | 
|  | return false; | 
|  |  | 
|  | unsigned int num_globals2 = 0; | 
|  | unsigned int num_locals2 = 0; | 
|  | for (idx = 0; idx < symcount; idx++) | 
|  | { | 
|  | asymbol *sym = syms[idx]; | 
|  | unsigned int i; | 
|  |  | 
|  | if (ignore_sym (sym)) | 
|  | continue; | 
|  |  | 
|  | if (sym_is_global (abfd, sym)) | 
|  | i = num_locals + num_globals2++; | 
|  | else | 
|  | i = num_locals2++; | 
|  | new_syms[i] = sym; | 
|  | sym->udata.i = i + 1; | 
|  | } | 
|  | for (asect = abfd->sections; asect; asect = asect->next) | 
|  | { | 
|  | asymbol *sym = asect->symbol; | 
|  | if (!ignore_sym (sym) | 
|  | && sect_syms[asect->index] == NULL) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | sect_syms[asect->index] = sym; | 
|  | if (sym_is_global (abfd, sym)) | 
|  | i = num_locals + num_globals2++; | 
|  | else | 
|  | i = num_locals2++; | 
|  | new_syms[i] = sym; | 
|  | sym->udata.i = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bfd_set_symtab (abfd, new_syms, num_locals + num_globals); | 
|  |  | 
|  | *pnum_locals = num_locals; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Align to the maximum file alignment that could be required for any | 
|  | ELF data structure.  */ | 
|  |  | 
|  | static inline file_ptr | 
|  | align_file_position (file_ptr off, int align) | 
|  | { | 
|  | return (off + align - 1) & ~(align - 1); | 
|  | } | 
|  |  | 
|  | /* Assign a file position to a section, optionally aligning to the | 
|  | required section alignment.  */ | 
|  |  | 
|  | file_ptr | 
|  | _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, | 
|  | file_ptr offset, | 
|  | bool align) | 
|  | { | 
|  | if (align && i_shdrp->sh_addralign > 1) | 
|  | offset = BFD_ALIGN (offset, i_shdrp->sh_addralign & -i_shdrp->sh_addralign); | 
|  | i_shdrp->sh_offset = offset; | 
|  | if (i_shdrp->bfd_section != NULL) | 
|  | i_shdrp->bfd_section->filepos = offset; | 
|  | if (i_shdrp->sh_type != SHT_NOBITS) | 
|  | offset += i_shdrp->sh_size; | 
|  | return offset; | 
|  | } | 
|  |  | 
|  | /* Compute the file positions we are going to put the sections at, and | 
|  | otherwise prepare to begin writing out the ELF file.  If LINK_INFO | 
|  | is not NULL, this is being called by the ELF backend linker.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_compute_section_file_positions (bfd *abfd, | 
|  | struct bfd_link_info *link_info) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | struct fake_section_arg fsargs; | 
|  | bool failed; | 
|  | struct elf_strtab_hash *strtab = NULL; | 
|  | Elf_Internal_Shdr *shstrtab_hdr; | 
|  | bool need_symtab; | 
|  |  | 
|  | if (abfd->output_has_begun) | 
|  | return true; | 
|  |  | 
|  | /* Do any elf backend specific processing first.  */ | 
|  | if (bed->elf_backend_begin_write_processing) | 
|  | (*bed->elf_backend_begin_write_processing) (abfd, link_info); | 
|  |  | 
|  | if (!(*bed->elf_backend_init_file_header) (abfd, link_info)) | 
|  | return false; | 
|  |  | 
|  | fsargs.failed = false; | 
|  | fsargs.link_info = link_info; | 
|  | bfd_map_over_sections (abfd, elf_fake_sections, &fsargs); | 
|  | if (fsargs.failed) | 
|  | return false; | 
|  |  | 
|  | if (!assign_section_numbers (abfd, link_info)) | 
|  | return false; | 
|  |  | 
|  | /* The backend linker builds symbol table information itself.  */ | 
|  | need_symtab = (link_info == NULL | 
|  | && (bfd_get_symcount (abfd) > 0 | 
|  | || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) | 
|  | == HAS_RELOC))); | 
|  | if (need_symtab) | 
|  | { | 
|  | /* Non-zero if doing a relocatable link.  */ | 
|  | int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); | 
|  |  | 
|  | if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | failed = false; | 
|  | if (link_info == NULL) | 
|  | { | 
|  | bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | 
|  | if (failed) | 
|  | goto err_free_strtab; | 
|  | } | 
|  |  | 
|  | shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; | 
|  | /* sh_name was set in init_file_header.  */ | 
|  | shstrtab_hdr->sh_type = SHT_STRTAB; | 
|  | shstrtab_hdr->sh_flags = bed->elf_strtab_flags; | 
|  | shstrtab_hdr->sh_addr = 0; | 
|  | /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load.  */ | 
|  | shstrtab_hdr->sh_entsize = 0; | 
|  | shstrtab_hdr->sh_link = 0; | 
|  | shstrtab_hdr->sh_info = 0; | 
|  | /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load.  */ | 
|  | shstrtab_hdr->sh_addralign = 1; | 
|  |  | 
|  | if (!assign_file_positions_except_relocs (abfd, link_info)) | 
|  | goto err_free_strtab; | 
|  |  | 
|  | if (strtab != NULL) | 
|  | { | 
|  | file_ptr off; | 
|  | Elf_Internal_Shdr *hdr; | 
|  |  | 
|  | off = elf_next_file_pos (abfd); | 
|  |  | 
|  | hdr = & elf_symtab_hdr (abfd); | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | 
|  |  | 
|  | if (elf_symtab_shndx_list (abfd) != NULL) | 
|  | { | 
|  | hdr = & elf_symtab_shndx_list (abfd)->hdr; | 
|  | if (hdr->sh_size != 0) | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | 
|  | /* FIXME: What about other symtab_shndx sections in the list ?  */ | 
|  | } | 
|  |  | 
|  | hdr = &elf_tdata (abfd)->strtab_hdr; | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | 
|  |  | 
|  | elf_next_file_pos (abfd) = off; | 
|  |  | 
|  | /* Now that we know where the .strtab section goes, write it | 
|  | out.  */ | 
|  | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 | 
|  | || ! _bfd_elf_strtab_emit (abfd, strtab)) | 
|  | goto err_free_strtab; | 
|  | _bfd_elf_strtab_free (strtab); | 
|  | } | 
|  |  | 
|  | abfd->output_has_begun = true; | 
|  | return true; | 
|  |  | 
|  | err_free_strtab: | 
|  | if (strtab != NULL) | 
|  | _bfd_elf_strtab_free (strtab); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Retrieve .eh_frame_hdr.  Prior to size_dynamic_sections the | 
|  | function effectively returns whether --eh-frame-hdr is given on the | 
|  | command line.  After size_dynamic_sections the result reflects | 
|  | whether .eh_frame_hdr will actually be output (sizing isn't done | 
|  | until ldemul_after_allocation).  */ | 
|  |  | 
|  | static asection * | 
|  | elf_eh_frame_hdr (const struct bfd_link_info *info) | 
|  | { | 
|  | if (info != NULL && is_elf_hash_table (info->hash)) | 
|  | return elf_hash_table (info)->eh_info.hdr_sec; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Make an initial estimate of the size of the program header.  If we | 
|  | get the number wrong here, we'll redo section placement.  */ | 
|  |  | 
|  | static bfd_size_type | 
|  | get_program_header_size (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | size_t segs; | 
|  | asection *s; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | /* Assume we will need exactly two PT_LOAD segments: one for text | 
|  | and one for data.  */ | 
|  | segs = 2; | 
|  |  | 
|  | s = bfd_get_section_by_name (abfd, ".interp"); | 
|  | if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0) | 
|  | { | 
|  | /* If we have a loadable interpreter section, we need a | 
|  | PT_INTERP segment.  In this case, assume we also need a | 
|  | PT_PHDR segment, although that may not be true for all | 
|  | targets.  */ | 
|  | segs += 2; | 
|  | } | 
|  |  | 
|  | if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) | 
|  | { | 
|  | /* We need a PT_DYNAMIC segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | if (info != NULL && info->relro) | 
|  | { | 
|  | /* We need a PT_GNU_RELRO segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | if (elf_eh_frame_hdr (info)) | 
|  | { | 
|  | /* We need a PT_GNU_EH_FRAME segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | if (elf_stack_flags (abfd)) | 
|  | { | 
|  | /* We need a PT_GNU_STACK segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | if (elf_sframe (abfd)) | 
|  | { | 
|  | /* We need a PT_GNU_SFRAME segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | s = bfd_get_section_by_name (abfd, | 
|  | NOTE_GNU_PROPERTY_SECTION_NAME); | 
|  | if (s != NULL && s->size != 0) | 
|  | { | 
|  | /* We need a PT_GNU_PROPERTY segment.  */ | 
|  | ++segs; | 
|  | } | 
|  |  | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if ((s->flags & SEC_LOAD) != 0 | 
|  | && elf_section_type (s) == SHT_NOTE) | 
|  | { | 
|  | unsigned int alignment_power; | 
|  | /* We need a PT_NOTE segment.  */ | 
|  | ++segs; | 
|  | /* Try to create just one PT_NOTE segment for all adjacent | 
|  | loadable SHT_NOTE sections.  gABI requires that within a | 
|  | PT_NOTE segment (and also inside of each SHT_NOTE section) | 
|  | each note should have the same alignment.  So we check | 
|  | whether the sections are correctly aligned.  */ | 
|  | alignment_power = s->alignment_power; | 
|  | while (s->next != NULL | 
|  | && s->next->alignment_power == alignment_power | 
|  | && (s->next->flags & SEC_LOAD) != 0 | 
|  | && elf_section_type (s->next) == SHT_NOTE) | 
|  | s = s->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if (s->flags & SEC_THREAD_LOCAL) | 
|  | { | 
|  | /* We need a PT_TLS segment.  */ | 
|  | ++segs; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | if ((abfd->flags & D_PAGED) != 0 | 
|  | && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0) | 
|  | { | 
|  | /* Add a PT_GNU_MBIND segment for each mbind section.  */ | 
|  | bfd_vma commonpagesize; | 
|  | unsigned int page_align_power; | 
|  |  | 
|  | if (info != NULL) | 
|  | commonpagesize = info->commonpagesize; | 
|  | else | 
|  | commonpagesize = bed->commonpagesize; | 
|  | page_align_power = bfd_log2 (commonpagesize); | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | if (elf_section_flags (s) & SHF_GNU_MBIND) | 
|  | { | 
|  | if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: GNU_MBIND section `%pA' has invalid " | 
|  | "sh_info field: %d"), | 
|  | abfd, s, elf_section_data (s)->this_hdr.sh_info); | 
|  | continue; | 
|  | } | 
|  | /* Align mbind section to page size.  */ | 
|  | if (s->alignment_power < page_align_power) | 
|  | s->alignment_power = page_align_power; | 
|  | segs ++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Let the backend count up any program headers it might need.  */ | 
|  | if (bed->elf_backend_additional_program_headers) | 
|  | { | 
|  | int a; | 
|  |  | 
|  | a = (*bed->elf_backend_additional_program_headers) (abfd, info); | 
|  | if (a == -1) | 
|  | abort (); | 
|  | segs += a; | 
|  | } | 
|  |  | 
|  | return segs * bed->s->sizeof_phdr; | 
|  | } | 
|  |  | 
|  | /* Find the segment that contains the output_section of section.  */ | 
|  |  | 
|  | Elf_Internal_Phdr * | 
|  | _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) | 
|  | { | 
|  | struct elf_segment_map *m; | 
|  | Elf_Internal_Phdr *p; | 
|  |  | 
|  | for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr; | 
|  | m != NULL; | 
|  | m = m->next, p++) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = m->count - 1; i >= 0; i--) | 
|  | if (m->sections[i] == section) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Create a mapping from a set of sections to a program segment.  */ | 
|  |  | 
|  | static struct elf_segment_map * | 
|  | make_mapping (bfd *abfd, | 
|  | asection **sections, | 
|  | unsigned int from, | 
|  | unsigned int to, | 
|  | bool phdr) | 
|  | { | 
|  | struct elf_segment_map *m; | 
|  | unsigned int i; | 
|  | asection **hdrpp; | 
|  | size_t amt; | 
|  |  | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += (to - from) * sizeof (asection *); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | return NULL; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_LOAD; | 
|  | for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) | 
|  | m->sections[i - from] = *hdrpp; | 
|  | m->count = to - from; | 
|  |  | 
|  | if (from == 0 && phdr) | 
|  | { | 
|  | /* Include the headers in the first PT_LOAD segment.  */ | 
|  | m->includes_filehdr = 1; | 
|  | m->includes_phdrs = 1; | 
|  | } | 
|  |  | 
|  | return m; | 
|  | } | 
|  |  | 
|  | /* Create the PT_DYNAMIC segment, which includes DYNSEC.  Returns NULL | 
|  | on failure.  */ | 
|  |  | 
|  | struct elf_segment_map * | 
|  | _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) | 
|  | { | 
|  | struct elf_segment_map *m; | 
|  |  | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, | 
|  | sizeof (struct elf_segment_map)); | 
|  | if (m == NULL) | 
|  | return NULL; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_DYNAMIC; | 
|  | m->count = 1; | 
|  | m->sections[0] = dynsec; | 
|  |  | 
|  | return m; | 
|  | } | 
|  |  | 
|  | /* Possibly add or remove segments from the segment map.  */ | 
|  |  | 
|  | static bool | 
|  | elf_modify_segment_map (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | bool remove_empty_load) | 
|  | { | 
|  | struct elf_segment_map **m; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | /* The placement algorithm assumes that non allocated sections are | 
|  | not in PT_LOAD segments.  We ensure this here by removing such | 
|  | sections from the segment map.  We also remove excluded | 
|  | sections.  Finally, any PT_LOAD segment without sections is | 
|  | removed.  */ | 
|  | m = &elf_seg_map (abfd); | 
|  | while (*m) | 
|  | { | 
|  | unsigned int i, new_count; | 
|  |  | 
|  | for (new_count = 0, i = 0; i < (*m)->count; i++) | 
|  | { | 
|  | if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 | 
|  | && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 | 
|  | || (*m)->p_type != PT_LOAD)) | 
|  | { | 
|  | (*m)->sections[new_count] = (*m)->sections[i]; | 
|  | new_count++; | 
|  | } | 
|  | } | 
|  | (*m)->count = new_count; | 
|  |  | 
|  | if (remove_empty_load | 
|  | && (*m)->p_type == PT_LOAD | 
|  | && (*m)->count == 0 | 
|  | && !(*m)->includes_phdrs) | 
|  | *m = (*m)->next; | 
|  | else | 
|  | m = &(*m)->next; | 
|  | } | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | if (bed->elf_backend_modify_segment_map != NULL) | 
|  | { | 
|  | if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define IS_TBSS(s) \ | 
|  | ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL) | 
|  |  | 
|  | /* Set up a mapping from BFD sections to program segments.  Update | 
|  | NEED_LAYOUT if the section layout is changed.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_map_sections_to_segments (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | bool *need_layout) | 
|  | { | 
|  | unsigned int count; | 
|  | struct elf_segment_map *m; | 
|  | asection **sections = NULL; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | bool no_user_phdrs; | 
|  |  | 
|  | no_user_phdrs = elf_seg_map (abfd) == NULL; | 
|  |  | 
|  | if (info != NULL) | 
|  | { | 
|  | info->user_phdrs = !no_user_phdrs; | 
|  |  | 
|  | /* Size the relative relocations if DT_RELR is enabled.  */ | 
|  | if (info->enable_dt_relr | 
|  | && need_layout != NULL | 
|  | && bed->size_relative_relocs | 
|  | && !bed->size_relative_relocs (info, need_layout)) | 
|  | info->callbacks->einfo | 
|  | (_("%F%P: failed to size relative relocations\n")); | 
|  | } | 
|  |  | 
|  | if (no_user_phdrs && bfd_count_sections (abfd) != 0) | 
|  | { | 
|  | asection *s; | 
|  | unsigned int i; | 
|  | struct elf_segment_map *mfirst; | 
|  | struct elf_segment_map **pm; | 
|  | asection *last_hdr; | 
|  | bfd_vma last_size; | 
|  | unsigned int hdr_index; | 
|  | bfd_vma maxpagesize; | 
|  | asection **hdrpp; | 
|  | bool phdr_in_segment; | 
|  | bool writable; | 
|  | bool executable; | 
|  | unsigned int tls_count = 0; | 
|  | asection *first_tls = NULL; | 
|  | asection *first_mbind = NULL; | 
|  | asection *dynsec, *eh_frame_hdr; | 
|  | asection *sframe; | 
|  | size_t amt; | 
|  | bfd_vma addr_mask, wrap_to = 0;  /* Bytes.  */ | 
|  | bfd_size_type phdr_size;  /* Octets/bytes.  */ | 
|  | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
|  |  | 
|  | /* Select the allocated sections, and sort them.  */ | 
|  |  | 
|  | amt = bfd_count_sections (abfd) * sizeof (asection *); | 
|  | sections = (asection **) bfd_malloc (amt); | 
|  | if (sections == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | /* Calculate top address, avoiding undefined behaviour of shift | 
|  | left operator when shift count is equal to size of type | 
|  | being shifted.  */ | 
|  | addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1; | 
|  | addr_mask = (addr_mask << 1) + 1; | 
|  |  | 
|  | i = 0; | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if ((s->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | /* target_index is unused until bfd_elf_final_link | 
|  | starts output of section symbols.  Use it to make | 
|  | qsort stable.  */ | 
|  | s->target_index = i; | 
|  | sections[i] = s; | 
|  | ++i; | 
|  | /* A wrapping section potentially clashes with header.  */ | 
|  | if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask)) | 
|  | wrap_to = (s->lma + s->size / opb) & addr_mask; | 
|  | } | 
|  | } | 
|  | BFD_ASSERT (i <= bfd_count_sections (abfd)); | 
|  | count = i; | 
|  |  | 
|  | qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); | 
|  |  | 
|  | phdr_size = elf_program_header_size (abfd); | 
|  | if (phdr_size == (bfd_size_type) -1) | 
|  | phdr_size = get_program_header_size (abfd, info); | 
|  | phdr_size += bed->s->sizeof_ehdr; | 
|  | /* phdr_size is compared to LMA values which are in bytes.  */ | 
|  | phdr_size /= opb; | 
|  | if (info != NULL) | 
|  | maxpagesize = info->maxpagesize; | 
|  | else | 
|  | maxpagesize = bed->maxpagesize; | 
|  | if (maxpagesize == 0) | 
|  | maxpagesize = 1; | 
|  | phdr_in_segment = info != NULL && info->load_phdrs; | 
|  | if (count != 0 | 
|  | && (((sections[0]->lma & addr_mask) & (maxpagesize - 1)) | 
|  | >= (phdr_size & (maxpagesize - 1)))) | 
|  | /* For compatibility with old scripts that may not be using | 
|  | SIZEOF_HEADERS, add headers when it looks like space has | 
|  | been left for them.  */ | 
|  | phdr_in_segment = true; | 
|  |  | 
|  | /* Build the mapping.  */ | 
|  | mfirst = NULL; | 
|  | pm = &mfirst; | 
|  |  | 
|  | /* If we have a .interp section, then create a PT_PHDR segment for | 
|  | the program headers and a PT_INTERP segment for the .interp | 
|  | section.  */ | 
|  | s = bfd_get_section_by_name (abfd, ".interp"); | 
|  | if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_PHDR; | 
|  | m->p_flags = PF_R; | 
|  | m->p_flags_valid = 1; | 
|  | m->includes_phdrs = 1; | 
|  | phdr_in_segment = true; | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  |  | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_INTERP; | 
|  | m->count = 1; | 
|  | m->sections[0] = s; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | /* Look through the sections.  We put sections in the same program | 
|  | segment when the start of the second section can be placed within | 
|  | a few bytes of the end of the first section.  */ | 
|  | last_hdr = NULL; | 
|  | last_size = 0; | 
|  | hdr_index = 0; | 
|  | writable = false; | 
|  | executable = false; | 
|  | dynsec = bfd_get_section_by_name (abfd, ".dynamic"); | 
|  | if (dynsec != NULL | 
|  | && (dynsec->flags & SEC_LOAD) == 0) | 
|  | dynsec = NULL; | 
|  |  | 
|  | if ((abfd->flags & D_PAGED) == 0) | 
|  | phdr_in_segment = false; | 
|  |  | 
|  | /* Deal with -Ttext or something similar such that the first section | 
|  | is not adjacent to the program headers.  This is an | 
|  | approximation, since at this point we don't know exactly how many | 
|  | program headers we will need.  */ | 
|  | if (phdr_in_segment && count > 0) | 
|  | { | 
|  | bfd_vma phdr_lma;  /* Bytes.  */ | 
|  | bool separate_phdr = false; | 
|  |  | 
|  | phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize; | 
|  | if (info != NULL | 
|  | && info->separate_code | 
|  | && (sections[0]->flags & SEC_CODE) != 0) | 
|  | { | 
|  | /* If data sections should be separate from code and | 
|  | thus not executable, and the first section is | 
|  | executable then put the file and program headers in | 
|  | their own PT_LOAD.  */ | 
|  | if (!info->one_rosegment) | 
|  | separate_phdr = true; | 
|  |  | 
|  | if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize) | 
|  | == (sections[0]->lma & addr_mask & -maxpagesize))) | 
|  | { | 
|  | /* The file and program headers are currently on the | 
|  | same page as the first section.  Put them on the | 
|  | previous page if we can.  */ | 
|  | if (phdr_lma >= maxpagesize) | 
|  | phdr_lma -= maxpagesize; | 
|  | else | 
|  | separate_phdr = false; | 
|  | } | 
|  | } | 
|  | if ((sections[0]->lma & addr_mask) < phdr_lma | 
|  | || (sections[0]->lma & addr_mask) < phdr_size) | 
|  | /* If file and program headers would be placed at the end | 
|  | of memory then it's probably better to omit them.  */ | 
|  | phdr_in_segment = false; | 
|  | else if (phdr_lma < wrap_to) | 
|  | /* If a section wraps around to where we'll be placing | 
|  | file and program headers, then the headers will be | 
|  | overwritten.  */ | 
|  | phdr_in_segment = false; | 
|  | else if (separate_phdr) | 
|  | { | 
|  | m = make_mapping (abfd, sections, 0, 0, phdr_in_segment); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->p_paddr = phdr_lma * opb; | 
|  | m->p_vaddr_offset | 
|  | = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize; | 
|  | m->p_paddr_valid = 1; | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | phdr_in_segment = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) | 
|  | { | 
|  | asection *hdr; | 
|  | bool new_segment; | 
|  |  | 
|  | hdr = *hdrpp; | 
|  |  | 
|  | /* See if this section and the last one will fit in the same | 
|  | segment.  */ | 
|  |  | 
|  | if (last_hdr == NULL) | 
|  | { | 
|  | /* If we don't have a segment yet, then we don't need a new | 
|  | one (we build the last one after this loop).  */ | 
|  | new_segment = false; | 
|  | } | 
|  | else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) | 
|  | { | 
|  | /* If this section has a different relation between the | 
|  | virtual address and the load address, then we need a new | 
|  | segment.  */ | 
|  | new_segment = true; | 
|  | } | 
|  | else if (hdr->lma < last_hdr->lma + last_size | 
|  | || last_hdr->lma + last_size < last_hdr->lma) | 
|  | { | 
|  | /* If this section has a load address that makes it overlap | 
|  | the previous section, then we need a new segment.  */ | 
|  | new_segment = true; | 
|  | } | 
|  | else if ((abfd->flags & D_PAGED) != 0 | 
|  | && (((last_hdr->lma + last_size - 1) & -maxpagesize) | 
|  | == (hdr->lma & -maxpagesize))) | 
|  | { | 
|  | /* If we are demand paged then we can't map two disk | 
|  | pages onto the same memory page.  */ | 
|  | new_segment = false; | 
|  | } | 
|  | /* In the next test we have to be careful when last_hdr->lma is close | 
|  | to the end of the address space.  If the aligned address wraps | 
|  | around to the start of the address space, then there are no more | 
|  | pages left in memory and it is OK to assume that the current | 
|  | section can be included in the current segment.  */ | 
|  | else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) | 
|  | + maxpagesize > last_hdr->lma) | 
|  | && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) | 
|  | + maxpagesize <= hdr->lma)) | 
|  | { | 
|  | /* If putting this section in this segment would force us to | 
|  | skip a page in the segment, then we need a new segment.  */ | 
|  | new_segment = true; | 
|  | } | 
|  | else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 | 
|  | && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) | 
|  | { | 
|  | /* We don't want to put a loaded section after a | 
|  | nonloaded (ie. bss style) section in the same segment | 
|  | as that will force the non-loaded section to be loaded. | 
|  | Consider .tbss sections as loaded for this purpose.  */ | 
|  | new_segment = true; | 
|  | } | 
|  | else if ((abfd->flags & D_PAGED) == 0) | 
|  | { | 
|  | /* If the file is not demand paged, which means that we | 
|  | don't require the sections to be correctly aligned in the | 
|  | file, then there is no other reason for a new segment.  */ | 
|  | new_segment = false; | 
|  | } | 
|  | else if (info != NULL | 
|  | && info->separate_code | 
|  | && executable != ((hdr->flags & SEC_CODE) != 0)) | 
|  | { | 
|  | new_segment = true; | 
|  | } | 
|  | else if (! writable | 
|  | && (hdr->flags & SEC_READONLY) == 0) | 
|  | { | 
|  | /* We don't want to put a writable section in a read only | 
|  | segment.  */ | 
|  | new_segment = true; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Otherwise, we can use the same segment.  */ | 
|  | new_segment = false; | 
|  | } | 
|  |  | 
|  | /* Allow interested parties a chance to override our decision.  */ | 
|  | if (last_hdr != NULL | 
|  | && info != NULL | 
|  | && info->callbacks->override_segment_assignment != NULL) | 
|  | new_segment | 
|  | = info->callbacks->override_segment_assignment (info, abfd, hdr, | 
|  | last_hdr, | 
|  | new_segment); | 
|  |  | 
|  | if (! new_segment) | 
|  | { | 
|  | if ((hdr->flags & SEC_READONLY) == 0) | 
|  | writable = true; | 
|  | if ((hdr->flags & SEC_CODE) != 0) | 
|  | executable = true; | 
|  | last_hdr = hdr; | 
|  | /* .tbss sections effectively have zero size.  */ | 
|  | last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* We need a new program segment.  We must create a new program | 
|  | header holding all the sections from hdr_index until hdr.  */ | 
|  |  | 
|  | m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  |  | 
|  | if ((hdr->flags & SEC_READONLY) == 0) | 
|  | writable = true; | 
|  | else | 
|  | writable = false; | 
|  |  | 
|  | if ((hdr->flags & SEC_CODE) == 0) | 
|  | executable = false; | 
|  | else | 
|  | executable = true; | 
|  |  | 
|  | last_hdr = hdr; | 
|  | /* .tbss sections effectively have zero size.  */ | 
|  | last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb; | 
|  | hdr_index = i; | 
|  | phdr_in_segment = false; | 
|  | } | 
|  |  | 
|  | /* Create a final PT_LOAD program segment, but not if it's just | 
|  | for .tbss.  */ | 
|  | if (last_hdr != NULL | 
|  | && (i - hdr_index != 1 | 
|  | || !IS_TBSS (last_hdr))) | 
|  | { | 
|  | m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | /* If there is a .dynamic section, throw in a PT_DYNAMIC segment.  */ | 
|  | if (dynsec != NULL) | 
|  | { | 
|  | m = _bfd_elf_make_dynamic_segment (abfd, dynsec); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | /* For each batch of consecutive loadable SHT_NOTE  sections, | 
|  | add a PT_NOTE segment.  We don't use bfd_get_section_by_name, | 
|  | because if we link together nonloadable .note sections and | 
|  | loadable .note sections, we will generate two .note sections | 
|  | in the output file.  */ | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if ((s->flags & SEC_LOAD) != 0 | 
|  | && elf_section_type (s) == SHT_NOTE) | 
|  | { | 
|  | asection *s2; | 
|  | unsigned int alignment_power = s->alignment_power; | 
|  |  | 
|  | count = 1; | 
|  | for (s2 = s; s2->next != NULL; s2 = s2->next) | 
|  | { | 
|  | if (s2->next->alignment_power == alignment_power | 
|  | && (s2->next->flags & SEC_LOAD) != 0 | 
|  | && elf_section_type (s2->next) == SHT_NOTE | 
|  | && align_power (s2->lma + s2->size / opb, | 
|  | alignment_power) | 
|  | == s2->next->lma) | 
|  | count++; | 
|  | else | 
|  | break; | 
|  | } | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += count * sizeof (asection *); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_NOTE; | 
|  | m->count = count; | 
|  | while (count > 1) | 
|  | { | 
|  | m->sections[m->count - count--] = s; | 
|  | BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); | 
|  | s = s->next; | 
|  | } | 
|  | m->sections[m->count - 1] = s; | 
|  | BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  | if (s->flags & SEC_THREAD_LOCAL) | 
|  | { | 
|  | if (! tls_count) | 
|  | first_tls = s; | 
|  | tls_count++; | 
|  | } | 
|  | if (first_mbind == NULL | 
|  | && (elf_section_flags (s) & SHF_GNU_MBIND) != 0) | 
|  | first_mbind = s; | 
|  | } | 
|  |  | 
|  | /* If there are any SHF_TLS output sections, add PT_TLS segment.  */ | 
|  | if (tls_count > 0) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += tls_count * sizeof (asection *); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_TLS; | 
|  | m->count = tls_count; | 
|  | /* Mandated PF_R.  */ | 
|  | m->p_flags = PF_R; | 
|  | m->p_flags_valid = 1; | 
|  | s = first_tls; | 
|  | for (i = 0; i < tls_count; ++i) | 
|  | { | 
|  | if ((s->flags & SEC_THREAD_LOCAL) == 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: TLS sections are not adjacent:"), abfd); | 
|  | s = first_tls; | 
|  | i = 0; | 
|  | while (i < tls_count) | 
|  | { | 
|  | if ((s->flags & SEC_THREAD_LOCAL) != 0) | 
|  | { | 
|  | _bfd_error_handler (_("	    TLS: %pA"), s); | 
|  | i++; | 
|  | } | 
|  | else | 
|  | _bfd_error_handler (_("	non-TLS: %pA"), s); | 
|  | s = s->next; | 
|  | } | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | goto error_return; | 
|  | } | 
|  | m->sections[i] = s; | 
|  | s = s->next; | 
|  | } | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | if (first_mbind | 
|  | && (abfd->flags & D_PAGED) != 0 | 
|  | && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0) | 
|  | for (s = first_mbind; s != NULL; s = s->next) | 
|  | if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0 | 
|  | && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM) | 
|  | { | 
|  | /* Mandated PF_R.  */ | 
|  | unsigned long p_flags = PF_R; | 
|  | if ((s->flags & SEC_READONLY) == 0) | 
|  | p_flags |= PF_W; | 
|  | if ((s->flags & SEC_CODE) != 0) | 
|  | p_flags |= PF_X; | 
|  |  | 
|  | amt = sizeof (struct elf_segment_map) + sizeof (asection *); | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = (PT_GNU_MBIND_LO | 
|  | + elf_section_data (s)->this_hdr.sh_info); | 
|  | m->count = 1; | 
|  | m->p_flags_valid = 1; | 
|  | m->sections[0] = s; | 
|  | m->p_flags = p_flags; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | s = bfd_get_section_by_name (abfd, | 
|  | NOTE_GNU_PROPERTY_SECTION_NAME); | 
|  | if (s != NULL && s->size != 0) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map) + sizeof (asection *); | 
|  | m = bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_GNU_PROPERTY; | 
|  | m->count = 1; | 
|  | m->p_flags_valid = 1; | 
|  | m->sections[0] = s; | 
|  | m->p_flags = PF_R; | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME | 
|  | segment.  */ | 
|  | eh_frame_hdr = elf_eh_frame_hdr (info); | 
|  | if (eh_frame_hdr != NULL | 
|  | && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_GNU_EH_FRAME; | 
|  | m->count = 1; | 
|  | m->sections[0] = eh_frame_hdr->output_section; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | /* If there is a .sframe section, throw in a PT_GNU_SFRAME | 
|  | segment.  */ | 
|  | sframe = elf_sframe (abfd); | 
|  | if (sframe != NULL | 
|  | && (sframe->output_section->flags & SEC_LOAD) != 0 | 
|  | && sframe->size != 0) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_GNU_SFRAME; | 
|  | m->count = 1; | 
|  | m->sections[0] = sframe->output_section; | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | if (elf_stack_flags (abfd)) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_GNU_STACK; | 
|  | m->p_flags = elf_stack_flags (abfd); | 
|  | m->p_align = bed->stack_align; | 
|  | m->p_flags_valid = 1; | 
|  | m->p_align_valid = m->p_align != 0; | 
|  | if (info->stacksize > 0) | 
|  | { | 
|  | m->p_size = info->stacksize; | 
|  | m->p_size_valid = 1; | 
|  | } | 
|  |  | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  |  | 
|  | if (info != NULL && info->relro) | 
|  | { | 
|  | for (m = mfirst; m != NULL; m = m->next) | 
|  | { | 
|  | if (m->p_type == PT_LOAD | 
|  | && m->count != 0 | 
|  | && m->sections[0]->vma >= info->relro_start | 
|  | && m->sections[0]->vma < info->relro_end) | 
|  | { | 
|  | i = m->count; | 
|  | while (--i != (unsigned) -1) | 
|  | { | 
|  | if (m->sections[i]->size > 0 | 
|  | && (m->sections[i]->flags & SEC_LOAD) != 0 | 
|  | && (m->sections[i]->flags & SEC_HAS_CONTENTS) != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i != (unsigned) -1) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make a PT_GNU_RELRO segment only when it isn't empty.  */ | 
|  | if (m != NULL) | 
|  | { | 
|  | amt = sizeof (struct elf_segment_map); | 
|  | m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); | 
|  | if (m == NULL) | 
|  | goto error_return; | 
|  | m->next = NULL; | 
|  | m->p_type = PT_GNU_RELRO; | 
|  | *pm = m; | 
|  | pm = &m->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | free (sections); | 
|  | elf_seg_map (abfd) = mfirst; | 
|  | } | 
|  |  | 
|  | if (!elf_modify_segment_map (abfd, info, no_user_phdrs || info == NULL)) | 
|  | return false; | 
|  |  | 
|  | for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | ++count; | 
|  | elf_program_header_size (abfd) = count * bed->s->sizeof_phdr; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | free (sections); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Sort sections by address.  */ | 
|  |  | 
|  | static int | 
|  | elf_sort_sections (const void *arg1, const void *arg2) | 
|  | { | 
|  | const asection *sec1 = *(const asection **) arg1; | 
|  | const asection *sec2 = *(const asection **) arg2; | 
|  | bfd_size_type size1, size2; | 
|  |  | 
|  | /* Sort by LMA first, since this is the address used to | 
|  | place the section into a segment.  */ | 
|  | if (sec1->lma < sec2->lma) | 
|  | return -1; | 
|  | else if (sec1->lma > sec2->lma) | 
|  | return 1; | 
|  |  | 
|  | /* Then sort by VMA.  Normally the LMA and the VMA will be | 
|  | the same, and this will do nothing.  */ | 
|  | if (sec1->vma < sec2->vma) | 
|  | return -1; | 
|  | else if (sec1->vma > sec2->vma) | 
|  | return 1; | 
|  |  | 
|  | /* Put !SEC_LOAD sections after SEC_LOAD ones.  */ | 
|  |  | 
|  | #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \ | 
|  | && (x)->size != 0) | 
|  |  | 
|  | if (TOEND (sec1)) | 
|  | { | 
|  | if (!TOEND (sec2)) | 
|  | return 1; | 
|  | } | 
|  | else if (TOEND (sec2)) | 
|  | return -1; | 
|  |  | 
|  | #undef TOEND | 
|  |  | 
|  | /* Sort by size, to put zero sized sections | 
|  | before others at the same address.  */ | 
|  |  | 
|  | size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; | 
|  | size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; | 
|  |  | 
|  | if (size1 < size2) | 
|  | return -1; | 
|  | if (size1 > size2) | 
|  | return 1; | 
|  |  | 
|  | return sec1->target_index - sec2->target_index; | 
|  | } | 
|  |  | 
|  | /* This qsort comparison functions sorts PT_LOAD segments first and | 
|  | by p_paddr, for assign_file_positions_for_load_sections.  */ | 
|  |  | 
|  | static int | 
|  | elf_sort_segments (const void *arg1, const void *arg2) | 
|  | { | 
|  | const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1; | 
|  | const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2; | 
|  |  | 
|  | if (m1->p_type != m2->p_type) | 
|  | { | 
|  | if (m1->p_type == PT_NULL) | 
|  | return 1; | 
|  | if (m2->p_type == PT_NULL) | 
|  | return -1; | 
|  | return m1->p_type < m2->p_type ? -1 : 1; | 
|  | } | 
|  | if (m1->includes_filehdr != m2->includes_filehdr) | 
|  | return m1->includes_filehdr ? -1 : 1; | 
|  | if (m1->no_sort_lma != m2->no_sort_lma) | 
|  | return m1->no_sort_lma ? -1 : 1; | 
|  | if (m1->p_type == PT_LOAD && !m1->no_sort_lma) | 
|  | { | 
|  | bfd_vma lma1, lma2;  /* Octets.  */ | 
|  | lma1 = 0; | 
|  | if (m1->p_paddr_valid) | 
|  | lma1 = m1->p_paddr; | 
|  | else if (m1->count != 0) | 
|  | { | 
|  | unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner, | 
|  | m1->sections[0]); | 
|  | lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb; | 
|  | } | 
|  | lma2 = 0; | 
|  | if (m2->p_paddr_valid) | 
|  | lma2 = m2->p_paddr; | 
|  | else if (m2->count != 0) | 
|  | { | 
|  | unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner, | 
|  | m2->sections[0]); | 
|  | lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb; | 
|  | } | 
|  | if (lma1 != lma2) | 
|  | return lma1 < lma2 ? -1 : 1; | 
|  | } | 
|  | if (m1->idx != m2->idx) | 
