| // arm.cc -- arm target support for gold. | 
 |  | 
 | // Copyright (C) 2009-2024 Free Software Foundation, Inc. | 
 | // Written by Doug Kwan <dougkwan@google.com> based on the i386 code | 
 | // by Ian Lance Taylor <iant@google.com>. | 
 | // This file also contains borrowed and adapted code from | 
 | // bfd/elf32-arm.c. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | #include "gold.h" | 
 |  | 
 | #include <cstring> | 
 | #include <limits> | 
 | #include <cstdio> | 
 | #include <string> | 
 | #include <algorithm> | 
 | #include <map> | 
 | #include <utility> | 
 | #include <set> | 
 |  | 
 | #include "elfcpp.h" | 
 | #include "parameters.h" | 
 | #include "reloc.h" | 
 | #include "arm.h" | 
 | #include "object.h" | 
 | #include "symtab.h" | 
 | #include "layout.h" | 
 | #include "output.h" | 
 | #include "copy-relocs.h" | 
 | #include "target.h" | 
 | #include "target-reloc.h" | 
 | #include "target-select.h" | 
 | #include "tls.h" | 
 | #include "defstd.h" | 
 | #include "gc.h" | 
 | #include "attributes.h" | 
 | #include "arm-reloc-property.h" | 
 | #include "nacl.h" | 
 |  | 
 | namespace | 
 | { | 
 |  | 
 | using namespace gold; | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm; | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_short; | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_long; | 
 |  | 
 | template<bool big_endian> | 
 | class Stub_table; | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_input_section; | 
 |  | 
 | class Arm_exidx_cantunwind; | 
 |  | 
 | class Arm_exidx_merged_section; | 
 |  | 
 | class Arm_exidx_fixup; | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_output_section; | 
 |  | 
 | class Arm_exidx_input_section; | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_relobj; | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_relocate_functions; | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_output_data_got; | 
 |  | 
 | template<bool big_endian> | 
 | class Target_arm; | 
 |  | 
 | // For convenience. | 
 | typedef elfcpp::Elf_types<32>::Elf_Addr Arm_address; | 
 |  | 
 | // Maximum branch offsets for ARM, THUMB and THUMB2. | 
 | const int32_t ARM_MAX_FWD_BRANCH_OFFSET = ((((1 << 23) - 1) << 2) + 8); | 
 | const int32_t ARM_MAX_BWD_BRANCH_OFFSET = ((-((1 << 23) << 2)) + 8); | 
 | const int32_t THM_MAX_FWD_BRANCH_OFFSET = ((1 << 22) -2 + 4); | 
 | const int32_t THM_MAX_BWD_BRANCH_OFFSET = (-(1 << 22) + 4); | 
 | const int32_t THM2_MAX_FWD_BRANCH_OFFSET = (((1 << 24) - 2) + 4); | 
 | const int32_t THM2_MAX_BWD_BRANCH_OFFSET = (-(1 << 24) + 4); | 
 |  | 
 | // Thread Control Block size. | 
 | const size_t ARM_TCB_SIZE = 8; | 
 |  | 
 | // The arm target class. | 
 | // | 
 | // This is a very simple port of gold for ARM-EABI.  It is intended for | 
 | // supporting Android only for the time being. | 
 | // | 
 | // TODOs: | 
 | // - Implement all static relocation types documented in arm-reloc.def. | 
 | // - Make PLTs more flexible for different architecture features like | 
 | //   Thumb-2 and BE8. | 
 | // There are probably a lot more. | 
 |  | 
 | // Ideally we would like to avoid using global variables but this is used | 
 | // very in many places and sometimes in loops.  If we use a function | 
 | // returning a static instance of Arm_reloc_property_table, it will be very | 
 | // slow in an threaded environment since the static instance needs to be | 
 | // locked.  The pointer is below initialized in the | 
 | // Target::do_select_as_default_target() hook so that we do not spend time | 
 | // building the table if we are not linking ARM objects. | 
 | // | 
 | // An alternative is to process the information in arm-reloc.def in | 
 | // compilation time and generate a representation of it in PODs only.  That | 
 | // way we can avoid initialization when the linker starts. | 
 |  | 
 | Arm_reloc_property_table* arm_reloc_property_table = NULL; | 
 |  | 
 | // Instruction template class.  This class is similar to the insn_sequence | 
 | // struct in bfd/elf32-arm.c. | 
 |  | 
 | class Insn_template | 
 | { | 
 |  public: | 
 |   // Types of instruction templates. | 
 |   enum Type | 
 |     { | 
 |       THUMB16_TYPE = 1, | 
 |       // THUMB16_SPECIAL_TYPE is used by sub-classes of Stub for instruction | 
 |       // templates with class-specific semantics.  Currently this is used | 
 |       // only by the Cortex_a8_stub class for handling condition codes in | 
 |       // conditional branches. | 
 |       THUMB16_SPECIAL_TYPE, | 
 |       THUMB32_TYPE, | 
 |       ARM_TYPE, | 
 |       DATA_TYPE | 
 |     }; | 
 |  | 
 |   // Factory methods to create instruction templates in different formats. | 
 |  | 
 |   static const Insn_template | 
 |   thumb16_insn(uint32_t data) | 
 |   { return Insn_template(data, THUMB16_TYPE, elfcpp::R_ARM_NONE, 0); } | 
 |  | 
 |   // A Thumb conditional branch, in which the proper condition is inserted | 
 |   // when we build the stub. | 
 |   static const Insn_template | 
 |   thumb16_bcond_insn(uint32_t data) | 
 |   { return Insn_template(data, THUMB16_SPECIAL_TYPE, elfcpp::R_ARM_NONE, 1); } | 
 |  | 
 |   static const Insn_template | 
 |   thumb32_insn(uint32_t data) | 
 |   { return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_NONE, 0); } | 
 |  | 
 |   static const Insn_template | 
 |   thumb32_b_insn(uint32_t data, int reloc_addend) | 
 |   { | 
 |     return Insn_template(data, THUMB32_TYPE, elfcpp::R_ARM_THM_JUMP24, | 
 | 			 reloc_addend); | 
 |   } | 
 |  | 
 |   static const Insn_template | 
 |   arm_insn(uint32_t data) | 
 |   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_NONE, 0); } | 
 |  | 
 |   static const Insn_template | 
 |   arm_rel_insn(unsigned data, int reloc_addend) | 
 |   { return Insn_template(data, ARM_TYPE, elfcpp::R_ARM_JUMP24, reloc_addend); } | 
 |  | 
 |   static const Insn_template | 
 |   data_word(unsigned data, unsigned int r_type, int reloc_addend) | 
 |   { return Insn_template(data, DATA_TYPE, r_type, reloc_addend); } | 
 |  | 
 |   // Accessors.  This class is used for read-only objects so no modifiers | 
 |   // are provided. | 
 |  | 
 |   uint32_t | 
 |   data() const | 
 |   { return this->data_; } | 
 |  | 
 |   // Return the instruction sequence type of this. | 
 |   Type | 
 |   type() const | 
 |   { return this->type_; } | 
 |  | 
 |   // Return the ARM relocation type of this. | 
 |   unsigned int | 
 |   r_type() const | 
 |   { return this->r_type_; } | 
 |  | 
 |   int32_t | 
 |   reloc_addend() const | 
 |   { return this->reloc_addend_; } | 
 |  | 
 |   // Return size of instruction template in bytes. | 
 |   size_t | 
 |   size() const; | 
 |  | 
 |   // Return byte-alignment of instruction template. | 
 |   unsigned | 
 |   alignment() const; | 
 |  | 
 |  private: | 
 |   // We make the constructor private to ensure that only the factory | 
 |   // methods are used. | 
 |   inline | 
 |   Insn_template(unsigned data, Type type, unsigned int r_type, int reloc_addend) | 
 |     : data_(data), type_(type), r_type_(r_type), reloc_addend_(reloc_addend) | 
 |   { } | 
 |  | 
 |   // Instruction specific data.  This is used to store information like | 
 |   // some of the instruction bits. | 
 |   uint32_t data_; | 
 |   // Instruction template type. | 
 |   Type type_; | 
 |   // Relocation type if there is a relocation or R_ARM_NONE otherwise. | 
 |   unsigned int r_type_; | 
 |   // Relocation addend. | 
 |   int32_t reloc_addend_; | 
 | }; | 
 |  | 
 | // Macro for generating code to stub types. One entry per long/short | 
 | // branch stub | 
 |  | 
 | #define DEF_STUBS \ | 
 |   DEF_STUB(long_branch_any_any) \ | 
 |   DEF_STUB(long_branch_v4t_arm_thumb) \ | 
 |   DEF_STUB(long_branch_thumb_only) \ | 
 |   DEF_STUB(long_branch_v4t_thumb_thumb) \ | 
 |   DEF_STUB(long_branch_v4t_thumb_arm) \ | 
 |   DEF_STUB(short_branch_v4t_thumb_arm) \ | 
 |   DEF_STUB(long_branch_any_arm_pic) \ | 
 |   DEF_STUB(long_branch_any_thumb_pic) \ | 
 |   DEF_STUB(long_branch_v4t_thumb_thumb_pic) \ | 
 |   DEF_STUB(long_branch_v4t_arm_thumb_pic) \ | 
 |   DEF_STUB(long_branch_v4t_thumb_arm_pic) \ | 
 |   DEF_STUB(long_branch_thumb_only_pic) \ | 
 |   DEF_STUB(a8_veneer_b_cond) \ | 
 |   DEF_STUB(a8_veneer_b) \ | 
 |   DEF_STUB(a8_veneer_bl) \ | 
 |   DEF_STUB(a8_veneer_blx) \ | 
 |   DEF_STUB(v4_veneer_bx) | 
 |  | 
 | // Stub types. | 
 |  | 
 | #define DEF_STUB(x) arm_stub_##x, | 
 | typedef enum | 
 |   { | 
 |     arm_stub_none, | 
 |     DEF_STUBS | 
 |  | 
 |     // First reloc stub type. | 
 |     arm_stub_reloc_first = arm_stub_long_branch_any_any, | 
 |     // Last  reloc stub type. | 
 |     arm_stub_reloc_last = arm_stub_long_branch_thumb_only_pic, | 
 |  | 
 |     // First Cortex-A8 stub type. | 
 |     arm_stub_cortex_a8_first = arm_stub_a8_veneer_b_cond, | 
 |     // Last Cortex-A8 stub type. | 
 |     arm_stub_cortex_a8_last = arm_stub_a8_veneer_blx, | 
 |  | 
 |     // Last stub type. | 
 |     arm_stub_type_last = arm_stub_v4_veneer_bx | 
 |   } Stub_type; | 
 | #undef DEF_STUB | 
 |  | 
 | // Stub template class.  Templates are meant to be read-only objects. | 
 | // A stub template for a stub type contains all read-only attributes | 
 | // common to all stubs of the same type. | 
 |  | 
 | class Stub_template | 
 | { | 
 |  public: | 
 |   Stub_template(Stub_type, const Insn_template*, size_t); | 
 |  | 
 |   ~Stub_template() | 
 |   { } | 
 |  | 
 |   // Return stub type. | 
 |   Stub_type | 
 |   type() const | 
 |   { return this->type_; } | 
 |  | 
 |   // Return an array of instruction templates. | 
 |   const Insn_template* | 
 |   insns() const | 
 |   { return this->insns_; } | 
 |  | 
 |   // Return size of template in number of instructions. | 
 |   size_t | 
 |   insn_count() const | 
 |   { return this->insn_count_; } | 
 |  | 
 |   // Return size of template in bytes. | 
 |   size_t | 
 |   size() const | 
 |   { return this->size_; } | 
 |  | 
 |   // Return alignment of the stub template. | 
 |   unsigned | 
 |   alignment() const | 
 |   { return this->alignment_; } | 
 |  | 
 |   // Return whether entry point is in thumb mode. | 
 |   bool | 
 |   entry_in_thumb_mode() const | 
 |   { return this->entry_in_thumb_mode_; } | 
 |  | 
 |   // Return number of relocations in this template. | 
 |   size_t | 
 |   reloc_count() const | 
 |   { return this->relocs_.size(); } | 
 |  | 
 |   // Return index of the I-th instruction with relocation. | 
 |   size_t | 
 |   reloc_insn_index(size_t i) const | 
 |   { | 
 |     gold_assert(i < this->relocs_.size()); | 
 |     return this->relocs_[i].first; | 
 |   } | 
 |  | 
 |   // Return the offset of the I-th instruction with relocation from the | 
 |   // beginning of the stub. | 
 |   section_size_type | 
 |   reloc_offset(size_t i) const | 
 |   { | 
 |     gold_assert(i < this->relocs_.size()); | 
 |     return this->relocs_[i].second; | 
 |   } | 
 |  | 
 |  private: | 
 |   // This contains information about an instruction template with a relocation | 
 |   // and its offset from start of stub. | 
 |   typedef std::pair<size_t, section_size_type> Reloc; | 
 |  | 
 |   // A Stub_template may not be copied.  We want to share templates as much | 
 |   // as possible. | 
 |   Stub_template(const Stub_template&); | 
 |   Stub_template& operator=(const Stub_template&); | 
 |  | 
 |   // Stub type. | 
 |   Stub_type type_; | 
 |   // Points to an array of Insn_templates. | 
 |   const Insn_template* insns_; | 
 |   // Number of Insn_templates in insns_[]. | 
 |   size_t insn_count_; | 
 |   // Size of templated instructions in bytes. | 
 |   size_t size_; | 
 |   // Alignment of templated instructions. | 
 |   unsigned alignment_; | 
 |   // Flag to indicate if entry is in thumb mode. | 
 |   bool entry_in_thumb_mode_; | 
 |   // A table of reloc instruction indices and offsets.  We can find these by | 
 |   // looking at the instruction templates but we pre-compute and then stash | 
 |   // them here for speed. | 
 |   std::vector<Reloc> relocs_; | 
 | }; | 
 |  | 
 | // | 
 | // A class for code stubs.  This is a base class for different type of | 
 | // stubs used in the ARM target. | 
 | // | 
 |  | 
 | class Stub | 
 | { | 
 |  private: | 
 |   static const section_offset_type invalid_offset = | 
 |     static_cast<section_offset_type>(-1); | 
 |  | 
 |  public: | 
 |   Stub(const Stub_template* stub_template) | 
 |     : stub_template_(stub_template), offset_(invalid_offset) | 
 |   { } | 
 |  | 
 |   virtual | 
 |    ~Stub() | 
 |   { } | 
 |  | 
 |   // Return the stub template. | 
 |   const Stub_template* | 
 |   stub_template() const | 
 |   { return this->stub_template_; } | 
 |  | 
 |   // Return offset of code stub from beginning of its containing stub table. | 
 |   section_offset_type | 
 |   offset() const | 
 |   { | 
 |     gold_assert(this->offset_ != invalid_offset); | 
 |     return this->offset_; | 
 |   } | 
 |  | 
 |   // Set offset of code stub from beginning of its containing stub table. | 
 |   void | 
 |   set_offset(section_offset_type offset) | 
 |   { this->offset_ = offset; } | 
 |  | 
 |   // Return the relocation target address of the i-th relocation in the | 
 |   // stub.  This must be defined in a child class. | 
 |   Arm_address | 
 |   reloc_target(size_t i) | 
 |   { return this->do_reloc_target(i); } | 
 |  | 
 |   // Write a stub at output VIEW.  BIG_ENDIAN select how a stub is written. | 
 |   void | 
 |   write(unsigned char* view, section_size_type view_size, bool big_endian) | 
 |   { this->do_write(view, view_size, big_endian); } | 
 |  | 
 |   // Return the instruction for THUMB16_SPECIAL_TYPE instruction template | 
 |   // for the i-th instruction. | 
 |   uint16_t | 
 |   thumb16_special(size_t i) | 
 |   { return this->do_thumb16_special(i); } | 
 |  | 
 |  protected: | 
 |   // This must be defined in the child class. | 
 |   virtual Arm_address | 
 |   do_reloc_target(size_t) = 0; | 
 |  | 
 |   // This may be overridden in the child class. | 
 |   virtual void | 
 |   do_write(unsigned char* view, section_size_type view_size, bool big_endian) | 
 |   { | 
 |     if (big_endian) | 
 |       this->do_fixed_endian_write<true>(view, view_size); | 
 |     else | 
 |       this->do_fixed_endian_write<false>(view, view_size); | 
 |   } | 
 |  | 
 |   // This must be overridden if a child class uses the THUMB16_SPECIAL_TYPE | 
 |   // instruction template. | 
 |   virtual uint16_t | 
 |   do_thumb16_special(size_t) | 
 |   { gold_unreachable(); } | 
 |  | 
 |  private: | 
 |   // A template to implement do_write. | 
 |   template<bool big_endian> | 
 |   void inline | 
 |   do_fixed_endian_write(unsigned char*, section_size_type); | 
 |  | 
 |   // Its template. | 
 |   const Stub_template* stub_template_; | 
 |   // Offset within the section of containing this stub. | 
 |   section_offset_type offset_; | 
 | }; | 
 |  | 
 | // Reloc stub class.  These are stubs we use to fix up relocation because | 
 | // of limited branch ranges. | 
 |  | 
 | class Reloc_stub : public Stub | 
 | { | 
 |  public: | 
 |   static const unsigned int invalid_index = static_cast<unsigned int>(-1); | 
 |   // We assume we never jump to this address. | 
 |   static const Arm_address invalid_address = static_cast<Arm_address>(-1); | 
 |  | 
 |   // Return destination address. | 
 |   Arm_address | 
 |   destination_address() const | 
 |   { | 
 |     gold_assert(this->destination_address_ != this->invalid_address); | 
 |     return this->destination_address_; | 
 |   } | 
 |  | 
 |   // Set destination address. | 
 |   void | 
 |   set_destination_address(Arm_address address) | 
 |   { | 
 |     gold_assert(address != this->invalid_address); | 
 |     this->destination_address_ = address; | 
 |   } | 
 |  | 
 |   // Reset destination address. | 
 |   void | 
 |   reset_destination_address() | 
 |   { this->destination_address_ = this->invalid_address; } | 
 |  | 
 |   // Determine stub type for a branch of a relocation of R_TYPE going | 
 |   // from BRANCH_ADDRESS to BRANCH_TARGET.  If TARGET_IS_THUMB is set, | 
 |   // the branch target is a thumb instruction.  TARGET is used for look | 
 |   // up ARM-specific linker settings. | 
 |   static Stub_type | 
 |   stub_type_for_reloc(unsigned int r_type, Arm_address branch_address, | 
 | 		      Arm_address branch_target, bool target_is_thumb); | 
 |  | 
 |   // Reloc_stub key.  A key is logically a triplet of a stub type, a symbol | 
 |   // and an addend.  Since we treat global and local symbol differently, we | 
 |   // use a Symbol object for a global symbol and a object-index pair for | 
 |   // a local symbol. | 
 |   class Key | 
 |   { | 
 |    public: | 
 |     // If SYMBOL is not null, this is a global symbol, we ignore RELOBJ and | 
 |     // R_SYM.  Otherwise, this is a local symbol and RELOBJ must non-NULL | 
 |     // and R_SYM must not be invalid_index. | 
 |     Key(Stub_type stub_type, const Symbol* symbol, const Relobj* relobj, | 
 | 	unsigned int r_sym, int32_t addend) | 
 |       : stub_type_(stub_type), addend_(addend) | 
 |     { | 
 |       if (symbol != NULL) | 
 | 	{ | 
 | 	  this->r_sym_ = Reloc_stub::invalid_index; | 
 | 	  this->u_.symbol = symbol; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  gold_assert(relobj != NULL && r_sym != invalid_index); | 
 | 	  this->r_sym_ = r_sym; | 
 | 	  this->u_.relobj = relobj; | 
 | 	} | 
 |     } | 
 |  | 
 |     ~Key() | 
 |     { } | 
 |  | 
 |     // Accessors: Keys are meant to be read-only object so no modifiers are | 
 |     // provided. | 
 |  | 
 |     // Return stub type. | 
 |     Stub_type | 
 |     stub_type() const | 
 |     { return this->stub_type_; } | 
 |  | 
 |     // Return the local symbol index or invalid_index. | 
 |     unsigned int | 
 |     r_sym() const | 
 |     { return this->r_sym_; } | 
 |  | 
 |     // Return the symbol if there is one. | 
 |     const Symbol* | 
 |     symbol() const | 
 |     { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; } | 
 |  | 
 |     // Return the relobj if there is one. | 
 |     const Relobj* | 
 |     relobj() const | 
 |     { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; } | 
 |  | 
 |     // Whether this equals to another key k. | 
 |     bool | 
 |     eq(const Key& k) const | 
 |     { | 
 |       return ((this->stub_type_ == k.stub_type_) | 
 | 	      && (this->r_sym_ == k.r_sym_) | 
 | 	      && ((this->r_sym_ != Reloc_stub::invalid_index) | 
 | 		  ? (this->u_.relobj == k.u_.relobj) | 
 | 		  : (this->u_.symbol == k.u_.symbol)) | 
 | 	      && (this->addend_ == k.addend_)); | 
 |     } | 
 |  | 
 |     // Return a hash value. | 
 |     size_t | 
 |     hash_value() const | 
 |     { | 
 |       return (this->stub_type_ | 
 | 	      ^ this->r_sym_ | 
 | 	      ^ gold::string_hash<char>( | 
 | 		    (this->r_sym_ != Reloc_stub::invalid_index) | 
 | 		    ? this->u_.relobj->name().c_str() | 
 | 		    : this->u_.symbol->name()) | 
 | 	      ^ this->addend_); | 
 |     } | 
 |  | 
 |     // Functors for STL associative containers. | 
 |     struct hash | 
 |     { | 
 |       size_t | 
 |       operator()(const Key& k) const | 
 |       { return k.hash_value(); } | 
 |     }; | 
 |  | 
 |     struct equal_to | 
 |     { | 
 |       bool | 
 |       operator()(const Key& k1, const Key& k2) const | 
 |       { return k1.eq(k2); } | 
 |     }; | 
 |  | 
 |     // Name of key.  This is mainly for debugging. | 
 |     std::string | 
 |     name() const ATTRIBUTE_UNUSED; | 
 |  | 
 |    private: | 
 |     // Stub type. | 
 |     Stub_type stub_type_; | 
 |     // If this is a local symbol, this is the index in the defining object. | 
 |     // Otherwise, it is invalid_index for a global symbol. | 
 |     unsigned int r_sym_; | 
 |     // If r_sym_ is an invalid index, this points to a global symbol. | 
 |     // Otherwise, it points to a relobj.  We used the unsized and target | 
 |     // independent Symbol and Relobj classes instead of Sized_symbol<32> and | 
 |     // Arm_relobj, in order to avoid making the stub class a template | 
 |     // as most of the stub machinery is endianness-neutral.  However, it | 
 |     // may require a bit of casting done by users of this class. | 
 |     union | 
 |     { | 
 |       const Symbol* symbol; | 
 |       const Relobj* relobj; | 
 |     } u_; | 
 |     // Addend associated with a reloc. | 
 |     int32_t addend_; | 
 |   }; | 
 |  | 
 |  protected: | 
 |   // Reloc_stubs are created via a stub factory.  So these are protected. | 
 |   Reloc_stub(const Stub_template* stub_template) | 
 |     : Stub(stub_template), destination_address_(invalid_address) | 
 |   { } | 
 |  | 
 |   ~Reloc_stub() | 
 |   { } | 
 |  | 
 |   friend class Stub_factory; | 
 |  | 
 |   // Return the relocation target address of the i-th relocation in the | 
 |   // stub. | 
 |   Arm_address | 
 |   do_reloc_target(size_t i) | 
 |   { | 
 |     // All reloc stub have only one relocation. | 
 |     gold_assert(i == 0); | 
 |     return this->destination_address_; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Address of destination. | 
 |   Arm_address destination_address_; | 
 | }; | 
 |  | 
 | // Cortex-A8 stub class.  We need a Cortex-A8 stub to redirect any 32-bit | 
 | // THUMB branch that meets the following conditions: | 
 | // | 
 | // 1. The branch straddles across a page boundary. i.e. lower 12-bit of | 
 | //    branch address is 0xffe. | 
 | // 2. The branch target address is in the same page as the first word of the | 
 | //    branch. | 
 | // 3. The branch follows a 32-bit instruction which is not a branch. | 
 | // | 
 | // To do the fix up, we need to store the address of the branch instruction | 
 | // and its target at least.  We also need to store the original branch | 
 | // instruction bits for the condition code in a conditional branch.  The | 
 | // condition code is used in a special instruction template.  We also want | 
 | // to identify input sections needing Cortex-A8 workaround quickly.  We store | 
 | // extra information about object and section index of the code section | 
 | // containing a branch being fixed up.  The information is used to mark | 
 | // the code section when we finalize the Cortex-A8 stubs. | 
 | // | 
 |  | 
 | class Cortex_a8_stub : public Stub | 
 | { | 
 |  public: | 
 |   ~Cortex_a8_stub() | 
 |   { } | 
 |  | 
 |   // Return the object of the code section containing the branch being fixed | 
 |   // up. | 
 |   Relobj* | 
 |   relobj() const | 
 |   { return this->relobj_; } | 
 |  | 
 |   // Return the section index of the code section containing the branch being | 
 |   // fixed up. | 
 |   unsigned int | 
 |   shndx() const | 
 |   { return this->shndx_; } | 
 |  | 
 |   // Return the source address of stub.  This is the address of the original | 
 |   // branch instruction.  LSB is 1 always set to indicate that it is a THUMB | 
 |   // instruction. | 
 |   Arm_address | 
 |   source_address() const | 
 |   { return this->source_address_; } | 
 |  | 
 |   // Return the destination address of the stub.  This is the branch taken | 
 |   // address of the original branch instruction.  LSB is 1 if it is a THUMB | 
 |   // instruction address. | 
 |   Arm_address | 
 |   destination_address() const | 
 |   { return this->destination_address_; } | 
 |  | 
 |   // Return the instruction being fixed up. | 
 |   uint32_t | 
 |   original_insn() const | 
 |   { return this->original_insn_; } | 
 |  | 
 |  protected: | 
 |   // Cortex_a8_stubs are created via a stub factory.  So these are protected. | 
 |   Cortex_a8_stub(const Stub_template* stub_template, Relobj* relobj, | 
 | 		 unsigned int shndx, Arm_address source_address, | 
 | 		 Arm_address destination_address, uint32_t original_insn) | 
 |     : Stub(stub_template), relobj_(relobj), shndx_(shndx), | 
 |       source_address_(source_address | 1U), | 
 |       destination_address_(destination_address), | 
 |       original_insn_(original_insn) | 
 |   { } | 
 |  | 
 |   friend class Stub_factory; | 
 |  | 
 |   // Return the relocation target address of the i-th relocation in the | 
 |   // stub. | 
 |   Arm_address | 
 |   do_reloc_target(size_t i) | 
 |   { | 
 |     if (this->stub_template()->type() == arm_stub_a8_veneer_b_cond) | 
 |       { | 
 | 	// The conditional branch veneer has two relocations. | 
 | 	gold_assert(i < 2); | 
 | 	return i == 0 ? this->source_address_ + 4 : this->destination_address_; | 
 |       } | 
 |     else | 
 |       { | 
 | 	// All other Cortex-A8 stubs have only one relocation. | 
 | 	gold_assert(i == 0); | 
 | 	return this->destination_address_; | 
 |       } | 
 |   } | 
 |  | 
 |   // Return an instruction for the THUMB16_SPECIAL_TYPE instruction template. | 
 |   uint16_t | 
 |   do_thumb16_special(size_t); | 
 |  | 
 |  private: | 
 |   // Object of the code section containing the branch being fixed up. | 
 |   Relobj* relobj_; | 
 |   // Section index of the code section containing the branch begin fixed up. | 
 |   unsigned int shndx_; | 
 |   // Source address of original branch. | 
 |   Arm_address source_address_; | 
 |   // Destination address of the original branch. | 
 |   Arm_address destination_address_; | 
 |   // Original branch instruction.  This is needed for copying the condition | 
 |   // code from a condition branch to its stub. | 
 |   uint32_t original_insn_; | 
 | }; | 
 |  | 
 | // ARMv4 BX Rx branch relocation stub class. | 
 | class Arm_v4bx_stub : public Stub | 
 | { | 
 |  public: | 
 |   ~Arm_v4bx_stub() | 
 |   { } | 
 |  | 
 |   // Return the associated register. | 
 |   uint32_t | 
 |   reg() const | 
 |   { return this->reg_; } | 
 |  | 
 |  protected: | 
 |   // Arm V4BX stubs are created via a stub factory.  So these are protected. | 
 |   Arm_v4bx_stub(const Stub_template* stub_template, const uint32_t reg) | 
 |     : Stub(stub_template), reg_(reg) | 
 |   { } | 
 |  | 
 |   friend class Stub_factory; | 
 |  | 
 |   // Return the relocation target address of the i-th relocation in the | 
 |   // stub. | 
 |   Arm_address | 
 |   do_reloc_target(size_t) | 
 |   { gold_unreachable(); } | 
 |  | 
 |   // This may be overridden in the child class. | 
 |   virtual void | 
 |   do_write(unsigned char* view, section_size_type view_size, bool big_endian) | 
 |   { | 
 |     if (big_endian) | 
 |       this->do_fixed_endian_v4bx_write<true>(view, view_size); | 
 |     else | 
 |       this->do_fixed_endian_v4bx_write<false>(view, view_size); | 
 |   } | 
 |  | 
 |  private: | 
 |   // A template to implement do_write. | 
 |   template<bool big_endian> | 
 |   void inline | 
 |   do_fixed_endian_v4bx_write(unsigned char* view, section_size_type) | 
 |   { | 
 |     const Insn_template* insns = this->stub_template()->insns(); | 
 |     elfcpp::Swap<32, big_endian>::writeval(view, | 
 | 					   (insns[0].data() | 
 | 					   + (this->reg_ << 16))); | 
 |     view += insns[0].size(); | 
 |     elfcpp::Swap<32, big_endian>::writeval(view, | 
 | 					   (insns[1].data() + this->reg_)); | 
 |     view += insns[1].size(); | 
 |     elfcpp::Swap<32, big_endian>::writeval(view, | 
 | 					   (insns[2].data() + this->reg_)); | 
 |   } | 
 |  | 
 |   // A register index (r0-r14), which is associated with the stub. | 
 |   uint32_t reg_; | 
 | }; | 
 |  | 
 | // Stub factory class. | 
 |  | 
 | class Stub_factory | 
 | { | 
 |  public: | 
 |   // Return the unique instance of this class. | 
 |   static const Stub_factory& | 
 |   get_instance() | 
 |   { | 
 |     static Stub_factory singleton; | 
 |     return singleton; | 
 |   } | 
 |  | 
 |   // Make a relocation stub. | 
 |   Reloc_stub* | 
 |   make_reloc_stub(Stub_type stub_type) const | 
 |   { | 
 |     gold_assert(stub_type >= arm_stub_reloc_first | 
 | 		&& stub_type <= arm_stub_reloc_last); | 
 |     return new Reloc_stub(this->stub_templates_[stub_type]); | 
 |   } | 
 |  | 
 |   // Make a Cortex-A8 stub. | 
 |   Cortex_a8_stub* | 
 |   make_cortex_a8_stub(Stub_type stub_type, Relobj* relobj, unsigned int shndx, | 
 | 		      Arm_address source, Arm_address destination, | 
 | 		      uint32_t original_insn) const | 
 |   { | 
 |     gold_assert(stub_type >= arm_stub_cortex_a8_first | 
 | 		&& stub_type <= arm_stub_cortex_a8_last); | 
 |     return new Cortex_a8_stub(this->stub_templates_[stub_type], relobj, shndx, | 
 | 			      source, destination, original_insn); | 
 |   } | 
 |  | 
 |   // Make an ARM V4BX relocation stub. | 
 |   // This method creates a stub from the arm_stub_v4_veneer_bx template only. | 
 |   Arm_v4bx_stub* | 
 |   make_arm_v4bx_stub(uint32_t reg) const | 
 |   { | 
 |     gold_assert(reg < 0xf); | 
 |     return new Arm_v4bx_stub(this->stub_templates_[arm_stub_v4_veneer_bx], | 
 | 			     reg); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Constructor and destructor are protected since we only return a single | 
 |   // instance created in Stub_factory::get_instance(). | 
 |  | 
 |   Stub_factory(); | 
 |  | 
 |   // A Stub_factory may not be copied since it is a singleton. | 
 |   Stub_factory(const Stub_factory&); | 
 |   Stub_factory& operator=(Stub_factory&); | 
 |  | 
 |   // Stub templates.  These are initialized in the constructor. | 
 |   const Stub_template* stub_templates_[arm_stub_type_last+1]; | 
 | }; | 
 |  | 
 | // A class to hold stubs for the ARM target. | 
 |  | 
 | template<bool big_endian> | 
 | class Stub_table : public Output_data | 
 | { | 
 |  public: | 
 |   Stub_table(Arm_input_section<big_endian>* owner) | 
 |     : Output_data(), owner_(owner), reloc_stubs_(), reloc_stubs_size_(0), | 
 |       reloc_stubs_addralign_(1), cortex_a8_stubs_(), arm_v4bx_stubs_(0xf), | 
 |       prev_data_size_(0), prev_addralign_(1) | 
 |   { } | 
 |  | 
 |   ~Stub_table() | 
 |   { } | 
 |  | 
 |   // Owner of this stub table. | 
 |   Arm_input_section<big_endian>* | 
 |   owner() const | 
 |   { return this->owner_; } | 
 |  | 
 |   // Whether this stub table is empty. | 
 |   bool | 
 |   empty() const | 
 |   { | 
 |     return (this->reloc_stubs_.empty() | 
 | 	    && this->cortex_a8_stubs_.empty() | 
 | 	    && this->arm_v4bx_stubs_.empty()); | 
 |   } | 
 |  | 
 |   // Return the current data size. | 
 |   off_t | 
 |   current_data_size() const | 
 |   { return this->current_data_size_for_child(); } | 
 |  | 
 |   // Add a STUB using KEY.  The caller is responsible for avoiding addition | 
 |   // if a STUB with the same key has already been added. | 
 |   void | 
 |   add_reloc_stub(Reloc_stub* stub, const Reloc_stub::Key& key) | 
 |   { | 
 |     const Stub_template* stub_template = stub->stub_template(); | 
 |     gold_assert(stub_template->type() == key.stub_type()); | 
 |     this->reloc_stubs_[key] = stub; | 
 |  | 
 |     // Assign stub offset early.  We can do this because we never remove | 
 |     // reloc stubs and they are in the beginning of the stub table. | 
 |     uint64_t align = stub_template->alignment(); | 
 |     this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_, align); | 
 |     stub->set_offset(this->reloc_stubs_size_); | 
 |     this->reloc_stubs_size_ += stub_template->size(); | 
 |     this->reloc_stubs_addralign_ = | 
 |       std::max(this->reloc_stubs_addralign_, align); | 
 |   } | 
 |  | 
 |   // Add a Cortex-A8 STUB that fixes up a THUMB branch at ADDRESS. | 
 |   // The caller is responsible for avoiding addition if a STUB with the same | 
 |   // address has already been added. | 
 |   void | 
 |   add_cortex_a8_stub(Arm_address address, Cortex_a8_stub* stub) | 
 |   { | 
 |     std::pair<Arm_address, Cortex_a8_stub*> value(address, stub); | 
 |     this->cortex_a8_stubs_.insert(value); | 
 |   } | 
 |  | 
 |   // Add an ARM V4BX relocation stub. A register index will be retrieved | 
 |   // from the stub. | 
 |   void | 
 |   add_arm_v4bx_stub(Arm_v4bx_stub* stub) | 
 |   { | 
 |     gold_assert(stub != NULL && this->arm_v4bx_stubs_[stub->reg()] == NULL); | 
 |     this->arm_v4bx_stubs_[stub->reg()] = stub; | 
 |   } | 
 |  | 
 |   // Remove all Cortex-A8 stubs. | 
 |   void | 
 |   remove_all_cortex_a8_stubs(); | 
 |  | 
 |   // Look up a relocation stub using KEY.  Return NULL if there is none. | 
 |   Reloc_stub* | 
 |   find_reloc_stub(const Reloc_stub::Key& key) const | 
 |   { | 
 |     typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.find(key); | 
 |     return (p != this->reloc_stubs_.end()) ? p->second : NULL; | 
 |   } | 
 |  | 
 |   // Look up an arm v4bx relocation stub using the register index. | 
 |   // Return NULL if there is none. | 
 |   Arm_v4bx_stub* | 
 |   find_arm_v4bx_stub(const uint32_t reg) const | 
 |   { | 
 |     gold_assert(reg < 0xf); | 
 |     return this->arm_v4bx_stubs_[reg]; | 
 |   } | 
 |  | 
 |   // Relocate stubs in this stub table. | 
 |   void | 
 |   relocate_stubs(const Relocate_info<32, big_endian>*, | 
 | 		 Target_arm<big_endian>*, Output_section*, | 
 | 		 unsigned char*, Arm_address, section_size_type); | 
 |  | 
 |   // Update data size and alignment at the end of a relaxation pass.  Return | 
 |   // true if either data size or alignment is different from that of the | 
 |   // previous relaxation pass. | 
 |   bool | 
 |   update_data_size_and_addralign(); | 
 |  | 
 |   // Finalize stubs.  Set the offsets of all stubs and mark input sections | 
 |   // needing the Cortex-A8 workaround. | 
 |   void | 
 |   finalize_stubs(); | 
 |  | 
 |   // Apply Cortex-A8 workaround to an address range. | 
 |   void | 
 |   apply_cortex_a8_workaround_to_address_range(Target_arm<big_endian>*, | 
 | 					      unsigned char*, Arm_address, | 
 | 					      section_size_type); | 
 |  | 
 |  protected: | 
 |   // Write out section contents. | 
 |   void | 
 |   do_write(Output_file*); | 
 |  | 
 |   // Return the required alignment. | 
 |   uint64_t | 
 |   do_addralign() const | 
 |   { return this->prev_addralign_; } | 
 |  | 
 |   // Reset address and file offset. | 
 |   void | 
 |   do_reset_address_and_file_offset() | 
 |   { this->set_current_data_size_for_child(this->prev_data_size_); } | 
 |  | 
 |   // Set final data size. | 
 |   void | 
 |   set_final_data_size() | 
 |   { this->set_data_size(this->current_data_size()); } | 
 |  | 
 |  private: | 
 |   // Relocate one stub. | 
 |   void | 
 |   relocate_stub(Stub*, const Relocate_info<32, big_endian>*, | 
 | 		Target_arm<big_endian>*, Output_section*, | 
 | 		unsigned char*, Arm_address, section_size_type); | 
 |  | 
 |   // Unordered map of relocation stubs. | 
 |   typedef | 
 |     Unordered_map<Reloc_stub::Key, Reloc_stub*, Reloc_stub::Key::hash, | 
 | 		  Reloc_stub::Key::equal_to> | 
 |     Reloc_stub_map; | 
 |  | 
 |   // List of Cortex-A8 stubs ordered by addresses of branches being | 
 |   // fixed up in output. | 
 |   typedef std::map<Arm_address, Cortex_a8_stub*> Cortex_a8_stub_list; | 
 |   // List of Arm V4BX relocation stubs ordered by associated registers. | 
 |   typedef std::vector<Arm_v4bx_stub*> Arm_v4bx_stub_list; | 
 |  | 
 |   // Owner of this stub table. | 
 |   Arm_input_section<big_endian>* owner_; | 
 |   // The relocation stubs. | 
 |   Reloc_stub_map reloc_stubs_; | 
 |   // Size of reloc stubs. | 
 |   off_t reloc_stubs_size_; | 
 |   // Maximum address alignment of reloc stubs. | 
 |   uint64_t reloc_stubs_addralign_; | 
 |   // The cortex_a8_stubs. | 
 |   Cortex_a8_stub_list cortex_a8_stubs_; | 
 |   // The Arm V4BX relocation stubs. | 
 |   Arm_v4bx_stub_list arm_v4bx_stubs_; | 
 |   // data size of this in the previous pass. | 
 |   off_t prev_data_size_; | 
 |   // address alignment of this in the previous pass. | 
 |   uint64_t prev_addralign_; | 
 | }; | 
 |  | 
 | // Arm_exidx_cantunwind class.  This represents an EXIDX_CANTUNWIND entry | 
 | // we add to the end of an EXIDX input section that goes into the output. | 
 |  | 
 | class Arm_exidx_cantunwind : public Output_section_data | 
 | { | 
 |  public: | 
 |   Arm_exidx_cantunwind(Relobj* relobj, unsigned int shndx) | 
 |     : Output_section_data(8, 4, true), relobj_(relobj), shndx_(shndx) | 
 |   { } | 
 |  | 
 |   // Return the object containing the section pointed by this. | 
 |   Relobj* | 
 |   relobj() const | 
 |   { return this->relobj_; } | 
 |  | 
 |   // Return the section index of the section pointed by this. | 
 |   unsigned int | 
 |   shndx() const | 
 |   { return this->shndx_; } | 
 |  | 
 |  protected: | 
 |   void | 
 |   do_write(Output_file* of) | 
 |   { | 
 |     if (parameters->target().is_big_endian()) | 
 |       this->do_fixed_endian_write<true>(of); | 
 |     else | 
 |       this->do_fixed_endian_write<false>(of); | 
 |   } | 
 |  | 
 |   // Write to a map file. | 
 |   void | 
 |   do_print_to_mapfile(Mapfile* mapfile) const | 
 |   { mapfile->print_output_data(this, _("** ARM cantunwind")); } | 
 |  | 
 |  private: | 
 |   // Implement do_write for a given endianness. | 
 |   template<bool big_endian> | 
 |   void inline | 
 |   do_fixed_endian_write(Output_file*); | 
 |  | 
 |   // The object containing the section pointed by this. | 
 |   Relobj* relobj_; | 
 |   // The section index of the section pointed by this. | 
 |   unsigned int shndx_; | 
 | }; | 
 |  | 
 | // During EXIDX coverage fix-up, we compact an EXIDX section.  The | 
 | // Offset map is used to map input section offset within the EXIDX section | 
 | // to the output offset from the start of this EXIDX section. | 
 |  | 
 | typedef std::map<section_offset_type, section_offset_type> | 
 | 	Arm_exidx_section_offset_map; | 
 |  | 
 | // Arm_exidx_merged_section class.  This represents an EXIDX input section | 
 | // with some of its entries merged. | 
 |  | 
 | class Arm_exidx_merged_section : public Output_relaxed_input_section | 
 | { | 
 |  public: | 
 |   // Constructor for Arm_exidx_merged_section. | 
 |   // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. | 
 |   // SECTION_OFFSET_MAP points to a section offset map describing how | 
 |   // parts of the input section are mapped to output.  DELETED_BYTES is | 
 |   // the number of bytes deleted from the EXIDX input section. | 
 |   Arm_exidx_merged_section( | 
 |       const Arm_exidx_input_section& exidx_input_section, | 
 |       const Arm_exidx_section_offset_map& section_offset_map, | 
 |       uint32_t deleted_bytes); | 
 |  | 
 |   // Build output contents. | 
 |   void | 
 |   build_contents(const unsigned char*, section_size_type); | 
 |  | 
 |   // Return the original EXIDX input section. | 
 |   const Arm_exidx_input_section& | 
 |   exidx_input_section() const | 
 |   { return this->exidx_input_section_; } | 
 |  | 
 |   // Return the section offset map. | 
 |   const Arm_exidx_section_offset_map& | 
 |   section_offset_map() const | 
 |   { return this->section_offset_map_; } | 
 |  | 
 |  protected: | 
 |   // Write merged section into file OF. | 
 |   void | 
 |   do_write(Output_file* of); | 
 |  | 
 |   bool | 
 |   do_output_offset(const Relobj*, unsigned int, section_offset_type, | 
 | 		  section_offset_type*) const; | 
 |  | 
 |  private: | 
 |   // Original EXIDX input section. | 
 |   const Arm_exidx_input_section& exidx_input_section_; | 
 |   // Section offset map. | 
 |   const Arm_exidx_section_offset_map& section_offset_map_; | 
 |   // Merged section contents.  We need to keep build the merged section | 
 |   // and save it here to avoid accessing the original EXIDX section when | 
 |   // we cannot lock the sections' object. | 
 |   unsigned char* section_contents_; | 
 | }; | 
 |  | 
 | // A class to wrap an ordinary input section containing executable code. | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_input_section : public Output_relaxed_input_section | 
 | { | 
 |  public: | 
 |   Arm_input_section(Relobj* relobj, unsigned int shndx) | 
 |     : Output_relaxed_input_section(relobj, shndx, 1), | 
 |       original_addralign_(1), original_size_(0), stub_table_(NULL), | 
 |       original_contents_(NULL) | 
 |   { } | 
 |  | 
 |   ~Arm_input_section() | 
 |   { delete[] this->original_contents_; } | 
 |  | 
 |   // Initialize. | 
 |   void | 
 |   init(); | 
 |  | 
 |   // Whether this is a stub table owner. | 
 |   bool | 
 |   is_stub_table_owner() const | 
 |   { return this->stub_table_ != NULL && this->stub_table_->owner() == this; } | 
 |  | 
 |   // Return the stub table. | 
 |   Stub_table<big_endian>* | 
 |   stub_table() const | 
 |   { return this->stub_table_; } | 
 |  | 
 |   // Set the stub_table. | 
 |   void | 
 |   set_stub_table(Stub_table<big_endian>* stub_table) | 
 |   { this->stub_table_ = stub_table; } | 
 |  | 
 |   // Downcast a base pointer to an Arm_input_section pointer.  This is | 
 |   // not type-safe but we only use Arm_input_section not the base class. | 
 |   static Arm_input_section<big_endian>* | 
 |   as_arm_input_section(Output_relaxed_input_section* poris) | 
 |   { return static_cast<Arm_input_section<big_endian>*>(poris); } | 
 |  | 
 |   // Return the original size of the section. | 
 |   uint32_t | 
 |   original_size() const | 
 |   { return this->original_size_; } | 
 |  | 
 |  protected: | 
 |   // Write data to output file. | 
 |   void | 
 |   do_write(Output_file*); | 
 |  | 
 |   // Return required alignment of this. | 
 |   uint64_t | 
 |   do_addralign() const | 
 |   { | 
 |     if (this->is_stub_table_owner()) | 
 |       return std::max(this->stub_table_->addralign(), | 
 | 		      static_cast<uint64_t>(this->original_addralign_)); | 
 |     else | 
 |       return this->original_addralign_; | 
 |   } | 
 |  | 
 |   // Finalize data size. | 
 |   void | 
 |   set_final_data_size(); | 
 |  | 
 |   // Reset address and file offset. | 
 |   void | 
 |   do_reset_address_and_file_offset(); | 
 |  | 
 |   // Output offset. | 
 |   bool | 
 |   do_output_offset(const Relobj* object, unsigned int shndx, | 
 | 		   section_offset_type offset, | 
 | 		   section_offset_type* poutput) const | 
 |   { | 
 |     if ((object == this->relobj()) | 
 | 	&& (shndx == this->shndx()) | 
 | 	&& (offset >= 0) | 
 | 	&& (offset <= | 
 | 	    convert_types<section_offset_type, uint32_t>(this->original_size_))) | 
 |       { | 
 | 	*poutput = offset; | 
 | 	return true; | 
 |       } | 
 |     else | 
 |       return false; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Copying is not allowed. | 
 |   Arm_input_section(const Arm_input_section&); | 
 |   Arm_input_section& operator=(const Arm_input_section&); | 
 |  | 
 |   // Address alignment of the original input section. | 
 |   uint32_t original_addralign_; | 
 |   // Section size of the original input section. | 
 |   uint32_t original_size_; | 
 |   // Stub table. | 
 |   Stub_table<big_endian>* stub_table_; | 
 |   // Original section contents.  We have to make a copy here since the file | 
 |   // containing the original section may not be locked when we need to access | 
 |   // the contents. | 
 |   unsigned char* original_contents_; | 
 | }; | 
 |  | 
 | // Arm_exidx_fixup class.  This is used to define a number of methods | 
 | // and keep states for fixing up EXIDX coverage. | 
 |  | 
 | class Arm_exidx_fixup | 
 | { | 
 |  public: | 
 |   Arm_exidx_fixup(Output_section* exidx_output_section, | 
 | 		  bool merge_exidx_entries = true) | 
 |     : exidx_output_section_(exidx_output_section), last_unwind_type_(UT_NONE), | 
 |       last_inlined_entry_(0), last_input_section_(NULL), | 
 |       section_offset_map_(NULL), first_output_text_section_(NULL), | 
 |       merge_exidx_entries_(merge_exidx_entries) | 
 |   { } | 
 |  | 
 |   ~Arm_exidx_fixup() | 
 |   { delete this->section_offset_map_; } | 
 |  | 
 |   // Process an EXIDX section for entry merging.  SECTION_CONTENTS points | 
 |   // to the EXIDX contents and SECTION_SIZE is the size of the contents. Return | 
 |   // number of bytes to be deleted in output.  If parts of the input EXIDX | 
 |   // section are merged a heap allocated Arm_exidx_section_offset_map is store | 
 |   // in the located PSECTION_OFFSET_MAP.   The caller owns the map and is | 
 |   // responsible for releasing it. | 
 |   template<bool big_endian> | 
 |   uint32_t | 
 |   process_exidx_section(const Arm_exidx_input_section* exidx_input_section, | 
 | 			const unsigned char* section_contents, | 
 | 			section_size_type section_size, | 
 | 			Arm_exidx_section_offset_map** psection_offset_map); | 
 |  | 
 |   // Append an EXIDX_CANTUNWIND entry pointing at the end of the last | 
 |   // input section, if there is not one already. | 
 |   void | 
 |   add_exidx_cantunwind_as_needed(); | 
 |  | 
 |   // Return the output section for the text section which is linked to the | 
 |   // first exidx input in output. | 
 |   Output_section* | 
 |   first_output_text_section() const | 
 |   { return this->first_output_text_section_; } | 
 |  | 
 |  private: | 
 |   // Copying is not allowed. | 
 |   Arm_exidx_fixup(const Arm_exidx_fixup&); | 
 |   Arm_exidx_fixup& operator=(const Arm_exidx_fixup&); | 
 |  | 
 |   // Type of EXIDX unwind entry. | 
 |   enum Unwind_type | 
 |   { | 
 |     // No type. | 
 |     UT_NONE, | 
 |     // EXIDX_CANTUNWIND. | 
 |     UT_EXIDX_CANTUNWIND, | 
 |     // Inlined entry. | 
 |     UT_INLINED_ENTRY, | 
 |     // Normal entry. | 
 |     UT_NORMAL_ENTRY, | 
 |   }; | 
 |  | 
 |   // Process an EXIDX entry.  We only care about the second word of the | 
 |   // entry.  Return true if the entry can be deleted. | 
 |   bool | 
 |   process_exidx_entry(uint32_t second_word); | 
 |  | 
 |   // Update the current section offset map during EXIDX section fix-up. | 
 |   // If there is no map, create one.  INPUT_OFFSET is the offset of a | 
 |   // reference point, DELETED_BYTES is the number of deleted by in the | 
 |   // section so far.  If DELETE_ENTRY is true, the reference point and | 
 |   // all offsets after the previous reference point are discarded. | 
 |   void | 
 |   update_offset_map(section_offset_type input_offset, | 
 | 		    section_size_type deleted_bytes, bool delete_entry); | 
 |  | 
 |   // EXIDX output section. | 
 |   Output_section* exidx_output_section_; | 
 |   // Unwind type of the last EXIDX entry processed. | 
 |   Unwind_type last_unwind_type_; | 
 |   // Last seen inlined EXIDX entry. | 
 |   uint32_t last_inlined_entry_; | 
 |   // Last processed EXIDX input section. | 
 |   const Arm_exidx_input_section* last_input_section_; | 
 |   // Section offset map created in process_exidx_section. | 
 |   Arm_exidx_section_offset_map* section_offset_map_; | 
 |   // Output section for the text section which is linked to the first exidx | 
 |   // input in output. | 
 |   Output_section* first_output_text_section_; | 
 |  | 
 |   bool merge_exidx_entries_; | 
 | }; | 
 |  | 
 | // Arm output section class.  This is defined mainly to add a number of | 
 | // stub generation methods. | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_output_section : public Output_section | 
 | { | 
 |  public: | 
 |   typedef std::vector<std::pair<Relobj*, unsigned int> > Text_section_list; | 
 |  | 
 |   // We need to force SHF_LINK_ORDER in a SHT_ARM_EXIDX section. | 
 |   Arm_output_section(const char* name, elfcpp::Elf_Word type, | 
 | 		     elfcpp::Elf_Xword flags) | 
 |     : Output_section(name, type, | 
 | 		     (type == elfcpp::SHT_ARM_EXIDX | 
 | 		      ? flags | elfcpp::SHF_LINK_ORDER | 
 | 		      : flags)) | 
 |   { | 
 |     if (type == elfcpp::SHT_ARM_EXIDX) | 
 |       this->set_always_keeps_input_sections(); | 
 |   } | 
 |  | 
 |   ~Arm_output_section() | 
 |   { } | 
 |  | 
 |   // Group input sections for stub generation. | 
 |   void | 
 |   group_sections(section_size_type, bool, Target_arm<big_endian>*, const Task*); | 
 |  | 
 |   // Downcast a base pointer to an Arm_output_section pointer.  This is | 
 |   // not type-safe but we only use Arm_output_section not the base class. | 
 |   static Arm_output_section<big_endian>* | 