|  | return m1->idx < m2->idx ? -1 : 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Ian Lance Taylor writes: | 
|  |  | 
|  | We shouldn't be using % with a negative signed number.  That's just | 
|  | not good.  We have to make sure either that the number is not | 
|  | negative, or that the number has an unsigned type.  When the types | 
|  | are all the same size they wind up as unsigned.  When file_ptr is a | 
|  | larger signed type, the arithmetic winds up as signed long long, | 
|  | which is wrong. | 
|  |  | 
|  | What we're trying to say here is something like ``increase OFF by | 
|  | the least amount that will cause it to be equal to the VMA modulo | 
|  | the page size.''  */ | 
|  | /* In other words, something like: | 
|  |  | 
|  | vma_offset = m->sections[0]->vma % bed->maxpagesize; | 
|  | off_offset = off % bed->maxpagesize; | 
|  | if (vma_offset < off_offset) | 
|  | adjustment = vma_offset + bed->maxpagesize - off_offset; | 
|  | else | 
|  | adjustment = vma_offset - off_offset; | 
|  |  | 
|  | which can be collapsed into the expression below.  */ | 
|  |  | 
|  | static file_ptr | 
|  | vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) | 
|  | { | 
|  | /* PR binutils/16199: Handle an alignment of zero.  */ | 
|  | if (maxpagesize == 0) | 
|  | maxpagesize = 1; | 
|  | return ((vma - off) % maxpagesize); | 
|  | } | 
|  |  | 
|  | static void | 
|  | print_segment_map (const struct elf_segment_map *m) | 
|  | { | 
|  | unsigned int j; | 
|  | const char *pt = get_segment_type (m->p_type); | 
|  | char buf[32]; | 
|  |  | 
|  | if (pt == NULL) | 
|  | { | 
|  | if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) | 
|  | sprintf (buf, "LOPROC+%7.7x", | 
|  | (unsigned int) (m->p_type - PT_LOPROC)); | 
|  | else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) | 
|  | sprintf (buf, "LOOS+%7.7x", | 
|  | (unsigned int) (m->p_type - PT_LOOS)); | 
|  | else | 
|  | snprintf (buf, sizeof (buf), "%8.8x", | 
|  | (unsigned int) m->p_type); | 
|  | pt = buf; | 
|  | } | 
|  | fflush (stdout); | 
|  | fprintf (stderr, "%s:", pt); | 
|  | for (j = 0; j < m->count; j++) | 
|  | fprintf (stderr, " %s", m->sections [j]->name); | 
|  | putc ('\n',stderr); | 
|  | fflush (stderr); | 
|  | } | 
|  |  | 
|  | /* Assign file positions to the sections based on the mapping from | 
|  | sections to segments.  This function also sets up some fields in | 
|  | the file header.  */ | 
|  |  | 
|  | static bool | 
|  | assign_file_positions_for_load_sections (bfd *abfd, | 
|  | struct bfd_link_info *link_info) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | struct elf_segment_map *m; | 
|  | struct elf_segment_map *phdr_load_seg; | 
|  | Elf_Internal_Phdr *phdrs; | 
|  | Elf_Internal_Phdr *p; | 
|  | file_ptr off;  /* Octets.  */ | 
|  | bfd_size_type maxpagesize; | 
|  | unsigned int alloc, actual; | 
|  | unsigned int i, j; | 
|  | struct elf_segment_map **sorted_seg_map; | 
|  | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
|  |  | 
|  | if (link_info == NULL | 
|  | && !_bfd_elf_map_sections_to_segments (abfd, link_info, NULL)) | 
|  | return false; | 
|  |  | 
|  | alloc = 0; | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | m->idx = alloc++; | 
|  |  | 
|  | if (alloc) | 
|  | { | 
|  | elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; | 
|  | elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* PR binutils/12467.  */ | 
|  | elf_elfheader (abfd)->e_phoff = 0; | 
|  | elf_elfheader (abfd)->e_phentsize = 0; | 
|  | } | 
|  |  | 
|  | elf_elfheader (abfd)->e_phnum = alloc; | 
|  |  | 
|  | if (elf_program_header_size (abfd) == (bfd_size_type) -1) | 
|  | { | 
|  | actual = alloc; | 
|  | elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr; | 
|  | } | 
|  | else | 
|  | { | 
|  | actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr; | 
|  | BFD_ASSERT (elf_program_header_size (abfd) | 
|  | == actual * bed->s->sizeof_phdr); | 
|  | BFD_ASSERT (actual >= alloc); | 
|  | } | 
|  |  | 
|  | if (alloc == 0) | 
|  | { | 
|  | elf_next_file_pos (abfd) = bed->s->sizeof_ehdr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* We're writing the size in elf_program_header_size (abfd), | 
|  | see assign_file_positions_except_relocs, so make sure we have | 
|  | that amount allocated, with trailing space cleared. | 
|  | The variable alloc contains the computed need, while | 
|  | elf_program_header_size (abfd) contains the size used for the | 
|  | layout. | 
|  | See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments | 
|  | where the layout is forced to according to a larger size in the | 
|  | last iterations for the testcase ld-elf/header.  */ | 
|  | phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs) | 
|  | + alloc * sizeof (*sorted_seg_map))); | 
|  | sorted_seg_map = (struct elf_segment_map **) (phdrs + actual); | 
|  | elf_tdata (abfd)->phdr = phdrs; | 
|  | if (phdrs == NULL) | 
|  | return false; | 
|  |  | 
|  | for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++) | 
|  | { | 
|  | sorted_seg_map[j] = m; | 
|  | /* If elf_segment_map is not from map_sections_to_segments, the | 
|  | sections may not be correctly ordered.  NOTE: sorting should | 
|  | not be done to the PT_NOTE section of a corefile, which may | 
|  | contain several pseudo-sections artificially created by bfd. | 
|  | Sorting these pseudo-sections breaks things badly.  */ | 
|  | if (m->count > 1 | 
|  | && !(elf_elfheader (abfd)->e_type == ET_CORE | 
|  | && m->p_type == PT_NOTE)) | 
|  | { | 
|  | for (i = 0; i < m->count; i++) | 
|  | m->sections[i]->target_index = i; | 
|  | qsort (m->sections, (size_t) m->count, sizeof (asection *), | 
|  | elf_sort_sections); | 
|  | } | 
|  | } | 
|  | if (alloc > 1) | 
|  | qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map), | 
|  | elf_sort_segments); | 
|  |  | 
|  | maxpagesize = 1; | 
|  | if ((abfd->flags & D_PAGED) != 0) | 
|  | { | 
|  | if (link_info != NULL) | 
|  | maxpagesize = link_info->maxpagesize; | 
|  | else | 
|  | maxpagesize = bed->maxpagesize; | 
|  | } | 
|  |  | 
|  | /* Sections must map to file offsets past the ELF file header.  */ | 
|  | off = bed->s->sizeof_ehdr; | 
|  | /* And if one of the PT_LOAD headers doesn't include the program | 
|  | headers then we'll be mapping program headers in the usual | 
|  | position after the ELF file header.  */ | 
|  | phdr_load_seg = NULL; | 
|  | for (j = 0; j < alloc; j++) | 
|  | { | 
|  | m = sorted_seg_map[j]; | 
|  | if (m->p_type != PT_LOAD) | 
|  | break; | 
|  | if (m->includes_phdrs) | 
|  | { | 
|  | phdr_load_seg = m; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (phdr_load_seg == NULL) | 
|  | off += actual * bed->s->sizeof_phdr; | 
|  |  | 
|  | for (j = 0; j < alloc; j++) | 
|  | { | 
|  | asection **secpp; | 
|  | bfd_vma off_adjust;  /* Octets.  */ | 
|  | bool no_contents; | 
|  | bfd_size_type p_align; | 
|  | bool p_align_p; | 
|  |  | 
|  | /* An ELF segment (described by Elf_Internal_Phdr) may contain a | 
|  | number of sections with contents contributing to both p_filesz | 
|  | and p_memsz, followed by a number of sections with no contents | 
|  | that just contribute to p_memsz.  In this loop, OFF tracks next | 
|  | available file offset for PT_LOAD and PT_NOTE segments.  */ | 
|  | m = sorted_seg_map[j]; | 
|  | p = phdrs + m->idx; | 
|  | p->p_type = m->p_type; | 
|  | p->p_flags = m->p_flags; | 
|  | p_align = bed->p_align; | 
|  | p_align_p = false; | 
|  |  | 
|  | if (m->count == 0) | 
|  | p->p_vaddr = m->p_vaddr_offset * opb; | 
|  | else | 
|  | p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb; | 
|  |  | 
|  | if (m->p_paddr_valid) | 
|  | p->p_paddr = m->p_paddr; | 
|  | else if (m->count == 0) | 
|  | p->p_paddr = 0; | 
|  | else | 
|  | p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb; | 
|  |  | 
|  | if (p->p_type == PT_LOAD | 
|  | && (abfd->flags & D_PAGED) != 0) | 
|  | { | 
|  | /* p_align in demand paged PT_LOAD segments effectively stores | 
|  | the maximum page size.  When copying an executable with | 
|  | objcopy, we set m->p_align from the input file.  Use this | 
|  | value for maxpagesize rather than bed->maxpagesize, which | 
|  | may be different.  Note that we use maxpagesize for PT_TLS | 
|  | segment alignment later in this function, so we are relying | 
|  | on at least one PT_LOAD segment appearing before a PT_TLS | 
|  | segment.  */ | 
|  | if (m->p_align_valid) | 
|  | maxpagesize = m->p_align; | 
|  | else if (p_align != 0 | 
|  | && (link_info == NULL | 
|  | || !link_info->maxpagesize_is_set)) | 
|  | /* Set p_align to the default p_align value while laying | 
|  | out segments aligning to the maximum page size or the | 
|  | largest section alignment.  The run-time loader can | 
|  | align segments to the default p_align value or the | 
|  | maximum page size, depending on system page size.  */ | 
|  | p_align_p = true; | 
|  |  | 
|  | p->p_align = maxpagesize; | 
|  | } | 
|  | else if (m->p_align_valid) | 
|  | p->p_align = m->p_align; | 
|  | else if (m->count == 0) | 
|  | p->p_align = 1 << bed->s->log_file_align; | 
|  |  | 
|  | if (m == phdr_load_seg) | 
|  | { | 
|  | if (!m->includes_filehdr) | 
|  | p->p_offset = off; | 
|  | off += actual * bed->s->sizeof_phdr; | 
|  | } | 
|  |  | 
|  | no_contents = false; | 
|  | off_adjust = 0; | 
|  | if (p->p_type == PT_LOAD | 
|  | && m->count > 0) | 
|  | { | 
|  | bfd_size_type align;  /* Bytes.  */ | 
|  | unsigned int align_power = 0; | 
|  |  | 
|  | if (m->p_align_valid) | 
|  | align = p->p_align; | 
|  | else | 
|  | { | 
|  | for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) | 
|  | { | 
|  | unsigned int secalign; | 
|  |  | 
|  | secalign = bfd_section_alignment (*secpp); | 
|  | if (secalign > align_power) | 
|  | align_power = secalign; | 
|  | } | 
|  | align = (bfd_size_type) 1 << align_power; | 
|  | if (align < maxpagesize) | 
|  | { | 
|  | /* If a section requires alignment higher than the | 
|  | default p_align value, don't set p_align to the | 
|  | default p_align value.  */ | 
|  | if (align > p_align) | 
|  | p_align_p = false; | 
|  | align = maxpagesize; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* If a section requires alignment higher than the | 
|  | maximum page size, set p_align to the section | 
|  | alignment.  */ | 
|  | p_align_p = true; | 
|  | p_align = align; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < m->count; i++) | 
|  | if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) | 
|  | /* If we aren't making room for this section, then | 
|  | it must be SHT_NOBITS regardless of what we've | 
|  | set via struct bfd_elf_special_section.  */ | 
|  | elf_section_type (m->sections[i]) = SHT_NOBITS; | 
|  |  | 
|  | /* Find out whether this segment contains any loadable | 
|  | sections.  */ | 
|  | no_contents = true; | 
|  | for (i = 0; i < m->count; i++) | 
|  | if (elf_section_type (m->sections[i]) != SHT_NOBITS) | 
|  | { | 
|  | no_contents = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb); | 
|  |  | 
|  | /* Broken hardware and/or kernel require that files do not | 
|  | map the same page with different permissions on some hppa | 
|  | processors.  */ | 
|  | if (j != 0 | 
|  | && (abfd->flags & D_PAGED) != 0 | 
|  | && bed->no_page_alias | 
|  | && (off & (maxpagesize - 1)) != 0 | 
|  | && ((off & -maxpagesize) | 
|  | == ((off + off_adjust) & -maxpagesize))) | 
|  | off_adjust += maxpagesize; | 
|  | off += off_adjust; | 
|  | if (no_contents) | 
|  | { | 
|  | /* We shouldn't need to align the segment on disk since | 
|  | the segment doesn't need file space, but the gABI | 
|  | arguably requires the alignment and glibc ld.so | 
|  | checks it.  So to comply with the alignment | 
|  | requirement but not waste file space, we adjust | 
|  | p_offset for just this segment.  (OFF_ADJUST is | 
|  | subtracted from OFF later.)  This may put p_offset | 
|  | past the end of file, but that shouldn't matter.  */ | 
|  | } | 
|  | else | 
|  | off_adjust = 0; | 
|  | } | 
|  | /* Make sure the .dynamic section is the first section in the | 
|  | PT_DYNAMIC segment.  */ | 
|  | else if (p->p_type == PT_DYNAMIC | 
|  | && m->count > 1 | 
|  | && strcmp (m->sections[0]->name, ".dynamic") != 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: The first section in the PT_DYNAMIC segment" | 
|  | " is not the .dynamic section"), | 
|  | abfd); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | /* Set the note section type to SHT_NOTE.  */ | 
|  | else if (p->p_type == PT_NOTE) | 
|  | for (i = 0; i < m->count; i++) | 
|  | elf_section_type (m->sections[i]) = SHT_NOTE; | 
|  |  | 
|  | if (m->includes_filehdr) | 
|  | { | 
|  | if (!m->p_flags_valid) | 
|  | p->p_flags |= PF_R; | 
|  | p->p_filesz = bed->s->sizeof_ehdr; | 
|  | p->p_memsz = bed->s->sizeof_ehdr; | 
|  | if (p->p_type == PT_LOAD) | 
|  | { | 
|  | if (m->count > 0) | 
|  | { | 
|  | if (p->p_vaddr < (bfd_vma) off | 
|  | || (!m->p_paddr_valid | 
|  | && p->p_paddr < (bfd_vma) off)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB: not enough room for program headers," | 
|  | " try linking with -N"), | 
|  | abfd); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  | p->p_vaddr -= off; | 
|  | if (!m->p_paddr_valid) | 
|  | p->p_paddr -= off; | 
|  | } | 
|  | } | 
|  | else if (sorted_seg_map[0]->includes_filehdr) | 
|  | { | 
|  | Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx; | 
|  | p->p_vaddr = filehdr->p_vaddr; | 
|  | if (!m->p_paddr_valid) | 
|  | p->p_paddr = filehdr->p_paddr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (m->includes_phdrs) | 
|  | { | 
|  | if (!m->p_flags_valid) | 
|  | p->p_flags |= PF_R; | 
|  | p->p_filesz += actual * bed->s->sizeof_phdr; | 
|  | p->p_memsz += actual * bed->s->sizeof_phdr; | 
|  | if (!m->includes_filehdr) | 
|  | { | 
|  | if (p->p_type == PT_LOAD) | 
|  | { | 
|  | elf_elfheader (abfd)->e_phoff = p->p_offset; | 
|  | if (m->count > 0) | 
|  | { | 
|  | p->p_vaddr -= off - p->p_offset; | 
|  | if (!m->p_paddr_valid) | 
|  | p->p_paddr -= off - p->p_offset; | 
|  | } | 
|  | } | 
|  | else if (phdr_load_seg != NULL) | 
|  | { | 
|  | Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx; | 
|  | bfd_vma phdr_off = 0;  /* Octets.  */ | 
|  | if (phdr_load_seg->includes_filehdr) | 
|  | phdr_off = bed->s->sizeof_ehdr; | 
|  | p->p_vaddr = phdr->p_vaddr + phdr_off; | 
|  | if (!m->p_paddr_valid) | 
|  | p->p_paddr = phdr->p_paddr + phdr_off; | 
|  | p->p_offset = phdr->p_offset + phdr_off; | 
|  | } | 
|  | else | 
|  | p->p_offset = bed->s->sizeof_ehdr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p->p_type == PT_LOAD | 
|  | || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) | 
|  | { | 
|  | if (!m->includes_filehdr && !m->includes_phdrs) | 
|  | { | 
|  | p->p_offset = off; | 
|  | if (no_contents) | 
|  | { | 
|  | /* Put meaningless p_offset for PT_LOAD segments | 
|  | without file contents somewhere within the first | 
|  | page, in an attempt to not point past EOF.  */ | 
|  | bfd_size_type align = maxpagesize; | 
|  | if (align < p->p_align) | 
|  | align = p->p_align; | 
|  | if (align < 1) | 
|  | align = 1; | 
|  | p->p_offset = off % align; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | file_ptr adjust;  /* Octets.  */ | 
|  |  | 
|  | adjust = off - (p->p_offset + p->p_filesz); | 
|  | if (!no_contents) | 
|  | p->p_filesz += adjust; | 
|  | p->p_memsz += adjust; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set up p_filesz, p_memsz, p_align and p_flags from the section | 
|  | maps.  Set filepos for sections in PT_LOAD segments, and in | 
|  | core files, for sections in PT_NOTE segments. | 
|  | assign_file_positions_for_non_load_sections will set filepos | 
|  | for other sections and update p_filesz for other segments.  */ | 
|  | for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) | 
|  | { | 
|  | asection *sec; | 
|  | bfd_size_type align; | 
|  | Elf_Internal_Shdr *this_hdr; | 
|  |  | 
|  | sec = *secpp; | 
|  | this_hdr = &elf_section_data (sec)->this_hdr; | 
|  | align = (bfd_size_type) 1 << bfd_section_alignment (sec); | 
|  |  | 
|  | if ((p->p_type == PT_LOAD | 
|  | || p->p_type == PT_TLS) | 
|  | && (this_hdr->sh_type != SHT_NOBITS | 
|  | || ((this_hdr->sh_flags & SHF_ALLOC) != 0 | 
|  | && ((this_hdr->sh_flags & SHF_TLS) == 0 | 
|  | || p->p_type == PT_TLS)))) | 
|  | { | 
|  | bfd_vma p_start = p->p_paddr;		/* Octets.  */ | 
|  | bfd_vma p_end = p_start + p->p_memsz;	/* Octets.  */ | 
|  | bfd_vma s_start = sec->lma * opb;		/* Octets.  */ | 
|  | bfd_vma adjust = s_start - p_end;		/* Octets.  */ | 
|  |  | 
|  | if (adjust != 0 | 
|  | && (s_start < p_end | 
|  | || p_end < p_start)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: section %pA lma %#" PRIx64 | 
|  | " adjusted to %#" PRIx64), | 
|  | abfd, sec, (uint64_t) s_start / opb, | 
|  | (uint64_t) p_end / opb); | 
|  | adjust = 0; | 
|  | sec->lma = p_end / opb; | 
|  | } | 
|  | p->p_memsz += adjust; | 
|  |  | 
|  | if (p->p_type == PT_LOAD) | 
|  | { | 
|  | if (this_hdr->sh_type != SHT_NOBITS) | 
|  | { | 
|  | off_adjust = 0; | 
|  | if (p->p_filesz + adjust < p->p_memsz) | 
|  | { | 
|  | /* We have a PROGBITS section following NOBITS ones. | 
|  | Allocate file space for the NOBITS section(s). | 
|  | We don't need to write out the zeros, posix | 
|  | fseek past the end of data already written | 
|  | followed by a write at that location is | 
|  | guaranteed to result in zeros being read | 
|  | from the gap.  */ | 
|  | adjust = p->p_memsz - p->p_filesz; | 
|  | } | 
|  | } | 
|  | /* We only adjust sh_offset in SHT_NOBITS sections | 
|  | as would seem proper for their address when the | 
|  | section is first in the segment.  sh_offset | 
|  | doesn't really have any significance for | 
|  | SHT_NOBITS anyway, apart from a notional position | 
|  | relative to other sections.  Historically we | 
|  | didn't bother with adjusting sh_offset and some | 
|  | programs depend on it not being adjusted.  See | 
|  | pr12921 and pr25662.  */ | 
|  | if (this_hdr->sh_type != SHT_NOBITS || i == 0) | 
|  | { | 
|  | off += adjust; | 
|  | if (this_hdr->sh_type == SHT_NOBITS) | 
|  | off_adjust += adjust; | 
|  | } | 
|  | } | 
|  | if (this_hdr->sh_type != SHT_NOBITS) | 
|  | p->p_filesz += adjust; | 
|  | } | 
|  |  | 
|  | if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) | 
|  | { | 
|  | /* The section at i == 0 is the one that actually contains | 
|  | everything.  */ | 
|  | if (i == 0) | 
|  | { | 
|  | this_hdr->sh_offset = sec->filepos = off; | 
|  | off += this_hdr->sh_size; | 
|  | p->p_filesz = this_hdr->sh_size; | 
|  | p->p_memsz = 0; | 
|  | p->p_align = 1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The rest are fake sections that shouldn't be written.  */ | 
|  | sec->filepos = 0; | 
|  | sec->size = 0; | 
|  | sec->flags = 0; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (p->p_type == PT_LOAD) | 
|  | { | 
|  | this_hdr->sh_offset = sec->filepos = off; | 
|  | if (this_hdr->sh_type != SHT_NOBITS) | 
|  | off += this_hdr->sh_size; | 
|  | } | 
|  | else if (this_hdr->sh_type == SHT_NOBITS | 
|  | && (this_hdr->sh_flags & SHF_TLS) != 0 | 
|  | && this_hdr->sh_offset == 0) | 
|  | { | 
|  | /* This is a .tbss section that didn't get a PT_LOAD. | 
|  | (See _bfd_elf_map_sections_to_segments "Create a | 
|  | final PT_LOAD".)  Set sh_offset to the value it | 
|  | would have if we had created a zero p_filesz and | 
|  | p_memsz PT_LOAD header for the section.  This | 
|  | also makes the PT_TLS header have the same | 
|  | p_offset value.  */ | 
|  | bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr, | 
|  | off, align); | 
|  | this_hdr->sh_offset = sec->filepos = off + adjust; | 
|  | } | 
|  |  | 
|  | if (this_hdr->sh_type != SHT_NOBITS) | 
|  | { | 
|  | p->p_filesz += this_hdr->sh_size; | 
|  | /* A load section without SHF_ALLOC is something like | 
|  | a note section in a PT_NOTE segment.  These take | 
|  | file space but are not loaded into memory.  */ | 
|  | if ((this_hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | p->p_memsz += this_hdr->sh_size; | 
|  | } | 
|  | else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | { | 
|  | if (p->p_type == PT_TLS) | 
|  | p->p_memsz += this_hdr->sh_size; | 
|  |  | 
|  | /* .tbss is special.  It doesn't contribute to p_memsz of | 
|  | normal segments.  */ | 
|  | else if ((this_hdr->sh_flags & SHF_TLS) == 0) | 
|  | p->p_memsz += this_hdr->sh_size; | 
|  | } | 
|  |  | 
|  | if (align > p->p_align | 
|  | && !m->p_align_valid | 
|  | && (p->p_type != PT_LOAD | 
|  | || (abfd->flags & D_PAGED) == 0)) | 
|  | p->p_align = align; | 
|  | } | 
|  |  | 
|  | if (!m->p_flags_valid) | 
|  | { | 
|  | p->p_flags |= PF_R; | 
|  | if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) | 
|  | p->p_flags |= PF_X; | 
|  | if ((this_hdr->sh_flags & SHF_WRITE) != 0) | 
|  | p->p_flags |= PF_W; | 
|  | } | 
|  | } | 
|  |  | 
|  | off -= off_adjust; | 
|  |  | 
|  | /* PR ld/20815 - Check that the program header segment, if | 
|  | present, will be loaded into memory.  */ | 
|  | if (p->p_type == PT_PHDR | 
|  | && phdr_load_seg == NULL | 
|  | && !(bed->elf_backend_allow_non_load_phdr != NULL | 
|  | && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc))) | 
|  | { | 
|  | /* The fix for this error is usually to edit the linker script being | 
|  | used and set up the program headers manually.  Either that or | 
|  | leave room for the headers at the start of the SECTIONS.  */ | 
|  | _bfd_error_handler (_("%pB: error: PHDR segment not covered" | 
|  | " by LOAD segment"), | 
|  | abfd); | 
|  | if (link_info == NULL) | 
|  | return false; | 
|  | /* Arrange for the linker to exit with an error, deleting | 
|  | the output file unless --noinhibit-exec is given.  */ | 
|  | link_info->callbacks->info ("%X"); | 
|  | } | 
|  |  | 
|  | /* Check that all sections are in a PT_LOAD segment. | 
|  | Don't check funky gdb generated core files.  */ | 
|  | if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) | 
|  | { | 
|  | bool check_vma = true; | 
|  |  | 
|  | for (i = 1; i < m->count; i++) | 
|  | if (m->sections[i]->vma == m->sections[i - 1]->vma | 
|  | && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i]) | 
|  | ->this_hdr), p) != 0 | 
|  | && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1]) | 
|  | ->this_hdr), p) != 0) | 
|  | { | 
|  | /* Looks like we have overlays packed into the segment.  */ | 
|  | check_vma = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < m->count; i++) | 
|  | { | 
|  | Elf_Internal_Shdr *this_hdr; | 
|  | asection *sec; | 
|  |  | 
|  | sec = m->sections[i]; | 
|  | this_hdr = &(elf_section_data(sec)->this_hdr); | 
|  | if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0) | 
|  | && !ELF_TBSS_SPECIAL (this_hdr, p)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: section `%pA' can't be allocated in segment %d"), | 
|  | abfd, sec, j); | 
|  | print_segment_map (m); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (p_align_p) | 
|  | p->p_align = p_align; | 
|  | } | 
|  | } | 
|  |  | 
|  | elf_next_file_pos (abfd) = off; | 
|  |  | 
|  | if (link_info != NULL | 
|  | && phdr_load_seg != NULL | 
|  | && phdr_load_seg->includes_filehdr) | 
|  | { | 
|  | /* There is a segment that contains both the file headers and the | 
|  | program headers, so provide a symbol __ehdr_start pointing there. | 
|  | A program can use this to examine itself robustly.  */ | 
|  |  | 
|  | struct elf_link_hash_entry *hash | 
|  | = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start", | 
|  | false, false, true); | 
|  | /* If the symbol was referenced and not defined, define it.  */ | 
|  | if (hash != NULL | 
|  | && (hash->root.type == bfd_link_hash_new | 
|  | || hash->root.type == bfd_link_hash_undefined | 
|  | || hash->root.type == bfd_link_hash_undefweak | 
|  | || hash->root.type == bfd_link_hash_common)) | 
|  | { | 
|  | asection *s = NULL; | 
|  | bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb; | 
|  |  | 
|  | if (phdr_load_seg->count != 0) | 
|  | /* The segment contains sections, so use the first one.  */ | 
|  | s = phdr_load_seg->sections[0]; | 
|  | else | 
|  | /* Use the first (i.e. lowest-addressed) section in any segment.  */ | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | if (m->p_type == PT_LOAD && m->count != 0) | 
|  | { | 
|  | s = m->sections[0]; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (s != NULL) | 
|  | { | 
|  | hash->root.u.def.value = filehdr_vaddr - s->vma; | 
|  | hash->root.u.def.section = s; | 
|  | } | 
|  | else | 
|  | { | 
|  | hash->root.u.def.value = filehdr_vaddr; | 
|  | hash->root.u.def.section = bfd_abs_section_ptr; | 
|  | } | 
|  |  | 
|  | hash->root.type = bfd_link_hash_defined; | 
|  | hash->def_regular = 1; | 
|  | hash->non_elf = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Determine if a bfd is a debuginfo file.  Unfortunately there | 
|  | is no defined method for detecting such files, so we have to | 
|  | use heuristics instead.  */ | 
|  |  | 
|  | bool | 
|  | is_debuginfo_file (bfd *abfd) | 
|  | { | 
|  | if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour) | 
|  | return false; | 
|  |  | 
|  | Elf_Internal_Shdr **start_headers = elf_elfsections (abfd); | 
|  | Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd); | 
|  | Elf_Internal_Shdr **headerp; | 
|  |  | 
|  | for (headerp = start_headers; headerp < end_headers; headerp ++) | 
|  | { | 
|  | Elf_Internal_Shdr *header = * headerp; | 
|  |  | 
|  | /* Debuginfo files do not have any allocated SHT_PROGBITS sections. | 
|  | The only allocated sections are SHT_NOBITS or SHT_NOTES.  */ | 
|  | if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC | 
|  | && header->sh_type != SHT_NOBITS | 
|  | && header->sh_type != SHT_NOTE) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Assign file positions for other sections, except for compressed debug | 
|  | and sections assigned in _bfd_elf_assign_file_positions_for_non_load.  */ | 
|  |  | 
|  | static bool | 
|  | assign_file_positions_for_non_load_sections (bfd *abfd, | 
|  | struct bfd_link_info *link_info) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | Elf_Internal_Shdr **i_shdrpp; | 
|  | Elf_Internal_Shdr **hdrpp, **end_hdrpp; | 
|  | Elf_Internal_Phdr *phdrs; | 
|  | Elf_Internal_Phdr *p; | 
|  | struct elf_segment_map *m; | 
|  | file_ptr off; | 
|  | unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
|  | bfd_vma maxpagesize; | 
|  |  | 
|  | if (link_info != NULL) | 
|  | maxpagesize = link_info->maxpagesize; | 
|  | else | 
|  | maxpagesize = bed->maxpagesize; | 
|  | i_shdrpp = elf_elfsections (abfd); | 
|  | end_hdrpp = i_shdrpp + elf_numsections (abfd); | 
|  | off = elf_next_file_pos (abfd); | 
|  | for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  | bfd_vma align; | 
|  |  | 
|  | hdr = *hdrpp; | 
|  | if (hdr->bfd_section != NULL | 
|  | && (hdr->bfd_section->filepos != 0 | 
|  | || (hdr->sh_type == SHT_NOBITS | 
|  | && hdr->contents == NULL))) | 
|  | BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); | 
|  | else if ((hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | { | 
|  | if (hdr->sh_size != 0 | 
|  | /* PR 24717 - debuginfo files are known to be not strictly | 
|  | compliant with the ELF standard.  In particular they often | 
|  | have .note.gnu.property sections that are outside of any | 
|  | loadable segment.  This is not a problem for such files, | 
|  | so do not warn about them.  */ | 
|  | && ! is_debuginfo_file (abfd)) | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: warning: allocated section `%s' not in segment"), | 
|  | abfd, | 
|  | (hdr->bfd_section == NULL | 
|  | ? "*unknown*" | 
|  | : hdr->bfd_section->name)); | 
|  | /* We don't need to page align empty sections.  */ | 
|  | if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) | 
|  | align = maxpagesize; | 
|  | else | 
|  | align = hdr->sh_addralign & -hdr->sh_addralign; | 
|  | off += vma_page_aligned_bias (hdr->sh_addr, off, align); | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, | 
|  | false); | 
|  | } | 
|  | else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | 
|  | && hdr->bfd_section == NULL) | 
|  | /* We don't know the offset of these sections yet: | 
|  | their size has not been decided.  */ | 
|  | || (abfd->is_linker_output | 
|  | && hdr->bfd_section != NULL | 
|  | && (hdr->sh_name == -1u | 
|  | || bfd_section_is_ctf (hdr->bfd_section))) | 
|  | || hdr == i_shdrpp[elf_onesymtab (abfd)] | 
|  | || (elf_symtab_shndx_list (abfd) != NULL | 
|  | && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) | 
|  | || hdr == i_shdrpp[elf_strtab_sec (abfd)] | 
|  | || hdr == i_shdrpp[elf_shstrtab_sec (abfd)]) | 
|  | hdr->sh_offset = -1; | 
|  | else | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | 
|  | } | 
|  | elf_next_file_pos (abfd) = off; | 
|  |  | 
|  | /* Now that we have set the section file positions, we can set up | 
|  | the file positions for the non PT_LOAD segments.  */ | 
|  | phdrs = elf_tdata (abfd)->phdr; | 
|  | for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) | 
|  | { | 
|  | if (p->p_type == PT_GNU_RELRO) | 
|  | { | 
|  | bfd_vma start, end;  /* Bytes.  */ | 
|  | bool ok; | 
|  |  | 
|  | if (link_info != NULL) | 
|  | { | 
|  | /* During linking the range of the RELRO segment is passed | 
|  | in link_info.  Note that there may be padding between | 
|  | relro_start and the first RELRO section.  */ | 
|  | start = link_info->relro_start; | 
|  | end = link_info->relro_end; | 
|  | } | 
|  | else if (m->count != 0) | 
|  | { | 
|  | if (!m->p_size_valid) | 
|  | abort (); | 
|  | start = m->sections[0]->vma; | 
|  | end = start + m->p_size / opb; | 
|  | } | 
|  | else | 
|  | { | 
|  | start = 0; | 
|  | end = 0; | 
|  | } | 
|  |  | 
|  | ok = false; | 
|  | if (start < end) | 
|  | { | 
|  | struct elf_segment_map *lm; | 
|  | const Elf_Internal_Phdr *lp; | 
|  | unsigned int i; | 
|  |  | 
|  | /* Find a LOAD segment containing a section in the RELRO | 
|  | segment.  */ | 
|  | for (lm = elf_seg_map (abfd), lp = phdrs; | 
|  | lm != NULL; | 
|  | lm = lm->next, lp++) | 
|  | { | 
|  | if (lp->p_type == PT_LOAD | 
|  | && lm->count != 0 | 
|  | && (lm->sections[lm->count - 1]->vma | 
|  | + (!IS_TBSS (lm->sections[lm->count - 1]) | 
|  | ? lm->sections[lm->count - 1]->size / opb | 
|  | : 0)) > start | 
|  | && lm->sections[0]->vma < end) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (lm != NULL) | 
|  | { | 
|  | /* Find the section starting the RELRO segment.  */ | 
|  | for (i = 0; i < lm->count; i++) | 
|  | { | 
|  | asection *s = lm->sections[i]; | 
|  | if (s->vma >= start | 
|  | && s->vma < end | 
|  | && s->size != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i < lm->count) | 
|  | { | 
|  | p->p_vaddr = lm->sections[i]->vma * opb; | 
|  | p->p_paddr = lm->sections[i]->lma * opb; | 
|  | p->p_offset = lm->sections[i]->filepos; | 
|  | p->p_memsz = end * opb - p->p_vaddr; | 
|  | p->p_filesz = p->p_memsz; | 
|  |  | 
|  | /* The RELRO segment typically ends a few bytes | 
|  | into .got.plt but other layouts are possible. | 
|  | In cases where the end does not match any | 
|  | loaded section (for instance is in file | 
|  | padding), trim p_filesz back to correspond to | 
|  | the end of loaded section contents.  */ | 
|  | if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr) | 
|  | p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr; | 
|  |  | 
|  | /* Preserve the alignment and flags if they are | 
|  | valid.  The gold linker generates RW/4 for | 
|  | the PT_GNU_RELRO section.  It is better for | 
|  | objcopy/strip to honor these attributes | 
|  | otherwise gdb will choke when using separate | 
|  | debug files.  */ | 
|  | if (!m->p_align_valid) | 
|  | p->p_align = 1; | 
|  | if (!m->p_flags_valid) | 
|  | p->p_flags = PF_R; | 
|  | ok = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ok) | 
|  | { | 
|  | if (link_info != NULL) | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: unable to allocate any sections" | 
|  | " to PT_GNU_RELRO segment"), | 
|  | abfd); | 
|  | memset (p, 0, sizeof *p); | 
|  | } | 
|  | } | 
|  | else if (p->p_type == PT_GNU_STACK) | 
|  | { | 
|  | if (m->p_size_valid) | 
|  | p->p_memsz = m->p_size; | 
|  | } | 
|  | else if (m->count != 0) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | if (p->p_type != PT_LOAD | 
|  | && (p->p_type != PT_NOTE | 
|  | || bfd_get_format (abfd) != bfd_core)) | 
|  | { | 
|  | /* A user specified segment layout may include a PHDR | 
|  | segment that overlaps with a LOAD segment...  */ | 
|  | if (p->p_type == PT_PHDR) | 
|  | { | 
|  | m->count = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (m->includes_filehdr || m->includes_phdrs) | 
|  | { | 
|  | /* PR 17512: file: 2195325e.  */ | 
|  | _bfd_error_handler | 
|  | (_("%pB: error: non-load segment %d includes file header " | 
|  | "and/or program header"), | 
|  | abfd, (int) (p - phdrs)); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | p->p_filesz = 0; | 
|  | p->p_offset = m->sections[0]->filepos; | 
|  | for (i = m->count; i-- != 0;) | 
|  | { | 
|  | asection *sect = m->sections[i]; | 
|  | Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr; | 
|  | if (hdr->sh_type != SHT_NOBITS) | 
|  | { | 
|  | p->p_filesz = sect->filepos - p->p_offset + hdr->sh_size; | 
|  | /* NB: p_memsz of the loadable PT_NOTE segment | 
|  | should be the same as p_filesz.  */ | 
|  | if (p->p_type == PT_NOTE | 
|  | && (hdr->sh_flags & SHF_ALLOC) != 0) | 
|  | p->p_memsz = p->p_filesz; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static elf_section_list * | 
|  | find_section_in_list (unsigned int i, elf_section_list * list) | 
|  | { | 
|  | for (;list != NULL; list = list->next) | 
|  | if (list->ndx == i) | 
|  | break; | 
|  | return list; | 
|  | } | 
|  |  | 
|  | /* Work out the file positions of all the sections.  This is called by | 
|  | _bfd_elf_compute_section_file_positions.  All the section sizes and | 
|  | VMAs must be known before this is called. | 
|  |  | 
|  | Reloc sections come in two flavours: Those processed specially as | 
|  | "side-channel" data attached to a section to which they apply, and | 
|  | those that bfd doesn't process as relocations.  The latter sort are | 
|  | stored in a normal bfd section by bfd_section_from_shdr.  We don't | 
|  | consider the former sort here, unless they form part of the loadable | 
|  | image.  Reloc sections not assigned here (and compressed debugging | 
|  | sections and CTF sections which nothing else in the file can rely | 
|  | upon) will be handled later by assign_file_positions_for_relocs. | 
|  |  | 
|  | We also don't set the positions of the .symtab and .strtab here.  */ | 
|  |  | 
|  | static bool | 
|  | assign_file_positions_except_relocs (bfd *abfd, | 
|  | struct bfd_link_info *link_info) | 
|  | { | 
|  | struct elf_obj_tdata *tdata = elf_tdata (abfd); | 
|  | Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | unsigned int alloc; | 
|  |  | 
|  | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 | 
|  | && bfd_get_format (abfd) != bfd_core) | 
|  | { | 
|  | Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); | 
|  | unsigned int num_sec = elf_numsections (abfd); | 
|  | Elf_Internal_Shdr **hdrpp; | 
|  | unsigned int i; | 
|  | file_ptr off; | 
|  |  | 
|  | /* Start after the ELF header.  */ | 
|  | off = i_ehdrp->e_ehsize; | 
|  |  | 
|  | /* We are not creating an executable, which means that we are | 
|  | not creating a program header, and that the actual order of | 
|  | the sections in the file is unimportant.  */ | 
|  | for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  |  | 
|  | hdr = *hdrpp; | 
|  | if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) | 
|  | && hdr->bfd_section == NULL) | 
|  | /* Do not assign offsets for these sections yet: we don't know | 
|  | their sizes.  */ | 
|  | || (abfd->is_linker_output | 
|  | && hdr->bfd_section != NULL | 
|  | && (hdr->sh_name == -1u | 