 |   as_arm_output_section(Output_section* os) | 
 |   { return static_cast<Arm_output_section<big_endian>*>(os); } | 
 |  | 
 |   // Append all input text sections in this into LIST. | 
 |   void | 
 |   append_text_sections_to_list(Text_section_list* list); | 
 |  | 
 |   // Fix EXIDX coverage of this EXIDX output section.  SORTED_TEXT_SECTION | 
 |   // is a list of text input sections sorted in ascending order of their | 
 |   // output addresses. | 
 |   void | 
 |   fix_exidx_coverage(Layout* layout, | 
 | 		     const Text_section_list& sorted_text_section, | 
 | 		     Symbol_table* symtab, | 
 | 		     bool merge_exidx_entries, | 
 | 		     const Task* task); | 
 |  | 
 |   // Link an EXIDX section into its corresponding text section. | 
 |   void | 
 |   set_exidx_section_link(); | 
 |  | 
 |  private: | 
 |   // For convenience. | 
 |   typedef Output_section::Input_section Input_section; | 
 |   typedef Output_section::Input_section_list Input_section_list; | 
 |  | 
 |   // Create a stub group. | 
 |   void create_stub_group(Input_section_list::const_iterator, | 
 | 			 Input_section_list::const_iterator, | 
 | 			 Input_section_list::const_iterator, | 
 | 			 Target_arm<big_endian>*, | 
 | 			 std::vector<Output_relaxed_input_section*>*, | 
 | 			 const Task* task); | 
 | }; | 
 |  | 
 | // Arm_exidx_input_section class.  This represents an EXIDX input section. | 
 |  | 
 | class Arm_exidx_input_section | 
 | { | 
 |  public: | 
 |   static const section_offset_type invalid_offset = | 
 |     static_cast<section_offset_type>(-1); | 
 |  | 
 |   Arm_exidx_input_section(Relobj* relobj, unsigned int shndx, | 
 | 			  unsigned int link, uint32_t size, | 
 | 			  uint32_t addralign, uint32_t text_size) | 
 |     : relobj_(relobj), shndx_(shndx), link_(link), size_(size), | 
 |       addralign_(addralign), text_size_(text_size), has_errors_(false) | 
 |   { } | 
 |  | 
 |   ~Arm_exidx_input_section() | 
 |   { } | 
 |  | 
 |   // Accessors:  This is a read-only class. | 
 |  | 
 |   // Return the object containing this EXIDX input section. | 
 |   Relobj* | 
 |   relobj() const | 
 |   { return this->relobj_; } | 
 |  | 
 |   // Return the section index of this EXIDX input section. | 
 |   unsigned int | 
 |   shndx() const | 
 |   { return this->shndx_; } | 
 |  | 
 |   // Return the section index of linked text section in the same object. | 
 |   unsigned int | 
 |   link() const | 
 |   { return this->link_; } | 
 |  | 
 |   // Return size of the EXIDX input section. | 
 |   uint32_t | 
 |   size() const | 
 |   { return this->size_; } | 
 |  | 
 |   // Return address alignment of EXIDX input section. | 
 |   uint32_t | 
 |   addralign() const | 
 |   { return this->addralign_; } | 
 |  | 
 |   // Return size of the associated text input section. | 
 |   uint32_t | 
 |   text_size() const | 
 |   { return this->text_size_; } | 
 |  | 
 |   // Whether there are any errors in the EXIDX input section. | 
 |   bool | 
 |   has_errors() const | 
 |   { return this->has_errors_; } | 
 |  | 
 |   // Set has-errors flag. | 
 |   void | 
 |   set_has_errors() | 
 |   { this->has_errors_ = true; } | 
 |  | 
 |  private: | 
 |   // Object containing this. | 
 |   Relobj* relobj_; | 
 |   // Section index of this. | 
 |   unsigned int shndx_; | 
 |   // text section linked to this in the same object. | 
 |   unsigned int link_; | 
 |   // Size of this.  For ARM 32-bit is sufficient. | 
 |   uint32_t size_; | 
 |   // Address alignment of this.  For ARM 32-bit is sufficient. | 
 |   uint32_t addralign_; | 
 |   // Size of associated text section. | 
 |   uint32_t text_size_; | 
 |   // Whether this has any errors. | 
 |   bool has_errors_; | 
 | }; | 
 |  | 
 | // Arm_relobj class. | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_relobj : public Sized_relobj_file<32, big_endian> | 
 | { | 
 |  public: | 
 |   static const Arm_address invalid_address = static_cast<Arm_address>(-1); | 
 |  | 
 |   Arm_relobj(const std::string& name, Input_file* input_file, off_t offset, | 
 | 	     const typename elfcpp::Ehdr<32, big_endian>& ehdr) | 
 |     : Sized_relobj_file<32, big_endian>(name, input_file, offset, ehdr), | 
 |       stub_tables_(), local_symbol_is_thumb_function_(), | 
 |       attributes_section_data_(NULL), mapping_symbols_info_(), | 
 |       section_has_cortex_a8_workaround_(NULL), exidx_section_map_(), | 
 |       output_local_symbol_count_needs_update_(false), | 
 |       merge_flags_and_attributes_(true) | 
 |   { } | 
 |  | 
 |   ~Arm_relobj() | 
 |   { delete this->attributes_section_data_; } | 
 |  | 
 |   // Return the stub table of the SHNDX-th section if there is one. | 
 |   Stub_table<big_endian>* | 
 |   stub_table(unsigned int shndx) const | 
 |   { | 
 |     gold_assert(shndx < this->stub_tables_.size()); | 
 |     return this->stub_tables_[shndx]; | 
 |   } | 
 |  | 
 |   // Set STUB_TABLE to be the stub_table of the SHNDX-th section. | 
 |   void | 
 |   set_stub_table(unsigned int shndx, Stub_table<big_endian>* stub_table) | 
 |   { | 
 |     gold_assert(shndx < this->stub_tables_.size()); | 
 |     this->stub_tables_[shndx] = stub_table; | 
 |   } | 
 |  | 
 |   // Whether a local symbol is a THUMB function.  R_SYM is the symbol table | 
 |   // index.  This is only valid after do_count_local_symbol is called. | 
 |   bool | 
 |   local_symbol_is_thumb_function(unsigned int r_sym) const | 
 |   { | 
 |     gold_assert(r_sym < this->local_symbol_is_thumb_function_.size()); | 
 |     return this->local_symbol_is_thumb_function_[r_sym]; | 
 |   } | 
 |  | 
 |   // Scan all relocation sections for stub generation. | 
 |   void | 
 |   scan_sections_for_stubs(Target_arm<big_endian>*, const Symbol_table*, | 
 | 			  const Layout*); | 
 |  | 
 |   // Convert regular input section with index SHNDX to a relaxed section. | 
 |   void | 
 |   convert_input_section_to_relaxed_section(unsigned shndx) | 
 |   { | 
 |     // The stubs have relocations and we need to process them after writing | 
 |     // out the stubs.  So relocation now must follow section write. | 
 |     this->set_section_offset(shndx, -1ULL); | 
 |     this->set_relocs_must_follow_section_writes(); | 
 |   } | 
 |  | 
 |   // Downcast a base pointer to an Arm_relobj pointer.  This is | 
 |   // not type-safe but we only use Arm_relobj not the base class. | 
 |   static Arm_relobj<big_endian>* | 
 |   as_arm_relobj(Relobj* relobj) | 
 |   { return static_cast<Arm_relobj<big_endian>*>(relobj); } | 
 |  | 
 |   // Processor-specific flags in ELF file header.  This is valid only after | 
 |   // reading symbols. | 
 |   elfcpp::Elf_Word | 
 |   processor_specific_flags() const | 
 |   { return this->processor_specific_flags_; } | 
 |  | 
 |   // Attribute section data  This is the contents of the .ARM.attribute section | 
 |   // if there is one. | 
 |   const Attributes_section_data* | 
 |   attributes_section_data() const | 
 |   { return this->attributes_section_data_; } | 
 |  | 
 |   // Mapping symbol location. | 
 |   typedef std::pair<unsigned int, Arm_address> Mapping_symbol_position; | 
 |  | 
 |   // Functor for STL container. | 
 |   struct Mapping_symbol_position_less | 
 |   { | 
 |     bool | 
 |     operator()(const Mapping_symbol_position& p1, | 
 | 	       const Mapping_symbol_position& p2) const | 
 |     { | 
 |       return (p1.first < p2.first | 
 | 	      || (p1.first == p2.first && p1.second < p2.second)); | 
 |     } | 
 |   }; | 
 |  | 
 |   // We only care about the first character of a mapping symbol, so | 
 |   // we only store that instead of the whole symbol name. | 
 |   typedef std::map<Mapping_symbol_position, char, | 
 | 		   Mapping_symbol_position_less> Mapping_symbols_info; | 
 |  | 
 |   // Whether a section contains any Cortex-A8 workaround. | 
 |   bool | 
 |   section_has_cortex_a8_workaround(unsigned int shndx) const | 
 |   { | 
 |     return (this->section_has_cortex_a8_workaround_ != NULL | 
 | 	    && (*this->section_has_cortex_a8_workaround_)[shndx]); | 
 |   } | 
 |  | 
 |   // Mark a section that has Cortex-A8 workaround. | 
 |   void | 
 |   mark_section_for_cortex_a8_workaround(unsigned int shndx) | 
 |   { | 
 |     if (this->section_has_cortex_a8_workaround_ == NULL) | 
 |       this->section_has_cortex_a8_workaround_ = | 
 | 	new std::vector<bool>(this->shnum(), false); | 
 |     (*this->section_has_cortex_a8_workaround_)[shndx] = true; | 
 |   } | 
 |  | 
 |   // Return the EXIDX section of an text section with index SHNDX or NULL | 
 |   // if the text section has no associated EXIDX section. | 
 |   const Arm_exidx_input_section* | 
 |   exidx_input_section_by_link(unsigned int shndx) const | 
 |   { | 
 |     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); | 
 |     return ((p != this->exidx_section_map_.end() | 
 | 	     && p->second->link() == shndx) | 
 | 	    ? p->second | 
 | 	    : NULL); | 
 |   } | 
 |  | 
 |   // Return the EXIDX section with index SHNDX or NULL if there is none. | 
 |   const Arm_exidx_input_section* | 
 |   exidx_input_section_by_shndx(unsigned shndx) const | 
 |   { | 
 |     Exidx_section_map::const_iterator p = this->exidx_section_map_.find(shndx); | 
 |     return ((p != this->exidx_section_map_.end() | 
 | 	     && p->second->shndx() == shndx) | 
 | 	    ? p->second | 
 | 	    : NULL); | 
 |   } | 
 |  | 
 |   // Whether output local symbol count needs updating. | 
 |   bool | 
 |   output_local_symbol_count_needs_update() const | 
 |   { return this->output_local_symbol_count_needs_update_; } | 
 |  | 
 |   // Set output_local_symbol_count_needs_update flag to be true. | 
 |   void | 
 |   set_output_local_symbol_count_needs_update() | 
 |   { this->output_local_symbol_count_needs_update_ = true; } | 
 |  | 
 |   // Update output local symbol count at the end of relaxation. | 
 |   void | 
 |   update_output_local_symbol_count(); | 
 |  | 
 |   // Whether we want to merge processor-specific flags and attributes. | 
 |   bool | 
 |   merge_flags_and_attributes() const | 
 |   { return this->merge_flags_and_attributes_; } | 
 |  | 
 |   // Export list of EXIDX section indices. | 
 |   void | 
 |   get_exidx_shndx_list(std::vector<unsigned int>* list) const | 
 |   { | 
 |     list->clear(); | 
 |     for (Exidx_section_map::const_iterator p = this->exidx_section_map_.begin(); | 
 | 	 p != this->exidx_section_map_.end(); | 
 | 	 ++p) | 
 |       { | 
 | 	if (p->second->shndx() == p->first) | 
 | 	  list->push_back(p->first); | 
 |       } | 
 |     // Sort list to make result independent of implementation of map. | 
 |     std::sort(list->begin(), list->end()); | 
 |   } | 
 |  | 
 |  protected: | 
 |   // Post constructor setup. | 
 |   void | 
 |   do_setup() | 
 |   { | 
 |     // Call parent's setup method. | 
 |     Sized_relobj_file<32, big_endian>::do_setup(); | 
 |  | 
 |     // Initialize look-up tables. | 
 |     Stub_table_list empty_stub_table_list(this->shnum(), NULL); | 
 |     this->stub_tables_.swap(empty_stub_table_list); | 
 |   } | 
 |  | 
 |   // Count the local symbols. | 
 |   void | 
 |   do_count_local_symbols(Stringpool_template<char>*, | 
 | 			 Stringpool_template<char>*); | 
 |  | 
 |   void | 
 |   do_relocate_sections( | 
 |       const Symbol_table* symtab, const Layout* layout, | 
 |       const unsigned char* pshdrs, Output_file* of, | 
 |       typename Sized_relobj_file<32, big_endian>::Views* pivews); | 
 |  | 
 |   // Read the symbol information. | 
 |   void | 
 |   do_read_symbols(Read_symbols_data* sd); | 
 |  | 
 |   // Process relocs for garbage collection. | 
 |   void | 
 |   do_gc_process_relocs(Symbol_table*, Layout*, Read_relocs_data*); | 
 |  | 
 |  private: | 
 |  | 
 |   // Whether a section needs to be scanned for relocation stubs. | 
 |   bool | 
 |   section_needs_reloc_stub_scanning(const elfcpp::Shdr<32, big_endian>&, | 
 | 				    const Relobj::Output_sections&, | 
 | 				    const Symbol_table*, const unsigned char*); | 
 |  | 
 |   // Whether a section is a scannable text section. | 
 |   bool | 
 |   section_is_scannable(const elfcpp::Shdr<32, big_endian>&, unsigned int, | 
 | 		       const Output_section*, const Symbol_table*); | 
 |  | 
 |   // Whether a section needs to be scanned for the Cortex-A8 erratum. | 
 |   bool | 
 |   section_needs_cortex_a8_stub_scanning(const elfcpp::Shdr<32, big_endian>&, | 
 | 					unsigned int, Output_section*, | 
 | 					const Symbol_table*); | 
 |  | 
 |   // Scan a section for the Cortex-A8 erratum. | 
 |   void | 
 |   scan_section_for_cortex_a8_erratum(const elfcpp::Shdr<32, big_endian>&, | 
 | 				     unsigned int, Output_section*, | 
 | 				     Target_arm<big_endian>*); | 
 |  | 
 |   // Find the linked text section of an EXIDX section by looking at the | 
 |   // first relocation of the EXIDX section.  PSHDR points to the section | 
 |   // headers of a relocation section and PSYMS points to the local symbols. | 
 |   // PSHNDX points to a location storing the text section index if found. | 
 |   // Return whether we can find the linked section. | 
 |   bool | 
 |   find_linked_text_section(const unsigned char* pshdr, | 
 | 			   const unsigned char* psyms, unsigned int* pshndx); | 
 |  | 
 |   // | 
 |   // Make a new Arm_exidx_input_section object for EXIDX section with | 
 |   // index SHNDX and section header SHDR.  TEXT_SHNDX is the section | 
 |   // index of the linked text section. | 
 |   void | 
 |   make_exidx_input_section(unsigned int shndx, | 
 | 			   const elfcpp::Shdr<32, big_endian>& shdr, | 
 | 			   unsigned int text_shndx, | 
 | 			   const elfcpp::Shdr<32, big_endian>& text_shdr); | 
 |  | 
 |   // Return the output address of either a plain input section or a | 
 |   // relaxed input section.  SHNDX is the section index. | 
 |   Arm_address | 
 |   simple_input_section_output_address(unsigned int, Output_section*); | 
 |  | 
 |   typedef std::vector<Stub_table<big_endian>*> Stub_table_list; | 
 |   typedef Unordered_map<unsigned int, const Arm_exidx_input_section*> | 
 |     Exidx_section_map; | 
 |  | 
 |   // List of stub tables. | 
 |   Stub_table_list stub_tables_; | 
 |   // Bit vector to tell if a local symbol is a thumb function or not. | 
 |   // This is only valid after do_count_local_symbol is called. | 
 |   std::vector<bool> local_symbol_is_thumb_function_; | 
 |   // processor-specific flags in ELF file header. | 
 |   elfcpp::Elf_Word processor_specific_flags_; | 
 |   // Object attributes if there is an .ARM.attributes section or NULL. | 
 |   Attributes_section_data* attributes_section_data_; | 
 |   // Mapping symbols information. | 
 |   Mapping_symbols_info mapping_symbols_info_; | 
 |   // Bitmap to indicate sections with Cortex-A8 workaround or NULL. | 
 |   std::vector<bool>* section_has_cortex_a8_workaround_; | 
 |   // Map a text section to its associated .ARM.exidx section, if there is one. | 
 |   Exidx_section_map exidx_section_map_; | 
 |   // Whether output local symbol count needs updating. | 
 |   bool output_local_symbol_count_needs_update_; | 
 |   // Whether we merge processor flags and attributes of this object to | 
 |   // output. | 
 |   bool merge_flags_and_attributes_; | 
 | }; | 
 |  | 
 | // Arm_dynobj class. | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_dynobj : public Sized_dynobj<32, big_endian> | 
 | { | 
 |  public: | 
 |   Arm_dynobj(const std::string& name, Input_file* input_file, off_t offset, | 
 | 	     const elfcpp::Ehdr<32, big_endian>& ehdr) | 
 |     : Sized_dynobj<32, big_endian>(name, input_file, offset, ehdr), | 
 |       processor_specific_flags_(0), attributes_section_data_(NULL) | 
 |   { } | 
 |  | 
 |   ~Arm_dynobj() | 
 |   { delete this->attributes_section_data_; } | 
 |  | 
 |   // Downcast a base pointer to an Arm_relobj pointer.  This is | 
 |   // not type-safe but we only use Arm_relobj not the base class. | 
 |   static Arm_dynobj<big_endian>* | 
 |   as_arm_dynobj(Dynobj* dynobj) | 
 |   { return static_cast<Arm_dynobj<big_endian>*>(dynobj); } | 
 |  | 
 |   // Processor-specific flags in ELF file header.  This is valid only after | 
 |   // reading symbols. | 
 |   elfcpp::Elf_Word | 
 |   processor_specific_flags() const | 
 |   { return this->processor_specific_flags_; } | 
 |  | 
 |   // Attributes section data. | 
 |   const Attributes_section_data* | 
 |   attributes_section_data() const | 
 |   { return this->attributes_section_data_; } | 
 |  | 
 |  protected: | 
 |   // Read the symbol information. | 
 |   void | 
 |   do_read_symbols(Read_symbols_data* sd); | 
 |  | 
 |  private: | 
 |   // processor-specific flags in ELF file header. | 
 |   elfcpp::Elf_Word processor_specific_flags_; | 
 |   // Object attributes if there is an .ARM.attributes section or NULL. | 
 |   Attributes_section_data* attributes_section_data_; | 
 | }; | 
 |  | 
 | // Functor to read reloc addends during stub generation. | 
 |  | 
 | template<int sh_type, bool big_endian> | 
 | struct Stub_addend_reader | 
 | { | 
 |   // Return the addend for a relocation of a particular type.  Depending | 
 |   // on whether this is a REL or RELA relocation, read the addend from a | 
 |   // view or from a Reloc object. | 
 |   elfcpp::Elf_types<32>::Elf_Swxword | 
 |   operator()( | 
 |     unsigned int /* r_type */, | 
 |     const unsigned char* /* view */, | 
 |     const typename Reloc_types<sh_type, | 
 | 			       32, big_endian>::Reloc& /* reloc */) const; | 
 | }; | 
 |  | 
 | // Specialized Stub_addend_reader for SHT_REL type relocation sections. | 
 |  | 
 | template<bool big_endian> | 
 | struct Stub_addend_reader<elfcpp::SHT_REL, big_endian> | 
 | { | 
 |   elfcpp::Elf_types<32>::Elf_Swxword | 
 |   operator()( | 
 |     unsigned int, | 
 |     const unsigned char*, | 
 |     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const; | 
 | }; | 
 |  | 
 | // Specialized Stub_addend_reader for RELA type relocation sections. | 
 | // We currently do not handle RELA type relocation sections but it is trivial | 
 | // to implement the addend reader.  This is provided for completeness and to | 
 | // make it easier to add support for RELA relocation sections in the future. | 
 |  | 
 | template<bool big_endian> | 
 | struct Stub_addend_reader<elfcpp::SHT_RELA, big_endian> | 
 | { | 
 |   elfcpp::Elf_types<32>::Elf_Swxword | 
 |   operator()( | 
 |     unsigned int, | 
 |     const unsigned char*, | 
 |     const typename Reloc_types<elfcpp::SHT_RELA, 32, | 
 | 			       big_endian>::Reloc& reloc) const | 
 |   { return reloc.get_r_addend(); } | 
 | }; | 
 |  | 
 | // Cortex_a8_reloc class.  We keep record of relocation that may need | 
 | // the Cortex-A8 erratum workaround. | 
 |  | 
 | class Cortex_a8_reloc | 
 | { | 
 |  public: | 
 |   Cortex_a8_reloc(Reloc_stub* reloc_stub, unsigned r_type, | 
 | 		  Arm_address destination) | 
 |     : reloc_stub_(reloc_stub), r_type_(r_type), destination_(destination) | 
 |   { } | 
 |  | 
 |   ~Cortex_a8_reloc() | 
 |   { } | 
 |  | 
 |   // Accessors:  This is a read-only class. | 
 |  | 
 |   // Return the relocation stub associated with this relocation if there is | 
 |   // one. | 
 |   const Reloc_stub* | 
 |   reloc_stub() const | 
 |   { return this->reloc_stub_; } | 
 |  | 
 |   // Return the relocation type. | 
 |   unsigned int | 
 |   r_type() const | 
 |   { return this->r_type_; } | 
 |  | 
 |   // Return the destination address of the relocation.  LSB stores the THUMB | 
 |   // bit. | 
 |   Arm_address | 
 |   destination() const | 
 |   { return this->destination_; } | 
 |  | 
 |  private: | 
 |   // Associated relocation stub if there is one, or NULL. | 
 |   const Reloc_stub* reloc_stub_; | 
 |   // Relocation type. | 
 |   unsigned int r_type_; | 
 |   // Destination address of this relocation.  LSB is used to distinguish | 
 |   // ARM/THUMB mode. | 
 |   Arm_address destination_; | 
 | }; | 
 |  | 
 | // Arm_output_data_got class.  We derive this from Output_data_got to add | 
 | // extra methods to handle TLS relocations in a static link. | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_output_data_got : public Output_data_got<32, big_endian> | 
 | { | 
 |  public: | 
 |   Arm_output_data_got(Symbol_table* symtab, Layout* layout) | 
 |     : Output_data_got<32, big_endian>(), symbol_table_(symtab), layout_(layout) | 
 |   { } | 
 |  | 
 |   // Add a static entry for the GOT entry at OFFSET.  GSYM is a global | 
 |   // symbol and R_TYPE is the code of a dynamic relocation that needs to be | 
 |   // applied in a static link. | 
 |   void | 
 |   add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) | 
 |   { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); } | 
 |  | 
 |   // Add a static reloc for the GOT entry at OFFSET.  RELOBJ is an object | 
 |   // defining a local symbol with INDEX.  R_TYPE is the code of a dynamic | 
 |   // relocation that needs to be applied in a static link. | 
 |   void | 
 |   add_static_reloc(unsigned int got_offset, unsigned int r_type, | 
 | 		   Sized_relobj_file<32, big_endian>* relobj, | 
 | 		   unsigned int index) | 
 |   { | 
 |     this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj, | 
 | 						index)); | 
 |   } | 
 |  | 
 |   // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries. | 
 |   // The first one is initialized to be 1, which is the module index for | 
 |   // the main executable and the second one 0.  A reloc of the type | 
 |   // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will | 
 |   // be applied by gold.  GSYM is a global symbol. | 
 |   void | 
 |   add_tls_gd32_with_static_reloc(unsigned int got_type, Symbol* gsym); | 
 |  | 
 |   // Same as the above but for a local symbol in OBJECT with INDEX. | 
 |   void | 
 |   add_tls_gd32_with_static_reloc(unsigned int got_type, | 
 | 				 Sized_relobj_file<32, big_endian>* object, | 
 | 				 unsigned int index); | 
 |  | 
 |  protected: | 
 |   // Write out the GOT table. | 
 |   void | 
 |   do_write(Output_file*); | 
 |  | 
 |  private: | 
 |   // This class represent dynamic relocations that need to be applied by | 
 |   // gold because we are using TLS relocations in a static link. | 
 |   class Static_reloc | 
 |   { | 
 |    public: | 
 |     Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym) | 
 |       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true) | 
 |     { this->u_.global.symbol = gsym; } | 
 |  | 
 |     Static_reloc(unsigned int got_offset, unsigned int r_type, | 
 | 	  Sized_relobj_file<32, big_endian>* relobj, unsigned int index) | 
 |       : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false) | 
 |     { | 
 |       this->u_.local.relobj = relobj; | 
 |       this->u_.local.index = index; | 
 |     } | 
 |  | 
 |     // Return the GOT offset. | 
 |     unsigned int | 
 |     got_offset() const | 
 |     { return this->got_offset_; } | 
 |  | 
 |     // Relocation type. | 
 |     unsigned int | 
 |     r_type() const | 
 |     { return this->r_type_; } | 
 |  | 
 |     // Whether the symbol is global or not. | 
 |     bool | 
 |     symbol_is_global() const | 
 |     { return this->symbol_is_global_; } | 
 |  | 
 |     // For a relocation against a global symbol, the global symbol. | 
 |     Symbol* | 
 |     symbol() const | 
 |     { | 
 |       gold_assert(this->symbol_is_global_); | 
 |       return this->u_.global.symbol; | 
 |     } | 
 |  | 
 |     // For a relocation against a local symbol, the defining object. | 
 |     Sized_relobj_file<32, big_endian>* | 
 |     relobj() const | 
 |     { | 
 |       gold_assert(!this->symbol_is_global_); | 
 |       return this->u_.local.relobj; | 
 |     } | 
 |  | 
 |     // For a relocation against a local symbol, the local symbol index. | 
 |     unsigned int | 
 |     index() const | 
 |     { | 
 |       gold_assert(!this->symbol_is_global_); | 
 |       return this->u_.local.index; | 
 |     } | 
 |  | 
 |    private: | 
 |     // GOT offset of the entry to which this relocation is applied. | 
 |     unsigned int got_offset_; | 
 |     // Type of relocation. | 
 |     unsigned int r_type_; | 
 |     // Whether this relocation is against a global symbol. | 
 |     bool symbol_is_global_; | 
 |     // A global or local symbol. | 
 |     union | 
 |     { | 
 |       struct | 
 |       { | 
 | 	// For a global symbol, the symbol itself. | 
 | 	Symbol* symbol; | 
 |       } global; | 
 |       struct | 
 |       { | 
 | 	// For a local symbol, the object defining object. | 
 | 	Sized_relobj_file<32, big_endian>* relobj; | 
 | 	// For a local symbol, the symbol index. | 
 | 	unsigned int index; | 
 |       } local; | 
 |     } u_; | 
 |   }; | 
 |  | 
 |   // Symbol table of the output object. | 
 |   Symbol_table* symbol_table_; | 
 |   // Layout of the output object. | 
 |   Layout* layout_; | 
 |   // Static relocs to be applied to the GOT. | 
 |   std::vector<Static_reloc> static_relocs_; | 
 | }; | 
 |  | 
 | // The ARM target has many relocation types with odd-sizes or noncontiguous | 
 | // bits.  The default handling of relocatable relocation cannot process these | 
 | // relocations.  So we have to extend the default code. | 
 |  | 
 | template<bool big_endian, typename Classify_reloc> | 
 | class Arm_scan_relocatable_relocs : | 
 |   public Default_scan_relocatable_relocs<Classify_reloc> | 
 | { | 
 |  public: | 
 |   // Return the strategy to use for a local symbol which is a section | 
 |   // symbol, given the relocation type. | 
 |   inline Relocatable_relocs::Reloc_strategy | 
 |   local_section_strategy(unsigned int r_type, Relobj*) | 
 |   { | 
 |     if (Classify_reloc::sh_type == elfcpp::SHT_RELA) | 
 |       return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA; | 
 |     else | 
 |       { | 
 | 	if (r_type == elfcpp::R_ARM_TARGET1 | 
 | 	    || r_type == elfcpp::R_ARM_TARGET2) | 
 | 	  { | 
 | 	    const Target_arm<big_endian>* arm_target = | 
 | 	      Target_arm<big_endian>::default_target(); | 
 | 	    r_type = arm_target->get_real_reloc_type(r_type); | 
 | 	  } | 
 |  | 
 | 	switch(r_type) | 
 | 	  { | 
 | 	  // Relocations that write nothing.  These exclude R_ARM_TARGET1 | 
 | 	  // and R_ARM_TARGET2. | 
 | 	  case elfcpp::R_ARM_NONE: | 
 | 	  case elfcpp::R_ARM_V4BX: | 
 | 	  case elfcpp::R_ARM_TLS_GOTDESC: | 
 | 	  case elfcpp::R_ARM_TLS_CALL: | 
 | 	  case elfcpp::R_ARM_TLS_DESCSEQ: | 
 | 	  case elfcpp::R_ARM_THM_TLS_CALL: | 
 | 	  case elfcpp::R_ARM_GOTRELAX: | 
 | 	  case elfcpp::R_ARM_GNU_VTENTRY: | 
 | 	  case elfcpp::R_ARM_GNU_VTINHERIT: | 
 | 	  case elfcpp::R_ARM_THM_TLS_DESCSEQ16: | 
 | 	  case elfcpp::R_ARM_THM_TLS_DESCSEQ32: | 
 | 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0; | 
 | 	  // These should have been converted to something else above. | 
 | 	  case elfcpp::R_ARM_TARGET1: | 
 | 	  case elfcpp::R_ARM_TARGET2: | 
 | 	    gold_unreachable(); | 
 | 	  // Relocations that write full 32 bits and | 
 | 	  // have alignment of 1. | 
 | 	  case elfcpp::R_ARM_ABS32: | 
 | 	  case elfcpp::R_ARM_REL32: | 
 | 	  case elfcpp::R_ARM_SBREL32: | 
 | 	  case elfcpp::R_ARM_GOTOFF32: | 
 | 	  case elfcpp::R_ARM_BASE_PREL: | 
 | 	  case elfcpp::R_ARM_GOT_BREL: | 
 | 	  case elfcpp::R_ARM_BASE_ABS: | 
 | 	  case elfcpp::R_ARM_ABS32_NOI: | 
 | 	  case elfcpp::R_ARM_REL32_NOI: | 
 | 	  case elfcpp::R_ARM_PLT32_ABS: | 
 | 	  case elfcpp::R_ARM_GOT_ABS: | 
 | 	  case elfcpp::R_ARM_GOT_PREL: | 
 | 	  case elfcpp::R_ARM_TLS_GD32: | 
 | 	  case elfcpp::R_ARM_TLS_LDM32: | 
 | 	  case elfcpp::R_ARM_TLS_LDO32: | 
 | 	  case elfcpp::R_ARM_TLS_IE32: | 
 | 	  case elfcpp::R_ARM_TLS_LE32: | 
 | 	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4_UNALIGNED; | 
 | 	  default: | 
 | 	    // For all other static relocations, return RELOC_SPECIAL. | 
 | 	    return Relocatable_relocs::RELOC_SPECIAL; | 
 | 	  } | 
 |       } | 
 |   } | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | class Target_arm : public Sized_target<32, big_endian> | 
 | { | 
 |  public: | 
 |   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> | 
 |     Reloc_section; | 
 |  | 
 |   // When were are relocating a stub, we pass this as the relocation number. | 
 |   static const size_t fake_relnum_for_stubs = static_cast<size_t>(-1); | 
 |  | 
 |   Target_arm(const Target::Target_info* info = &arm_info) | 
 |     : Sized_target<32, big_endian>(info), | 
 |       got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL), | 
 |       rel_dyn_(NULL), rel_irelative_(NULL), copy_relocs_(elfcpp::R_ARM_COPY), | 
 |       got_mod_index_offset_(-1U), tls_base_symbol_defined_(false), | 
 |       stub_tables_(), stub_factory_(Stub_factory::get_instance()), | 
 |       should_force_pic_veneer_(false), | 
 |       arm_input_section_map_(), attributes_section_data_(NULL), | 
 |       fix_cortex_a8_(false), cortex_a8_relocs_info_(), | 
 |       target1_reloc_(elfcpp::R_ARM_ABS32), | 
 |       // This can be any reloc type but usually is R_ARM_GOT_PREL. | 
 |       target2_reloc_(elfcpp::R_ARM_GOT_PREL) | 
 |   { } | 
 |  | 
 |   // Whether we force PCI branch veneers. | 
 |   bool | 
 |   should_force_pic_veneer() const | 
 |   { return this->should_force_pic_veneer_; } | 
 |  | 
 |   // Set PIC veneer flag. | 
 |   void | 
 |   set_should_force_pic_veneer(bool value) | 
 |   { this->should_force_pic_veneer_ = value; } | 
 |  | 
 |   // Whether we use THUMB-2 instructions. | 
 |   bool | 
 |   using_thumb2() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |     int arch = attr->int_value(); | 
 |     return arch == elfcpp::TAG_CPU_ARCH_V6T2 || arch >= elfcpp::TAG_CPU_ARCH_V7; | 
 |   } | 
 |  | 
 |   // Whether we use THUMB/THUMB-2 instructions only. | 
 |   bool | 
 |   using_thumb_only() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |  | 
 |     if (attr->int_value() == elfcpp::TAG_CPU_ARCH_V6_M | 
 | 	|| attr->int_value() == elfcpp::TAG_CPU_ARCH_V6S_M) | 
 |       return true; | 
 |     if (attr->int_value() != elfcpp::TAG_CPU_ARCH_V7 | 
 | 	&& attr->int_value() != elfcpp::TAG_CPU_ARCH_V7E_M) | 
 |       return false; | 
 |     attr = this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); | 
 |     return attr->int_value() == 'M'; | 
 |   } | 
 |  | 
 |   // Whether we have an NOP instruction.  If not, use mov r0, r0 instead. | 
 |   bool | 
 |   may_use_arm_nop() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |     int arch = attr->int_value(); | 
 |     return (arch == elfcpp::TAG_CPU_ARCH_V6T2 | 
 | 	    || arch == elfcpp::TAG_CPU_ARCH_V6K | 
 | 	    || arch == elfcpp::TAG_CPU_ARCH_V7 | 
 | 	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M); | 
 |   } | 
 |  | 
 |   // Whether we have THUMB-2 NOP.W instruction. | 
 |   bool | 
 |   may_use_thumb2_nop() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |     int arch = attr->int_value(); | 
 |     return (arch == elfcpp::TAG_CPU_ARCH_V6T2 | 
 | 	    || arch == elfcpp::TAG_CPU_ARCH_V7 | 
 | 	    || arch == elfcpp::TAG_CPU_ARCH_V7E_M); | 
 |   } | 
 |  | 
 |   // Whether we have v4T interworking instructions available. | 
 |   bool | 
 |   may_use_v4t_interworking() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |     int arch = attr->int_value(); | 
 |     return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 | 
 | 	    && arch != elfcpp::TAG_CPU_ARCH_V4); | 
 |   } | 
 |  | 
 |   // Whether we have v5T interworking instructions available. | 
 |   bool | 
 |   may_use_v5t_interworking() const | 
 |   { | 
 |     Object_attribute* attr = | 
 |       this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |     int arch = attr->int_value(); | 
 |     if (parameters->options().fix_arm1176()) | 
 |       return (arch == elfcpp::TAG_CPU_ARCH_V6T2 | 
 | 	      || arch == elfcpp::TAG_CPU_ARCH_V7 | 
 | 	      || arch == elfcpp::TAG_CPU_ARCH_V6_M | 
 | 	      || arch == elfcpp::TAG_CPU_ARCH_V6S_M | 
 | 	      || arch == elfcpp::TAG_CPU_ARCH_V7E_M); | 
 |     else | 
 |       return (arch != elfcpp::TAG_CPU_ARCH_PRE_V4 | 
 | 	      && arch != elfcpp::TAG_CPU_ARCH_V4 | 
 | 	      && arch != elfcpp::TAG_CPU_ARCH_V4T); | 
 |   } | 
 |  | 
 |   // Process the relocations to determine unreferenced sections for | 
 |   // garbage collection. | 
 |   void | 
 |   gc_process_relocs(Symbol_table* symtab, | 
 | 		    Layout* layout, | 
 | 		    Sized_relobj_file<32, big_endian>* object, | 
 | 		    unsigned int data_shndx, | 
 | 		    unsigned int sh_type, | 
 | 		    const unsigned char* prelocs, | 
 | 		    size_t reloc_count, | 
 | 		    Output_section* output_section, | 
 | 		    bool needs_special_offset_handling, | 
 | 		    size_t local_symbol_count, | 
 | 		    const unsigned char* plocal_symbols); | 
 |  | 
 |   // Scan the relocations to look for symbol adjustments. | 
 |   void | 
 |   scan_relocs(Symbol_table* symtab, | 
 | 	      Layout* layout, | 
 | 	      Sized_relobj_file<32, big_endian>* object, | 
 | 	      unsigned int data_shndx, | 
 | 	      unsigned int sh_type, | 
 | 	      const unsigned char* prelocs, | 
 | 	      size_t reloc_count, | 
 | 	      Output_section* output_section, | 
 | 	      bool needs_special_offset_handling, | 
 | 	      size_t local_symbol_count, | 
 | 	      const unsigned char* plocal_symbols); | 
 |  | 
 |   // Finalize the sections. | 
 |   void | 
 |   do_finalize_sections(Layout*, const Input_objects*, Symbol_table*); | 
 |  | 
 |   // Return the value to use for a dynamic symbol which requires special | 
 |   // treatment. | 
 |   uint64_t | 
 |   do_dynsym_value(const Symbol*) const; | 
 |  | 
 |   // Return the plt address for globals. Since we have irelative plt entries, | 
 |   // address calculation is not as straightforward as plt_address + plt_offset. | 
 |   uint64_t | 
 |   do_plt_address_for_global(const Symbol* gsym) const | 
 |   { return this->plt_section()->address_for_global(gsym); } | 
 |  | 
 |   // Return the plt address for locals. Since we have irelative plt entries, | 
 |   // address calculation is not as straightforward as plt_address + plt_offset. | 
 |   uint64_t | 
 |   do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const | 
 |   { return this->plt_section()->address_for_local(relobj, symndx); } | 
 |  | 
 |   // Relocate a section. | 
 |   void | 
 |   relocate_section(const Relocate_info<32, big_endian>*, | 
 | 		   unsigned int sh_type, | 
 | 		   const unsigned char* prelocs, | 
 | 		   size_t reloc_count, | 
 | 		   Output_section* output_section, | 
 | 		   bool needs_special_offset_handling, | 
 | 		   unsigned char* view, | 
 | 		   Arm_address view_address, | 
 | 		   section_size_type view_size, | 
 | 		   const Reloc_symbol_changes*); | 
 |  | 
 |   // Scan the relocs during a relocatable link. | 
 |   void | 
 |   scan_relocatable_relocs(Symbol_table* symtab, | 
 | 			  Layout* layout, | 
 | 			  Sized_relobj_file<32, big_endian>* object, | 
 | 			  unsigned int data_shndx, | 
 | 			  unsigned int sh_type, | 
 | 			  const unsigned char* prelocs, | 
 | 			  size_t reloc_count, | 
 | 			  Output_section* output_section, | 
 | 			  bool needs_special_offset_handling, | 
 | 			  size_t local_symbol_count, | 
 | 			  const unsigned char* plocal_symbols, | 
 | 			  Relocatable_relocs*); | 
 |  | 
 |   // Scan the relocs for --emit-relocs. | 
 |   void | 
 |   emit_relocs_scan(Symbol_table* symtab, | 
 | 		   Layout* layout, | 
 | 		   Sized_relobj_file<32, big_endian>* object, | 
 | 		   unsigned int data_shndx, | 
 | 		   unsigned int sh_type, | 
 | 		   const unsigned char* prelocs, | 
 | 		   size_t reloc_count, | 
 | 		   Output_section* output_section, | 
 | 		   bool needs_special_offset_handling, | 
 | 		   size_t local_symbol_count, | 
 | 		   const unsigned char* plocal_syms, | 
 | 		   Relocatable_relocs* rr); | 
 |  | 
 |   // Emit relocations for a section. | 
 |   void | 
 |   relocate_relocs(const Relocate_info<32, big_endian>*, | 
 | 		  unsigned int sh_type, | 
 | 		  const unsigned char* prelocs, | 
 | 		  size_t reloc_count, | 
 | 		  Output_section* output_section, | 
 | 		  typename elfcpp::Elf_types<32>::Elf_Off | 
 |                     offset_in_output_section, | 
 | 		  unsigned char* view, | 
 | 		  Arm_address view_address, | 
 | 		  section_size_type view_size, | 
 | 		  unsigned char* reloc_view, | 
 | 		  section_size_type reloc_view_size); | 
 |  | 
 |   // Perform target-specific processing in a relocatable link.  This is | 
 |   // only used if we use the relocation strategy RELOC_SPECIAL. | 
 |   void | 
 |   relocate_special_relocatable(const Relocate_info<32, big_endian>* relinfo, | 
 | 			       unsigned int sh_type, | 
 | 			       const unsigned char* preloc_in, | 
 | 			       size_t relnum, | 
 | 			       Output_section* output_section, | 
 | 			       typename elfcpp::Elf_types<32>::Elf_Off | 
 |                                  offset_in_output_section, | 
 | 			       unsigned char* view, | 
 | 			       typename elfcpp::Elf_types<32>::Elf_Addr | 
 | 				 view_address, | 
 | 			       section_size_type view_size, | 
 | 			       unsigned char* preloc_out); | 
 |  | 
 |   // Return whether SYM is defined by the ABI. | 
 |   bool | 
 |   do_is_defined_by_abi(const Symbol* sym) const | 
 |   { return strcmp(sym->name(), "__tls_get_addr") == 0; } | 
 |  | 
 |   // Return whether there is a GOT section. | 
 |   bool | 
 |   has_got_section() const | 
 |   { return this->got_ != NULL; } | 
 |  | 
 |   // Return the size of the GOT section. | 
 |   section_size_type | 
 |   got_size() const | 
 |   { | 
 |     gold_assert(this->got_ != NULL); | 
 |     return this->got_->data_size(); | 
 |   } | 
 |  | 
 |   // Return the number of entries in the GOT. | 
 |   unsigned int | 
 |   got_entry_count() const | 
 |   { | 
 |     if (!this->has_got_section()) | 
 |       return 0; | 
 |     return this->got_size() / 4; | 
 |   } | 
 |  | 
 |   // Return the number of entries in the PLT. | 
 |   unsigned int | 
 |   plt_entry_count() const; | 
 |  | 
 |   // Return the offset of the first non-reserved PLT entry. | 
 |   unsigned int | 
 |   first_plt_entry_offset() const; | 
 |  | 
 |   // Return the size of each PLT entry. | 
 |   unsigned int | 
 |   plt_entry_size() const; | 
 |  | 
 |   // Get the section to use for IRELATIVE relocations, create it if necessary. | 
 |   Reloc_section* | 
 |   rel_irelative_section(Layout*); | 
 |  | 
 |   // Map platform-specific reloc types | 
 |   unsigned int | 
 |   get_real_reloc_type(unsigned int r_type) const; | 
 |  | 
 |   // | 
 |   // Methods to support stub-generations. | 
 |   // | 
 |  | 
 |   // Return the stub factory | 
 |   const Stub_factory& | 
 |   stub_factory() const | 
 |   { return this->stub_factory_; } | 
 |  | 
 |   // Make a new Arm_input_section object. | 
 |   Arm_input_section<big_endian>* | 
 |   new_arm_input_section(Relobj*, unsigned int); | 
 |  | 
 |   // Find the Arm_input_section object corresponding to the SHNDX-th input | 
 |   // section of RELOBJ. | 
 |   Arm_input_section<big_endian>* | 
 |   find_arm_input_section(Relobj* relobj, unsigned int shndx) const; | 
 |  | 
 |   // Make a new Stub_table | 
 |   Stub_table<big_endian>* | 
 |   new_stub_table(Arm_input_section<big_endian>*); | 
 |  | 
 |   // Scan a section for stub generation. | 
 |   void | 
 |   scan_section_for_stubs(const Relocate_info<32, big_endian>*, unsigned int, | 
 | 			 const unsigned char*, size_t, Output_section*, | 
 | 			 bool, const unsigned char*, Arm_address, | 
 | 			 section_size_type); | 
 |  | 
 |   // Relocate a stub. | 
 |   void | 
 |   relocate_stub(Stub*, const Relocate_info<32, big_endian>*, | 
 | 		Output_section*, unsigned char*, Arm_address, | 
 | 		section_size_type); | 
 |  | 
 |   // Get the default ARM target. | 
 |   static Target_arm<big_endian>* | 
 |   default_target() | 
 |   { | 
 |     gold_assert(parameters->target().machine_code() == elfcpp::EM_ARM | 
 | 		&& parameters->target().is_big_endian() == big_endian); | 
 |     return static_cast<Target_arm<big_endian>*>( | 
 | 	     parameters->sized_target<32, big_endian>()); | 
 |   } | 
 |  | 
 |   // Whether NAME belongs to a mapping symbol. | 
 |   static bool | 
 |   is_mapping_symbol_name(const char* name) | 
 |   { | 
 |     return (name | 
 | 	    && name[0] == '$' | 
 | 	    && (name[1] == 'a' || name[1] == 't' || name[1] == 'd') | 
 | 	    && (name[2] == '\0' || name[2] == '.')); | 
 |   } | 
 |  | 
 |   // Whether we work around the Cortex-A8 erratum. | 
 |   bool | 
 |   fix_cortex_a8() const | 
 |   { return this->fix_cortex_a8_; } | 
 |  | 
 |   // Whether we merge exidx entries in debuginfo. | 
 |   bool | 
 |   merge_exidx_entries() const | 
 |   { return parameters->options().merge_exidx_entries(); } | 
 |  | 
 |   // Whether we fix R_ARM_V4BX relocation. | 
 |   // 0 - do not fix | 
 |   // 1 - replace with MOV instruction (armv4 target) | 
 |   // 2 - make interworking veneer (>= armv4t targets only) | 
 |   General_options::Fix_v4bx | 
 |   fix_v4bx() const | 
 |   { return parameters->options().fix_v4bx(); } | 
 |  | 
 |   // Scan a span of THUMB code section for Cortex-A8 erratum. | 
 |   void | 
 |   scan_span_for_cortex_a8_erratum(Arm_relobj<big_endian>*, unsigned int, | 
 | 				  section_size_type, section_size_type, | 
 | 				  const unsigned char*, Arm_address); | 
 |  | 
 |   // Apply Cortex-A8 workaround to a branch. | 
 |   void | 
 |   apply_cortex_a8_workaround(const Cortex_a8_stub*, Arm_address, | 
 | 			     unsigned char*, Arm_address); | 
 |  | 
 |  protected: | 
 |   // Make the PLT-generator object. | 
 |   Output_data_plt_arm<big_endian>* | 
 |   make_data_plt(Layout* layout, | 
 | 		Arm_output_data_got<big_endian>* got, | 
 | 		Output_data_space* got_plt, | 
 | 		Output_data_space* got_irelative) | 
 |   { return this->do_make_data_plt(layout, got, got_plt, got_irelative); } | 
 |  | 
 |   // Make an ELF object. | 
 |   Object* | 
 |   do_make_elf_object(const std::string&, Input_file*, off_t, | 
 | 		     const elfcpp::Ehdr<32, big_endian>& ehdr); | 
 |  | 
 |   Object* | 
 |   do_make_elf_object(const std::string&, Input_file*, off_t, | 
 | 		     const elfcpp::Ehdr<32, !big_endian>&) | 
 |   { gold_unreachable(); } | 
 |  | 
 |   Object* | 
 |   do_make_elf_object(const std::string&, Input_file*, off_t, | 
 | 		      const elfcpp::Ehdr<64, false>&) | 
 |   { gold_unreachable(); } | 
 |  | 
 |   Object* | 
 |   do_make_elf_object(const std::string&, Input_file*, off_t, | 
 | 		     const elfcpp::Ehdr<64, true>&) | 
 |   { gold_unreachable(); } | 
 |  | 
 |   // Make an output section. | 
 |   Output_section* | 
 |   do_make_output_section(const char* name, elfcpp::Elf_Word type, | 
 | 			 elfcpp::Elf_Xword flags) | 
 |   { return new Arm_output_section<big_endian>(name, type, flags); } | 
 |  | 
 |   void | 
 |   do_adjust_elf_header(unsigned char* view, int len); | 
 |  | 
 |   // We only need to generate stubs, and hence perform relaxation if we are | 
 |   // not doing relocatable linking. | 
 |   bool | 
 |   do_may_relax() const | 
 |   { return !parameters->options().relocatable(); } | 
 |  | 
 |   bool | 
 |   do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*); | 
 |  | 
 |   // Determine whether an object attribute tag takes an integer, a | 
 |   // string or both. | 
 |   int | 
 |   do_attribute_arg_type(int tag) const; | 
 |  | 
 |   // Reorder tags during output. | 
 |   int | 
 |   do_attributes_order(int num) const; | 
 |  | 
 |   // This is called when the target is selected as the default. | 
 |   void | 
 |   do_select_as_default_target() | 
 |   { | 
 |     // No locking is required since there should only be one default target. | 
 |     // We cannot have both the big-endian and little-endian ARM targets | 
 |     // as the default. | 
 |     gold_assert(arm_reloc_property_table == NULL); | 
 |     arm_reloc_property_table = new Arm_reloc_property_table(); | 
 |     if (parameters->options().user_set_target1_rel()) | 
 |       { | 
 | 	// FIXME: This is not strictly compatible with ld, which allows both | 
 | 	// --target1-abs and --target-rel to be given. | 
 | 	if (parameters->options().user_set_target1_abs()) | 
 | 	  gold_error(_("Cannot use both --target1-abs and --target1-rel.")); | 
 | 	else | 
 | 	  this->target1_reloc_ = elfcpp::R_ARM_REL32; | 
 |       } | 
 |     // We don't need to handle --target1-abs because target1_reloc_ is set | 
 |     // to elfcpp::R_ARM_ABS32 in the member initializer list. | 
 |  | 
 |     if (parameters->options().user_set_target2()) | 
 |       { | 
 | 	const char* target2 = parameters->options().target2(); | 
 | 	if (strcmp(target2, "rel") == 0) | 
 | 	  this->target2_reloc_ = elfcpp::R_ARM_REL32; | 
 | 	else if (strcmp(target2, "abs") == 0) | 
 | 	  this->target2_reloc_ = elfcpp::R_ARM_ABS32; | 
 | 	else if (strcmp(target2, "got-rel") == 0) | 
 | 	  this->target2_reloc_ = elfcpp::R_ARM_GOT_PREL; | 
 | 	else | 
 | 	  gold_unreachable(); | 
 |       } | 
 |   } | 
 |  | 
 |   // Virtual function which is set to return true by a target if | 
 |   // it can use relocation types to determine if a function's | 
 |   // pointer is taken. | 
 |   virtual bool | 
 |   do_can_check_for_function_pointers() const | 
 |   { return true; } | 
 |  | 
 |   // Whether a section called SECTION_NAME may have function pointers to | 
 |   // sections not eligible for safe ICF folding. | 
 |   virtual bool | 
 |   do_section_may_have_icf_unsafe_pointers(const char* section_name) const | 
 |   { | 
 |     return (!is_prefix_of(".ARM.exidx", section_name) | 
 | 	    && !is_prefix_of(".ARM.extab", section_name) | 
 | 	    && Target::do_section_may_have_icf_unsafe_pointers(section_name)); | 
 |   } | 
 |  | 
 |   virtual void | 
 |   do_define_standard_symbols(Symbol_table*, Layout*); | 
 |  | 
 |   virtual Output_data_plt_arm<big_endian>* | 
 |   do_make_data_plt(Layout* layout, | 
 | 		   Arm_output_data_got<big_endian>* got, | 
 | 		   Output_data_space* got_plt, | 
 | 		   Output_data_space* got_irelative) | 
 |   { | 
 |     gold_assert(got_plt != NULL && got_irelative != NULL); | 
 |     if (parameters->options().long_plt()) | 
 |       return new Output_data_plt_arm_long<big_endian>( | 
 | 	layout, got, got_plt, got_irelative); | 
 |     else | 
 |       return new Output_data_plt_arm_short<big_endian>( | 
 | 	layout, got, got_plt, got_irelative); | 
 |   } | 
 |  | 
 |  private: | 
 |   // The class which scans relocations. | 
 |   class Scan | 
 |   { | 
 |    public: | 
 |     Scan() | 
 |       : issued_non_pic_error_(false) | 
 |     { } | 
 |  | 
 |     static inline int | 
 |     get_reference_flags(unsigned int r_type); | 
 |  | 
 |     inline void | 
 |     local(Symbol_table* symtab, Layout* layout, Target_arm* target, | 
 | 	  Sized_relobj_file<32, big_endian>* object, | 
 | 	  unsigned int data_shndx, | 
 | 	  Output_section* output_section, | 
 | 	  const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, | 
 | 	  const elfcpp::Sym<32, big_endian>& lsym, | 
 | 	  bool is_discarded); | 
 |  | 
 |     inline void | 
 |     global(Symbol_table* symtab, Layout* layout, Target_arm* target, | 
 | 	   Sized_relobj_file<32, big_endian>* object, | 
 | 	   unsigned int data_shndx, | 
 | 	   Output_section* output_section, | 
 | 	   const elfcpp::Rel<32, big_endian>& reloc, unsigned int r_type, | 
 | 	   Symbol* gsym); | 
 |  | 
 |     inline bool | 
 |     local_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , | 
 | 					Sized_relobj_file<32, big_endian>* , | 
 | 					unsigned int , | 
 | 					Output_section* , | 
 | 					const elfcpp::Rel<32, big_endian>& , | 
 | 					unsigned int , | 
 | 					const elfcpp::Sym<32, big_endian>&); | 
 |  | 
 |     inline bool | 
 |     global_reloc_may_be_function_pointer(Symbol_table* , Layout* , Target_arm* , | 
 | 					 Sized_relobj_file<32, big_endian>* , | 
 | 					 unsigned int , | 
 | 					 Output_section* , | 
 | 					 const elfcpp::Rel<32, big_endian>& , | 
 | 					 unsigned int , Symbol*); | 
 |  | 