|  | || bfd_section_is_ctf (hdr->bfd_section))) | 
|  | || i == elf_onesymtab (abfd) | 
|  | || (elf_symtab_shndx_list (abfd) != NULL | 
|  | && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) | 
|  | || i == elf_strtab_sec (abfd) | 
|  | || i == elf_shstrtab_sec (abfd)) | 
|  | { | 
|  | hdr->sh_offset = -1; | 
|  | } | 
|  | else | 
|  | off = _bfd_elf_assign_file_position_for_section (hdr, off, true); | 
|  | } | 
|  |  | 
|  | elf_next_file_pos (abfd) = off; | 
|  | elf_program_header_size (abfd) = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Assign file positions for the loaded sections based on the | 
|  | assignment of sections to segments.  */ | 
|  | if (!assign_file_positions_for_load_sections (abfd, link_info)) | 
|  | return false; | 
|  |  | 
|  | /* And for non-load sections.  */ | 
|  | if (!assign_file_positions_for_non_load_sections (abfd, link_info)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!(*bed->elf_backend_modify_headers) (abfd, link_info)) | 
|  | return false; | 
|  |  | 
|  | /* Write out the program headers.  */ | 
|  | alloc = i_ehdrp->e_phnum; | 
|  | if (alloc != 0) | 
|  | { | 
|  | if (link_info != NULL && ! link_info->no_warn_rwx_segments) | 
|  | { | 
|  | bool warned_tls = false; | 
|  | bool warned_rwx = false; | 
|  |  | 
|  | /* Memory resident segments with non-zero size and RWX | 
|  | permissions are a security risk, so we generate a warning | 
|  | here if we are creating any.  */ | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; i < alloc; i++) | 
|  | { | 
|  | const Elf_Internal_Phdr * phdr = tdata->phdr + i; | 
|  |  | 
|  | if (phdr->p_memsz == 0) | 
|  | continue; | 
|  |  | 
|  | if (! warned_tls | 
|  | && phdr->p_type == PT_TLS | 
|  | && (phdr->p_flags & PF_X)) | 
|  | { | 
|  | if (link_info->warn_is_error_for_rwx_segments) | 
|  | { | 
|  | _bfd_error_handler (_("\ | 
|  | error: %pB has a TLS segment with execute permission"), | 
|  | abfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | _bfd_error_handler (_("\ | 
|  | warning: %pB has a TLS segment with execute permission"), | 
|  | abfd); | 
|  | if (warned_rwx) | 
|  | break; | 
|  |  | 
|  | warned_tls = true; | 
|  | } | 
|  | else if (! warned_rwx | 
|  | && phdr->p_type == PT_LOAD | 
|  | && ((phdr->p_flags & (PF_R | PF_W | PF_X)) | 
|  | == (PF_R | PF_W | PF_X))) | 
|  | { | 
|  | if (link_info->warn_is_error_for_rwx_segments) | 
|  | { | 
|  | _bfd_error_handler (_("\ | 
|  | error: %pB has a LOAD segment with RWX permissions"), | 
|  | abfd); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | _bfd_error_handler (_("\ | 
|  | warning: %pB has a LOAD segment with RWX permissions"), | 
|  | abfd); | 
|  | if (warned_tls) | 
|  | break; | 
|  |  | 
|  | warned_rwx = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0 | 
|  | || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_init_file_header (bfd *abfd, | 
|  | struct bfd_link_info *info ATTRIBUTE_UNUSED) | 
|  | { | 
|  | Elf_Internal_Ehdr *i_ehdrp;	/* Elf file header, internal form.  */ | 
|  | struct elf_strtab_hash *shstrtab; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  |  | 
|  | shstrtab = _bfd_elf_strtab_init (); | 
|  | if (shstrtab == NULL) | 
|  | return false; | 
|  |  | 
|  | elf_shstrtab (abfd) = shstrtab; | 
|  |  | 
|  | i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; | 
|  | i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; | 
|  | i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; | 
|  | i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; | 
|  |  | 
|  | i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; | 
|  | i_ehdrp->e_ident[EI_DATA] = | 
|  | bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; | 
|  | i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; | 
|  |  | 
|  | if ((abfd->flags & DYNAMIC) != 0) | 
|  | i_ehdrp->e_type = ET_DYN; | 
|  | else if ((abfd->flags & EXEC_P) != 0) | 
|  | i_ehdrp->e_type = ET_EXEC; | 
|  | else if (bfd_get_format (abfd) == bfd_core) | 
|  | i_ehdrp->e_type = ET_CORE; | 
|  | else | 
|  | i_ehdrp->e_type = ET_REL; | 
|  |  | 
|  | switch (bfd_get_arch (abfd)) | 
|  | { | 
|  | case bfd_arch_unknown: | 
|  | i_ehdrp->e_machine = EM_NONE; | 
|  | break; | 
|  |  | 
|  | /* There used to be a long list of cases here, each one setting | 
|  | e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE | 
|  | in the corresponding bfd definition.  To avoid duplication, | 
|  | the switch was removed.  Machines that need special handling | 
|  | can generally do it in elf_backend_final_write_processing(), | 
|  | unless they need the information earlier than the final write. | 
|  | Such need can generally be supplied by replacing the tests for | 
|  | e_machine with the conditions used to determine it.  */ | 
|  | default: | 
|  | i_ehdrp->e_machine = bed->elf_machine_code; | 
|  | } | 
|  |  | 
|  | i_ehdrp->e_version = bed->s->ev_current; | 
|  | i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; | 
|  |  | 
|  | /* No program header, for now.  */ | 
|  | i_ehdrp->e_phoff = 0; | 
|  | i_ehdrp->e_phentsize = 0; | 
|  | i_ehdrp->e_phnum = 0; | 
|  |  | 
|  | /* Each bfd section is section header entry.  */ | 
|  | i_ehdrp->e_entry = bfd_get_start_address (abfd); | 
|  | i_ehdrp->e_shentsize = bed->s->sizeof_shdr; | 
|  |  | 
|  | elf_tdata (abfd)->symtab_hdr.sh_name = | 
|  | (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false); | 
|  | elf_tdata (abfd)->strtab_hdr.sh_name = | 
|  | (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false); | 
|  | elf_tdata (abfd)->shstrtab_hdr.sh_name = | 
|  | (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false); | 
|  | if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 | 
|  | || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1 | 
|  | || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. | 
|  |  | 
|  | FIXME: We used to have code here to sort the PT_LOAD segments into | 
|  | ascending order, as per the ELF spec.  But this breaks some programs, | 
|  | including the Linux kernel.  But really either the spec should be | 
|  | changed or the programs updated.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info) | 
|  | { | 
|  | if (link_info != NULL && bfd_link_pie (link_info)) | 
|  | { | 
|  | Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd); | 
|  | unsigned int num_segments = i_ehdrp->e_phnum; | 
|  | struct elf_obj_tdata *tdata = elf_tdata (obfd); | 
|  | Elf_Internal_Phdr *segment = tdata->phdr; | 
|  | Elf_Internal_Phdr *end_segment = &segment[num_segments]; | 
|  |  | 
|  | /* Find the lowest p_vaddr in PT_LOAD segments.  */ | 
|  | bfd_vma p_vaddr = (bfd_vma) -1; | 
|  | for (; segment < end_segment; segment++) | 
|  | if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr) | 
|  | p_vaddr = segment->p_vaddr; | 
|  |  | 
|  | /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD | 
|  | segments is non-zero.  */ | 
|  | if (p_vaddr) | 
|  | i_ehdrp->e_type = ET_EXEC; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Assign file positions for all the reloc sections which are not part | 
|  | of the loadable file image, and the file position of section headers.  */ | 
|  |  | 
|  | static bool | 
|  | _bfd_elf_assign_file_positions_for_non_load (bfd *abfd) | 
|  | { | 
|  | file_ptr off; | 
|  | Elf_Internal_Shdr **shdrpp, **end_shdrpp; | 
|  | Elf_Internal_Shdr *shdrp; | 
|  | Elf_Internal_Ehdr *i_ehdrp; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | /* Skip non-load sections without section header.  */ | 
|  | if ((abfd->flags & BFD_NO_SECTION_HEADER) != 0) | 
|  | return true; | 
|  |  | 
|  | off = elf_next_file_pos (abfd); | 
|  |  | 
|  | shdrpp = elf_elfsections (abfd); | 
|  | end_shdrpp = shdrpp + elf_numsections (abfd); | 
|  | for (shdrpp++; shdrpp < end_shdrpp; shdrpp++) | 
|  | { | 
|  | shdrp = *shdrpp; | 
|  | if (shdrp->sh_offset == -1) | 
|  | { | 
|  | asection *sec = shdrp->bfd_section; | 
|  | if (sec == NULL | 
|  | || shdrp->sh_type == SHT_REL | 
|  | || shdrp->sh_type == SHT_RELA) | 
|  | ; | 
|  | else if (bfd_section_is_ctf (sec)) | 
|  | { | 
|  | /* Update section size and contents.	*/ | 
|  | shdrp->sh_size = sec->size; | 
|  | shdrp->contents = sec->contents; | 
|  | } | 
|  | else if (shdrp->sh_name == -1u) | 
|  | { | 
|  | const char *name = sec->name; | 
|  | struct bfd_elf_section_data *d; | 
|  |  | 
|  | /* Compress DWARF debug sections.  */ | 
|  | if (!bfd_compress_section (abfd, sec, shdrp->contents)) | 
|  | return false; | 
|  |  | 
|  | if (sec->compress_status == COMPRESS_SECTION_DONE | 
|  | && (abfd->flags & BFD_COMPRESS_GABI) == 0 | 
|  | && name[1] == 'd') | 
|  | { | 
|  | /* If section is compressed with zlib-gnu, convert | 
|  | section name from .debug_* to .zdebug_*.  */ | 
|  | char *new_name = bfd_debug_name_to_zdebug (abfd, name); | 
|  | if (new_name == NULL) | 
|  | return false; | 
|  | name = new_name; | 
|  | } | 
|  | /* Add section name to section name section.  */ | 
|  | shdrp->sh_name | 
|  | = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), | 
|  | name, false); | 
|  | d = elf_section_data (sec); | 
|  |  | 
|  | /* Add reloc section name to section name section.  */ | 
|  | if (d->rel.hdr | 
|  | && !_bfd_elf_set_reloc_sh_name (abfd, d->rel.hdr, | 
|  | name, false)) | 
|  | return false; | 
|  | if (d->rela.hdr | 
|  | && !_bfd_elf_set_reloc_sh_name (abfd, d->rela.hdr, | 
|  | name, true)) | 
|  | return false; | 
|  |  | 
|  | /* Update section size and contents.  */ | 
|  | shdrp->sh_size = sec->size; | 
|  | shdrp->contents = sec->contents; | 
|  | sec->contents = NULL; | 
|  | } | 
|  |  | 
|  | off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Place section name section after DWARF debug sections have been | 
|  | compressed.  */ | 
|  | _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); | 
|  | shdrp = &elf_tdata (abfd)->shstrtab_hdr; | 
|  | shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); | 
|  | off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); | 
|  |  | 
|  | /* Place the section headers.  */ | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  | bed = get_elf_backend_data (abfd); | 
|  | off = align_file_position (off, 1 << bed->s->log_file_align); | 
|  | i_ehdrp->e_shoff = off; | 
|  | off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; | 
|  | elf_next_file_pos (abfd) = off; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_write_object_contents (bfd *abfd) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | Elf_Internal_Shdr **i_shdrp; | 
|  | bool failed; | 
|  | unsigned int count, num_sec; | 
|  | struct elf_obj_tdata *t; | 
|  |  | 
|  | if (! abfd->output_has_begun | 
|  | && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) | 
|  | return false; | 
|  | /* Do not rewrite ELF data when the BFD has been opened for update. | 
|  | abfd->output_has_begun was set to TRUE on opening, so creation of | 
|  | new sections, and modification of existing section sizes was | 
|  | restricted.  This means the ELF header, program headers and | 
|  | section headers can't have changed.  If the contents of any | 
|  | sections has been modified, then those changes have already been | 
|  | written to the BFD.  */ | 
|  | else if (abfd->direction == both_direction) | 
|  | { | 
|  | BFD_ASSERT (abfd->output_has_begun); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | i_shdrp = elf_elfsections (abfd); | 
|  |  | 
|  | failed = false; | 
|  | bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); | 
|  | if (failed) | 
|  | return false; | 
|  |  | 
|  | if (!_bfd_elf_assign_file_positions_for_non_load (abfd)) | 
|  | return false; | 
|  |  | 
|  | /* After writing the headers, we need to write the sections too...  */ | 
|  | num_sec = elf_numsections (abfd); | 
|  | for (count = 1; count < num_sec; count++) | 
|  | { | 
|  | /* Don't set the sh_name field without section header.  */ | 
|  | if ((abfd->flags & BFD_NO_SECTION_HEADER) == 0) | 
|  | i_shdrp[count]->sh_name | 
|  | = _bfd_elf_strtab_offset (elf_shstrtab (abfd), | 
|  | i_shdrp[count]->sh_name); | 
|  | if (bed->elf_backend_section_processing) | 
|  | if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count])) | 
|  | return false; | 
|  | if (i_shdrp[count]->contents) | 
|  | { | 
|  | bfd_size_type amt = i_shdrp[count]->sh_size; | 
|  |  | 
|  | if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 | 
|  | || bfd_write (i_shdrp[count]->contents, amt, abfd) != amt) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Write out the section header names.  */ | 
|  | t = elf_tdata (abfd); | 
|  | if (elf_shstrtab (abfd) != NULL | 
|  | && t->shstrtab_hdr.sh_offset != -1 | 
|  | && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0 | 
|  | || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) | 
|  | return false; | 
|  |  | 
|  | if (!(*bed->elf_backend_final_write_processing) (abfd)) | 
|  | return false; | 
|  |  | 
|  | if (!bed->s->write_shdrs_and_ehdr (abfd)) | 
|  | return false; | 
|  |  | 
|  | /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0].  */ | 
|  | if (t->o->build_id.after_write_object_contents != NULL | 
|  | && !(*t->o->build_id.after_write_object_contents) (abfd)) | 
|  | return false; | 
|  | if (t->o->package_metadata.after_write_object_contents != NULL | 
|  | && !(*t->o->package_metadata.after_write_object_contents) (abfd)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_write_corefile_contents (bfd *abfd) | 
|  | { | 
|  | /* Hopefully this can be done just like an object file.  */ | 
|  | return _bfd_elf_write_object_contents (abfd); | 
|  | } | 
|  |  | 
|  | /* Given a section, search the header to find them.  */ | 
|  |  | 
|  | unsigned int | 
|  | _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) | 
|  | { | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned int sec_index; | 
|  |  | 
|  | if (elf_section_data (asect) != NULL | 
|  | && elf_section_data (asect)->this_idx != 0) | 
|  | return elf_section_data (asect)->this_idx; | 
|  |  | 
|  | if (bfd_is_abs_section (asect)) | 
|  | sec_index = SHN_ABS; | 
|  | else if (bfd_is_com_section (asect)) | 
|  | sec_index = SHN_COMMON; | 
|  | else if (bfd_is_und_section (asect)) | 
|  | sec_index = SHN_UNDEF; | 
|  | else | 
|  | sec_index = SHN_BAD; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | if (bed->elf_backend_section_from_bfd_section) | 
|  | { | 
|  | int retval = sec_index; | 
|  |  | 
|  | if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | if (sec_index == SHN_BAD) | 
|  | bfd_set_error (bfd_error_nonrepresentable_section); | 
|  |  | 
|  | return sec_index; | 
|  | } | 
|  |  | 
|  | /* Given a BFD symbol, return the index in the ELF symbol table, or -1 | 
|  | on error.  */ | 
|  |  | 
|  | int | 
|  | _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) | 
|  | { | 
|  | asymbol *asym_ptr = *asym_ptr_ptr; | 
|  | int idx; | 
|  | flagword flags = asym_ptr->flags; | 
|  |  | 
|  | /* When gas creates relocations against local labels, it creates its | 
|  | own symbol for the section, but does put the symbol into the | 
|  | symbol chain, so udata is 0.  When the linker is generating | 
|  | relocatable output, this section symbol may be for one of the | 
|  | input sections rather than the output section.  */ | 
|  | if (asym_ptr->udata.i == 0 | 
|  | && (flags & BSF_SECTION_SYM) | 
|  | && asym_ptr->section) | 
|  | { | 
|  | asection *sec; | 
|  |  | 
|  | sec = asym_ptr->section; | 
|  | if (sec->owner != abfd && sec->output_section != NULL) | 
|  | sec = sec->output_section; | 
|  | if (sec->owner == abfd | 
|  | && sec->index < elf_num_section_syms (abfd) | 
|  | && elf_section_syms (abfd)[sec->index] != NULL) | 
|  | asym_ptr->udata.i = elf_section_syms (abfd)[sec->index]->udata.i; | 
|  | } | 
|  |  | 
|  | idx = asym_ptr->udata.i; | 
|  |  | 
|  | if (idx == 0) | 
|  | { | 
|  | /* This case can occur when using --strip-symbol on a symbol | 
|  | which is used in a relocation entry.  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB: symbol `%s' required but not present"), | 
|  | abfd, bfd_asymbol_name (asym_ptr)); | 
|  | bfd_set_error (bfd_error_no_symbols); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #if DEBUG & 4 | 
|  | { | 
|  | fprintf (stderr, | 
|  | "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d," | 
|  | " flags = 0x%.8x\n", | 
|  | (long) asym_ptr, asym_ptr->name, idx, flags); | 
|  | fflush (stderr); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static inline bfd_vma | 
|  | segment_size (Elf_Internal_Phdr *segment) | 
|  | { | 
|  | return (segment->p_memsz > segment->p_filesz | 
|  | ? segment->p_memsz : segment->p_filesz); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Returns the end address of the segment + 1.  */ | 
|  | static inline bfd_vma | 
|  | segment_end (Elf_Internal_Phdr *segment, bfd_vma start) | 
|  | { | 
|  | return start + segment_size (segment); | 
|  | } | 
|  |  | 
|  | static inline bfd_size_type | 
|  | section_size (asection *section, Elf_Internal_Phdr *segment) | 
|  | { | 
|  | if ((section->flags & SEC_HAS_CONTENTS) != 0 | 
|  | || (section->flags & SEC_THREAD_LOCAL) == 0 | 
|  | || segment->p_type == PT_TLS) | 
|  | return section->size; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Returns TRUE if the given section is contained within the given | 
|  | segment.  LMA addresses are compared against PADDR when | 
|  | USE_VADDR is false, VMA against VADDR when true.  */ | 
|  | static bool | 
|  | is_contained_by (asection *section, Elf_Internal_Phdr *segment, | 
|  | bfd_vma paddr, bfd_vma vaddr, unsigned int opb, | 
|  | bool use_vaddr) | 
|  | { | 
|  | bfd_vma seg_addr = !use_vaddr ? paddr : vaddr; | 
|  | bfd_vma addr = !use_vaddr ? section->lma : section->vma; | 
|  | bfd_vma octet; | 
|  | if (_bfd_mul_overflow (addr, opb, &octet)) | 
|  | return false; | 
|  | /* The third and fourth lines below are testing that the section end | 
|  | address is within the segment.  It's written this way to avoid | 
|  | overflow.  Add seg_addr + section_size to both sides of the | 
|  | inequality to make it obvious.  */ | 
|  | return (octet >= seg_addr | 
|  | && segment_size (segment) >= section_size (section, segment) | 
|  | && (octet - seg_addr | 
|  | <= segment_size (segment) - section_size (section, segment))); | 
|  | } | 
|  |  | 
|  | /* Handle PT_NOTE segment.  */ | 
|  | static bool | 
|  | is_note (asection *s, Elf_Internal_Phdr *p) | 
|  | { | 
|  | return (p->p_type == PT_NOTE | 
|  | && elf_section_type (s) == SHT_NOTE | 
|  | && (ufile_ptr) s->filepos >= p->p_offset | 
|  | && p->p_filesz >= s->size | 
|  | && (ufile_ptr) s->filepos - p->p_offset <= p->p_filesz - s->size); | 
|  | } | 
|  |  | 
|  | /* Rewrite program header information.  */ | 
|  |  | 
|  | static bool | 
|  | rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize) | 
|  | { | 
|  | Elf_Internal_Ehdr *iehdr; | 
|  | struct elf_segment_map *map; | 
|  | struct elf_segment_map *map_first; | 
|  | struct elf_segment_map **pointer_to_map; | 
|  | Elf_Internal_Phdr *segment; | 
|  | asection *section; | 
|  | unsigned int i; | 
|  | unsigned int num_segments; | 
|  | bool phdr_included = false; | 
|  | bool p_paddr_valid; | 
|  | struct elf_segment_map *phdr_adjust_seg = NULL; | 
|  | unsigned int phdr_adjust_num = 0; | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned int opb = bfd_octets_per_byte (ibfd, NULL); | 
|  |  | 
|  | bed = get_elf_backend_data (ibfd); | 
|  | iehdr = elf_elfheader (ibfd); | 
|  |  | 
|  | map_first = NULL; | 
|  | pointer_to_map = &map_first; | 
|  |  | 
|  | num_segments = elf_elfheader (ibfd)->e_phnum; | 
|  |  | 
|  | /* The complicated case when p_vaddr is 0 is to handle the Solaris | 
|  | linker, which generates a PT_INTERP section with p_vaddr and | 
|  | p_memsz set to 0.  */ | 
|  | #define IS_SOLARIS_PT_INTERP(p, s)					\ | 
|  | (p->p_vaddr == 0							\ | 
|  | && p->p_paddr == 0							\ | 
|  | && p->p_memsz == 0							\ | 
|  | && p->p_filesz > 0							\ | 
|  | && (s->flags & SEC_HAS_CONTENTS) != 0				\ | 
|  | && s->size > 0							\ | 
|  | && (bfd_vma) s->filepos >= p->p_offset				\ | 
|  | && ((bfd_vma) s->filepos + s->size					\ | 
|  | <= p->p_offset + p->p_filesz)) | 
|  |  | 
|  | /* Decide if the given section should be included in the given segment. | 
|  | A section will be included if: | 
|  | 1. It is within the address space of the segment -- we use the LMA | 
|  | if that is set for the segment and the VMA otherwise, | 
|  | 2. It is an allocated section or a NOTE section in a PT_NOTE | 
|  | segment. | 
|  | 3. There is an output section associated with it, | 
|  | 4. The section has not already been allocated to a previous segment. | 
|  | 5. PT_GNU_STACK segments do not include any sections. | 
|  | 6. PT_TLS segment includes only SHF_TLS sections. | 
|  | 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. | 
|  | 8. PT_DYNAMIC should not contain empty sections at the beginning | 
|  | (with the possible exception of .dynamic).  */ | 
|  | #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, opb, paddr_valid)	\ | 
|  | (((is_contained_by (section, segment, segment->p_paddr,		\ | 
|  | segment->p_vaddr, opb, !paddr_valid)		\ | 
|  | && (section->flags & SEC_ALLOC) != 0)				\ | 
|  | || is_note (section, segment))					\ | 
|  | && segment->p_type != PT_GNU_STACK					\ | 
|  | && (segment->p_type != PT_TLS					\ | 
|  | || (section->flags & SEC_THREAD_LOCAL))				\ | 
|  | && (segment->p_type == PT_LOAD					\ | 
|  | || segment->p_type == PT_TLS					\ | 
|  | || (section->flags & SEC_THREAD_LOCAL) == 0)			\ | 
|  | && (segment->p_type != PT_DYNAMIC					\ | 
|  | || section_size (section, segment) > 0				\ | 
|  | || (segment->p_paddr						\ | 
|  | ? segment->p_paddr != section->lma * (opb)			\ | 
|  | : segment->p_vaddr != section->vma * (opb))			\ | 
|  | || (strcmp (bfd_section_name (section), ".dynamic") == 0))	\ | 
|  | && (segment->p_type != PT_LOAD || !section->segment_mark)) | 
|  |  | 
|  | /* If the output section of a section in the input segment is NULL, | 
|  | it is removed from the corresponding output segment.   */ | 
|  | #define INCLUDE_SECTION_IN_SEGMENT(section, segment, opb, paddr_valid)	\ | 
|  | (IS_SECTION_IN_INPUT_SEGMENT (section, segment, opb, paddr_valid)	\ | 
|  | && section->output_section != NULL) | 
|  |  | 
|  | /* Returns TRUE iff seg1 starts after the end of seg2.  */ | 
|  | #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field)			\ | 
|  | (seg1->field >= segment_end (seg2, seg2->field)) | 
|  |  | 
|  | /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both | 
|  | their VMA address ranges and their LMA address ranges overlap. | 
|  | It is possible to have overlapping VMA ranges without overlapping LMA | 
|  | ranges.  RedBoot images for example can have both .data and .bss mapped | 
|  | to the same VMA range, but with the .data section mapped to a different | 
|  | LMA.  */ | 
|  | #define SEGMENT_OVERLAPS(seg1, seg2)					\ | 
|  | (   !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr)			\ | 
|  | || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr))			\ | 
|  | && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr)			\ | 
|  | || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) | 
|  |  | 
|  | /* Initialise the segment mark field, and discard stupid alignment.  */ | 
|  | for (section = ibfd->sections; section != NULL; section = section->next) | 
|  | { | 
|  | asection *o = section->output_section; | 
|  | if (o != NULL && o->alignment_power >= (sizeof (bfd_vma) * 8) - 1) | 
|  | o->alignment_power = 0; | 
|  | section->segment_mark = false; | 
|  | } | 
|  |  | 
|  | /* The Solaris linker creates program headers in which all the | 
|  | p_paddr fields are zero.  When we try to objcopy or strip such a | 
|  | file, we get confused.  Check for this case, and if we find it | 
|  | don't set the p_paddr_valid fields.  */ | 
|  | p_paddr_valid = false; | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | if (segment->p_paddr != 0) | 
|  | { | 
|  | p_paddr_valid = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Scan through the segments specified in the program header | 
|  | of the input BFD.  For this first scan we look for overlaps | 
|  | in the loadable segments.  These can be created by weird | 
|  | parameters to objcopy.  Also, fix some solaris weirdness.  */ | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | { | 
|  | unsigned int j; | 
|  | Elf_Internal_Phdr *segment2; | 
|  |  | 
|  | if (segment->p_type == PT_INTERP) | 
|  | for (section = ibfd->sections; section; section = section->next) | 
|  | if (IS_SOLARIS_PT_INTERP (segment, section)) | 
|  | { | 
|  | /* Mininal change so that the normal section to segment | 
|  | assignment code will work.  */ | 
|  | segment->p_vaddr = section->vma * opb; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (segment->p_type != PT_LOAD) | 
|  | { | 
|  | /* Remove PT_GNU_RELRO segment.  */ | 
|  | if (segment->p_type == PT_GNU_RELRO) | 
|  | segment->p_type = PT_NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Determine if this segment overlaps any previous segments.  */ | 
|  | for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) | 
|  | { | 
|  | bfd_signed_vma extra_length; | 
|  |  | 
|  | if (segment2->p_type != PT_LOAD | 
|  | || !SEGMENT_OVERLAPS (segment, segment2)) | 
|  | continue; | 
|  |  | 
|  | /* Merge the two segments together.  */ | 
|  | if (segment2->p_vaddr < segment->p_vaddr) | 
|  | { | 
|  | /* Extend SEGMENT2 to include SEGMENT and then delete | 
|  | SEGMENT.  */ | 
|  | extra_length = (segment_end (segment, segment->p_vaddr) | 
|  | - segment_end (segment2, segment2->p_vaddr)); | 
|  |  | 
|  | if (extra_length > 0) | 
|  | { | 
|  | segment2->p_memsz += extra_length; | 
|  | segment2->p_filesz += extra_length; | 
|  | } | 
|  |  | 
|  | segment->p_type = PT_NULL; | 
|  |  | 
|  | /* Since we have deleted P we must restart the outer loop.  */ | 
|  | i = 0; | 
|  | segment = elf_tdata (ibfd)->phdr; | 
|  | break; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Extend SEGMENT to include SEGMENT2 and then delete | 
|  | SEGMENT2.  */ | 
|  | extra_length = (segment_end (segment2, segment2->p_vaddr) | 
|  | - segment_end (segment, segment->p_vaddr)); | 
|  |  | 
|  | if (extra_length > 0) | 
|  | { | 
|  | segment->p_memsz += extra_length; | 
|  | segment->p_filesz += extra_length; | 
|  | } | 
|  |  | 
|  | segment2->p_type = PT_NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The second scan attempts to assign sections to segments.  */ | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | { | 
|  | unsigned int section_count; | 
|  | asection **sections; | 
|  | asection *output_section; | 
|  | unsigned int isec; | 
|  | asection *matching_lma; | 
|  | asection *suggested_lma; | 
|  | unsigned int j; | 
|  | size_t amt; | 
|  | asection *first_section; | 
|  |  | 
|  | if (segment->p_type == PT_NULL) | 
|  | continue; | 
|  |  | 
|  | first_section = NULL; | 
|  | /* Compute how many sections might be placed into this segment.  */ | 
|  | for (section = ibfd->sections, section_count = 0; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | /* Find the first section in the input segment, which may be | 
|  | removed from the corresponding output segment.   */ | 
|  | if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, opb, p_paddr_valid)) | 
|  | { | 
|  | if (first_section == NULL) | 
|  | first_section = section; | 
|  | if (section->output_section != NULL) | 
|  | ++section_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate a segment map big enough to contain | 
|  | all of the sections we have selected.  */ | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += section_count * sizeof (asection *); | 
|  | map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); | 
|  | if (map == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Initialise the fields of the segment map.  Default to | 
|  | using the physical address of the segment in the input BFD.  */ | 
|  | map->next = NULL; | 
|  | map->p_type = segment->p_type; | 
|  | map->p_flags = segment->p_flags; | 
|  | map->p_flags_valid = 1; | 
|  |  | 
|  | if (map->p_type == PT_LOAD | 
|  | && (ibfd->flags & D_PAGED) != 0 | 
|  | && maxpagesize > 1 | 
|  | && segment->p_align > 1) | 
|  | { | 
|  | map->p_align = segment->p_align; | 
|  | if (segment->p_align > maxpagesize) | 
|  | map->p_align = maxpagesize; | 
|  | map->p_align_valid = 1; | 
|  | } | 
|  |  | 
|  | /* If the first section in the input segment is removed, there is | 
|  | no need to preserve segment physical address in the corresponding | 
|  | output segment.  */ | 
|  | if (!first_section || first_section->output_section != NULL) | 
|  | { | 
|  | map->p_paddr = segment->p_paddr; | 
|  | map->p_paddr_valid = p_paddr_valid; | 
|  | } | 
|  |  | 
|  | /* Determine if this segment contains the ELF file header | 
|  | and if it contains the program headers themselves.  */ | 
|  | map->includes_filehdr = (segment->p_offset == 0 | 
|  | && segment->p_filesz >= iehdr->e_ehsize); | 
|  | map->includes_phdrs = 0; | 
|  |  | 
|  | if (!phdr_included || segment->p_type != PT_LOAD) | 
|  | { | 
|  | map->includes_phdrs = | 
|  | (segment->p_offset <= (bfd_vma) iehdr->e_phoff | 
|  | && (segment->p_offset + segment->p_filesz | 
|  | >= ((bfd_vma) iehdr->e_phoff | 
|  | + iehdr->e_phnum * iehdr->e_phentsize))); | 
|  |  | 
|  | if (segment->p_type == PT_LOAD && map->includes_phdrs) | 
|  | phdr_included = true; | 
|  | } | 
|  |  | 
|  | if (section_count == 0) | 
|  | { | 
|  | /* Special segments, such as the PT_PHDR segment, may contain | 
|  | no sections, but ordinary, loadable segments should contain | 
|  | something.  They are allowed by the ELF spec however, so only | 
|  | a warning is produced. | 
|  | Don't warn if an empty PT_LOAD contains the program headers. | 
|  | There is however the valid use case of embedded systems which | 
|  | have segments with p_filesz of 0 and a p_memsz > 0 to initialize | 
|  | flash memory with zeros.  No warning is shown for that case.  */ | 
|  | if (segment->p_type == PT_LOAD | 
|  | && !map->includes_phdrs | 
|  | && (segment->p_filesz > 0 || segment->p_memsz == 0)) | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler | 
|  | (_("%pB: warning: empty loadable segment detected" | 
|  | " at vaddr=%#" PRIx64 ", is this intentional?"), | 
|  | ibfd, (uint64_t) segment->p_vaddr); | 
|  |  | 
|  | map->p_vaddr_offset = segment->p_vaddr / opb; | 
|  | map->count = 0; | 
|  | *pointer_to_map = map; | 
|  | pointer_to_map = &map->next; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now scan the sections in the input BFD again and attempt | 
|  | to add their corresponding output sections to the segment map. | 
|  | The problem here is how to handle an output section which has | 
|  | been moved (ie had its LMA changed).  There are four possibilities: | 
|  |  | 
|  | 1. None of the sections have been moved. | 
|  | In this case we can continue to use the segment LMA from the | 
|  | input BFD. | 
|  |  | 
|  | 2. All of the sections have been moved by the same amount. | 
|  | In this case we can change the segment's LMA to match the LMA | 
|  | of the first section. | 
|  |  | 
|  | 3. Some of the sections have been moved, others have not. | 
|  | In this case those sections which have not been moved can be | 
|  | placed in the current segment which will have to have its size, | 
|  | and possibly its LMA changed, and a new segment or segments will | 
|  | have to be created to contain the other sections. | 
|  |  | 
|  | 4. The sections have been moved, but not by the same amount. | 
|  | In this case we can change the segment's LMA to match the LMA | 
|  | of the first section and we will have to create a new segment | 
|  | or segments to contain the other sections. | 
|  |  | 
|  | In order to save time, we allocate an array to hold the section | 
|  | pointers that we are interested in.  As these sections get assigned | 
|  | to a segment, they are removed from this array.  */ | 
|  |  | 
|  | amt = section_count * sizeof (asection *); | 
|  | sections = (asection **) bfd_malloc (amt); | 
|  | if (sections == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Step One: Scan for segment vs section LMA conflicts. | 
|  | Also add the sections to the section array allocated above. | 
|  | Also add the sections to the current segment.  In the common | 
|  | case, where the sections have not been moved, this means that | 
|  | we have completely filled the segment, and there is nothing | 
|  | more to do.  */ | 
|  | isec = 0; | 
|  | matching_lma = NULL; | 
|  | suggested_lma = NULL; | 
|  |  | 
|  | for (section = first_section, j = 0; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if (INCLUDE_SECTION_IN_SEGMENT (section, segment, opb, p_paddr_valid)) | 
|  | { | 
|  | output_section = section->output_section; | 
|  |  | 
|  | sections[j++] = section; | 
|  |  | 
|  | /* The Solaris native linker always sets p_paddr to 0. | 
|  | We try to catch that case here, and set it to the | 
|  | correct value.  Note - some backends require that | 
|  | p_paddr be left as zero.  */ | 
|  | if (!p_paddr_valid | 
|  | && segment->p_vaddr != 0 | 
|  | && !bed->want_p_paddr_set_to_zero | 
|  | && isec == 0 | 
|  | && output_section->lma != 0 | 
|  | && (align_power (segment->p_vaddr | 
|  | + (map->includes_filehdr | 
|  | ? iehdr->e_ehsize : 0) | 
|  | + (map->includes_phdrs | 
|  | ? iehdr->e_phnum * iehdr->e_phentsize | 
|  | : 0), | 
|  | output_section->alignment_power * opb) | 
|  | == (output_section->vma * opb))) | 
|  | map->p_paddr = segment->p_vaddr; | 
|  |  | 
|  | /* Match up the physical address of the segment with the | 
|  | LMA address of the output section.  */ | 
|  | if (is_contained_by (output_section, segment, map->p_paddr, | 
|  | 0, opb, false) | 
|  | || is_note (section, segment)) | 
|  | { | 
|  | if (matching_lma == NULL | 
|  | || output_section->lma < matching_lma->lma) | 
|  | matching_lma = output_section; | 
|  |  | 
|  | /* We assume that if the section fits within the segment | 
|  | then it does not overlap any other section within that | 
|  | segment.  */ | 
|  | map->sections[isec++] = output_section; | 
|  | } | 
|  | else if (suggested_lma == NULL) | 
|  | suggested_lma = output_section; | 
|  |  | 
|  | if (j == section_count) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | BFD_ASSERT (j == section_count); | 
|  |  | 
|  | /* Step Two: Adjust the physical address of the current segment, | 
|  | if necessary.  */ | 
|  | if (isec == section_count) | 
|  | { | 
|  | /* All of the sections fitted within the segment as currently | 
|  | specified.  This is the default case.  Add the segment to | 
|  | the list of built segments and carry on to process the next | 
|  | program header in the input BFD.  */ | 
|  | map->count = section_count; | 
|  | *pointer_to_map = map; | 
|  | pointer_to_map = &map->next; | 
|  |  | 
|  | if (p_paddr_valid | 
|  | && !bed->want_p_paddr_set_to_zero) | 
|  | { | 
|  | bfd_vma hdr_size = 0; | 
|  | if (map->includes_filehdr) | 
|  | hdr_size = iehdr->e_ehsize; | 
|  | if (map->includes_phdrs) | 
|  | hdr_size += iehdr->e_phnum * iehdr->e_phentsize; | 
|  |  | 
|  | /* Account for padding before the first section in the | 
|  | segment.  */ | 
|  | map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb | 
|  | - matching_lma->lma); | 
|  | } | 
|  |  | 
|  | free (sections); | 
|  | continue; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Change the current segment's physical address to match | 
|  | the LMA of the first section that fitted, or if no | 
|  | section fitted, the first section.  */ | 
|  | if (matching_lma == NULL) | 
|  | matching_lma = suggested_lma; | 
|  |  | 
|  | map->p_paddr = matching_lma->lma * opb; | 
|  |  | 
|  | /* Offset the segment physical address from the lma | 
|  | to allow for space taken up by elf headers.  */ | 
|  | if (map->includes_phdrs) | 
|  | { | 
|  | map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; | 
|  |  | 
|  | /* iehdr->e_phnum is just an estimate of the number | 