 |    private: | 
 |     static void | 
 |     unsupported_reloc_local(Sized_relobj_file<32, big_endian>*, | 
 | 			    unsigned int r_type); | 
 |  | 
 |     static void | 
 |     unsupported_reloc_global(Sized_relobj_file<32, big_endian>*, | 
 | 			     unsigned int r_type, Symbol*); | 
 |  | 
 |     void | 
 |     check_non_pic(Relobj*, unsigned int r_type); | 
 |  | 
 |     // Almost identical to Symbol::needs_plt_entry except that it also | 
 |     // handles STT_ARM_TFUNC. | 
 |     static bool | 
 |     symbol_needs_plt_entry(const Symbol* sym) | 
 |     { | 
 |       // An undefined symbol from an executable does not need a PLT entry. | 
 |       if (sym->is_undefined() && !parameters->options().shared()) | 
 | 	return false; | 
 |  | 
 |       if (sym->type() == elfcpp::STT_GNU_IFUNC) | 
 | 	return true; | 
 |  | 
 |       return (!parameters->doing_static_link() | 
 | 	      && (sym->type() == elfcpp::STT_FUNC | 
 | 		  || sym->type() == elfcpp::STT_ARM_TFUNC) | 
 | 	      && (sym->is_from_dynobj() | 
 | 		  || sym->is_undefined() | 
 | 		  || sym->is_preemptible())); | 
 |     } | 
 |  | 
 |     inline bool | 
 |     possible_function_pointer_reloc(unsigned int r_type); | 
 |  | 
 |     // Whether a plt entry is needed for ifunc. | 
 |     bool | 
 |     reloc_needs_plt_for_ifunc(Sized_relobj_file<32, big_endian>*, | 
 | 			      unsigned int r_type); | 
 |  | 
 |     // Whether we have issued an error about a non-PIC compilation. | 
 |     bool issued_non_pic_error_; | 
 |   }; | 
 |  | 
 |   // The class which implements relocation. | 
 |   class Relocate | 
 |   { | 
 |    public: | 
 |     Relocate() | 
 |     { } | 
 |  | 
 |     ~Relocate() | 
 |     { } | 
 |  | 
 |     // Return whether the static relocation needs to be applied. | 
 |     inline bool | 
 |     should_apply_static_reloc(const Sized_symbol<32>* gsym, | 
 | 			      unsigned int r_type, | 
 | 			      bool is_32bit, | 
 | 			      Output_section* output_section); | 
 |  | 
 |     // Do a relocation.  Return false if the caller should not issue | 
 |     // any warnings about this relocation. | 
 |     inline bool | 
 |     relocate(const Relocate_info<32, big_endian>*, unsigned int, | 
 | 	     Target_arm*, Output_section*, size_t, const unsigned char*, | 
 | 	     const Sized_symbol<32>*, const Symbol_value<32>*, | 
 | 	     unsigned char*, Arm_address, section_size_type); | 
 |  | 
 |     // Return whether we want to pass flag NON_PIC_REF for this | 
 |     // reloc.  This means the relocation type accesses a symbol not via | 
 |     // GOT or PLT. | 
 |     static inline bool | 
 |     reloc_is_non_pic(unsigned int r_type) | 
 |     { | 
 |       switch (r_type) | 
 | 	{ | 
 | 	// These relocation types reference GOT or PLT entries explicitly. | 
 | 	case elfcpp::R_ARM_GOT_BREL: | 
 | 	case elfcpp::R_ARM_GOT_ABS: | 
 | 	case elfcpp::R_ARM_GOT_PREL: | 
 | 	case elfcpp::R_ARM_GOT_BREL12: | 
 | 	case elfcpp::R_ARM_PLT32_ABS: | 
 | 	case elfcpp::R_ARM_TLS_GD32: | 
 | 	case elfcpp::R_ARM_TLS_LDM32: | 
 | 	case elfcpp::R_ARM_TLS_IE32: | 
 | 	case elfcpp::R_ARM_TLS_IE12GP: | 
 |  | 
 | 	// These relocate types may use PLT entries. | 
 | 	case elfcpp::R_ARM_CALL: | 
 | 	case elfcpp::R_ARM_THM_CALL: | 
 | 	case elfcpp::R_ARM_JUMP24: | 
 | 	case elfcpp::R_ARM_THM_JUMP24: | 
 | 	case elfcpp::R_ARM_THM_JUMP19: | 
 | 	case elfcpp::R_ARM_PLT32: | 
 | 	case elfcpp::R_ARM_THM_XPC22: | 
 | 	case elfcpp::R_ARM_PREL31: | 
 | 	case elfcpp::R_ARM_SBREL31: | 
 | 	  return false; | 
 |  | 
 | 	default: | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |    private: | 
 |     // Do a TLS relocation. | 
 |     inline typename Arm_relocate_functions<big_endian>::Status | 
 |     relocate_tls(const Relocate_info<32, big_endian>*, Target_arm<big_endian>*, | 
 | 		 size_t, const elfcpp::Rel<32, big_endian>&, unsigned int, | 
 | 		 const Sized_symbol<32>*, const Symbol_value<32>*, | 
 | 		 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, | 
 | 		 section_size_type); | 
 |  | 
 |   }; | 
 |  | 
 |   // A class for inquiring about properties of a relocation, | 
 |   // used while scanning relocs during a relocatable link and | 
 |   // garbage collection. | 
 |   class Classify_reloc : | 
 |       public gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian> | 
 |   { | 
 |    public: | 
 |     typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc | 
 | 	Reltype; | 
 |  | 
 |     // Return the explicit addend of the relocation (return 0 for SHT_REL). | 
 |     static typename elfcpp::Elf_types<32>::Elf_Swxword | 
 |     get_r_addend(const Reltype*) | 
 |     { return 0; } | 
 |  | 
 |     // Return the size of the addend of the relocation (only used for SHT_REL). | 
 |     static unsigned int | 
 |     get_size_for_reloc(unsigned int, Relobj*); | 
 |   }; | 
 |  | 
 |   // Adjust TLS relocation type based on the options and whether this | 
 |   // is a local symbol. | 
 |   static tls::Tls_optimization | 
 |   optimize_tls_reloc(bool is_final, int r_type); | 
 |  | 
 |   // Get the GOT section, creating it if necessary. | 
 |   Arm_output_data_got<big_endian>* | 
 |   got_section(Symbol_table*, Layout*); | 
 |  | 
 |   // Get the GOT PLT section. | 
 |   Output_data_space* | 
 |   got_plt_section() const | 
 |   { | 
 |     gold_assert(this->got_plt_ != NULL); | 
 |     return this->got_plt_; | 
 |   } | 
 |  | 
 |   // Create the PLT section. | 
 |   void | 
 |   make_plt_section(Symbol_table* symtab, Layout* layout); | 
 |  | 
 |   // Create a PLT entry for a global symbol. | 
 |   void | 
 |   make_plt_entry(Symbol_table*, Layout*, Symbol*); | 
 |  | 
 |   // Create a PLT entry for a local STT_GNU_IFUNC symbol. | 
 |   void | 
 |   make_local_ifunc_plt_entry(Symbol_table*, Layout*, | 
 | 			     Sized_relobj_file<32, big_endian>* relobj, | 
 | 			     unsigned int local_sym_index); | 
 |  | 
 |   // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. | 
 |   void | 
 |   define_tls_base_symbol(Symbol_table*, Layout*); | 
 |  | 
 |   // Create a GOT entry for the TLS module index. | 
 |   unsigned int | 
 |   got_mod_index_entry(Symbol_table* symtab, Layout* layout, | 
 | 		      Sized_relobj_file<32, big_endian>* object); | 
 |  | 
 |   // Get the PLT section. | 
 |   const Output_data_plt_arm<big_endian>* | 
 |   plt_section() const | 
 |   { | 
 |     gold_assert(this->plt_ != NULL); | 
 |     return this->plt_; | 
 |   } | 
 |  | 
 |   // Get the dynamic reloc section, creating it if necessary. | 
 |   Reloc_section* | 
 |   rel_dyn_section(Layout*); | 
 |  | 
 |   // Get the section to use for TLS_DESC relocations. | 
 |   Reloc_section* | 
 |   rel_tls_desc_section(Layout*) const; | 
 |  | 
 |   // Return true if the symbol may need a COPY relocation. | 
 |   // References from an executable object to non-function symbols | 
 |   // defined in a dynamic object may need a COPY relocation. | 
 |   bool | 
 |   may_need_copy_reloc(Symbol* gsym) | 
 |   { | 
 |     return (gsym->type() != elfcpp::STT_ARM_TFUNC | 
 | 	    && gsym->may_need_copy_reloc()); | 
 |   } | 
 |  | 
 |   // Add a potential copy relocation. | 
 |   void | 
 |   copy_reloc(Symbol_table* symtab, Layout* layout, | 
 | 	     Sized_relobj_file<32, big_endian>* object, | 
 | 	     unsigned int shndx, Output_section* output_section, | 
 | 	     Symbol* sym, const elfcpp::Rel<32, big_endian>& reloc) | 
 |   { | 
 |     unsigned int r_type = elfcpp::elf_r_type<32>(reloc.get_r_info()); | 
 |     this->copy_relocs_.copy_reloc(symtab, layout, | 
 | 				  symtab->get_sized_symbol<32>(sym), | 
 | 				  object, shndx, output_section, | 
 | 				  r_type, reloc.get_r_offset(), 0, | 
 | 				  this->rel_dyn_section(layout)); | 
 |   } | 
 |  | 
 |   // Whether two EABI versions are compatible. | 
 |   static bool | 
 |   are_eabi_versions_compatible(elfcpp::Elf_Word v1, elfcpp::Elf_Word v2); | 
 |  | 
 |   // Merge processor-specific flags from input object and those in the ELF | 
 |   // header of the output. | 
 |   void | 
 |   merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word); | 
 |  | 
 |   // Get the secondary compatible architecture. | 
 |   static int | 
 |   get_secondary_compatible_arch(const Attributes_section_data*); | 
 |  | 
 |   // Set the secondary compatible architecture. | 
 |   static void | 
 |   set_secondary_compatible_arch(Attributes_section_data*, int); | 
 |  | 
 |   static int | 
 |   tag_cpu_arch_combine(const char*, int, int*, int, int); | 
 |  | 
 |   // Helper to print AEABI enum tag value. | 
 |   static std::string | 
 |   aeabi_enum_name(unsigned int); | 
 |  | 
 |   // Return string value for TAG_CPU_name. | 
 |   static std::string | 
 |   tag_cpu_name_value(unsigned int); | 
 |  | 
 |   // Query attributes object to see if integer divide instructions may be | 
 |   // present in an object. | 
 |   static bool | 
 |   attributes_accept_div(int arch, int profile, | 
 | 			const Object_attribute* div_attr); | 
 |  | 
 |   // Query attributes object to see if integer divide instructions are | 
 |   // forbidden to be in the object.  This is not the inverse of | 
 |   // attributes_accept_div. | 
 |   static bool | 
 |   attributes_forbid_div(const Object_attribute* div_attr); | 
 |  | 
 |   // Merge object attributes from input object and those in the output. | 
 |   void | 
 |   merge_object_attributes(const char*, const Attributes_section_data*); | 
 |  | 
 |   // Helper to get an AEABI object attribute | 
 |   Object_attribute* | 
 |   get_aeabi_object_attribute(int tag) const | 
 |   { | 
 |     Attributes_section_data* pasd = this->attributes_section_data_; | 
 |     gold_assert(pasd != NULL); | 
 |     Object_attribute* attr = | 
 |       pasd->get_attribute(Object_attribute::OBJ_ATTR_PROC, tag); | 
 |     gold_assert(attr != NULL); | 
 |     return attr; | 
 |   } | 
 |  | 
 |   // | 
 |   // Methods to support stub-generations. | 
 |   // | 
 |  | 
 |   // Group input sections for stub generation. | 
 |   void | 
 |   group_sections(Layout*, section_size_type, bool, const Task*); | 
 |  | 
 |   // Scan a relocation for stub generation. | 
 |   void | 
 |   scan_reloc_for_stub(const Relocate_info<32, big_endian>*, unsigned int, | 
 | 		      const Sized_symbol<32>*, unsigned int, | 
 | 		      const Symbol_value<32>*, | 
 | 		      elfcpp::Elf_types<32>::Elf_Swxword, Arm_address); | 
 |  | 
 |   // Scan a relocation section for stub. | 
 |   template<int sh_type> | 
 |   void | 
 |   scan_reloc_section_for_stubs( | 
 |       const Relocate_info<32, big_endian>* relinfo, | 
 |       const unsigned char* prelocs, | 
 |       size_t reloc_count, | 
 |       Output_section* output_section, | 
 |       bool needs_special_offset_handling, | 
 |       const unsigned char* view, | 
 |       elfcpp::Elf_types<32>::Elf_Addr view_address, | 
 |       section_size_type); | 
 |  | 
 |   // Fix .ARM.exidx section coverage. | 
 |   void | 
 |   fix_exidx_coverage(Layout*, const Input_objects*, | 
 | 		     Arm_output_section<big_endian>*, Symbol_table*, | 
 | 		     const Task*); | 
 |  | 
 |   // Functors for STL set. | 
 |   struct output_section_address_less_than | 
 |   { | 
 |     bool | 
 |     operator()(const Output_section* s1, const Output_section* s2) const | 
 |     { return s1->address() < s2->address(); } | 
 |   }; | 
 |  | 
 |   // Information about this specific target which we pass to the | 
 |   // general Target structure. | 
 |   static const Target::Target_info arm_info; | 
 |  | 
 |   // The types of GOT entries needed for this platform. | 
 |   // These values are exposed to the ABI in an incremental link. | 
 |   // Do not renumber existing values without changing the version | 
 |   // number of the .gnu_incremental_inputs section. | 
 |   enum Got_type | 
 |   { | 
 |     GOT_TYPE_STANDARD = 0,      // GOT entry for a regular symbol | 
 |     GOT_TYPE_TLS_NOFFSET = 1,   // GOT entry for negative TLS offset | 
 |     GOT_TYPE_TLS_OFFSET = 2,    // GOT entry for positive TLS offset | 
 |     GOT_TYPE_TLS_PAIR = 3,      // GOT entry for TLS module/offset pair | 
 |     GOT_TYPE_TLS_DESC = 4       // GOT entry for TLS_DESC pair | 
 |   }; | 
 |  | 
 |   typedef typename std::vector<Stub_table<big_endian>*> Stub_table_list; | 
 |  | 
 |   // Map input section to Arm_input_section. | 
 |   typedef Unordered_map<Section_id, | 
 | 			Arm_input_section<big_endian>*, | 
 | 			Section_id_hash> | 
 | 	  Arm_input_section_map; | 
 |  | 
 |   // Map output addresses to relocs for Cortex-A8 erratum. | 
 |   typedef Unordered_map<Arm_address, const Cortex_a8_reloc*> | 
 | 	  Cortex_a8_relocs_info; | 
 |  | 
 |   // The GOT section. | 
 |   Arm_output_data_got<big_endian>* got_; | 
 |   // The PLT section. | 
 |   Output_data_plt_arm<big_endian>* plt_; | 
 |   // The GOT PLT section. | 
 |   Output_data_space* got_plt_; | 
 |   // The GOT section for IRELATIVE relocations. | 
 |   Output_data_space* got_irelative_; | 
 |   // The dynamic reloc section. | 
 |   Reloc_section* rel_dyn_; | 
 |   // The section to use for IRELATIVE relocs. | 
 |   Reloc_section* rel_irelative_; | 
 |   // Relocs saved to avoid a COPY reloc. | 
 |   Copy_relocs<elfcpp::SHT_REL, 32, big_endian> copy_relocs_; | 
 |   // Offset of the GOT entry for the TLS module index. | 
 |   unsigned int got_mod_index_offset_; | 
 |   // True if the _TLS_MODULE_BASE_ symbol has been defined. | 
 |   bool tls_base_symbol_defined_; | 
 |   // Vector of Stub_tables created. | 
 |   Stub_table_list stub_tables_; | 
 |   // Stub factory. | 
 |   const Stub_factory &stub_factory_; | 
 |   // Whether we force PIC branch veneers. | 
 |   bool should_force_pic_veneer_; | 
 |   // Map for locating Arm_input_sections. | 
 |   Arm_input_section_map arm_input_section_map_; | 
 |   // Attributes section data in output. | 
 |   Attributes_section_data* attributes_section_data_; | 
 |   // Whether we want to fix code for Cortex-A8 erratum. | 
 |   bool fix_cortex_a8_; | 
 |   // Map addresses to relocs for Cortex-A8 erratum. | 
 |   Cortex_a8_relocs_info cortex_a8_relocs_info_; | 
 |   // What R_ARM_TARGET1 maps to. It can be R_ARM_REL32 or R_ARM_ABS32. | 
 |   unsigned int target1_reloc_; | 
 |   // What R_ARM_TARGET2 maps to. It should be one of R_ARM_REL32, R_ARM_ABS32 | 
 |   // and R_ARM_GOT_PREL. | 
 |   unsigned int target2_reloc_; | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | const Target::Target_info Target_arm<big_endian>::arm_info = | 
 | { | 
 |   32,			// size | 
 |   big_endian,		// is_big_endian | 
 |   elfcpp::EM_ARM,	// machine_code | 
 |   false,		// has_make_symbol | 
 |   false,		// has_resolve | 
 |   false,		// has_code_fill | 
 |   true,			// is_default_stack_executable | 
 |   false,		// can_icf_inline_merge_sections | 
 |   '\0',			// wrap_char | 
 |   "/usr/lib/libc.so.1",	// dynamic_linker | 
 |   0x8000,		// default_text_segment_address | 
 |   0x1000,		// abi_pagesize (overridable by -z max-page-size) | 
 |   0x1000,		// common_pagesize (overridable by -z common-page-size) | 
 |   false,                // isolate_execinstr | 
 |   0,                    // rosegment_gap | 
 |   elfcpp::SHN_UNDEF,	// small_common_shndx | 
 |   elfcpp::SHN_UNDEF,	// large_common_shndx | 
 |   0,			// small_common_section_flags | 
 |   0,			// large_common_section_flags | 
 |   ".ARM.attributes",	// attributes_section | 
 |   "aeabi",		// attributes_vendor | 
 |   "_start",		// entry_symbol_name | 
 |   32,			// hash_entry_size | 
 |   elfcpp::SHT_PROGBITS,	// unwind_section_type | 
 | }; | 
 |  | 
 | // Arm relocate functions class | 
 | // | 
 |  | 
 | template<bool big_endian> | 
 | class Arm_relocate_functions : public Relocate_functions<32, big_endian> | 
 | { | 
 |  public: | 
 |   typedef enum | 
 |   { | 
 |     STATUS_OKAY,	// No error during relocation. | 
 |     STATUS_OVERFLOW,	// Relocation overflow. | 
 |     STATUS_BAD_RELOC	// Relocation cannot be applied. | 
 |   } Status; | 
 |  | 
 |  private: | 
 |   typedef Relocate_functions<32, big_endian> Base; | 
 |   typedef Arm_relocate_functions<big_endian> This; | 
 |  | 
 |   // Encoding of imm16 argument for movt and movw ARM instructions | 
 |   // from ARM ARM: | 
 |   // | 
 |   //     imm16 := imm4 | imm12 | 
 |   // | 
 |   //  f e d c b a 9 8 7 6 5 4 3 2 1 0 f e d c b a 9 8 7 6 5 4 3 2 1 0 | 
 |   // +-------+---------------+-------+-------+-----------------------+ | 
 |   // |       |               |imm4   |       |imm12                  | | 
 |   // +-------+---------------+-------+-------+-----------------------+ | 
 |  | 
 |   // Extract the relocation addend from VAL based on the ARM | 
 |   // instruction encoding described above. | 
 |   static inline typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   extract_arm_movw_movt_addend( | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype val) | 
 |   { | 
 |     // According to the Elf ABI for ARM Architecture the immediate | 
 |     // field is sign-extended to form the addend. | 
 |     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | (val & 0xfff)); | 
 |   } | 
 |  | 
 |   // Insert X into VAL based on the ARM instruction encoding described | 
 |   // above. | 
 |   static inline typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   insert_val_arm_movw_movt( | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype val, | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype x) | 
 |   { | 
 |     val &= 0xfff0f000; | 
 |     val |= x & 0x0fff; | 
 |     val |= (x & 0xf000) << 4; | 
 |     return val; | 
 |   } | 
 |  | 
 |   // Encoding of imm16 argument for movt and movw Thumb2 instructions | 
 |   // from ARM ARM: | 
 |   // | 
 |   //     imm16 := imm4 | i | imm3 | imm8 | 
 |   // | 
 |   //  f e d c b a 9 8 7 6 5 4 3 2 1 0  f e d c b a 9 8 7 6 5 4 3 2 1 0 | 
 |   // +---------+-+-----------+-------++-+-----+-------+---------------+ | 
 |   // |         |i|           |imm4   || |imm3 |       |imm8           | | 
 |   // +---------+-+-----------+-------++-+-----+-------+---------------+ | 
 |  | 
 |   // Extract the relocation addend from VAL based on the Thumb2 | 
 |   // instruction encoding described above. | 
 |   static inline typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   extract_thumb_movw_movt_addend( | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype val) | 
 |   { | 
 |     // According to the Elf ABI for ARM Architecture the immediate | 
 |     // field is sign-extended to form the addend. | 
 |     return Bits<16>::sign_extend32(((val >> 4) & 0xf000) | 
 | 				   | ((val >> 15) & 0x0800) | 
 | 				   | ((val >> 4) & 0x0700) | 
 | 				   | (val & 0x00ff)); | 
 |   } | 
 |  | 
 |   // Insert X into VAL based on the Thumb2 instruction encoding | 
 |   // described above. | 
 |   static inline typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   insert_val_thumb_movw_movt( | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype val, | 
 |       typename elfcpp::Swap<32, big_endian>::Valtype x) | 
 |   { | 
 |     val &= 0xfbf08f00; | 
 |     val |= (x & 0xf000) << 4; | 
 |     val |= (x & 0x0800) << 15; | 
 |     val |= (x & 0x0700) << 4; | 
 |     val |= (x & 0x00ff); | 
 |     return val; | 
 |   } | 
 |  | 
 |   // Calculate the smallest constant Kn for the specified residual. | 
 |   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | 
 |   static uint32_t | 
 |   calc_grp_kn(typename elfcpp::Swap<32, big_endian>::Valtype residual) | 
 |   { | 
 |     int32_t msb; | 
 |  | 
 |     if (residual == 0) | 
 |       return 0; | 
 |     // Determine the most significant bit in the residual and | 
 |     // align the resulting value to a 2-bit boundary. | 
 |     for (msb = 30; (msb >= 0) && !(residual & (3 << msb)); msb -= 2) | 
 |       ; | 
 |     // The desired shift is now (msb - 6), or zero, whichever | 
 |     // is the greater. | 
 |     return (((msb - 6) < 0) ? 0 : (msb - 6)); | 
 |   } | 
 |  | 
 |   // Calculate the final residual for the specified group index. | 
 |   // If the passed group index is less than zero, the method will return | 
 |   // the value of the specified residual without any change. | 
 |   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | 
 |   static typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   calc_grp_residual(typename elfcpp::Swap<32, big_endian>::Valtype residual, | 
 | 		    const int group) | 
 |   { | 
 |     for (int n = 0; n <= group; n++) | 
 |       { | 
 | 	// Calculate which part of the value to mask. | 
 | 	uint32_t shift = calc_grp_kn(residual); | 
 | 	// Calculate the residual for the next time around. | 
 | 	residual &= ~(residual & (0xff << shift)); | 
 |       } | 
 |  | 
 |     return residual; | 
 |   } | 
 |  | 
 |   // Calculate the value of Gn for the specified group index. | 
 |   // We return it in the form of an encoded constant-and-rotation. | 
 |   // (see (AAELF 4.6.1.4 Static ARM relocations, Group Relocations, p.32) | 
 |   static typename elfcpp::Swap<32, big_endian>::Valtype | 
 |   calc_grp_gn(typename elfcpp::Swap<32, big_endian>::Valtype residual, | 
 | 	      const int group) | 
 |   { | 
 |     typename elfcpp::Swap<32, big_endian>::Valtype gn = 0; | 
 |     uint32_t shift = 0; | 
 |  | 
 |     for (int n = 0; n <= group; n++) | 
 |       { | 
 | 	// Calculate which part of the value to mask. | 
 | 	shift = calc_grp_kn(residual); | 
 | 	// Calculate Gn in 32-bit as well as encoded constant-and-rotation form. | 
 | 	gn = residual & (0xff << shift); | 
 | 	// Calculate the residual for the next time around. | 
 | 	residual &= ~gn; | 
 |       } | 
 |     // Return Gn in the form of an encoded constant-and-rotation. | 
 |     return ((gn >> shift) | ((gn <= 0xff ? 0 : (32 - shift) / 2) << 8)); | 
 |   } | 
 |  | 
 |  public: | 
 |   // Handle ARM long branches. | 
 |   static typename This::Status | 
 |   arm_branch_common(unsigned int, const Relocate_info<32, big_endian>*, | 
 | 		    unsigned char*, const Sized_symbol<32>*, | 
 | 		    const Arm_relobj<big_endian>*, unsigned int, | 
 | 		    const Symbol_value<32>*, Arm_address, Arm_address, bool); | 
 |  | 
 |   // Handle THUMB long branches. | 
 |   static typename This::Status | 
 |   thumb_branch_common(unsigned int, const Relocate_info<32, big_endian>*, | 
 | 		      unsigned char*, const Sized_symbol<32>*, | 
 | 		      const Arm_relobj<big_endian>*, unsigned int, | 
 | 		      const Symbol_value<32>*, Arm_address, Arm_address, bool); | 
 |  | 
 |  | 
 |   // Return the branch offset of a 32-bit THUMB branch. | 
 |   static inline int32_t | 
 |   thumb32_branch_offset(uint16_t upper_insn, uint16_t lower_insn) | 
 |   { | 
 |     // We use the Thumb-2 encoding (backwards compatible with Thumb-1) | 
 |     // involving the J1 and J2 bits. | 
 |     uint32_t s = (upper_insn & (1U << 10)) >> 10; | 
 |     uint32_t upper = upper_insn & 0x3ffU; | 
 |     uint32_t lower = lower_insn & 0x7ffU; | 
 |     uint32_t j1 = (lower_insn & (1U << 13)) >> 13; | 
 |     uint32_t j2 = (lower_insn & (1U << 11)) >> 11; | 
 |     uint32_t i1 = j1 ^ s ? 0 : 1; | 
 |     uint32_t i2 = j2 ^ s ? 0 : 1; | 
 |  | 
 |     return Bits<25>::sign_extend32((s << 24) | (i1 << 23) | (i2 << 22) | 
 | 				   | (upper << 12) | (lower << 1)); | 
 |   } | 
 |  | 
 |   // Insert OFFSET to a 32-bit THUMB branch and return the upper instruction. | 
 |   // UPPER_INSN is the original upper instruction of the branch.  Caller is | 
 |   // responsible for overflow checking and BLX offset adjustment. | 
 |   static inline uint16_t | 
 |   thumb32_branch_upper(uint16_t upper_insn, int32_t offset) | 
 |   { | 
 |     uint32_t s = offset < 0 ? 1 : 0; | 
 |     uint32_t bits = static_cast<uint32_t>(offset); | 
 |     return (upper_insn & ~0x7ffU) | ((bits >> 12) & 0x3ffU) | (s << 10); | 
 |   } | 
 |  | 
 |   // Insert OFFSET to a 32-bit THUMB branch and return the lower instruction. | 
 |   // LOWER_INSN is the original lower instruction of the branch.  Caller is | 
 |   // responsible for overflow checking and BLX offset adjustment. | 
 |   static inline uint16_t | 
 |   thumb32_branch_lower(uint16_t lower_insn, int32_t offset) | 
 |   { | 
 |     uint32_t s = offset < 0 ? 1 : 0; | 
 |     uint32_t bits = static_cast<uint32_t>(offset); | 
 |     return ((lower_insn & ~0x2fffU) | 
 | 	    | ((((bits >> 23) & 1) ^ !s) << 13) | 
 | 	    | ((((bits >> 22) & 1) ^ !s) << 11) | 
 | 	    | ((bits >> 1) & 0x7ffU)); | 
 |   } | 
 |  | 
 |   // Return the branch offset of a 32-bit THUMB conditional branch. | 
 |   static inline int32_t | 
 |   thumb32_cond_branch_offset(uint16_t upper_insn, uint16_t lower_insn) | 
 |   { | 
 |     uint32_t s = (upper_insn & 0x0400U) >> 10; | 
 |     uint32_t j1 = (lower_insn & 0x2000U) >> 13; | 
 |     uint32_t j2 = (lower_insn & 0x0800U) >> 11; | 
 |     uint32_t lower = (lower_insn & 0x07ffU); | 
 |     uint32_t upper = (s << 8) | (j2 << 7) | (j1 << 6) | (upper_insn & 0x003fU); | 
 |  | 
 |     return Bits<21>::sign_extend32((upper << 12) | (lower << 1)); | 
 |   } | 
 |  | 
 |   // Insert OFFSET to a 32-bit THUMB conditional branch and return the upper | 
 |   // instruction.  UPPER_INSN is the original upper instruction of the branch. | 
 |   // Caller is responsible for overflow checking. | 
 |   static inline uint16_t | 
 |   thumb32_cond_branch_upper(uint16_t upper_insn, int32_t offset) | 
 |   { | 
 |     uint32_t s = offset < 0 ? 1 : 0; | 
 |     uint32_t bits = static_cast<uint32_t>(offset); | 
 |     return (upper_insn & 0xfbc0U) | (s << 10) | ((bits & 0x0003f000U) >> 12); | 
 |   } | 
 |  | 
 |   // Insert OFFSET to a 32-bit THUMB conditional branch and return the lower | 
 |   // instruction.  LOWER_INSN is the original lower instruction of the branch. | 
 |   // The caller is responsible for overflow checking. | 
 |   static inline uint16_t | 
 |   thumb32_cond_branch_lower(uint16_t lower_insn, int32_t offset) | 
 |   { | 
 |     uint32_t bits = static_cast<uint32_t>(offset); | 
 |     uint32_t j2 = (bits & 0x00080000U) >> 19; | 
 |     uint32_t j1 = (bits & 0x00040000U) >> 18; | 
 |     uint32_t lo = (bits & 0x00000ffeU) >> 1; | 
 |  | 
 |     return (lower_insn & 0xd000U) | (j1 << 13) | (j2 << 11) | lo; | 
 |   } | 
 |  | 
 |   // R_ARM_ABS8: S + A | 
 |   static inline typename This::Status | 
 |   abs8(unsigned char* view, | 
 |        const Sized_relobj_file<32, big_endian>* object, | 
 |        const Symbol_value<32>* psymval) | 
 |   { | 
 |     typedef typename elfcpp::Swap<8, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<8, big_endian>::readval(wv); | 
 |     int32_t addend = Bits<8>::sign_extend32(val); | 
 |     Arm_address x = psymval->value(object, addend); | 
 |     val = Bits<32>::bit_select32(val, x, 0xffU); | 
 |     elfcpp::Swap<8, big_endian>::writeval(wv, val); | 
 |  | 
 |     // R_ARM_ABS8 permits signed or unsigned results. | 
 |     return (Bits<8>::has_signed_unsigned_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_ABS5: S + A | 
 |   static inline typename This::Status | 
 |   thm_abs5(unsigned char* view, | 
 |        const Sized_relobj_file<32, big_endian>* object, | 
 |        const Symbol_value<32>* psymval) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |     Reltype addend = (val & 0x7e0U) >> 6; | 
 |     Reltype x = psymval->value(object, addend); | 
 |     val = Bits<32>::bit_select32(val, x << 6, 0x7e0U); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, val); | 
 |     return (Bits<5>::has_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_ABS12: S + A | 
 |   static inline typename This::Status | 
 |   abs12(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval) | 
 |   { | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |     Reltype addend = val & 0x0fffU; | 
 |     Reltype x = psymval->value(object, addend); | 
 |     val = Bits<32>::bit_select32(val, x, 0x0fffU); | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |     return (Bits<12>::has_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_ABS16: S + A | 
 |   static inline typename This::Status | 
 |   abs16(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval) | 
 |   { | 
 |     typedef typename elfcpp::Swap_unaligned<16, big_endian>::Valtype Valtype; | 
 |     Valtype val = elfcpp::Swap_unaligned<16, big_endian>::readval(view); | 
 |     int32_t addend = Bits<16>::sign_extend32(val); | 
 |     Arm_address x = psymval->value(object, addend); | 
 |     val = Bits<32>::bit_select32(val, x, 0xffffU); | 
 |     elfcpp::Swap_unaligned<16, big_endian>::writeval(view, val); | 
 |  | 
 |     // R_ARM_ABS16 permits signed or unsigned results. | 
 |     return (Bits<16>::has_signed_unsigned_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_ABS32: (S + A) | T | 
 |   static inline typename This::Status | 
 |   abs32(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval, | 
 | 	Arm_address thumb_bit) | 
 |   { | 
 |     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; | 
 |     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); | 
 |     Valtype x = psymval->value(object, addend) | thumb_bit; | 
 |     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_REL32: (S + A) | T - P | 
 |   static inline typename This::Status | 
 |   rel32(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval, | 
 | 	Arm_address address, | 
 | 	Arm_address thumb_bit) | 
 |   { | 
 |     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; | 
 |     Valtype addend = elfcpp::Swap_unaligned<32, big_endian>::readval(view); | 
 |     Valtype x = (psymval->value(object, addend) | thumb_bit) - address; | 
 |     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, x); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_THM_JUMP24: (S + A) | T - P | 
 |   static typename This::Status | 
 |   thm_jump19(unsigned char* view, const Arm_relobj<big_endian>* object, | 
 | 	     const Symbol_value<32>* psymval, Arm_address address, | 
 | 	     Arm_address thumb_bit); | 
 |  | 
 |   // R_ARM_THM_JUMP6: S + A - P | 
 |   static inline typename This::Status | 
 |   thm_jump6(unsigned char* view, | 
 | 	    const Sized_relobj_file<32, big_endian>* object, | 
 | 	    const Symbol_value<32>* psymval, | 
 | 	    Arm_address address) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |     // bit[9]:bit[7:3]:'0' (mask: 0x02f8) | 
 |     Reltype addend = (((val & 0x0200) >> 3) | ((val & 0x00f8) >> 2)); | 
 |     Reltype x = (psymval->value(object, addend) - address); | 
 |     val = (val & 0xfd07) | ((x  & 0x0040) << 3) | ((val & 0x003e) << 2); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, val); | 
 |     // CZB does only forward jumps. | 
 |     return ((x > 0x007e) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_JUMP8: S + A - P | 
 |   static inline typename This::Status | 
 |   thm_jump8(unsigned char* view, | 
 | 	    const Sized_relobj_file<32, big_endian>* object, | 
 | 	    const Symbol_value<32>* psymval, | 
 | 	    Arm_address address) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |     int32_t addend = Bits<8>::sign_extend32((val & 0x00ff) << 1); | 
 |     int32_t x = (psymval->value(object, addend) - address); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xff00) | 
 | 						| ((x & 0x01fe) >> 1))); | 
 |     // We do a 9-bit overflow check because x is right-shifted by 1 bit. | 
 |     return (Bits<9>::has_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_JUMP11: S + A - P | 
 |   static inline typename This::Status | 
 |   thm_jump11(unsigned char* view, | 
 | 	    const Sized_relobj_file<32, big_endian>* object, | 
 | 	    const Symbol_value<32>* psymval, | 
 | 	    Arm_address address) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |     int32_t addend = Bits<11>::sign_extend32((val & 0x07ff) << 1); | 
 |     int32_t x = (psymval->value(object, addend) - address); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, ((val & 0xf800) | 
 | 						| ((x & 0x0ffe) >> 1))); | 
 |     // We do a 12-bit overflow check because x is right-shifted by 1 bit. | 
 |     return (Bits<12>::has_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_BASE_PREL: B(S) + A - P | 
 |   static inline typename This::Status | 
 |   base_prel(unsigned char* view, | 
 | 	    Arm_address origin, | 
 | 	    Arm_address address) | 
 |   { | 
 |     Base::rel32(view, origin - address); | 
 |     return STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_BASE_ABS: B(S) + A | 
 |   static inline typename This::Status | 
 |   base_abs(unsigned char* view, | 
 | 	   Arm_address origin) | 
 |   { | 
 |     Base::rel32(view, origin); | 
 |     return STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_GOT_BREL: GOT(S) + A - GOT_ORG | 
 |   static inline typename This::Status | 
 |   got_brel(unsigned char* view, | 
 | 	   typename elfcpp::Swap<32, big_endian>::Valtype got_offset) | 
 |   { | 
 |     Base::rel32(view, got_offset); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_GOT_PREL: GOT(S) + A - P | 
 |   static inline typename This::Status | 
 |   got_prel(unsigned char* view, | 
 | 	   Arm_address got_entry, | 
 | 	   Arm_address address) | 
 |   { | 
 |     Base::rel32(view, got_entry - address); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_PREL: (S + A) | T - P | 
 |   static inline typename This::Status | 
 |   prel31(unsigned char* view, | 
 | 	 const Sized_relobj_file<32, big_endian>* object, | 
 | 	 const Symbol_value<32>* psymval, | 
 | 	 Arm_address address, | 
 | 	 Arm_address thumb_bit) | 
 |   { | 
 |     typedef typename elfcpp::Swap_unaligned<32, big_endian>::Valtype Valtype; | 
 |     Valtype val = elfcpp::Swap_unaligned<32, big_endian>::readval(view); | 
 |     Valtype addend = Bits<31>::sign_extend32(val); | 
 |     Valtype x = (psymval->value(object, addend) | thumb_bit) - address; | 
 |     val = Bits<32>::bit_select32(val, x, 0x7fffffffU); | 
 |     elfcpp::Swap_unaligned<32, big_endian>::writeval(view, val); | 
 |     return (Bits<31>::has_overflow32(x) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_MOVW_ABS_NC: (S + A) | T	(relative address base is ) | 
 |   // R_ARM_MOVW_PREL_NC: (S + A) | T - P | 
 |   // R_ARM_MOVW_BREL_NC: ((S + A) | T) - B(S) | 
 |   // R_ARM_MOVW_BREL: ((S + A) | T) - B(S) | 
 |   static inline typename This::Status | 
 |   movw(unsigned char* view, | 
 |        const Sized_relobj_file<32, big_endian>* object, | 
 |        const Symbol_value<32>* psymval, | 
 |        Arm_address relative_address_base, | 
 |        Arm_address thumb_bit, | 
 |        bool check_overflow) | 
 |   { | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |     Valtype addend = This::extract_arm_movw_movt_addend(val); | 
 |     Valtype x = ((psymval->value(object, addend) | thumb_bit) | 
 | 		 - relative_address_base); | 
 |     val = This::insert_val_arm_movw_movt(val, x); | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |     return ((check_overflow && Bits<16>::has_overflow32(x)) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_MOVT_ABS: S + A	(relative address base is 0) | 
 |   // R_ARM_MOVT_PREL: S + A - P | 
 |   // R_ARM_MOVT_BREL: S + A - B(S) | 
 |   static inline typename This::Status | 
 |   movt(unsigned char* view, | 
 |        const Sized_relobj_file<32, big_endian>* object, | 
 |        const Symbol_value<32>* psymval, | 
 |        Arm_address relative_address_base) | 
 |   { | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |     Valtype addend = This::extract_arm_movw_movt_addend(val); | 
 |     Valtype x = (psymval->value(object, addend) - relative_address_base) >> 16; | 
 |     val = This::insert_val_arm_movw_movt(val, x); | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |     // FIXME: IHI0044D says that we should check for overflow. | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_THM_MOVW_ABS_NC: S + A | T		(relative_address_base is 0) | 
 |   // R_ARM_THM_MOVW_PREL_NC: (S + A) | T - P | 
 |   // R_ARM_THM_MOVW_BREL_NC: ((S + A) | T) - B(S) | 
 |   // R_ARM_THM_MOVW_BREL: ((S + A) | T) - B(S) | 
 |   static inline typename This::Status | 
 |   thm_movw(unsigned char* view, | 
 | 	   const Sized_relobj_file<32, big_endian>* object, | 
 | 	   const Symbol_value<32>* psymval, | 
 | 	   Arm_address relative_address_base, | 
 | 	   Arm_address thumb_bit, | 
 | 	   bool check_overflow) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | 
 | 		  | elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |     Reltype addend = This::extract_thumb_movw_movt_addend(val); | 
 |     Reltype x = | 
 |       (psymval->value(object, addend) | thumb_bit) - relative_address_base; | 
 |     val = This::insert_val_thumb_movw_movt(val, x); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); | 
 |     return ((check_overflow && Bits<16>::has_overflow32(x)) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_MOVT_ABS: S + A		(relative address base is 0) | 
 |   // R_ARM_THM_MOVT_PREL: S + A - P | 
 |   // R_ARM_THM_MOVT_BREL: S + A - B(S) | 
 |   static inline typename This::Status | 
 |   thm_movt(unsigned char* view, | 
 | 	   const Sized_relobj_file<32, big_endian>* object, | 
 | 	   const Symbol_value<32>* psymval, | 
 | 	   Arm_address relative_address_base) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Reltype val = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | 
 | 		  | elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |     Reltype addend = This::extract_thumb_movw_movt_addend(val); | 
 |     Reltype x = (psymval->value(object, addend) - relative_address_base) >> 16; | 
 |     val = This::insert_val_thumb_movw_movt(val, x); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, val >> 16); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv + 1, val & 0xffff); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_THM_ALU_PREL_11_0: ((S + A) | T) - Pa (Thumb32) | 
 |   static inline typename This::Status | 
 |   thm_alu11(unsigned char* view, | 
 | 	    const Sized_relobj_file<32, big_endian>* object, | 
 | 	    const Symbol_value<32>* psymval, | 
 | 	    Arm_address address, | 
 | 	    Arm_address thumb_bit) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | 
 | 		   | elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |  | 
 |     //	      f e d c b|a|9|8 7 6 5|4|3 2 1 0||f|e d c|b a 9 8|7 6 5 4 3 2 1 0 | 
 |     // ----------------------------------------------------------------------- | 
 |     // ADD{S} 1 1 1 1 0|i|0|1 0 0 0|S|1 1 0 1||0|imm3 |Rd     |imm8 | 
 |     // ADDW   1 1 1 1 0|i|1|0 0 0 0|0|1 1 0 1||0|imm3 |Rd     |imm8 | 
 |     // ADR[+] 1 1 1 1 0|i|1|0 0 0 0|0|1 1 1 1||0|imm3 |Rd     |imm8 | 
 |     // SUB{S} 1 1 1 1 0|i|0|1 1 0 1|S|1 1 0 1||0|imm3 |Rd     |imm8 | 
 |     // SUBW   1 1 1 1 0|i|1|0 1 0 1|0|1 1 0 1||0|imm3 |Rd     |imm8 | 
 |     // ADR[-] 1 1 1 1 0|i|1|0 1 0 1|0|1 1 1 1||0|imm3 |Rd     |imm8 | 
 |  | 
 |     // Determine a sign for the addend. | 
 |     const int sign = ((insn & 0xf8ef0000) == 0xf0ad0000 | 
 | 		      || (insn & 0xf8ef0000) == 0xf0af0000) ? -1 : 1; | 
 |     // Thumb2 addend encoding: | 
 |     // imm12 := i | imm3 | imm8 | 
 |     int32_t addend = (insn & 0xff) | 
 | 		     | ((insn & 0x00007000) >> 4) | 
 | 		     | ((insn & 0x04000000) >> 15); | 
 |     // Apply a sign to the added. | 
 |     addend *= sign; | 
 |  | 
 |     int32_t x = (psymval->value(object, addend) | thumb_bit) | 
 | 		- (address & 0xfffffffc); | 
 |     Reltype val = abs(x); | 
 |     // Mask out the value and a distinct part of the ADD/SUB opcode | 
 |     // (bits 7:5 of opword). | 
 |     insn = (insn & 0xfb0f8f00) | 
 | 	   | (val & 0xff) | 
 | 	   | ((val & 0x700) << 4) | 
 | 	   | ((val & 0x800) << 15); | 
 |     // Set the opcode according to whether the value to go in the | 
 |     // place is negative. | 
 |     if (x < 0) | 
 |       insn |= 0x00a00000; | 
 |  | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); | 
 |     return ((val > 0xfff) ? | 
 | 	    This::STATUS_OVERFLOW : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_PC8: S + A - Pa (Thumb) | 
 |   static inline typename This::Status | 
 |   thm_pc8(unsigned char* view, | 
 | 	  const Sized_relobj_file<32, big_endian>* object, | 
 | 	  const Symbol_value<32>* psymval, | 
 | 	  Arm_address address) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |     Reltype addend = ((insn & 0x00ff) << 2); | 
 |     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); | 
 |     Reltype val = abs(x); | 
 |     insn = (insn & 0xff00) | ((val & 0x03fc) >> 2); | 
 |  | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, insn); | 
 |     return ((val > 0x03fc) | 
 | 	    ? This::STATUS_OVERFLOW | 
 | 	    : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_THM_PC12: S + A - Pa (Thumb32) | 
 |   static inline typename This::Status | 
 |   thm_pc12(unsigned char* view, | 
 | 	   const Sized_relobj_file<32, big_endian>* object, | 
 | 	   const Symbol_value<32>* psymval, | 
 | 	   Arm_address address) | 
 |   { | 
 |     typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Reltype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Reltype insn = (elfcpp::Swap<16, big_endian>::readval(wv) << 16) | 
 | 		   | elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |     // Determine a sign for the addend (positive if the U bit is 1). | 
 |     const int sign = (insn & 0x00800000) ? 1 : -1; | 
 |     int32_t addend = (insn & 0xfff); | 
 |     // Apply a sign to the added. | 
 |     addend *= sign; | 
 |  | 
 |     int32_t x = (psymval->value(object, addend) - (address & 0xfffffffc)); | 
 |     Reltype val = abs(x); | 
 |     // Mask out and apply the value and the U bit. | 
 |     insn = (insn & 0xff7ff000) | (val & 0xfff); | 
 |     // Set the U bit according to whether the value to go in the | 
 |     // place is positive. | 
 |     if (x >= 0) | 
 |       insn |= 0x00800000; | 
 |  | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv, insn >> 16); | 
 |     elfcpp::Swap<16, big_endian>::writeval(wv + 1, insn & 0xffff); | 
 |     return ((val > 0xfff) ? | 
 | 	    This::STATUS_OVERFLOW : This::STATUS_OKAY); | 
 |   } | 
 |  | 
 |   // R_ARM_V4BX | 
 |   static inline typename This::Status | 
 |   v4bx(const Relocate_info<32, big_endian>* relinfo, | 
 |        unsigned char* view, | 
 |        const Arm_relobj<big_endian>* object, | 
 |        const Arm_address address, | 
 |        const bool is_interworking) | 
 |   { | 
 |  | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |     // Ensure that we have a BX instruction. | 
 |     gold_assert((val & 0x0ffffff0) == 0x012fff10); | 
 |     const uint32_t reg = (val & 0xf); | 
 |     if (is_interworking && reg != 0xf) | 
 |       { | 
 | 	Stub_table<big_endian>* stub_table = | 
 | 	    object->stub_table(relinfo->data_shndx); | 
 | 	gold_assert(stub_table != NULL); | 
 |  | 
 | 	Arm_v4bx_stub* stub = stub_table->find_arm_v4bx_stub(reg); | 
 | 	gold_assert(stub != NULL); | 
 |  | 
 | 	int32_t veneer_address = | 
 | 	    stub_table->address() + stub->offset() - 8 - address; | 
 | 	gold_assert((veneer_address <= ARM_MAX_FWD_BRANCH_OFFSET) | 
 | 		    && (veneer_address >= ARM_MAX_BWD_BRANCH_OFFSET)); | 
 | 	// Replace with a branch to veneer (B <addr>) | 
 | 	val = (val & 0xf0000000) | 0x0a000000 | 
 | 	      | ((veneer_address >> 2) & 0x00ffffff); | 
 |       } | 
 |     else | 
 |       { | 
 | 	// Preserve Rm (lowest four bits) and the condition code | 
 | 	// (highest four bits). Other bits encode MOV PC,Rm. | 
 | 	val = (val & 0xf000000f) | 0x01a0f000; | 
 |       } | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_ALU_PC_G0_NC: ((S + A) | T) - P | 
 |   // R_ARM_ALU_PC_G0:    ((S + A) | T) - P | 
 |   // R_ARM_ALU_PC_G1_NC: ((S + A) | T) - P | 
 |   // R_ARM_ALU_PC_G1:    ((S + A) | T) - P | 
 |   // R_ARM_ALU_PC_G2:    ((S + A) | T) - P | 
 |   // R_ARM_ALU_SB_G0_NC: ((S + A) | T) - B(S) | 
 |   // R_ARM_ALU_SB_G0:    ((S + A) | T) - B(S) | 
 |   // R_ARM_ALU_SB_G1_NC: ((S + A) | T) - B(S) | 
 |   // R_ARM_ALU_SB_G1:    ((S + A) | T) - B(S) | 
 |   // R_ARM_ALU_SB_G2:    ((S + A) | T) - B(S) | 
 |   static inline typename This::Status | 
 |   arm_grp_alu(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval, | 
 | 	const int group, | 
 | 	Arm_address address, | 
 | 	Arm_address thumb_bit, | 
 | 	bool check_overflow) | 
 |   { | 
 |     gold_assert(group >= 0 && group < 3); | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |     // ALU group relocations are allowed only for the ADD/SUB instructions. | 
 |     // (0x00800000 - ADD, 0x00400000 - SUB) | 
 |     const Valtype opcode = insn & 0x01e00000; | 
 |     if (opcode != 0x00800000 && opcode != 0x00400000) | 
 |       return This::STATUS_BAD_RELOC; | 
 |  | 
 |     // Determine a sign for the addend. | 
 |     const int sign = (opcode == 0x00800000) ? 1 : -1; | 
 |     // shifter = rotate_imm * 2 | 
 |     const uint32_t shifter = (insn & 0xf00) >> 7; | 
 |     // Initial addend value. | 
 |     int32_t addend = insn & 0xff; | 
 |     // Rotate addend right by shifter. | 
 |     addend = (addend >> shifter) | (addend << (32 - shifter)); | 
 |     // Apply a sign to the added. | 
 |     addend *= sign; | 
 |  | 
 |     int32_t x = ((psymval->value(object, addend) | thumb_bit) - address); | 
 |     Valtype gn = Arm_relocate_functions::calc_grp_gn(abs(x), group); | 
 |     // Check for overflow if required | 
 |     if (check_overflow | 
 | 	&& (Arm_relocate_functions::calc_grp_residual(abs(x), group) != 0)) | 
 |       return This::STATUS_OVERFLOW; | 
 |  | 
 |     // Mask out the value and the ADD/SUB part of the opcode; take care | 
 |     // not to destroy the S bit. | 
 |     insn &= 0xff1ff000; | 
 |     // Set the opcode according to whether the value to go in the | 
 |     // place is negative. | 
 |     insn |= ((x < 0) ? 0x00400000 : 0x00800000); | 
 |     // Encode the offset (encoded Gn). | 
 |     insn |= gn; | 
 |  | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, insn); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_LDR_PC_G0: S + A - P | 
 |   // R_ARM_LDR_PC_G1: S + A - P | 
 |   // R_ARM_LDR_PC_G2: S + A - P | 
 |   // R_ARM_LDR_SB_G0: S + A - B(S) | 
 |   // R_ARM_LDR_SB_G1: S + A - B(S) | 
 |   // R_ARM_LDR_SB_G2: S + A - B(S) | 
 |   static inline typename This::Status | 
 |   arm_grp_ldr(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval, | 
 | 	const int group, | 
 | 	Arm_address address) | 
 |   { | 
 |     gold_assert(group >= 0 && group < 3); | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |     const int sign = (insn & 0x00800000) ? 1 : -1; | 
 |     int32_t addend = (insn & 0xfff) * sign; | 
 |     int32_t x = (psymval->value(object, addend) - address); | 
 |     // Calculate the relevant G(n-1) value to obtain this stage residual. | 
 |     Valtype residual = | 
 | 	Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | 
 |     if (residual >= 0x1000) | 
 |       return This::STATUS_OVERFLOW; | 
 |  | 
 |     // Mask out the value and U bit. | 
 |     insn &= 0xff7ff000; | 
 |     // Set the U bit for non-negative values. | 
 |     if (x >= 0) | 
 |       insn |= 0x00800000; | 
 |     insn |= residual; | 
 |  | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, insn); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_LDRS_PC_G0: S + A - P | 
 |   // R_ARM_LDRS_PC_G1: S + A - P | 
 |   // R_ARM_LDRS_PC_G2: S + A - P | 
 |   // R_ARM_LDRS_SB_G0: S + A - B(S) | 
 |   // R_ARM_LDRS_SB_G1: S + A - B(S) | 
 |   // R_ARM_LDRS_SB_G2: S + A - B(S) | 
 |   static inline typename This::Status | 
 |   arm_grp_ldrs(unsigned char* view, | 
 | 	const Sized_relobj_file<32, big_endian>* object, | 
 | 	const Symbol_value<32>* psymval, | 
 | 	const int group, | 
 | 	Arm_address address) | 
 |   { | 
 |     gold_assert(group >= 0 && group < 3); | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |     const int sign = (insn & 0x00800000) ? 1 : -1; | 
 |     int32_t addend = (((insn & 0xf00) >> 4) + (insn & 0xf)) * sign; | 
 |     int32_t x = (psymval->value(object, addend) - address); | 
 |     // Calculate the relevant G(n-1) value to obtain this stage residual. | 
 |     Valtype residual = | 
 | 	Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | 
 |    if (residual >= 0x100) | 
 |       return This::STATUS_OVERFLOW; | 
 |  | 
 |     // Mask out the value and U bit. | 
 |     insn &= 0xff7ff0f0; | 
 |     // Set the U bit for non-negative values. | 
 |     if (x >= 0) | 
 |       insn |= 0x00800000; | 
 |     insn |= ((residual & 0xf0) << 4) | (residual & 0xf); | 
 |  | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, insn); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 |  | 
 |   // R_ARM_LDC_PC_G0: S + A - P | 
 |   // R_ARM_LDC_PC_G1: S + A - P | 
 |   // R_ARM_LDC_PC_G2: S + A - P | 
 |   // R_ARM_LDC_SB_G0: S + A - B(S) | 
 |   // R_ARM_LDC_SB_G1: S + A - B(S) | 
 |   // R_ARM_LDC_SB_G2: S + A - B(S) | 
 |   static inline typename This::Status | 
 |   arm_grp_ldc(unsigned char* view, | 
 |       const Sized_relobj_file<32, big_endian>* object, | 
 |       const Symbol_value<32>* psymval, | 
 |       const int group, | 
 |       Arm_address address) | 
 |   { | 
 |     gold_assert(group >= 0 && group < 3); | 
 |     typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |     Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |     Valtype insn = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |     const int sign = (insn & 0x00800000) ? 1 : -1; | 
 |     int32_t addend = ((insn & 0xff) << 2) * sign; | 
 |     int32_t x = (psymval->value(object, addend) - address); | 
 |     // Calculate the relevant G(n-1) value to obtain this stage residual. | 
 |     Valtype residual = | 
 |       Arm_relocate_functions::calc_grp_residual(abs(x), group - 1); | 
 |     if ((residual & 0x3) != 0 || residual >= 0x400) | 
 |       return This::STATUS_OVERFLOW; | 
 |  | 
 |     // Mask out the value and U bit. | 
 |     insn &= 0xff7fff00; | 
 |     // Set the U bit for non-negative values. | 
 |     if (x >= 0) | 
 |       insn |= 0x00800000; | 
 |     insn |= (residual >> 2); | 
 |  | 
 |     elfcpp::Swap<32, big_endian>::writeval(wv, insn); | 
 |     return This::STATUS_OKAY; | 
 |   } | 
 | }; | 
 |  | 
 | // Relocate ARM long branches.  This handles relocation types | 
 | // R_ARM_CALL, R_ARM_JUMP24, R_ARM_PLT32 and R_ARM_XPC25. | 
 | // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly | 
 | // undefined and we do not use PLT in this relocation.  In such a case, | 
 | // the branch is converted into an NOP. | 
 |  | 
 | template<bool big_endian> | 
 | typename Arm_relocate_functions<big_endian>::Status | 
 | Arm_relocate_functions<big_endian>::arm_branch_common( | 
 |     unsigned int r_type, | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned char* view, | 
 |     const Sized_symbol<32>* gsym, | 
 |     const Arm_relobj<big_endian>* object, | 
 |     unsigned int r_sym, | 
 |     const Symbol_value<32>* psymval, | 
 |     Arm_address address, | 
 |     Arm_address thumb_bit, | 
 |     bool is_weakly_undefined_without_plt) | 
 | { | 
 |   typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |   Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |   Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |   bool insn_is_b = (((val >> 28) & 0xf) <= 0xe) | 
 | 		    && ((val & 0x0f000000UL) == 0x0a000000UL); | 
 |   bool insn_is_uncond_bl = (val & 0xff000000UL) == 0xeb000000UL; | 
 |   bool insn_is_cond_bl = (((val >> 28) & 0xf) < 0xe) | 
 | 			  && ((val & 0x0f000000UL) == 0x0b000000UL); | 
 |   bool insn_is_blx = (val & 0xfe000000UL) == 0xfa000000UL; | 
 |   bool insn_is_any_branch = (val & 0x0e000000UL) == 0x0a000000UL; | 
 |  | 
 |   // Check that the instruction is valid. | 
 |   if (r_type == elfcpp::R_ARM_CALL) | 
 |     { | 
 |       if (!insn_is_uncond_bl && !insn_is_blx) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_JUMP24) | 
 |     { | 
 |       if (!insn_is_b && !insn_is_cond_bl) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_PLT32) | 
 |     { | 
 |       if (!insn_is_any_branch) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_XPC25) | 
 |     { | 
 |       // FIXME: AAELF document IH0044C does not say much about it other | 
 |       // than it being obsolete. | 
 |       if (!insn_is_any_branch) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   // A branch to an undefined weak symbol is turned into a jump to | 
 |   // the next instruction unless a PLT entry will be created. | 
 |   // Do the same for local undefined symbols. | 
 |   // The jump to the next instruction is optimized as a NOP depending | 
 |   // on the architecture. | 
 |   const Target_arm<big_endian>* arm_target = | 
 |     Target_arm<big_endian>::default_target(); | 
 |   if (is_weakly_undefined_without_plt) | 
 |     { | 
 |       gold_assert(!parameters->options().relocatable()); | 
 |       Valtype cond = val & 0xf0000000U; | 
 |       if (arm_target->may_use_arm_nop()) | 
 | 	val = cond | 0x0320f000; | 
 |       else | 
 | 	val = cond | 0x01a00000;	// Using pre-UAL nop: mov r0, r0. | 
 |       elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |       return This::STATUS_OKAY; | 
 |     } | 
 |  | 
 |   Valtype addend = Bits<26>::sign_extend32(val << 2); | 
 |   Valtype branch_target = psymval->value(object, addend); | 
 |   int32_t branch_offset = branch_target - address; | 
 |  | 
 |   // We need a stub if the branch offset is too large or if we need | 
 |   // to switch mode. | 
 |   bool may_use_blx = arm_target->may_use_v5t_interworking(); | 
 |   Reloc_stub* stub = NULL; | 
 |  | 
 |   if (!parameters->options().relocatable() | 
 |       && (Bits<26>::has_overflow32(branch_offset) | 
 | 	  || ((thumb_bit != 0) | 
 | 	      && !(may_use_blx && r_type == elfcpp::R_ARM_CALL)))) | 
 |     { | 
 |       Valtype unadjusted_branch_target = psymval->value(object, 0); | 
 |  | 
 |       Stub_type stub_type = | 
 | 	Reloc_stub::stub_type_for_reloc(r_type, address, | 
 | 					unadjusted_branch_target, | 
 | 					(thumb_bit != 0)); | 
 |       if (stub_type != arm_stub_none) | 
 | 	{ | 
 | 	  Stub_table<big_endian>* stub_table = | 
 | 	    object->stub_table(relinfo->data_shndx); | 
 | 	  gold_assert(stub_table != NULL); | 
 |  | 
 | 	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); | 
 | 	  stub = stub_table->find_reloc_stub(stub_key); | 
 | 	  gold_assert(stub != NULL); | 
 | 	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; | 
 | 	  branch_target = stub_table->address() + stub->offset() + addend; | 
 | 	  branch_offset = branch_target - address; | 
 | 	  gold_assert(!Bits<26>::has_overflow32(branch_offset)); | 
 | 	} | 
 |     } | 
 |  | 
 |   // At this point, if we still need to switch mode, the instruction | 
 |   // must either be a BLX or a BL that can be converted to a BLX. | 
 |   if (thumb_bit != 0) | 
 |     { | 
 |       // Turn BL to BLX. | 
 |       gold_assert(may_use_blx && r_type == elfcpp::R_ARM_CALL); | 
 |       val = (val & 0xffffff) | 0xfa000000 | ((branch_offset & 2) << 23); | 
 |     } | 
 |  | 
 |   val = Bits<32>::bit_select32(val, (branch_offset >> 2), 0xffffffUL); | 
 |   elfcpp::Swap<32, big_endian>::writeval(wv, val); | 
 |   return (Bits<26>::has_overflow32(branch_offset) | 
 | 	  ? This::STATUS_OVERFLOW | 
 | 	  : This::STATUS_OKAY); | 
 | } | 
 |  | 
 | // Relocate THUMB long branches.  This handles relocation types | 
 | // R_ARM_THM_CALL, R_ARM_THM_JUMP24 and R_ARM_THM_XPC22. | 
 | // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly | 
 | // undefined and we do not use PLT in this relocation.  In such a case, | 
 | // the branch is converted into an NOP. | 
 |  | 
 | template<bool big_endian> | 
 | typename Arm_relocate_functions<big_endian>::Status | 
 | Arm_relocate_functions<big_endian>::thumb_branch_common( | 
 |     unsigned int r_type, | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned char* view, | 
 |     const Sized_symbol<32>* gsym, | 
 |     const Arm_relobj<big_endian>* object, | 
 |     unsigned int r_sym, | 
 |     const Symbol_value<32>* psymval, | 
 |     Arm_address address, | 
 |     Arm_address thumb_bit, | 
 |     bool is_weakly_undefined_without_plt) | 
 | { | 
 |   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |   Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |  | 
 |   // FIXME: These tests are too loose and do not take THUMB/THUMB-2 difference | 
 |   // into account. | 
 |   bool is_bl_insn = (lower_insn & 0x1000U) == 0x1000U; | 
 |   bool is_blx_insn = (lower_insn & 0x1000U) == 0x0000U; | 
 |  | 
 |   // Check that the instruction is valid. | 
 |   if (r_type == elfcpp::R_ARM_THM_CALL) | 
 |     { | 
 |       if (!is_bl_insn && !is_blx_insn) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_THM_JUMP24) | 
 |     { | 
 |       // This cannot be a BLX. | 
 |       if (!is_bl_insn) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_THM_XPC22) | 
 |     { | 
 |       // Check for Thumb to Thumb call. | 
 |       if (!is_blx_insn) | 
 | 	return This::STATUS_BAD_RELOC; | 
 |       if (thumb_bit != 0) | 
 | 	{ | 
 | 	  gold_warning(_("%s: Thumb BLX instruction targets " | 
 | 			 "thumb function '%s'."), | 
 | 			 object->name().c_str(), | 
 | 			 (gsym ? gsym->name() : "(local)")); | 
 | 	  // Convert BLX to BL. | 
 | 	  lower_insn |= 0x1000U; | 
 | 	} | 
 |     } | 
 |   else | 
 |     gold_unreachable(); | 
 |  | 
 |   // A branch to an undefined weak symbol is turned into a jump to | 
 |   // the next instruction unless a PLT entry will be created. | 
 |   // The jump to the next instruction is optimized as a NOP.W for | 
 |   // Thumb-2 enabled architectures. | 
 |   const Target_arm<big_endian>* arm_target = | 
 |     Target_arm<big_endian>::default_target(); | 
 |   if (is_weakly_undefined_without_plt) | 
 |     { | 
 |       gold_assert(!parameters->options().relocatable()); | 
 |       if (arm_target->may_use_thumb2_nop()) | 
 | 	{ | 
 | 	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xf3af); | 
 | 	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0x8000); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  elfcpp::Swap<16, big_endian>::writeval(wv, 0xe000); | 
 | 	  elfcpp::Swap<16, big_endian>::writeval(wv + 1, 0xbf00); | 
 | 	} | 
 |       return This::STATUS_OKAY; | 
 |     } | 
 |  | 
 |   int32_t addend = This::thumb32_branch_offset(upper_insn, lower_insn); | 
 |   Arm_address branch_target = psymval->value(object, addend); | 
 |  | 
 |   // For BLX, bit 1 of target address comes from bit 1 of base address. | 
 |   bool may_use_blx = arm_target->may_use_v5t_interworking(); | 
 |   if (thumb_bit == 0 && may_use_blx) | 
 |     branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); | 
 |  | 
 |   int32_t branch_offset = branch_target - address; | 
 |  | 
 |   // We need a stub if the branch offset is too large or if we need | 
 |   // to switch mode. | 
 |   bool thumb2 = arm_target->using_thumb2(); | 
 |   if (!parameters->options().relocatable() | 
 |       && ((!thumb2 && Bits<23>::has_overflow32(branch_offset)) | 
 | 	  || (thumb2 && Bits<25>::has_overflow32(branch_offset)) | 
 | 	  || ((thumb_bit == 0) | 
 | 	      && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) | 
 | 		  || r_type == elfcpp::R_ARM_THM_JUMP24)))) | 
 |     { | 
 |       Arm_address unadjusted_branch_target = psymval->value(object, 0); | 
 |  | 
 |       Stub_type stub_type = | 
 | 	Reloc_stub::stub_type_for_reloc(r_type, address, | 
 | 					unadjusted_branch_target, | 
 | 					(thumb_bit != 0)); | 
 |  | 
 |       if (stub_type != arm_stub_none) | 
 | 	{ | 
 | 	  Stub_table<big_endian>* stub_table = | 
 | 	    object->stub_table(relinfo->data_shndx); | 
 | 	  gold_assert(stub_table != NULL); | 
 |  | 
 | 	  Reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend); | 
 | 	  Reloc_stub* stub = stub_table->find_reloc_stub(stub_key); | 
 | 	  gold_assert(stub != NULL); | 
 | 	  thumb_bit = stub->stub_template()->entry_in_thumb_mode() ? 1 : 0; | 
 | 	  branch_target = stub_table->address() + stub->offset() + addend; | 
 | 	  if (thumb_bit == 0 && may_use_blx) | 
 | 	    branch_target = Bits<32>::bit_select32(branch_target, address, 0x2); | 
 | 	  branch_offset = branch_target - address; | 
 | 	} | 
 |     } | 
 |  | 
 |   // At this point, if we still need to switch mode, the instruction | 
 |   // must either be a BLX or a BL that can be converted to a BLX. | 
 |   if (thumb_bit == 0) | 
 |     { | 
 |       gold_assert(may_use_blx | 
 | 		  && (r_type == elfcpp::R_ARM_THM_CALL | 
 | 		      || r_type == elfcpp::R_ARM_THM_XPC22)); | 
 |       // Make sure this is a BLX. | 
 |       lower_insn &= ~0x1000U; | 
 |     } | 
 |   else | 
 |     { | 
 |       // Make sure this is a BL. | 
 |       lower_insn |= 0x1000U; | 
 |     } | 
 |  | 
 |   // For a BLX instruction, make sure that the relocation is rounded up | 
 |   // to a word boundary.  This follows the semantics of the instruction | 
 |   // which specifies that bit 1 of the target address will come from bit | 
 |   // 1 of the base address. | 
 |   if ((lower_insn & 0x5000U) == 0x4000U) | 
 |     gold_assert((branch_offset & 3) == 0); | 
 |  | 
 |   // Put BRANCH_OFFSET back into the insn.  Assumes two's complement. | 
 |   // We use the Thumb-2 encoding, which is safe even if dealing with | 
 |   // a Thumb-1 instruction by virtue of our overflow check above.  */ | 
 |   upper_insn = This::thumb32_branch_upper(upper_insn, branch_offset); | 
 |   lower_insn = This::thumb32_branch_lower(lower_insn, branch_offset); | 
 |  | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | 
 |  | 
 |   gold_assert(!Bits<25>::has_overflow32(branch_offset)); | 
 |  | 
 |   return ((thumb2 | 
 | 	   ? Bits<25>::has_overflow32(branch_offset) | 
 | 	   : Bits<23>::has_overflow32(branch_offset)) | 
 | 	  ? This::STATUS_OVERFLOW | 
 | 	  : This::STATUS_OKAY); | 
 | } | 
 |  | 
 | // Relocate THUMB-2 long conditional branches. | 
 | // If IS_WEAK_UNDEFINED_WITH_PLT is true.  The target symbol is weakly | 
 | // undefined and we do not use PLT in this relocation.  In such a case, | 
 | // the branch is converted into an NOP. | 
 |  | 
 | template<bool big_endian> | 
 | typename Arm_relocate_functions<big_endian>::Status | 
 | Arm_relocate_functions<big_endian>::thm_jump19( | 
 |     unsigned char* view, | 
 |     const Arm_relobj<big_endian>* object, | 
 |     const Symbol_value<32>* psymval, | 
 |     Arm_address address, | 
 |     Arm_address thumb_bit) | 
 | { | 
 |   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |   Valtype* wv = reinterpret_cast<Valtype*>(view); | 
 |   uint32_t upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |   uint32_t lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |   int32_t addend = This::thumb32_cond_branch_offset(upper_insn, lower_insn); | 
 |  | 
 |   Arm_address branch_target = psymval->value(object, addend); | 
 |   int32_t branch_offset = branch_target - address; | 
 |  | 
 |   // ??? Should handle interworking?  GCC might someday try to | 
 |   // use this for tail calls. | 
 |   // FIXME: We do support thumb entry to PLT yet. | 
 |   if (thumb_bit == 0) | 
 |     { | 
 |       gold_error(_("conditional branch to PLT in THUMB-2 not supported yet.")); | 
 |       return This::STATUS_BAD_RELOC; | 
 |     } | 
 |  | 
 |   // Put RELOCATION back into the insn. | 
 |   upper_insn = This::thumb32_cond_branch_upper(upper_insn, branch_offset); | 
 |   lower_insn = This::thumb32_cond_branch_lower(lower_insn, branch_offset); | 
 |  | 
 |   // Put the relocated value back in the object file: | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | 
 |  | 
 |   return (Bits<21>::has_overflow32(branch_offset) | 
 | 	  ? This::STATUS_OVERFLOW | 
 | 	  : This::STATUS_OKAY); | 
 | } | 
 |  | 
 | // Get the GOT section, creating it if necessary. | 
 |  | 
 | template<bool big_endian> | 
 | Arm_output_data_got<big_endian>* | 
 | Target_arm<big_endian>::got_section(Symbol_table* symtab, Layout* layout) | 
 | { | 
 |   if (this->got_ == NULL) | 
 |     { | 
 |       gold_assert(symtab != NULL && layout != NULL); | 
 |  | 
 |       // When using -z now, we can treat .got as a relro section. | 
 |       // Without -z now, it is modified after program startup by lazy | 
 |       // PLT relocations. | 
 |       bool is_got_relro = parameters->options().now(); | 
 |       Output_section_order got_order = (is_got_relro | 
 | 					? ORDER_RELRO_LAST | 
 | 					: ORDER_DATA); | 
 |  | 
 |       // Unlike some targets (.e.g x86), ARM does not use separate .got and | 
 |       // .got.plt sections in output.  The output .got section contains both | 
 |       // PLT and non-PLT GOT entries. | 
 |       this->got_ = new Arm_output_data_got<big_endian>(symtab, layout); | 
 |  | 
 |       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, | 
 | 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), | 
 | 				      this->got_, got_order, is_got_relro); | 
 |  | 
 |       // The old GNU linker creates a .got.plt section.  We just | 
 |       // create another set of data in the .got section.  Note that we | 
 |       // always create a PLT if we create a GOT, although the PLT | 
 |       // might be empty. | 
 |       this->got_plt_ = new Output_data_space(4, "** GOT PLT"); | 
 |       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, | 
 | 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), | 
 | 				      this->got_plt_, got_order, is_got_relro); | 
 |  | 
 |       // The first three entries are reserved. | 
 |       this->got_plt_->set_current_data_size(3 * 4); | 
 |  | 
 |       // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT. | 
 |       symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL, | 
 | 				    Symbol_table::PREDEFINED, | 
 | 				    this->got_plt_, | 
 | 				    0, 0, elfcpp::STT_OBJECT, | 
 | 				    elfcpp::STB_LOCAL, | 
 | 				    elfcpp::STV_HIDDEN, 0, | 
 | 				    false, false); | 
 |  | 
 |       // If there are any IRELATIVE relocations, they get GOT entries | 
 |       // in .got.plt after the jump slot entries. | 
 |       this->got_irelative_ = new Output_data_space(4, "** GOT IRELATIVE PLT"); | 
 |       layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS, | 
 | 				      (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE), | 
 | 				      this->got_irelative_, | 
 | 				      got_order, is_got_relro); | 
 |  | 
 |     } | 
 |   return this->got_; | 
 | } | 
 |  | 
 | // Get the dynamic reloc section, creating it if necessary. | 
 |  | 
 | template<bool big_endian> | 
 | typename Target_arm<big_endian>::Reloc_section* | 
 | Target_arm<big_endian>::rel_dyn_section(Layout* layout) | 
 | { | 
 |   if (this->rel_dyn_ == NULL) | 
 |     { | 
 |       gold_assert(layout != NULL); | 
 |       // Create both relocation sections in the same place, so as to ensure | 
 |       // their relative order in the output section. | 
 |       this->rel_dyn_ = new Reloc_section(parameters->options().combreloc()); | 
 |       this->rel_irelative_ = new Reloc_section(false); | 
 |       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, | 
 | 				      elfcpp::SHF_ALLOC, this->rel_dyn_, | 
 | 				      ORDER_DYNAMIC_RELOCS, false); | 
 |       layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL, | 
 | 				      elfcpp::SHF_ALLOC, this->rel_irelative_, | 
 | 				      ORDER_DYNAMIC_RELOCS, false); | 
 |     } | 
 |   return this->rel_dyn_; | 
 | } | 
 |  | 
 |  | 
 | // Get the section to use for IRELATIVE relocs, creating it if necessary.  These | 
 | // go in .rela.dyn, but only after all other dynamic relocations.  They need to | 
 | // follow the other dynamic relocations so that they can refer to global | 
 | // variables initialized by those relocs. | 
 |  | 
 | template<bool big_endian> | 
 | typename Target_arm<big_endian>::Reloc_section* | 
 | Target_arm<big_endian>::rel_irelative_section(Layout* layout) | 
 | { | 
 |   if (this->rel_irelative_ == NULL) | 
 |     { | 
 |       // Delegate the creation to rel_dyn_section so as to ensure their order in | 
 |       // the output section. | 
 |       this->rel_dyn_section(layout); | 
 |       gold_assert(this->rel_irelative_ != NULL | 
 | 		  && (this->rel_dyn_->output_section() | 
 | 		      == this->rel_irelative_->output_section())); | 
 |     } | 
 |   return this->rel_irelative_; | 
 | } | 
 |  | 
 |  | 
 | // Insn_template methods. | 
 |  | 
 | // Return byte size of an instruction template. | 
 |  | 
 | size_t | 
 | Insn_template::size() const | 
 | { | 
 |   switch (this->type()) | 
 |     { | 
 |     case THUMB16_TYPE: | 
 |     case THUMB16_SPECIAL_TYPE: | 
 |       return 2; | 
 |     case ARM_TYPE: | 
 |     case THUMB32_TYPE: | 
 |     case DATA_TYPE: | 
 |       return 4; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Return alignment of an instruction template. | 
 |  | 
 | unsigned | 
 | Insn_template::alignment() const | 
 | { | 
 |   switch (this->type()) | 
 |     { | 
 |     case THUMB16_TYPE: | 
 |     case THUMB16_SPECIAL_TYPE: | 
 |     case THUMB32_TYPE: | 
 |       return 2; | 
 |     case ARM_TYPE: | 
 |     case DATA_TYPE: | 
 |       return 4; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Stub_template methods. | 
 |  | 
 | Stub_template::Stub_template( | 
 |     Stub_type type, const Insn_template* insns, | 
 |      size_t insn_count) | 
 |   : type_(type), insns_(insns), insn_count_(insn_count), alignment_(1), | 
 |     entry_in_thumb_mode_(false), relocs_() | 
 | { | 
 |   off_t offset = 0; | 
 |  | 
 |   // Compute byte size and alignment of stub template. | 
 |   for (size_t i = 0; i < insn_count; i++) | 
 |     { | 
 |       unsigned insn_alignment = insns[i].alignment(); | 
 |       size_t insn_size = insns[i].size(); | 
 |       gold_assert((offset & (insn_alignment - 1)) == 0); | 
 |       this->alignment_ = std::max(this->alignment_, insn_alignment); | 
 |       switch (insns[i].type()) | 
 | 	{ | 
 | 	case Insn_template::THUMB16_TYPE: | 
 | 	case Insn_template::THUMB16_SPECIAL_TYPE: | 
 | 	  if (i == 0) | 
 | 	    this->entry_in_thumb_mode_ = true; | 
 | 	  break; | 
 |  | 
 | 	case Insn_template::THUMB32_TYPE: | 
 | 	  if (insns[i].r_type() != elfcpp::R_ARM_NONE) | 
 | 	    this->relocs_.push_back(Reloc(i, offset)); | 
 | 	  if (i == 0) | 
 | 	    this->entry_in_thumb_mode_ = true; | 
 | 	  break; | 
 |  | 
 | 	case Insn_template::ARM_TYPE: | 
 | 	  // Handle cases where the target is encoded within the | 
 | 	  // instruction. | 
 | 	  if (insns[i].r_type() == elfcpp::R_ARM_JUMP24) | 
 | 	    this->relocs_.push_back(Reloc(i, offset)); | 
 | 	  break; | 
 |  | 
 | 	case Insn_template::DATA_TYPE: | 
 | 	  // Entry point cannot be data. | 
 | 	  gold_assert(i != 0); | 
 | 	  this->relocs_.push_back(Reloc(i, offset)); | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  gold_unreachable(); | 
 | 	} | 
 |       offset += insn_size; | 
 |     } | 
 |   this->size_ = offset; | 
 | } | 
 |  | 
 | // Stub methods. | 
 |  | 
 | // Template to implement do_write for a specific target endianness. | 
 |  | 
 | template<bool big_endian> | 
 | void inline | 
 | Stub::do_fixed_endian_write(unsigned char* view, section_size_type view_size) | 
 | { | 
 |   const Stub_template* stub_template = this->stub_template(); | 
 |   const Insn_template* insns = stub_template->insns(); | 
 |   const bool enable_be8 = parameters->options().be8(); | 
 |  | 
 |   unsigned char* pov = view; | 
 |   for (size_t i = 0; i < stub_template->insn_count(); i++) | 
 |     { | 
 |       switch (insns[i].type()) | 
 | 	{ | 
 | 	case Insn_template::THUMB16_TYPE: | 
 | 	  if (enable_be8) | 
 | 	    elfcpp::Swap<16, false>::writeval(pov, insns[i].data() & 0xffff); | 
 | 	  else | 
 | 	    elfcpp::Swap<16, big_endian>::writeval(pov, | 
 | 						   insns[i].data() & 0xffff); | 
 | 	  break; | 
 | 	case Insn_template::THUMB16_SPECIAL_TYPE: | 
 | 	  if (enable_be8) | 
 | 	    elfcpp::Swap<16, false>::writeval(pov, this->thumb16_special(i)); | 
 | 	  else | 
 | 	    elfcpp::Swap<16, big_endian>::writeval(pov, | 
 | 						   this->thumb16_special(i)); | 
 | 	  break; | 
 | 	case Insn_template::THUMB32_TYPE: | 
 | 	  { | 
 | 	    uint32_t hi = (insns[i].data() >> 16) & 0xffff; | 
 | 	    uint32_t lo = insns[i].data() & 0xffff; | 
 | 	    if (enable_be8) | 
 | 	      { | 
 | 	        elfcpp::Swap<16, false>::writeval(pov, hi); | 
 | 	        elfcpp::Swap<16, false>::writeval(pov + 2, lo); | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		elfcpp::Swap<16, big_endian>::writeval(pov, hi); | 
 | 		elfcpp::Swap<16, big_endian>::writeval(pov + 2, lo); | 
 | 	      } | 
 | 	  } | 
 | 	  break; | 
 | 	case Insn_template::ARM_TYPE: | 
 | 	  if (enable_be8) | 
 | 	    elfcpp::Swap<32, false>::writeval(pov, insns[i].data()); | 
 | 	  else | 
 | 	    elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); | 
 | 	  break; | 
 | 	case Insn_template::DATA_TYPE: | 
 | 	  elfcpp::Swap<32, big_endian>::writeval(pov, insns[i].data()); | 
 | 	  break; | 
 | 	default: | 
 | 	  gold_unreachable(); | 
 | 	} | 
 |       pov += insns[i].size(); | 
 |     } | 
 |   gold_assert(static_cast<section_size_type>(pov - view) == view_size); | 
 | } | 
 |  | 
 | // Reloc_stub::Key methods. | 
 |  | 
 | // Dump a Key as a string for debugging. | 
 |  | 
 | std::string | 
 | Reloc_stub::Key::name() const | 
 | { | 
 |   if (this->r_sym_ == invalid_index) | 
 |     { | 
 |       // Global symbol key name | 
 |       // <stub-type>:<symbol name>:<addend>. | 
 |       const std::string sym_name = this->u_.symbol->name(); | 
 |       // We need to print two hex number and two colons.  So just add 100 bytes | 
 |       // to the symbol name size. | 
 |       size_t len = sym_name.size() + 100; | 
 |       char* buffer = new char[len]; | 
 |       int c = snprintf(buffer, len, "%d:%s:%x", this->stub_type_, | 
 | 		       sym_name.c_str(), this->addend_); | 
 |       gold_assert(c > 0 && c < static_cast<int>(len)); | 
 |       delete[] buffer; | 
 |       return std::string(buffer); | 
 |     } | 
 |   else | 
 |     { | 
 |       // local symbol key name | 
 |       // <stub-type>:<object>:<r_sym>:<addend>. | 
 |       const size_t len = 200; | 
 |       char buffer[len]; | 
 |       int c = snprintf(buffer, len, "%d:%p:%u:%x", this->stub_type_, | 
 | 		       this->u_.relobj, this->r_sym_, this->addend_); | 
 |       gold_assert(c > 0 && c < static_cast<int>(len)); | 
 |       return std::string(buffer); | 
 |     } | 
 | } | 
 |  | 
 | // Reloc_stub methods. | 
 |  | 
 | // Determine the type of stub needed, if any, for a relocation of R_TYPE at | 
 | // LOCATION to DESTINATION. | 
 | // This code is based on the arm_type_of_stub function in | 
 | // bfd/elf32-arm.c.  We have changed the interface a little to keep the Stub | 
 | // class simple. | 
 |  | 
 | Stub_type | 
 | Reloc_stub::stub_type_for_reloc( | 
 |    unsigned int r_type, | 
 |    Arm_address location, | 
 |    Arm_address destination, | 
 |    bool target_is_thumb) | 
 | { | 
 |   Stub_type stub_type = arm_stub_none; | 
 |  | 
 |   // This is a bit ugly but we want to avoid using a templated class for | 
 |   // big and little endianities. | 
 |   bool may_use_blx; | 
 |   bool should_force_pic_veneer = parameters->options().pic_veneer(); | 
 |   bool thumb2; | 
 |   bool thumb_only; | 
 |   if (parameters->target().is_big_endian()) | 
 |     { | 
 |       const Target_arm<true>* big_endian_target = | 
 | 	Target_arm<true>::default_target(); | 
 |       may_use_blx = big_endian_target->may_use_v5t_interworking(); | 
 |       should_force_pic_veneer |= big_endian_target->should_force_pic_veneer(); | 
 |       thumb2 = big_endian_target->using_thumb2(); | 
 |       thumb_only = big_endian_target->using_thumb_only(); | 
 |     } | 
 |   else | 
 |     { | 
 |       const Target_arm<false>* little_endian_target = | 
 | 	Target_arm<false>::default_target(); | 
 |       may_use_blx = little_endian_target->may_use_v5t_interworking(); | 
 |       should_force_pic_veneer |= | 
 |         little_endian_target->should_force_pic_veneer(); | 
 |       thumb2 = little_endian_target->using_thumb2(); | 
 |       thumb_only = little_endian_target->using_thumb_only(); | 
 |     } | 
 |  | 
 |   int64_t branch_offset; | 
 |   bool output_is_position_independent = | 
 |       parameters->options().output_is_position_independent(); | 
 |   if (r_type == elfcpp::R_ARM_THM_CALL || r_type == elfcpp::R_ARM_THM_JUMP24) | 
 |     { | 
 |       // For THUMB BLX instruction, bit 1 of target comes from bit 1 of the | 
 |       // base address (instruction address + 4). | 
 |       if ((r_type == elfcpp::R_ARM_THM_CALL) && may_use_blx && !target_is_thumb) | 
 | 	destination = Bits<32>::bit_select32(destination, location, 0x2); | 
 |       branch_offset = static_cast<int64_t>(destination) - location; | 
 |  | 
 |       // Handle cases where: | 
 |       // - this call goes too far (different Thumb/Thumb2 max | 
 |       //   distance) | 
 |       // - it's a Thumb->Arm call and blx is not available, or it's a | 
 |       //   Thumb->Arm branch (not bl). A stub is needed in this case. | 
 |       if ((!thumb2 | 
 | 	    && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET | 
 | 		|| (branch_offset < THM_MAX_BWD_BRANCH_OFFSET))) | 
 | 	  || (thumb2 | 
 | 	      && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET | 
 | 		  || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET))) | 
 | 	  || ((!target_is_thumb) | 
 | 	      && (((r_type == elfcpp::R_ARM_THM_CALL) && !may_use_blx) | 
 | 		  || (r_type == elfcpp::R_ARM_THM_JUMP24)))) | 
 | 	{ | 
 | 	  if (target_is_thumb) | 
 | 	    { | 
 | 	      // Thumb to thumb. | 
 | 	      if (!thumb_only) | 
 | 		{ | 
 | 		  stub_type = (output_is_position_independent | 
 | 			       || should_force_pic_veneer) | 
 | 		    // PIC stubs. | 
 | 		    ? ((may_use_blx | 
 | 			&& (r_type == elfcpp::R_ARM_THM_CALL)) | 
 | 		       // V5T and above. Stub starts with ARM code, so | 
 | 		       // we must be able to switch mode before | 
 | 		       // reaching it, which is only possible for 'bl' | 
 | 		       // (ie R_ARM_THM_CALL relocation). | 
 | 		       ? arm_stub_long_branch_any_thumb_pic | 
 | 		       // On V4T, use Thumb code only. | 
 | 		       : arm_stub_long_branch_v4t_thumb_thumb_pic) | 
 |  | 
 | 		    // non-PIC stubs. | 
 | 		    : ((may_use_blx | 
 | 			&& (r_type == elfcpp::R_ARM_THM_CALL)) | 
 | 		       ? arm_stub_long_branch_any_any // V5T and above. | 
 | 		       : arm_stub_long_branch_v4t_thumb_thumb);	// V4T. | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  stub_type = (output_is_position_independent | 
 | 			       || should_force_pic_veneer) | 
 | 		    ? arm_stub_long_branch_thumb_only_pic	// PIC stub. | 
 | 		    : arm_stub_long_branch_thumb_only;	// non-PIC stub. | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // Thumb to arm. | 
 |  | 
 | 	      // FIXME: We should check that the input section is from an | 
 | 	      // object that has interwork enabled. | 
 |  | 
 | 	      stub_type = (output_is_position_independent | 
 | 			   || should_force_pic_veneer) | 
 | 		// PIC stubs. | 
 | 		? ((may_use_blx | 
 | 		    && (r_type == elfcpp::R_ARM_THM_CALL)) | 
 | 		   ? arm_stub_long_branch_any_arm_pic	// V5T and above. | 
 | 		   : arm_stub_long_branch_v4t_thumb_arm_pic)	// V4T. | 
 |  | 
 | 		// non-PIC stubs. | 
 | 		: ((may_use_blx | 
 | 		    && (r_type == elfcpp::R_ARM_THM_CALL)) | 
 | 		   ? arm_stub_long_branch_any_any	// V5T and above. | 
 | 		   : arm_stub_long_branch_v4t_thumb_arm);	// V4T. | 
 |  | 
 | 	      // Handle v4t short branches. | 
 | 	      if ((stub_type == arm_stub_long_branch_v4t_thumb_arm) | 
 | 		  && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET) | 
 | 		  && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET)) | 
 | 		stub_type = arm_stub_short_branch_v4t_thumb_arm; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   else if (r_type == elfcpp::R_ARM_CALL | 
 | 	   || r_type == elfcpp::R_ARM_JUMP24 | 
 | 	   || r_type == elfcpp::R_ARM_PLT32) | 
 |     { | 
 |       branch_offset = static_cast<int64_t>(destination) - location; | 
 |       if (target_is_thumb) | 
 | 	{ | 
 | 	  // Arm to thumb. | 
 |  | 
 | 	  // FIXME: We should check that the input section is from an | 
 | 	  // object that has interwork enabled. | 
 |  | 
 | 	  // We have an extra 2-bytes reach because of | 
 | 	  // the mode change (bit 24 (H) of BLX encoding). | 
 | 	  if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2) | 
 | 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET) | 
 | 	      || ((r_type == elfcpp::R_ARM_CALL) && !may_use_blx) | 
 | 	      || (r_type == elfcpp::R_ARM_JUMP24) | 
 | 	      || (r_type == elfcpp::R_ARM_PLT32)) | 
 | 	    { | 
 | 	      stub_type = (output_is_position_independent | 
 | 			   || should_force_pic_veneer) | 
 | 		// PIC stubs. | 
 | 		? (may_use_blx | 
 | 		   ? arm_stub_long_branch_any_thumb_pic// V5T and above. | 
 | 		   : arm_stub_long_branch_v4t_arm_thumb_pic)	// V4T stub. | 
 |  | 
 | 		// non-PIC stubs. | 
 | 		: (may_use_blx | 
 | 		   ? arm_stub_long_branch_any_any	// V5T and above. | 
 | 		   : arm_stub_long_branch_v4t_arm_thumb);	// V4T. | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // Arm to arm. | 
 | 	  if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET | 
 | 	      || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)) | 
 | 	    { | 
 | 	      stub_type = (output_is_position_independent | 
 | 			   || should_force_pic_veneer) | 
 | 		? arm_stub_long_branch_any_arm_pic	// PIC stubs. | 
 | 		: arm_stub_long_branch_any_any;		/// non-PIC. | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return stub_type; | 
 | } | 
 |  | 
 | // Cortex_a8_stub methods. | 
 |  | 
 | // Return the instruction for a THUMB16_SPECIAL_TYPE instruction template. | 
 | // I is the position of the instruction template in the stub template. | 
 |  | 
 | uint16_t | 
 | Cortex_a8_stub::do_thumb16_special(size_t i) | 
 | { | 
 |   // The only use of this is to copy condition code from a conditional | 
 |   // branch being worked around to the corresponding conditional branch in | 
 |   // to the stub. | 
 |   gold_assert(this->stub_template()->type() == arm_stub_a8_veneer_b_cond | 
 | 	      && i == 0); | 
 |   uint16_t data = this->stub_template()->insns()[i].data(); | 
 |   gold_assert((data & 0xff00U) == 0xd000U); | 
 |   data |= ((this->original_insn_ >> 22) & 0xf) << 8; | 
 |   return data; | 
 | } | 
 |  | 
 | // Stub_factory methods. | 
 |  | 
 | Stub_factory::Stub_factory() | 
 | { | 
 |   // The instruction template sequences are declared as static | 
 |   // objects and initialized first time the constructor runs. | 
 |  | 
 |   // Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx | 
 |   // to reach the stub if necessary. | 
 |   static const Insn_template elf32_arm_stub_long_branch_any_any[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4] | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | 
 | 						// dcd   R_ARM_ABS32(X) | 
 |     }; | 
 |  | 
 |   // V4T Arm -> Thumb long branch stub. Used on V4T where blx is not | 
 |   // available. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe59fc000),	// ldr   ip, [pc, #0] | 
 |       Insn_template::arm_insn(0xe12fff1c),	// bx    ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | 
 | 						// dcd   R_ARM_ABS32(X) | 
 |     }; | 
 |  | 
 |   // Thumb -> Thumb long branch stub. Used on M-profile architectures. | 
 |   static const Insn_template elf32_arm_stub_long_branch_thumb_only[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0xb401),	// push {r0} | 
 |       Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8] | 
 |       Insn_template::thumb16_insn(0x4684),	// mov  ip, r0 | 
 |       Insn_template::thumb16_insn(0xbc01),	// pop  {r0} | 
 |       Insn_template::thumb16_insn(0x4760),	// bx   ip | 
 |       Insn_template::thumb16_insn(0xbf00),	// nop | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | 
 | 						// dcd  R_ARM_ABS32(X) | 
 |     }; | 
 |  | 
 |   // V4T Thumb -> Thumb long branch stub. Using the stack is not | 
 |   // allowed. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0x4778),	// bx   pc | 
 |       Insn_template::thumb16_insn(0x46c0),	// nop | 
 |       Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0] | 
 |       Insn_template::arm_insn(0xe12fff1c),	// bx   ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | 
 | 						// dcd  R_ARM_ABS32(X) | 
 |     }; | 
 |  | 
 |   // V4T Thumb -> ARM long branch stub. Used on V4T where blx is not | 
 |   // available. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0x4778),	// bx   pc | 
 |       Insn_template::thumb16_insn(0x46c0),	// nop | 
 |       Insn_template::arm_insn(0xe51ff004),	// ldr   pc, [pc, #-4] | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_ABS32, 0), | 
 | 						// dcd   R_ARM_ABS32(X) | 
 |     }; | 
 |  | 
 |   // V4T Thumb -> ARM short branch stub. Shorter variant of the above | 
 |   // one, when the destination is close enough. | 
 |   static const Insn_template elf32_arm_stub_short_branch_v4t_thumb_arm[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0x4778),		// bx   pc | 
 |       Insn_template::thumb16_insn(0x46c0),		// nop | 
 |       Insn_template::arm_rel_insn(0xea000000, -8),	// b    (X-8) | 
 |     }; | 
 |  | 
 |   // ARM/Thumb -> ARM long branch stub, PIC.  On V5T and above, use | 
 |   // blx to reach the stub if necessary. | 
 |   static const Insn_template elf32_arm_stub_long_branch_any_arm_pic[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe59fc000),	// ldr   r12, [pc] | 
 |       Insn_template::arm_insn(0xe08ff00c),	// add   pc, pc, ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), | 
 | 						// dcd   R_ARM_REL32(X-4) | 
 |     }; | 
 |  | 
 |   // ARM/Thumb -> Thumb long branch stub, PIC.  On V5T and above, use | 
 |   // blx to reach the stub if necessary.  We can not add into pc; | 
 |   // it is not guaranteed to mode switch (different in ARMv6 and | 
 |   // ARMv7). | 
 |   static const Insn_template elf32_arm_stub_long_branch_any_thumb_pic[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe59fc004),	// ldr   r12, [pc, #4] | 
 |       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip | 
 |       Insn_template::arm_insn(0xe12fff1c),	// bx    ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | 
 | 						// dcd   R_ARM_REL32(X) | 
 |     }; | 
 |  | 
 |   // V4T ARM -> ARM long branch stub, PIC. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe59fc004),	// ldr   ip, [pc, #4] | 
 |       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip | 
 |       Insn_template::arm_insn(0xe12fff1c),	// bx    ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | 
 | 						// dcd   R_ARM_REL32(X) | 
 |     }; | 
 |  | 
 |   // V4T Thumb -> ARM long branch stub, PIC. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0x4778),	// bx   pc | 
 |       Insn_template::thumb16_insn(0x46c0),	// nop | 
 |       Insn_template::arm_insn(0xe59fc000),	// ldr  ip, [pc, #0] | 
 |       Insn_template::arm_insn(0xe08cf00f),	// add  pc, ip, pc | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, -4), | 
 | 						// dcd  R_ARM_REL32(X) | 
 |     }; | 
 |  | 
 |   // Thumb -> Thumb long branch stub, PIC. Used on M-profile | 
 |   // architectures. | 
 |   static const Insn_template elf32_arm_stub_long_branch_thumb_only_pic[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0xb401),	// push {r0} | 
 |       Insn_template::thumb16_insn(0x4802),	// ldr  r0, [pc, #8] | 
 |       Insn_template::thumb16_insn(0x46fc),	// mov  ip, pc | 
 |       Insn_template::thumb16_insn(0x4484),	// add  ip, r0 | 
 |       Insn_template::thumb16_insn(0xbc01),	// pop  {r0} | 
 |       Insn_template::thumb16_insn(0x4760),	// bx   ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 4), | 
 | 						// dcd  R_ARM_REL32(X) | 
 |     }; | 
 |  | 
 |   // V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not | 
 |   // allowed. | 
 |   static const Insn_template elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] = | 
 |     { | 
 |       Insn_template::thumb16_insn(0x4778),	// bx   pc | 
 |       Insn_template::thumb16_insn(0x46c0),	// nop | 
 |       Insn_template::arm_insn(0xe59fc004),	// ldr  ip, [pc, #4] | 
 |       Insn_template::arm_insn(0xe08fc00c),	// add   ip, pc, ip | 
 |       Insn_template::arm_insn(0xe12fff1c),	// bx   ip | 
 |       Insn_template::data_word(0, elfcpp::R_ARM_REL32, 0), | 
 | 						// dcd  R_ARM_REL32(X) | 
 |     }; | 
 |  | 
 |   // Cortex-A8 erratum-workaround stubs. | 
 |  | 
 |   // Stub used for conditional branches (which may be beyond +/-1MB away, | 
 |   // so we can't use a conditional branch to reach this stub). | 
 |  | 
 |   // original code: | 
 |   // | 
 |   // 	b<cond> X | 
 |   // after: | 
 |   // | 
 |   static const Insn_template elf32_arm_stub_a8_veneer_b_cond[] = | 
 |     { | 
 |       Insn_template::thumb16_bcond_insn(0xd001),	//	b<cond>.n true | 
 |       Insn_template::thumb32_b_insn(0xf000b800, -4),	//	b.w after | 
 |       Insn_template::thumb32_b_insn(0xf000b800, -4)	// true: | 
 | 							//	b.w X | 
 |     }; | 
 |  | 
 |   // Stub used for b.w and bl.w instructions. | 
 |  | 
 |   static const Insn_template elf32_arm_stub_a8_veneer_b[] = | 
 |     { | 
 |       Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest | 
 |     }; | 
 |  | 
 |   static const Insn_template elf32_arm_stub_a8_veneer_bl[] = | 
 |     { | 
 |       Insn_template::thumb32_b_insn(0xf000b800, -4)	// b.w dest | 
 |     }; | 
 |  | 
 |   // Stub used for Thumb-2 blx.w instructions.  We modified the original blx.w | 
 |   // instruction (which switches to ARM mode) to point to this stub.  Jump to | 
 |   // the real destination using an ARM-mode branch. | 
 |   static const Insn_template elf32_arm_stub_a8_veneer_blx[] = | 
 |     { | 
 |       Insn_template::arm_rel_insn(0xea000000, -8)	// b dest | 
 |     }; | 
 |  | 
 |   // Stub used to provide an interworking for R_ARM_V4BX relocation | 
 |   // (bx r[n] instruction). | 
 |   static const Insn_template elf32_arm_stub_v4_veneer_bx[] = | 
 |     { | 
 |       Insn_template::arm_insn(0xe3100001),		// tst   r<n>, #1 | 
 |       Insn_template::arm_insn(0x01a0f000),		// moveq pc, r<n> | 
 |       Insn_template::arm_insn(0xe12fff10)		// bx    r<n> | 
 |     }; | 
 |  | 
 |   // Fill in the stub template look-up table.  Stub templates are constructed | 
 |   // per instance of Stub_factory for fast look-up without locking | 
 |   // in a thread-enabled environment. | 
 |  | 
 |   this->stub_templates_[arm_stub_none] = | 
 |     new Stub_template(arm_stub_none, NULL, 0); | 
 |  | 
 | #define DEF_STUB(x)	\ | 
 |   do \ | 
 |     { \ | 
 |       size_t array_size \ | 
 | 	= sizeof(elf32_arm_stub_##x) / sizeof(elf32_arm_stub_##x[0]); \ | 
 |       Stub_type type = arm_stub_##x; \ | 
 |       this->stub_templates_[type] = \ | 
 | 	new Stub_template(type, elf32_arm_stub_##x, array_size); \ | 
 |     } \ | 
 |   while (0); | 
 |  | 
 |   DEF_STUBS | 
 | #undef DEF_STUB | 
 | } | 
 |  | 
 | // Stub_table methods. | 
 |  | 
 | // Remove all Cortex-A8 stub. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::remove_all_cortex_a8_stubs() | 
 | { | 
 |   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); | 
 |        p != this->cortex_a8_stubs_.end(); | 
 |        ++p) | 
 |     delete p->second; | 
 |   this->cortex_a8_stubs_.clear(); | 
 | } | 
 |  | 
 | // Relocate one stub.  This is a helper for Stub_table::relocate_stubs(). | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::relocate_stub( | 
 |     Stub* stub, | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     Target_arm<big_endian>* arm_target, | 
 |     Output_section* output_section, | 
 |     unsigned char* view, | 
 |     Arm_address address, | 
 |     section_size_type view_size) | 
 | { | 
 |   const Stub_template* stub_template = stub->stub_template(); | 
 |   if (stub_template->reloc_count() != 0) | 
 |     { | 
 |       // Adjust view to cover the stub only. | 
 |       section_size_type offset = stub->offset(); | 
 |       section_size_type stub_size = stub_template->size(); | 
 |       gold_assert(offset + stub_size <= view_size); | 
 |  | 
 |       arm_target->relocate_stub(stub, relinfo, output_section, view + offset, | 
 | 				address + offset, stub_size); | 
 |     } | 
 | } | 
 |  | 
 | // Relocate all stubs in this stub table. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::relocate_stubs( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     Target_arm<big_endian>* arm_target, | 
 |     Output_section* output_section, | 
 |     unsigned char* view, | 
 |     Arm_address address, | 
 |     section_size_type view_size) | 
 | { | 
 |   // If we are passed a view bigger than the stub table's.  we need to | 
 |   // adjust the view. | 
 |   gold_assert(address == this->address() | 
 | 	      && (view_size | 
 | 		  == static_cast<section_size_type>(this->data_size()))); | 
 |  | 
 |   // Relocate all relocation stubs. | 
 |   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); | 
 |       p != this->reloc_stubs_.end(); | 
 |       ++p) | 
 |     this->relocate_stub(p->second, relinfo, arm_target, output_section, view, | 
 | 			address, view_size); | 
 |  | 
 |   // Relocate all Cortex-A8 stubs. | 
 |   for (Cortex_a8_stub_list::iterator p = this->cortex_a8_stubs_.begin(); | 
 |        p != this->cortex_a8_stubs_.end(); | 
 |        ++p) | 
 |     this->relocate_stub(p->second, relinfo, arm_target, output_section, view, | 
 | 			address, view_size); | 
 |  | 
 |   // Relocate all ARM V4BX stubs. | 
 |   for (Arm_v4bx_stub_list::iterator p = this->arm_v4bx_stubs_.begin(); | 
 |        p != this->arm_v4bx_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (*p != NULL) | 
 | 	this->relocate_stub(*p, relinfo, arm_target, output_section, view, | 
 | 			    address, view_size); | 
 |     } | 
 | } | 
 |  | 
 | // Write out the stubs to file. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::do_write(Output_file* of) | 
 | { | 
 |   off_t offset = this->offset(); | 
 |   const section_size_type oview_size = | 
 |     convert_to_section_size_type(this->data_size()); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   // Write relocation stubs. | 
 |   for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin(); | 
 |       p != this->reloc_stubs_.end(); | 
 |       ++p) | 
 |     { | 
 |       Reloc_stub* stub = p->second; | 
 |       Arm_address address = this->address() + stub->offset(); | 
 |       gold_assert(address | 
 | 		  == align_address(address, | 
 | 				   stub->stub_template()->alignment())); | 
 |       stub->write(oview + stub->offset(), stub->stub_template()->size(), | 
 | 		  big_endian); | 
 |     } | 
 |  | 
 |   // Write Cortex-A8 stubs. | 
 |   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); | 
 |        p != this->cortex_a8_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       Cortex_a8_stub* stub = p->second; | 
 |       Arm_address address = this->address() + stub->offset(); | 
 |       gold_assert(address | 
 | 		  == align_address(address, | 
 | 				   stub->stub_template()->alignment())); | 
 |       stub->write(oview + stub->offset(), stub->stub_template()->size(), | 
 | 		  big_endian); | 
 |     } | 
 |  | 
 |   // Write ARM V4BX relocation stubs. | 
 |   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); | 
 |        p != this->arm_v4bx_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (*p == NULL) | 
 | 	continue; | 
 |  | 
 |       Arm_address address = this->address() + (*p)->offset(); | 
 |       gold_assert(address | 
 | 		  == align_address(address, | 
 | 				   (*p)->stub_template()->alignment())); | 
 |       (*p)->write(oview + (*p)->offset(), (*p)->stub_template()->size(), | 
 | 		  big_endian); | 
 |     } | 
 |  | 
 |   of->write_output_view(this->offset(), oview_size, oview); | 