|  | of program headers that we will need.  Make a note | 
|  | here of the number we used and the segment we chose | 
|  | to hold these headers, so that we can adjust the | 
|  | offset when we know the correct value.  */ | 
|  | phdr_adjust_num = iehdr->e_phnum; | 
|  | phdr_adjust_seg = map; | 
|  | } | 
|  |  | 
|  | if (map->includes_filehdr) | 
|  | { | 
|  | bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power; | 
|  | map->p_paddr -= iehdr->e_ehsize; | 
|  | /* We've subtracted off the size of headers from the | 
|  | first section lma, but there may have been some | 
|  | alignment padding before that section too.  Try to | 
|  | account for that by adjusting the segment lma down to | 
|  | the same alignment.  */ | 
|  | if (segment->p_align != 0 && segment->p_align < align) | 
|  | align = segment->p_align; | 
|  | map->p_paddr &= -(align * opb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Step Three: Loop over the sections again, this time assigning | 
|  | those that fit to the current segment and removing them from the | 
|  | sections array; but making sure not to leave large gaps.  Once all | 
|  | possible sections have been assigned to the current segment it is | 
|  | added to the list of built segments and if sections still remain | 
|  | to be assigned, a new segment is constructed before repeating | 
|  | the loop.  */ | 
|  | isec = 0; | 
|  | do | 
|  | { | 
|  | map->count = 0; | 
|  | suggested_lma = NULL; | 
|  |  | 
|  | /* Fill the current segment with sections that fit.  */ | 
|  | for (j = 0; j < section_count; j++) | 
|  | { | 
|  | section = sections[j]; | 
|  |  | 
|  | if (section == NULL) | 
|  | continue; | 
|  |  | 
|  | output_section = section->output_section; | 
|  |  | 
|  | BFD_ASSERT (output_section != NULL); | 
|  |  | 
|  | if (is_contained_by (output_section, segment, map->p_paddr, | 
|  | 0, opb, false) | 
|  | || is_note (section, segment)) | 
|  | { | 
|  | if (map->count == 0) | 
|  | { | 
|  | /* If the first section in a segment does not start at | 
|  | the beginning of the segment, then something is | 
|  | wrong.  */ | 
|  | if (align_power (map->p_paddr | 
|  | + (map->includes_filehdr | 
|  | ? iehdr->e_ehsize : 0) | 
|  | + (map->includes_phdrs | 
|  | ? iehdr->e_phnum * iehdr->e_phentsize | 
|  | : 0), | 
|  | output_section->alignment_power * opb) | 
|  | != output_section->lma * opb) | 
|  | goto sorry; | 
|  | } | 
|  | else | 
|  | { | 
|  | asection *prev_sec; | 
|  |  | 
|  | prev_sec = map->sections[map->count - 1]; | 
|  |  | 
|  | /* If the gap between the end of the previous section | 
|  | and the start of this section is more than | 
|  | maxpagesize then we need to start a new segment.  */ | 
|  | if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, | 
|  | maxpagesize) | 
|  | < BFD_ALIGN (output_section->lma, maxpagesize)) | 
|  | || (prev_sec->lma + prev_sec->size | 
|  | > output_section->lma)) | 
|  | { | 
|  | if (suggested_lma == NULL) | 
|  | suggested_lma = output_section; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | map->sections[map->count++] = output_section; | 
|  | ++isec; | 
|  | sections[j] = NULL; | 
|  | if (segment->p_type == PT_LOAD) | 
|  | section->segment_mark = true; | 
|  | } | 
|  | else if (suggested_lma == NULL) | 
|  | suggested_lma = output_section; | 
|  | } | 
|  |  | 
|  | /* PR 23932.  A corrupt input file may contain sections that cannot | 
|  | be assigned to any segment - because for example they have a | 
|  | negative size - or segments that do not contain any sections. | 
|  | But there are also valid reasons why a segment can be empty. | 
|  | So allow a count of zero.  */ | 
|  |  | 
|  | /* Add the current segment to the list of built segments.  */ | 
|  | *pointer_to_map = map; | 
|  | pointer_to_map = &map->next; | 
|  |  | 
|  | if (isec < section_count) | 
|  | { | 
|  | /* We still have not allocated all of the sections to | 
|  | segments.  Create a new segment here, initialise it | 
|  | and carry on looping.  */ | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += section_count * sizeof (asection *); | 
|  | map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); | 
|  | if (map == NULL) | 
|  | { | 
|  | free (sections); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Initialise the fields of the segment map.  Set the physical | 
|  | physical address to the LMA of the first section that has | 
|  | not yet been assigned.  */ | 
|  | map->next = NULL; | 
|  | map->p_type = segment->p_type; | 
|  | map->p_flags = segment->p_flags; | 
|  | map->p_flags_valid = 1; | 
|  | map->p_paddr = suggested_lma->lma * opb; | 
|  | map->p_paddr_valid = p_paddr_valid; | 
|  | map->includes_filehdr = 0; | 
|  | map->includes_phdrs = 0; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | sorry: | 
|  | bfd_set_error (bfd_error_sorry); | 
|  | free (sections); | 
|  | return false; | 
|  | } | 
|  | while (isec < section_count); | 
|  |  | 
|  | free (sections); | 
|  | } | 
|  |  | 
|  | elf_seg_map (obfd) = map_first; | 
|  |  | 
|  | /* If we had to estimate the number of program headers that were | 
|  | going to be needed, then check our estimate now and adjust | 
|  | the offset if necessary.  */ | 
|  | if (phdr_adjust_seg != NULL) | 
|  | { | 
|  | unsigned int count; | 
|  |  | 
|  | for (count = 0, map = map_first; map != NULL; map = map->next) | 
|  | count++; | 
|  |  | 
|  | if (count > phdr_adjust_num) | 
|  | phdr_adjust_seg->p_paddr | 
|  | -= (count - phdr_adjust_num) * iehdr->e_phentsize; | 
|  |  | 
|  | for (map = map_first; map != NULL; map = map->next) | 
|  | if (map->p_type == PT_PHDR) | 
|  | { | 
|  | bfd_vma adjust | 
|  | = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0; | 
|  | map->p_paddr = phdr_adjust_seg->p_paddr + adjust; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | #undef IS_SOLARIS_PT_INTERP | 
|  | #undef IS_SECTION_IN_INPUT_SEGMENT | 
|  | #undef INCLUDE_SECTION_IN_SEGMENT | 
|  | #undef SEGMENT_AFTER_SEGMENT | 
|  | #undef SEGMENT_OVERLAPS | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return true if p_align in the ELF program header in ABFD is valid.  */ | 
|  |  | 
|  | static bool | 
|  | elf_is_p_align_valid (bfd *abfd) | 
|  | { | 
|  | unsigned int i; | 
|  | Elf_Internal_Phdr *segment; | 
|  | unsigned int num_segments; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | bfd_size_type maxpagesize = bed->maxpagesize; | 
|  | bfd_size_type p_align = bed->p_align; | 
|  |  | 
|  | /* Return true if the default p_align value isn't set or the maximum | 
|  | page size is the same as the minimum page size.  */ | 
|  | if (p_align == 0 || maxpagesize == bed->minpagesize) | 
|  | return true; | 
|  |  | 
|  | /* When the default p_align value is set, p_align may be set to the | 
|  | default p_align value while segments are aligned to the maximum | 
|  | page size.  In this case, the input p_align will be ignored and | 
|  | the maximum page size will be used to align the output segments.  */ | 
|  | segment = elf_tdata (abfd)->phdr; | 
|  | num_segments = elf_elfheader (abfd)->e_phnum; | 
|  | for (i = 0; i < num_segments; i++, segment++) | 
|  | if (segment->p_type == PT_LOAD | 
|  | && (segment->p_align != p_align | 
|  | || vma_page_aligned_bias (segment->p_vaddr, | 
|  | segment->p_offset, | 
|  | maxpagesize) != 0)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Copy ELF program header information.  */ | 
|  |  | 
|  | static bool | 
|  | copy_elf_program_header (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | Elf_Internal_Ehdr *iehdr; | 
|  | struct elf_segment_map *map; | 
|  | struct elf_segment_map *map_first; | 
|  | struct elf_segment_map **pointer_to_map; | 
|  | Elf_Internal_Phdr *segment; | 
|  | unsigned int i; | 
|  | unsigned int num_segments; | 
|  | bool phdr_included = false; | 
|  | bool p_paddr_valid; | 
|  | bool p_palign_valid; | 
|  | unsigned int opb = bfd_octets_per_byte (ibfd, NULL); | 
|  |  | 
|  | iehdr = elf_elfheader (ibfd); | 
|  |  | 
|  | map_first = NULL; | 
|  | pointer_to_map = &map_first; | 
|  |  | 
|  | /* If all the segment p_paddr fields are zero, don't set | 
|  | map->p_paddr_valid.  */ | 
|  | p_paddr_valid = false; | 
|  | num_segments = elf_elfheader (ibfd)->e_phnum; | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | if (segment->p_paddr != 0) | 
|  | { | 
|  | p_paddr_valid = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | p_palign_valid = elf_is_p_align_valid (ibfd); | 
|  |  | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | { | 
|  | asection *section; | 
|  | unsigned int section_count; | 
|  | size_t amt; | 
|  | Elf_Internal_Shdr *this_hdr; | 
|  | asection *first_section = NULL; | 
|  | asection *lowest_section; | 
|  |  | 
|  | /* Compute how many sections are in this segment.  */ | 
|  | for (section = ibfd->sections, section_count = 0; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | this_hdr = &(elf_section_data(section)->this_hdr); | 
|  | if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) | 
|  | { | 
|  | if (first_section == NULL) | 
|  | first_section = section; | 
|  | section_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate a segment map big enough to contain | 
|  | all of the sections we have selected.  */ | 
|  | amt = sizeof (struct elf_segment_map) - sizeof (asection *); | 
|  | amt += section_count * sizeof (asection *); | 
|  | map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); | 
|  | if (map == NULL) | 
|  | return false; | 
|  |  | 
|  | /* Initialize the fields of the output segment map with the | 
|  | input segment.  */ | 
|  | map->next = NULL; | 
|  | map->p_type = segment->p_type; | 
|  | map->p_flags = segment->p_flags; | 
|  | map->p_flags_valid = 1; | 
|  | map->p_paddr = segment->p_paddr; | 
|  | map->p_paddr_valid = p_paddr_valid; | 
|  | map->p_align = segment->p_align; | 
|  | /* Keep p_align of PT_GNU_STACK for stack alignment.  */ | 
|  | map->p_align_valid = (map->p_type == PT_GNU_STACK | 
|  | || p_palign_valid); | 
|  | map->p_vaddr_offset = 0; | 
|  |  | 
|  | if (map->p_type == PT_GNU_RELRO | 
|  | || map->p_type == PT_GNU_STACK) | 
|  | { | 
|  | /* The PT_GNU_RELRO segment may contain the first a few | 
|  | bytes in the .got.plt section even if the whole .got.plt | 
|  | section isn't in the PT_GNU_RELRO segment.  We won't | 
|  | change the size of the PT_GNU_RELRO segment. | 
|  | Similarly, PT_GNU_STACK size is significant on uclinux | 
|  | systems.    */ | 
|  | map->p_size = segment->p_memsz; | 
|  | map->p_size_valid = 1; | 
|  | } | 
|  |  | 
|  | /* Determine if this segment contains the ELF file header | 
|  | and if it contains the program headers themselves.  */ | 
|  | map->includes_filehdr = (segment->p_offset == 0 | 
|  | && segment->p_filesz >= iehdr->e_ehsize); | 
|  |  | 
|  | map->includes_phdrs = 0; | 
|  | if (! phdr_included || segment->p_type != PT_LOAD) | 
|  | { | 
|  | map->includes_phdrs = | 
|  | (segment->p_offset <= (bfd_vma) iehdr->e_phoff | 
|  | && (segment->p_offset + segment->p_filesz | 
|  | >= ((bfd_vma) iehdr->e_phoff | 
|  | + iehdr->e_phnum * iehdr->e_phentsize))); | 
|  |  | 
|  | if (segment->p_type == PT_LOAD && map->includes_phdrs) | 
|  | phdr_included = true; | 
|  | } | 
|  |  | 
|  | lowest_section = NULL; | 
|  | if (section_count != 0) | 
|  | { | 
|  | unsigned int isec = 0; | 
|  |  | 
|  | for (section = first_section; | 
|  | section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | this_hdr = &(elf_section_data(section)->this_hdr); | 
|  | if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) | 
|  | { | 
|  | map->sections[isec++] = section->output_section; | 
|  | if ((section->flags & SEC_ALLOC) != 0) | 
|  | { | 
|  | bfd_vma seg_off; | 
|  |  | 
|  | if (lowest_section == NULL | 
|  | || section->lma < lowest_section->lma) | 
|  | lowest_section = section; | 
|  |  | 
|  | /* Section lmas are set up from PT_LOAD header | 
|  | p_paddr in _bfd_elf_make_section_from_shdr. | 
|  | If this header has a p_paddr that disagrees | 
|  | with the section lma, flag the p_paddr as | 
|  | invalid.  */ | 
|  | if ((section->flags & SEC_LOAD) != 0) | 
|  | seg_off = this_hdr->sh_offset - segment->p_offset; | 
|  | else | 
|  | seg_off = this_hdr->sh_addr - segment->p_vaddr; | 
|  | if (section->lma * opb - segment->p_paddr != seg_off) | 
|  | map->p_paddr_valid = false; | 
|  | } | 
|  | if (isec == section_count) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (section_count == 0) | 
|  | map->p_vaddr_offset = segment->p_vaddr / opb; | 
|  | else if (map->p_paddr_valid) | 
|  | { | 
|  | /* Account for padding before the first section in the segment.  */ | 
|  | bfd_vma hdr_size = 0; | 
|  | if (map->includes_filehdr) | 
|  | hdr_size = iehdr->e_ehsize; | 
|  | if (map->includes_phdrs) | 
|  | hdr_size += iehdr->e_phnum * iehdr->e_phentsize; | 
|  |  | 
|  | map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb | 
|  | - (lowest_section ? lowest_section->lma : 0)); | 
|  | } | 
|  |  | 
|  | map->count = section_count; | 
|  | *pointer_to_map = map; | 
|  | pointer_to_map = &map->next; | 
|  | } | 
|  |  | 
|  | elf_seg_map (obfd) = map_first; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy private BFD data.  This copies or rewrites ELF program header | 
|  | information.  */ | 
|  |  | 
|  | static bool | 
|  | copy_private_bfd_data (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | bfd_vma maxpagesize; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | if (elf_tdata (ibfd)->phdr == NULL) | 
|  | return true; | 
|  |  | 
|  | if (ibfd->xvec == obfd->xvec) | 
|  | { | 
|  | /* Check to see if any sections in the input BFD | 
|  | covered by ELF program header have changed.  */ | 
|  | Elf_Internal_Phdr *segment; | 
|  | asection * section; | 
|  | asection * osec; | 
|  | asection * prev; | 
|  | unsigned int i, num_segments; | 
|  | Elf_Internal_Shdr *this_hdr; | 
|  | const struct elf_backend_data *bed; | 
|  |  | 
|  | bed = get_elf_backend_data (ibfd); | 
|  |  | 
|  | /* Regenerate the segment map if p_paddr is set to 0.  */ | 
|  | if (bed->want_p_paddr_set_to_zero) | 
|  | goto rewrite; | 
|  |  | 
|  | /* Initialize the segment mark field.  */ | 
|  | for (section = obfd->sections; section != NULL; | 
|  | section = section->next) | 
|  | section->segment_mark = false; | 
|  |  | 
|  | num_segments = elf_elfheader (ibfd)->e_phnum; | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | { | 
|  | /* PR binutils/3535.  The Solaris linker always sets the p_paddr | 
|  | and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 | 
|  | which severly confuses things, so always regenerate the segment | 
|  | map in this case.  */ | 
|  | if (segment->p_paddr == 0 | 
|  | && segment->p_memsz == 0 | 
|  | && (segment->p_type == PT_INTERP | 
|  | || segment->p_type == PT_DYNAMIC)) | 
|  | goto rewrite; | 
|  |  | 
|  | for (section = ibfd->sections, prev = NULL; | 
|  | section != NULL; section = section->next) | 
|  | { | 
|  | /* We mark the output section so that we know it comes | 
|  | from the input BFD.  */ | 
|  | osec = section->output_section; | 
|  | if (osec) | 
|  | osec->segment_mark = true; | 
|  |  | 
|  | /* Check if this section is covered by the segment.  */ | 
|  | this_hdr = &(elf_section_data(section)->this_hdr); | 
|  | if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) | 
|  | { | 
|  | /* FIXME: Check if its output section is changed or | 
|  | removed.  What else do we need to check?  */ | 
|  | if (osec == NULL | 
|  | || section->flags != osec->flags | 
|  | || section->lma != osec->lma | 
|  | || section->vma != osec->vma | 
|  | || section->size != osec->size | 
|  | || section->rawsize != osec->rawsize | 
|  | || section->alignment_power != osec->alignment_power) | 
|  | goto rewrite; | 
|  |  | 
|  | /* PR 31450: If this is an allocated section then make sure | 
|  | that this section's vma to lma relationship is the same | 
|  | as previous (allocated) section's.  */ | 
|  | if (prev != NULL | 
|  | && section->flags & SEC_ALLOC | 
|  | && section->lma - section->vma != prev->lma - prev->vma) | 
|  | goto rewrite; | 
|  |  | 
|  | if (section->flags & SEC_ALLOC) | 
|  | prev = section; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check to see if any output section do not come from the | 
|  | input BFD.  */ | 
|  | for (section = obfd->sections; section != NULL; | 
|  | section = section->next) | 
|  | { | 
|  | if (!section->segment_mark) | 
|  | goto rewrite; | 
|  | else | 
|  | section->segment_mark = false; | 
|  | } | 
|  |  | 
|  | return copy_elf_program_header (ibfd, obfd); | 
|  | } | 
|  |  | 
|  | rewrite: | 
|  | maxpagesize = 0; | 
|  | if (ibfd->xvec == obfd->xvec) | 
|  | { | 
|  | /* When rewriting program header, set the output maxpagesize to | 
|  | the maximum alignment of input PT_LOAD segments.  */ | 
|  | Elf_Internal_Phdr *segment; | 
|  | unsigned int i; | 
|  | unsigned int num_segments = elf_elfheader (ibfd)->e_phnum; | 
|  |  | 
|  | for (i = 0, segment = elf_tdata (ibfd)->phdr; | 
|  | i < num_segments; | 
|  | i++, segment++) | 
|  | if (segment->p_type == PT_LOAD | 
|  | && maxpagesize < segment->p_align) | 
|  | { | 
|  | /* PR 17512: file: f17299af.  */ | 
|  | if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2)) | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: warning: segment alignment of %#" | 
|  | PRIx64 " is too large"), | 
|  | ibfd, (uint64_t) segment->p_align); | 
|  | else | 
|  | maxpagesize = segment->p_align; | 
|  | } | 
|  | } | 
|  | if (maxpagesize == 0) | 
|  | maxpagesize = get_elf_backend_data (obfd)->maxpagesize; | 
|  |  | 
|  | return rewrite_elf_program_header (ibfd, obfd, maxpagesize); | 
|  | } | 
|  |  | 
|  | /* Initialize private output section information from input section.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_init_private_section_data (bfd *ibfd, | 
|  | asection *isec, | 
|  | bfd *obfd, | 
|  | asection *osec, | 
|  | struct bfd_link_info *link_info) | 
|  |  | 
|  | { | 
|  | Elf_Internal_Shdr *ihdr, *ohdr; | 
|  | bool final_link = (link_info != NULL | 
|  | && !bfd_link_relocatable (link_info)); | 
|  |  | 
|  | if (ibfd->xvec->flavour != bfd_target_elf_flavour | 
|  | || obfd->xvec->flavour != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | BFD_ASSERT (elf_section_data (osec) != NULL); | 
|  |  | 
|  | /* If this is a known ABI section, ELF section type and flags may | 
|  | have been set up when OSEC was created.  For normal sections we | 
|  | allow the user to override the type and flags other than | 
|  | SHF_MASKOS and SHF_MASKPROC.  */ | 
|  | if (elf_section_type (osec) == SHT_PROGBITS | 
|  | || elf_section_type (osec) == SHT_NOTE | 
|  | || elf_section_type (osec) == SHT_NOBITS) | 
|  | elf_section_type (osec) = SHT_NULL; | 
|  | /* For objcopy and relocatable link, copy the ELF section type from | 
|  | the input file if the BFD section flags are the same.  (If they | 
|  | are different the user may be doing something like | 
|  | "objcopy --set-section-flags .text=alloc,data".)  For a final | 
|  | link allow some flags that the linker clears to differ.  */ | 
|  | if (elf_section_type (osec) == SHT_NULL | 
|  | && (osec->flags == isec->flags | 
|  | || (final_link | 
|  | && ((osec->flags ^ isec->flags) | 
|  | & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0))) | 
|  | elf_section_type (osec) = elf_section_type (isec); | 
|  |  | 
|  | /* FIXME: Is this correct for all OS/PROC specific flags?  */ | 
|  | elf_section_flags (osec) = (elf_section_flags (isec) | 
|  | & (SHF_MASKOS | SHF_MASKPROC)); | 
|  |  | 
|  | /* Copy sh_info from input for mbind section.  */ | 
|  | if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0 | 
|  | && elf_section_flags (isec) & SHF_GNU_MBIND) | 
|  | elf_section_data (osec)->this_hdr.sh_info | 
|  | = elf_section_data (isec)->this_hdr.sh_info; | 
|  |  | 
|  | /* Set things up for objcopy and relocatable link.  The output | 
|  | SHT_GROUP section will have its elf_next_in_group pointing back | 
|  | to the input group members.  Ignore linker created group section. | 
|  | See elfNN_ia64_object_p in elfxx-ia64.c.  */ | 
|  | if ((link_info == NULL | 
|  | || !link_info->resolve_section_groups) | 
|  | && (elf_sec_group (isec) == NULL | 
|  | || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)) | 
|  | { | 
|  | if (elf_section_flags (isec) & SHF_GROUP) | 
|  | elf_section_flags (osec) |= SHF_GROUP; | 
|  | elf_next_in_group (osec) = elf_next_in_group (isec); | 
|  | elf_section_data (osec)->group = elf_section_data (isec)->group; | 
|  | } | 
|  |  | 
|  | /* If not decompress, preserve SHF_COMPRESSED.  */ | 
|  | if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0) | 
|  | elf_section_flags (osec) |= (elf_section_flags (isec) | 
|  | & SHF_COMPRESSED); | 
|  |  | 
|  | ihdr = &elf_section_data (isec)->this_hdr; | 
|  |  | 
|  | /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We | 
|  | don't use the output section of the linked-to section since it | 
|  | may be NULL at this point.  */ | 
|  | if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) | 
|  | { | 
|  | ohdr = &elf_section_data (osec)->this_hdr; | 
|  | ohdr->sh_flags |= SHF_LINK_ORDER; | 
|  | elf_linked_to_section (osec) = elf_linked_to_section (isec); | 
|  | } | 
|  |  | 
|  | osec->use_rela_p = isec->use_rela_p; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy private section information.  This copies over the entsize | 
|  | field, and sometimes the info field.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_copy_private_section_data (bfd *ibfd, | 
|  | asection *isec, | 
|  | bfd *obfd, | 
|  | asection *osec) | 
|  | { | 
|  | Elf_Internal_Shdr *ihdr, *ohdr; | 
|  |  | 
|  | if (ibfd->xvec->flavour != bfd_target_elf_flavour | 
|  | || obfd->xvec->flavour != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | ihdr = &elf_section_data (isec)->this_hdr; | 
|  | ohdr = &elf_section_data (osec)->this_hdr; | 
|  |  | 
|  | ohdr->sh_entsize = ihdr->sh_entsize; | 
|  |  | 
|  | if (ihdr->sh_type == SHT_SYMTAB | 
|  | || ihdr->sh_type == SHT_DYNSYM | 
|  | || ihdr->sh_type == SHT_GNU_verneed | 
|  | || ihdr->sh_type == SHT_GNU_verdef) | 
|  | ohdr->sh_info = ihdr->sh_info; | 
|  |  | 
|  | return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | /* Look at all the SHT_GROUP sections in IBFD, making any adjustments | 
|  | necessary if we are removing either the SHT_GROUP section or any of | 
|  | the group member sections.  DISCARDED is the value that a section's | 
|  | output_section has if the section will be discarded, NULL when this | 
|  | function is called from objcopy, bfd_abs_section_ptr when called | 
|  | from the linker.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded) | 
|  | { | 
|  | asection *isec; | 
|  |  | 
|  | for (isec = ibfd->sections; isec != NULL; isec = isec->next) | 
|  | if (elf_section_type (isec) == SHT_GROUP) | 
|  | { | 
|  | asection *first = elf_next_in_group (isec); | 
|  | asection *s = first; | 
|  | bfd_size_type removed = 0; | 
|  |  | 
|  | while (s != NULL) | 
|  | { | 
|  | /* If this member section is being output but the | 
|  | SHT_GROUP section is not, then clear the group info | 
|  | set up by _bfd_elf_copy_private_section_data.  */ | 
|  | if (s->output_section != discarded | 
|  | && isec->output_section == discarded) | 
|  | { | 
|  | elf_section_flags (s->output_section) &= ~SHF_GROUP; | 
|  | elf_group_name (s->output_section) = NULL; | 
|  | } | 
|  | else | 
|  | { | 
|  | struct bfd_elf_section_data *elf_sec = elf_section_data (s); | 
|  | if (s->output_section == discarded | 
|  | && isec->output_section != discarded) | 
|  | { | 
|  | /* Conversely, if the member section is not being | 
|  | output but the SHT_GROUP section is, then adjust | 
|  | its size.  */ | 
|  | removed += 4; | 
|  | if (elf_sec->rel.hdr != NULL | 
|  | && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0) | 
|  | removed += 4; | 
|  | if (elf_sec->rela.hdr != NULL | 
|  | && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0) | 
|  | removed += 4; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Also adjust for zero-sized relocation member | 
|  | section.  */ | 
|  | if (elf_sec->rel.hdr != NULL | 
|  | && elf_sec->rel.hdr->sh_size == 0) | 
|  | removed += 4; | 
|  | if (elf_sec->rela.hdr != NULL | 
|  | && elf_sec->rela.hdr->sh_size == 0) | 
|  | removed += 4; | 
|  | } | 
|  | } | 
|  | s = elf_next_in_group (s); | 
|  | if (s == first) | 
|  | break; | 
|  | } | 
|  | if (removed != 0) | 
|  | { | 
|  | if (discarded != NULL) | 
|  | { | 
|  | /* If we've been called for ld -r, then we need to | 
|  | adjust the input section size.  */ | 
|  | if (isec->rawsize == 0) | 
|  | isec->rawsize = isec->size; | 
|  | isec->size = isec->rawsize - removed; | 
|  | if (isec->size <= 4) | 
|  | { | 
|  | isec->size = 0; | 
|  | isec->flags |= SEC_EXCLUDE; | 
|  | } | 
|  | } | 
|  | else if (isec->output_section != NULL) | 
|  | { | 
|  | /* Adjust the output section size when called from | 
|  | objcopy. */ | 
|  | isec->output_section->size -= removed; | 
|  | if (isec->output_section->size <= 4) | 
|  | { | 
|  | isec->output_section->size = 0; | 
|  | isec->output_section->flags |= SEC_EXCLUDE; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Copy private header information.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) | 
|  | { | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | /* Copy over private BFD data if it has not already been copied. | 
|  | This must be done here, rather than in the copy_private_bfd_data | 
|  | entry point, because the latter is called after the section | 
|  | contents have been set, which means that the program headers have | 
|  | already been worked out.  */ | 
|  | if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL) | 
|  | { | 
|  | if (! copy_private_bfd_data (ibfd, obfd)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return _bfd_elf_fixup_group_sections (ibfd, NULL); | 
|  | } | 
|  |  | 
|  | /* Copy private symbol information.  If this symbol is in a section | 
|  | which we did not map into a BFD section, try to map the section | 
|  | index correctly.  We use special macro definitions for the mapped | 
|  | section indices; these definitions are interpreted by the | 
|  | swap_out_syms function.  */ | 
|  |  | 
|  | #define MAP_ONESYMTAB (SHN_HIOS + 1) | 
|  | #define MAP_DYNSYMTAB (SHN_HIOS + 2) | 
|  | #define MAP_STRTAB    (SHN_HIOS + 3) | 
|  | #define MAP_SHSTRTAB  (SHN_HIOS + 4) | 
|  | #define MAP_SYM_SHNDX (SHN_HIOS + 5) | 
|  |  | 
|  | bool | 
|  | _bfd_elf_copy_private_symbol_data (bfd *ibfd, | 
|  | asymbol *isymarg, | 
|  | bfd *obfd, | 
|  | asymbol *osymarg) | 
|  | { | 
|  | elf_symbol_type *isym, *osym; | 
|  |  | 
|  | if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour | 
|  | || bfd_get_flavour (obfd) != bfd_target_elf_flavour) | 
|  | return true; | 
|  |  | 
|  | isym = elf_symbol_from (isymarg); | 
|  | osym = elf_symbol_from (osymarg); | 
|  |  | 
|  | if (isym != NULL | 
|  | && isym->internal_elf_sym.st_shndx != 0 | 
|  | && osym != NULL | 
|  | && bfd_is_abs_section (isym->symbol.section)) | 
|  | { | 
|  | unsigned int shndx; | 
|  |  | 
|  | shndx = isym->internal_elf_sym.st_shndx; | 
|  | if (shndx == elf_onesymtab (ibfd)) | 
|  | shndx = MAP_ONESYMTAB; | 
|  | else if (shndx == elf_dynsymtab (ibfd)) | 
|  | shndx = MAP_DYNSYMTAB; | 
|  | else if (shndx == elf_elfsections (ibfd)[elf_onesymtab (ibfd)]->sh_link) | 
|  | shndx = MAP_STRTAB; | 
|  | else if (shndx == elf_elfheader (ibfd)->e_shstrndx) | 
|  | shndx = MAP_SHSTRTAB; | 
|  | else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd))) | 
|  | shndx = MAP_SYM_SHNDX; | 
|  | osym->internal_elf_sym.st_shndx = shndx; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Swap out the symbols.  */ | 
|  |  | 
|  | static bool | 
|  | swap_out_syms (bfd *abfd, | 
|  | struct elf_strtab_hash **sttp, | 
|  | int relocatable_p, | 
|  | struct bfd_link_info *info) | 
|  | { | 
|  | const struct elf_backend_data *bed; | 
|  | unsigned int symcount; | 
|  | asymbol **syms; | 
|  | struct elf_strtab_hash *stt; | 
|  | Elf_Internal_Shdr *symtab_hdr; | 
|  | Elf_Internal_Shdr *symtab_shndx_hdr; | 
|  | Elf_Internal_Shdr *symstrtab_hdr; | 
|  | struct elf_sym_strtab *symstrtab; | 
|  | bfd_byte *outbound_syms; | 
|  | bfd_byte *outbound_shndx; | 
|  | unsigned long outbound_syms_index; | 
|  | unsigned int idx; | 
|  | unsigned int num_locals; | 
|  | size_t amt; | 
|  | bool name_local_sections; | 
|  |  | 
|  | if (!elf_map_symbols (abfd, &num_locals)) | 
|  | return false; | 
|  |  | 
|  | /* Dump out the symtabs.  */ | 
|  | stt = _bfd_elf_strtab_init (); | 
|  | if (stt == NULL) | 
|  | return false; | 
|  |  | 
|  | bed = get_elf_backend_data (abfd); | 
|  | symcount = bfd_get_symcount (abfd); | 
|  | symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  | symtab_hdr->sh_type = SHT_SYMTAB; | 
|  | symtab_hdr->sh_entsize = bed->s->sizeof_sym; | 
|  | symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); | 
|  | symtab_hdr->sh_info = num_locals + 1; | 
|  | symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; | 
|  |  | 
|  | symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | 
|  | symstrtab_hdr->sh_type = SHT_STRTAB; | 
|  |  | 
|  | /* Allocate buffer to swap out the .strtab section.  */ | 
|  | if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt) | 
|  | || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL) | 
|  | { | 
|  | bfd_set_error (bfd_error_no_memory); | 
|  | _bfd_elf_strtab_free (stt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt) | 
|  | || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL) | 
|  | { | 
|  | error_no_mem: | 
|  | bfd_set_error (bfd_error_no_memory); | 
|  | error_return: | 
|  | free (symstrtab); | 
|  | _bfd_elf_strtab_free (stt); | 
|  | return false; | 
|  | } | 
|  | symtab_hdr->contents = outbound_syms; | 
|  | outbound_syms_index = 0; | 
|  |  | 
|  | outbound_shndx = NULL; | 
|  |  | 
|  | if (elf_symtab_shndx_list (abfd)) | 
|  | { | 
|  | symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; | 
|  | if (symtab_shndx_hdr->sh_name != 0) | 
|  | { | 
|  | if (_bfd_mul_overflow (symcount + 1, | 
|  | sizeof (Elf_External_Sym_Shndx), &amt)) | 
|  | goto error_no_mem; | 
|  | outbound_shndx =  (bfd_byte *) bfd_zalloc (abfd, amt); | 
|  | if (outbound_shndx == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | symtab_shndx_hdr->contents = outbound_shndx; | 
|  | symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; | 
|  | symtab_shndx_hdr->sh_size = amt; | 
|  | symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | 
|  | symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | 
|  | } | 
|  | /* FIXME: What about any other headers in the list ?  */ | 
|  | } | 
|  |  | 
|  | /* Now generate the data (for "contents").  */ | 
|  | { | 
|  | /* Fill in zeroth symbol and swap it out.  */ | 
|  | Elf_Internal_Sym sym; | 
|  | sym.st_name = 0; | 
|  | sym.st_value = 0; | 
|  | sym.st_size = 0; | 
|  | sym.st_info = 0; | 
|  | sym.st_other = 0; | 
|  | sym.st_shndx = SHN_UNDEF; | 
|  | sym.st_target_internal = 0; | 
|  | symstrtab[outbound_syms_index].sym = sym; | 
|  | symstrtab[outbound_syms_index].dest_index = outbound_syms_index; | 
|  | outbound_syms_index++; | 
|  | } | 
|  |  | 
|  | name_local_sections | 
|  | = (bed->elf_backend_name_local_section_symbols | 
|  | && bed->elf_backend_name_local_section_symbols (abfd)); | 
|  |  | 
|  | syms = bfd_get_outsymbols (abfd); | 
|  | for (idx = 0; idx < symcount; idx++) | 
|  | { | 
|  | Elf_Internal_Sym sym; | 
|  |  | 
|  | flagword flags = syms[idx]->flags; | 
|  | if (!name_local_sections | 
|  | && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) | 
|  | { | 
|  | /* Local section symbols have no name.  */ | 
|  | sym.st_name = (unsigned long) -1; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize | 
|  | to get the final offset for st_name.  */ | 
|  | sym.st_name | 
|  | = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name, | 
|  | false); | 
|  | if (sym.st_name == (unsigned long) -1) | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | bfd_vma value = syms[idx]->value; | 
|  | elf_symbol_type *type_ptr = elf_symbol_from (syms[idx]); | 
|  | asection *sec = syms[idx]->section; | 
|  |  | 
|  | if ((flags & BSF_SECTION_SYM) == 0 && bfd_is_com_section (sec)) | 
|  | { | 
|  | /* ELF common symbols put the alignment into the `value' field, | 
|  | and the size into the `size' field.  This is backwards from | 
|  | how BFD handles it, so reverse it here.  */ | 
|  | sym.st_size = value; | 
|  | if (type_ptr == NULL | 
|  | || type_ptr->internal_elf_sym.st_value == 0) | 
|  | sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); | 
|  | else | 
|  | sym.st_value = type_ptr->internal_elf_sym.st_value; | 
|  | sym.st_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  | } | 
|  | else | 
|  | { | 
|  | unsigned int shndx; | 
|  |  | 
|  | if (sec->output_section) | 
|  | { | 
|  | value += sec->output_offset; | 
|  | sec = sec->output_section; | 
|  | } | 
|  |  | 
|  | /* Don't add in the section vma for relocatable output.  */ | 
|  | if (! relocatable_p) | 
|  | value += sec->vma; | 
|  | sym.st_value = value; | 
|  | sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; | 
|  |  | 
|  | if (bfd_is_abs_section (sec) | 
|  | && type_ptr != NULL | 
|  | && type_ptr->internal_elf_sym.st_shndx != 0) | 
|  | { | 
|  | /* This symbol is in a real ELF section which we did | 
|  | not create as a BFD section.  Undo the mapping done | 
|  | by copy_private_symbol_data.  */ | 
|  | shndx = type_ptr->internal_elf_sym.st_shndx; | 
|  | switch (shndx) | 
|  | { | 
|  | case MAP_ONESYMTAB: | 
|  | shndx = elf_onesymtab (abfd); | 
|  | break; | 
|  | case MAP_DYNSYMTAB: | 
|  | shndx = elf_dynsymtab (abfd); | 
|  | break; | 
|  | case MAP_STRTAB: | 
|  | shndx = elf_strtab_sec (abfd); | 
|  | break; | 
|  | case MAP_SHSTRTAB: | 
|  | shndx = elf_shstrtab_sec (abfd); | 
|  | break; | 
|  | case MAP_SYM_SHNDX: | 
|  | if (elf_symtab_shndx_list (abfd)) | 
|  | shndx = elf_symtab_shndx_list (abfd)->ndx; | 
|  | break; | 
|  | case SHN_COMMON: | 
|  | case SHN_ABS: | 
|  | shndx = SHN_ABS; | 
|  | break; | 
|  | default: | 
|  | if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS) | 
|  | { | 
|  | if (bed->symbol_section_index) | 
|  | shndx = bed->symbol_section_index (abfd, type_ptr); | 
|  | /* Otherwise just leave the index alone.  */ | 
|  | } | 
|  | else | 
|  | { | 
|  | if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE) | 
|  | _bfd_error_handler (_("%pB: \ | 
|  | Unable to handle section index %x in ELF symbol.  Using ABS instead."), | 
|  | abfd, shndx); | 
|  | shndx = SHN_ABS; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | shndx = _bfd_elf_section_from_bfd_section (abfd, sec); | 
|  |  | 
|  | if (shndx == SHN_BAD) | 
|  | { | 
|  | asection *sec2; | 
|  |  | 
|  | /* Writing this would be a hell of a lot easier if | 
|  | we had some decent documentation on bfd, and | 
|  | knew what to expect of the library, and what to | 
|  | demand of applications.  For example, it | 
|  | appears that `objcopy' might not set the | 
|  | section of a symbol to be a section that is | 
|  | actually in the output file.  */ | 
|  | sec2 = bfd_get_section_by_name (abfd, sec->name); | 
|  | if (sec2 != NULL) | 
|  | shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); | 
|  | if (shndx == SHN_BAD) | 
|  | { | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler | 
|  | (_("unable to find equivalent output section" | 
|  | " for symbol '%s' from section '%s'"), | 
|  | syms[idx]->name ? syms[idx]->name : "<Local sym>", | 
|  | sec->name); | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | goto error_return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | sym.st_shndx = shndx; | 
|  | } | 
|  |  | 
|  | int type; | 
|  | if ((flags & BSF_THREAD_LOCAL) != 0) | 
|  | type = STT_TLS; | 
|  | else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) | 
|  | type = STT_GNU_IFUNC; | 
|  | else if ((flags & BSF_FUNCTION) != 0) | 
|  | type = STT_FUNC; | 
|  | else if ((flags & BSF_OBJECT) != 0) | 
|  | type = STT_OBJECT; | 
|  | else if ((flags & BSF_RELC) != 0) | 
|  | type = STT_RELC; | 
|  | else if ((flags & BSF_SRELC) != 0) | 
|  | type = STT_SRELC; | 
|  | else | 
|  | type = STT_NOTYPE; | 
|  |  | 
|  | if (syms[idx]->section->flags & SEC_THREAD_LOCAL) | 
|  | type = STT_TLS; | 
|  |  | 
|  | /* Processor-specific types.  */ | 
|  | if (type_ptr != NULL | 
|  | && bed->elf_backend_get_symbol_type) | 
|  | type = ((*bed->elf_backend_get_symbol_type) | 
|  | (&type_ptr->internal_elf_sym, type)); | 
|  |  | 
|  | if (flags & BSF_SECTION_SYM) | 
|  | { | 
|  | if (flags & BSF_GLOBAL) | 
|  | sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); | 
|  | else | 
|  | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | 
|  | } | 
|  | else if (bfd_is_com_section (syms[idx]->section)) | 
|  | { | 
|  | if (type != STT_TLS) | 
|  | { | 
|  | if ((abfd->flags & BFD_CONVERT_ELF_COMMON)) | 
|  | type = ((abfd->flags & BFD_USE_ELF_STT_COMMON) | 
|  | ? STT_COMMON : STT_OBJECT); | 
|  | else | 
|  | type = ((flags & BSF_ELF_COMMON) != 0 | 
|  | ? STT_COMMON : STT_OBJECT); | 
|  | } | 
|  | sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); | 
|  | } | 
|  | else if (bfd_is_und_section (syms[idx]->section)) | 
|  | sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) | 
|  | ? STB_WEAK | 
|  | : STB_GLOBAL), | 
|  | type); | 
|  | else if (flags & BSF_FILE) | 
|  | sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | 
|  | else | 
|  | { | 
|  | int bind = STB_LOCAL; | 
|  |  | 
|  | if (flags & BSF_LOCAL) | 
|  | bind = STB_LOCAL; | 
|  | else if (flags & BSF_GNU_UNIQUE) | 
|  | bind = STB_GNU_UNIQUE; | 
|  | else if (flags & BSF_WEAK) | 
|  | bind = STB_WEAK; | 
|  | else if (flags & BSF_GLOBAL) | 
|  | bind = STB_GLOBAL; | 
|  |  | 
|  | sym.st_info = ELF_ST_INFO (bind, type); | 
|  | } | 
|  |  | 
|  | if (type_ptr != NULL) | 
|  | { | 
|  | sym.st_other = type_ptr->internal_elf_sym.st_other; | 
|  | sym.st_target_internal | 
|  | = type_ptr->internal_elf_sym.st_target_internal; | 
|  | } | 
|  | else | 
|  | { | 
|  | sym.st_other = 0; | 
|  | sym.st_target_internal = 0; | 
|  | } | 
|  |  | 
|  | symstrtab[outbound_syms_index].sym = sym; | 
|  | symstrtab[outbound_syms_index].dest_index = outbound_syms_index; | 
|  | outbound_syms_index++; | 
|  | } | 
|  |  | 
|  | /* Finalize the .strtab section.  */ | 
|  | _bfd_elf_strtab_finalize (stt); | 
|  |  | 
|  | /* Swap out the .strtab section.  */ | 
|  | for (idx = 0; idx < outbound_syms_index; idx++) | 
|  | { | 
|  | struct elf_sym_strtab *elfsym = &symstrtab[idx]; | 
|  | if (elfsym->sym.st_name == (unsigned long) -1) | 
|  | elfsym->sym.st_name = 0; | 
|  | else | 
|  | elfsym->sym.st_name = _bfd_elf_strtab_offset (stt, | 
|  | elfsym->sym.st_name); | 
|  | if (info && info->callbacks->ctf_new_symbol) | 
|  | info->callbacks->ctf_new_symbol (elfsym->dest_index, | 
|  | &elfsym->sym); | 
|  |  | 
|  | /* Inform the linker of the addition of this symbol.  */ | 
|  |  | 
|  | bed->s->swap_symbol_out (abfd, &elfsym->sym, | 
|  | (outbound_syms | 
|  | + (elfsym->dest_index | 
|  | * bed->s->sizeof_sym)), | 
|  | NPTR_ADD (outbound_shndx, | 
|  | (elfsym->dest_index | 
|  | * sizeof (Elf_External_Sym_Shndx)))); | 
|  | } | 
|  | free (symstrtab); | 
|  |  | 
|  | *sttp = stt; | 
|  | symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt); | 
|  | symstrtab_hdr->sh_type = SHT_STRTAB; | 
|  | symstrtab_hdr->sh_flags = bed->elf_strtab_flags; | 
|  | symstrtab_hdr->sh_addr = 0; | 
|  | symstrtab_hdr->sh_entsize = 0; | 
|  | symstrtab_hdr->sh_link = 0; | 
|  | symstrtab_hdr->sh_info = 0; | 
|  | symstrtab_hdr->sh_addralign = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Return the number of bytes required to hold the symtab vector. | 
|  |  | 
|  | Note that we base it on the count plus 1, since we will null terminate | 
|  | the vector allocated based on this size.  However, the ELF symbol table | 
|  | always has a dummy entry as symbol #0, so it ends up even.  */ | 
|  |  | 
|  | long | 
|  | _bfd_elf_get_symtab_upper_bound (bfd *abfd) | 
|  | { | 
|  | bfd_size_type symcount; | 
|  | long symtab_size; | 
|  | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; | 
|  |  | 
|  | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | 
|  | if (symcount > LONG_MAX / sizeof (asymbol *)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return -1; | 
|  | } | 
|  | symtab_size = symcount * (sizeof (asymbol *)); | 
|  | if (symcount == 0) | 
|  | symtab_size = sizeof (asymbol *); | 
|  | else if (!bfd_write_p (abfd)) | 
|  | { | 
|  | ufile_ptr filesize = bfd_get_file_size (abfd); | 
|  |  | 
|  | if (filesize != 0 && (unsigned long) symtab_size > filesize) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return symtab_size; | 
|  | } | 
|  |  | 
|  | long | 
|  | _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) | 
|  | { | 
|  | bfd_size_type symcount; | 
|  | long symtab_size; | 
|  | Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; | 
|  |  | 
|  | if (elf_dynsymtab (abfd) == 0) | 
|  | { | 
|  | /* Check if there is dynamic symbol table.  */ | 
|  | symcount = elf_tdata (abfd)->dt_symtab_count; | 
|  | if (symcount) | 
|  | goto compute_symtab_size; | 
|  |  | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | 
|  | if (symcount > LONG_MAX / sizeof (asymbol *)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | compute_symtab_size: | 
|  | symtab_size = symcount * (sizeof (asymbol *)); | 
|  | if (symcount == 0) | 
|  | symtab_size = sizeof (asymbol *); | 
|  | else if (!bfd_write_p (abfd)) | 
|  | { | 
|  | ufile_ptr filesize = bfd_get_file_size (abfd); | 
|  |  | 
|  | if (filesize != 0 && (unsigned long) symtab_size > filesize) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return symtab_size; | 
|  | } | 
|  |  | 
|  | long | 
|  | _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect) | 
|  | { | 
|  | if (asect->reloc_count != 0 && !bfd_write_p (abfd)) | 
|  | { | 
|  | /* Sanity check reloc section size.  */ | 
|  | ufile_ptr filesize = bfd_get_file_size (abfd); | 
|  |  | 
|  | if (filesize != 0) | 
|  | { | 
|  | struct bfd_elf_section_data *d = elf_section_data (asect); | 
|  | bfd_size_type rel_size = d->rel.hdr ? d->rel.hdr->sh_size : 0; | 
|  | bfd_size_type rela_size = d->rela.hdr ? d->rela.hdr->sh_size : 0; | 
|  |  | 
|  | if (rel_size + rela_size > filesize | 
|  | || rel_size + rela_size < rel_size) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #if SIZEOF_LONG == SIZEOF_INT | 
|  | if (asect->reloc_count >= LONG_MAX / sizeof (arelent *)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  | return (asect->reloc_count + 1L) * sizeof (arelent *); | 
|  | } | 
|  |  | 
|  | /* Canonicalize the relocs.  */ | 
|  |  | 
|  | long | 
|  | _bfd_elf_canonicalize_reloc (bfd *abfd, | 
|  | sec_ptr section, | 
|  | arelent **relptr, | 
|  | asymbol **symbols) | 
|  | { | 
|  | arelent *tblptr; | 
|  | unsigned int i; | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | if (! bed->s->slurp_reloc_table (abfd, section, symbols, false)) | 
|  | return -1; | 
|  |  | 
|  | tblptr = section->relocation; | 
|  | for (i = 0; i < section->reloc_count; i++) | 
|  | *relptr++ = tblptr++; | 
|  |  | 
|  | *relptr = NULL; | 
|  |  | 
|  | return section->reloc_count; | 
|  | } | 
|  |  | 
|  | long | 
|  | _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | long symcount = bed->s->slurp_symbol_table (abfd, allocation, false); | 
|  |  | 
|  | if (symcount >= 0) | 
|  | abfd->symcount = symcount; | 
|  | return symcount; | 
|  | } | 
|  |  | 
|  | long | 
|  | _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, | 
|  | asymbol **allocation) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | long symcount = bed->s->slurp_symbol_table (abfd, allocation, true); | 
|  |  | 
|  | if (symcount >= 0) | 
|  | abfd->dynsymcount = symcount; | 
|  | return symcount; | 
|  | } | 
|  |  | 
|  | /* Return the size required for the dynamic reloc entries.  Any loadable | 
|  | section that was actually installed in the BFD, and has type SHT_REL | 
|  | or SHT_RELA, and uses the dynamic symbol table, is considered to be a | 
|  | dynamic reloc section.  */ | 
|  |  | 
|  | long | 
|  | _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) | 
|  | { | 
|  | bfd_size_type count, ext_rel_size; | 
|  | asection *s; | 
|  |  | 
|  | if (elf_dynsymtab (abfd) == 0) | 
|  | { | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | count = 1; | 
|  | ext_rel_size = 0; | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) | 
|  | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL | 
|  | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA) | 
|  | && (elf_section_data (s)->this_hdr.sh_flags & SHF_COMPRESSED) == 0) | 
|  | { | 
|  | ext_rel_size += elf_section_data (s)->this_hdr.sh_size; | 
|  | if (ext_rel_size < elf_section_data (s)->this_hdr.sh_size) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | return -1; | 
|  | } | 
|  | count += NUM_SHDR_ENTRIES (&elf_section_data (s)->this_hdr); | 
|  | if (count > LONG_MAX / sizeof (arelent *)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | if (count > 1 && !bfd_write_p (abfd)) | 
|  | { | 
|  | /* Sanity check reloc section sizes.  */ | 
|  | ufile_ptr filesize = bfd_get_file_size (abfd); | 
|  | if (filesize != 0 && ext_rel_size > filesize) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | return count * sizeof (arelent *); | 
|  | } | 
|  |  | 
|  | /* Canonicalize the dynamic relocation entries.  Note that we return the | 
|  | dynamic relocations as a single block, although they are actually | 
|  | associated with particular sections; the interface, which was | 
|  | designed for SunOS style shared libraries, expects that there is only | 
|  | one set of dynamic relocs.  Any loadable section that was actually | 
|  | installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the | 
|  | dynamic symbol table, is considered to be a dynamic reloc section.  */ | 
|  |  | 
|  | long | 
|  | _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, | 
|  | arelent **storage, | 
|  | asymbol **syms) | 
|  | { | 
|  | bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); | 
|  | asection *s; | 
|  | long ret; | 
|  |  | 
|  | if (elf_dynsymtab (abfd) == 0) | 
|  | { | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | 
|  | ret = 0; | 
|  | for (s = abfd->sections; s != NULL; s = s->next) | 
|  | { | 
|  | if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) | 
|  | && (elf_section_data (s)->this_hdr.sh_type == SHT_REL | 
|  | || elf_section_data (s)->this_hdr.sh_type == SHT_RELA) | 
|  | && (elf_section_data (s)->this_hdr.sh_flags & SHF_COMPRESSED) == 0) | 
|  | { | 
|  | arelent *p; | 
|  | long count, i; | 
|  |  | 
|  | if (! (*slurp_relocs) (abfd, s, syms, true)) | 
|  | return -1; | 
|  | count = NUM_SHDR_ENTRIES (&elf_section_data (s)->this_hdr); | 
|  | p = s->relocation; | 
|  | for (i = 0; i < count; i++) | 
|  | *storage++ = p++; | 
|  | ret += count; | 
|  | } | 
|  | } | 
|  |  | 
|  | *storage = NULL; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Read in the version information.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver) | 
|  | { | 
|  | bfd_byte *contents = NULL; | 
|  | unsigned int freeidx = 0; | 
|  | size_t amt; | 
|  | void *contents_addr = NULL; | 
|  | size_t contents_size = 0; | 
|  |  | 
|  | if (elf_dynverref (abfd) != 0 || elf_tdata (abfd)->dt_verneed != NULL) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  | Elf_External_Verneed *everneed; | 
|  | Elf_Internal_Verneed *iverneed; | 
|  | unsigned int i; | 
|  | bfd_byte *contents_end; | 
|  | size_t verneed_count; | 
|  | size_t verneed_size; | 
|  |  | 
|  | if (elf_tdata (abfd)->dt_verneed != NULL) | 
|  | { | 
|  | hdr = NULL; | 
|  | contents = elf_tdata (abfd)->dt_verneed; | 
|  | verneed_count = elf_tdata (abfd)->dt_verneed_count; | 
|  | verneed_size = verneed_count * sizeof (Elf_External_Verneed); | 
|  | } | 
|  | else | 
|  | { | 
|  | hdr = &elf_tdata (abfd)->dynverref_hdr; | 
|  |  | 
|  | if (hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed)) | 
|  | { | 
|  | error_return_bad_verref: | 
|  | _bfd_error_handler | 
|  | (_("%pB: .gnu.version_r invalid entry"), abfd); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | error_return_verref: | 
|  | elf_tdata (abfd)->verref = NULL; | 
|  | elf_tdata (abfd)->cverrefs = 0; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0) | 
|  | goto error_return_verref; | 
|  | contents_size = hdr->sh_size; | 
|  | contents = _bfd_mmap_readonly_temporary (abfd, contents_size, | 
|  | &contents_addr, | 
|  | &contents_size); | 
|  | if (contents == NULL) | 
|  | goto error_return_verref; | 
|  |  | 
|  | verneed_size = hdr->sh_size; | 
|  | verneed_count = hdr->sh_info; | 
|  | } | 
|  |  | 
|  | if (_bfd_mul_overflow (verneed_count, | 
|  | sizeof (Elf_Internal_Verneed), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return_verref; | 
|  | } | 
|  | if (amt == 0) | 
|  | goto error_return_verref; | 
|  | elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_zalloc (abfd, amt); | 
|  | if (elf_tdata (abfd)->verref == NULL) | 
|  | goto error_return_verref; | 
|  |  | 
|  | BFD_ASSERT (sizeof (Elf_External_Verneed) | 
|  | == sizeof (Elf_External_Vernaux)); | 
|  | contents_end = (contents + verneed_size | 
|  | - sizeof (Elf_External_Verneed)); | 
|  | everneed = (Elf_External_Verneed *) contents; | 
|  | iverneed = elf_tdata (abfd)->verref; | 
|  | for (i = 0; i < verneed_count; i++, iverneed++) | 
|  | { | 
|  | Elf_External_Vernaux *evernaux; | 
|  | Elf_Internal_Vernaux *ivernaux; | 
|  | unsigned int j; | 
|  |  | 
|  | _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); | 
|  |  | 
|  | iverneed->vn_bfd = abfd; | 
|  |  | 
|  | if (elf_use_dt_symtab_p (abfd)) | 
|  | { | 
|  | if (iverneed->vn_file < elf_tdata (abfd)->dt_strsz) | 
|  | iverneed->vn_filename | 
|  | = elf_tdata (abfd)->dt_strtab + iverneed->vn_file; | 
|  | else | 
|  | iverneed->vn_filename = NULL; | 
|  | } | 
|  | else if (hdr == NULL) | 
|  | goto error_return_bad_verref; | 
|  | else | 
|  | iverneed->vn_filename | 
|  | = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | 
|  | iverneed->vn_file); | 
|  | if (iverneed->vn_filename == NULL) | 
|  | goto error_return_bad_verref; | 
|  |  | 
|  | if (iverneed->vn_cnt == 0) | 
|  | iverneed->vn_auxptr = NULL; | 
|  | else | 
|  | { | 
|  | if (_bfd_mul_overflow (iverneed->vn_cnt, | 
|  | sizeof (Elf_Internal_Vernaux), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return_verref; | 
|  | } | 
|  | iverneed->vn_auxptr = (struct elf_internal_vernaux *) | 
|  | bfd_alloc (abfd, amt); | 
|  | if (iverneed->vn_auxptr == NULL) | 
|  | goto error_return_verref; | 
|  | } | 
|  |  | 
|  | if (iverneed->vn_aux | 
|  | > (size_t) (contents_end - (bfd_byte *) everneed)) | 
|  | goto error_return_bad_verref; | 
|  |  | 
|  | evernaux = ((Elf_External_Vernaux *) | 
|  | ((bfd_byte *) everneed + iverneed->vn_aux)); | 
|  | ivernaux = iverneed->vn_auxptr; | 
|  | for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) | 
|  | { | 
|  | _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); | 
|  |  | 
|  | if (elf_use_dt_symtab_p (abfd)) | 
|  | { | 
|  | if (ivernaux->vna_name < elf_tdata (abfd)->dt_strsz) | 
|  | ivernaux->vna_nodename | 
|  | = elf_tdata (abfd)->dt_strtab + ivernaux->vna_name; | 
|  | else | 
|  | ivernaux->vna_nodename = NULL; | 
|  | } | 
|  | else if (hdr == NULL) | 
|  | goto error_return_bad_verref; | 
|  | else | 
|  | ivernaux->vna_nodename | 
|  | = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | 
|  | ivernaux->vna_name); | 
|  | if (ivernaux->vna_nodename == NULL) | 
|  | goto error_return_bad_verref; | 
|  |  | 
|  | if (ivernaux->vna_other > freeidx) | 
|  | freeidx = ivernaux->vna_other; | 
|  |  | 
|  | ivernaux->vna_nextptr = NULL; | 
|  | if (ivernaux->vna_next == 0) | 
|  | { | 
|  | iverneed->vn_cnt = j + 1; | 
|  | break; | 
|  | } | 
|  | if (j + 1 < iverneed->vn_cnt) | 
|  | ivernaux->vna_nextptr = ivernaux + 1; | 
|  |  | 
|  | if (ivernaux->vna_next | 
|  | > (size_t) (contents_end - (bfd_byte *) evernaux)) | 
|  | goto error_return_bad_verref; | 
|  |  | 
|  | evernaux = ((Elf_External_Vernaux *) | 
|  | ((bfd_byte *) evernaux + ivernaux->vna_next)); | 
|  | } | 
|  |  | 
|  | iverneed->vn_nextref = NULL; | 
|  | if (iverneed->vn_next == 0) | 
|  | break; | 
|  | if (hdr != NULL && (i + 1 < hdr->sh_info)) | 
|  | iverneed->vn_nextref = iverneed + 1; | 
|  |  | 
|  | if (iverneed->vn_next | 
|  | > (size_t) (contents_end - (bfd_byte *) everneed)) | 
|  | goto error_return_bad_verref; | 
|  |  | 
|  | everneed = ((Elf_External_Verneed *) | 
|  | ((bfd_byte *) everneed + iverneed->vn_next)); | 
|  | } | 
|  | elf_tdata (abfd)->cverrefs = i; | 
|  |  | 
|  | if (contents != elf_tdata (abfd)->dt_verneed) | 
|  | _bfd_munmap_readonly_temporary (contents_addr, contents_size); | 
|  | contents = NULL; | 
|  | contents_addr = NULL; | 
|  | } | 
|  |  | 
|  | if (elf_dynverdef (abfd) != 0 || elf_tdata (abfd)->dt_verdef != NULL) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  | Elf_External_Verdef *everdef; | 
|  | Elf_Internal_Verdef *iverdef; | 
|  | Elf_Internal_Verdef *iverdefarr; | 
|  | Elf_Internal_Verdef iverdefmem; | 
|  | unsigned int i; | 
|  | unsigned int maxidx; | 
|  | bfd_byte *contents_end_def, *contents_end_aux; | 
|  | size_t verdef_count; | 
|  | size_t verdef_size; | 
|  |  | 
|  | if (elf_tdata (abfd)->dt_verdef != NULL) | 
|  | { | 
|  | hdr = NULL; | 
|  | contents = elf_tdata (abfd)->dt_verdef; | 
|  | verdef_count = elf_tdata (abfd)->dt_verdef_count; | 
|  | verdef_size = verdef_count * sizeof (Elf_External_Verdef); | 
|  | } | 
|  | else | 
|  | { | 
|  | hdr = &elf_tdata (abfd)->dynverdef_hdr; | 
|  |  | 
|  | if (hdr->sh_size < sizeof (Elf_External_Verdef)) | 
|  | { | 
|  | error_return_bad_verdef: | 
|  | _bfd_error_handler | 
|  | (_("%pB: .gnu.version_d invalid entry"), abfd); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | error_return_verdef: | 
|  | elf_tdata (abfd)->verdef = NULL; | 
|  | elf_tdata (abfd)->cverdefs = 0; | 
|  | goto error_return; | 
|  | } | 
|  |  | 
|  | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0) | 
|  | goto error_return_verdef; | 
|  | contents_size = hdr->sh_size; | 
|  | contents = _bfd_mmap_readonly_temporary (abfd, contents_size, | 
|  | &contents_addr, | 
|  | &contents_size); | 
|  | if (contents == NULL) | 
|  | goto error_return_verdef; | 
|  |  | 
|  | BFD_ASSERT (sizeof (Elf_External_Verdef) | 
|  | >= sizeof (Elf_External_Verdaux)); | 
|  |  | 
|  | verdef_count = hdr->sh_info; | 
|  | verdef_size = hdr->sh_size; | 
|  | } | 
|  |  | 
|  | contents_end_def = (contents + verdef_size | 
|  | - sizeof (Elf_External_Verdef)); | 
|  | contents_end_aux = (contents + verdef_size | 
|  | - sizeof (Elf_External_Verdaux)); | 
|  |  | 
|  | /* We know the number of entries in the section but not the maximum | 
|  | index.  Therefore we have to run through all entries and find | 
|  | the maximum.  */ | 
|  | everdef = (Elf_External_Verdef *) contents; | 
|  | maxidx = 0; | 
|  | for (i = 0; i < verdef_count; ++i) | 
|  | { | 
|  | _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); | 
|  |  | 
|  | if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0) | 
|  | goto error_return_bad_verdef; | 
|  | if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) | 
|  | maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); | 
|  |  | 
|  | if (iverdefmem.vd_next == 0) | 
|  | break; | 
|  |  | 
|  | if (iverdefmem.vd_next | 
|  | > (size_t) (contents_end_def - (bfd_byte *) everdef)) | 
|  | goto error_return_bad_verdef; | 
|  |  | 
|  | everdef = ((Elf_External_Verdef *) | 
|  | ((bfd_byte *) everdef + iverdefmem.vd_next)); | 
|  | } | 
|  |  | 
|  | if (default_imported_symver) | 
|  | { | 
|  | if (freeidx > maxidx) | 
|  | maxidx = ++freeidx; | 
|  | else | 
|  | freeidx = ++maxidx; | 
|  | } | 
|  | if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return_verdef; | 
|  | } | 
|  |  | 
|  | if (amt == 0) | 
|  | goto error_return_verdef; | 
|  | elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt); | 
|  | if (elf_tdata (abfd)->verdef == NULL) | 
|  | goto error_return_verdef; | 
|  |  | 
|  | elf_tdata (abfd)->cverdefs = maxidx; | 
|  |  | 
|  | everdef = (Elf_External_Verdef *) contents; | 
|  | iverdefarr = elf_tdata (abfd)->verdef; | 
|  | for (i = 0; i < verdef_count; ++i) | 
|  | { | 
|  | Elf_External_Verdaux *everdaux; | 
|  | Elf_Internal_Verdaux *iverdaux; | 
|  | unsigned int j; | 
|  |  | 
|  | _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); | 
|  |  | 
|  | if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) | 
|  | goto error_return_bad_verdef; | 
|  |  | 
|  | iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; | 
|  | memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd)); | 
|  |  | 
|  | iverdef->vd_bfd = abfd; | 
|  |  | 
|  | if (iverdef->vd_cnt == 0) | 
|  | iverdef->vd_auxptr = NULL; | 
|  | else | 
|  | { | 
|  | if (_bfd_mul_overflow (iverdef->vd_cnt, | 
|  | sizeof (Elf_Internal_Verdaux), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return_verdef; | 
|  | } | 
|  | iverdef->vd_auxptr = (struct elf_internal_verdaux *) | 
|  | bfd_alloc (abfd, amt); | 
|  | if (iverdef->vd_auxptr == NULL) | 
|  | goto error_return_verdef; | 
|  | } | 
|  |  | 
|  | if (iverdef->vd_aux | 
|  | > (size_t) (contents_end_aux - (bfd_byte *) everdef)) | 
|  | goto error_return_bad_verdef; | 
|  |  | 
|  | everdaux = ((Elf_External_Verdaux *) | 
|  | ((bfd_byte *) everdef + iverdef->vd_aux)); | 
|  | iverdaux = iverdef->vd_auxptr; | 
|  | for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) | 
|  | { | 
|  | _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); | 
|  |  | 
|  | if (elf_use_dt_symtab_p (abfd)) | 
|  | { | 
|  | if (iverdaux->vda_name < elf_tdata (abfd)->dt_strsz) | 
|  | iverdaux->vda_nodename | 
|  | = elf_tdata (abfd)->dt_strtab + iverdaux->vda_name; | 
|  | else | 
|  | iverdaux->vda_nodename = NULL; | 
|  | } | 
|  | else | 
|  | iverdaux->vda_nodename | 
|  | = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | 
|  | iverdaux->vda_name); | 
|  | if (iverdaux->vda_nodename == NULL) | 
|  | goto error_return_bad_verdef; | 
|  |  | 
|  | iverdaux->vda_nextptr = NULL; | 
|  | if (iverdaux->vda_next == 0) | 
|  | { | 
|  | iverdef->vd_cnt = j + 1; | 
|  | break; | 
|  | } | 
|  | if (j + 1 < iverdef->vd_cnt) | 
|  | iverdaux->vda_nextptr = iverdaux + 1; | 
|  |  | 
|  | if (iverdaux->vda_next | 
|  | > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) | 
|  | goto error_return_bad_verdef; | 
|  |  | 
|  | everdaux = ((Elf_External_Verdaux *) | 
|  | ((bfd_byte *) everdaux + iverdaux->vda_next)); | 
|  | } | 
|  |  | 
|  | iverdef->vd_nodename = NULL; | 
|  | if (iverdef->vd_cnt) | 
|  | iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; | 
|  |  | 
|  | iverdef->vd_nextdef = NULL; | 
|  | if (iverdef->vd_next == 0) | 
|  | break; | 
|  | if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) | 
|  | iverdef->vd_nextdef = iverdef + 1; | 
|  |  | 
|  | everdef = ((Elf_External_Verdef *) | 
|  | ((bfd_byte *) everdef + iverdef->vd_next)); | 
|  | } | 
|  |  | 
|  | if (contents != elf_tdata (abfd)->dt_verdef) | 
|  | _bfd_munmap_readonly_temporary (contents_addr, contents_size); | 
|  | contents = NULL; | 
|  | contents_addr = NULL; | 
|  | } | 
|  | else if (default_imported_symver) | 
|  | { | 
|  | if (freeidx < 3) | 
|  | freeidx = 3; | 
|  | else | 
|  | freeidx++; | 
|  |  | 
|  | if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | goto error_return; | 
|  | } | 
|  | if (amt == 0) | 
|  | goto error_return; | 
|  | elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt); | 
|  | if (elf_tdata (abfd)->verdef == NULL) | 
|  | goto error_return; | 
|  |  | 
|  | elf_tdata (abfd)->cverdefs = freeidx; | 
|  | } | 
|  |  | 
|  | /* Create a default version based on the soname.  */ | 
|  | if (default_imported_symver) | 
|  | { | 
|  | Elf_Internal_Verdef *iverdef; | 
|  | Elf_Internal_Verdaux *iverdaux; | 
|  |  | 
|  | iverdef = &elf_tdata (abfd)->verdef[freeidx - 1]; | 
|  |  | 
|  | iverdef->vd_version = VER_DEF_CURRENT; | 
|  | iverdef->vd_flags = 0; | 
|  | iverdef->vd_ndx = freeidx; | 
|  | iverdef->vd_cnt = 1; | 
|  |  | 
|  | iverdef->vd_bfd = abfd; | 
|  |  | 
|  | iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); | 
|  | if (iverdef->vd_nodename == NULL) | 
|  | goto error_return_verdef; | 
|  | iverdef->vd_nextdef = NULL; | 
|  | iverdef->vd_auxptr = ((struct elf_internal_verdaux *) | 
|  | bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux))); | 
|  | if (iverdef->vd_auxptr == NULL) | 
|  | goto error_return_verdef; | 
|  |  | 
|  | iverdaux = iverdef->vd_auxptr; | 
|  | iverdaux->vda_nodename = iverdef->vd_nodename; | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | error_return: | 
|  | if (contents != elf_tdata (abfd)->dt_verneed | 
|  | && contents != elf_tdata (abfd)->dt_verdef) | 
|  | _bfd_munmap_readonly_temporary (contents_addr, contents_size); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | asymbol * | 
|  | _bfd_elf_make_empty_symbol (bfd *abfd) | 
|  | { | 
|  | elf_symbol_type *newsym; | 
|  |  | 
|  | newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym)); | 
|  | if (!newsym) | 
|  | return NULL; | 
|  | newsym->symbol.the_bfd = abfd; | 
|  | return &newsym->symbol; | 
|  | } | 
|  |  | 
|  | void | 
|  | _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asymbol *symbol, | 
|  | symbol_info *ret) | 
|  | { | 
|  | bfd_symbol_info (symbol, ret); | 
|  | } | 
|  |  | 
|  | /* Return whether a symbol name implies a local symbol.  Most targets | 
|  | use this function for the is_local_label_name entry point, but some | 
|  | override it.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | const char *name) | 
|  | { | 
|  | /* Normal local symbols start with ``.L''.  */ | 
|  | if (name[0] == '.' && name[1] == 'L') | 
|  | return true; | 
|  |  | 
|  | /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate | 
|  | DWARF debugging symbols starting with ``..''.  */ | 
|  | if (name[0] == '.' && name[1] == '.') | 
|  | return true; | 
|  |  | 
|  | /* gcc will sometimes generate symbols beginning with ``_.L_'' when | 
|  | emitting DWARF debugging output.  I suspect this is actually a | 
|  | small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call | 
|  | ASM_GENERATE_INTERNAL_LABEL, and this causes the leading | 
|  | underscore to be emitted on some ELF targets).  For ease of use, | 
|  | we treat such symbols as local.  */ | 
|  | if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') | 
|  | return true; | 
|  |  | 
|  | /* Treat assembler generated fake symbols, dollar local labels and | 
|  | forward-backward labels (aka local labels) as locals. | 
|  | These labels have the form: | 
|  |  | 
|  | L0^A.*				       (fake symbols) | 
|  |  | 
|  | [.]?L[0123456789]+{^A|^B}[0123456789]*  (local labels) | 
|  |  | 
|  | Versions which start with .L will have already been matched above, | 
|  | so we only need to match the rest.  */ | 
|  | if (name[0] == 'L' && ISDIGIT (name[1])) | 
|  | { | 
|  | bool ret = false; | 
|  | const char * p; | 
|  | char c; | 
|  |  | 
|  | for (p = name + 2; (c = *p); p++) | 
|  | { | 
|  | if (c == 1 || c == 2) | 
|  | { | 
|  | if (c == 1 && p == name + 2) | 
|  | /* A fake symbol.  */ | 
|  | return true; | 
|  |  | 
|  | /* FIXME: We are being paranoid here and treating symbols like | 
|  | L0^Bfoo as if there were non-local, on the grounds that the | 
|  | assembler will never generate them.  But can any symbol | 
|  | containing an ASCII value in the range 1-31 ever be anything | 
|  | other than some kind of local ?  */ | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | if (! ISDIGIT (c)) | 
|  | { | 
|  | ret = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | alent * | 
|  | _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | asymbol *symbol ATTRIBUTE_UNUSED) | 
|  | { | 
|  | abort (); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_set_arch_mach (bfd *abfd, | 
|  | enum bfd_architecture arch, | 
|  | unsigned long machine) | 
|  | { | 
|  | /* If this isn't the right architecture for this backend, and this | 
|  | isn't the generic backend, fail.  */ | 
|  | if (arch != get_elf_backend_data (abfd)->arch | 
|  | && arch != bfd_arch_unknown | 
|  | && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) | 
|  | return false; | 
|  |  | 
|  | return bfd_default_set_arch_mach (abfd, arch, machine); | 
|  | } | 
|  |  | 
|  | /* Find the nearest line to a particular section and offset, | 
|  | for error reporting.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_find_nearest_line (bfd *abfd, | 
|  | asymbol **symbols, | 
|  | asection *section, | 
|  | bfd_vma offset, | 
|  | const char **filename_ptr, | 
|  | const char **functionname_ptr, | 
|  | unsigned int *line_ptr, | 
|  | unsigned int *discriminator_ptr) | 
|  | { | 
|  | return _bfd_elf_find_nearest_line_with_alt (abfd, NULL, symbols, section, | 
|  | offset, filename_ptr, | 
|  | functionname_ptr, line_ptr, | 
|  | discriminator_ptr); | 
|  | } | 
|  |  | 
|  | /* Find the nearest line to a particular section and offset, | 
|  | for error reporting.  ALT_BFD representing a .gnu_debugaltlink file | 
|  | can be optionally specified.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_find_nearest_line_with_alt (bfd *abfd, | 
|  | const char *alt_filename, | 
|  | asymbol **symbols, | 
|  | asection *section, | 
|  | bfd_vma offset, | 
|  | const char **filename_ptr, | 
|  | const char **functionname_ptr, | 
|  | unsigned int *line_ptr, | 
|  | unsigned int *discriminator_ptr) | 
|  | { | 
|  | bool found; | 
|  |  | 
|  | if (_bfd_dwarf2_find_nearest_line_with_alt (abfd, alt_filename, symbols, NULL, | 
|  | section, offset, filename_ptr, | 
|  | functionname_ptr, line_ptr, | 
|  | discriminator_ptr, | 
|  | dwarf_debug_sections, | 
|  | &elf_tdata (abfd)->dwarf2_find_line_info)) | 
|  | return true; | 
|  |  | 
|  | if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, | 
|  | filename_ptr, functionname_ptr, line_ptr)) | 
|  | { | 
|  | if (!*functionname_ptr) | 
|  | _bfd_elf_find_function (abfd, symbols, section, offset, | 
|  | *filename_ptr ? NULL : filename_ptr, | 
|  | functionname_ptr); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, | 
|  | &found, filename_ptr, | 
|  | functionname_ptr, line_ptr, | 
|  | &elf_tdata (abfd)->line_info)) | 
|  | return false; | 
|  | if (found && (*functionname_ptr || *line_ptr)) | 
|  | return true; | 
|  |  | 
|  | if (symbols == NULL) | 
|  | return false; | 
|  |  | 
|  | if (! _bfd_elf_find_function (abfd, symbols, section, offset, | 
|  | filename_ptr, functionname_ptr)) | 
|  | return false; | 
|  |  | 
|  | *line_ptr = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Find the line for a symbol.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, | 
|  | const char **filename_ptr, unsigned int *line_ptr) | 
|  | { | 
|  | struct elf_obj_tdata *tdata = elf_tdata (abfd); | 
|  | return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0, | 
|  | filename_ptr, NULL, line_ptr, NULL, | 
|  | dwarf_debug_sections, | 
|  | &tdata->dwarf2_find_line_info); | 
|  | } | 
|  |  | 
|  | /* After a call to bfd_find_nearest_line, successive calls to | 
|  | bfd_find_inliner_info can be used to get source information about | 
|  | each level of function inlining that terminated at the address | 
|  | passed to bfd_find_nearest_line.  Currently this is only supported | 
|  | for DWARF2 with appropriate DWARF3 extensions. */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_find_inliner_info (bfd *abfd, | 
|  | const char **filename_ptr, | 
|  | const char **functionname_ptr, | 
|  | unsigned int *line_ptr) | 
|  | { | 
|  | struct elf_obj_tdata *tdata = elf_tdata (abfd); | 
|  | return _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, | 
|  | functionname_ptr, line_ptr, | 
|  | &tdata->dwarf2_find_line_info); | 
|  | } | 
|  |  | 
|  | int | 
|  | _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | int ret = bed->s->sizeof_ehdr; | 
|  |  | 
|  | if (!bfd_link_relocatable (info)) | 
|  | { | 
|  | bfd_size_type phdr_size = elf_program_header_size (abfd); | 
|  |  | 
|  | if (phdr_size == (bfd_size_type) -1) | 
|  | { | 
|  | struct elf_segment_map *m; | 
|  |  | 
|  | phdr_size = 0; | 
|  | for (m = elf_seg_map (abfd); m != NULL; m = m->next) | 
|  | phdr_size += bed->s->sizeof_phdr; | 
|  |  | 
|  | if (phdr_size == 0) | 
|  | phdr_size = get_program_header_size (abfd, info); | 
|  | } | 
|  |  | 
|  | elf_program_header_size (abfd) = phdr_size; | 
|  | ret += phdr_size; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_set_section_contents (bfd *abfd, | 
|  | sec_ptr section, | 
|  | const void *location, | 
|  | file_ptr offset, | 
|  | bfd_size_type count) | 
|  | { | 
|  | Elf_Internal_Shdr *hdr; | 
|  |  | 
|  | if (! abfd->output_has_begun | 
|  | && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) | 
|  | return false; | 
|  |  | 
|  | if (!count) | 
|  | return true; | 
|  |  | 
|  | hdr = &elf_section_data (section)->this_hdr; | 
|  | if (hdr->sh_offset == (file_ptr) -1) | 
|  | { | 
|  | unsigned char *contents; | 
|  |  | 
|  | if (bfd_section_is_ctf (section)) | 
|  | /* Nothing to do with this section: the contents are generated | 
|  | later.  */ | 
|  | return true; | 
|  |  | 
|  | if ((offset + count) > hdr->sh_size) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB:%pA: error: attempting to write" | 
|  | " over the end of the section"), | 
|  | abfd, section); | 
|  |  | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | contents = hdr->contents; | 
|  | if (contents == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | (_("%pB:%pA: error: attempting to write" | 
|  | " section into an empty buffer"), | 
|  | abfd, section); | 
|  |  | 
|  | bfd_set_error (bfd_error_invalid_operation); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | memcpy (contents + offset, location, count); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return _bfd_generic_set_section_contents (abfd, section, | 
|  | location, offset, count); | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, | 
|  | arelent *cache_ptr ATTRIBUTE_UNUSED, | 
|  | Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) | 
|  | { | 
|  | abort (); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Try to convert a non-ELF reloc into an ELF one.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) | 
|  | { | 
|  | /* Check whether we really have an ELF howto.  */ | 
|  |  | 
|  | if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) | 
|  | { | 
|  | bfd_reloc_code_real_type code; | 
|  | reloc_howto_type *howto; | 
|  |  | 
|  | /* Alien reloc: Try to determine its type to replace it with an | 
|  | equivalent ELF reloc.  */ | 
|  |  | 
|  | if (areloc->howto->pc_relative) | 
|  | { | 
|  | switch (areloc->howto->bitsize) | 
|  | { | 
|  | case 8: | 
|  | code = BFD_RELOC_8_PCREL; | 
|  | break; | 
|  | case 12: | 
|  | code = BFD_RELOC_12_PCREL; | 
|  | break; | 
|  | case 16: | 
|  | code = BFD_RELOC_16_PCREL; | 
|  | break; | 
|  | case 24: | 
|  | code = BFD_RELOC_24_PCREL; | 
|  | break; | 
|  | case 32: | 
|  | code = BFD_RELOC_32_PCREL; | 
|  | break; | 
|  | case 64: | 
|  | code = BFD_RELOC_64_PCREL; | 
|  | break; | 
|  | default: | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | howto = bfd_reloc_type_lookup (abfd, code); | 
|  |  | 
|  | if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset) | 
|  | { | 
|  | if (howto->pcrel_offset) | 
|  | areloc->addend += areloc->address; | 
|  | else | 
|  | areloc->addend -= areloc->address; /* addend is unsigned!! */ | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | switch (areloc->howto->bitsize) | 
|  | { | 
|  | case 8: | 
|  | code = BFD_RELOC_8; | 
|  | break; | 
|  | case 14: | 
|  | code = BFD_RELOC_14; | 
|  | break; | 