 | } | 
 |  | 
 | // Update the data size and address alignment of the stub table at the end | 
 | // of a relaxation pass.   Return true if either the data size or the | 
 | // alignment changed in this relaxation pass. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Stub_table<big_endian>::update_data_size_and_addralign() | 
 | { | 
 |   // Go over all stubs in table to compute data size and address alignment. | 
 |   off_t size = this->reloc_stubs_size_; | 
 |   unsigned addralign = this->reloc_stubs_addralign_; | 
 |  | 
 |   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); | 
 |        p != this->cortex_a8_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       const Stub_template* stub_template = p->second->stub_template(); | 
 |       addralign = std::max(addralign, stub_template->alignment()); | 
 |       size = (align_address(size, stub_template->alignment()) | 
 | 	      + stub_template->size()); | 
 |     } | 
 |  | 
 |   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); | 
 |        p != this->arm_v4bx_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       if (*p == NULL) | 
 | 	continue; | 
 |  | 
 |       const Stub_template* stub_template = (*p)->stub_template(); | 
 |       addralign = std::max(addralign, stub_template->alignment()); | 
 |       size = (align_address(size, stub_template->alignment()) | 
 | 	      + stub_template->size()); | 
 |     } | 
 |  | 
 |   // Check if either data size or alignment changed in this pass. | 
 |   // Update prev_data_size_ and prev_addralign_.  These will be used | 
 |   // as the current data size and address alignment for the next pass. | 
 |   bool changed = size != this->prev_data_size_; | 
 |   this->prev_data_size_ = size; | 
 |  | 
 |   if (addralign != this->prev_addralign_) | 
 |     changed = true; | 
 |   this->prev_addralign_ = addralign; | 
 |  | 
 |   return changed; | 
 | } | 
 |  | 
 | // Finalize the stubs.  This sets the offsets of the stubs within the stub | 
 | // table.  It also marks all input sections needing Cortex-A8 workaround. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::finalize_stubs() | 
 | { | 
 |   off_t off = this->reloc_stubs_size_; | 
 |   for (Cortex_a8_stub_list::const_iterator p = this->cortex_a8_stubs_.begin(); | 
 |        p != this->cortex_a8_stubs_.end(); | 
 |        ++p) | 
 |     { | 
 |       Cortex_a8_stub* stub = p->second; | 
 |       const Stub_template* stub_template = stub->stub_template(); | 
 |       uint64_t stub_addralign = stub_template->alignment(); | 
 |       off = align_address(off, stub_addralign); | 
 |       stub->set_offset(off); | 
 |       off += stub_template->size(); | 
 |  | 
 |       // Mark input section so that we can determine later if a code section | 
 |       // needs the Cortex-A8 workaround quickly. | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj(stub->relobj()); | 
 |       arm_relobj->mark_section_for_cortex_a8_workaround(stub->shndx()); | 
 |     } | 
 |  | 
 |   for (Arm_v4bx_stub_list::const_iterator p = this->arm_v4bx_stubs_.begin(); | 
 |       p != this->arm_v4bx_stubs_.end(); | 
 |       ++p) | 
 |     { | 
 |       if (*p == NULL) | 
 | 	continue; | 
 |  | 
 |       const Stub_template* stub_template = (*p)->stub_template(); | 
 |       uint64_t stub_addralign = stub_template->alignment(); | 
 |       off = align_address(off, stub_addralign); | 
 |       (*p)->set_offset(off); | 
 |       off += stub_template->size(); | 
 |     } | 
 |  | 
 |   gold_assert(off <= this->prev_data_size_); | 
 | } | 
 |  | 
 | // Apply Cortex-A8 workaround to an address range between VIEW_ADDRESS | 
 | // and VIEW_ADDRESS + VIEW_SIZE - 1.  VIEW points to the mapped address | 
 | // of the address range seen by the linker. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Stub_table<big_endian>::apply_cortex_a8_workaround_to_address_range( | 
 |     Target_arm<big_endian>* arm_target, | 
 |     unsigned char* view, | 
 |     Arm_address view_address, | 
 |     section_size_type view_size) | 
 | { | 
 |   // Cortex-A8 stubs are sorted by addresses of branches being fixed up. | 
 |   for (Cortex_a8_stub_list::const_iterator p = | 
 | 	 this->cortex_a8_stubs_.lower_bound(view_address); | 
 |        ((p != this->cortex_a8_stubs_.end()) | 
 | 	&& (p->first < (view_address + view_size))); | 
 |        ++p) | 
 |     { | 
 |       // We do not store the THUMB bit in the LSB of either the branch address | 
 |       // or the stub offset.  There is no need to strip the LSB. | 
 |       Arm_address branch_address = p->first; | 
 |       const Cortex_a8_stub* stub = p->second; | 
 |       Arm_address stub_address = this->address() + stub->offset(); | 
 |  | 
 |       // Offset of the branch instruction relative to this view. | 
 |       section_size_type offset = | 
 | 	convert_to_section_size_type(branch_address - view_address); | 
 |       gold_assert((offset + 4) <= view_size); | 
 |  | 
 |       arm_target->apply_cortex_a8_workaround(stub, stub_address, | 
 | 					     view + offset, branch_address); | 
 |     } | 
 | } | 
 |  | 
 | // Arm_input_section methods. | 
 |  | 
 | // Initialize an Arm_input_section. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_input_section<big_endian>::init() | 
 | { | 
 |   Relobj* relobj = this->relobj(); | 
 |   unsigned int shndx = this->shndx(); | 
 |  | 
 |   // We have to cache original size, alignment and contents to avoid locking | 
 |   // the original file. | 
 |   this->original_addralign_ = | 
 |     convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx)); | 
 |  | 
 |   // This is not efficient but we expect only a small number of relaxed | 
 |   // input sections for stubs. | 
 |   section_size_type section_size; | 
 |   const unsigned char* section_contents = | 
 |     relobj->section_contents(shndx, §ion_size, false); | 
 |   this->original_size_ = | 
 |     convert_types<uint32_t, uint64_t>(relobj->section_size(shndx)); | 
 |  | 
 |   gold_assert(this->original_contents_ == NULL); | 
 |   this->original_contents_ = new unsigned char[section_size]; | 
 |   memcpy(this->original_contents_, section_contents, section_size); | 
 |  | 
 |   // We want to make this look like the original input section after | 
 |   // output sections are finalized. | 
 |   Output_section* os = relobj->output_section(shndx); | 
 |   off_t offset = relobj->output_section_offset(shndx); | 
 |   gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx)); | 
 |   this->set_address(os->address() + offset); | 
 |   this->set_file_offset(os->offset() + offset); | 
 |  | 
 |   this->set_current_data_size(this->original_size_); | 
 |   this->finalize_data_size(); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_input_section<big_endian>::do_write(Output_file* of) | 
 | { | 
 |   // We have to write out the original section content. | 
 |   gold_assert(this->original_contents_ != NULL); | 
 |   of->write(this->offset(), this->original_contents_, | 
 | 	    this->original_size_); | 
 |  | 
 |   // If this owns a stub table and it is not empty, write it. | 
 |   if (this->is_stub_table_owner() && !this->stub_table_->empty()) | 
 |     this->stub_table_->write(of); | 
 | } | 
 |  | 
 | // Finalize data size. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_input_section<big_endian>::set_final_data_size() | 
 | { | 
 |   off_t off = convert_types<off_t, uint64_t>(this->original_size_); | 
 |  | 
 |   if (this->is_stub_table_owner()) | 
 |     { | 
 |       this->stub_table_->finalize_data_size(); | 
 |       off = align_address(off, this->stub_table_->addralign()); | 
 |       off += this->stub_table_->data_size(); | 
 |     } | 
 |   this->set_data_size(off); | 
 | } | 
 |  | 
 | // Reset address and file offset. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_input_section<big_endian>::do_reset_address_and_file_offset() | 
 | { | 
 |   // Size of the original input section contents. | 
 |   off_t off = convert_types<off_t, uint64_t>(this->original_size_); | 
 |  | 
 |   // If this is a stub table owner, account for the stub table size. | 
 |   if (this->is_stub_table_owner()) | 
 |     { | 
 |       Stub_table<big_endian>* stub_table = this->stub_table_; | 
 |  | 
 |       // Reset the stub table's address and file offset.  The | 
 |       // current data size for child will be updated after that. | 
 |       stub_table_->reset_address_and_file_offset(); | 
 |       off = align_address(off, stub_table_->addralign()); | 
 |       off += stub_table->current_data_size(); | 
 |     } | 
 |  | 
 |   this->set_current_data_size(off); | 
 | } | 
 |  | 
 | // Arm_exidx_cantunwind methods. | 
 |  | 
 | // Write this to Output file OF for a fixed endianness. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_exidx_cantunwind::do_fixed_endian_write(Output_file* of) | 
 | { | 
 |   off_t offset = this->offset(); | 
 |   const section_size_type oview_size = 8; | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   Output_section* os = this->relobj_->output_section(this->shndx_); | 
 |   gold_assert(os != NULL); | 
 |  | 
 |   Arm_relobj<big_endian>* arm_relobj = | 
 |     Arm_relobj<big_endian>::as_arm_relobj(this->relobj_); | 
 |   Arm_address output_offset = | 
 |     arm_relobj->get_output_section_offset(this->shndx_); | 
 |   Arm_address section_start; | 
 |   section_size_type section_size; | 
 |  | 
 |   // Find out the end of the text section referred by this. | 
 |   if (output_offset != Arm_relobj<big_endian>::invalid_address) | 
 |     { | 
 |       section_start = os->address() + output_offset; | 
 |       const Arm_exidx_input_section* exidx_input_section = | 
 | 	arm_relobj->exidx_input_section_by_link(this->shndx_); | 
 |       gold_assert(exidx_input_section != NULL); | 
 |       section_size = | 
 | 	convert_to_section_size_type(exidx_input_section->text_size()); | 
 |     } | 
 |   else | 
 |     { | 
 |       // Currently this only happens for a relaxed section. | 
 |       const Output_relaxed_input_section* poris = | 
 | 	os->find_relaxed_input_section(this->relobj_, this->shndx_); | 
 |       gold_assert(poris != NULL); | 
 |       section_start = poris->address(); | 
 |       section_size = convert_to_section_size_type(poris->data_size()); | 
 |     } | 
 |  | 
 |   // We always append this to the end of an EXIDX section. | 
 |   Arm_address output_address = section_start + section_size; | 
 |  | 
 |   // Write out the entry.  The first word either points to the beginning | 
 |   // or after the end of a text section.  The second word is the special | 
 |   // EXIDX_CANTUNWIND value. | 
 |   uint32_t prel31_offset = output_address - this->address(); | 
 |   if (Bits<31>::has_overflow32(offset)) | 
 |     gold_error(_("PREL31 overflow in EXIDX_CANTUNWIND entry")); | 
 |   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview, | 
 | 						   prel31_offset & 0x7fffffffU); | 
 |   elfcpp::Swap_unaligned<32, big_endian>::writeval(oview + 4, | 
 | 						   elfcpp::EXIDX_CANTUNWIND); | 
 |  | 
 |   of->write_output_view(this->offset(), oview_size, oview); | 
 | } | 
 |  | 
 | // Arm_exidx_merged_section methods. | 
 |  | 
 | // Constructor for Arm_exidx_merged_section. | 
 | // EXIDX_INPUT_SECTION points to the unmodified EXIDX input section. | 
 | // SECTION_OFFSET_MAP points to a section offset map describing how | 
 | // parts of the input section are mapped to output.  DELETED_BYTES is | 
 | // the number of bytes deleted from the EXIDX input section. | 
 |  | 
 | Arm_exidx_merged_section::Arm_exidx_merged_section( | 
 |     const Arm_exidx_input_section& exidx_input_section, | 
 |     const Arm_exidx_section_offset_map& section_offset_map, | 
 |     uint32_t deleted_bytes) | 
 |   : Output_relaxed_input_section(exidx_input_section.relobj(), | 
 | 				 exidx_input_section.shndx(), | 
 | 				 exidx_input_section.addralign()), | 
 |     exidx_input_section_(exidx_input_section), | 
 |     section_offset_map_(section_offset_map) | 
 | { | 
 |   // If we retain or discard the whole EXIDX input section,  we would | 
 |   // not be here. | 
 |   gold_assert(deleted_bytes != 0 | 
 | 	      && deleted_bytes != this->exidx_input_section_.size()); | 
 |  | 
 |   // Fix size here so that we do not need to implement set_final_data_size. | 
 |   uint32_t size = exidx_input_section.size() - deleted_bytes; | 
 |   this->set_data_size(size); | 
 |   this->fix_data_size(); | 
 |  | 
 |   // Allocate buffer for section contents and build contents. | 
 |   this->section_contents_ = new unsigned char[size]; | 
 | } | 
 |  | 
 | // Build the contents of a merged EXIDX output section. | 
 |  | 
 | void | 
 | Arm_exidx_merged_section::build_contents( | 
 |     const unsigned char* original_contents, | 
 |     section_size_type original_size) | 
 | { | 
 |   // Go over spans of input offsets and write only those that are not | 
 |   // discarded. | 
 |   section_offset_type in_start = 0; | 
 |   section_offset_type out_start = 0; | 
 |   section_offset_type in_max = | 
 |     convert_types<section_offset_type>(original_size); | 
 |   section_offset_type out_max = | 
 |     convert_types<section_offset_type>(this->data_size()); | 
 |   for (Arm_exidx_section_offset_map::const_iterator p = | 
 | 	this->section_offset_map_.begin(); | 
 |       p != this->section_offset_map_.end(); | 
 |       ++p) | 
 |     { | 
 |       section_offset_type in_end = p->first; | 
 |       gold_assert(in_end >= in_start); | 
 |       section_offset_type out_end = p->second; | 
 |       size_t in_chunk_size = convert_types<size_t>(in_end - in_start + 1); | 
 |       if (out_end != -1) | 
 | 	{ | 
 | 	  size_t out_chunk_size = | 
 | 	    convert_types<size_t>(out_end - out_start + 1); | 
 |  | 
 | 	  gold_assert(out_chunk_size == in_chunk_size | 
 | 		      && in_end < in_max && out_end < out_max); | 
 |  | 
 | 	  memcpy(this->section_contents_ + out_start, | 
 | 		 original_contents + in_start, | 
 | 		 out_chunk_size); | 
 | 	  out_start += out_chunk_size; | 
 | 	} | 
 |       in_start += in_chunk_size; | 
 |     } | 
 | } | 
 |  | 
 | // Given an input OBJECT, an input section index SHNDX within that | 
 | // object, and an OFFSET relative to the start of that input | 
 | // section, return whether or not the corresponding offset within | 
 | // the output section is known.  If this function returns true, it | 
 | // sets *POUTPUT to the output offset.  The value -1 indicates that | 
 | // this input offset is being discarded. | 
 |  | 
 | bool | 
 | Arm_exidx_merged_section::do_output_offset( | 
 |     const Relobj* relobj, | 
 |     unsigned int shndx, | 
 |     section_offset_type offset, | 
 |     section_offset_type* poutput) const | 
 | { | 
 |   // We only handle offsets for the original EXIDX input section. | 
 |   if (relobj != this->exidx_input_section_.relobj() | 
 |       || shndx != this->exidx_input_section_.shndx()) | 
 |     return false; | 
 |  | 
 |   section_offset_type section_size = | 
 |     convert_types<section_offset_type>(this->exidx_input_section_.size()); | 
 |   if (offset < 0 || offset >= section_size) | 
 |     // Input offset is out of valid range. | 
 |     *poutput = -1; | 
 |   else | 
 |     { | 
 |       // We need to look up the section offset map to determine the output | 
 |       // offset.  Find the reference point in map that is first offset | 
 |       // bigger than or equal to this offset. | 
 |       Arm_exidx_section_offset_map::const_iterator p = | 
 | 	this->section_offset_map_.lower_bound(offset); | 
 |  | 
 |       // The section offset maps are build such that this should not happen if | 
 |       // input offset is in the valid range. | 
 |       gold_assert(p != this->section_offset_map_.end()); | 
 |  | 
 |       // We need to check if this is dropped. | 
 |      section_offset_type ref = p->first; | 
 |      section_offset_type mapped_ref = p->second; | 
 |  | 
 |       if (mapped_ref != Arm_exidx_input_section::invalid_offset) | 
 | 	// Offset is present in output. | 
 | 	*poutput = mapped_ref + (offset - ref); | 
 |       else | 
 | 	// Offset is discarded owing to EXIDX entry merging. | 
 | 	*poutput = -1; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Write this to output file OF. | 
 |  | 
 | void | 
 | Arm_exidx_merged_section::do_write(Output_file* of) | 
 | { | 
 |   off_t offset = this->offset(); | 
 |   const section_size_type oview_size = this->data_size(); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   Output_section* os = this->relobj()->output_section(this->shndx()); | 
 |   gold_assert(os != NULL); | 
 |  | 
 |   memcpy(oview, this->section_contents_, oview_size); | 
 |   of->write_output_view(this->offset(), oview_size, oview); | 
 | } | 
 |  | 
 | // Arm_exidx_fixup methods. | 
 |  | 
 | // Append an EXIDX_CANTUNWIND in the current output section if the last entry | 
 | // is not an EXIDX_CANTUNWIND entry already.  The new EXIDX_CANTUNWIND entry | 
 | // points to the end of the last seen EXIDX section. | 
 |  | 
 | void | 
 | Arm_exidx_fixup::add_exidx_cantunwind_as_needed() | 
 | { | 
 |   if (this->last_unwind_type_ != UT_EXIDX_CANTUNWIND | 
 |       && this->last_input_section_ != NULL) | 
 |     { | 
 |       Relobj* relobj = this->last_input_section_->relobj(); | 
 |       unsigned int text_shndx = this->last_input_section_->link(); | 
 |       Arm_exidx_cantunwind* cantunwind = | 
 | 	new Arm_exidx_cantunwind(relobj, text_shndx); | 
 |       this->exidx_output_section_->add_output_section_data(cantunwind); | 
 |       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; | 
 |     } | 
 | } | 
 |  | 
 | // Process an EXIDX section entry in input.  Return whether this entry | 
 | // can be deleted in the output.  SECOND_WORD in the second word of the | 
 | // EXIDX entry. | 
 |  | 
 | bool | 
 | Arm_exidx_fixup::process_exidx_entry(uint32_t second_word) | 
 | { | 
 |   bool delete_entry; | 
 |   if (second_word == elfcpp::EXIDX_CANTUNWIND) | 
 |     { | 
 |       // Merge if previous entry is also an EXIDX_CANTUNWIND. | 
 |       delete_entry = this->last_unwind_type_ == UT_EXIDX_CANTUNWIND; | 
 |       this->last_unwind_type_ = UT_EXIDX_CANTUNWIND; | 
 |     } | 
 |   else if ((second_word & 0x80000000) != 0) | 
 |     { | 
 |       // Inlined unwinding data.  Merge if equal to previous. | 
 |       delete_entry = (merge_exidx_entries_ | 
 | 		      && this->last_unwind_type_ == UT_INLINED_ENTRY | 
 | 		      && this->last_inlined_entry_ == second_word); | 
 |       this->last_unwind_type_ = UT_INLINED_ENTRY; | 
 |       this->last_inlined_entry_ = second_word; | 
 |     } | 
 |   else | 
 |     { | 
 |       // Normal table entry.  In theory we could merge these too, | 
 |       // but duplicate entries are likely to be much less common. | 
 |       delete_entry = false; | 
 |       this->last_unwind_type_ = UT_NORMAL_ENTRY; | 
 |     } | 
 |   return delete_entry; | 
 | } | 
 |  | 
 | // Update the current section offset map during EXIDX section fix-up. | 
 | // If there is no map, create one.  INPUT_OFFSET is the offset of a | 
 | // reference point, DELETED_BYTES is the number of deleted by in the | 
 | // section so far.  If DELETE_ENTRY is true, the reference point and | 
 | // all offsets after the previous reference point are discarded. | 
 |  | 
 | void | 
 | Arm_exidx_fixup::update_offset_map( | 
 |     section_offset_type input_offset, | 
 |     section_size_type deleted_bytes, | 
 |     bool delete_entry) | 
 | { | 
 |   if (this->section_offset_map_ == NULL) | 
 |     this->section_offset_map_ = new Arm_exidx_section_offset_map(); | 
 |   section_offset_type output_offset; | 
 |   if (delete_entry) | 
 |     output_offset = Arm_exidx_input_section::invalid_offset; | 
 |   else | 
 |     output_offset = input_offset - deleted_bytes; | 
 |   (*this->section_offset_map_)[input_offset] = output_offset; | 
 | } | 
 |  | 
 | // Process EXIDX_INPUT_SECTION for EXIDX entry merging.  Return the number of | 
 | // bytes deleted.  SECTION_CONTENTS points to the contents of the EXIDX | 
 | // section and SECTION_SIZE is the number of bytes pointed by SECTION_CONTENTS. | 
 | // If some entries are merged, also store a pointer to a newly created | 
 | // Arm_exidx_section_offset_map object in *PSECTION_OFFSET_MAP.  The caller | 
 | // owns the map and is responsible for releasing it after use. | 
 |  | 
 | template<bool big_endian> | 
 | uint32_t | 
 | Arm_exidx_fixup::process_exidx_section( | 
 |     const Arm_exidx_input_section* exidx_input_section, | 
 |     const unsigned char* section_contents, | 
 |     section_size_type section_size, | 
 |     Arm_exidx_section_offset_map** psection_offset_map) | 
 | { | 
 |   Relobj* relobj = exidx_input_section->relobj(); | 
 |   unsigned shndx = exidx_input_section->shndx(); | 
 |  | 
 |   if ((section_size % 8) != 0) | 
 |     { | 
 |       // Something is wrong with this section.  Better not touch it. | 
 |       gold_error(_("uneven .ARM.exidx section size in %s section %u"), | 
 | 		 relobj->name().c_str(), shndx); | 
 |       this->last_input_section_ = exidx_input_section; | 
 |       this->last_unwind_type_ = UT_NONE; | 
 |       return 0; | 
 |     } | 
 |  | 
 |   uint32_t deleted_bytes = 0; | 
 |   bool prev_delete_entry = false; | 
 |   gold_assert(this->section_offset_map_ == NULL); | 
 |  | 
 |   for (section_size_type i = 0; i < section_size; i += 8) | 
 |     { | 
 |       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |       const Valtype* wv = | 
 | 	  reinterpret_cast<const Valtype*>(section_contents + i + 4); | 
 |       uint32_t second_word = elfcpp::Swap<32, big_endian>::readval(wv); | 
 |  | 
 |       bool delete_entry = this->process_exidx_entry(second_word); | 
 |  | 
 |       // Entry deletion causes changes in output offsets.  We use a std::map | 
 |       // to record these.  And entry (x, y) means input offset x | 
 |       // is mapped to output offset y.  If y is invalid_offset, then x is | 
 |       // dropped in the output.  Because of the way std::map::lower_bound | 
 |       // works, we record the last offset in a region w.r.t to keeping or | 
 |       // dropping.  If there is no entry (x0, y0) for an input offset x0, | 
 |       // the output offset y0 of it is determined by the output offset y1 of | 
 |       // the smallest input offset x1 > x0 that there is an (x1, y1) entry | 
 |       // in the map.  If y1 is not -1, then y0 = y1 + x0 - x1.  Otherwise, y1 | 
 |       // y0 is also -1. | 
 |       if (delete_entry != prev_delete_entry && i != 0) | 
 | 	this->update_offset_map(i - 1, deleted_bytes, prev_delete_entry); | 
 |  | 
 |       // Update total deleted bytes for this entry. | 
 |       if (delete_entry) | 
 | 	deleted_bytes += 8; | 
 |  | 
 |       prev_delete_entry = delete_entry; | 
 |     } | 
 |  | 
 |   // If section offset map is not NULL, make an entry for the end of | 
 |   // section. | 
 |   if (this->section_offset_map_ != NULL) | 
 |     update_offset_map(section_size - 1, deleted_bytes, prev_delete_entry); | 
 |  | 
 |   *psection_offset_map = this->section_offset_map_; | 
 |   this->section_offset_map_ = NULL; | 
 |   this->last_input_section_ = exidx_input_section; | 
 |  | 
 |   // Set the first output text section so that we can link the EXIDX output | 
 |   // section to it.  Ignore any EXIDX input section that is completely merged. | 
 |   if (this->first_output_text_section_ == NULL | 
 |       && deleted_bytes != section_size) | 
 |     { | 
 |       unsigned int link = exidx_input_section->link(); | 
 |       Output_section* os = relobj->output_section(link); | 
 |       gold_assert(os != NULL); | 
 |       this->first_output_text_section_ = os; | 
 |     } | 
 |  | 
 |   return deleted_bytes; | 
 | } | 
 |  | 
 | // Arm_output_section methods. | 
 |  | 
 | // Create a stub group for input sections from BEGIN to END.  OWNER | 
 | // points to the input section to be the owner a new stub table. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_section<big_endian>::create_stub_group( | 
 |   Input_section_list::const_iterator begin, | 
 |   Input_section_list::const_iterator end, | 
 |   Input_section_list::const_iterator owner, | 
 |   Target_arm<big_endian>* target, | 
 |   std::vector<Output_relaxed_input_section*>* new_relaxed_sections, | 
 |   const Task* task) | 
 | { | 
 |   // We use a different kind of relaxed section in an EXIDX section. | 
 |   // The static casting from Output_relaxed_input_section to | 
 |   // Arm_input_section is invalid in an EXIDX section.  We are okay | 
 |   // because we should not be calling this for an EXIDX section. | 
 |   gold_assert(this->type() != elfcpp::SHT_ARM_EXIDX); | 
 |  | 
 |   // Currently we convert ordinary input sections into relaxed sections only | 
 |   // at this point but we may want to support creating relaxed input section | 
 |   // very early.  So we check here to see if owner is already a relaxed | 
 |   // section. | 
 |  | 
 |   Arm_input_section<big_endian>* arm_input_section; | 
 |   if (owner->is_relaxed_input_section()) | 
 |     { | 
 |       arm_input_section = | 
 | 	Arm_input_section<big_endian>::as_arm_input_section( | 
 | 	  owner->relaxed_input_section()); | 
 |     } | 
 |   else | 
 |     { | 
 |       gold_assert(owner->is_input_section()); | 
 |       // Create a new relaxed input section.  We need to lock the original | 
 |       // file. | 
 |       Task_lock_obj<Object> tl(task, owner->relobj()); | 
 |       arm_input_section = | 
 | 	target->new_arm_input_section(owner->relobj(), owner->shndx()); | 
 |       new_relaxed_sections->push_back(arm_input_section); | 
 |     } | 
 |  | 
 |   // Create a stub table. | 
 |   Stub_table<big_endian>* stub_table = | 
 |     target->new_stub_table(arm_input_section); | 
 |  | 
 |   arm_input_section->set_stub_table(stub_table); | 
 |  | 
 |   Input_section_list::const_iterator p = begin; | 
 |   Input_section_list::const_iterator prev_p; | 
 |  | 
 |   // Look for input sections or relaxed input sections in [begin ... end]. | 
 |   do | 
 |     { | 
 |       if (p->is_input_section() || p->is_relaxed_input_section()) | 
 | 	{ | 
 | 	  // The stub table information for input sections live | 
 | 	  // in their objects. | 
 | 	  Arm_relobj<big_endian>* arm_relobj = | 
 | 	    Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | 
 | 	  arm_relobj->set_stub_table(p->shndx(), stub_table); | 
 | 	} | 
 |       prev_p = p++; | 
 |     } | 
 |   while (prev_p != end); | 
 | } | 
 |  | 
 | // Group input sections for stub generation.  GROUP_SIZE is roughly the limit | 
 | // of stub groups.  We grow a stub group by adding input section until the | 
 | // size is just below GROUP_SIZE.  The last input section will be converted | 
 | // into a stub table.  If STUB_ALWAYS_AFTER_BRANCH is false, we also add | 
 | // input section after the stub table, effectively double the group size. | 
 | // | 
 | // This is similar to the group_sections() function in elf32-arm.c but is | 
 | // implemented differently. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_section<big_endian>::group_sections( | 
 |     section_size_type group_size, | 
 |     bool stubs_always_after_branch, | 
 |     Target_arm<big_endian>* target, | 
 |     const Task* task) | 
 | { | 
 |   // States for grouping. | 
 |   typedef enum | 
 |   { | 
 |     // No group is being built. | 
 |     NO_GROUP, | 
 |     // A group is being built but the stub table is not found yet. | 
 |     // We keep group a stub group until the size is just under GROUP_SIZE. | 
 |     // The last input section in the group will be used as the stub table. | 
 |     FINDING_STUB_SECTION, | 
 |     // A group is being built and we have already found a stub table. | 
 |     // We enter this state to grow a stub group by adding input section | 
 |     // after the stub table.  This effectively doubles the group size. | 
 |     HAS_STUB_SECTION | 
 |   } State; | 
 |  | 
 |   // Any newly created relaxed sections are stored here. | 
 |   std::vector<Output_relaxed_input_section*> new_relaxed_sections; | 
 |  | 
 |   State state = NO_GROUP; | 
 |   section_size_type off = 0; | 
 |   section_size_type group_begin_offset = 0; | 
 |   section_size_type group_end_offset = 0; | 
 |   section_size_type stub_table_end_offset = 0; | 
 |   Input_section_list::const_iterator group_begin = | 
 |     this->input_sections().end(); | 
 |   Input_section_list::const_iterator stub_table = | 
 |     this->input_sections().end(); | 
 |   Input_section_list::const_iterator group_end = this->input_sections().end(); | 
 |   for (Input_section_list::const_iterator p = this->input_sections().begin(); | 
 |        p != this->input_sections().end(); | 
 |        ++p) | 
 |     { | 
 |       section_size_type section_begin_offset = | 
 | 	align_address(off, p->addralign()); | 
 |       section_size_type section_end_offset = | 
 | 	section_begin_offset + p->data_size(); | 
 |  | 
 |       // Check to see if we should group the previously seen sections. | 
 |       switch (state) | 
 | 	{ | 
 | 	case NO_GROUP: | 
 | 	  break; | 
 |  | 
 | 	case FINDING_STUB_SECTION: | 
 | 	  // Adding this section makes the group larger than GROUP_SIZE. | 
 | 	  if (section_end_offset - group_begin_offset >= group_size) | 
 | 	    { | 
 | 	      if (stubs_always_after_branch) | 
 | 		{ | 
 | 		  gold_assert(group_end != this->input_sections().end()); | 
 | 		  this->create_stub_group(group_begin, group_end, group_end, | 
 | 					  target, &new_relaxed_sections, | 
 | 					  task); | 
 | 		  state = NO_GROUP; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  // But wait, there's more!  Input sections up to | 
 | 		  // stub_group_size bytes after the stub table can be | 
 | 		  // handled by it too. | 
 | 		  state = HAS_STUB_SECTION; | 
 | 		  stub_table = group_end; | 
 | 		  stub_table_end_offset = group_end_offset; | 
 | 		} | 
 | 	    } | 
 | 	    break; | 
 |  | 
 | 	case HAS_STUB_SECTION: | 
 | 	  // Adding this section makes the post stub-section group larger | 
 | 	  // than GROUP_SIZE. | 
 | 	  if (section_end_offset - stub_table_end_offset >= group_size) | 
 | 	   { | 
 | 	     gold_assert(group_end != this->input_sections().end()); | 
 | 	     this->create_stub_group(group_begin, group_end, stub_table, | 
 | 				     target, &new_relaxed_sections, task); | 
 | 	     state = NO_GROUP; | 
 | 	   } | 
 | 	   break; | 
 |  | 
 | 	  default: | 
 | 	    gold_unreachable(); | 
 | 	} | 
 |  | 
 |       // If we see an input section and currently there is no group, start | 
 |       // a new one.  Skip any empty sections.  We look at the data size | 
 |       // instead of calling p->relobj()->section_size() to avoid locking. | 
 |       if ((p->is_input_section() || p->is_relaxed_input_section()) | 
 | 	  && (p->data_size() != 0)) | 
 | 	{ | 
 | 	  if (state == NO_GROUP) | 
 | 	    { | 
 | 	      state = FINDING_STUB_SECTION; | 
 | 	      group_begin = p; | 
 | 	      group_begin_offset = section_begin_offset; | 
 | 	    } | 
 |  | 
 | 	  // Keep track of the last input section seen. | 
 | 	  group_end = p; | 
 | 	  group_end_offset = section_end_offset; | 
 | 	} | 
 |  | 
 |       off = section_end_offset; | 
 |     } | 
 |  | 
 |   // Create a stub group for any ungrouped sections. | 
 |   if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION) | 
 |     { | 
 |       gold_assert(group_end != this->input_sections().end()); | 
 |       this->create_stub_group(group_begin, group_end, | 
 | 			      (state == FINDING_STUB_SECTION | 
 | 			       ? group_end | 
 | 			       : stub_table), | 
 | 			       target, &new_relaxed_sections, task); | 
 |     } | 
 |  | 
 |   // Convert input section into relaxed input section in a batch. | 
 |   if (!new_relaxed_sections.empty()) | 
 |     this->convert_input_sections_to_relaxed_sections(new_relaxed_sections); | 
 |  | 
 |   // Update the section offsets | 
 |   for (size_t i = 0; i < new_relaxed_sections.size(); ++i) | 
 |     { | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj( | 
 | 	  new_relaxed_sections[i]->relobj()); | 
 |       unsigned int shndx = new_relaxed_sections[i]->shndx(); | 
 |       // Tell Arm_relobj that this input section is converted. | 
 |       arm_relobj->convert_input_section_to_relaxed_section(shndx); | 
 |     } | 
 | } | 
 |  | 
 | // Append non empty text sections in this to LIST in ascending | 
 | // order of their position in this. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_section<big_endian>::append_text_sections_to_list( | 
 |     Text_section_list* list) | 
 | { | 
 |   gold_assert((this->flags() & elfcpp::SHF_ALLOC) != 0); | 
 |  | 
 |   for (Input_section_list::const_iterator p = this->input_sections().begin(); | 
 |        p != this->input_sections().end(); | 
 |        ++p) | 
 |     { | 
 |       // We only care about plain or relaxed input sections.  We also | 
 |       // ignore any merged sections. | 
 |       if (p->is_input_section() || p->is_relaxed_input_section()) | 
 | 	list->push_back(Text_section_list::value_type(p->relobj(), | 
 | 						      p->shndx())); | 
 |     } | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_section<big_endian>::fix_exidx_coverage( | 
 |     Layout* layout, | 
 |     const Text_section_list& sorted_text_sections, | 
 |     Symbol_table* symtab, | 
 |     bool merge_exidx_entries, | 
 |     const Task* task) | 
 | { | 
 |   // We should only do this for the EXIDX output section. | 
 |   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); | 
 |  | 
 |   // We don't want the relaxation loop to undo these changes, so we discard | 
 |   // the current saved states and take another one after the fix-up. | 
 |   this->discard_states(); | 
 |  | 
 |   // Remove all input sections. | 
 |   uint64_t address = this->address(); | 
 |   typedef std::list<Output_section::Input_section> Input_section_list; | 
 |   Input_section_list input_sections; | 
 |   this->reset_address_and_file_offset(); | 
 |   this->get_input_sections(address, std::string(""), &input_sections); | 
 |  | 
 |   if (!this->input_sections().empty()) | 
 |     gold_error(_("Found non-EXIDX input sections in EXIDX output section")); | 
 |  | 
 |   // Go through all the known input sections and record them. | 
 |   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; | 
 |   typedef Unordered_map<Section_id, const Output_section::Input_section*, | 
 | 			Section_id_hash> Text_to_exidx_map; | 
 |   Text_to_exidx_map text_to_exidx_map; | 
 |   for (Input_section_list::const_iterator p = input_sections.begin(); | 
 |        p != input_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       // This should never happen.  At this point, we should only see | 
 |       // plain EXIDX input sections. | 
 |       gold_assert(!p->is_relaxed_input_section()); | 
 |       text_to_exidx_map[Section_id(p->relobj(), p->shndx())] = &(*p); | 
 |     } | 
 |  | 
 |   Arm_exidx_fixup exidx_fixup(this, merge_exidx_entries); | 
 |  | 
 |   // Go over the sorted text sections. | 
 |   typedef Unordered_set<Section_id, Section_id_hash> Section_id_set; | 
 |   Section_id_set processed_input_sections; | 
 |   for (Text_section_list::const_iterator p = sorted_text_sections.begin(); | 
 |        p != sorted_text_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       Relobj* relobj = p->first; | 
 |       unsigned int shndx = p->second; | 
 |  | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	 Arm_relobj<big_endian>::as_arm_relobj(relobj); | 
 |       const Arm_exidx_input_section* exidx_input_section = | 
 | 	 arm_relobj->exidx_input_section_by_link(shndx); | 
 |  | 
 |       // If this text section has no EXIDX section or if the EXIDX section | 
 |       // has errors, force an EXIDX_CANTUNWIND entry pointing to the end | 
 |       // of the last seen EXIDX section. | 
 |       if (exidx_input_section == NULL || exidx_input_section->has_errors()) | 
 | 	{ | 
 | 	  exidx_fixup.add_exidx_cantunwind_as_needed(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       Relobj* exidx_relobj = exidx_input_section->relobj(); | 
 |       unsigned int exidx_shndx = exidx_input_section->shndx(); | 
 |       Section_id sid(exidx_relobj, exidx_shndx); | 
 |       Text_to_exidx_map::const_iterator iter = text_to_exidx_map.find(sid); | 
 |       if (iter == text_to_exidx_map.end()) | 
 | 	{ | 
 | 	  // This is odd.  We have not seen this EXIDX input section before. | 
 | 	  // We cannot do fix-up.  If we saw a SECTIONS clause in a script, | 
 | 	  // issue a warning instead.  We assume the user knows what he | 
 | 	  // or she is doing.  Otherwise, this is an error. | 
 | 	  if (layout->script_options()->saw_sections_clause()) | 
 | 	    gold_warning(_("unwinding may not work because EXIDX input section" | 
 | 			   " %u of %s is not in EXIDX output section"), | 
 | 			 exidx_shndx, exidx_relobj->name().c_str()); | 
 | 	  else | 
 | 	    gold_error(_("unwinding may not work because EXIDX input section" | 
 | 			 " %u of %s is not in EXIDX output section"), | 
 | 		       exidx_shndx, exidx_relobj->name().c_str()); | 
 |  | 
 | 	  exidx_fixup.add_exidx_cantunwind_as_needed(); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // We need to access the contents of the EXIDX section, lock the | 
 |       // object here. | 
 |       Task_lock_obj<Object> tl(task, exidx_relobj); | 
 |       section_size_type exidx_size; | 
 |       const unsigned char* exidx_contents = | 
 | 	exidx_relobj->section_contents(exidx_shndx, &exidx_size, false); | 
 |  | 
 |       // Fix up coverage and append input section to output data list. | 
 |       Arm_exidx_section_offset_map* section_offset_map = NULL; | 
 |       uint32_t deleted_bytes = | 
 | 	exidx_fixup.process_exidx_section<big_endian>(exidx_input_section, | 
 | 						      exidx_contents, | 
 | 						      exidx_size, | 
 | 						      §ion_offset_map); | 
 |  | 
 |       if (deleted_bytes == exidx_input_section->size()) | 
 | 	{ | 
 | 	  // The whole EXIDX section got merged.  Remove it from output. | 
 | 	  gold_assert(section_offset_map == NULL); | 
 | 	  exidx_relobj->set_output_section(exidx_shndx, NULL); | 
 |  | 
 | 	  // All local symbols defined in this input section will be dropped. | 
 | 	  // We need to adjust output local symbol count. | 
 | 	  arm_relobj->set_output_local_symbol_count_needs_update(); | 
 | 	} | 
 |       else if (deleted_bytes > 0) | 
 | 	{ | 
 | 	  // Some entries are merged.  We need to convert this EXIDX input | 
 | 	  // section into a relaxed section. | 
 | 	  gold_assert(section_offset_map != NULL); | 
 |  | 
 | 	  Arm_exidx_merged_section* merged_section = | 
 | 	    new Arm_exidx_merged_section(*exidx_input_section, | 
 | 					 *section_offset_map, deleted_bytes); | 
 | 	  merged_section->build_contents(exidx_contents, exidx_size); | 
 |  | 
 | 	  const std::string secname = exidx_relobj->section_name(exidx_shndx); | 
 | 	  this->add_relaxed_input_section(layout, merged_section, secname); | 
 | 	  arm_relobj->convert_input_section_to_relaxed_section(exidx_shndx); | 
 |  | 
 | 	  // All local symbols defined in discarded portions of this input | 
 | 	  // section will be dropped.  We need to adjust output local symbol | 
 | 	  // count. | 
 | 	  arm_relobj->set_output_local_symbol_count_needs_update(); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // Just add back the EXIDX input section. | 
 | 	  gold_assert(section_offset_map == NULL); | 
 | 	  const Output_section::Input_section* pis = iter->second; | 
 | 	  gold_assert(pis->is_input_section()); | 
 | 	  this->add_script_input_section(*pis); | 
 | 	} | 
 |  | 
 |       processed_input_sections.insert(Section_id(exidx_relobj, exidx_shndx)); | 
 |     } | 
 |  | 
 |   // Insert an EXIDX_CANTUNWIND entry at the end of output if necessary. | 
 |   exidx_fixup.add_exidx_cantunwind_as_needed(); | 
 |  | 
 |   // Remove any known EXIDX input sections that are not processed. | 
 |   for (Input_section_list::const_iterator p = input_sections.begin(); | 
 |        p != input_sections.end(); | 
 |        ++p) | 
 |     { | 
 |       if (processed_input_sections.find(Section_id(p->relobj(), p->shndx())) | 
 | 	  == processed_input_sections.end()) | 
 | 	{ | 
 | 	  // We discard a known EXIDX section because its linked | 
 | 	  // text section has been folded by ICF.  We also discard an | 
 | 	  // EXIDX section with error, the output does not matter in this | 
 | 	  // case.  We do this to avoid triggering asserts. | 
 | 	  Arm_relobj<big_endian>* arm_relobj = | 
 | 	    Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | 
 | 	  const Arm_exidx_input_section* exidx_input_section = | 
 | 	    arm_relobj->exidx_input_section_by_shndx(p->shndx()); | 
 | 	  gold_assert(exidx_input_section != NULL); | 
 | 	  if (!exidx_input_section->has_errors()) | 
 | 	    { | 
 | 	      unsigned int text_shndx = exidx_input_section->link(); | 
 | 	      gold_assert(symtab->is_section_folded(p->relobj(), text_shndx)); | 
 | 	    } | 
 |  | 
 | 	  // Remove this from link.  We also need to recount the | 
 | 	  // local symbols. | 
 | 	  p->relobj()->set_output_section(p->shndx(), NULL); | 
 | 	  arm_relobj->set_output_local_symbol_count_needs_update(); | 
 | 	} | 
 |     } | 
 |  | 
 |   // Link exidx output section to the first seen output section and | 
 |   // set correct entry size. | 
 |   this->set_link_section(exidx_fixup.first_output_text_section()); | 
 |   this->set_entsize(8); | 
 |  | 
 |   // Make changes permanent. | 
 |   this->save_states(); | 
 |   this->set_section_offsets_need_adjustment(); | 
 | } | 
 |  | 
 | // Link EXIDX output sections to text output sections. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_section<big_endian>::set_exidx_section_link() | 
 | { | 
 |   gold_assert(this->type() == elfcpp::SHT_ARM_EXIDX); | 
 |   if (!this->input_sections().empty()) | 
 |     { | 
 |       Input_section_list::const_iterator p = this->input_sections().begin(); | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj(p->relobj()); | 
 |       unsigned exidx_shndx = p->shndx(); | 
 |       const Arm_exidx_input_section* exidx_input_section = | 
 | 	arm_relobj->exidx_input_section_by_shndx(exidx_shndx); | 
 |       gold_assert(exidx_input_section != NULL); | 
 |       unsigned int text_shndx = exidx_input_section->link(); | 
 |       Output_section* os = arm_relobj->output_section(text_shndx); | 
 |       this->set_link_section(os); | 
 |     } | 
 | } | 
 |  | 
 | // Arm_relobj methods. | 
 |  | 
 | // Determine if an input section is scannable for stub processing.  SHDR is | 
 | // the header of the section and SHNDX is the section index.  OS is the output | 
 | // section for the input section and SYMTAB is the global symbol table used to | 
 | // look up ICF information. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Arm_relobj<big_endian>::section_is_scannable( | 
 |     const elfcpp::Shdr<32, big_endian>& shdr, | 
 |     unsigned int shndx, | 
 |     const Output_section* os, | 
 |     const Symbol_table* symtab) | 
 | { | 
 |   // Skip any empty sections, unallocated sections or sections whose | 
 |   // type are not SHT_PROGBITS. | 
 |   if (shdr.get_sh_size() == 0 | 
 |       || (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0 | 
 |       || shdr.get_sh_type() != elfcpp::SHT_PROGBITS) | 
 |     return false; | 
 |  | 
 |   // Skip any discarded or ICF'ed sections. | 
 |   if (os == NULL || symtab->is_section_folded(this, shndx)) | 
 |     return false; | 
 |  | 
 |   // If this requires special offset handling, check to see if it is | 
 |   // a relaxed section.  If this is not, then it is a merged section that | 
 |   // we cannot handle. | 
 |   if (this->is_output_section_offset_invalid(shndx)) | 
 |     { | 
 |       const Output_relaxed_input_section* poris = | 
 | 	os->find_relaxed_input_section(this, shndx); | 
 |       if (poris == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Determine if we want to scan the SHNDX-th section for relocation stubs. | 
 | // This is a helper for Arm_relobj::scan_sections_for_stubs() below. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Arm_relobj<big_endian>::section_needs_reloc_stub_scanning( | 
 |     const elfcpp::Shdr<32, big_endian>& shdr, | 
 |     const Relobj::Output_sections& out_sections, | 
 |     const Symbol_table* symtab, | 
 |     const unsigned char* pshdrs) | 
 | { | 
 |   unsigned int sh_type = shdr.get_sh_type(); | 
 |   if (sh_type != elfcpp::SHT_REL && sh_type != elfcpp::SHT_RELA) | 
 |     return false; | 
 |  | 
 |   // Ignore empty section. | 
 |   off_t sh_size = shdr.get_sh_size(); | 
 |   if (sh_size == 0) | 
 |     return false; | 
 |  | 
 |   // Ignore reloc section with unexpected symbol table.  The | 
 |   // error will be reported in the final link. | 
 |   if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx()) | 
 |     return false; | 
 |  | 
 |   unsigned int reloc_size; | 
 |   if (sh_type == elfcpp::SHT_REL) | 
 |     reloc_size = elfcpp::Elf_sizes<32>::rel_size; | 
 |   else | 
 |     reloc_size = elfcpp::Elf_sizes<32>::rela_size; | 
 |  | 
 |   // Ignore reloc section with unexpected entsize or uneven size. | 
 |   // The error will be reported in the final link. | 
 |   if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0) | 
 |     return false; | 
 |  | 
 |   // Ignore reloc section with bad info.  This error will be | 
 |   // reported in the final link. | 
 |   unsigned int index = this->adjust_shndx(shdr.get_sh_info()); | 
 |   if (index >= this->shnum()) | 
 |     return false; | 
 |  | 
 |   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |   const elfcpp::Shdr<32, big_endian> text_shdr(pshdrs + index * shdr_size); | 
 |   return this->section_is_scannable(text_shdr, index, | 
 | 				   out_sections[index], symtab); | 
 | } | 
 |  | 
 | // Return the output address of either a plain input section or a relaxed | 
 | // input section.  SHNDX is the section index.  We define and use this | 
 | // instead of calling Output_section::output_address because that is slow | 
 | // for large output. | 
 |  | 
 | template<bool big_endian> | 
 | Arm_address | 
 | Arm_relobj<big_endian>::simple_input_section_output_address( | 
 |     unsigned int shndx, | 
 |     Output_section* os) | 
 | { | 
 |   if (this->is_output_section_offset_invalid(shndx)) | 
 |     { | 
 |       const Output_relaxed_input_section* poris = | 
 | 	os->find_relaxed_input_section(this, shndx); | 
 |       // We do not handle merged sections here. | 
 |       gold_assert(poris != NULL); | 
 |       return poris->address(); | 
 |     } | 
 |   else | 
 |     return os->address() + this->get_output_section_offset(shndx); | 
 | } | 
 |  | 
 | // Determine if we want to scan the SHNDX-th section for non-relocation stubs. | 
 | // This is a helper for Arm_relobj::scan_sections_for_stubs() below. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Arm_relobj<big_endian>::section_needs_cortex_a8_stub_scanning( | 
 |     const elfcpp::Shdr<32, big_endian>& shdr, | 
 |     unsigned int shndx, | 
 |     Output_section* os, | 
 |     const Symbol_table* symtab) | 
 | { | 
 |   if (!this->section_is_scannable(shdr, shndx, os, symtab)) | 
 |     return false; | 
 |  | 
 |   // If the section does not cross any 4K-boundaries, it does not need to | 
 |   // be scanned. | 
 |   Arm_address address = this->simple_input_section_output_address(shndx, os); | 
 |   if ((address & ~0xfffU) == ((address + shdr.get_sh_size() - 1) & ~0xfffU)) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Scan a section for Cortex-A8 workaround. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::scan_section_for_cortex_a8_erratum( | 
 |     const elfcpp::Shdr<32, big_endian>& shdr, | 
 |     unsigned int shndx, | 
 |     Output_section* os, | 
 |     Target_arm<big_endian>* arm_target) | 
 | { | 
 |   // Look for the first mapping symbol in this section.  It should be | 
 |   // at (shndx, 0). | 
 |   Mapping_symbol_position section_start(shndx, 0); | 
 |   typename Mapping_symbols_info::const_iterator p = | 
 |     this->mapping_symbols_info_.lower_bound(section_start); | 
 |  | 
 |   // There are no mapping symbols for this section.  Treat it as a data-only | 
 |   // section. | 
 |   if (p == this->mapping_symbols_info_.end() || p->first.first != shndx) | 
 |     return; | 
 |  | 
 |   Arm_address output_address = | 
 |     this->simple_input_section_output_address(shndx, os); | 
 |  | 
 |   // Get the section contents. | 
 |   section_size_type input_view_size = 0; | 
 |   const unsigned char* input_view = | 
 |     this->section_contents(shndx, &input_view_size, false); | 
 |  | 
 |   // We need to go through the mapping symbols to determine what to | 
 |   // scan.  There are two reasons.  First, we should look at THUMB code and | 
 |   // THUMB code only.  Second, we only want to look at the 4K-page boundary | 
 |   // to speed up the scanning. | 
 |  | 
 |   while (p != this->mapping_symbols_info_.end() | 
 | 	&& p->first.first == shndx) | 
 |     { | 
 |       typename Mapping_symbols_info::const_iterator next = | 
 | 	this->mapping_symbols_info_.upper_bound(p->first); | 
 |  | 
 |       // Only scan part of a section with THUMB code. | 
 |       if (p->second == 't') | 
 | 	{ | 
 | 	  // Determine the end of this range. | 
 | 	  section_size_type span_start = | 
 | 	    convert_to_section_size_type(p->first.second); | 
 | 	  section_size_type span_end; | 
 | 	  if (next != this->mapping_symbols_info_.end() | 
 | 	      && next->first.first == shndx) | 
 | 	    span_end = convert_to_section_size_type(next->first.second); | 
 | 	  else | 
 | 	    span_end = convert_to_section_size_type(shdr.get_sh_size()); | 
 |  | 
 | 	  if (((span_start + output_address) & ~0xfffUL) | 
 | 	      != ((span_end + output_address - 1) & ~0xfffUL)) | 
 | 	    { | 
 | 	      arm_target->scan_span_for_cortex_a8_erratum(this, shndx, | 
 | 							  span_start, span_end, | 
 | 							  input_view, | 
 | 							  output_address); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       p = next; | 
 |     } | 
 | } | 
 |  | 
 | // Scan relocations for stub generation. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::scan_sections_for_stubs( | 
 |     Target_arm<big_endian>* arm_target, | 
 |     const Symbol_table* symtab, | 
 |     const Layout* layout) | 
 | { | 
 |   unsigned int shnum = this->shnum(); | 
 |   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |  | 
 |   // Read the section headers. | 
 |   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), | 
 | 					       shnum * shdr_size, | 
 | 					       true, true); | 
 |  | 
 |   // To speed up processing, we set up hash tables for fast lookup of | 
 |   // input offsets to output addresses. | 
 |   this->initialize_input_to_output_maps(); | 
 |  | 
 |   const Relobj::Output_sections& out_sections(this->output_sections()); | 
 |  | 
 |   Relocate_info<32, big_endian> relinfo; | 
 |   relinfo.symtab = symtab; | 
 |   relinfo.layout = layout; | 
 |   relinfo.object = this; | 
 |  | 
 |   // Do relocation stubs scanning. | 
 |   const unsigned char* p = pshdrs + shdr_size; | 
 |   for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) | 
 |     { | 
 |       const elfcpp::Shdr<32, big_endian> shdr(p); | 
 |       if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab, | 
 | 						  pshdrs)) | 
 | 	{ | 
 | 	  unsigned int index = this->adjust_shndx(shdr.get_sh_info()); | 
 | 	  Arm_address output_offset = this->get_output_section_offset(index); | 
 | 	  Arm_address output_address; | 
 | 	  if (output_offset != invalid_address) | 
 | 	    output_address = out_sections[index]->address() + output_offset; | 
 | 	  else | 
 | 	    { | 
 | 	      // Currently this only happens for a relaxed section. | 
 | 	      const Output_relaxed_input_section* poris = | 
 | 	      out_sections[index]->find_relaxed_input_section(this, index); | 
 | 	      gold_assert(poris != NULL); | 
 | 	      output_address = poris->address(); | 
 | 	    } | 
 |  | 
 | 	  // Get the relocations. | 
 | 	  const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(), | 
 | 							shdr.get_sh_size(), | 
 | 							true, false); | 
 |  | 
 | 	  // Get the section contents.  This does work for the case in which | 
 | 	  // we modify the contents of an input section.  We need to pass the | 
 | 	  // output view under such circumstances. | 
 | 	  section_size_type input_view_size = 0; | 
 | 	  const unsigned char* input_view = | 
 | 	    this->section_contents(index, &input_view_size, false); | 
 |  | 
 | 	  relinfo.reloc_shndx = i; | 
 | 	  relinfo.data_shndx = index; | 
 | 	  unsigned int sh_type = shdr.get_sh_type(); | 
 | 	  unsigned int reloc_size; | 
 | 	  if (sh_type == elfcpp::SHT_REL) | 
 | 	    reloc_size = elfcpp::Elf_sizes<32>::rel_size; | 
 | 	  else | 
 | 	    reloc_size = elfcpp::Elf_sizes<32>::rela_size; | 
 |  | 
 | 	  Output_section* os = out_sections[index]; | 
 | 	  arm_target->scan_section_for_stubs(&relinfo, sh_type, prelocs, | 
 | 					     shdr.get_sh_size() / reloc_size, | 
 | 					     os, | 
 | 					     output_offset == invalid_address, | 
 | 					     input_view, output_address, | 
 | 					     input_view_size); | 
 | 	} | 
 |     } | 
 |  | 
 |   // Do Cortex-A8 erratum stubs scanning.  This has to be done for a section | 
 |   // after its relocation section, if there is one, is processed for | 
 |   // relocation stubs.  Merging this loop with the one above would have been | 
 |   // complicated since we would have had to make sure that relocation stub | 
 |   // scanning is done first. | 
 |   if (arm_target->fix_cortex_a8()) | 
 |     { | 
 |       const unsigned char* p = pshdrs + shdr_size; | 
 |       for (unsigned int i = 1; i < shnum; ++i, p += shdr_size) | 
 | 	{ | 
 | 	  const elfcpp::Shdr<32, big_endian> shdr(p); | 
 | 	  if (this->section_needs_cortex_a8_stub_scanning(shdr, i, | 
 | 							  out_sections[i], | 
 | 							  symtab)) | 
 | 	    this->scan_section_for_cortex_a8_erratum(shdr, i, out_sections[i], | 
 | 						     arm_target); | 
 | 	} | 
 |     } | 
 |  | 
 |   // After we've done the relocations, we release the hash tables, | 
 |   // since we no longer need them. | 
 |   this->free_input_to_output_maps(); | 
 | } | 
 |  | 
 | // Count the local symbols.  The ARM backend needs to know if a symbol | 
 | // is a THUMB function or not.  For global symbols, it is easy because | 
 | // the Symbol object keeps the ELF symbol type.  For local symbol it is | 
 | // harder because we cannot access this information.   So we override the | 
 | // do_count_local_symbol in parent and scan local symbols to mark | 
 | // THUMB functions.  This is not the most efficient way but I do not want to | 
 | // slow down other ports by calling a per symbol target hook inside | 
 | // Sized_relobj_file<size, big_endian>::do_count_local_symbols. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::do_count_local_symbols( | 
 |     Stringpool_template<char>* pool, | 
 |     Stringpool_template<char>* dynpool) | 
 | { | 
 |   // We need to fix-up the values of any local symbols whose type are | 
 |   // STT_ARM_TFUNC. | 
 |  | 
 |   // Ask parent to count the local symbols. | 
 |   Sized_relobj_file<32, big_endian>::do_count_local_symbols(pool, dynpool); | 
 |   const unsigned int loccount = this->local_symbol_count(); | 
 |   if (loccount == 0) | 
 |     return; | 
 |  | 
 |   // Initialize the thumb function bit-vector. | 
 |   std::vector<bool> empty_vector(loccount, false); | 
 |   this->local_symbol_is_thumb_function_.swap(empty_vector); | 
 |  | 
 |   // Read the symbol table section header. | 
 |   const unsigned int symtab_shndx = this->symtab_shndx(); | 
 |   elfcpp::Shdr<32, big_endian> | 
 |       symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); | 
 |   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |  | 
 |   // Read the local symbols. | 
 |   const int sym_size =elfcpp::Elf_sizes<32>::sym_size; | 
 |   gold_assert(loccount == symtabshdr.get_sh_info()); | 
 |   off_t locsize = loccount * sym_size; | 
 |   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | 
 | 					      locsize, true, true); | 
 |  | 
 |   // For mapping symbol processing, we need to read the symbol names. | 
 |   unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link()); | 
 |   if (strtab_shndx >= this->shnum()) | 
 |     { | 
 |       this->error(_("invalid symbol table name index: %u"), strtab_shndx); | 
 |       return; | 
 |     } | 
 |  | 
 |   elfcpp::Shdr<32, big_endian> | 
 |     strtabshdr(this, this->elf_file()->section_header(strtab_shndx)); | 
 |   if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB) | 
 |     { | 
 |       this->error(_("symbol table name section has wrong type: %u"), | 
 | 		  static_cast<unsigned int>(strtabshdr.get_sh_type())); | 
 |       return; | 
 |     } | 
 |   const char* pnames = | 
 |     reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(), | 
 | 						 strtabshdr.get_sh_size(), | 
 | 						 false, false)); | 
 |  | 
 |   // Loop over the local symbols and mark any local symbols pointing | 
 |   // to THUMB functions. | 
 |  | 
 |   // Skip the first dummy symbol. | 
 |   psyms += sym_size; | 
 |   typename Sized_relobj_file<32, big_endian>::Local_values* plocal_values = | 
 |     this->local_values(); | 
 |   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) | 
 |     { | 
 |       elfcpp::Sym<32, big_endian> sym(psyms); | 
 |       elfcpp::STT st_type = sym.get_st_type(); | 
 |       Symbol_value<32>& lv((*plocal_values)[i]); | 
 |       Arm_address input_value = lv.input_value(); | 
 |  | 
 |       // Check to see if this is a mapping symbol. | 
 |       const char* sym_name = pnames + sym.get_st_name(); | 
 |       if (Target_arm<big_endian>::is_mapping_symbol_name(sym_name)) | 
 | 	{ | 
 | 	  bool is_ordinary; | 
 | 	  unsigned int input_shndx = | 
 | 	    this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary); | 
 | 	  gold_assert(is_ordinary); | 
 |  | 
 | 	  // Strip of LSB in case this is a THUMB symbol. | 
 | 	  Mapping_symbol_position msp(input_shndx, input_value & ~1U); | 
 | 	  this->mapping_symbols_info_[msp] = sym_name[1]; | 
 | 	} | 
 |  | 
 |       if (st_type == elfcpp::STT_ARM_TFUNC | 
 | 	  || (st_type == elfcpp::STT_FUNC && ((input_value & 1) != 0))) | 
 | 	{ | 
 | 	  // This is a THUMB function.  Mark this and canonicalize the | 
 | 	  // symbol value by setting LSB. | 
 | 	  this->local_symbol_is_thumb_function_[i] = true; | 
 | 	  if ((input_value & 1) == 0) | 
 | 	    lv.set_input_value(input_value | 1); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Relocate sections. | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::do_relocate_sections( | 
 |     const Symbol_table* symtab, | 
 |     const Layout* layout, | 
 |     const unsigned char* pshdrs, | 
 |     Output_file* of, | 
 |     typename Sized_relobj_file<32, big_endian>::Views* pviews) | 
 | { | 
 |   // Relocate the section data. | 
 |   this->relocate_section_range(symtab, layout, pshdrs, of, pviews, | 
 | 			       1, this->shnum() - 1); | 
 |  | 
 |   // We do not generate stubs if doing a relocatable link. | 
 |   if (parameters->options().relocatable()) | 
 |     return; | 
 |  | 
 |   // Relocate stub tables. | 
 |   unsigned int shnum = this->shnum(); | 
 |  | 
 |   Target_arm<big_endian>* arm_target = | 
 |     Target_arm<big_endian>::default_target(); | 
 |  | 
 |   Relocate_info<32, big_endian> relinfo; | 
 |   relinfo.symtab = symtab; | 
 |   relinfo.layout = layout; | 
 |   relinfo.object = this; | 
 |  | 
 |   for (unsigned int i = 1; i < shnum; ++i) | 
 |     { | 
 |       Arm_input_section<big_endian>* arm_input_section = | 
 | 	arm_target->find_arm_input_section(this, i); | 
 |  | 
 |       if (arm_input_section != NULL | 
 | 	  && arm_input_section->is_stub_table_owner() | 
 | 	  && !arm_input_section->stub_table()->empty()) | 
 | 	{ | 
 | 	  // We cannot discard a section if it owns a stub table. | 
 | 	  Output_section* os = this->output_section(i); | 
 | 	  gold_assert(os != NULL); | 
 |  | 
 | 	  relinfo.reloc_shndx = elfcpp::SHN_UNDEF; | 
 | 	  relinfo.reloc_shdr = NULL; | 
 | 	  relinfo.data_shndx = i; | 
 | 	  relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size; | 
 |  | 
 | 	  gold_assert((*pviews)[i].view != NULL); | 
 |  | 
 | 	  // We are passed the output section view.  Adjust it to cover the | 
 | 	  // stub table only. | 
 | 	  Stub_table<big_endian>* stub_table = arm_input_section->stub_table(); | 
 | 	  gold_assert((stub_table->address() >= (*pviews)[i].address) | 
 | 		      && ((stub_table->address() + stub_table->data_size()) | 
 | 			  <= (*pviews)[i].address + (*pviews)[i].view_size)); | 
 |  | 
 | 	  off_t offset = stub_table->address() - (*pviews)[i].address; | 
 | 	  unsigned char* view = (*pviews)[i].view + offset; | 
 | 	  Arm_address address = stub_table->address(); | 
 | 	  section_size_type view_size = stub_table->data_size(); | 
 |  | 
 | 	  stub_table->relocate_stubs(&relinfo, arm_target, os, view, address, | 
 | 				     view_size); | 
 | 	} | 
 |  | 
 |       // Apply Cortex A8 workaround if applicable. | 
 |       if (this->section_has_cortex_a8_workaround(i)) | 
 | 	{ | 
 | 	  unsigned char* view = (*pviews)[i].view; | 
 | 	  Arm_address view_address = (*pviews)[i].address; | 
 | 	  section_size_type view_size = (*pviews)[i].view_size; | 
 | 	  Stub_table<big_endian>* stub_table = this->stub_tables_[i]; | 
 |  | 
 | 	  // Adjust view to cover section. | 
 | 	  Output_section* os = this->output_section(i); | 
 | 	  gold_assert(os != NULL); | 
 | 	  Arm_address section_address = | 
 | 	    this->simple_input_section_output_address(i, os); | 
 | 	  uint64_t section_size = this->section_size(i); | 
 |  | 
 | 	  gold_assert(section_address >= view_address | 
 | 		      && ((section_address + section_size) | 
 | 			  <= (view_address + view_size))); | 
 |  | 
 | 	  unsigned char* section_view = view + (section_address - view_address); | 
 |  | 
 | 	  // Apply the Cortex-A8 workaround to the output address range | 
 | 	  // corresponding to this input section. | 
 | 	  stub_table->apply_cortex_a8_workaround_to_address_range( | 
 | 	      arm_target, | 
 | 	      section_view, | 
 | 	      section_address, | 
 | 	      section_size); | 
 | 	} | 
 | 	// BE8 swapping | 
 | 	if (parameters->options().be8()) | 
 | 	  { | 
 | 	    section_size_type  span_start, span_end; | 
 | 	    elfcpp::Shdr<32, big_endian> | 
 | 	      shdr(pshdrs + i * elfcpp::Elf_sizes<32>::shdr_size); | 
 | 	    Mapping_symbol_position section_start(i, 0); | 
 | 	    typename Mapping_symbols_info::const_iterator p = | 
 | 	      this->mapping_symbols_info_.lower_bound(section_start); | 
 | 	    unsigned char* view = (*pviews)[i].view; | 
 | 	    Arm_address view_address = (*pviews)[i].address; | 
 | 	    section_size_type view_size = (*pviews)[i].view_size; | 
 | 	    while (p != this->mapping_symbols_info_.end() | 
 | 		   && p->first.first == i) | 
 | 	      { | 
 | 		typename Mapping_symbols_info::const_iterator next = | 
 | 		  this->mapping_symbols_info_.upper_bound(p->first); | 
 |  | 
 | 		// Only swap arm or thumb code. | 
 | 		if ((p->second == 'a') || (p->second == 't')) | 
 | 		  { | 
 | 		    Output_section* os = this->output_section(i); | 
 | 		    gold_assert(os != NULL); | 
 | 		    Arm_address section_address = | 
 | 		      this->simple_input_section_output_address(i, os); | 
 | 		    span_start = convert_to_section_size_type(p->first.second); | 
 | 		    if (next != this->mapping_symbols_info_.end() | 
 | 		        && next->first.first == i) | 
 | 		      span_end = | 
 | 			convert_to_section_size_type(next->first.second); | 
 | 		    else | 
 | 		      span_end = | 
 | 			convert_to_section_size_type(shdr.get_sh_size()); | 
 | 		    unsigned char* section_view = | 
 | 		      view + (section_address - view_address); | 
 | 		    uint64_t section_size = this->section_size(i); | 
 |  | 
 | 		    gold_assert(section_address >= view_address | 
 | 				&& ((section_address + section_size) | 
 | 				    <= (view_address + view_size))); | 
 |  | 
 | 		    // Set Output view for swapping | 
 | 		    unsigned char *oview = section_view + span_start; | 
 | 		    unsigned int index = 0; | 
 | 		    if (p->second == 'a') | 
 | 		      { | 
 | 			while (index + 3 < (span_end - span_start)) | 
 | 			  { | 
 | 			    typedef typename elfcpp::Swap<32, big_endian> | 
 | 						     ::Valtype Valtype; | 
 | 			    Valtype* wv = | 
 | 			      reinterpret_cast<Valtype*>(oview+index); | 
 | 			    uint32_t val = elfcpp::Swap<32, false>::readval(wv); | 
 | 			    elfcpp::Swap<32, true>::writeval(wv, val); | 
 | 			    index += 4; | 
 | 			  } | 
 | 		      } | 
 | 		    else if (p->second == 't') | 
 | 		      { | 
 | 		        while (index + 1 < (span_end - span_start)) | 
 | 			  { | 
 | 			    typedef typename elfcpp::Swap<16, big_endian> | 
 | 						     ::Valtype Valtype; | 
 | 			    Valtype* wv = | 
 | 			      reinterpret_cast<Valtype*>(oview+index); | 
 | 			    uint16_t val = elfcpp::Swap<16, false>::readval(wv); | 
 | 			    elfcpp::Swap<16, true>::writeval(wv, val); | 
 | 			    index += 2; | 
 | 			   } | 
 | 		      } | 
 | 	          } | 
 | 	        p = next; | 
 | 	      } | 
 | 	  } | 
 |     } | 
 | } | 
 |  | 
 | // Find the linked text section of an EXIDX section by looking at the first | 
 | // relocation.  4.4.1 of the EHABI specifications says that an EXIDX section | 
 | // must be linked to its associated code section via the sh_link field of | 
 | // its section header.  However, some tools are broken and the link is not | 
 | // always set.  LD just drops such an EXIDX section silently, causing the | 
 | // associated code not unwindabled.   Here we try a little bit harder to | 
 | // discover the linked code section. | 
 | // | 
 | // PSHDR points to the section header of a relocation section of an EXIDX | 
 | // section.  If we can find a linked text section, return true and | 
 | // store the text section index in the location PSHNDX.  Otherwise | 
 | // return false. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Arm_relobj<big_endian>::find_linked_text_section( | 
 |     const unsigned char* pshdr, | 
 |     const unsigned char* psyms, | 
 |     unsigned int* pshndx) | 
 | { | 
 |   elfcpp::Shdr<32, big_endian> shdr(pshdr); | 
 |  | 
 |   // If there is no relocation, we cannot find the linked text section. | 
 |   size_t reloc_size; | 
 |   if (shdr.get_sh_type() == elfcpp::SHT_REL) | 
 |       reloc_size = elfcpp::Elf_sizes<32>::rel_size; | 
 |   else | 
 |       reloc_size = elfcpp::Elf_sizes<32>::rela_size; | 
 |   size_t reloc_count = shdr.get_sh_size() / reloc_size; | 
 |  | 
 |   // Get the relocations. | 
 |   const unsigned char* prelocs = | 
 |       this->get_view(shdr.get_sh_offset(), shdr.get_sh_size(), true, false); | 
 |  | 
 |   // Find the REL31 relocation for the first word of the first EXIDX entry. | 
 |   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) | 
 |     { | 
 |       Arm_address r_offset; | 
 |       typename elfcpp::Elf_types<32>::Elf_WXword r_info; | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_REL) | 
 | 	{ | 
 | 	  typename elfcpp::Rel<32, big_endian> reloc(prelocs); | 
 | 	  r_info = reloc.get_r_info(); | 
 | 	  r_offset = reloc.get_r_offset(); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  typename elfcpp::Rela<32, big_endian> reloc(prelocs); | 
 | 	  r_info = reloc.get_r_info(); | 
 | 	  r_offset = reloc.get_r_offset(); | 
 | 	} | 
 |  | 
 |       unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | 
 |       if (r_type != elfcpp::R_ARM_PREL31 && r_type != elfcpp::R_ARM_SBREL31) | 
 | 	continue; | 
 |  | 
 |       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | 
 |       if (r_sym == 0 | 
 | 	  || r_sym >= this->local_symbol_count() | 
 | 	  || r_offset != 0) | 
 | 	continue; | 
 |  | 
 |       // This is the relocation for the first word of the first EXIDX entry. | 
 |       // We expect to see a local section symbol. | 
 |       const int sym_size = elfcpp::Elf_sizes<32>::sym_size; | 
 |       elfcpp::Sym<32, big_endian> sym(psyms + r_sym * sym_size); | 
 |       if (sym.get_st_type() == elfcpp::STT_SECTION) | 
 | 	{ | 
 | 	  bool is_ordinary; | 
 | 	  *pshndx = | 
 | 	    this->adjust_sym_shndx(r_sym, sym.get_st_shndx(), &is_ordinary); | 
 | 	  gold_assert(is_ordinary); | 
 | 	  return true; | 
 | 	} | 
 |       else | 
 | 	return false; | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | // Make an EXIDX input section object for an EXIDX section whose index is | 
 | // SHNDX.  SHDR is the section header of the EXIDX section and TEXT_SHNDX | 
 | // is the section index of the linked text section. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::make_exidx_input_section( | 
 |     unsigned int shndx, | 
 |     const elfcpp::Shdr<32, big_endian>& shdr, | 
 |     unsigned int text_shndx, | 
 |     const elfcpp::Shdr<32, big_endian>& text_shdr) | 
 | { | 
 |   // Create an Arm_exidx_input_section object for this EXIDX section. | 
 |   Arm_exidx_input_section* exidx_input_section = | 
 |     new Arm_exidx_input_section(this, shndx, text_shndx, shdr.get_sh_size(), | 
 | 				shdr.get_sh_addralign(), | 
 | 				text_shdr.get_sh_size()); | 
 |  | 
 |   gold_assert(this->exidx_section_map_[shndx] == NULL); | 
 |   this->exidx_section_map_[shndx] = exidx_input_section; | 
 |  | 
 |   if (text_shndx == elfcpp::SHN_UNDEF || text_shndx >= this->shnum()) | 
 |     { | 
 |       gold_error(_("EXIDX section %s(%u) links to invalid section %u in %s"), | 
 | 		 this->section_name(shndx).c_str(), shndx, text_shndx, | 
 | 		 this->name().c_str()); | 
 |       exidx_input_section->set_has_errors(); | 
 |     } | 
 |   else if (this->exidx_section_map_[text_shndx] != NULL) | 
 |     { | 
 |       unsigned other_exidx_shndx = | 
 | 	this->exidx_section_map_[text_shndx]->shndx(); | 
 |       gold_error(_("EXIDX sections %s(%u) and %s(%u) both link to text section" | 
 | 		   "%s(%u) in %s"), | 
 | 		 this->section_name(shndx).c_str(), shndx, | 
 | 		 this->section_name(other_exidx_shndx).c_str(), | 
 | 		 other_exidx_shndx, this->section_name(text_shndx).c_str(), | 
 | 		 text_shndx, this->name().c_str()); | 
 |       exidx_input_section->set_has_errors(); | 
 |     } | 
 |   else | 
 |      this->exidx_section_map_[text_shndx] = exidx_input_section; | 
 |  | 
 |   // Check section flags of text section. | 
 |   if ((text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) | 
 |     { | 
 |       gold_error(_("EXIDX section %s(%u) links to non-allocated section %s(%u) " | 
 | 		   " in %s"), | 
 | 		 this->section_name(shndx).c_str(), shndx, | 
 | 		 this->section_name(text_shndx).c_str(), text_shndx, | 
 | 		 this->name().c_str()); | 
 |       exidx_input_section->set_has_errors(); | 
 |     } | 
 |   else if ((text_shdr.get_sh_flags() & elfcpp::SHF_EXECINSTR) == 0) | 
 |     // I would like to make this an error but currently ld just ignores | 
 |     // this. | 
 |     gold_warning(_("EXIDX section %s(%u) links to non-executable section " | 
 | 		   "%s(%u) in %s"), | 
 | 		 this->section_name(shndx).c_str(), shndx, | 
 | 		 this->section_name(text_shndx).c_str(), text_shndx, | 
 | 		 this->name().c_str()); | 
 | } | 
 |  | 
 | // Read the symbol information. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::do_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   // Call parent class to read symbol information. | 
 |   this->base_read_symbols(sd); | 
 |  | 
 |   // If this input file is a binary file, it has no processor | 
 |   // specific flags and attributes section. | 
 |   Input_file::Format format = this->input_file()->format(); | 
 |   if (format != Input_file::FORMAT_ELF) | 
 |     { | 
 |       gold_assert(format == Input_file::FORMAT_BINARY); | 
 |       this->merge_flags_and_attributes_ = false; | 
 |       return; | 
 |     } | 
 |  | 
 |   // Read processor-specific flags in ELF file header. | 
 |   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, | 
 | 					      elfcpp::Elf_sizes<32>::ehdr_size, | 
 | 					      true, false); | 
 |   elfcpp::Ehdr<32, big_endian> ehdr(pehdr); | 
 |   this->processor_specific_flags_ = ehdr.get_e_flags(); | 
 |  | 
 |   // Go over the section headers and look for .ARM.attributes and .ARM.exidx | 
 |   // sections. | 
 |   std::vector<unsigned int> deferred_exidx_sections; | 
 |   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |   const unsigned char* pshdrs = sd->section_headers->data(); | 
 |   const unsigned char* ps = pshdrs + shdr_size; | 
 |   bool must_merge_flags_and_attributes = false; | 
 |   for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) | 
 |     { | 
 |       elfcpp::Shdr<32, big_endian> shdr(ps); | 
 |  | 
 |       // Sometimes an object has no contents except the section name string | 
 |       // table and an empty symbol table with the undefined symbol.  We | 
 |       // don't want to merge processor-specific flags from such an object. | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_SYMTAB) | 
 | 	{ | 
 | 	  // Symbol table is not empty. | 
 | 	  const elfcpp::Elf_types<32>::Elf_WXword sym_size = | 
 | 	     elfcpp::Elf_sizes<32>::sym_size; | 
 | 	  if (shdr.get_sh_size() > sym_size) | 
 | 	    must_merge_flags_and_attributes = true; | 
 | 	} | 
 |       else if (shdr.get_sh_type() != elfcpp::SHT_STRTAB) | 
 | 	// If this is neither an empty symbol table nor a string table, | 
 | 	// be conservative. | 
 | 	must_merge_flags_and_attributes = true; | 
 |  | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) | 
 | 	{ | 
 | 	  gold_assert(this->attributes_section_data_ == NULL); | 
 | 	  section_offset_type section_offset = shdr.get_sh_offset(); | 
 | 	  section_size_type section_size = | 
 | 	    convert_to_section_size_type(shdr.get_sh_size()); | 
 | 	  const unsigned char* view = | 
 | 	     this->get_view(section_offset, section_size, true, false); | 
 | 	  this->attributes_section_data_ = | 
 | 	    new Attributes_section_data(view, section_size); | 
 | 	} | 
 |       else if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) | 
 | 	{ | 
 | 	  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); | 
 | 	  if (text_shndx == elfcpp::SHN_UNDEF) | 
 | 	    deferred_exidx_sections.push_back(i); | 
 | 	  else | 
 | 	    { | 
 | 	      elfcpp::Shdr<32, big_endian> text_shdr(pshdrs | 
 | 						     + text_shndx * shdr_size); | 
 | 	      this->make_exidx_input_section(i, shdr, text_shndx, text_shdr); | 
 | 	    } | 
 | 	  // EHABI 4.4.1 requires that SHF_LINK_ORDER flag to be set. | 
 | 	  if ((shdr.get_sh_flags() & elfcpp::SHF_LINK_ORDER) == 0) | 
 | 	    gold_warning(_("SHF_LINK_ORDER not set in EXIDX section %s of %s"), | 
 | 			 this->section_name(i).c_str(), this->name().c_str()); | 
 | 	} | 
 |     } | 
 |  | 
 |   // This is rare. | 
 |   if (!must_merge_flags_and_attributes) | 
 |     { | 
 |       gold_assert(deferred_exidx_sections.empty()); | 
 |       this->merge_flags_and_attributes_ = false; | 
 |       return; | 
 |     } | 
 |  | 
 |   // Some tools are broken and they do not set the link of EXIDX sections. | 
 |   // We look at the first relocation to figure out the linked sections. | 
 |   if (!deferred_exidx_sections.empty()) | 
 |     { | 
 |       // We need to go over the section headers again to find the mapping | 
 |       // from sections being relocated to their relocation sections.  This is | 
 |       // a bit inefficient as we could do that in the loop above.  However, | 
 |       // we do not expect any deferred EXIDX sections normally.  So we do not | 
 |       // want to slow down the most common path. | 
 |       typedef Unordered_map<unsigned int, unsigned int> Reloc_map; | 
 |       Reloc_map reloc_map; | 
 |       ps = pshdrs + shdr_size; | 
 |       for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size) | 
 | 	{ | 
 | 	  elfcpp::Shdr<32, big_endian> shdr(ps); | 
 | 	  elfcpp::Elf_Word sh_type = shdr.get_sh_type(); | 
 | 	  if (sh_type == elfcpp::SHT_REL || sh_type == elfcpp::SHT_RELA) | 
 | 	    { | 
 | 	      unsigned int info_shndx = this->adjust_shndx(shdr.get_sh_info()); | 
 | 	      if (info_shndx >= this->shnum()) | 
 | 		gold_error(_("relocation section %u has invalid info %u"), | 
 | 			   i, info_shndx); | 
 | 	      Reloc_map::value_type value(info_shndx, i); | 
 | 	      std::pair<Reloc_map::iterator, bool> result = | 
 | 		reloc_map.insert(value); | 
 | 	      if (!result.second) | 
 | 		gold_error(_("section %u has multiple relocation sections " | 
 | 			     "%u and %u"), | 
 | 			   info_shndx, i, reloc_map[info_shndx]); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       // Read the symbol table section header. | 
 |       const unsigned int symtab_shndx = this->symtab_shndx(); | 
 |       elfcpp::Shdr<32, big_endian> | 
 | 	  symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); | 
 |       gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |  | 
 |       // Read the local symbols. | 
 |       const int sym_size =elfcpp::Elf_sizes<32>::sym_size; | 
 |       const unsigned int loccount = this->local_symbol_count(); | 
 |       gold_assert(loccount == symtabshdr.get_sh_info()); | 
 |       off_t locsize = loccount * sym_size; | 
 |       const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | 
 | 						  locsize, true, true); | 
 |  | 
 |       // Process the deferred EXIDX sections. | 
 |       for (unsigned int i = 0; i < deferred_exidx_sections.size(); ++i) | 
 | 	{ | 
 | 	  unsigned int shndx = deferred_exidx_sections[i]; | 
 | 	  elfcpp::Shdr<32, big_endian> shdr(pshdrs + shndx * shdr_size); | 
 | 	  unsigned int text_shndx = elfcpp::SHN_UNDEF; | 
 | 	  Reloc_map::const_iterator it = reloc_map.find(shndx); | 
 | 	  if (it != reloc_map.end()) | 
 | 	    find_linked_text_section(pshdrs + it->second * shdr_size, | 
 | 				     psyms, &text_shndx); | 
 | 	  elfcpp::Shdr<32, big_endian> text_shdr(pshdrs | 
 | 						 + text_shndx * shdr_size); | 
 | 	  this->make_exidx_input_section(shndx, shdr, text_shndx, text_shdr); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Process relocations for garbage collection.  The ARM target uses .ARM.exidx | 
 | // sections for unwinding.  These sections are referenced implicitly by | 
 | // text sections linked in the section headers.  If we ignore these implicit | 
 | // references, the .ARM.exidx sections and any .ARM.extab sections they use | 
 | // will be garbage-collected incorrectly.  Hence we override the same function | 
 | // in the base class to handle these implicit references. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::do_gc_process_relocs(Symbol_table* symtab, | 
 | 					     Layout* layout, | 
 | 					     Read_relocs_data* rd) | 
 | { | 
 |   // First, call base class method to process relocations in this object. | 
 |   Sized_relobj_file<32, big_endian>::do_gc_process_relocs(symtab, layout, rd); | 
 |  | 
 |   // If --gc-sections is not specified, there is nothing more to do. | 
 |   // This happens when --icf is used but --gc-sections is not. | 
 |   if (!parameters->options().gc_sections()) | 
 |     return; | 
 |  | 
 |   unsigned int shnum = this->shnum(); | 
 |   const unsigned int shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |   const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(), | 
 | 					       shnum * shdr_size, | 
 | 					       true, true); | 
 |  | 
 |   // Scan section headers for sections of type SHT_ARM_EXIDX.  Add references | 
 |   // to these from the linked text sections. | 
 |   const unsigned char* ps = pshdrs + shdr_size; | 
 |   for (unsigned int i = 1; i < shnum; ++i, ps += shdr_size) | 
 |     { | 
 |       elfcpp::Shdr<32, big_endian> shdr(ps); | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_ARM_EXIDX) | 
 | 	{ | 
 | 	  // Found an .ARM.exidx section, add it to the set of reachable | 
 | 	  // sections from its linked text section. | 
 | 	  unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_link()); | 
 | 	  symtab->gc()->add_reference(this, text_shndx, this, i); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Update output local symbol count.  Owing to EXIDX entry merging, some local | 
 | // symbols  will be removed in output.  Adjust output local symbol count | 
 | // accordingly.  We can only changed the static output local symbol count.  It | 
 | // is too late to change the dynamic symbols. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_relobj<big_endian>::update_output_local_symbol_count() | 
 | { | 
 |   // Caller should check that this needs updating.  We want caller checking | 
 |   // because output_local_symbol_count_needs_update() is most likely inlined. | 
 |   gold_assert(this->output_local_symbol_count_needs_update_); | 
 |  | 
 |   gold_assert(this->symtab_shndx() != -1U); | 
 |   if (this->symtab_shndx() == 0) | 
 |     { | 
 |       // This object has no symbols.  Weird but legal. | 
 |       return; | 
 |     } | 
 |  | 
 |   // Read the symbol table section header. | 
 |   const unsigned int symtab_shndx = this->symtab_shndx(); | 
 |   elfcpp::Shdr<32, big_endian> | 
 |     symtabshdr(this, this->elf_file()->section_header(symtab_shndx)); | 
 |   gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB); | 
 |  | 
 |   // Read the local symbols. | 
 |   const int sym_size = elfcpp::Elf_sizes<32>::sym_size; | 
 |   const unsigned int loccount = this->local_symbol_count(); | 
 |   gold_assert(loccount == symtabshdr.get_sh_info()); | 
 |   off_t locsize = loccount * sym_size; | 
 |   const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(), | 
 | 					      locsize, true, true); | 
 |  | 
 |   // Loop over the local symbols. | 
 |  | 
 |   typedef typename Sized_relobj_file<32, big_endian>::Output_sections | 
 |      Output_sections; | 
 |   const Output_sections& out_sections(this->output_sections()); | 
 |   unsigned int shnum = this->shnum(); | 
 |   unsigned int count = 0; | 
 |   // Skip the first, dummy, symbol. | 
 |   psyms += sym_size; | 
 |   for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size) | 
 |     { | 
 |       elfcpp::Sym<32, big_endian> sym(psyms); | 
 |  | 
 |       Symbol_value<32>& lv((*this->local_values())[i]); | 
 |  | 
 |       // This local symbol was already discarded by do_count_local_symbols. | 
 |       if (lv.is_output_symtab_index_set() && !lv.has_output_symtab_entry()) | 
 | 	continue; | 
 |  | 
 |       bool is_ordinary; | 
 |       unsigned int shndx = this->adjust_sym_shndx(i, sym.get_st_shndx(), | 
 | 						  &is_ordinary); | 
 |  | 
 |       if (shndx < shnum) | 
 | 	{ | 
 | 	  Output_section* os = out_sections[shndx]; | 
 |  | 
 | 	  // This local symbol no longer has an output section.  Discard it. | 
 | 	  if (os == NULL) | 
 | 	    { | 
 | 	      lv.set_no_output_symtab_entry(); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  // Currently we only discard parts of EXIDX input sections. | 
 | 	  // We explicitly check for a merged EXIDX input section to avoid | 
 | 	  // calling Output_section_data::output_offset unless necessary. | 
 | 	  if ((this->get_output_section_offset(shndx) == invalid_address) | 
 | 	      && (this->exidx_input_section_by_shndx(shndx) != NULL)) | 
 | 	    { | 
 | 	      section_offset_type output_offset = | 
 | 		os->output_offset(this, shndx, lv.input_value()); | 
 | 	      if (output_offset == -1) | 
 | 		{ | 
 | 		  // This symbol is defined in a part of an EXIDX input section | 
 | 		  // that is discarded due to entry merging. | 
 | 		  lv.set_no_output_symtab_entry(); | 
 | 		  continue; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       ++count; | 
 |     } | 
 |  | 
 |   this->set_output_local_symbol_count(count); | 
 |   this->output_local_symbol_count_needs_update_ = false; | 
 | } | 
 |  | 
 | // Arm_dynobj methods. | 
 |  | 
 | // Read the symbol information. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_dynobj<big_endian>::do_read_symbols(Read_symbols_data* sd) | 
 | { | 
 |   // Call parent class to read symbol information. | 
 |   this->base_read_symbols(sd); | 
 |  | 
 |   // Read processor-specific flags in ELF file header. | 
 |   const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset, | 
 | 					      elfcpp::Elf_sizes<32>::ehdr_size, | 
 | 					      true, false); | 
 |   elfcpp::Ehdr<32, big_endian> ehdr(pehdr); | 
 |   this->processor_specific_flags_ = ehdr.get_e_flags(); | 
 |  | 
 |   // Read the attributes section if there is one. | 
 |   // We read from the end because gas seems to put it near the end of | 
 |   // the section headers. | 
 |   const size_t shdr_size = elfcpp::Elf_sizes<32>::shdr_size; | 
 |   const unsigned char* ps = | 
 |     sd->section_headers->data() + shdr_size * (this->shnum() - 1); | 
 |   for (unsigned int i = this->shnum(); i > 0; --i, ps -= shdr_size) | 
 |     { | 
 |       elfcpp::Shdr<32, big_endian> shdr(ps); | 
 |       if (shdr.get_sh_type() == elfcpp::SHT_ARM_ATTRIBUTES) | 
 | 	{ | 
 | 	  section_offset_type section_offset = shdr.get_sh_offset(); | 
 | 	  section_size_type section_size = | 
 | 	    convert_to_section_size_type(shdr.get_sh_size()); | 
 | 	  const unsigned char* view = | 
 | 	    this->get_view(section_offset, section_size, true, false); | 
 | 	  this->attributes_section_data_ = | 
 | 	    new Attributes_section_data(view, section_size); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Stub_addend_reader methods. | 
 |  | 
 | // Read the addend of a REL relocation of type R_TYPE at VIEW. | 
 |  | 
 | template<bool big_endian> | 
 | elfcpp::Elf_types<32>::Elf_Swxword | 
 | Stub_addend_reader<elfcpp::SHT_REL, big_endian>::operator()( | 
 |     unsigned int r_type, | 
 |     const unsigned char* view, | 
 |     const typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc&) const | 
 | { | 
 |   typedef class Arm_relocate_functions<big_endian> RelocFuncs; | 
 |  | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_PLT32: | 
 |       { | 
 | 	typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 | 	const Valtype* wv = reinterpret_cast<const Valtype*>(view); | 
 | 	Valtype val = elfcpp::Swap<32, big_endian>::readval(wv); | 
 | 	return Bits<26>::sign_extend32(val << 2); | 
 |       } | 
 |  | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_XPC22: | 
 |       { | 
 | 	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 | 	const Valtype* wv = reinterpret_cast<const Valtype*>(view); | 
 | 	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 | 	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 | 	return RelocFuncs::thumb32_branch_offset(upper_insn, lower_insn); | 
 |       } | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |       { | 
 | 	typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 | 	const Valtype* wv = reinterpret_cast<const Valtype*>(view); | 
 | 	Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 | 	Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 | 	return RelocFuncs::thumb32_cond_branch_offset(upper_insn, lower_insn); | 
 |       } | 
 |  | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Arm_output_data_got methods. | 
 |  | 
 | // Add a GOT pair for R_ARM_TLS_GD32.  The creates a pair of GOT entries. | 
 | // The first one is initialized to be 1, which is the module index for | 
 | // the main executable and the second one 0.  A reloc of the type | 
 | // R_ARM_TLS_DTPOFF32 will be created for the second GOT entry and will | 
 | // be applied by gold.  GSYM is a global symbol. | 
 | // | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( | 
 |     unsigned int got_type, | 
 |     Symbol* gsym) | 
 | { | 
 |   if (gsym->has_got_offset(got_type)) | 
 |     return; | 
 |  | 
 |   // We are doing a static link.  Just mark it as belong to module 1, | 
 |   // the executable. | 
 |   unsigned int got_offset = this->add_constant(1); | 
 |   gsym->set_got_offset(got_type, got_offset); | 
 |   got_offset = this->add_constant(0); | 
 |   this->static_relocs_.push_back(Static_reloc(got_offset, | 
 | 					      elfcpp::R_ARM_TLS_DTPOFF32, | 
 | 					      gsym)); | 
 | } | 
 |  | 
 | // Same as the above but for a local symbol. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_data_got<big_endian>::add_tls_gd32_with_static_reloc( | 
 |   unsigned int got_type, | 
 |   Sized_relobj_file<32, big_endian>* object, | 
 |   unsigned int index) | 
 | { | 
 |   if (object->local_has_got_offset(index, got_type)) | 
 |     return; | 
 |  | 
 |   // We are doing a static link.  Just mark it as belong to module 1, | 
 |   // the executable. | 
 |   unsigned int got_offset = this->add_constant(1); | 
 |   object->set_local_got_offset(index, got_type, got_offset); | 
 |   got_offset = this->add_constant(0); | 
 |   this->static_relocs_.push_back(Static_reloc(got_offset, | 
 | 					      elfcpp::R_ARM_TLS_DTPOFF32, | 
 | 					      object, index)); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Arm_output_data_got<big_endian>::do_write(Output_file* of) | 
 | { | 
 |   // Call parent to write out GOT. | 
 |   Output_data_got<32, big_endian>::do_write(of); | 
 |  | 
 |   // We are done if there is no fix up. | 
 |   if (this->static_relocs_.empty()) | 
 |     return; | 
 |  | 
 |   gold_assert(parameters->doing_static_link()); | 
 |  | 
 |   const off_t offset = this->offset(); | 
 |   const section_size_type oview_size = | 
 |     convert_to_section_size_type(this->data_size()); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   Output_segment* tls_segment = this->layout_->tls_segment(); | 
 |   gold_assert(tls_segment != NULL); | 
 |  | 
 |   // The thread pointer $tp points to the TCB, which is followed by the | 
 |   // TLS.  So we need to adjust $tp relative addressing by this amount. | 
 |   Arm_address aligned_tcb_size = | 
 |     align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); | 
 |  | 
 |   for (size_t i = 0; i < this->static_relocs_.size(); ++i) | 
 |     { | 
 |       Static_reloc& reloc(this->static_relocs_[i]); | 
 |  | 
 |       Arm_address value; | 
 |       if (!reloc.symbol_is_global()) | 
 | 	{ | 
 | 	  Sized_relobj_file<32, big_endian>* object = reloc.relobj(); | 
 | 	  const Symbol_value<32>* psymval = | 
 | 	    reloc.relobj()->local_symbol(reloc.index()); | 
 |  | 
 | 	  // We are doing static linking.  Issue an error and skip this | 
 | 	  // relocation if the symbol is undefined or in a discarded_section. | 
 | 	  bool is_ordinary; | 
 | 	  unsigned int shndx = psymval->input_shndx(&is_ordinary); | 
 | 	  if ((shndx == elfcpp::SHN_UNDEF) | 
 | 	      || (is_ordinary | 
 | 		  && shndx != elfcpp::SHN_UNDEF | 
 | 		  && !object->is_section_included(shndx) | 
 | 		  && !this->symbol_table_->is_section_folded(object, shndx))) | 
 | 	    { | 
 | 	      gold_error(_("undefined or discarded local symbol %u from " | 
 | 			   " object %s in GOT"), | 
 | 			 reloc.index(), reloc.relobj()->name().c_str()); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  value = psymval->value(object, 0); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  const Symbol* gsym = reloc.symbol(); | 
 | 	  gold_assert(gsym != NULL); | 
 | 	  if (gsym->is_forwarder()) | 
 | 	    gsym = this->symbol_table_->resolve_forwards(gsym); | 
 |  | 
 | 	  // We are doing static linking.  Issue an error and skip this | 
 | 	  // relocation if the symbol is undefined or in a discarded_section | 
 | 	  // unless it is a weakly_undefined symbol. | 
 | 	  if ((gsym->is_defined_in_discarded_section() | 
 | 	       || gsym->is_undefined()) | 
 | 	      && !gsym->is_weak_undefined()) | 
 | 	    { | 
 | 	      gold_error(_("undefined or discarded symbol %s in GOT"), | 
 | 			 gsym->name()); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  if (!gsym->is_weak_undefined()) | 
 | 	    { | 
 | 	      const Sized_symbol<32>* sym = | 
 | 		static_cast<const Sized_symbol<32>*>(gsym); | 
 | 	      value = sym->value(); | 
 | 	    } | 
 | 	  else | 
 | 	      value = 0; | 
 | 	} | 
 |  | 
 |       unsigned got_offset = reloc.got_offset(); | 
 |       gold_assert(got_offset < oview_size); | 
 |  | 
 |       typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 |       Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset); | 
 |       Valtype x; | 
 |       switch (reloc.r_type()) | 
 | 	{ | 
 | 	case elfcpp::R_ARM_TLS_DTPOFF32: | 
 | 	  x = value; | 
 | 	  break; | 
 | 	case elfcpp::R_ARM_TLS_TPOFF32: | 
 | 	  x = value + aligned_tcb_size; | 
 | 	  break; | 
 | 	default: | 
 | 	  gold_unreachable(); | 
 | 	} | 
 |       elfcpp::Swap<32, big_endian>::writeval(wv, x); | 
 |     } | 
 |  | 
 |   of->write_output_view(offset, oview_size, oview); | 
 | } | 
 |  | 
 | // A class to handle the PLT data. | 
 | // This is an abstract base class that handles most of the linker details | 
 | // but does not know the actual contents of PLT entries.  The derived | 
 | // classes below fill in those details. | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm : public Output_section_data | 
 | { | 
 |  public: | 
 |   // Unlike aarch64, which records symbol value in "addend" field of relocations | 
 |   // and could be done at the same time an IRelative reloc is created for the | 
 |   // symbol, arm puts the symbol value into "GOT" table, which, however, is | 
 |   // issued later in Output_data_plt_arm::do_write(). So we have a struct here | 
 |   // to keep necessary symbol information for later use in do_write. We usually | 
 |   // have only a very limited number of ifuncs, so the extra data required here | 
 |   // is also limited. | 
 |  | 
 |   struct IRelative_data | 
 |   { | 
 |     IRelative_data(Sized_symbol<32>* sized_symbol) | 
 |       : symbol_is_global_(true) | 
 |     { | 
 |       u_.global = sized_symbol; | 
 |     } | 
 |  | 
 |     IRelative_data(Sized_relobj_file<32, big_endian>* relobj, | 
 | 		   unsigned int index) | 
 |       : symbol_is_global_(false) | 
 |     { | 
 |       u_.local.relobj = relobj; | 
 |       u_.local.index = index; | 
 |     } | 
 |  | 
 |     union | 
 |     { | 
 |       Sized_symbol<32>* global; | 
 |  | 
 |       struct | 
 |       { | 
 | 	Sized_relobj_file<32, big_endian>* relobj; | 
 | 	unsigned int index; | 
 |       } local; | 
 |     } u_; | 
 |  | 
 |     bool symbol_is_global_; | 
 |   }; | 
 |  | 
 |   typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, big_endian> | 
 |     Reloc_section; | 
 |  | 
 |   Output_data_plt_arm(Layout* layout, uint64_t addralign, | 
 | 		      Arm_output_data_got<big_endian>* got, | 
 | 		      Output_data_space* got_plt, | 
 | 		      Output_data_space* got_irelative); | 
 |  | 
 |   // Add an entry to the PLT. | 
 |   void | 
 |   add_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym); | 
 |  | 
 |   // Add the relocation for a plt entry. | 
 |   void | 
 |   add_relocation(Symbol_table* symtab, Layout* layout, | 
 | 		 Symbol* gsym, unsigned int got_offset); | 
 |  | 
 |   // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. | 
 |   unsigned int | 
 |   add_local_ifunc_entry(Symbol_table* symtab, Layout*, | 
 | 			Sized_relobj_file<32, big_endian>* relobj, | 
 | 			unsigned int local_sym_index); | 
 |  | 
 |   // Return the .rel.plt section data. | 
 |   const Reloc_section* | 
 |   rel_plt() const | 
 |   { return this->rel_; } | 
 |  | 
 |   // Return the PLT relocation container for IRELATIVE. | 
 |   Reloc_section* | 
 |   rel_irelative(Symbol_table*, Layout*); | 
 |  | 
 |   // Return the number of PLT entries. | 
 |   unsigned int | 
 |   entry_count() const | 
 |   { return this->count_ + this->irelative_count_; } | 
 |  | 
 |   // Return the offset of the first non-reserved PLT entry. | 
 |   unsigned int | 
 |   first_plt_entry_offset() const | 
 |   { return this->do_first_plt_entry_offset(); } | 