|  | case 16: | 
|  | code = BFD_RELOC_16; | 
|  | break; | 
|  | case 26: | 
|  | code = BFD_RELOC_26; | 
|  | break; | 
|  | case 32: | 
|  | code = BFD_RELOC_32; | 
|  | break; | 
|  | case 64: | 
|  | code = BFD_RELOC_64; | 
|  | break; | 
|  | default: | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | howto = bfd_reloc_type_lookup (abfd, code); | 
|  | } | 
|  |  | 
|  | if (howto) | 
|  | areloc->howto = howto; | 
|  | else | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | return true; | 
|  |  | 
|  | fail: | 
|  | /* xgettext:c-format */ | 
|  | _bfd_error_handler (_("%pB: %s unsupported"), | 
|  | abfd, areloc->howto->name); | 
|  | bfd_set_error (bfd_error_sorry); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool | 
|  | _bfd_elf_free_cached_info (bfd *abfd) | 
|  | { | 
|  | struct elf_obj_tdata *tdata; | 
|  |  | 
|  | if ((bfd_get_format (abfd) == bfd_object | 
|  | || bfd_get_format (abfd) == bfd_core) | 
|  | && (tdata = elf_tdata (abfd)) != NULL) | 
|  | { | 
|  | if (tdata->o != NULL && elf_shstrtab (abfd) != NULL) | 
|  | _bfd_elf_strtab_free (elf_shstrtab (abfd)); | 
|  | _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info); | 
|  | _bfd_dwarf1_cleanup_debug_info (abfd, &tdata->dwarf1_find_line_info); | 
|  | _bfd_stab_cleanup (abfd, &tdata->line_info); | 
|  | } | 
|  |  | 
|  | return _bfd_generic_bfd_free_cached_info (abfd); | 
|  | } | 
|  |  | 
|  | /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY | 
|  | in the relocation's offset.  Thus we cannot allow any sort of sanity | 
|  | range-checking to interfere.  There is nothing else to do in processing | 
|  | this reloc.  */ | 
|  |  | 
|  | bfd_reloc_status_type | 
|  | _bfd_elf_rel_vtable_reloc_fn | 
|  | (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, | 
|  | struct bfd_symbol *symbol ATTRIBUTE_UNUSED, | 
|  | void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, | 
|  | bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return bfd_reloc_ok; | 
|  | } | 
|  |  | 
|  | /* Elf core file support.  Much of this only works on native | 
|  | toolchains, since we rely on knowing the | 
|  | machine-dependent procfs structure in order to pick | 
|  | out details about the corefile.  */ | 
|  |  | 
|  | #ifdef HAVE_SYS_PROCFS_H | 
|  | # include <sys/procfs.h> | 
|  | #endif | 
|  |  | 
|  | /* Return a PID that identifies a "thread" for threaded cores, or the | 
|  | PID of the main process for non-threaded cores.  */ | 
|  |  | 
|  | static int | 
|  | elfcore_make_pid (bfd *abfd) | 
|  | { | 
|  | int pid; | 
|  |  | 
|  | pid = elf_tdata (abfd)->core->lwpid; | 
|  | if (pid == 0) | 
|  | pid = elf_tdata (abfd)->core->pid; | 
|  |  | 
|  | return pid; | 
|  | } | 
|  |  | 
|  | /* If there isn't a section called NAME, make one, using data from | 
|  | SECT.  Note, this function will generate a reference to NAME, so | 
|  | you shouldn't deallocate or overwrite it.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) | 
|  | { | 
|  | asection *sect2; | 
|  |  | 
|  | if (bfd_get_section_by_name (abfd, name) != NULL) | 
|  | return true; | 
|  |  | 
|  | sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); | 
|  | if (sect2 == NULL) | 
|  | return false; | 
|  |  | 
|  | sect2->size = sect->size; | 
|  | sect2->filepos = sect->filepos; | 
|  | sect2->alignment_power = sect->alignment_power; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Create a pseudosection containing SIZE bytes at FILEPOS.  This | 
|  | actually creates up to two pseudosections: | 
|  | - For the single-threaded case, a section named NAME, unless | 
|  | such a section already exists. | 
|  | - For the multi-threaded case, a section named "NAME/PID", where | 
|  | PID is elfcore_make_pid (abfd). | 
|  | Both pseudosections have identical contents.  */ | 
|  | bool | 
|  | _bfd_elfcore_make_pseudosection (bfd *abfd, | 
|  | char *name, | 
|  | size_t size, | 
|  | ufile_ptr filepos) | 
|  | { | 
|  | char buf[100]; | 
|  | char *threaded_name; | 
|  | size_t len; | 
|  | asection *sect; | 
|  |  | 
|  | /* Build the section name.  */ | 
|  |  | 
|  | sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); | 
|  | len = strlen (buf) + 1; | 
|  | threaded_name = (char *) bfd_alloc (abfd, len); | 
|  | if (threaded_name == NULL) | 
|  | return false; | 
|  | memcpy (threaded_name, buf, len); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, | 
|  | SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  | sect->size = size; | 
|  | sect->filepos = filepos; | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | return elfcore_maybe_make_sect (abfd, name, sect); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note, | 
|  | size_t offs) | 
|  | { | 
|  | asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", | 
|  | SEC_HAS_CONTENTS); | 
|  |  | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | sect->size = note->descsz - offs; | 
|  | sect->filepos = note->descpos + offs; | 
|  | sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* prstatus_t exists on: | 
|  | solaris 2.5+ | 
|  | linux 2.[01] + glibc | 
|  | unixware 4.2 | 
|  | */ | 
|  |  | 
|  | #if defined (HAVE_PRSTATUS_T) | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | size_t size; | 
|  | int offset; | 
|  |  | 
|  | if (note->descsz == sizeof (prstatus_t)) | 
|  | { | 
|  | prstatus_t prstat; | 
|  |  | 
|  | size = sizeof (prstat.pr_reg); | 
|  | offset   = offsetof (prstatus_t, pr_reg); | 
|  | memcpy (&prstat, note->descdata, sizeof (prstat)); | 
|  |  | 
|  | /* Do not overwrite the core signal if it | 
|  | has already been set by another thread.  */ | 
|  | if (elf_tdata (abfd)->core->signal == 0) | 
|  | elf_tdata (abfd)->core->signal = prstat.pr_cursig; | 
|  | if (elf_tdata (abfd)->core->pid == 0) | 
|  | elf_tdata (abfd)->core->pid = prstat.pr_pid; | 
|  |  | 
|  | /* pr_who exists on: | 
|  | solaris 2.5+ | 
|  | unixware 4.2 | 
|  | pr_who doesn't exist on: | 
|  | linux 2.[01] | 
|  | */ | 
|  | #if defined (HAVE_PRSTATUS_T_PR_WHO) | 
|  | elf_tdata (abfd)->core->lwpid = prstat.pr_who; | 
|  | #else | 
|  | elf_tdata (abfd)->core->lwpid = prstat.pr_pid; | 
|  | #endif | 
|  | } | 
|  | #if defined (HAVE_PRSTATUS32_T) | 
|  | else if (note->descsz == sizeof (prstatus32_t)) | 
|  | { | 
|  | /* 64-bit host, 32-bit corefile */ | 
|  | prstatus32_t prstat; | 
|  |  | 
|  | size = sizeof (prstat.pr_reg); | 
|  | offset   = offsetof (prstatus32_t, pr_reg); | 
|  | memcpy (&prstat, note->descdata, sizeof (prstat)); | 
|  |  | 
|  | /* Do not overwrite the core signal if it | 
|  | has already been set by another thread.  */ | 
|  | if (elf_tdata (abfd)->core->signal == 0) | 
|  | elf_tdata (abfd)->core->signal = prstat.pr_cursig; | 
|  | if (elf_tdata (abfd)->core->pid == 0) | 
|  | elf_tdata (abfd)->core->pid = prstat.pr_pid; | 
|  |  | 
|  | /* pr_who exists on: | 
|  | solaris 2.5+ | 
|  | unixware 4.2 | 
|  | pr_who doesn't exist on: | 
|  | linux 2.[01] | 
|  | */ | 
|  | #if defined (HAVE_PRSTATUS32_T_PR_WHO) | 
|  | elf_tdata (abfd)->core->lwpid = prstat.pr_who; | 
|  | #else | 
|  | elf_tdata (abfd)->core->lwpid = prstat.pr_pid; | 
|  | #endif | 
|  | } | 
|  | #endif /* HAVE_PRSTATUS32_T */ | 
|  | else | 
|  | { | 
|  | /* Fail - we don't know how to handle any other | 
|  | note size (ie. data object type).  */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Make a ".reg/999" section and a ".reg" section.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | 
|  | size, note->descpos + offset); | 
|  | } | 
|  | #endif /* defined (HAVE_PRSTATUS_T) */ | 
|  |  | 
|  | /* Create a pseudosection containing the exact contents of NOTE.  */ | 
|  | static bool | 
|  | elfcore_make_note_pseudosection (bfd *abfd, | 
|  | char *name, | 
|  | Elf_Internal_Note *note) | 
|  | { | 
|  | return _bfd_elfcore_make_pseudosection (abfd, name, | 
|  | note->descsz, note->descpos); | 
|  | } | 
|  |  | 
|  | /* There isn't a consistent prfpregset_t across platforms, | 
|  | but it doesn't matter, because we don't have to pick this | 
|  | data structure apart.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg2", note); | 
|  | } | 
|  |  | 
|  | /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note | 
|  | type of NT_PRXFPREG.  Just include the whole note's contents | 
|  | literally.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); | 
|  | } | 
|  |  | 
|  | /* Linux dumps the Intel XSAVE extended state in a note named "LINUX" | 
|  | with a note type of NT_X86_XSTATE.  Just include the whole note's | 
|  | contents literally.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte", | 
|  | note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_ssve (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-ssve", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_za (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-za", note); | 
|  | } | 
|  |  | 
|  | /* Convert NOTE into a bfd_section called ".reg-aarch-zt".  Return TRUE if | 
|  | successful, otherwise return FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_aarch_zt (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-aarch-zt", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note); | 
|  | } | 
|  |  | 
|  | /* Convert NOTE into a bfd_section called ".reg-riscv-csr".  Return TRUE if | 
|  | successful otherwise, return FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note); | 
|  | } | 
|  |  | 
|  | /* Convert NOTE into a bfd_section called ".gdb-tdesc".  Return TRUE if | 
|  | successful otherwise, return FALSE.  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_loongarch_cpucfg (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-cpucfg", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_loongarch_lbt (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lbt", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_loongarch_lsx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lsx", note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_loongarch_lasx (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lasx", note); | 
|  | } | 
|  |  | 
|  | #if defined (HAVE_PRPSINFO_T) | 
|  | typedef prpsinfo_t   elfcore_psinfo_t; | 
|  | #if defined (HAVE_PRPSINFO32_T)		/* Sparc64 cross Sparc32 */ | 
|  | typedef prpsinfo32_t elfcore_psinfo32_t; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #if defined (HAVE_PSINFO_T) | 
|  | typedef psinfo_t   elfcore_psinfo_t; | 
|  | #if defined (HAVE_PSINFO32_T)		/* Sparc64 cross Sparc32 */ | 
|  | typedef psinfo32_t elfcore_psinfo32_t; | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* return a malloc'ed copy of a string at START which is at | 
|  | most MAX bytes long, possibly without a terminating '\0'. | 
|  | the copy will always have a terminating '\0'.  */ | 
|  |  | 
|  | char * | 
|  | _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) | 
|  | { | 
|  | char *dups; | 
|  | char *end = (char *) memchr (start, '\0', max); | 
|  | size_t len; | 
|  |  | 
|  | if (end == NULL) | 
|  | len = max; | 
|  | else | 
|  | len = end - start; | 
|  |  | 
|  | dups = (char *) bfd_alloc (abfd, len + 1); | 
|  | if (dups == NULL) | 
|  | return NULL; | 
|  |  | 
|  | memcpy (dups, start, len); | 
|  | dups[len] = '\0'; | 
|  |  | 
|  | return dups; | 
|  | } | 
|  |  | 
|  | #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) | 
|  | static bool | 
|  | elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note->descsz == sizeof (elfcore_psinfo_t)) | 
|  | { | 
|  | elfcore_psinfo_t psinfo; | 
|  |  | 
|  | memcpy (&psinfo, note->descdata, sizeof (psinfo)); | 
|  |  | 
|  | #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID) | 
|  | elf_tdata (abfd)->core->pid = psinfo.pr_pid; | 
|  | #endif | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, | 
|  | sizeof (psinfo.pr_fname)); | 
|  |  | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, | 
|  | sizeof (psinfo.pr_psargs)); | 
|  | } | 
|  | #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) | 
|  | else if (note->descsz == sizeof (elfcore_psinfo32_t)) | 
|  | { | 
|  | /* 64-bit host, 32-bit corefile */ | 
|  | elfcore_psinfo32_t psinfo; | 
|  |  | 
|  | memcpy (&psinfo, note->descdata, sizeof (psinfo)); | 
|  |  | 
|  | #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID) | 
|  | elf_tdata (abfd)->core->pid = psinfo.pr_pid; | 
|  | #endif | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, | 
|  | sizeof (psinfo.pr_fname)); | 
|  |  | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, | 
|  | sizeof (psinfo.pr_psargs)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | else | 
|  | { | 
|  | /* Fail - we don't know how to handle any other | 
|  | note size (ie. data object type).  */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Note that for some reason, a spurious space is tacked | 
|  | onto the end of the args in some (at least one anyway) | 
|  | implementations, so strip it off if it exists.  */ | 
|  |  | 
|  | { | 
|  | char *command = elf_tdata (abfd)->core->command; | 
|  | int n = strlen (command); | 
|  |  | 
|  | if (0 < n && command[n - 1] == ' ') | 
|  | command[n - 1] = '\0'; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ | 
|  |  | 
|  | #if defined (HAVE_PSTATUS_T) | 
|  | static bool | 
|  | elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note->descsz == sizeof (pstatus_t) | 
|  | #if defined (HAVE_PXSTATUS_T) | 
|  | || note->descsz == sizeof (pxstatus_t) | 
|  | #endif | 
|  | ) | 
|  | { | 
|  | pstatus_t pstat; | 
|  |  | 
|  | memcpy (&pstat, note->descdata, sizeof (pstat)); | 
|  |  | 
|  | elf_tdata (abfd)->core->pid = pstat.pr_pid; | 
|  | } | 
|  | #if defined (HAVE_PSTATUS32_T) | 
|  | else if (note->descsz == sizeof (pstatus32_t)) | 
|  | { | 
|  | /* 64-bit host, 32-bit corefile */ | 
|  | pstatus32_t pstat; | 
|  |  | 
|  | memcpy (&pstat, note->descdata, sizeof (pstat)); | 
|  |  | 
|  | elf_tdata (abfd)->core->pid = pstat.pr_pid; | 
|  | } | 
|  | #endif | 
|  | /* Could grab some more details from the "representative" | 
|  | lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an | 
|  | NT_LWPSTATUS note, presumably.  */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  | #endif /* defined (HAVE_PSTATUS_T) */ | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T) | 
|  | static bool | 
|  | elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | lwpstatus_t lwpstat; | 
|  | char buf[100]; | 
|  | char *name; | 
|  | size_t len; | 
|  | asection *sect; | 
|  |  | 
|  | if (note->descsz != sizeof (lwpstat) | 
|  | #if defined (HAVE_LWPXSTATUS_T) | 
|  | && note->descsz != sizeof (lwpxstatus_t) | 
|  | #endif | 
|  | ) | 
|  | return true; | 
|  |  | 
|  | memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); | 
|  |  | 
|  | elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid; | 
|  | /* Do not overwrite the core signal if it has already been set by | 
|  | another thread.  */ | 
|  | if (elf_tdata (abfd)->core->signal == 0) | 
|  | elf_tdata (abfd)->core->signal = lwpstat.pr_cursig; | 
|  |  | 
|  | /* Make a ".reg/999" section.  */ | 
|  |  | 
|  | sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); | 
|  | len = strlen (buf) + 1; | 
|  | name = bfd_alloc (abfd, len); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | memcpy (name, buf, len); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) | 
|  | sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); | 
|  | sect->filepos = note->descpos | 
|  | + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); | 
|  | #endif | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T_PR_REG) | 
|  | sect->size = sizeof (lwpstat.pr_reg); | 
|  | sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); | 
|  | #endif | 
|  |  | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) | 
|  | return false; | 
|  |  | 
|  | /* Make a ".reg2/999" section */ | 
|  |  | 
|  | sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); | 
|  | len = strlen (buf) + 1; | 
|  | name = bfd_alloc (abfd, len); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | memcpy (name, buf, len); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) | 
|  | sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); | 
|  | sect->filepos = note->descpos | 
|  | + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); | 
|  | #endif | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T_PR_FPREG) | 
|  | sect->size = sizeof (lwpstat.pr_fpreg); | 
|  | sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); | 
|  | #endif | 
|  |  | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | return elfcore_maybe_make_sect (abfd, ".reg2", sect); | 
|  | } | 
|  | #endif /* defined (HAVE_LWPSTATUS_T) */ | 
|  |  | 
|  | /* These constants, and the structure offsets used below, are defined by | 
|  | Cygwin's core_dump.h */ | 
|  | #define NOTE_INFO_PROCESS  1 | 
|  | #define NOTE_INFO_THREAD   2 | 
|  | #define NOTE_INFO_MODULE   3 | 
|  | #define NOTE_INFO_MODULE64 4 | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | char buf[30]; | 
|  | char *name; | 
|  | size_t len; | 
|  | unsigned int name_size; | 
|  | asection *sect; | 
|  | unsigned int type; | 
|  | int is_active_thread; | 
|  | bfd_vma base_addr; | 
|  |  | 
|  | if (note->descsz < 4) | 
|  | return true; | 
|  |  | 
|  | if (! startswith (note->namedata, "win32")) | 
|  | return true; | 
|  |  | 
|  | type = bfd_get_32 (abfd, note->descdata); | 
|  |  | 
|  | struct | 
|  | { | 
|  | const char *type_name; | 
|  | unsigned long min_size; | 
|  | } size_check[] = | 
|  | { | 
|  | { "NOTE_INFO_PROCESS", 12 }, | 
|  | { "NOTE_INFO_THREAD", 12 }, | 
|  | { "NOTE_INFO_MODULE", 12 }, | 
|  | { "NOTE_INFO_MODULE64", 16 }, | 
|  | }; | 
|  |  | 
|  | if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0]))) | 
|  | return true; | 
|  |  | 
|  | if (note->descsz < size_check[type - 1].min_size) | 
|  | { | 
|  | _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes" | 
|  | " is too small"), | 
|  | abfd, size_check[type - 1].type_name, note->descsz); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | switch (type) | 
|  | { | 
|  | case NOTE_INFO_PROCESS: | 
|  | /* FIXME: need to add ->core->command.  */ | 
|  | elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4); | 
|  | elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8); | 
|  | break; | 
|  |  | 
|  | case NOTE_INFO_THREAD: | 
|  | /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT | 
|  | structure. */ | 
|  | /* thread_info.tid */ | 
|  | sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4)); | 
|  |  | 
|  | len = strlen (buf) + 1; | 
|  | name = (char *) bfd_alloc (abfd, len); | 
|  | if (name == NULL) | 
|  | return false; | 
|  |  | 
|  | memcpy (name, buf, len); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | /* sizeof (thread_info.thread_context) */ | 
|  | sect->size = note->descsz - 12; | 
|  | /* offsetof (thread_info.thread_context) */ | 
|  | sect->filepos = note->descpos + 12; | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | /* thread_info.is_active_thread */ | 
|  | is_active_thread = bfd_get_32 (abfd, note->descdata + 8); | 
|  |  | 
|  | if (is_active_thread) | 
|  | if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case NOTE_INFO_MODULE: | 
|  | case NOTE_INFO_MODULE64: | 
|  | /* Make a ".module/xxxxxxxx" section.  */ | 
|  | if (type == NOTE_INFO_MODULE) | 
|  | { | 
|  | /* module_info.base_address */ | 
|  | base_addr = bfd_get_32 (abfd, note->descdata + 4); | 
|  | sprintf (buf, ".module/%08lx", (unsigned long) base_addr); | 
|  | /* module_info.module_name_size */ | 
|  | name_size = bfd_get_32 (abfd, note->descdata + 8); | 
|  | } | 
|  | else /* NOTE_INFO_MODULE64 */ | 
|  | { | 
|  | /* module_info.base_address */ | 
|  | base_addr = bfd_get_64 (abfd, note->descdata + 4); | 
|  | sprintf (buf, ".module/%016lx", (unsigned long) base_addr); | 
|  | /* module_info.module_name_size */ | 
|  | name_size = bfd_get_32 (abfd, note->descdata + 12); | 
|  | } | 
|  |  | 
|  | len = strlen (buf) + 1; | 
|  | name = (char *) bfd_alloc (abfd, len); | 
|  | if (name == NULL) | 
|  | return false; | 
|  |  | 
|  | memcpy (name, buf, len); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  |  | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | if (note->descsz < 12 + name_size) | 
|  | { | 
|  | _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu" | 
|  | " is too small to contain a name of size %u"), | 
|  | abfd, note->descsz, name_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | sect->size = note->descsz; | 
|  | sect->filepos = note->descpos; | 
|  | sect->alignment_power = 2; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | switch (note->type) | 
|  | { | 
|  | default: | 
|  | return true; | 
|  |  | 
|  | case NT_PRSTATUS: | 
|  | if (bed->elf_backend_grok_prstatus) | 
|  | if ((*bed->elf_backend_grok_prstatus) (abfd, note)) | 
|  | return true; | 
|  | #if defined (HAVE_PRSTATUS_T) | 
|  | return elfcore_grok_prstatus (abfd, note); | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  |  | 
|  | #if defined (HAVE_PSTATUS_T) | 
|  | case NT_PSTATUS: | 
|  | return elfcore_grok_pstatus (abfd, note); | 
|  | #endif | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T) | 
|  | case NT_LWPSTATUS: | 
|  | return elfcore_grok_lwpstatus (abfd, note); | 
|  | #endif | 
|  |  | 
|  | case NT_FPREGSET:		/* FIXME: rename to NT_PRFPREG */ | 
|  | return elfcore_grok_prfpreg (abfd, note); | 
|  |  | 
|  | case NT_WIN32PSTATUS: | 
|  | return elfcore_grok_win32pstatus (abfd, note); | 
|  |  | 
|  | case NT_PRXFPREG:		/* Linux SSE extension */ | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_prxfpreg (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_X86_XSTATE:		/* Linux XSAVE extension */ | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_xstatereg (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_VMX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_vmx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_VSX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_vsx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TAR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tar (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_PPR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_ppr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_DSCR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_dscr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_EBB: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_ebb (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_PMU: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_pmu (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CGPR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cgpr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CFPR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cfpr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CVMX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cvmx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CVSX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cvsx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_SPR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_spr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CTAR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_ctar (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CPPR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cppr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PPC_TM_CDSCR: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_ppc_tm_cdscr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_HIGH_GPRS: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_high_gprs (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_TIMER: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_timer (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_TODCMP: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_todcmp (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_TODPREG: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_todpreg (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_CTRS: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_ctrs (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_PREFIX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_prefix (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_LAST_BREAK: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_last_break (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_SYSTEM_CALL: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_system_call (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_TDB: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_tdb (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_VXRS_LOW: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_vxrs_low (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_VXRS_HIGH: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_vxrs_high (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_GS_CB: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_gs_cb (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_S390_GS_BC: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_s390_gs_bc (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARC_V2: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_arc_v2 (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_VFP: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_arm_vfp (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_TLS: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_tls (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_HW_BREAK: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_hw_break (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_HW_WATCH: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_hw_watch (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_SVE: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_sve (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_PAC_MASK: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_pauth (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_TAGGED_ADDR_CTRL: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_mte (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_SSVE: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_ssve (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_ZA: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_za (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_ARM_ZT: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_aarch_zt (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_GDB_TDESC: | 
|  | if (note->namesz == 4 | 
|  | && strcmp (note->namedata, "GDB") == 0) | 
|  | return elfcore_grok_gdb_tdesc (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_RISCV_CSR: | 
|  | if (note->namesz == 4 | 
|  | && strcmp (note->namedata, "GDB") == 0) | 
|  | return elfcore_grok_riscv_csr (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_LARCH_CPUCFG: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_loongarch_cpucfg (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_LARCH_LBT: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_loongarch_lbt (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_LARCH_LSX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_loongarch_lsx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_LARCH_LASX: | 
|  | if (note->namesz == 6 | 
|  | && strcmp (note->namedata, "LINUX") == 0) | 
|  | return elfcore_grok_loongarch_lasx (abfd, note); | 
|  | else | 
|  | return true; | 
|  |  | 
|  | case NT_PRPSINFO: | 
|  | case NT_PSINFO: | 
|  | if (bed->elf_backend_grok_psinfo) | 
|  | if ((*bed->elf_backend_grok_psinfo) (abfd, note)) | 
|  | return true; | 
|  | #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) | 
|  | return elfcore_grok_psinfo (abfd, note); | 
|  | #else | 
|  | return true; | 
|  | #endif | 
|  |  | 
|  | case NT_AUXV: | 
|  | return elfcore_make_auxv_note_section (abfd, note, 0); | 
|  |  | 
|  | case NT_FILE: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file", | 
|  | note); | 
|  |  | 
|  | case NT_SIGINFO: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo", | 
|  | note); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | struct bfd_build_id* build_id; | 
|  |  | 
|  | if (note->descsz == 0) | 
|  | return false; | 
|  |  | 
|  | build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz); | 
|  | if (build_id == NULL) | 
|  | return false; | 
|  |  | 
|  | build_id->size = note->descsz; | 
|  | memcpy (build_id->data, note->descdata, note->descsz); | 
|  | abfd->build_id = build_id; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | switch (note->type) | 
|  | { | 
|  | default: | 
|  | return true; | 
|  |  | 
|  | case NT_GNU_PROPERTY_TYPE_0: | 
|  | return _bfd_elf_parse_gnu_properties (abfd, note); | 
|  |  | 
|  | case NT_GNU_BUILD_ID: | 
|  | return elfobj_grok_gnu_build_id (abfd, note); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | struct sdt_note *cur = | 
|  | (struct sdt_note *) bfd_alloc (abfd, | 
|  | sizeof (struct sdt_note) + note->descsz); | 
|  |  | 
|  | cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head; | 
|  | cur->size = (bfd_size_type) note->descsz; | 
|  | memcpy (cur->data, note->descdata, note->descsz); | 
|  |  | 
|  | elf_tdata (abfd)->sdt_note_head = cur; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_STAPSDT: | 
|  | return elfobj_grok_stapsdt_note_1 (abfd, note); | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | size_t offset; | 
|  |  | 
|  | switch (elf_elfheader (abfd)->e_ident[EI_CLASS]) | 
|  | { | 
|  | case ELFCLASS32: | 
|  | if (note->descsz < 108) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | case ELFCLASS64: | 
|  | if (note->descsz < 120) | 
|  | return false; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Check for version 1 in pr_version.  */ | 
|  | if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) | 
|  | return false; | 
|  |  | 
|  | offset = 4; | 
|  |  | 
|  | /* Skip over pr_psinfosz. */ | 
|  | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32) | 
|  | offset += 4; | 
|  | else | 
|  | { | 
|  | offset += 4;	/* Padding before pr_psinfosz. */ | 
|  | offset += 8; | 
|  | } | 
|  |  | 
|  | /* pr_fname is PRFNAMESZ (16) + 1 bytes in size.  */ | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17); | 
|  | offset += 17; | 
|  |  | 
|  | /* pr_psargs is PRARGSZ (80) + 1 bytes in size.  */ | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81); | 
|  | offset += 81; | 
|  |  | 
|  | /* Padding before pr_pid.  */ | 
|  | offset += 2; | 
|  |  | 
|  | /* The pr_pid field was added in version "1a".  */ | 
|  | if (note->descsz < offset + 4) | 
|  | return true; | 
|  |  | 
|  | elf_tdata (abfd)->core->pid | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | size_t offset; | 
|  | size_t size; | 
|  | size_t min_size; | 
|  |  | 
|  | /* Compute offset of pr_getregsz, skipping over pr_statussz. | 
|  | Also compute minimum size of this note.  */ | 
|  | switch (elf_elfheader (abfd)->e_ident[EI_CLASS]) | 
|  | { | 
|  | case ELFCLASS32: | 
|  | offset = 4 + 4; | 
|  | min_size = offset + (4 * 2) + 4 + 4 + 4; | 
|  | break; | 
|  |  | 
|  | case ELFCLASS64: | 
|  | offset = 4 + 4 + 8;	/* Includes padding before pr_statussz.  */ | 
|  | min_size = offset + (8 * 2) + 4 + 4 + 4 + 4; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (note->descsz < min_size) | 
|  | return false; | 
|  |  | 
|  | /* Check for version 1 in pr_version.  */ | 
|  | if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) | 
|  | return false; | 
|  |  | 
|  | /* Extract size of pr_reg from pr_gregsetsz.  */ | 
|  | /* Skip over pr_gregsetsz and pr_fpregsetsz.  */ | 
|  | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32) | 
|  | { | 
|  | size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); | 
|  | offset += 4 * 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset); | 
|  | offset += 8 * 2; | 
|  | } | 
|  |  | 
|  | /* Skip over pr_osreldate.  */ | 
|  | offset += 4; | 
|  |  | 
|  | /* Read signal from pr_cursig.  */ | 
|  | if (elf_tdata (abfd)->core->signal == 0) | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); | 
|  | offset += 4; | 
|  |  | 
|  | /* Read TID from pr_pid.  */ | 
|  | elf_tdata (abfd)->core->lwpid | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); | 
|  | offset += 4; | 
|  |  | 
|  | /* Padding before pr_reg.  */ | 
|  | if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) | 
|  | offset += 4; | 
|  |  | 
|  | /* Make sure that there is enough data remaining in the note.  */ | 
|  | if ((note->descsz - offset) < size) | 
|  | return false; | 
|  |  | 
|  | /* Make a ".reg/999" section and a ".reg" section.  */ | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", | 
|  | size, note->descpos + offset); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_PRSTATUS: | 
|  | if (bed->elf_backend_grok_freebsd_prstatus) | 
|  | if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note)) | 
|  | return true; | 
|  | return elfcore_grok_freebsd_prstatus (abfd, note); | 
|  |  | 
|  | case NT_FPREGSET: | 
|  | return elfcore_grok_prfpreg (abfd, note); | 
|  |  | 
|  | case NT_PRPSINFO: | 
|  | return elfcore_grok_freebsd_psinfo (abfd, note); | 
|  |  | 
|  | case NT_FREEBSD_THRMISC: | 
|  | return elfcore_make_note_pseudosection (abfd, ".thrmisc", note); | 
|  |  | 
|  | case NT_FREEBSD_PROCSTAT_PROC: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc", | 
|  | note); | 
|  |  | 
|  | case NT_FREEBSD_PROCSTAT_FILES: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files", | 
|  | note); | 
|  |  | 
|  | case NT_FREEBSD_PROCSTAT_VMMAP: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap", | 
|  | note); | 
|  |  | 
|  | case NT_FREEBSD_PROCSTAT_AUXV: | 
|  | return elfcore_make_auxv_note_section (abfd, note, 4); | 
|  |  | 
|  | case NT_FREEBSD_X86_SEGBASES: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-x86-segbases", note); | 
|  |  | 
|  | case NT_X86_XSTATE: | 
|  | return elfcore_grok_xstatereg (abfd, note); | 
|  |  | 
|  | case NT_FREEBSD_PTLWPINFO: | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo", | 
|  | note); | 
|  |  | 
|  | case NT_ARM_TLS: | 
|  | return elfcore_grok_aarch_tls (abfd, note); | 
|  |  | 
|  | case NT_ARM_VFP: | 
|  | return elfcore_grok_arm_vfp (abfd, note); | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) | 
|  | { | 
|  | char *cp; | 
|  |  | 
|  | cp = strchr (note->namedata, '@'); | 
|  | if (cp != NULL) | 
|  | { | 
|  | *lwpidp = atoi(cp + 1); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note->descsz <= 0x7c + 31) | 
|  | return false; | 
|  |  | 
|  | /* Signal number at offset 0x08. */ | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); | 
|  |  | 
|  | /* Process ID at offset 0x50. */ | 
|  | elf_tdata (abfd)->core->pid | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); | 
|  |  | 
|  | /* Command name at 0x7c (max 32 bytes, including nul). */ | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); | 
|  |  | 
|  | return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", | 
|  | note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | int lwp; | 
|  |  | 
|  | if (elfcore_netbsd_get_lwpid (note, &lwp)) | 
|  | elf_tdata (abfd)->core->lwpid = lwp; | 
|  |  | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_NETBSDCORE_PROCINFO: | 
|  | /* NetBSD-specific core "procinfo".  Note that we expect to | 
|  | find this note before any of the others, which is fine, | 
|  | since the kernel writes this note out first when it | 
|  | creates a core file.  */ | 
|  | return elfcore_grok_netbsd_procinfo (abfd, note); | 
|  | case NT_NETBSDCORE_AUXV: | 
|  | /* NetBSD-specific Elf Auxiliary Vector data. */ | 
|  | return elfcore_make_auxv_note_section (abfd, note, 4); | 
|  | case NT_NETBSDCORE_LWPSTATUS: | 
|  | return elfcore_make_note_pseudosection (abfd, | 
|  | ".note.netbsdcore.lwpstatus", | 
|  | note); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* As of March 2020 there are no other machine-independent notes | 
|  | defined for NetBSD core files.  If the note type is less | 
|  | than the start of the machine-dependent note types, we don't | 
|  | understand it.  */ | 
|  |  | 
|  | if (note->type < NT_NETBSDCORE_FIRSTMACH) | 
|  | return true; | 
|  |  | 
|  |  | 
|  | switch (bfd_get_arch (abfd)) | 
|  | { | 
|  | /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and | 
|  | PT_GETFPREGS == mach+2.  */ | 
|  |  | 
|  | case bfd_arch_aarch64: | 
|  | case bfd_arch_alpha: | 
|  | case bfd_arch_sparc: | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_NETBSDCORE_FIRSTMACH+0: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg", note); | 
|  |  | 
|  | case NT_NETBSDCORE_FIRSTMACH+2: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg2", note); | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. | 
|  | There's also old PT___GETREGS40 == mach + 1 for old reg | 
|  | structure which lacks GBR.  */ | 
|  |  | 
|  | case bfd_arch_sh: | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_NETBSDCORE_FIRSTMACH+3: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg", note); | 
|  |  | 
|  | case NT_NETBSDCORE_FIRSTMACH+5: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg2", note); | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* On all other arch's, PT_GETREGS == mach+1 and | 
|  | PT_GETFPREGS == mach+3.  */ | 
|  |  | 
|  | default: | 
|  | switch (note->type) | 
|  | { | 
|  | case NT_NETBSDCORE_FIRSTMACH+1: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg", note); | 
|  |  | 
|  | case NT_NETBSDCORE_FIRSTMACH+3: | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg2", note); | 
|  |  | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note->descsz <= 0x48 + 31) | 
|  | return false; | 
|  |  | 
|  | /* Signal number at offset 0x08. */ | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); | 
|  |  | 
|  | /* Process ID at offset 0x20. */ | 
|  | elf_tdata (abfd)->core->pid | 
|  | = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); | 
|  |  | 
|  | /* Command name at 0x48 (max 32 bytes, including nul). */ | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Processes Solaris's process status note. | 
|  | sig_off ~ offsetof(prstatus_t, pr_cursig) | 
|  | pid_off ~ offsetof(prstatus_t, pr_pid) | 
|  | lwpid_off ~ offsetof(prstatus_t, pr_who) | 
|  | gregset_size ~ sizeof(gregset_t) | 
|  | gregset_offset ~ offsetof(prstatus_t, pr_reg)  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_solaris_prstatus (bfd *abfd, Elf_Internal_Note* note, int sig_off, | 
|  | int pid_off, int lwpid_off, size_t gregset_size, | 
|  | size_t gregset_offset) | 
|  | { | 
|  | asection *sect = NULL; | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_get_16 (abfd, note->descdata + sig_off); | 
|  | elf_tdata (abfd)->core->pid | 
|  | = bfd_get_32 (abfd, note->descdata + pid_off); | 
|  | elf_tdata (abfd)->core->lwpid | 
|  | = bfd_get_32 (abfd, note->descdata + lwpid_off); | 
|  |  | 
|  | sect = bfd_get_section_by_name (abfd, ".reg"); | 
|  | if (sect != NULL) | 
|  | sect->size = gregset_size; | 
|  |  | 
|  | return _bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size, | 
|  | note->descpos + gregset_offset); | 
|  | } | 
|  |  | 
|  | /* Gets program and arguments from a core. | 
|  | prog_off ~ offsetof(prpsinfo | psinfo_t, pr_fname) | 
|  | comm_off ~ offsetof(prpsinfo | psinfo_t, pr_psargs)  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_solaris_info(bfd *abfd, Elf_Internal_Note* note, | 
|  | int prog_off, int comm_off) | 
|  | { | 
|  | elf_tdata (abfd)->core->program | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + prog_off, 16); | 
|  | elf_tdata (abfd)->core->command | 
|  | = _bfd_elfcore_strndup (abfd, note->descdata + comm_off, 80); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Processes Solaris's LWP status note. | 
|  | gregset_size ~ sizeof(gregset_t) | 
|  | gregset_off ~ offsetof(lwpstatus_t, pr_reg) | 
|  | fpregset_size ~ sizeof(fpregset_t) | 
|  | fpregset_off ~ offsetof(lwpstatus_t, pr_fpreg)  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_solaris_lwpstatus (bfd *abfd, Elf_Internal_Note* note, | 
|  | size_t gregset_size, int gregset_off, | 
|  | size_t fpregset_size, int fpregset_off) | 
|  | { | 
|  | asection *sect = NULL; | 
|  | char reg2_section_name[16] = { 0 }; | 
|  |  | 
|  | (void) snprintf (reg2_section_name, 16, "%s/%i", ".reg2", | 
|  | elf_tdata (abfd)->core->lwpid); | 
|  |  | 
|  | /* offsetof(lwpstatus_t, pr_lwpid) */ | 
|  | elf_tdata (abfd)->core->lwpid | 
|  | = bfd_get_32 (abfd, note->descdata + 4); | 
|  | /* offsetof(lwpstatus_t, pr_cursig) */ | 
|  | elf_tdata (abfd)->core->signal | 
|  | = bfd_get_16 (abfd, note->descdata + 12); | 
|  |  | 
|  | sect = bfd_get_section_by_name (abfd, ".reg"); | 
|  | if (sect != NULL) | 
|  | sect->size = gregset_size; | 
|  | else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size, | 
|  | note->descpos + gregset_off)) | 
|  | return false; | 
|  |  | 
|  | sect = bfd_get_section_by_name (abfd, reg2_section_name); | 
|  | if (sect != NULL) | 
|  | { | 
|  | sect->size = fpregset_size; | 
|  | sect->filepos = note->descpos + fpregset_off; | 
|  | sect->alignment_power = 2; | 
|  | } | 
|  | else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg2", fpregset_size, | 
|  | note->descpos + fpregset_off)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_solaris_note_impl (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note == NULL) | 
|  | return false; | 
|  |  | 
|  | /* core files are identified as 32- or 64-bit, SPARC or x86, | 
|  | by the size of the descsz which matches the sizeof() | 
|  | the type appropriate for that note type (e.g., prstatus_t for | 
|  | SOLARIS_NT_PRSTATUS) for the corresponding architecture | 
|  | on Solaris. The core file bitness may differ from the bitness of | 
|  | gdb itself, so fixed values are used instead of sizeof(). | 
|  | Appropriate fixed offsets are also used to obtain data from | 
|  | the note.  */ | 
|  |  | 
|  | switch ((int) note->type) | 
|  | { | 
|  | case SOLARIS_NT_PRSTATUS: | 
|  | switch (note->descsz) | 
|  | { | 
|  | case 508: /* sizeof(prstatus_t) SPARC 32-bit */ | 
|  | return elfcore_grok_solaris_prstatus(abfd, note, | 
|  | 136, 216, 308, 152, 356); | 
|  | case 904: /* sizeof(prstatus_t) SPARC 64-bit */ | 
|  | return elfcore_grok_solaris_prstatus(abfd, note, | 
|  | 264, 360, 520, 304, 600); | 
|  | case 432: /* sizeof(prstatus_t) Intel 32-bit */ | 
|  | return elfcore_grok_solaris_prstatus(abfd, note, | 
|  | 136, 216, 308, 76, 356); | 
|  | case 824: /* sizeof(prstatus_t) Intel 64-bit */ | 
|  | return elfcore_grok_solaris_prstatus(abfd, note, | 
|  | 264, 360, 520, 224, 600); | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case SOLARIS_NT_PSINFO: | 
|  | case SOLARIS_NT_PRPSINFO: | 
|  | switch (note->descsz) | 
|  | { | 
|  | case 260: /* sizeof(prpsinfo_t) SPARC and Intel 32-bit */ | 
|  | return elfcore_grok_solaris_info(abfd, note, 84, 100); | 
|  | case 328: /* sizeof(prpsinfo_t) SPARC and Intel 64-bit */ | 
|  | return elfcore_grok_solaris_info(abfd, note, 120, 136); | 
|  | case 360: /* sizeof(psinfo_t) SPARC and Intel 32-bit */ | 
|  | return elfcore_grok_solaris_info(abfd, note, 88, 104); | 
|  | case 440: /* sizeof(psinfo_t) SPARC and Intel 64-bit */ | 
|  | return elfcore_grok_solaris_info(abfd, note, 136, 152); | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case SOLARIS_NT_LWPSTATUS: | 
|  | switch (note->descsz) | 
|  | { | 
|  | case 896: /* sizeof(lwpstatus_t) SPARC 32-bit */ | 
|  | return elfcore_grok_solaris_lwpstatus(abfd, note, | 
|  | 152, 344, 400, 496); | 
|  | case 1392: /* sizeof(lwpstatus_t) SPARC 64-bit */ | 
|  | return elfcore_grok_solaris_lwpstatus(abfd, note, | 
|  | 304, 544, 544, 848); | 
|  | case 800: /* sizeof(lwpstatus_t) Intel 32-bit */ | 
|  | return elfcore_grok_solaris_lwpstatus(abfd, note, | 
|  | 76, 344, 380, 420); | 
|  | case 1296: /* sizeof(lwpstatus_t) Intel 64-bit */ | 
|  | return elfcore_grok_solaris_lwpstatus(abfd, note, | 
|  | 224, 544, 528, 768); | 
|  | default: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | case SOLARIS_NT_LWPSINFO: | 
|  | /* sizeof(lwpsinfo_t) on 32- and 64-bit, respectively */ | 
|  | if (note->descsz == 128 || note->descsz == 152) | 
|  | elf_tdata (abfd)->core->lwpid = | 
|  | bfd_get_32 (abfd, note->descdata + 4); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* For name starting with "CORE" this may be either a Solaris | 
|  | core file or a gdb-generated core file.  Do Solaris-specific | 
|  | processing on selected note types first with | 
|  | elfcore_grok_solaris_note(), then process the note | 
|  | in elfcore_grok_note().  */ | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_solaris_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (!elfcore_grok_solaris_note_impl (abfd, note)) | 
|  | return false; | 
|  |  | 
|  | return elfcore_grok_note (abfd, note); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | if (note->type == NT_OPENBSD_PROCINFO) | 
|  | return elfcore_grok_openbsd_procinfo (abfd, note); | 
|  |  | 
|  | if (note->type == NT_OPENBSD_REGS) | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg", note); | 
|  |  | 
|  | if (note->type == NT_OPENBSD_FPREGS) | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg2", note); | 
|  |  | 
|  | if (note->type == NT_OPENBSD_XFPREGS) | 
|  | return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); | 
|  |  | 
|  | if (note->type == NT_OPENBSD_AUXV) | 
|  | return elfcore_make_auxv_note_section (abfd, note, 0); | 
|  |  | 
|  | if (note->type == NT_OPENBSD_WCOOKIE) | 
|  | { | 
|  | asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", | 
|  | SEC_HAS_CONTENTS); | 
|  |  | 
|  | if (sect == NULL) | 
|  | return false; | 
|  | sect->size = note->descsz; | 
|  | sect->filepos = note->descpos; | 
|  | sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) | 
|  | { | 
|  | void *ddata = note->descdata; | 
|  | char buf[100]; | 
|  | char *name; | 
|  | asection *sect; | 
|  | short sig; | 
|  | unsigned flags; | 
|  |  | 
|  | if (note->descsz < 16) | 
|  | return false; | 
|  |  | 
|  | /* nto_procfs_status 'pid' field is at offset 0.  */ | 
|  | elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata); | 
|  |  | 
|  | /* nto_procfs_status 'tid' field is at offset 4.  Pass it back.  */ | 
|  | *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); | 
|  |  | 
|  | /* nto_procfs_status 'flags' field is at offset 8.  */ | 
|  | flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); | 
|  |  | 
|  | /* nto_procfs_status 'what' field is at offset 14.  */ | 
|  | if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) | 
|  | { | 
|  | elf_tdata (abfd)->core->signal = sig; | 
|  | elf_tdata (abfd)->core->lwpid = *tid; | 
|  | } | 
|  |  | 
|  | /* _DEBUG_FLAG_CURTID (current thread) is 0x80.  Some cores | 
|  | do not come from signals so we make sure we set the current | 
|  | thread just in case.  */ | 
|  | if (flags & 0x00000080) | 
|  | elf_tdata (abfd)->core->lwpid = *tid; | 
|  |  | 
|  | /* Make a ".qnx_core_status/%d" section.  */ | 
|  | sprintf (buf, ".qnx_core_status/%ld", *tid); | 
|  |  | 
|  | name = (char *) bfd_alloc (abfd, strlen (buf) + 1); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | strcpy (name, buf); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | sect->size		= note->descsz; | 
|  | sect->filepos		= note->descpos; | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_nto_regs (bfd *abfd, | 
|  | Elf_Internal_Note *note, | 
|  | long tid, | 
|  | char *base) | 
|  | { | 
|  | char buf[100]; | 
|  | char *name; | 
|  | asection *sect; | 
|  |  | 
|  | /* Make a "(base)/%d" section.  */ | 
|  | sprintf (buf, "%s/%ld", base, tid); | 
|  |  | 
|  | name = (char *) bfd_alloc (abfd, strlen (buf) + 1); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | strcpy (name, buf); | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | sect->size		= note->descsz; | 
|  | sect->filepos		= note->descpos; | 
|  | sect->alignment_power = 2; | 
|  |  | 
|  | /* This is the current thread.  */ | 
|  | if (elf_tdata (abfd)->core->lwpid == tid) | 
|  | return elfcore_maybe_make_sect (abfd, base, sect); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | /* Every GREG section has a STATUS section before it.  Store the | 
|  | tid from the previous call to pass down to the next gregs | 
|  | function.  */ | 
|  | static long tid = 1; | 
|  |  | 
|  | switch (note->type) | 
|  | { | 
|  | case QNT_CORE_INFO: | 
|  | return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); | 
|  | case QNT_CORE_STATUS: | 
|  | return elfcore_grok_nto_status (abfd, note, &tid); | 
|  | case QNT_CORE_GREG: | 
|  | return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); | 
|  | case QNT_CORE_FPREG: | 
|  | return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); | 
|  | default: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) | 
|  | { | 
|  | char *name; | 
|  | asection *sect; | 
|  | size_t len; | 
|  |  | 
|  | /* Use note name as section name.  */ | 
|  | len = note->namesz; | 
|  | name = (char *) bfd_alloc (abfd, len); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | memcpy (name, note->namedata, len); | 
|  | name[len - 1] = '\0'; | 
|  |  | 
|  | sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); | 
|  | if (sect == NULL) | 
|  | return false; | 
|  |  | 
|  | sect->size		= note->descsz; | 
|  | sect->filepos		= note->descpos; | 
|  | sect->alignment_power = 1; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Function: elfcore_write_note | 
|  |  | 
|  | Inputs: | 
|  | buffer to hold note, and current size of buffer | 
|  | name of note | 
|  | type of note | 
|  | data for note | 
|  | size of data for note | 
|  |  | 
|  | Writes note to end of buffer.  ELF64 notes are written exactly as | 
|  | for ELF32, despite the current (as of 2006) ELF gabi specifying | 
|  | that they ought to have 8-byte namesz and descsz field, and have | 
|  | 8-byte alignment.  Other writers, eg. Linux kernel, do the same. | 
|  |  | 
|  | Return: | 
|  | Pointer to realloc'd buffer, *BUFSIZ updated.  */ | 
|  |  | 
|  | char * | 
|  | elfcore_write_note (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const char *name, | 
|  | int type, | 
|  | const void *input, | 
|  | int size) | 
|  | { | 
|  | Elf_External_Note *xnp; | 
|  | size_t namesz; | 
|  | size_t newspace; | 
|  | char *dest; | 
|  |  | 
|  | namesz = 0; | 
|  | if (name != NULL) | 
|  | namesz = strlen (name) + 1; | 
|  |  | 
|  | newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); | 
|  |  | 
|  | buf = (char *) realloc (buf, *bufsiz + newspace); | 
|  | if (buf == NULL) | 
|  | return buf; | 
|  | dest = buf + *bufsiz; | 
|  | *bufsiz += newspace; | 
|  | xnp = (Elf_External_Note *) dest; | 
|  | H_PUT_32 (abfd, namesz, xnp->namesz); | 
|  | H_PUT_32 (abfd, size, xnp->descsz); | 
|  | H_PUT_32 (abfd, type, xnp->type); | 
|  | dest = xnp->name; | 
|  | if (name != NULL) | 
|  | { | 
|  | memcpy (dest, name, namesz); | 
|  | dest += namesz; | 
|  | while (namesz & 3) | 
|  | { | 
|  | *dest++ = '\0'; | 
|  | ++namesz; | 
|  | } | 
|  | } | 
|  | memcpy (dest, input, size); | 
|  | dest += size; | 
|  | while (size & 3) | 
|  | { | 
|  | *dest++ = '\0'; | 
|  | ++size; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | /* gcc-8 warns (*) on all the strncpy calls in this function about | 
|  | possible string truncation.  The "truncation" is not a bug.  We | 
|  | have an external representation of structs with fields that are not | 
|  | necessarily NULL terminated and corresponding internal | 
|  | representation fields that are one larger so that they can always | 
|  | be NULL terminated. | 
|  | gcc versions between 4.2 and 4.6 do not allow pragma control of | 
|  | diagnostics inside functions, giving a hard error if you try to use | 
|  | the finer control available with later versions. | 
|  | gcc prior to 4.2 warns about diagnostic push and pop. | 
|  | gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown, | 
|  | unless you also add #pragma GCC diagnostic ignored "-Wpragma". | 
|  | (*) Depending on your system header files!  */ | 
|  | #if GCC_VERSION >= 8000 | 
|  | # pragma GCC diagnostic push | 
|  | # pragma GCC diagnostic ignored "-Wstringop-truncation" | 
|  | #endif | 
|  | char * | 
|  | elfcore_write_prpsinfo (bfd  *abfd, | 
|  | char *buf, | 
|  | int  *bufsiz, | 
|  | const char *fname, | 
|  | const char *psargs) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | if (bed->elf_backend_write_core_note != NULL) | 
|  | { | 
|  | char *ret; | 
|  | ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, | 
|  | NT_PRPSINFO, fname, psargs); | 
|  | if (ret != NULL) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) | 
|  | # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) | 
|  | if (bed->s->elfclass == ELFCLASS32) | 
|  | { | 
|  | #  if defined (HAVE_PSINFO32_T) | 
|  | psinfo32_t data; | 
|  | int note_type = NT_PSINFO; | 
|  | #  else | 
|  | prpsinfo32_t data; | 
|  | int note_type = NT_PRPSINFO; | 
|  | #  endif | 
|  |  | 
|  | memset (&data, 0, sizeof (data)); | 
|  | strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); | 
|  | strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", note_type, &data, sizeof (data)); | 
|  | } | 
|  | else | 
|  | # endif | 
|  | { | 
|  | # if defined (HAVE_PSINFO_T) | 
|  | psinfo_t data; | 
|  | int note_type = NT_PSINFO; | 
|  | # else | 
|  | prpsinfo_t data; | 
|  | int note_type = NT_PRPSINFO; | 
|  | # endif | 
|  |  | 
|  | memset (&data, 0, sizeof (data)); | 
|  | strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); | 
|  | strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", note_type, &data, sizeof (data)); | 
|  | } | 
|  | #endif	/* PSINFO_T or PRPSINFO_T */ | 
|  |  | 
|  | free (buf); | 
|  | return NULL; | 
|  | } | 
|  | #if GCC_VERSION >= 8000 | 
|  | # pragma GCC diagnostic pop | 
|  | #endif | 
|  |  | 
|  | char * | 
|  | elfcore_write_linux_prpsinfo32 | 
|  | (bfd *abfd, char *buf, int *bufsiz, | 
|  | const struct elf_internal_linux_prpsinfo *prpsinfo) | 
|  | { | 
|  | if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16) | 
|  | { | 
|  | struct elf_external_linux_prpsinfo32_ugid16 data; | 
|  |  | 
|  | swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, | 
|  | &data, sizeof (data)); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct elf_external_linux_prpsinfo32_ugid32 data; | 
|  |  | 
|  | swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, | 
|  | &data, sizeof (data)); | 
|  | } | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_linux_prpsinfo64 | 
|  | (bfd *abfd, char *buf, int *bufsiz, | 
|  | const struct elf_internal_linux_prpsinfo *prpsinfo) | 
|  | { | 
|  | if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16) | 
|  | { | 
|  | struct elf_external_linux_prpsinfo64_ugid16 data; | 
|  |  | 
|  | swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", NT_PRPSINFO, &data, sizeof (data)); | 
|  | } | 
|  | else | 
|  | { | 
|  | struct elf_external_linux_prpsinfo64_ugid32 data; | 
|  |  | 
|  | swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | "CORE", NT_PRPSINFO, &data, sizeof (data)); | 
|  | } | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_prstatus (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | long pid, | 
|  | int cursig, | 
|  | const void *gregs) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | if (bed->elf_backend_write_core_note != NULL) | 
|  | { | 
|  | char *ret; | 
|  | ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, | 
|  | NT_PRSTATUS, | 
|  | pid, cursig, gregs); | 
|  | if (ret != NULL) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #if defined (HAVE_PRSTATUS_T) | 
|  | #if defined (HAVE_PRSTATUS32_T) | 
|  | if (bed->s->elfclass == ELFCLASS32) | 
|  | { | 
|  | prstatus32_t prstat; | 
|  |  | 
|  | memset (&prstat, 0, sizeof (prstat)); | 
|  | prstat.pr_pid = pid; | 
|  | prstat.pr_cursig = cursig; | 
|  | memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, "CORE", | 
|  | NT_PRSTATUS, &prstat, sizeof (prstat)); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | prstatus_t prstat; | 
|  |  | 
|  | memset (&prstat, 0, sizeof (prstat)); | 
|  | prstat.pr_pid = pid; | 
|  | prstat.pr_cursig = cursig; | 
|  | memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); | 
|  | return elfcore_write_note (abfd, buf, bufsiz, "CORE", | 
|  | NT_PRSTATUS, &prstat, sizeof (prstat)); | 
|  | } | 
|  | #endif /* HAVE_PRSTATUS_T */ | 
|  |  | 
|  | free (buf); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #if defined (HAVE_LWPSTATUS_T) | 
|  | char * | 
|  | elfcore_write_lwpstatus (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | long pid, | 
|  | int cursig, | 
|  | const void *gregs) | 
|  | { | 
|  | lwpstatus_t lwpstat; | 
|  | const char *note_name = "CORE"; | 
|  |  | 
|  | memset (&lwpstat, 0, sizeof (lwpstat)); | 
|  | lwpstat.pr_lwpid  = pid >> 16; | 
|  | lwpstat.pr_cursig = cursig; | 
|  | #if defined (HAVE_LWPSTATUS_T_PR_REG) | 
|  | memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); | 
|  | #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) | 
|  | #if !defined(gregs) | 
|  | memcpy (lwpstat.pr_context.uc_mcontext.gregs, | 
|  | gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); | 
|  | #else | 
|  | memcpy (lwpstat.pr_context.uc_mcontext.__gregs, | 
|  | gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); | 
|  | #endif | 
|  | #endif | 
|  | return elfcore_write_note (abfd, buf, bufsiz, note_name, | 
|  | NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); | 
|  | } | 
|  | #endif /* HAVE_LWPSTATUS_T */ | 
|  |  | 
|  | #if defined (HAVE_PSTATUS_T) | 
|  | char * | 
|  | elfcore_write_pstatus (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | long pid, | 
|  | int cursig ATTRIBUTE_UNUSED, | 
|  | const void *gregs ATTRIBUTE_UNUSED) | 
|  | { | 
|  | const char *note_name = "CORE"; | 
|  | #if defined (HAVE_PSTATUS32_T) | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  |  | 
|  | if (bed->s->elfclass == ELFCLASS32) | 
|  | { | 
|  | pstatus32_t pstat; | 
|  |  | 
|  | memset (&pstat, 0, sizeof (pstat)); | 
|  | pstat.pr_pid = pid & 0xffff; | 
|  | buf = elfcore_write_note (abfd, buf, bufsiz, note_name, | 
|  | NT_PSTATUS, &pstat, sizeof (pstat)); | 
|  | return buf; | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | pstatus_t pstat; | 
|  |  | 
|  | memset (&pstat, 0, sizeof (pstat)); | 
|  | pstat.pr_pid = pid & 0xffff; | 
|  | buf = elfcore_write_note (abfd, buf, bufsiz, note_name, | 
|  | NT_PSTATUS, &pstat, sizeof (pstat)); | 
|  | return buf; | 
|  | } | 
|  | } | 
|  | #endif /* HAVE_PSTATUS_T */ | 
|  |  | 
|  | char * | 
|  | elfcore_write_prfpreg (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *fpregs, | 
|  | int size) | 
|  | { | 
|  | const char *note_name = "CORE"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_FPREGSET, fpregs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_prxfpreg (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *xfpregs, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PRXFPREG, xfpregs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz, | 
|  | const void *xfpregs, int size) | 
|  | { | 
|  | char *note_name; | 
|  | if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD) | 
|  | note_name = "FreeBSD"; | 
|  | else | 
|  | note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_X86_XSTATE, xfpregs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_x86_segbases (bfd *abfd, char *buf, int *bufsiz, | 
|  | const void *regs, int size) | 
|  | { | 
|  | char *note_name = "FreeBSD"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_FREEBSD_X86_SEGBASES, regs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_vmx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_vmx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_VMX, ppc_vmx, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_vsx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_vsx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_VSX, ppc_vsx, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tar (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tar, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TAR, ppc_tar, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_ppr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_ppr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_PPR, ppc_ppr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_dscr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_dscr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_DSCR, ppc_dscr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_ebb (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_ebb, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_EBB, ppc_ebb, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_pmu (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_pmu, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_PMU, ppc_pmu, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cgpr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cgpr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cfpr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cfpr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cvmx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cvmx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cvsx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cvsx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_spr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_spr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_SPR, ppc_tm_spr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_ctar (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_ctar, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cppr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cppr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_ppc_tm_cdscr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *ppc_tm_cdscr, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size); | 
|  | } | 
|  |  | 
|  | static char * | 
|  | elfcore_write_s390_high_gprs (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_high_gprs, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_HIGH_GPRS, | 
|  | s390_high_gprs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_timer (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_timer, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_TIMER, s390_timer, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_todcmp (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_todcmp, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_TODCMP, s390_todcmp, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_todpreg (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_todpreg, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_TODPREG, s390_todpreg, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_ctrs (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_ctrs, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_CTRS, s390_ctrs, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_prefix (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_prefix, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_PREFIX, s390_prefix, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_last_break (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_last_break, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_LAST_BREAK, | 
|  | s390_last_break, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_system_call (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_system_call, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_SYSTEM_CALL, | 
|  | s390_system_call, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_tdb (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_tdb, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_TDB, s390_tdb, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_vxrs_low (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_vxrs_low, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_vxrs_high (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_vxrs_high, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_VXRS_HIGH, | 
|  | s390_vxrs_high, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_gs_cb (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_gs_cb, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_GS_CB, | 
|  | s390_gs_cb, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_s390_gs_bc (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *s390_gs_bc, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_S390_GS_BC, | 
|  | s390_gs_bc, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_arm_vfp (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *arm_vfp, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_VFP, arm_vfp, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_tls (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_tls, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_TLS, aarch_tls, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_hw_break (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_hw_break, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_HW_BREAK, aarch_hw_break, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_hw_watch (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_hw_watch, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_sve (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_sve, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_SVE, aarch_sve, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_pauth (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_pauth, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_PAC_MASK, aarch_pauth, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_mte (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_mte, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_TAGGED_ADDR_CTRL, | 
|  | aarch_mte, | 
|  | size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_ssve (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_ssve, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_SSVE, | 
|  | aarch_ssve, | 
|  | size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_za (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_za, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_ZA, | 
|  | aarch_za, | 
|  | size); | 
|  | } | 
|  |  | 
|  | /* Write the buffer of zt register values in aarch_zt (length SIZE) into | 
|  | the note buffer BUF and update *BUFSIZ.  ABFD is the bfd the note is being | 
|  | written into.  Return a pointer to the new start of the note buffer, to | 
|  | replace BUF which may no longer be valid.  */ | 
|  |  | 
|  | char * | 
|  | elfcore_write_aarch_zt (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *aarch_zt, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARM_ZT, | 
|  | aarch_zt, | 
|  | size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_arc_v2 (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *arc_v2, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_ARC_V2, arc_v2, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_loongarch_cpucfg (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *loongarch_cpucfg, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_LARCH_CPUCFG, | 
|  | loongarch_cpucfg, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_loongarch_lbt (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *loongarch_lbt, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_LARCH_LBT, loongarch_lbt, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_loongarch_lsx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *loongarch_lsx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_LARCH_LSX, loongarch_lsx, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_loongarch_lasx (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *loongarch_lasx, | 
|  | int size) | 
|  | { | 
|  | char *note_name = "LINUX"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_LARCH_LASX, loongarch_lasx, size); | 
|  | } | 
|  |  | 
|  | /* Write the buffer of csr values in CSRS (length SIZE) into the note | 
|  | buffer BUF and update *BUFSIZ.  ABFD is the bfd the note is being | 
|  | written into.  Return a pointer to the new start of the note buffer, to | 
|  | replace BUF which may no longer be valid.  */ | 
|  |  | 
|  | char * | 
|  | elfcore_write_riscv_csr (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *csrs, | 
|  | int size) | 
|  | { | 
|  | const char *note_name = "GDB"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_RISCV_CSR, csrs, size); | 
|  | } | 
|  |  | 
|  | /* Write the target description (a string) pointed to by TDESC, length | 
|  | SIZE, into the note buffer BUF, and update *BUFSIZ.  ABFD is the bfd the | 
|  | note is being written into.  Return a pointer to the new start of the | 
|  | note buffer, to replace BUF which may no longer be valid.  */ | 
|  |  | 
|  | char * | 
|  | elfcore_write_gdb_tdesc (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const void *tdesc, | 
|  | int size) | 
|  | { | 
|  | const char *note_name = "GDB"; | 
|  | return elfcore_write_note (abfd, buf, bufsiz, | 
|  | note_name, NT_GDB_TDESC, tdesc, size); | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_register_note (bfd *abfd, | 
|  | char *buf, | 
|  | int *bufsiz, | 
|  | const char *section, | 
|  | const void *data, | 
|  | int size) | 
|  | { | 
|  | if (strcmp (section, ".reg2") == 0) | 
|  | return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-xfp") == 0) | 
|  | return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-xstate") == 0) | 
|  | return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-x86-segbases") == 0) | 
|  | return elfcore_write_x86_segbases (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-vmx") == 0) | 
|  | return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-vsx") == 0) | 
|  | return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tar") == 0) | 
|  | return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-ppr") == 0) | 
|  | return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-dscr") == 0) | 
|  | return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-ebb") == 0) | 
|  | return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-pmu") == 0) | 
|  | return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cgpr") == 0) | 
|  | return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cfpr") == 0) | 
|  | return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cvmx") == 0) | 
|  | return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cvsx") == 0) | 
|  | return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-spr") == 0) | 
|  | return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-ctar") == 0) | 
|  | return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cppr") == 0) | 
|  | return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-ppc-tm-cdscr") == 0) | 
|  | return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-high-gprs") == 0) | 
|  | return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-timer") == 0) | 
|  | return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-todcmp") == 0) | 
|  | return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-todpreg") == 0) | 
|  | return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-ctrs") == 0) | 
|  | return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-prefix") == 0) | 
|  | return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-last-break") == 0) | 
|  | return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-system-call") == 0) | 
|  | return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-tdb") == 0) | 
|  | return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-vxrs-low") == 0) | 
|  | return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-vxrs-high") == 0) | 
|  | return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-gs-cb") == 0) | 
|  | return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-s390-gs-bc") == 0) | 
|  | return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-arm-vfp") == 0) | 
|  | return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-tls") == 0) | 
|  | return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-hw-break") == 0) | 