 |  | 
 |   // Return the size of a PLT entry. | 
 |   unsigned int | 
 |   get_plt_entry_size() const | 
 |   { return this->do_get_plt_entry_size(); } | 
 |  | 
 |   // Return the PLT address for globals. | 
 |   uint32_t | 
 |   address_for_global(const Symbol*) const; | 
 |  | 
 |   // Return the PLT address for locals. | 
 |   uint32_t | 
 |   address_for_local(const Relobj*, unsigned int symndx) const; | 
 |  | 
 |  protected: | 
 |   // Fill in the first PLT entry. | 
 |   void | 
 |   fill_first_plt_entry(unsigned char* pov, | 
 | 		       Arm_address got_address, | 
 | 		       Arm_address plt_address) | 
 |   { this->do_fill_first_plt_entry(pov, got_address, plt_address); } | 
 |  | 
 |   void | 
 |   fill_plt_entry(unsigned char* pov, | 
 | 		 Arm_address got_address, | 
 | 		 Arm_address plt_address, | 
 | 		 unsigned int got_offset, | 
 | 		 unsigned int plt_offset) | 
 |   { do_fill_plt_entry(pov, got_address, plt_address, got_offset, plt_offset); } | 
 |  | 
 |   virtual unsigned int | 
 |   do_first_plt_entry_offset() const = 0; | 
 |  | 
 |   virtual unsigned int | 
 |   do_get_plt_entry_size() const = 0; | 
 |  | 
 |   virtual void | 
 |   do_fill_first_plt_entry(unsigned char* pov, | 
 | 			  Arm_address got_address, | 
 | 			  Arm_address plt_address) = 0; | 
 |  | 
 |   virtual void | 
 |   do_fill_plt_entry(unsigned char* pov, | 
 | 		    Arm_address got_address, | 
 | 		    Arm_address plt_address, | 
 | 		    unsigned int got_offset, | 
 | 		    unsigned int plt_offset) = 0; | 
 |  | 
 |   void | 
 |   do_adjust_output_section(Output_section* os); | 
 |  | 
 |   // Write to a map file. | 
 |   void | 
 |   do_print_to_mapfile(Mapfile* mapfile) const | 
 |   { mapfile->print_output_data(this, _("** PLT")); } | 
 |  | 
 |  private: | 
 |   // Set the final size. | 
 |   void | 
 |   set_final_data_size() | 
 |   { | 
 |     this->set_data_size(this->first_plt_entry_offset() | 
 | 			+ ((this->count_ + this->irelative_count_) | 
 | 			   * this->get_plt_entry_size())); | 
 |   } | 
 |  | 
 |   // Write out the PLT data. | 
 |   void | 
 |   do_write(Output_file*); | 
 |  | 
 |   // Record irelative symbol data. | 
 |   void insert_irelative_data(const IRelative_data& idata) | 
 |   { irelative_data_vec_.push_back(idata); } | 
 |  | 
 |   // The reloc section. | 
 |   Reloc_section* rel_; | 
 |   // The IRELATIVE relocs, if necessary.  These must follow the | 
 |   // regular PLT relocations. | 
 |   Reloc_section* irelative_rel_; | 
 |   // The .got section. | 
 |   Arm_output_data_got<big_endian>* got_; | 
 |   // The .got.plt section. | 
 |   Output_data_space* got_plt_; | 
 |   // The part of the .got.plt section used for IRELATIVE relocs. | 
 |   Output_data_space* got_irelative_; | 
 |   // The number of PLT entries. | 
 |   unsigned int count_; | 
 |   // Number of PLT entries with R_ARM_IRELATIVE relocs.  These | 
 |   // follow the regular PLT entries. | 
 |   unsigned int irelative_count_; | 
 |   // Vector for irelative data. | 
 |   typedef std::vector<IRelative_data> IRelative_data_vec; | 
 |   IRelative_data_vec irelative_data_vec_; | 
 | }; | 
 |  | 
 | // Create the PLT section.  The ordinary .got section is an argument, | 
 | // since we need to refer to the start.  We also create our own .got | 
 | // section just for PLT entries. | 
 |  | 
 | template<bool big_endian> | 
 | Output_data_plt_arm<big_endian>::Output_data_plt_arm( | 
 |     Layout* layout, uint64_t addralign, | 
 |     Arm_output_data_got<big_endian>* got, | 
 |     Output_data_space* got_plt, | 
 |     Output_data_space* got_irelative) | 
 |   : Output_section_data(addralign), irelative_rel_(NULL), | 
 |     got_(got), got_plt_(got_plt), got_irelative_(got_irelative), | 
 |     count_(0), irelative_count_(0) | 
 | { | 
 |   this->rel_ = new Reloc_section(false); | 
 |   layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL, | 
 | 				  elfcpp::SHF_ALLOC, this->rel_, | 
 | 				  ORDER_DYNAMIC_PLT_RELOCS, false); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm<big_endian>::do_adjust_output_section(Output_section* os) | 
 | { | 
 |   os->set_entsize(0); | 
 | } | 
 |  | 
 | // Add an entry to the PLT. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm<big_endian>::add_entry(Symbol_table* symtab, | 
 | 					   Layout* layout, | 
 | 					   Symbol* gsym) | 
 | { | 
 |   gold_assert(!gsym->has_plt_offset()); | 
 |  | 
 |   unsigned int* entry_count; | 
 |   Output_section_data_build* got; | 
 |  | 
 |   // We have 2 different types of plt entry here, normal and ifunc. | 
 |  | 
 |   // For normal plt, the offset begins with first_plt_entry_offset(20), and the | 
 |   // 1st entry offset would be 20, the second 32, third 44 ... etc. | 
 |  | 
 |   // For ifunc plt, the offset begins with 0. So the first offset would 0, | 
 |   // second 12, third 24 ... etc. | 
 |  | 
 |   // IFunc plt entries *always* come after *normal* plt entries. | 
 |  | 
 |   // Notice, when computing the plt address of a certain symbol, "plt_address + | 
 |   // plt_offset" is no longer correct. Use target->plt_address_for_global() or | 
 |   // target->plt_address_for_local() instead. | 
 |  | 
 |   int begin_offset = 0; | 
 |   if (gsym->type() == elfcpp::STT_GNU_IFUNC | 
 |       && gsym->can_use_relative_reloc(false)) | 
 |     { | 
 |       entry_count = &this->irelative_count_; | 
 |       got = this->got_irelative_; | 
 |       // For irelative plt entries, offset is relative to the end of normal plt | 
 |       // entries, so it starts from 0. | 
 |       begin_offset = 0; | 
 |       // Record symbol information. | 
 |       this->insert_irelative_data( | 
 | 	  IRelative_data(symtab->get_sized_symbol<32>(gsym))); | 
 |     } | 
 |   else | 
 |     { | 
 |       entry_count = &this->count_; | 
 |       got = this->got_plt_; | 
 |       // Note that for normal plt entries, when setting the PLT offset we skip | 
 |       // the initial reserved PLT entry. | 
 |       begin_offset = this->first_plt_entry_offset(); | 
 |     } | 
 |  | 
 |   gsym->set_plt_offset(begin_offset | 
 | 		       + (*entry_count) * this->get_plt_entry_size()); | 
 |  | 
 |   ++(*entry_count); | 
 |  | 
 |   section_offset_type got_offset = got->current_data_size(); | 
 |  | 
 |   // Every PLT entry needs a GOT entry which points back to the PLT | 
 |   // entry (this will be changed by the dynamic linker, normally | 
 |   // lazily when the function is called). | 
 |   got->set_current_data_size(got_offset + 4); | 
 |  | 
 |   // Every PLT entry needs a reloc. | 
 |   this->add_relocation(symtab, layout, gsym, got_offset); | 
 |  | 
 |   // Note that we don't need to save the symbol.  The contents of the | 
 |   // PLT are independent of which symbols are used.  The symbols only | 
 |   // appear in the relocations. | 
 | } | 
 |  | 
 | // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.  Return | 
 | // the PLT offset. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Output_data_plt_arm<big_endian>::add_local_ifunc_entry( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* relobj, | 
 |     unsigned int local_sym_index) | 
 | { | 
 |   this->insert_irelative_data(IRelative_data(relobj, local_sym_index)); | 
 |  | 
 |   // Notice, when computingthe plt entry address, "plt_address + plt_offset" is | 
 |   // no longer correct. Use target->plt_address_for_local() instead. | 
 |   unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size(); | 
 |   ++this->irelative_count_; | 
 |  | 
 |   section_offset_type got_offset = this->got_irelative_->current_data_size(); | 
 |  | 
 |   // Every PLT entry needs a GOT entry which points back to the PLT | 
 |   // entry. | 
 |   this->got_irelative_->set_current_data_size(got_offset + 4); | 
 |  | 
 |  | 
 |   // Every PLT entry needs a reloc. | 
 |   Reloc_section* rel = this->rel_irelative(symtab, layout); | 
 |   rel->add_symbolless_local_addend(relobj, local_sym_index, | 
 | 				   elfcpp::R_ARM_IRELATIVE, | 
 | 				   this->got_irelative_, got_offset); | 
 |   return plt_offset; | 
 | } | 
 |  | 
 |  | 
 | // Add the relocation for a PLT entry. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm<big_endian>::add_relocation( | 
 |     Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset) | 
 | { | 
 |   if (gsym->type() == elfcpp::STT_GNU_IFUNC | 
 |       && gsym->can_use_relative_reloc(false)) | 
 |     { | 
 |       Reloc_section* rel = this->rel_irelative(symtab, layout); | 
 |       rel->add_symbolless_global_addend(gsym, elfcpp::R_ARM_IRELATIVE, | 
 | 					this->got_irelative_, got_offset); | 
 |     } | 
 |   else | 
 |     { | 
 |       gsym->set_needs_dynsym_entry(); | 
 |       this->rel_->add_global(gsym, elfcpp::R_ARM_JUMP_SLOT, this->got_plt_, | 
 | 			     got_offset); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // Create the irelative relocation data. | 
 |  | 
 | template<bool big_endian> | 
 | typename Output_data_plt_arm<big_endian>::Reloc_section* | 
 | Output_data_plt_arm<big_endian>::rel_irelative(Symbol_table* symtab, | 
 | 						Layout* layout) | 
 | { | 
 |   if (this->irelative_rel_ == NULL) | 
 |     { | 
 |       // Since irelative relocations goes into 'rel.dyn', we delegate the | 
 |       // creation of irelative_rel_ to where rel_dyn section gets created. | 
 |       Target_arm<big_endian>* arm_target = | 
 | 	  Target_arm<big_endian>::default_target(); | 
 |       this->irelative_rel_ = arm_target->rel_irelative_section(layout); | 
 |  | 
 |       // Make sure we have a place for the TLSDESC relocations, in | 
 |       // case we see any later on. | 
 |       // this->rel_tlsdesc(layout); | 
 |       if (parameters->doing_static_link()) | 
 | 	{ | 
 | 	  // A statically linked executable will only have a .rel.plt section to | 
 | 	  // hold R_ARM_IRELATIVE relocs for STT_GNU_IFUNC symbols.  The library | 
 | 	  // will use these symbols to locate the IRELATIVE relocs at program | 
 | 	  // startup time. | 
 | 	  symtab->define_in_output_data("__rel_iplt_start", NULL, | 
 | 					Symbol_table::PREDEFINED, | 
 | 					this->irelative_rel_, 0, 0, | 
 | 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, | 
 | 					elfcpp::STV_HIDDEN, 0, false, true); | 
 | 	  symtab->define_in_output_data("__rel_iplt_end", NULL, | 
 | 					Symbol_table::PREDEFINED, | 
 | 					this->irelative_rel_, 0, 0, | 
 | 					elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL, | 
 | 					elfcpp::STV_HIDDEN, 0, true, true); | 
 | 	} | 
 |     } | 
 |   return this->irelative_rel_; | 
 | } | 
 |  | 
 |  | 
 | // Return the PLT address for a global symbol. | 
 |  | 
 | template<bool big_endian> | 
 | uint32_t | 
 | Output_data_plt_arm<big_endian>::address_for_global(const Symbol* gsym) const | 
 | { | 
 |   uint64_t begin_offset = 0; | 
 |   if (gsym->type() == elfcpp::STT_GNU_IFUNC | 
 |       && gsym->can_use_relative_reloc(false)) | 
 |     { | 
 |       begin_offset = (this->first_plt_entry_offset() + | 
 | 		      this->count_ * this->get_plt_entry_size()); | 
 |     } | 
 |   return this->address() + begin_offset + gsym->plt_offset(); | 
 | } | 
 |  | 
 |  | 
 | // Return the PLT address for a local symbol.  These are always | 
 | // IRELATIVE relocs. | 
 |  | 
 | template<bool big_endian> | 
 | uint32_t | 
 | Output_data_plt_arm<big_endian>::address_for_local( | 
 |     const Relobj* object, | 
 |     unsigned int r_sym) const | 
 | { | 
 |   return (this->address() | 
 | 	  + this->first_plt_entry_offset() | 
 | 	  + this->count_ * this->get_plt_entry_size() | 
 | 	  + object->local_plt_offset(r_sym)); | 
 | } | 
 |  | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_standard : public Output_data_plt_arm<big_endian> | 
 | { | 
 |  public: | 
 |   Output_data_plt_arm_standard(Layout* layout, | 
 | 			       Arm_output_data_got<big_endian>* got, | 
 | 			       Output_data_space* got_plt, | 
 | 			       Output_data_space* got_irelative) | 
 |     : Output_data_plt_arm<big_endian>(layout, 4, got, got_plt, got_irelative) | 
 |   { } | 
 |  | 
 |  protected: | 
 |   // Return the offset of the first non-reserved PLT entry. | 
 |   virtual unsigned int | 
 |   do_first_plt_entry_offset() const | 
 |   { return sizeof(first_plt_entry); } | 
 |  | 
 |   virtual void | 
 |   do_fill_first_plt_entry(unsigned char* pov, | 
 | 			  Arm_address got_address, | 
 | 			  Arm_address plt_address); | 
 |  | 
 |  private: | 
 |   // Template for the first PLT entry. | 
 |   static const uint32_t first_plt_entry[5]; | 
 | }; | 
 |  | 
 | // ARM PLTs. | 
 | // FIXME:  This is not very flexible.  Right now this has only been tested | 
 | // on armv5te.  If we are to support additional architecture features like | 
 | // Thumb-2 or BE8, we need to make this more flexible like GNU ld. | 
 |  | 
 | // The first entry in the PLT. | 
 | template<bool big_endian> | 
 | const uint32_t Output_data_plt_arm_standard<big_endian>::first_plt_entry[5] = | 
 | { | 
 |   0xe52de004,	// str   lr, [sp, #-4]! | 
 |   0xe59fe004,   // ldr   lr, [pc, #4] | 
 |   0xe08fe00e,	// add   lr, pc, lr | 
 |   0xe5bef008,	// ldr   pc, [lr, #8]! | 
 |   0x00000000,	// &GOT[0] - . | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm_standard<big_endian>::do_fill_first_plt_entry( | 
 |     unsigned char* pov, | 
 |     Arm_address got_address, | 
 |     Arm_address plt_address) | 
 | { | 
 |   // Write first PLT entry.  All but the last word are constants. | 
 |   const size_t num_first_plt_words = (sizeof(first_plt_entry) | 
 | 				      / sizeof(first_plt_entry[0])); | 
 |   for (size_t i = 0; i < num_first_plt_words - 1; i++) | 
 |     { | 
 |       if (parameters->options().be8()) | 
 | 	{ | 
 | 	  elfcpp::Swap<32, false>::writeval(pov + i * 4, | 
 | 					    first_plt_entry[i]); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, | 
 | 						 first_plt_entry[i]); | 
 | 	} | 
 |     } | 
 |   // Last word in first PLT entry is &GOT[0] - . | 
 |   elfcpp::Swap<32, big_endian>::writeval(pov + 16, | 
 | 					 got_address - (plt_address + 16)); | 
 | } | 
 |  | 
 | // Subsequent entries in the PLT. | 
 | // This class generates short (12-byte) entries, for displacements up to 2^28. | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_short : public Output_data_plt_arm_standard<big_endian> | 
 | { | 
 |  public: | 
 |   Output_data_plt_arm_short(Layout* layout, | 
 | 			    Arm_output_data_got<big_endian>* got, | 
 | 			    Output_data_space* got_plt, | 
 | 			    Output_data_space* got_irelative) | 
 |     : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative) | 
 |   { } | 
 |  | 
 |  protected: | 
 |   // Return the size of a PLT entry. | 
 |   virtual unsigned int | 
 |   do_get_plt_entry_size() const | 
 |   { return sizeof(plt_entry); } | 
 |  | 
 |   virtual void | 
 |   do_fill_plt_entry(unsigned char* pov, | 
 | 		    Arm_address got_address, | 
 | 		    Arm_address plt_address, | 
 | 		    unsigned int got_offset, | 
 | 		    unsigned int plt_offset); | 
 |  | 
 |  private: | 
 |   // Template for subsequent PLT entries. | 
 |   static const uint32_t plt_entry[3]; | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | const uint32_t Output_data_plt_arm_short<big_endian>::plt_entry[3] = | 
 | { | 
 |   0xe28fc600,	// add   ip, pc, #0xNN00000 | 
 |   0xe28cca00,	// add   ip, ip, #0xNN000 | 
 |   0xe5bcf000,	// ldr   pc, [ip, #0xNNN]! | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm_short<big_endian>::do_fill_plt_entry( | 
 |     unsigned char* pov, | 
 |     Arm_address got_address, | 
 |     Arm_address plt_address, | 
 |     unsigned int got_offset, | 
 |     unsigned int plt_offset) | 
 | { | 
 |   int32_t offset = ((got_address + got_offset) | 
 | 		    - (plt_address + plt_offset + 8)); | 
 |   if (offset < 0 || offset > 0x0fffffff) | 
 |     gold_error(_("PLT offset too large, try linking with --long-plt")); | 
 |  | 
 |   uint32_t plt_insn0 = plt_entry[0] | ((offset >> 20) & 0xff); | 
 |   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 12) & 0xff); | 
 |   uint32_t plt_insn2 = plt_entry[2] | (offset & 0xfff); | 
 |  | 
 |   if (parameters->options().be8()) | 
 |     { | 
 |       elfcpp::Swap<32, false>::writeval(pov, plt_insn0); | 
 |       elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); | 
 |       elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); | 
 |     } | 
 |   else | 
 |     { | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); | 
 |     } | 
 | } | 
 |  | 
 | // This class generates long (16-byte) entries, for arbitrary displacements. | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_long : public Output_data_plt_arm_standard<big_endian> | 
 | { | 
 |  public: | 
 |   Output_data_plt_arm_long(Layout* layout, | 
 | 			   Arm_output_data_got<big_endian>* got, | 
 | 			   Output_data_space* got_plt, | 
 | 			   Output_data_space* got_irelative) | 
 |     : Output_data_plt_arm_standard<big_endian>(layout, got, got_plt, got_irelative) | 
 |   { } | 
 |  | 
 |  protected: | 
 |   // Return the size of a PLT entry. | 
 |   virtual unsigned int | 
 |   do_get_plt_entry_size() const | 
 |   { return sizeof(plt_entry); } | 
 |  | 
 |   virtual void | 
 |   do_fill_plt_entry(unsigned char* pov, | 
 | 		    Arm_address got_address, | 
 | 		    Arm_address plt_address, | 
 | 		    unsigned int got_offset, | 
 | 		    unsigned int plt_offset); | 
 |  | 
 |  private: | 
 |   // Template for subsequent PLT entries. | 
 |   static const uint32_t plt_entry[4]; | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | const uint32_t Output_data_plt_arm_long<big_endian>::plt_entry[4] = | 
 | { | 
 |   0xe28fc200,	// add   ip, pc, #0xN0000000 | 
 |   0xe28cc600,	// add   ip, ip, #0xNN00000 | 
 |   0xe28cca00,	// add   ip, ip, #0xNN000 | 
 |   0xe5bcf000,	// ldr   pc, [ip, #0xNNN]! | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm_long<big_endian>::do_fill_plt_entry( | 
 |     unsigned char* pov, | 
 |     Arm_address got_address, | 
 |     Arm_address plt_address, | 
 |     unsigned int got_offset, | 
 |     unsigned int plt_offset) | 
 | { | 
 |   int32_t offset = ((got_address + got_offset) | 
 | 		    - (plt_address + plt_offset + 8)); | 
 |  | 
 |   uint32_t plt_insn0 = plt_entry[0] | (offset >> 28); | 
 |   uint32_t plt_insn1 = plt_entry[1] | ((offset >> 20) & 0xff); | 
 |   uint32_t plt_insn2 = plt_entry[2] | ((offset >> 12) & 0xff); | 
 |   uint32_t plt_insn3 = plt_entry[3] | (offset & 0xfff); | 
 |  | 
 |   if (parameters->options().be8()) | 
 |     { | 
 |       elfcpp::Swap<32, false>::writeval(pov, plt_insn0); | 
 |       elfcpp::Swap<32, false>::writeval(pov + 4, plt_insn1); | 
 |       elfcpp::Swap<32, false>::writeval(pov + 8, plt_insn2); | 
 |       elfcpp::Swap<32, false>::writeval(pov + 12, plt_insn3); | 
 |     } | 
 |   else | 
 |     { | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov, plt_insn0); | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov + 4, plt_insn1); | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_insn2); | 
 |       elfcpp::Swap<32, big_endian>::writeval(pov + 12, plt_insn3); | 
 |     } | 
 | } | 
 |  | 
 | // Write out the PLT.  This uses the hand-coded instructions above, | 
 | // and adjusts them as needed.  This is all specified by the arm ELF | 
 | // Processor Supplement. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm<big_endian>::do_write(Output_file* of) | 
 | { | 
 |   const off_t offset = this->offset(); | 
 |   const section_size_type oview_size = | 
 |     convert_to_section_size_type(this->data_size()); | 
 |   unsigned char* const oview = of->get_output_view(offset, oview_size); | 
 |  | 
 |   const off_t got_file_offset = this->got_plt_->offset(); | 
 |   gold_assert(got_file_offset + this->got_plt_->data_size() | 
 | 	      == this->got_irelative_->offset()); | 
 |   const section_size_type got_size = | 
 |     convert_to_section_size_type(this->got_plt_->data_size() | 
 | 				 + this->got_irelative_->data_size()); | 
 |   unsigned char* const got_view = of->get_output_view(got_file_offset, | 
 | 						      got_size); | 
 |   unsigned char* pov = oview; | 
 |  | 
 |   Arm_address plt_address = this->address(); | 
 |   Arm_address got_address = this->got_plt_->address(); | 
 |  | 
 |   // Write first PLT entry. | 
 |   this->fill_first_plt_entry(pov, got_address, plt_address); | 
 |   pov += this->first_plt_entry_offset(); | 
 |  | 
 |   unsigned char* got_pov = got_view; | 
 |  | 
 |   memset(got_pov, 0, 12); | 
 |   got_pov += 12; | 
 |  | 
 |   unsigned int plt_offset = this->first_plt_entry_offset(); | 
 |   unsigned int got_offset = 12; | 
 |   const unsigned int count = this->count_ + this->irelative_count_; | 
 |   gold_assert(this->irelative_count_ == this->irelative_data_vec_.size()); | 
 |   for (unsigned int i = 0; | 
 |        i < count; | 
 |        ++i, | 
 | 	 pov += this->get_plt_entry_size(), | 
 | 	 got_pov += 4, | 
 | 	 plt_offset += this->get_plt_entry_size(), | 
 | 	 got_offset += 4) | 
 |     { | 
 |       // Set and adjust the PLT entry itself. | 
 |       this->fill_plt_entry(pov, got_address, plt_address, | 
 | 			   got_offset, plt_offset); | 
 |  | 
 |       Arm_address value; | 
 |       if (i < this->count_) | 
 | 	{ | 
 | 	  // For non-irelative got entries, the value is the beginning of plt. | 
 | 	  value = plt_address; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // For irelative got entries, the value is the (global/local) symbol | 
 | 	  // address. | 
 | 	  const IRelative_data& idata = | 
 | 	      this->irelative_data_vec_[i - this->count_]; | 
 | 	  if (idata.symbol_is_global_) | 
 | 	    { | 
 | 	      // Set the entry in the GOT for irelative symbols.  The content is | 
 | 	      // the address of the ifunc, not the address of plt start. | 
 | 	      const Sized_symbol<32>* sized_symbol = idata.u_.global; | 
 | 	      gold_assert(sized_symbol->type() == elfcpp::STT_GNU_IFUNC); | 
 | 	      value = sized_symbol->value(); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      value = idata.u_.local.relobj->local_symbol_value( | 
 | 		  idata.u_.local.index, 0); | 
 | 	    } | 
 | 	} | 
 |       elfcpp::Swap<32, big_endian>::writeval(got_pov, value); | 
 |     } | 
 |  | 
 |   gold_assert(static_cast<section_size_type>(pov - oview) == oview_size); | 
 |   gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size); | 
 |  | 
 |   of->write_output_view(offset, oview_size, oview); | 
 |   of->write_output_view(got_file_offset, got_size, got_view); | 
 | } | 
 |  | 
 |  | 
 | // Create a PLT entry for a global symbol. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::make_plt_entry(Symbol_table* symtab, Layout* layout, | 
 | 				       Symbol* gsym) | 
 | { | 
 |   if (gsym->has_plt_offset()) | 
 |     return; | 
 |  | 
 |   if (this->plt_ == NULL) | 
 |     this->make_plt_section(symtab, layout); | 
 |  | 
 |   this->plt_->add_entry(symtab, layout, gsym); | 
 | } | 
 |  | 
 |  | 
 | // Create the PLT section. | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::make_plt_section( | 
 |   Symbol_table* symtab, Layout* layout) | 
 | { | 
 |   if (this->plt_ == NULL) | 
 |     { | 
 |       // Create the GOT section first. | 
 |       this->got_section(symtab, layout); | 
 |  | 
 |       // GOT for irelatives is create along with got.plt. | 
 |       gold_assert(this->got_ != NULL | 
 | 		  && this->got_plt_ != NULL | 
 | 		  && this->got_irelative_ != NULL); | 
 |       this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_, | 
 | 				       this->got_irelative_); | 
 |  | 
 |       layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS, | 
 | 				      (elfcpp::SHF_ALLOC | 
 | 				       | elfcpp::SHF_EXECINSTR), | 
 | 				      this->plt_, ORDER_PLT, false); | 
 |       symtab->define_in_output_data("$a", NULL, | 
 | 				    Symbol_table::PREDEFINED, | 
 | 				    this->plt_, | 
 | 				    0, 0, elfcpp::STT_NOTYPE, | 
 | 				    elfcpp::STB_LOCAL, | 
 | 				    elfcpp::STV_DEFAULT, 0, | 
 | 				    false, false); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // Make a PLT entry for a local STT_GNU_IFUNC symbol. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::make_local_ifunc_plt_entry( | 
 |     Symbol_table* symtab, Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* relobj, | 
 |     unsigned int local_sym_index) | 
 | { | 
 |   if (relobj->local_has_plt_offset(local_sym_index)) | 
 |     return; | 
 |   if (this->plt_ == NULL) | 
 |     this->make_plt_section(symtab, layout); | 
 |   unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout, | 
 | 							      relobj, | 
 | 							      local_sym_index); | 
 |   relobj->set_local_plt_offset(local_sym_index, plt_offset); | 
 | } | 
 |  | 
 |  | 
 | // Return the number of entries in the PLT. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::plt_entry_count() const | 
 | { | 
 |   if (this->plt_ == NULL) | 
 |     return 0; | 
 |   return this->plt_->entry_count(); | 
 | } | 
 |  | 
 | // Return the offset of the first non-reserved PLT entry. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::first_plt_entry_offset() const | 
 | { | 
 |   return this->plt_->first_plt_entry_offset(); | 
 | } | 
 |  | 
 | // Return the size of each PLT entry. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::plt_entry_size() const | 
 | { | 
 |   return this->plt_->get_plt_entry_size(); | 
 | } | 
 |  | 
 | // Get the section to use for TLS_DESC relocations. | 
 |  | 
 | template<bool big_endian> | 
 | typename Target_arm<big_endian>::Reloc_section* | 
 | Target_arm<big_endian>::rel_tls_desc_section(Layout* layout) const | 
 | { | 
 |   return this->plt_section()->rel_tls_desc(layout); | 
 | } | 
 |  | 
 | // Define the _TLS_MODULE_BASE_ symbol in the TLS segment. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::define_tls_base_symbol( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout) | 
 | { | 
 |   if (this->tls_base_symbol_defined_) | 
 |     return; | 
 |  | 
 |   Output_segment* tls_segment = layout->tls_segment(); | 
 |   if (tls_segment != NULL) | 
 |     { | 
 |       bool is_exec = parameters->options().output_is_executable(); | 
 |       symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL, | 
 | 				       Symbol_table::PREDEFINED, | 
 | 				       tls_segment, 0, 0, | 
 | 				       elfcpp::STT_TLS, | 
 | 				       elfcpp::STB_LOCAL, | 
 | 				       elfcpp::STV_HIDDEN, 0, | 
 | 				       (is_exec | 
 | 					? Symbol::SEGMENT_END | 
 | 					: Symbol::SEGMENT_START), | 
 | 				       true); | 
 |     } | 
 |   this->tls_base_symbol_defined_ = true; | 
 | } | 
 |  | 
 | // Create a GOT entry for the TLS module index. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::got_mod_index_entry( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* object) | 
 | { | 
 |   if (this->got_mod_index_offset_ == -1U) | 
 |     { | 
 |       gold_assert(symtab != NULL && layout != NULL && object != NULL); | 
 |       Arm_output_data_got<big_endian>* got = this->got_section(symtab, layout); | 
 |       unsigned int got_offset; | 
 |       if (!parameters->doing_static_link()) | 
 | 	{ | 
 | 	  got_offset = got->add_constant(0); | 
 | 	  Reloc_section* rel_dyn = this->rel_dyn_section(layout); | 
 | 	  rel_dyn->add_local(object, 0, elfcpp::R_ARM_TLS_DTPMOD32, got, | 
 | 			     got_offset); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // We are doing a static link.  Just mark it as belong to module 1, | 
 | 	  // the executable. | 
 | 	  got_offset = got->add_constant(1); | 
 | 	} | 
 |  | 
 |       got->add_constant(0); | 
 |       this->got_mod_index_offset_ = got_offset; | 
 |     } | 
 |   return this->got_mod_index_offset_; | 
 | } | 
 |  | 
 | // Optimize the TLS relocation type based on what we know about the | 
 | // symbol.  IS_FINAL is true if the final address of this symbol is | 
 | // known at link time. | 
 |  | 
 | template<bool big_endian> | 
 | tls::Tls_optimization | 
 | Target_arm<big_endian>::optimize_tls_reloc(bool, int) | 
 | { | 
 |   // FIXME: Currently we do not do any TLS optimization. | 
 |   return tls::TLSOPT_NONE; | 
 | } | 
 |  | 
 | // Get the Reference_flags for a particular relocation. | 
 |  | 
 | template<bool big_endian> | 
 | int | 
 | Target_arm<big_endian>::Scan::get_reference_flags(unsigned int r_type) | 
 | { | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_NONE: | 
 |     case elfcpp::R_ARM_V4BX: | 
 |     case elfcpp::R_ARM_GNU_VTENTRY: | 
 |     case elfcpp::R_ARM_GNU_VTINHERIT: | 
 |       // No symbol reference. | 
 |       return 0; | 
 |  | 
 |     case elfcpp::R_ARM_ABS32: | 
 |     case elfcpp::R_ARM_ABS16: | 
 |     case elfcpp::R_ARM_ABS12: | 
 |     case elfcpp::R_ARM_THM_ABS5: | 
 |     case elfcpp::R_ARM_ABS8: | 
 |     case elfcpp::R_ARM_BASE_ABS: | 
 |     case elfcpp::R_ARM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_THM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_ABS32_NOI: | 
 |       return Symbol::ABSOLUTE_REF; | 
 |  | 
 |     case elfcpp::R_ARM_REL32: | 
 |     case elfcpp::R_ARM_LDR_PC_G0: | 
 |     case elfcpp::R_ARM_SBREL32: | 
 |     case elfcpp::R_ARM_THM_PC8: | 
 |     case elfcpp::R_ARM_BASE_PREL: | 
 |     case elfcpp::R_ARM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_ALU_PREL_11_0: | 
 |     case elfcpp::R_ARM_THM_PC12: | 
 |     case elfcpp::R_ARM_REL32_NOI: | 
 |     case elfcpp::R_ARM_ALU_PC_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G0: | 
 |     case elfcpp::R_ARM_ALU_PC_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G1: | 
 |     case elfcpp::R_ARM_ALU_PC_G2: | 
 |     case elfcpp::R_ARM_LDR_PC_G1: | 
 |     case elfcpp::R_ARM_LDR_PC_G2: | 
 |     case elfcpp::R_ARM_LDRS_PC_G0: | 
 |     case elfcpp::R_ARM_LDRS_PC_G1: | 
 |     case elfcpp::R_ARM_LDRS_PC_G2: | 
 |     case elfcpp::R_ARM_LDC_PC_G0: | 
 |     case elfcpp::R_ARM_LDC_PC_G1: | 
 |     case elfcpp::R_ARM_LDC_PC_G2: | 
 |     case elfcpp::R_ARM_ALU_SB_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G0: | 
 |     case elfcpp::R_ARM_ALU_SB_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G1: | 
 |     case elfcpp::R_ARM_ALU_SB_G2: | 
 |     case elfcpp::R_ARM_LDR_SB_G0: | 
 |     case elfcpp::R_ARM_LDR_SB_G1: | 
 |     case elfcpp::R_ARM_LDR_SB_G2: | 
 |     case elfcpp::R_ARM_LDRS_SB_G0: | 
 |     case elfcpp::R_ARM_LDRS_SB_G1: | 
 |     case elfcpp::R_ARM_LDRS_SB_G2: | 
 |     case elfcpp::R_ARM_LDC_SB_G0: | 
 |     case elfcpp::R_ARM_LDC_SB_G1: | 
 |     case elfcpp::R_ARM_LDC_SB_G2: | 
 |     case elfcpp::R_ARM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_MOVW_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL: | 
 |     case elfcpp::R_ARM_GOTOFF32: | 
 |     case elfcpp::R_ARM_GOTOFF12: | 
 |     case elfcpp::R_ARM_SBREL31: | 
 |       return Symbol::RELATIVE_REF; | 
 |  | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |     // R_ARM_PREL31 is not used to relocate call/jump instructions but | 
 |     // in unwind tables. It may point to functions via PLTs. | 
 |     // So we treat it like call/jump relocations above. | 
 |     case elfcpp::R_ARM_PREL31: | 
 |       return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF; | 
 |  | 
 |     case elfcpp::R_ARM_GOT_BREL: | 
 |     case elfcpp::R_ARM_GOT_ABS: | 
 |     case elfcpp::R_ARM_GOT_PREL: | 
 |       // Absolute in GOT. | 
 |       return Symbol::ABSOLUTE_REF; | 
 |  | 
 |     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic | 
 |     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec | 
 |     case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 |       return Symbol::TLS_REF; | 
 |  | 
 |     case elfcpp::R_ARM_TARGET1: | 
 |     case elfcpp::R_ARM_TARGET2: | 
 |     case elfcpp::R_ARM_COPY: | 
 |     case elfcpp::R_ARM_GLOB_DAT: | 
 |     case elfcpp::R_ARM_JUMP_SLOT: | 
 |     case elfcpp::R_ARM_RELATIVE: | 
 |     case elfcpp::R_ARM_PC24: | 
 |     case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | 
 |     default: | 
 |       // Not expected.  We will give an error later. | 
 |       return 0; | 
 |     } | 
 | } | 
 |  | 
 | // Report an unsupported relocation against a local symbol. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::Scan::unsupported_reloc_local( | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int r_type) | 
 | { | 
 |   gold_error(_("%s: unsupported reloc %u against local symbol"), | 
 | 	     object->name().c_str(), r_type); | 
 | } | 
 |  | 
 | // We are about to emit a dynamic relocation of type R_TYPE.  If the | 
 | // dynamic linker does not support it, issue an error.  The GNU linker | 
 | // only issues a non-PIC error for an allocated read-only section. | 
 | // Here we know the section is allocated, but we don't know that it is | 
 | // read-only.  But we check for all the relocation types which the | 
 | // glibc dynamic linker supports, so it seems appropriate to issue an | 
 | // error even if the section is not read-only. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::Scan::check_non_pic(Relobj* object, | 
 | 					    unsigned int r_type) | 
 | { | 
 |   switch (r_type) | 
 |     { | 
 |     // These are the relocation types supported by glibc for ARM. | 
 |     case elfcpp::R_ARM_RELATIVE: | 
 |     case elfcpp::R_ARM_COPY: | 
 |     case elfcpp::R_ARM_GLOB_DAT: | 
 |     case elfcpp::R_ARM_JUMP_SLOT: | 
 |     case elfcpp::R_ARM_ABS32: | 
 |     case elfcpp::R_ARM_ABS32_NOI: | 
 |     case elfcpp::R_ARM_IRELATIVE: | 
 |     case elfcpp::R_ARM_PC24: | 
 |     // FIXME: The following 3 types are not supported by Android's dynamic | 
 |     // linker. | 
 |     case elfcpp::R_ARM_TLS_DTPMOD32: | 
 |     case elfcpp::R_ARM_TLS_DTPOFF32: | 
 |     case elfcpp::R_ARM_TLS_TPOFF32: | 
 |       return; | 
 |  | 
 |     default: | 
 |       { | 
 | 	// This prevents us from issuing more than one error per reloc | 
 | 	// section.  But we can still wind up issuing more than one | 
 | 	// error per object file. | 
 | 	if (this->issued_non_pic_error_) | 
 | 	  return; | 
 | 	const Arm_reloc_property* reloc_property = | 
 | 	  arm_reloc_property_table->get_reloc_property(r_type); | 
 | 	gold_assert(reloc_property != NULL); | 
 | 	object->error(_("requires unsupported dynamic reloc %s; " | 
 | 		      "recompile with -fPIC"), | 
 | 		      reloc_property->name().c_str()); | 
 | 	this->issued_non_pic_error_ = true; | 
 | 	return; | 
 |       } | 
 |  | 
 |     case elfcpp::R_ARM_NONE: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 |  | 
 | // Return whether we need to make a PLT entry for a relocation of the | 
 | // given type against a STT_GNU_IFUNC symbol. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Target_arm<big_endian>::Scan::reloc_needs_plt_for_ifunc( | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int r_type) | 
 | { | 
 |   int flags = Scan::get_reference_flags(r_type); | 
 |   if (flags & Symbol::TLS_REF) | 
 |     { | 
 |       gold_error(_("%s: unsupported TLS reloc %u for IFUNC symbol"), | 
 | 		 object->name().c_str(), r_type); | 
 |       return false; | 
 |     } | 
 |   return flags != 0; | 
 | } | 
 |  | 
 |  | 
 | // Scan a relocation for a local symbol. | 
 | // FIXME: This only handles a subset of relocation types used by Android | 
 | // on ARM v5te devices. | 
 |  | 
 | template<bool big_endian> | 
 | inline void | 
 | Target_arm<big_endian>::Scan::local(Symbol_table* symtab, | 
 | 				    Layout* layout, | 
 | 				    Target_arm* target, | 
 | 				    Sized_relobj_file<32, big_endian>* object, | 
 | 				    unsigned int data_shndx, | 
 | 				    Output_section* output_section, | 
 | 				    const elfcpp::Rel<32, big_endian>& reloc, | 
 | 				    unsigned int r_type, | 
 | 				    const elfcpp::Sym<32, big_endian>& lsym, | 
 | 				    bool is_discarded) | 
 | { | 
 |   if (is_discarded) | 
 |     return; | 
 |  | 
 |   r_type = target->get_real_reloc_type(r_type); | 
 |  | 
 |   // A local STT_GNU_IFUNC symbol may require a PLT entry. | 
 |   bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC; | 
 |   if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type)) | 
 |     { | 
 |       unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 |       target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym); | 
 |     } | 
 |  | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_NONE: | 
 |     case elfcpp::R_ARM_V4BX: | 
 |     case elfcpp::R_ARM_GNU_VTENTRY: | 
 |     case elfcpp::R_ARM_GNU_VTINHERIT: | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS32: | 
 |     case elfcpp::R_ARM_ABS32_NOI: | 
 |       // If building a shared library (or a position-independent | 
 |       // executable), we need to create a dynamic relocation for | 
 |       // this location. The relocation applied at link time will | 
 |       // apply the link-time value, so we flag the location with | 
 |       // an R_ARM_RELATIVE relocation so the dynamic loader can | 
 |       // relocate it easily. | 
 |       if (parameters->options().output_is_position_independent()) | 
 | 	{ | 
 | 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 	  // If we are to add more other reloc types than R_ARM_ABS32, | 
 | 	  // we need to add check_non_pic(object, r_type) here. | 
 | 	  rel_dyn->add_local_relative(object, r_sym, elfcpp::R_ARM_RELATIVE, | 
 | 				      output_section, data_shndx, | 
 | 				      reloc.get_r_offset(), is_ifunc); | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS16: | 
 |     case elfcpp::R_ARM_ABS12: | 
 |     case elfcpp::R_ARM_THM_ABS5: | 
 |     case elfcpp::R_ARM_ABS8: | 
 |     case elfcpp::R_ARM_BASE_ABS: | 
 |     case elfcpp::R_ARM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_THM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_ABS: | 
 |       // If building a shared library (or a position-independent | 
 |       // executable), we need to create a dynamic relocation for | 
 |       // this location. Because the addend needs to remain in the | 
 |       // data section, we need to be careful not to apply this | 
 |       // relocation statically. | 
 |       if (parameters->options().output_is_position_independent()) | 
 | 	{ | 
 | 	  check_non_pic(object, r_type); | 
 | 	  Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 	  if (lsym.get_st_type() != elfcpp::STT_SECTION) | 
 | 	    rel_dyn->add_local(object, r_sym, r_type, output_section, | 
 | 			       data_shndx, reloc.get_r_offset()); | 
 | 	  else | 
 | 	    { | 
 | 	      gold_assert(lsym.get_st_value() == 0); | 
 | 	      unsigned int shndx = lsym.get_st_shndx(); | 
 | 	      bool is_ordinary; | 
 | 	      shndx = object->adjust_sym_shndx(r_sym, shndx, | 
 | 					       &is_ordinary); | 
 | 	      if (!is_ordinary) | 
 | 		object->error(_("section symbol %u has bad shndx %u"), | 
 | 			      r_sym, shndx); | 
 | 	      else | 
 | 		rel_dyn->add_local_section(object, shndx, | 
 | 					   r_type, output_section, | 
 | 					   data_shndx, reloc.get_r_offset()); | 
 | 	    } | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_REL32: | 
 |     case elfcpp::R_ARM_LDR_PC_G0: | 
 |     case elfcpp::R_ARM_SBREL32: | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_PC8: | 
 |     case elfcpp::R_ARM_BASE_PREL: | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_SBREL31: | 
 |     case elfcpp::R_ARM_PREL31: | 
 |     case elfcpp::R_ARM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |     case elfcpp::R_ARM_THM_ALU_PREL_11_0: | 
 |     case elfcpp::R_ARM_THM_PC12: | 
 |     case elfcpp::R_ARM_REL32_NOI: | 
 |     case elfcpp::R_ARM_ALU_PC_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G0: | 
 |     case elfcpp::R_ARM_ALU_PC_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G1: | 
 |     case elfcpp::R_ARM_ALU_PC_G2: | 
 |     case elfcpp::R_ARM_LDR_PC_G1: | 
 |     case elfcpp::R_ARM_LDR_PC_G2: | 
 |     case elfcpp::R_ARM_LDRS_PC_G0: | 
 |     case elfcpp::R_ARM_LDRS_PC_G1: | 
 |     case elfcpp::R_ARM_LDRS_PC_G2: | 
 |     case elfcpp::R_ARM_LDC_PC_G0: | 
 |     case elfcpp::R_ARM_LDC_PC_G1: | 
 |     case elfcpp::R_ARM_LDC_PC_G2: | 
 |     case elfcpp::R_ARM_ALU_SB_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G0: | 
 |     case elfcpp::R_ARM_ALU_SB_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G1: | 
 |     case elfcpp::R_ARM_ALU_SB_G2: | 
 |     case elfcpp::R_ARM_LDR_SB_G0: | 
 |     case elfcpp::R_ARM_LDR_SB_G1: | 
 |     case elfcpp::R_ARM_LDR_SB_G2: | 
 |     case elfcpp::R_ARM_LDRS_SB_G0: | 
 |     case elfcpp::R_ARM_LDRS_SB_G1: | 
 |     case elfcpp::R_ARM_LDRS_SB_G2: | 
 |     case elfcpp::R_ARM_LDC_SB_G0: | 
 |     case elfcpp::R_ARM_LDC_SB_G1: | 
 |     case elfcpp::R_ARM_LDC_SB_G2: | 
 |     case elfcpp::R_ARM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_MOVW_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL: | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |       // We don't need to do anything for a relative addressing relocation | 
 |       // against a local symbol if it does not reference the GOT. | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOTOFF32: | 
 |     case elfcpp::R_ARM_GOTOFF12: | 
 |       // We need a GOT section: | 
 |       target->got_section(symtab, layout); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOT_BREL: | 
 |     case elfcpp::R_ARM_GOT_PREL: | 
 |       { | 
 | 	// The symbol requires a GOT entry. | 
 | 	Arm_output_data_got<big_endian>* got = | 
 | 	  target->got_section(symtab, layout); | 
 | 	unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 	if (got->add_local(object, r_sym, GOT_TYPE_STANDARD)) | 
 | 	  { | 
 | 	    // If we are generating a shared object, we need to add a | 
 | 	    // dynamic RELATIVE relocation for this symbol's GOT entry. | 
 | 	    if (parameters->options().output_is_position_independent()) | 
 | 	      { | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 		rel_dyn->add_local_relative( | 
 | 		    object, r_sym, elfcpp::R_ARM_RELATIVE, got, | 
 | 		    object->local_got_offset(r_sym, GOT_TYPE_STANDARD)); | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_TARGET1: | 
 |     case elfcpp::R_ARM_TARGET2: | 
 |       // This should have been mapped to another type already. | 
 |       // Fall through. | 
 |     case elfcpp::R_ARM_COPY: | 
 |     case elfcpp::R_ARM_GLOB_DAT: | 
 |     case elfcpp::R_ARM_JUMP_SLOT: | 
 |     case elfcpp::R_ARM_RELATIVE: | 
 |       // These are relocations which should only be seen by the | 
 |       // dynamic linker, and should never be seen here. | 
 |       gold_error(_("%s: unexpected reloc %u in object file"), | 
 | 		 object->name().c_str(), r_type); | 
 |       break; | 
 |  | 
 |  | 
 |       // These are initial TLS relocs, which are expected when | 
 |       // linking. | 
 |     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic | 
 |     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec | 
 |     case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 |       { | 
 | 	bool output_is_shared = parameters->options().shared(); | 
 | 	const tls::Tls_optimization optimized_type | 
 | 	    = Target_arm<big_endian>::optimize_tls_reloc(!output_is_shared, | 
 | 							 r_type); | 
 | 	switch (r_type) | 
 | 	  { | 
 | 	  case elfcpp::R_ARM_TLS_GD32:		// Global-dynamic | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a pair of GOT entries for the module index and | 
 | 		// dtv-relative offset. | 
 | 		Arm_output_data_got<big_endian>* got | 
 | 		    = target->got_section(symtab, layout); | 
 | 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 		unsigned int shndx = lsym.get_st_shndx(); | 
 | 		bool is_ordinary; | 
 | 		shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary); | 
 | 		if (!is_ordinary) | 
 | 		  { | 
 | 		    object->error(_("local symbol %u has bad shndx %u"), | 
 | 				  r_sym, shndx); | 
 | 		    break; | 
 | 		  } | 
 |  | 
 | 		if (!parameters->doing_static_link()) | 
 | 		  got->add_local_pair_with_rel(object, r_sym, shndx, | 
 | 					       GOT_TYPE_TLS_PAIR, | 
 | 					       target->rel_dyn_section(layout), | 
 | 					       elfcpp::R_ARM_TLS_DTPMOD32); | 
 | 		else | 
 | 		  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, | 
 | 						      object, r_sym); | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LDM32:		// Local-dynamic | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a GOT entry for the module index. | 
 | 		target->got_mod_index_entry(symtab, layout, object); | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LDO32:		// Alternate local-dynamic | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_IE32:		// Initial-exec | 
 | 	    layout->set_has_static_tls(); | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a GOT entry for the tp-relative offset. | 
 | 		Arm_output_data_got<big_endian>* got | 
 | 		  = target->got_section(symtab, layout); | 
 | 		unsigned int r_sym = | 
 | 		   elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 		if (!parameters->doing_static_link()) | 
 | 		    got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET, | 
 | 					    target->rel_dyn_section(layout), | 
 | 					    elfcpp::R_ARM_TLS_TPOFF32); | 
 | 		else if (!object->local_has_got_offset(r_sym, | 
 | 						       GOT_TYPE_TLS_OFFSET)) | 
 | 		  { | 
 | 		    got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET); | 
 | 		    unsigned int got_offset = | 
 | 		      object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET); | 
 | 		    got->add_static_reloc(got_offset, | 
 | 					  elfcpp::R_ARM_TLS_TPOFF32, object, | 
 | 					  r_sym); | 
 | 		  } | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LE32:		// Local-exec | 
 | 	    layout->set_has_static_tls(); | 
 | 	    if (output_is_shared) | 
 | 	      { | 
 | 		// We need to create a dynamic relocation. | 
 | 		gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION); | 
 | 		unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info()); | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		rel_dyn->add_local(object, r_sym, elfcpp::R_ARM_TLS_TPOFF32, | 
 | 				   output_section, data_shndx, | 
 | 				   reloc.get_r_offset()); | 
 | 	      } | 
 | 	    break; | 
 |  | 
 | 	  default: | 
 | 	    gold_unreachable(); | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PC24: | 
 |     case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | 
 |     default: | 
 |       unsupported_reloc_local(object, r_type); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | // Report an unsupported relocation against a global symbol. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::Scan::unsupported_reloc_global( | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int r_type, | 
 |     Symbol* gsym) | 
 | { | 
 |   gold_error(_("%s: unsupported reloc %u against global symbol %s"), | 
 | 	     object->name().c_str(), r_type, gsym->demangled_name().c_str()); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | inline bool | 
 | Target_arm<big_endian>::Scan::possible_function_pointer_reloc( | 
 |     unsigned int r_type) | 
 | { | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_PC24: | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_SBREL31: | 
 |     case elfcpp::R_ARM_PREL31: | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |       // All the relocations above are branches except SBREL31 and PREL31. | 
 |       return false; | 
 |  | 
 |     default: | 
 |       // Be conservative and assume this is a function pointer. | 
 |       return true; | 
 |     } | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | inline bool | 
 | Target_arm<big_endian>::Scan::local_reloc_may_be_function_pointer( | 
 |   Symbol_table*, | 
 |   Layout*, | 
 |   Target_arm<big_endian>* target, | 
 |   Sized_relobj_file<32, big_endian>*, | 
 |   unsigned int, | 
 |   Output_section*, | 
 |   const elfcpp::Rel<32, big_endian>&, | 
 |   unsigned int r_type, | 
 |   const elfcpp::Sym<32, big_endian>&) | 
 | { | 
 |   r_type = target->get_real_reloc_type(r_type); | 
 |   return possible_function_pointer_reloc(r_type); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | inline bool | 