|  | return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-hw-watch") == 0) | 
|  | return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-sve") == 0) | 
|  | return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-pauth") == 0) | 
|  | return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-mte") == 0) | 
|  | return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-ssve") == 0) | 
|  | return elfcore_write_aarch_ssve (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-za") == 0) | 
|  | return elfcore_write_aarch_za (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-aarch-zt") == 0) | 
|  | return elfcore_write_aarch_zt (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-arc-v2") == 0) | 
|  | return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".gdb-tdesc") == 0) | 
|  | return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-riscv-csr") == 0) | 
|  | return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-loongarch-cpucfg") == 0) | 
|  | return elfcore_write_loongarch_cpucfg (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-loongarch-lbt") == 0) | 
|  | return elfcore_write_loongarch_lbt (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-loongarch-lsx") == 0) | 
|  | return elfcore_write_loongarch_lsx (abfd, buf, bufsiz, data, size); | 
|  | if (strcmp (section, ".reg-loongarch-lasx") == 0) | 
|  | return elfcore_write_loongarch_lasx (abfd, buf, bufsiz, data, size); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | char * | 
|  | elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size, | 
|  | const void *buf, int bufsiz) | 
|  | { | 
|  | return elfcore_write_note (obfd, note_data, note_size, | 
|  | "CORE", NT_FILE, buf, bufsiz); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset, | 
|  | size_t align) | 
|  | { | 
|  | char *p; | 
|  |  | 
|  | /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1. | 
|  | gABI specifies that PT_NOTE alignment should be aligned to 4 | 
|  | bytes for 32-bit objects and to 8 bytes for 64-bit objects.  If | 
|  | align is less than 4, we use 4 byte alignment.   */ | 
|  | if (align < 4) | 
|  | align = 4; | 
|  | if (align != 4 && align != 8) | 
|  | return false; | 
|  |  | 
|  | p = buf; | 
|  | while (p < buf + size) | 
|  | { | 
|  | Elf_External_Note *xnp = (Elf_External_Note *) p; | 
|  | Elf_Internal_Note in; | 
|  |  | 
|  | if (offsetof (Elf_External_Note, name) > buf - p + size) | 
|  | return false; | 
|  |  | 
|  | in.type = H_GET_32 (abfd, xnp->type); | 
|  |  | 
|  | in.namesz = H_GET_32 (abfd, xnp->namesz); | 
|  | in.namedata = xnp->name; | 
|  | if (in.namesz > buf - in.namedata + size) | 
|  | return false; | 
|  |  | 
|  | in.descsz = H_GET_32 (abfd, xnp->descsz); | 
|  | in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align); | 
|  | in.descpos = offset + (in.descdata - buf); | 
|  | if (in.descsz != 0 | 
|  | && (in.descdata >= buf + size | 
|  | || in.descsz > buf - in.descdata + size)) | 
|  | return false; | 
|  |  | 
|  | switch (bfd_get_format (abfd)) | 
|  | { | 
|  | default: | 
|  | return true; | 
|  |  | 
|  | case bfd_core: | 
|  | { | 
|  | #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F} | 
|  | struct | 
|  | { | 
|  | const char * string; | 
|  | size_t len; | 
|  | bool (*func) (bfd *, Elf_Internal_Note *); | 
|  | } | 
|  | grokers[] = | 
|  | { | 
|  | GROKER_ELEMENT ("", elfcore_grok_note), | 
|  | GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note), | 
|  | GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note), | 
|  | GROKER_ELEMENT ("OpenBSD", elfcore_grok_openbsd_note), | 
|  | GROKER_ELEMENT ("QNX", elfcore_grok_nto_note), | 
|  | GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note), | 
|  | GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note), | 
|  | GROKER_ELEMENT ("CORE", elfcore_grok_solaris_note) | 
|  | }; | 
|  | #undef GROKER_ELEMENT | 
|  | int i; | 
|  |  | 
|  | for (i = ARRAY_SIZE (grokers); i--;) | 
|  | { | 
|  | if (in.namesz >= grokers[i].len | 
|  | && strncmp (in.namedata, grokers[i].string, | 
|  | grokers[i].len) == 0) | 
|  | { | 
|  | if (! grokers[i].func (abfd, & in)) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | case bfd_object: | 
|  | if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) | 
|  | { | 
|  | if (! elfobj_grok_gnu_note (abfd, &in)) | 
|  | return false; | 
|  | } | 
|  | else if (in.namesz == sizeof "stapsdt" | 
|  | && strcmp (in.namedata, "stapsdt") == 0) | 
|  | { | 
|  | if (! elfobj_grok_stapsdt_note (abfd, &in)) | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size, | 
|  | size_t align) | 
|  | { | 
|  | char *buf; | 
|  |  | 
|  | if (size == 0 || (size + 1) == 0) | 
|  | return true; | 
|  |  | 
|  | if (bfd_seek (abfd, offset, SEEK_SET) != 0) | 
|  | return false; | 
|  |  | 
|  | buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size); | 
|  | if (buf == NULL) | 
|  | return false; | 
|  |  | 
|  | /* PR 17512: file: ec08f814 | 
|  | 0-termintate the buffer so that string searches will not overflow.  */ | 
|  | buf[size] = 0; | 
|  |  | 
|  | if (!elf_parse_notes (abfd, buf, size, offset, align)) | 
|  | { | 
|  | free (buf); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | free (buf); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Providing external access to the ELF program header table.  */ | 
|  |  | 
|  | /* Return an upper bound on the number of bytes required to store a | 
|  | copy of ABFD's program header table entries.  Return -1 if an error | 
|  | occurs; bfd_get_error will return an appropriate code.  */ | 
|  |  | 
|  | long | 
|  | bfd_get_elf_phdr_upper_bound (bfd *abfd) | 
|  | { | 
|  | if (abfd->xvec->flavour != bfd_target_elf_flavour) | 
|  | { | 
|  | bfd_set_error (bfd_error_wrong_format); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); | 
|  | } | 
|  |  | 
|  | /* Copy ABFD's program header table entries to *PHDRS.  The entries | 
|  | will be stored as an array of Elf_Internal_Phdr structures, as | 
|  | defined in include/elf/internal.h.  To find out how large the | 
|  | buffer needs to be, call bfd_get_elf_phdr_upper_bound. | 
|  |  | 
|  | Return the number of program header table entries read, or -1 if an | 
|  | error occurs; bfd_get_error will return an appropriate code.  */ | 
|  |  | 
|  | int | 
|  | bfd_get_elf_phdrs (bfd *abfd, void *phdrs) | 
|  | { | 
|  | int num_phdrs; | 
|  |  | 
|  | if (abfd->xvec->flavour != bfd_target_elf_flavour) | 
|  | { | 
|  | bfd_set_error (bfd_error_wrong_format); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | num_phdrs = elf_elfheader (abfd)->e_phnum; | 
|  | if (num_phdrs != 0) | 
|  | memcpy (phdrs, elf_tdata (abfd)->phdr, | 
|  | num_phdrs * sizeof (Elf_Internal_Phdr)); | 
|  |  | 
|  | return num_phdrs; | 
|  | } | 
|  |  | 
|  | enum elf_reloc_type_class | 
|  | _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
|  | const asection *rel_sec ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) | 
|  | { | 
|  | return reloc_class_normal; | 
|  | } | 
|  |  | 
|  | /* For RELA architectures, return the relocation value for a | 
|  | relocation against a local symbol.  */ | 
|  |  | 
|  | bfd_vma | 
|  | _bfd_elf_rela_local_sym (bfd *abfd, | 
|  | Elf_Internal_Sym *sym, | 
|  | asection **psec, | 
|  | Elf_Internal_Rela *rel) | 
|  | { | 
|  | asection *sec = *psec; | 
|  | bfd_vma relocation; | 
|  |  | 
|  | relocation = (sec->output_section->vma | 
|  | + sec->output_offset | 
|  | + sym->st_value); | 
|  | if ((sec->flags & SEC_MERGE) | 
|  | && ELF_ST_TYPE (sym->st_info) == STT_SECTION | 
|  | && sec->sec_info_type == SEC_INFO_TYPE_MERGE) | 
|  | { | 
|  | rel->r_addend = | 
|  | _bfd_merged_section_offset (abfd, psec, | 
|  | elf_section_data (sec)->sec_info, | 
|  | sym->st_value + rel->r_addend); | 
|  | if (sec != *psec) | 
|  | { | 
|  | /* If we have changed the section, and our original section is | 
|  | marked with SEC_EXCLUDE, it means that the original | 
|  | SEC_MERGE section has been completely subsumed in some | 
|  | other SEC_MERGE section.  In this case, we need to leave | 
|  | some info around for --emit-relocs.  */ | 
|  | if ((sec->flags & SEC_EXCLUDE) != 0) | 
|  | sec->kept_section = *psec; | 
|  | sec = *psec; | 
|  | } | 
|  | rel->r_addend -= relocation; | 
|  | rel->r_addend += sec->output_section->vma + sec->output_offset; | 
|  | } | 
|  | return relocation; | 
|  | } | 
|  |  | 
|  | bfd_vma | 
|  | _bfd_elf_rel_local_sym (bfd *abfd, | 
|  | Elf_Internal_Sym *sym, | 
|  | asection **psec, | 
|  | bfd_vma addend) | 
|  | { | 
|  | asection *sec = *psec; | 
|  |  | 
|  | if (sec->sec_info_type != SEC_INFO_TYPE_MERGE) | 
|  | return sym->st_value + addend; | 
|  |  | 
|  | return _bfd_merged_section_offset (abfd, psec, | 
|  | elf_section_data (sec)->sec_info, | 
|  | sym->st_value + addend); | 
|  | } | 
|  |  | 
|  | /* Adjust an address within a section.  Given OFFSET within SEC, return | 
|  | the new offset within the section, based upon changes made to the | 
|  | section.  Returns -1 if the offset is now invalid. | 
|  | The offset (in abnd out) is in target sized bytes, however big a | 
|  | byte may be.  */ | 
|  |  | 
|  | bfd_vma | 
|  | _bfd_elf_section_offset (bfd *abfd, | 
|  | struct bfd_link_info *info, | 
|  | asection *sec, | 
|  | bfd_vma offset) | 
|  | { | 
|  | switch (sec->sec_info_type) | 
|  | { | 
|  | case SEC_INFO_TYPE_STABS: | 
|  | return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, | 
|  | offset); | 
|  | case SEC_INFO_TYPE_EH_FRAME: | 
|  | return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); | 
|  |  | 
|  | default: | 
|  | if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0) | 
|  | { | 
|  | /* Reverse the offset.  */ | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | bfd_size_type address_size = bed->s->arch_size / 8; | 
|  |  | 
|  | /* address_size and sec->size are in octets.  Convert | 
|  | to bytes before subtracting the original offset.  */ | 
|  | offset = ((sec->size - address_size) | 
|  | / bfd_octets_per_byte (abfd, sec) - offset); | 
|  | } | 
|  | return offset; | 
|  | } | 
|  | } | 
|  |  | 
|  | long | 
|  | _bfd_elf_get_synthetic_symtab (bfd *abfd, | 
|  | long symcount ATTRIBUTE_UNUSED, | 
|  | asymbol **syms ATTRIBUTE_UNUSED, | 
|  | long dynsymcount, | 
|  | asymbol **dynsyms, | 
|  | asymbol **ret) | 
|  | { | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | asection *relplt; | 
|  | asymbol *s; | 
|  | const char *relplt_name; | 
|  | bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); | 
|  | arelent *p; | 
|  | long count, i, n; | 
|  | size_t size; | 
|  | Elf_Internal_Shdr *hdr; | 
|  | char *names; | 
|  | asection *plt; | 
|  |  | 
|  | *ret = NULL; | 
|  |  | 
|  | if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (dynsymcount <= 0) | 
|  | return 0; | 
|  |  | 
|  | if (!bed->plt_sym_val) | 
|  | return 0; | 
|  |  | 
|  | relplt_name = bed->relplt_name; | 
|  | if (relplt_name == NULL) | 
|  | relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; | 
|  | relplt = bfd_get_section_by_name (abfd, relplt_name); | 
|  | if (relplt == NULL) | 
|  | return 0; | 
|  |  | 
|  | hdr = &elf_section_data (relplt)->this_hdr; | 
|  | if (hdr->sh_link != elf_dynsymtab (abfd) | 
|  | || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) | 
|  | return 0; | 
|  |  | 
|  | plt = bfd_get_section_by_name (abfd, ".plt"); | 
|  | if (plt == NULL) | 
|  | return 0; | 
|  |  | 
|  | slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; | 
|  | if (! (*slurp_relocs) (abfd, relplt, dynsyms, true)) | 
|  | return -1; | 
|  |  | 
|  | count = NUM_SHDR_ENTRIES (hdr); | 
|  | size = count * sizeof (asymbol); | 
|  | p = relplt->relocation; | 
|  | for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) | 
|  | { | 
|  | size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); | 
|  | if (p->addend != 0) | 
|  | { | 
|  | #ifdef BFD64 | 
|  | size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); | 
|  | #else | 
|  | size += sizeof ("+0x") - 1 + 8; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | s = *ret = (asymbol *) bfd_malloc (size); | 
|  | if (s == NULL) | 
|  | return -1; | 
|  |  | 
|  | names = (char *) (s + count); | 
|  | p = relplt->relocation; | 
|  | n = 0; | 
|  | for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) | 
|  | { | 
|  | size_t len; | 
|  | bfd_vma addr; | 
|  |  | 
|  | addr = bed->plt_sym_val (i, plt, p); | 
|  | if (addr == (bfd_vma) -1) | 
|  | continue; | 
|  |  | 
|  | *s = **p->sym_ptr_ptr; | 
|  | /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since | 
|  | we are defining a symbol, ensure one of them is set.  */ | 
|  | if ((s->flags & BSF_LOCAL) == 0) | 
|  | s->flags |= BSF_GLOBAL; | 
|  | s->flags |= BSF_SYNTHETIC; | 
|  | s->section = plt; | 
|  | s->value = addr - plt->vma; | 
|  | s->name = names; | 
|  | s->udata.p = NULL; | 
|  | len = strlen ((*p->sym_ptr_ptr)->name); | 
|  | memcpy (names, (*p->sym_ptr_ptr)->name, len); | 
|  | names += len; | 
|  | if (p->addend != 0) | 
|  | { | 
|  | char buf[30], *a; | 
|  |  | 
|  | memcpy (names, "+0x", sizeof ("+0x") - 1); | 
|  | names += sizeof ("+0x") - 1; | 
|  | bfd_sprintf_vma (abfd, buf, p->addend); | 
|  | for (a = buf; *a == '0'; ++a) | 
|  | ; | 
|  | len = strlen (a); | 
|  | memcpy (names, a, len); | 
|  | names += len; | 
|  | } | 
|  | memcpy (names, "@plt", sizeof ("@plt")); | 
|  | names += sizeof ("@plt"); | 
|  | ++s, ++n; | 
|  | } | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /* It is only used by x86-64 so far. | 
|  | ??? This repeats *COM* id of zero.  sec->id is supposed to be unique, | 
|  | but current usage would allow all of _bfd_std_section to be zero.  */ | 
|  | static const asymbol lcomm_sym | 
|  | = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section); | 
|  | asection _bfd_elf_large_com_section | 
|  | = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym, | 
|  | "LARGE_COMMON", 0, SEC_IS_COMMON); | 
|  |  | 
|  | bool | 
|  | _bfd_elf_final_write_processing (bfd *abfd) | 
|  | { | 
|  | Elf_Internal_Ehdr *i_ehdrp;	/* ELF file header, internal form.  */ | 
|  |  | 
|  | i_ehdrp = elf_elfheader (abfd); | 
|  |  | 
|  | if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE) | 
|  | i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; | 
|  |  | 
|  | /* Set the osabi field to ELFOSABI_GNU if the binary contains | 
|  | SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type | 
|  | or STB_GNU_UNIQUE binding.  */ | 
|  | if (elf_tdata (abfd)->has_gnu_osabi != 0) | 
|  | { | 
|  | if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE) | 
|  | i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU; | 
|  | else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU | 
|  | && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD) | 
|  | { | 
|  | if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) | 
|  | _bfd_error_handler (_("GNU_MBIND section is supported only by GNU " | 
|  | "and FreeBSD targets")); | 
|  | if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc) | 
|  | _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported " | 
|  | "only by GNU and FreeBSD targets")); | 
|  | if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique) | 
|  | _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported " | 
|  | "only by GNU and FreeBSD targets")); | 
|  | if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain) | 
|  | _bfd_error_handler (_("GNU_RETAIN section is supported " | 
|  | "only by GNU and FreeBSD targets")); | 
|  | bfd_set_error (bfd_error_sorry); | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return TRUE for ELF symbol types that represent functions. | 
|  | This is the default version of this function, which is sufficient for | 
|  | most targets.  It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_is_function_type (unsigned int type) | 
|  | { | 
|  | return (type == STT_FUNC | 
|  | || type == STT_GNU_IFUNC); | 
|  | } | 
|  |  | 
|  | /* If the ELF symbol SYM might be a function in SEC, return the | 
|  | function size and set *CODE_OFF to the function's entry point, | 
|  | otherwise return zero.  */ | 
|  |  | 
|  | bfd_size_type | 
|  | _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec, | 
|  | bfd_vma *code_off) | 
|  | { | 
|  | bfd_size_type size; | 
|  | elf_symbol_type * elf_sym = (elf_symbol_type *) sym; | 
|  |  | 
|  | if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT | 
|  | | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 | 
|  | || sym->section != sec) | 
|  | return 0; | 
|  |  | 
|  | size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size; | 
|  |  | 
|  | /* In theory we should check that the symbol's type satisfies | 
|  | _bfd_elf_is_function_type(), but there are some function-like | 
|  | symbols which would fail this test.  (eg _start).  Instead | 
|  | we check for hidden, local, notype symbols with zero size. | 
|  | This type of symbol is generated by the annobin plugin for gcc | 
|  | and clang, and should not be considered to be a function symbol.  */ | 
|  | if (size == 0 | 
|  | && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL) | 
|  | && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE | 
|  | && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN) | 
|  | return 0; | 
|  |  | 
|  | *code_off = sym->value; | 
|  | /* Do not return 0 for the function's size.  */ | 
|  | return size ? size : 1; | 
|  | } | 
|  |  | 
|  | /* Set to non-zero to enable some debug messages.  */ | 
|  | #define DEBUG_SECONDARY_RELOCS	 0 | 
|  |  | 
|  | /* An internal-to-the-bfd-library only section type | 
|  | used to indicate a cached secondary reloc section.  */ | 
|  | #define SHT_SECONDARY_RELOC	 (SHT_LOOS + SHT_RELA) | 
|  |  | 
|  | /* Create a BFD section to hold a secondary reloc section.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_init_secondary_reloc_section (bfd * abfd, | 
|  | Elf_Internal_Shdr *hdr, | 
|  | const char * name, | 
|  | unsigned int shindex) | 
|  | { | 
|  | /* We only support RELA secondary relocs.  */ | 
|  | if (hdr->sh_type != SHT_RELA) | 
|  | return false; | 
|  |  | 
|  | #if DEBUG_SECONDARY_RELOCS | 
|  | fprintf (stderr, "secondary reloc section %s encountered\n", name); | 
|  | #endif | 
|  | hdr->sh_type = SHT_SECONDARY_RELOC; | 
|  | return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); | 
|  | } | 
|  |  | 
|  | /* Read in any secondary relocs associated with SEC.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_slurp_secondary_reloc_section (bfd *       abfd, | 
|  | asection *  sec, | 
|  | asymbol **  symbols, | 
|  | bool dynamic) | 
|  | { | 
|  | const struct elf_backend_data * const ebd = get_elf_backend_data (abfd); | 
|  | asection * relsec; | 
|  | bool result = true; | 
|  | bfd_vma (*r_sym) (bfd_vma); | 
|  | ufile_ptr filesize; | 
|  |  | 
|  | #if BFD_DEFAULT_TARGET_SIZE > 32 | 
|  | if (bfd_arch_bits_per_address (abfd) != 32) | 
|  | r_sym = elf64_r_sym; | 
|  | else | 
|  | #endif | 
|  | r_sym = elf32_r_sym; | 
|  |  | 
|  | if (!elf_section_data (sec)->has_secondary_relocs) | 
|  | return true; | 
|  |  | 
|  | /* Discover if there are any secondary reloc sections | 
|  | associated with SEC.  */ | 
|  | filesize = bfd_get_file_size (abfd); | 
|  | for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next) | 
|  | { | 
|  | Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr; | 
|  |  | 
|  | if (hdr->sh_type == SHT_SECONDARY_RELOC | 
|  | && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx | 
|  | && (hdr->sh_entsize == ebd->s->sizeof_rel | 
|  | || hdr->sh_entsize == ebd->s->sizeof_rela)) | 
|  | { | 
|  | bfd_byte * native_relocs; | 
|  | bfd_byte * native_reloc; | 
|  | arelent * internal_relocs; | 
|  | arelent * internal_reloc; | 
|  | size_t i; | 
|  | unsigned int entsize; | 
|  | unsigned int symcount; | 
|  | bfd_size_type reloc_count; | 
|  | size_t amt; | 
|  |  | 
|  | if (ebd->elf_info_to_howto == NULL) | 
|  | return false; | 
|  |  | 
|  | #if DEBUG_SECONDARY_RELOCS | 
|  | fprintf (stderr, "read secondary relocs for %s from %s\n", | 
|  | sec->name, relsec->name); | 
|  | #endif | 
|  | entsize = hdr->sh_entsize; | 
|  |  | 
|  | if (filesize != 0 | 
|  | && ((ufile_ptr) hdr->sh_offset > filesize | 
|  | || hdr->sh_size > filesize - hdr->sh_offset)) | 
|  | { | 
|  | bfd_set_error (bfd_error_file_truncated); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | native_relocs = bfd_malloc (hdr->sh_size); | 
|  | if (native_relocs == NULL) | 
|  | { | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reloc_count = NUM_SHDR_ENTRIES (hdr); | 
|  | if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt)) | 
|  | { | 
|  | free (native_relocs); | 
|  | bfd_set_error (bfd_error_file_too_big); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | internal_relocs = (arelent *) bfd_alloc (abfd, amt); | 
|  | if (internal_relocs == NULL) | 
|  | { | 
|  | free (native_relocs); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 | 
|  | || bfd_read (native_relocs, hdr->sh_size, abfd) != hdr->sh_size) | 
|  | { | 
|  | free (native_relocs); | 
|  | /* The internal_relocs will be freed when | 
|  | the memory for the bfd is released.  */ | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (dynamic) | 
|  | symcount = bfd_get_dynamic_symcount (abfd); | 
|  | else | 
|  | symcount = bfd_get_symcount (abfd); | 
|  |  | 
|  | for (i = 0, internal_reloc = internal_relocs, | 
|  | native_reloc = native_relocs; | 
|  | i < reloc_count; | 
|  | i++, internal_reloc++, native_reloc += entsize) | 
|  | { | 
|  | bool res; | 
|  | Elf_Internal_Rela rela; | 
|  |  | 
|  | if (entsize == ebd->s->sizeof_rel) | 
|  | ebd->s->swap_reloc_in (abfd, native_reloc, & rela); | 
|  | else /* entsize == ebd->s->sizeof_rela */ | 
|  | ebd->s->swap_reloca_in (abfd, native_reloc, & rela); | 
|  |  | 
|  | /* The address of an ELF reloc is section relative for an object | 
|  | file, and absolute for an executable file or shared library. | 
|  | The address of a normal BFD reloc is always section relative, | 
|  | and the address of a dynamic reloc is absolute..  */ | 
|  | if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) | 
|  | internal_reloc->address = rela.r_offset; | 
|  | else | 
|  | internal_reloc->address = rela.r_offset - sec->vma; | 
|  |  | 
|  | if (r_sym (rela.r_info) == STN_UNDEF) | 
|  | { | 
|  | /* FIXME: This and the error case below mean that we | 
|  | have a symbol on relocs that is not elf_symbol_type.  */ | 
|  | internal_reloc->sym_ptr_ptr = | 
|  | bfd_abs_section_ptr->symbol_ptr_ptr; | 
|  | } | 
|  | else if (r_sym (rela.r_info) > symcount) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): relocation %zu has invalid symbol index %lu"), | 
|  | abfd, sec, i, (long) r_sym (rela.r_info)); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | internal_reloc->sym_ptr_ptr = | 
|  | bfd_abs_section_ptr->symbol_ptr_ptr; | 
|  | result = false; | 
|  | } | 
|  | else | 
|  | { | 
|  | asymbol **ps; | 
|  |  | 
|  | ps = symbols + r_sym (rela.r_info) - 1; | 
|  | internal_reloc->sym_ptr_ptr = ps; | 
|  | /* Make sure that this symbol is not removed by strip.  */ | 
|  | (*ps)->flags |= BSF_KEEP; | 
|  | } | 
|  |  | 
|  | internal_reloc->addend = rela.r_addend; | 
|  |  | 
|  | res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela); | 
|  | if (! res || internal_reloc->howto == NULL) | 
|  | { | 
|  | #if DEBUG_SECONDARY_RELOCS | 
|  | fprintf (stderr, | 
|  | "there is no howto associated with reloc %lx\n", | 
|  | rela.r_info); | 
|  | #endif | 
|  | result = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | free (native_relocs); | 
|  | /* Store the internal relocs.  */ | 
|  | elf_section_data (relsec)->sec_info = internal_relocs; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Set the ELF section header fields of an output secondary reloc section.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED, | 
|  | bfd *obfd ATTRIBUTE_UNUSED, | 
|  | const Elf_Internal_Shdr *isection, | 
|  | Elf_Internal_Shdr *osection) | 
|  | { | 
|  | asection * isec; | 
|  | asection * osec; | 
|  | struct bfd_elf_section_data * esd; | 
|  |  | 
|  | if (isection == NULL) | 
|  | return false; | 
|  |  | 
|  | if (isection->sh_type != SHT_SECONDARY_RELOC) | 
|  | return true; | 
|  |  | 
|  | isec = isection->bfd_section; | 
|  | if (isec == NULL) | 
|  | return false; | 
|  |  | 
|  | osec = osection->bfd_section; | 
|  | if (osec == NULL) | 
|  | return false; | 
|  |  | 
|  | esd = elf_section_data (osec); | 
|  | BFD_ASSERT (esd->sec_info == NULL); | 
|  | esd->sec_info = elf_section_data (isec)->sec_info; | 
|  | osection->sh_type = SHT_RELA; | 
|  | osection->sh_link = elf_onesymtab (obfd); | 
|  | if (osection->sh_link == 0) | 
|  | { | 
|  | /* There is no symbol table - we are hosed...  */ | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): link section cannot be set" | 
|  | " because the output file does not have a symbol table"), | 
|  | obfd, osec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Find the output section that corresponds to the isection's | 
|  | sh_info link.  */ | 
|  | if (isection->sh_info == 0 | 
|  | || isection->sh_info >= elf_numsections (ibfd)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): info section index is invalid"), | 
|  | obfd, osec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | isection = elf_elfsections (ibfd)[isection->sh_info]; | 
|  |  | 
|  | if (isection == NULL | 
|  | || isection->bfd_section == NULL | 
|  | || isection->bfd_section->output_section == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): info section index cannot be set" | 
|  | " because the section is not in the output"), | 
|  | obfd, osec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | esd = elf_section_data (isection->bfd_section->output_section); | 
|  | BFD_ASSERT (esd != NULL); | 
|  | osection->sh_info = esd->this_idx; | 
|  | esd->has_secondary_relocs = true; | 
|  | #if DEBUG_SECONDARY_RELOCS | 
|  | fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n", | 
|  | osec->name, osection->sh_link, osection->sh_info); | 
|  | fprintf (stderr, "mark section %s as having secondary relocs\n", | 
|  | bfd_section_name (isection->bfd_section->output_section)); | 
|  | #endif | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Write out a secondary reloc section. | 
|  |  | 
|  | FIXME: Currently this function can result in a serious performance penalty | 
|  | for files with secondary relocs and lots of sections.  The proper way to | 
|  | fix this is for _bfd_elf_copy_special_section_fields() to chain secondary | 
|  | relocs together and then to have this function just walk that chain.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec) | 
|  | { | 
|  | const struct elf_backend_data * const ebd = get_elf_backend_data (abfd); | 
|  | bfd_vma addr_offset; | 
|  | asection * relsec; | 
|  | bfd_vma (*r_info) (bfd_vma, bfd_vma); | 
|  | bool result = true; | 
|  |  | 
|  | if (sec == NULL) | 
|  | return false; | 
|  |  | 
|  | #if BFD_DEFAULT_TARGET_SIZE > 32 | 
|  | if (bfd_arch_bits_per_address (abfd) != 32) | 
|  | r_info = elf64_r_info; | 
|  | else | 
|  | #endif | 
|  | r_info = elf32_r_info; | 
|  |  | 
|  | /* The address of an ELF reloc is section relative for an object | 
|  | file, and absolute for an executable file or shared library. | 
|  | The address of a BFD reloc is always section relative.  */ | 
|  | addr_offset = 0; | 
|  | if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | 
|  | addr_offset = sec->vma; | 
|  |  | 
|  | /* Discover if there are any secondary reloc sections | 
|  | associated with SEC.  */ | 
|  | for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next) | 
|  | { | 
|  | const struct bfd_elf_section_data * const esd = elf_section_data (relsec); | 
|  | Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr; | 
|  |  | 
|  | if (hdr->sh_type == SHT_RELA | 
|  | && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx) | 
|  | { | 
|  | asymbol *    last_sym; | 
|  | int          last_sym_idx; | 
|  | size_t       reloc_count; | 
|  | size_t       idx; | 
|  | bfd_size_type entsize; | 
|  | arelent *    src_irel; | 
|  | bfd_byte *   dst_rela; | 
|  |  | 
|  | if (hdr->contents != NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc section processed twice"), | 
|  | abfd, relsec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | entsize = hdr->sh_entsize; | 
|  | if (entsize == 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc section" | 
|  | " has zero sized entries"), | 
|  | abfd, relsec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  | else if (entsize != ebd->s->sizeof_rel | 
|  | && entsize != ebd->s->sizeof_rela) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc section" | 
|  | " has non-standard sized entries"), | 
|  | abfd, relsec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | reloc_count = hdr->sh_size / entsize; | 
|  | hdr->sh_size = entsize * reloc_count; | 
|  | if (reloc_count == 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc section is empty!"), | 
|  | abfd, relsec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | hdr->contents = bfd_alloc (abfd, hdr->sh_size); | 
|  | if (hdr->contents == NULL) | 
|  | continue; | 
|  |  | 
|  | #if DEBUG_SECONDARY_RELOCS | 
|  | fprintf (stderr, "write %u secondary relocs for %s from %s\n", | 
|  | reloc_count, sec->name, relsec->name); | 
|  | #endif | 
|  | last_sym = NULL; | 
|  | last_sym_idx = 0; | 
|  | dst_rela = hdr->contents; | 
|  | src_irel = (arelent *) esd->sec_info; | 
|  | if (src_irel == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: internal relocs missing" | 
|  | " for secondary reloc section"), | 
|  | abfd, relsec); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize) | 
|  | { | 
|  | Elf_Internal_Rela src_rela; | 
|  | arelent *ptr; | 
|  | asymbol *sym; | 
|  | int n; | 
|  |  | 
|  | ptr = src_irel + idx; | 
|  | if (ptr == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: reloc table entry %zu is empty"), | 
|  | abfd, relsec, idx); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ptr->sym_ptr_ptr == NULL) | 
|  | { | 
|  | /* FIXME: Is this an error ? */ | 
|  | n = 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | sym = *ptr->sym_ptr_ptr; | 
|  |  | 
|  | if (sym == last_sym) | 
|  | n = last_sym_idx; | 
|  | else | 
|  | { | 
|  | n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym); | 
|  | if (n < 0) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc %zu" | 
|  | " references a missing symbol"), | 
|  | abfd, relsec, idx); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | n = 0; | 
|  | } | 
|  |  | 
|  | last_sym = sym; | 
|  | last_sym_idx = n; | 
|  | } | 
|  |  | 
|  | if (sym->the_bfd != NULL | 
|  | && sym->the_bfd->xvec != abfd->xvec | 
|  | && ! _bfd_elf_validate_reloc (abfd, ptr)) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc %zu" | 
|  | " references a deleted symbol"), | 
|  | abfd, relsec, idx); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | n = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | src_rela.r_offset = ptr->address + addr_offset; | 
|  | if (ptr->howto == NULL) | 
|  | { | 
|  | _bfd_error_handler | 
|  | /* xgettext:c-format */ | 
|  | (_("%pB(%pA): error: secondary reloc %zu" | 
|  | " is of an unknown type"), | 
|  | abfd, relsec, idx); | 
|  | bfd_set_error (bfd_error_bad_value); | 
|  | result = false; | 
|  | src_rela.r_info = r_info (0, 0); | 
|  | } | 
|  | else | 
|  | src_rela.r_info = r_info (n, ptr->howto->type); | 
|  | src_rela.r_addend = ptr->addend; | 
|  |  | 
|  | if (entsize == ebd->s->sizeof_rel) | 
|  | ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela); | 
|  | else /* entsize == ebd->s->sizeof_rela */ | 
|  | ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Mmap in section contents.  If FINAL_LINK is false, set *BUF to NULL | 
|  | before calling bfd_get_full_section_contents.  */ | 
|  |  | 
|  | static bool | 
|  | elf_mmap_section_contents (bfd *abfd, sec_ptr sec, bfd_byte **buf, | 
|  | bool final_link) | 
|  | { | 
|  | #ifdef USE_MMAP | 
|  | const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
|  | if (bed->use_mmap | 
|  | && sec->compress_status == COMPRESS_SECTION_NONE | 
|  | && (sec->flags & SEC_LINKER_CREATED) == 0) | 
|  | { | 
|  | /* Use mmap only if section size >= the minimum mmap section | 
|  | size.  */ | 
|  | size_t readsz = bfd_get_section_limit_octets (abfd, sec); | 
|  | size_t allocsz = bfd_get_section_alloc_size (abfd, sec); | 
|  | if (readsz == allocsz && readsz >= _bfd_minimum_mmap_size) | 
|  | { | 
|  | if (sec->contents != NULL) | 
|  | { | 
|  | if (!sec->mmapped_p) | 
|  | abort (); | 
|  | *buf = sec->contents; | 
|  | return true; | 
|  | } | 
|  | if (sec->mmapped_p) | 
|  | abort (); | 
|  | sec->mmapped_p = 1; | 
|  |  | 
|  | /* Never use the preallocated buffer if mmapp is used.  */ | 
|  | *buf = NULL; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* NB: When this is called from elf_link_input_bfd, FINAL_LINK is | 
|  | true.  If FINAL_LINK is false, *BUF is set to the preallocated | 
|  | buffer if USE_MMAP is undefined and *BUF is set to NULL if | 
|  | USE_MMAP is defined.  */ | 
|  | if (!final_link) | 
|  | *buf = NULL; | 
|  | bool ret = bfd_get_full_section_contents (abfd, sec, buf); | 
|  | if (ret && sec->mmapped_p) | 
|  | *buf = sec->contents; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Mmap in section contents.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_mmap_section_contents (bfd *abfd, sec_ptr sec, bfd_byte **buf) | 
|  | { | 
|  | return elf_mmap_section_contents (abfd, sec, buf, false); | 
|  | } | 
|  |  | 
|  | /* Mmap in the full section contents for the final link.  */ | 
|  |  | 
|  | bool | 
|  | _bfd_elf_link_mmap_section_contents (bfd *abfd, sec_ptr sec, | 
|  | bfd_byte **buf) | 
|  | { | 
|  | return elf_mmap_section_contents (abfd, sec, buf, true); | 
|  | } | 
|  |  | 
|  | /* Munmap section contents.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_munmap_section_contents (asection *sec ATTRIBUTE_UNUSED, | 
|  | void *contents) | 
|  | { | 
|  | /* NB: Since _bfd_elf_munmap_section_contents is called like free, | 
|  | CONTENTS may be NULL.  */ | 
|  | if (contents == NULL) | 
|  | return; | 
|  |  | 
|  | #ifdef USE_MMAP | 
|  | if (sec->mmapped_p) | 
|  | { | 
|  | /* _bfd_elf_mmap_section_contents may return the previously | 
|  | mapped section contents.  Munmap the section contents only | 
|  | if they haven't been cached.  */ | 
|  | if (elf_section_data (sec)->this_hdr.contents == contents) | 
|  | return; | 
|  |  | 
|  | /* When _bfd_elf_mmap_section_contents returns CONTENTS as | 
|  | malloced, CONTENTS_ADDR is set to NULL.  */ | 
|  | if (elf_section_data (sec)->contents_addr != NULL) | 
|  | { | 
|  | /* NB: CONTENTS_ADDR and CONTENTS_SIZE must be valid.  */ | 
|  | if (munmap (elf_section_data (sec)->contents_addr, | 
|  | elf_section_data (sec)->contents_size) != 0) | 
|  | abort (); | 
|  | sec->mmapped_p = 0; | 
|  | sec->contents = NULL; | 
|  | elf_section_data (sec)->contents_addr = NULL; | 
|  | elf_section_data (sec)->contents_size = 0; | 
|  | return; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | free (contents); | 
|  | } | 
|  |  | 
|  | /* Munmap the full section contents for the final link.  */ | 
|  |  | 
|  | void | 
|  | _bfd_elf_link_munmap_section_contents (asection *sec ATTRIBUTE_UNUSED) | 
|  | { | 
|  | #ifdef USE_MMAP | 
|  | if (sec->mmapped_p && elf_section_data (sec)->contents_addr != NULL) | 
|  | { | 
|  | /* When _bfd_elf_link_mmap_section_contents returns CONTENTS as | 
|  | malloced, CONTENTS_ADDR is set to NULL.  */ | 
|  | /* NB: CONTENTS_ADDR and CONTENTS_SIZE must be valid.  */ | 
|  | if (munmap (elf_section_data (sec)->contents_addr, | 
|  | elf_section_data (sec)->contents_size) != 0) | 
|  | abort (); | 
|  | sec->mmapped_p = 0; | 
|  | sec->contents = NULL; | 
|  | elf_section_data (sec)->contents_addr = NULL; | 
|  | elf_section_data (sec)->contents_size = 0; | 
|  | } | 
|  | #endif | 
|  | } |