 | Target_arm<big_endian>::Scan::global_reloc_may_be_function_pointer( | 
 |   Symbol_table*, | 
 |   Layout*, | 
 |   Target_arm<big_endian>* target, | 
 |   Sized_relobj_file<32, big_endian>*, | 
 |   unsigned int, | 
 |   Output_section*, | 
 |   const elfcpp::Rel<32, big_endian>&, | 
 |   unsigned int r_type, | 
 |   Symbol* gsym) | 
 | { | 
 |   // GOT is not a function. | 
 |   if (strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) | 
 |     return false; | 
 |  | 
 |   r_type = target->get_real_reloc_type(r_type); | 
 |   return possible_function_pointer_reloc(r_type); | 
 | } | 
 |  | 
 | // Scan a relocation for a global symbol. | 
 |  | 
 | template<bool big_endian> | 
 | inline void | 
 | Target_arm<big_endian>::Scan::global(Symbol_table* symtab, | 
 | 				     Layout* layout, | 
 | 				     Target_arm* target, | 
 | 				     Sized_relobj_file<32, big_endian>* object, | 
 | 				     unsigned int data_shndx, | 
 | 				     Output_section* output_section, | 
 | 				     const elfcpp::Rel<32, big_endian>& reloc, | 
 | 				     unsigned int r_type, | 
 | 				     Symbol* gsym) | 
 | { | 
 |   // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got | 
 |   // section.  We check here to avoid creating a dynamic reloc against | 
 |   // _GLOBAL_OFFSET_TABLE_. | 
 |   if (!target->has_got_section() | 
 |       && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0) | 
 |     target->got_section(symtab, layout); | 
 |  | 
 |   // A STT_GNU_IFUNC symbol may require a PLT entry. | 
 |   if (gsym->type() == elfcpp::STT_GNU_IFUNC | 
 |       && this->reloc_needs_plt_for_ifunc(object, r_type)) | 
 |     target->make_plt_entry(symtab, layout, gsym); | 
 |  | 
 |   r_type = target->get_real_reloc_type(r_type); | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_NONE: | 
 |     case elfcpp::R_ARM_V4BX: | 
 |     case elfcpp::R_ARM_GNU_VTENTRY: | 
 |     case elfcpp::R_ARM_GNU_VTINHERIT: | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS32: | 
 |     case elfcpp::R_ARM_ABS16: | 
 |     case elfcpp::R_ARM_ABS12: | 
 |     case elfcpp::R_ARM_THM_ABS5: | 
 |     case elfcpp::R_ARM_ABS8: | 
 |     case elfcpp::R_ARM_BASE_ABS: | 
 |     case elfcpp::R_ARM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_THM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_ABS32_NOI: | 
 |       // Absolute addressing relocations. | 
 |       { | 
 | 	// Make a PLT entry if necessary. | 
 | 	if (this->symbol_needs_plt_entry(gsym)) | 
 | 	  { | 
 | 	    target->make_plt_entry(symtab, layout, gsym); | 
 | 	    // Since this is not a PC-relative relocation, we may be | 
 | 	    // taking the address of a function. In that case we need to | 
 | 	    // set the entry in the dynamic symbol table to the address of | 
 | 	    // the PLT entry. | 
 | 	    if (gsym->is_from_dynobj() && !parameters->options().shared()) | 
 | 	      gsym->set_needs_dynsym_value(); | 
 | 	  } | 
 | 	// Make a dynamic relocation if necessary. | 
 | 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) | 
 | 	  { | 
 | 	    if (!parameters->options().output_is_position_independent() | 
 | 		&& gsym->may_need_copy_reloc()) | 
 | 	      { | 
 | 		target->copy_reloc(symtab, layout, object, | 
 | 				   data_shndx, output_section, gsym, reloc); | 
 | 	      } | 
 | 	    else if ((r_type == elfcpp::R_ARM_ABS32 | 
 | 		      || r_type == elfcpp::R_ARM_ABS32_NOI) | 
 | 		     && gsym->type() == elfcpp::STT_GNU_IFUNC | 
 | 		     && gsym->can_use_relative_reloc(false) | 
 | 		     && !gsym->is_from_dynobj() | 
 | 		     && !gsym->is_undefined() | 
 | 		     && !gsym->is_preemptible()) | 
 | 	      { | 
 | 		// Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC | 
 | 		// symbol. This makes a function address in a PIE executable | 
 | 		// match the address in a shared library that it links against. | 
 | 		Reloc_section* rel_irelative = | 
 | 		    target->rel_irelative_section(layout); | 
 | 		unsigned int r_type = elfcpp::R_ARM_IRELATIVE; | 
 | 		rel_irelative->add_symbolless_global_addend( | 
 | 		    gsym, r_type, output_section, object, | 
 | 		    data_shndx, reloc.get_r_offset()); | 
 | 	      } | 
 | 	    else if ((r_type == elfcpp::R_ARM_ABS32 | 
 | 		      || r_type == elfcpp::R_ARM_ABS32_NOI) | 
 | 		     && gsym->can_use_relative_reloc(false)) | 
 | 	      { | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		rel_dyn->add_global_relative(gsym, elfcpp::R_ARM_RELATIVE, | 
 | 					     output_section, object, | 
 | 					     data_shndx, reloc.get_r_offset()); | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		check_non_pic(object, r_type); | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		rel_dyn->add_global(gsym, r_type, output_section, object, | 
 | 				    data_shndx, reloc.get_r_offset()); | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOTOFF32: | 
 |     case elfcpp::R_ARM_GOTOFF12: | 
 |       // We need a GOT section. | 
 |       target->got_section(symtab, layout); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_REL32: | 
 |     case elfcpp::R_ARM_LDR_PC_G0: | 
 |     case elfcpp::R_ARM_SBREL32: | 
 |     case elfcpp::R_ARM_THM_PC8: | 
 |     case elfcpp::R_ARM_BASE_PREL: | 
 |     case elfcpp::R_ARM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_ALU_PREL_11_0: | 
 |     case elfcpp::R_ARM_THM_PC12: | 
 |     case elfcpp::R_ARM_REL32_NOI: | 
 |     case elfcpp::R_ARM_ALU_PC_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G0: | 
 |     case elfcpp::R_ARM_ALU_PC_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G1: | 
 |     case elfcpp::R_ARM_ALU_PC_G2: | 
 |     case elfcpp::R_ARM_LDR_PC_G1: | 
 |     case elfcpp::R_ARM_LDR_PC_G2: | 
 |     case elfcpp::R_ARM_LDRS_PC_G0: | 
 |     case elfcpp::R_ARM_LDRS_PC_G1: | 
 |     case elfcpp::R_ARM_LDRS_PC_G2: | 
 |     case elfcpp::R_ARM_LDC_PC_G0: | 
 |     case elfcpp::R_ARM_LDC_PC_G1: | 
 |     case elfcpp::R_ARM_LDC_PC_G2: | 
 |     case elfcpp::R_ARM_ALU_SB_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G0: | 
 |     case elfcpp::R_ARM_ALU_SB_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G1: | 
 |     case elfcpp::R_ARM_ALU_SB_G2: | 
 |     case elfcpp::R_ARM_LDR_SB_G0: | 
 |     case elfcpp::R_ARM_LDR_SB_G1: | 
 |     case elfcpp::R_ARM_LDR_SB_G2: | 
 |     case elfcpp::R_ARM_LDRS_SB_G0: | 
 |     case elfcpp::R_ARM_LDRS_SB_G1: | 
 |     case elfcpp::R_ARM_LDRS_SB_G2: | 
 |     case elfcpp::R_ARM_LDC_SB_G0: | 
 |     case elfcpp::R_ARM_LDC_SB_G1: | 
 |     case elfcpp::R_ARM_LDC_SB_G2: | 
 |     case elfcpp::R_ARM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_MOVW_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL: | 
 |       // Relative addressing relocations. | 
 |       { | 
 | 	// Make a dynamic relocation if necessary. | 
 | 	if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))) | 
 | 	  { | 
 | 	    if (parameters->options().output_is_executable() | 
 | 		&& target->may_need_copy_reloc(gsym)) | 
 | 	      { | 
 | 		target->copy_reloc(symtab, layout, object, | 
 | 				   data_shndx, output_section, gsym, reloc); | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		check_non_pic(object, r_type); | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		rel_dyn->add_global(gsym, r_type, output_section, object, | 
 | 				    data_shndx, reloc.get_r_offset()); | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_SBREL31: | 
 |     case elfcpp::R_ARM_PREL31: | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |       // All the relocation above are branches except for the PREL31 ones. | 
 |       // A PREL31 relocation can point to a personality function in a shared | 
 |       // library.  In that case we want to use a PLT because we want to | 
 |       // call the personality routine and the dynamic linkers we care about | 
 |       // do not support dynamic PREL31 relocations. An REL31 relocation may | 
 |       // point to a function whose unwinding behaviour is being described but | 
 |       // we will not mistakenly generate a PLT for that because we should use | 
 |       // a local section symbol. | 
 |  | 
 |       // If the symbol is fully resolved, this is just a relative | 
 |       // local reloc.  Otherwise we need a PLT entry. | 
 |       if (gsym->final_value_is_known()) | 
 | 	break; | 
 |       // If building a shared library, we can also skip the PLT entry | 
 |       // if the symbol is defined in the output file and is protected | 
 |       // or hidden. | 
 |       if (gsym->is_defined() | 
 | 	  && !gsym->is_from_dynobj() | 
 | 	  && !gsym->is_preemptible()) | 
 | 	break; | 
 |       target->make_plt_entry(symtab, layout, gsym); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOT_BREL: | 
 |     case elfcpp::R_ARM_GOT_ABS: | 
 |     case elfcpp::R_ARM_GOT_PREL: | 
 |       { | 
 | 	// The symbol requires a GOT entry. | 
 | 	Arm_output_data_got<big_endian>* got = | 
 | 	  target->got_section(symtab, layout); | 
 | 	if (gsym->final_value_is_known()) | 
 | 	  { | 
 | 	    // For a STT_GNU_IFUNC symbol we want the PLT address. | 
 | 	    if (gsym->type() == elfcpp::STT_GNU_IFUNC) | 
 | 	      got->add_global_plt(gsym, GOT_TYPE_STANDARD); | 
 | 	    else | 
 | 	      got->add_global(gsym, GOT_TYPE_STANDARD); | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    // If this symbol is not fully resolved, we need to add a | 
 | 	    // GOT entry with a dynamic relocation. | 
 | 	    Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 	    if (gsym->is_from_dynobj() | 
 | 		|| gsym->is_undefined() | 
 | 		|| gsym->is_preemptible() | 
 | 		|| (gsym->visibility() == elfcpp::STV_PROTECTED | 
 | 		    && parameters->options().shared()) | 
 | 		|| (gsym->type() == elfcpp::STT_GNU_IFUNC | 
 | 		    && parameters->options().output_is_position_independent())) | 
 | 	      got->add_global_with_rel(gsym, GOT_TYPE_STANDARD, | 
 | 				       rel_dyn, elfcpp::R_ARM_GLOB_DAT); | 
 | 	    else | 
 | 	      { | 
 | 		// For a STT_GNU_IFUNC symbol we want to write the PLT | 
 | 		// offset into the GOT, so that function pointer | 
 | 		// comparisons work correctly. | 
 | 		bool is_new; | 
 | 		if (gsym->type() != elfcpp::STT_GNU_IFUNC) | 
 | 		  is_new = got->add_global(gsym, GOT_TYPE_STANDARD); | 
 | 		else | 
 | 		  { | 
 | 		    is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD); | 
 | 		    // Tell the dynamic linker to use the PLT address | 
 | 		    // when resolving relocations. | 
 | 		    if (gsym->is_from_dynobj() | 
 | 			&& !parameters->options().shared()) | 
 | 		      gsym->set_needs_dynsym_value(); | 
 | 		  } | 
 | 		if (is_new) | 
 | 		  rel_dyn->add_global_relative( | 
 | 		      gsym, elfcpp::R_ARM_RELATIVE, got, | 
 | 		      gsym->got_offset(GOT_TYPE_STANDARD)); | 
 | 	      } | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_TARGET1: | 
 |     case elfcpp::R_ARM_TARGET2: | 
 |       // These should have been mapped to other types already. | 
 |       // Fall through. | 
 |     case elfcpp::R_ARM_COPY: | 
 |     case elfcpp::R_ARM_GLOB_DAT: | 
 |     case elfcpp::R_ARM_JUMP_SLOT: | 
 |     case elfcpp::R_ARM_RELATIVE: | 
 |       // These are relocations which should only be seen by the | 
 |       // dynamic linker, and should never be seen here. | 
 |       gold_error(_("%s: unexpected reloc %u in object file"), | 
 | 		 object->name().c_str(), r_type); | 
 |       break; | 
 |  | 
 |       // These are initial tls relocs, which are expected when | 
 |       // linking. | 
 |     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic | 
 |     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec | 
 |     case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 |       { | 
 | 	const bool is_final = gsym->final_value_is_known(); | 
 | 	const tls::Tls_optimization optimized_type | 
 | 	    = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); | 
 | 	switch (r_type) | 
 | 	  { | 
 | 	  case elfcpp::R_ARM_TLS_GD32:		// Global-dynamic | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a pair of GOT entries for the module index and | 
 | 		// dtv-relative offset. | 
 | 		Arm_output_data_got<big_endian>* got | 
 | 		    = target->got_section(symtab, layout); | 
 | 		if (!parameters->doing_static_link()) | 
 | 		  got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR, | 
 | 						target->rel_dyn_section(layout), | 
 | 						elfcpp::R_ARM_TLS_DTPMOD32, | 
 | 						elfcpp::R_ARM_TLS_DTPOFF32); | 
 | 		else | 
 | 		  got->add_tls_gd32_with_static_reloc(GOT_TYPE_TLS_PAIR, gsym); | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LDM32:		// Local-dynamic | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a GOT entry for the module index. | 
 | 		target->got_mod_index_entry(symtab, layout, object); | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LDO32:		// Alternate local-dynamic | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_IE32:		// Initial-exec | 
 | 	    layout->set_has_static_tls(); | 
 | 	    if (optimized_type == tls::TLSOPT_NONE) | 
 | 	      { | 
 | 		// Create a GOT entry for the tp-relative offset. | 
 | 		Arm_output_data_got<big_endian>* got | 
 | 		  = target->got_section(symtab, layout); | 
 | 		if (!parameters->doing_static_link()) | 
 | 		  got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET, | 
 | 					   target->rel_dyn_section(layout), | 
 | 					   elfcpp::R_ARM_TLS_TPOFF32); | 
 | 		else if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET)) | 
 | 		  { | 
 | 		    got->add_global(gsym, GOT_TYPE_TLS_OFFSET); | 
 | 		    unsigned int got_offset = | 
 | 		       gsym->got_offset(GOT_TYPE_TLS_OFFSET); | 
 | 		    got->add_static_reloc(got_offset, | 
 | 					  elfcpp::R_ARM_TLS_TPOFF32, gsym); | 
 | 		  } | 
 | 	      } | 
 | 	    else | 
 | 	      // FIXME: TLS optimization not supported yet. | 
 | 	      gold_unreachable(); | 
 | 	    break; | 
 |  | 
 | 	  case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 | 	    layout->set_has_static_tls(); | 
 | 	    if (parameters->options().shared()) | 
 | 	      { | 
 | 		// We need to create a dynamic relocation. | 
 | 		Reloc_section* rel_dyn = target->rel_dyn_section(layout); | 
 | 		rel_dyn->add_global(gsym, elfcpp::R_ARM_TLS_TPOFF32, | 
 | 				    output_section, object, | 
 | 				    data_shndx, reloc.get_r_offset()); | 
 | 	      } | 
 | 	    break; | 
 |  | 
 | 	  default: | 
 | 	    gold_unreachable(); | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PC24: | 
 |     case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | 
 |     default: | 
 |       unsupported_reloc_global(object, r_type, gsym); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | // Process relocations for gc. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::gc_process_relocs( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int data_shndx, | 
 |     unsigned int, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     size_t local_symbol_count, | 
 |     const unsigned char* plocal_symbols) | 
 | { | 
 |   typedef Target_arm<big_endian> Arm; | 
 |   typedef typename Target_arm<big_endian>::Scan Scan; | 
 |  | 
 |   gold::gc_process_relocs<32, big_endian, Arm, Scan, Classify_reloc>( | 
 |     symtab, | 
 |     layout, | 
 |     this, | 
 |     object, | 
 |     data_shndx, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     needs_special_offset_handling, | 
 |     local_symbol_count, | 
 |     plocal_symbols); | 
 | } | 
 |  | 
 | // Scan relocations for a section. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::scan_relocs(Symbol_table* symtab, | 
 | 				    Layout* layout, | 
 | 				    Sized_relobj_file<32, big_endian>* object, | 
 | 				    unsigned int data_shndx, | 
 | 				    unsigned int sh_type, | 
 | 				    const unsigned char* prelocs, | 
 | 				    size_t reloc_count, | 
 | 				    Output_section* output_section, | 
 | 				    bool needs_special_offset_handling, | 
 | 				    size_t local_symbol_count, | 
 | 				    const unsigned char* plocal_symbols) | 
 | { | 
 |   if (sh_type == elfcpp::SHT_RELA) | 
 |     { | 
 |       gold_error(_("%s: unsupported RELA reloc section"), | 
 | 		 object->name().c_str()); | 
 |       return; | 
 |     } | 
 |  | 
 |   gold::scan_relocs<32, big_endian, Target_arm, Scan, Classify_reloc>( | 
 |     symtab, | 
 |     layout, | 
 |     this, | 
 |     object, | 
 |     data_shndx, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     needs_special_offset_handling, | 
 |     local_symbol_count, | 
 |     plocal_symbols); | 
 | } | 
 |  | 
 | // Finalize the sections. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::do_finalize_sections( | 
 |     Layout* layout, | 
 |     const Input_objects* input_objects, | 
 |     Symbol_table*) | 
 | { | 
 |   bool merged_any_attributes = false; | 
 |   // Merge processor-specific flags. | 
 |   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | 
 |        p != input_objects->relobj_end(); | 
 |        ++p) | 
 |     { | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj(*p); | 
 |       if (arm_relobj->merge_flags_and_attributes()) | 
 | 	{ | 
 | 	  this->merge_processor_specific_flags( | 
 | 	      arm_relobj->name(), | 
 | 	      arm_relobj->processor_specific_flags()); | 
 | 	  this->merge_object_attributes(arm_relobj->name().c_str(), | 
 | 					arm_relobj->attributes_section_data()); | 
 | 	  merged_any_attributes = true; | 
 | 	} | 
 |     } | 
 |  | 
 |   for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); | 
 |        p != input_objects->dynobj_end(); | 
 |        ++p) | 
 |     { | 
 |       Arm_dynobj<big_endian>* arm_dynobj = | 
 | 	Arm_dynobj<big_endian>::as_arm_dynobj(*p); | 
 |       this->merge_processor_specific_flags( | 
 | 	  arm_dynobj->name(), | 
 | 	  arm_dynobj->processor_specific_flags()); | 
 |       this->merge_object_attributes(arm_dynobj->name().c_str(), | 
 | 				    arm_dynobj->attributes_section_data()); | 
 |       merged_any_attributes = true; | 
 |     } | 
 |  | 
 |   // Create an empty uninitialized attribute section if we still don't have it | 
 |   // at this moment.  This happens if there is no attributes sections in all | 
 |   // inputs. | 
 |   if (this->attributes_section_data_ == NULL) | 
 |     this->attributes_section_data_ = new Attributes_section_data(NULL, 0); | 
 |  | 
 |   const Object_attribute* cpu_arch_attr = | 
 |     this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch); | 
 |   // Check if we need to use Cortex-A8 workaround. | 
 |   if (parameters->options().user_set_fix_cortex_a8()) | 
 |     this->fix_cortex_a8_ = parameters->options().fix_cortex_a8(); | 
 |   else | 
 |     { | 
 |       // If neither --fix-cortex-a8 nor --no-fix-cortex-a8 is used, turn on | 
 |       // Cortex-A8 erratum workaround for ARMv7-A or ARMv7 with unknown | 
 |       // profile. | 
 |       const Object_attribute* cpu_arch_profile_attr = | 
 | 	this->get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile); | 
 |       this->fix_cortex_a8_ = | 
 | 	(cpu_arch_attr->int_value() == elfcpp::TAG_CPU_ARCH_V7 | 
 | 	 && (cpu_arch_profile_attr->int_value() == 'A' | 
 | 	     || cpu_arch_profile_attr->int_value() == 0)); | 
 |     } | 
 |  | 
 |   // Check if we can use V4BX interworking. | 
 |   // The V4BX interworking stub contains BX instruction, | 
 |   // which is not specified for some profiles. | 
 |   if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING | 
 |       && !this->may_use_v4t_interworking()) | 
 |     gold_error(_("unable to provide V4BX reloc interworking fix up; " | 
 | 		 "the target profile does not support BX instruction")); | 
 |  | 
 |   // Fill in some more dynamic tags. | 
 |   const Reloc_section* rel_plt = (this->plt_ == NULL | 
 | 				  ? NULL | 
 | 				  : this->plt_->rel_plt()); | 
 |   layout->add_target_dynamic_tags(true, this->got_plt_, rel_plt, | 
 | 				  this->rel_dyn_, true, false, false); | 
 |  | 
 |   // Emit any relocs we saved in an attempt to avoid generating COPY | 
 |   // relocs. | 
 |   if (this->copy_relocs_.any_saved_relocs()) | 
 |     this->copy_relocs_.emit(this->rel_dyn_section(layout)); | 
 |  | 
 |   // Handle the .ARM.exidx section. | 
 |   Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); | 
 |  | 
 |   if (!parameters->options().relocatable()) | 
 |     { | 
 |       if (exidx_section != NULL | 
 | 	  && exidx_section->type() == elfcpp::SHT_ARM_EXIDX) | 
 | 	{ | 
 | 	  // For the ARM target, we need to add a PT_ARM_EXIDX segment for | 
 | 	  // the .ARM.exidx section. | 
 | 	  if (!layout->script_options()->saw_phdrs_clause()) | 
 | 	    { | 
 | 	      gold_assert(layout->find_output_segment(elfcpp::PT_ARM_EXIDX, 0, | 
 | 						      0) | 
 | 			  == NULL); | 
 | 	      Output_segment*  exidx_segment = | 
 | 		layout->make_output_segment(elfcpp::PT_ARM_EXIDX, elfcpp::PF_R); | 
 | 	      exidx_segment->add_output_section_to_nonload(exidx_section, | 
 | 							   elfcpp::PF_R); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   // Create an .ARM.attributes section if we have merged any attributes | 
 |   // from inputs. | 
 |   if (merged_any_attributes) | 
 |     { | 
 |       Output_attributes_section_data* attributes_section = | 
 |       new Output_attributes_section_data(*this->attributes_section_data_); | 
 |       layout->add_output_section_data(".ARM.attributes", | 
 | 				      elfcpp::SHT_ARM_ATTRIBUTES, 0, | 
 | 				      attributes_section, ORDER_INVALID, | 
 | 				      false); | 
 |     } | 
 |  | 
 |   // Fix up links in section EXIDX headers. | 
 |   for (Layout::Section_list::const_iterator p = layout->section_list().begin(); | 
 |        p != layout->section_list().end(); | 
 |        ++p) | 
 |     if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) | 
 |       { | 
 | 	Arm_output_section<big_endian>* os = | 
 | 	  Arm_output_section<big_endian>::as_arm_output_section(*p); | 
 | 	os->set_exidx_section_link(); | 
 |       } | 
 | } | 
 |  | 
 | // Return whether a direct absolute static relocation needs to be applied. | 
 | // In cases where Scan::local() or Scan::global() has created | 
 | // a dynamic relocation other than R_ARM_RELATIVE, the addend | 
 | // of the relocation is carried in the data, and we must not | 
 | // apply the static relocation. | 
 |  | 
 | template<bool big_endian> | 
 | inline bool | 
 | Target_arm<big_endian>::Relocate::should_apply_static_reloc( | 
 |     const Sized_symbol<32>* gsym, | 
 |     unsigned int r_type, | 
 |     bool is_32bit, | 
 |     Output_section* output_section) | 
 | { | 
 |   // If the output section is not allocated, then we didn't call | 
 |   // scan_relocs, we didn't create a dynamic reloc, and we must apply | 
 |   // the reloc here. | 
 |   if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0) | 
 |       return true; | 
 |  | 
 |   int ref_flags = Scan::get_reference_flags(r_type); | 
 |  | 
 |   // For local symbols, we will have created a non-RELATIVE dynamic | 
 |   // relocation only if (a) the output is position independent, | 
 |   // (b) the relocation is absolute (not pc- or segment-relative), and | 
 |   // (c) the relocation is not 32 bits wide. | 
 |   if (gsym == NULL) | 
 |     return !(parameters->options().output_is_position_independent() | 
 | 	     && (ref_flags & Symbol::ABSOLUTE_REF) | 
 | 	     && !is_32bit); | 
 |  | 
 |   // For global symbols, we use the same helper routines used in the | 
 |   // scan pass.  If we did not create a dynamic relocation, or if we | 
 |   // created a RELATIVE dynamic relocation, we should apply the static | 
 |   // relocation. | 
 |   bool has_dyn = gsym->needs_dynamic_reloc(ref_flags); | 
 |   bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF) | 
 | 		 && gsym->can_use_relative_reloc(ref_flags | 
 | 						 & Symbol::FUNCTION_CALL); | 
 |   return !has_dyn || is_rel; | 
 | } | 
 |  | 
 | // Perform a relocation. | 
 |  | 
 | template<bool big_endian> | 
 | inline bool | 
 | Target_arm<big_endian>::Relocate::relocate( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int, | 
 |     Target_arm* target, | 
 |     Output_section* output_section, | 
 |     size_t relnum, | 
 |     const unsigned char* preloc, | 
 |     const Sized_symbol<32>* gsym, | 
 |     const Symbol_value<32>* psymval, | 
 |     unsigned char* view, | 
 |     Arm_address address, | 
 |     section_size_type view_size) | 
 | { | 
 |   if (view == NULL) | 
 |     return true; | 
 |  | 
 |   typedef Arm_relocate_functions<big_endian> Arm_relocate_functions; | 
 |  | 
 |   const elfcpp::Rel<32, big_endian> rel(preloc); | 
 |   unsigned int r_type = elfcpp::elf_r_type<32>(rel.get_r_info()); | 
 |   r_type = target->get_real_reloc_type(r_type); | 
 |   const Arm_reloc_property* reloc_property = | 
 |     arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | 
 |   if (reloc_property == NULL) | 
 |     { | 
 |       std::string reloc_name = | 
 | 	arm_reloc_property_table->reloc_name_in_error_message(r_type); | 
 |       gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | 
 | 			     _("cannot relocate %s in object file"), | 
 | 			     reloc_name.c_str()); | 
 |       return true; | 
 |     } | 
 |  | 
 |   const Arm_relobj<big_endian>* object = | 
 |     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | 
 |  | 
 |   // If the final branch target of a relocation is THUMB instruction, this | 
 |   // is 1.  Otherwise it is 0. | 
 |   Arm_address thumb_bit = 0; | 
 |   Symbol_value<32> symval; | 
 |   bool is_weakly_undefined_without_plt = false; | 
 |   bool have_got_offset = false; | 
 |   unsigned int got_offset = 0; | 
 |  | 
 |   // If the relocation uses the GOT entry of a symbol instead of the symbol | 
 |   // itself, we don't care about whether the symbol is defined or what kind | 
 |   // of symbol it is. | 
 |   if (reloc_property->uses_got_entry()) | 
 |     { | 
 |       // Get the GOT offset. | 
 |       // The GOT pointer points to the end of the GOT section. | 
 |       // We need to subtract the size of the GOT section to get | 
 |       // the actual offset to use in the relocation. | 
 |       // TODO: We should move GOT offset computing code in TLS relocations | 
 |       // to here. | 
 |       switch (r_type) | 
 | 	{ | 
 | 	case elfcpp::R_ARM_GOT_BREL: | 
 | 	case elfcpp::R_ARM_GOT_PREL: | 
 | 	  if (gsym != NULL) | 
 | 	    { | 
 | 	      gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD)); | 
 | 	      got_offset = (gsym->got_offset(GOT_TYPE_STANDARD) | 
 | 			    - target->got_size()); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | 
 | 	      gold_assert(object->local_has_got_offset(r_sym, | 
 | 						       GOT_TYPE_STANDARD)); | 
 | 	      got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD) | 
 | 			    - target->got_size()); | 
 | 	    } | 
 | 	  have_got_offset = true; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |   else if (relnum != Target_arm<big_endian>::fake_relnum_for_stubs) | 
 |     { | 
 |       if (gsym != NULL) | 
 | 	{ | 
 | 	  // This is a global symbol.  Determine if we use PLT and if the | 
 | 	  // final target is THUMB. | 
 | 	  if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) | 
 | 	    { | 
 | 	      // This uses a PLT, change the symbol value. | 
 | 	      symval.set_output_value(target->plt_address_for_global(gsym)); | 
 | 	      psymval = &symval; | 
 | 	    } | 
 | 	  else if (gsym->is_weak_undefined()) | 
 | 	    { | 
 | 	      // This is a weakly undefined symbol and we do not use PLT | 
 | 	      // for this relocation.  A branch targeting this symbol will | 
 | 	      // be converted into an NOP. | 
 | 	      is_weakly_undefined_without_plt = true; | 
 | 	    } | 
 | 	  else if (gsym->is_undefined() && reloc_property->uses_symbol()) | 
 | 	    { | 
 | 	      // This relocation uses the symbol value but the symbol is | 
 | 	      // undefined.  Exit early and have the caller reporting an | 
 | 	      // error. | 
 | 	      return true; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // Set thumb bit if symbol: | 
 | 	      // -Has type STT_ARM_TFUNC or | 
 | 	      // -Has type STT_FUNC, is defined and with LSB in value set. | 
 | 	      thumb_bit = | 
 | 		(((gsym->type() == elfcpp::STT_ARM_TFUNC) | 
 | 		 || (gsym->type() == elfcpp::STT_FUNC | 
 | 		     && !gsym->is_undefined() | 
 | 		     && ((psymval->value(object, 0) & 1) != 0))) | 
 | 		? 1 | 
 | 		: 0); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // This is a local symbol.  Determine if the final target is THUMB. | 
 | 	  // We saved this information when all the local symbols were read. | 
 | 	  elfcpp::Elf_types<32>::Elf_WXword r_info = rel.get_r_info(); | 
 | 	  unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | 
 | 	  thumb_bit = object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; | 
 |  | 
 | 	  if (psymval->is_ifunc_symbol() && object->local_has_plt_offset(r_sym)) | 
 | 	    { | 
 | 	      symval.set_output_value( | 
 | 		  target->plt_address_for_local(object, r_sym)); | 
 | 	      psymval = &symval; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       // This is a fake relocation synthesized for a stub.  It does not have | 
 |       // a real symbol.  We just look at the LSB of the symbol value to | 
 |       // determine if the target is THUMB or not. | 
 |       thumb_bit = ((psymval->value(object, 0) & 1) != 0); | 
 |     } | 
 |  | 
 |   // Strip LSB if this points to a THUMB target. | 
 |   if (thumb_bit != 0 | 
 |       && reloc_property->uses_thumb_bit() | 
 |       && ((psymval->value(object, 0) & 1) != 0)) | 
 |     { | 
 |       Arm_address stripped_value = | 
 | 	psymval->value(object, 0) & ~static_cast<Arm_address>(1); | 
 |       symval.set_output_value(stripped_value); | 
 |       psymval = &symval; | 
 |     } | 
 |  | 
 |   // To look up relocation stubs, we need to pass the symbol table index of | 
 |   // a local symbol. | 
 |   unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | 
 |  | 
 |   // Get the addressing origin of the output segment defining the | 
 |   // symbol gsym if needed (AAELF 4.6.1.2 Relocation types). | 
 |   Arm_address sym_origin = 0; | 
 |   if (reloc_property->uses_symbol_base()) | 
 |     { | 
 |       if (r_type == elfcpp::R_ARM_BASE_ABS && gsym == NULL) | 
 | 	// R_ARM_BASE_ABS with the NULL symbol will give the | 
 | 	// absolute address of the GOT origin (GOT_ORG) (see ARM IHI | 
 | 	// 0044C (AAELF): 4.6.1.8 Proxy generating relocations). | 
 | 	sym_origin = target->got_plt_section()->address(); | 
 |       else if (gsym == NULL) | 
 | 	sym_origin = 0; | 
 |       else if (gsym->source() == Symbol::IN_OUTPUT_SEGMENT) | 
 | 	sym_origin = gsym->output_segment()->vaddr(); | 
 |       else if (gsym->source() == Symbol::IN_OUTPUT_DATA) | 
 | 	sym_origin = gsym->output_data()->address(); | 
 |  | 
 |       // TODO: Assumes the segment base to be zero for the global symbols | 
 |       // till the proper support for the segment-base-relative addressing | 
 |       // will be implemented.  This is consistent with GNU ld. | 
 |     } | 
 |  | 
 |   // For relative addressing relocation, find out the relative address base. | 
 |   Arm_address relative_address_base = 0; | 
 |   switch(reloc_property->relative_address_base()) | 
 |     { | 
 |     case Arm_reloc_property::RAB_NONE: | 
 |     // Relocations with relative address bases RAB_TLS and RAB_tp are | 
 |     // handled by relocate_tls.  So we do not need to do anything here. | 
 |     case Arm_reloc_property::RAB_TLS: | 
 |     case Arm_reloc_property::RAB_tp: | 
 |       break; | 
 |     case Arm_reloc_property::RAB_B_S: | 
 |       relative_address_base = sym_origin; | 
 |       break; | 
 |     case Arm_reloc_property::RAB_GOT_ORG: | 
 |       relative_address_base = target->got_plt_section()->address(); | 
 |       break; | 
 |     case Arm_reloc_property::RAB_P: | 
 |       relative_address_base = address; | 
 |       break; | 
 |     case Arm_reloc_property::RAB_Pa: | 
 |       relative_address_base = address & 0xfffffffcU; | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   typename Arm_relocate_functions::Status reloc_status = | 
 | 	Arm_relocate_functions::STATUS_OKAY; | 
 |   bool check_overflow = reloc_property->checks_overflow(); | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_NONE: | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS8: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::abs8(view, object, psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS12: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::abs12(view, object, psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS16: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::abs16(view, object, psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS32: | 
 |       if (should_apply_static_reloc(gsym, r_type, true, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::abs32(view, object, psymval, | 
 | 						     thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS32_NOI: | 
 |       if (should_apply_static_reloc(gsym, r_type, true, output_section)) | 
 | 	// No thumb bit for this relocation: (S + A) | 
 | 	reloc_status = Arm_relocate_functions::abs32(view, object, psymval, | 
 | 						     0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_MOVW_ABS_NC: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::movw(view, object, psymval, | 
 | 						    0, thumb_bit, | 
 | 						    check_overflow); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_MOVT_ABS: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::movt(view, object, psymval, 0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_MOVW_ABS_NC: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::thm_movw(view, object, psymval, | 
 | 							0, thumb_bit, false); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_MOVT_ABS: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::thm_movt(view, object, | 
 | 							psymval, 0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_MOVW_BREL: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::movw(view, object, psymval, | 
 | 				     relative_address_base, thumb_bit, | 
 | 				     check_overflow); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_MOVT_BREL: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::movt(view, object, psymval, | 
 | 				     relative_address_base); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_movw(view, object, psymval, | 
 | 					 relative_address_base, | 
 | 					 thumb_bit, check_overflow); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_MOVT_BREL: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_movt(view, object, psymval, | 
 | 					 relative_address_base); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_REL32: | 
 |       reloc_status = Arm_relocate_functions::rel32(view, object, psymval, | 
 | 						   address, thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_ABS5: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::thm_abs5(view, object, psymval); | 
 |       break; | 
 |  | 
 |     // Thumb long branches. | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_XPC22: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thumb_branch_common( | 
 | 	    r_type, relinfo, view, gsym, object, r_sym, psymval, address, | 
 | 	    thumb_bit, is_weakly_undefined_without_plt); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOTOFF32: | 
 |       { | 
 | 	Arm_address got_origin; | 
 | 	got_origin = target->got_plt_section()->address(); | 
 | 	reloc_status = Arm_relocate_functions::rel32(view, object, psymval, | 
 | 						     got_origin, thumb_bit); | 
 |       } | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_BASE_PREL: | 
 |       gold_assert(gsym != NULL); | 
 |       reloc_status = | 
 | 	  Arm_relocate_functions::base_prel(view, sym_origin, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_BASE_ABS: | 
 |       if (should_apply_static_reloc(gsym, r_type, false, output_section)) | 
 | 	reloc_status = Arm_relocate_functions::base_abs(view, sym_origin); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOT_BREL: | 
 |       gold_assert(have_got_offset); | 
 |       reloc_status = Arm_relocate_functions::got_brel(view, got_offset); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_GOT_PREL: | 
 |       gold_assert(have_got_offset); | 
 |       // Get the address origin for GOT PLT, which is allocated right | 
 |       // after the GOT section, to calculate an absolute address of | 
 |       // the symbol GOT entry (got_origin + got_offset). | 
 |       Arm_address got_origin; | 
 |       got_origin = target->got_plt_section()->address(); | 
 |       reloc_status = Arm_relocate_functions::got_prel(view, | 
 | 						      got_origin + got_offset, | 
 | 						      address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_XPC25: | 
 |       gold_assert(gsym == NULL | 
 | 		  || gsym->has_plt_offset() | 
 | 		  || gsym->final_value_is_known() | 
 | 		  || (gsym->is_defined() | 
 | 		      && !gsym->is_from_dynobj() | 
 | 		      && !gsym->is_preemptible())); | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::arm_branch_common( | 
 | 	    r_type, relinfo, view, gsym, object, r_sym, psymval, address, | 
 | 	    thumb_bit, is_weakly_undefined_without_plt); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_jump19(view, object, psymval, address, | 
 | 					   thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_jump6(view, object, psymval, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_jump8(view, object, psymval, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_jump11(view, object, psymval, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PREL31: | 
 |       reloc_status = Arm_relocate_functions::prel31(view, object, psymval, | 
 | 						    address, thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_V4BX: | 
 |       if (target->fix_v4bx() > General_options::FIX_V4BX_NONE) | 
 | 	{ | 
 | 	  const bool is_v4bx_interworking = | 
 | 	      (target->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING); | 
 | 	  reloc_status = | 
 | 	    Arm_relocate_functions::v4bx(relinfo, view, object, address, | 
 | 					 is_v4bx_interworking); | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_PC8: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_pc8(view, object, psymval, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_PC12: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_pc12(view, object, psymval, address); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_ALU_PREL_11_0: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::thm_alu11(view, object, psymval, address, | 
 | 					  thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ALU_PC_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G0: | 
 |     case elfcpp::R_ARM_ALU_PC_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G1: | 
 |     case elfcpp::R_ARM_ALU_PC_G2: | 
 |     case elfcpp::R_ARM_ALU_SB_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G0: | 
 |     case elfcpp::R_ARM_ALU_SB_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G1: | 
 |     case elfcpp::R_ARM_ALU_SB_G2: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions::arm_grp_alu(view, object, psymval, | 
 | 					    reloc_property->group_index(), | 
 | 					    relative_address_base, | 
 | 					    thumb_bit, check_overflow); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_LDR_PC_G0: | 
 |     case elfcpp::R_ARM_LDR_PC_G1: | 
 |     case elfcpp::R_ARM_LDR_PC_G2: | 
 |     case elfcpp::R_ARM_LDR_SB_G0: | 
 |     case elfcpp::R_ARM_LDR_SB_G1: | 
 |     case elfcpp::R_ARM_LDR_SB_G2: | 
 |       reloc_status = | 
 | 	  Arm_relocate_functions::arm_grp_ldr(view, object, psymval, | 
 | 					      reloc_property->group_index(), | 
 | 					      relative_address_base); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_LDRS_PC_G0: | 
 |     case elfcpp::R_ARM_LDRS_PC_G1: | 
 |     case elfcpp::R_ARM_LDRS_PC_G2: | 
 |     case elfcpp::R_ARM_LDRS_SB_G0: | 
 |     case elfcpp::R_ARM_LDRS_SB_G1: | 
 |     case elfcpp::R_ARM_LDRS_SB_G2: | 
 |       reloc_status = | 
 | 	  Arm_relocate_functions::arm_grp_ldrs(view, object, psymval, | 
 | 					       reloc_property->group_index(), | 
 | 					       relative_address_base); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_LDC_PC_G0: | 
 |     case elfcpp::R_ARM_LDC_PC_G1: | 
 |     case elfcpp::R_ARM_LDC_PC_G2: | 
 |     case elfcpp::R_ARM_LDC_SB_G0: | 
 |     case elfcpp::R_ARM_LDC_SB_G1: | 
 |     case elfcpp::R_ARM_LDC_SB_G2: | 
 |       reloc_status = | 
 | 	  Arm_relocate_functions::arm_grp_ldc(view, object, psymval, | 
 | 					      reloc_property->group_index(), | 
 | 					      relative_address_base); | 
 |       break; | 
 |  | 
 |       // These are initial tls relocs, which are expected when | 
 |       // linking. | 
 |     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic | 
 |     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic | 
 |     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec | 
 |     case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 |       reloc_status = | 
 | 	this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval, | 
 | 			   view, address, view_size); | 
 |       break; | 
 |  | 
 |     // The known and unknown unsupported and/or deprecated relocations. | 
 |     case elfcpp::R_ARM_PC24: | 
 |     case elfcpp::R_ARM_LDR_SBREL_11_0_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_19_12_NC: | 
 |     case elfcpp::R_ARM_ALU_SBREL_27_20_CK: | 
 |     default: | 
 |       // Just silently leave the method. We should get an appropriate error | 
 |       // message in the scan methods. | 
 |       break; | 
 |     } | 
 |  | 
 |   // Report any errors. | 
 |   switch (reloc_status) | 
 |     { | 
 |     case Arm_relocate_functions::STATUS_OKAY: | 
 |       break; | 
 |     case Arm_relocate_functions::STATUS_OVERFLOW: | 
 |       gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | 
 | 			     _("relocation overflow in %s"), | 
 | 			     reloc_property->name().c_str()); | 
 |       break; | 
 |     case Arm_relocate_functions::STATUS_BAD_RELOC: | 
 |       gold_error_at_location( | 
 | 	relinfo, | 
 | 	relnum, | 
 | 	rel.get_r_offset(), | 
 | 	_("unexpected opcode while processing relocation %s"), | 
 | 	reloc_property->name().c_str()); | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Perform a TLS relocation. | 
 |  | 
 | template<bool big_endian> | 
 | inline typename Arm_relocate_functions<big_endian>::Status | 
 | Target_arm<big_endian>::Relocate::relocate_tls( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     Target_arm<big_endian>* target, | 
 |     size_t relnum, | 
 |     const elfcpp::Rel<32, big_endian>& rel, | 
 |     unsigned int r_type, | 
 |     const Sized_symbol<32>* gsym, | 
 |     const Symbol_value<32>* psymval, | 
 |     unsigned char* view, | 
 |     elfcpp::Elf_types<32>::Elf_Addr address, | 
 |     section_size_type /*view_size*/ ) | 
 | { | 
 |   typedef Arm_relocate_functions<big_endian> ArmRelocFuncs; | 
 |   typedef Relocate_functions<32, big_endian> RelocFuncs; | 
 |   Output_segment* tls_segment = relinfo->layout->tls_segment(); | 
 |  | 
 |   const Sized_relobj_file<32, big_endian>* object = relinfo->object; | 
 |  | 
 |   elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0); | 
 |  | 
 |   const bool is_final = (gsym == NULL | 
 | 			 ? !parameters->options().shared() | 
 | 			 : gsym->final_value_is_known()); | 
 |   const tls::Tls_optimization optimized_type | 
 |       = Target_arm<big_endian>::optimize_tls_reloc(is_final, r_type); | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_TLS_GD32:	// Global-dynamic | 
 | 	{ | 
 | 	  unsigned int got_type = GOT_TYPE_TLS_PAIR; | 
 | 	  unsigned int got_offset; | 
 | 	  if (gsym != NULL) | 
 | 	    { | 
 | 	      gold_assert(gsym->has_got_offset(got_type)); | 
 | 	      got_offset = gsym->got_offset(got_type) - target->got_size(); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | 
 | 	      gold_assert(object->local_has_got_offset(r_sym, got_type)); | 
 | 	      got_offset = (object->local_got_offset(r_sym, got_type) | 
 | 			    - target->got_size()); | 
 | 	    } | 
 | 	  if (optimized_type == tls::TLSOPT_NONE) | 
 | 	    { | 
 | 	      Arm_address got_entry = | 
 | 		target->got_plt_section()->address() + got_offset; | 
 |  | 
 | 	      // Relocate the field with the PC relative offset of the pair of | 
 | 	      // GOT entries. | 
 | 	      RelocFuncs::pcrel32_unaligned(view, got_entry, address); | 
 | 	      return ArmRelocFuncs::STATUS_OKAY; | 
 | 	    } | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_TLS_LDM32:	// Local-dynamic | 
 |       if (optimized_type == tls::TLSOPT_NONE) | 
 | 	{ | 
 | 	  // Relocate the field with the offset of the GOT entry for | 
 | 	  // the module index. | 
 | 	  unsigned int got_offset; | 
 | 	  got_offset = (target->got_mod_index_entry(NULL, NULL, NULL) | 
 | 			- target->got_size()); | 
 | 	  Arm_address got_entry = | 
 | 	    target->got_plt_section()->address() + got_offset; | 
 |  | 
 | 	  // Relocate the field with the PC relative offset of the pair of | 
 | 	  // GOT entries. | 
 | 	  RelocFuncs::pcrel32_unaligned(view, got_entry, address); | 
 | 	  return ArmRelocFuncs::STATUS_OKAY; | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_TLS_LDO32:	// Alternate local-dynamic | 
 |       RelocFuncs::rel32_unaligned(view, value); | 
 |       return ArmRelocFuncs::STATUS_OKAY; | 
 |  | 
 |     case elfcpp::R_ARM_TLS_IE32:	// Initial-exec | 
 |       if (optimized_type == tls::TLSOPT_NONE) | 
 | 	{ | 
 | 	  // Relocate the field with the offset of the GOT entry for | 
 | 	  // the tp-relative offset of the symbol. | 
 | 	  unsigned int got_type = GOT_TYPE_TLS_OFFSET; | 
 | 	  unsigned int got_offset; | 
 | 	  if (gsym != NULL) | 
 | 	    { | 
 | 	      gold_assert(gsym->has_got_offset(got_type)); | 
 | 	      got_offset = gsym->got_offset(got_type); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info()); | 
 | 	      gold_assert(object->local_has_got_offset(r_sym, got_type)); | 
 | 	      got_offset = object->local_got_offset(r_sym, got_type); | 
 | 	    } | 
 |  | 
 | 	  // All GOT offsets are relative to the end of the GOT. | 
 | 	  got_offset -= target->got_size(); | 
 |  | 
 | 	  Arm_address got_entry = | 
 | 	    target->got_plt_section()->address() + got_offset; | 
 |  | 
 | 	  // Relocate the field with the PC relative offset of the GOT entry. | 
 | 	  RelocFuncs::pcrel32_unaligned(view, got_entry, address); | 
 | 	  return ArmRelocFuncs::STATUS_OKAY; | 
 | 	} | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_TLS_LE32:	// Local-exec | 
 |       // If we're creating a shared library, a dynamic relocation will | 
 |       // have been created for this location, so do not apply it now. | 
 |       if (!parameters->options().shared()) | 
 | 	{ | 
 | 	  gold_assert(tls_segment != NULL); | 
 |  | 
 | 	  // $tp points to the TCB, which is followed by the TLS, so we | 
 | 	  // need to add TCB size to the offset. | 
 | 	  Arm_address aligned_tcb_size = | 
 | 	    align_address(ARM_TCB_SIZE, tls_segment->maximum_alignment()); | 
 | 	  RelocFuncs::rel32_unaligned(view, value + aligned_tcb_size); | 
 |  | 
 | 	} | 
 |       return ArmRelocFuncs::STATUS_OKAY; | 
 |  | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   gold_error_at_location(relinfo, relnum, rel.get_r_offset(), | 
 | 			 _("unsupported reloc %u"), | 
 | 			 r_type); | 
 |   return ArmRelocFuncs::STATUS_BAD_RELOC; | 
 | } | 
 |  | 
 | // Relocate section data. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::relocate_section( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     unsigned char* view, | 
 |     Arm_address address, | 
 |     section_size_type view_size, | 
 |     const Reloc_symbol_changes* reloc_symbol_changes) | 
 | { | 
 |   typedef typename Target_arm<big_endian>::Relocate Arm_relocate; | 
 |   gold_assert(sh_type == elfcpp::SHT_REL); | 
 |  | 
 |   // See if we are relocating a relaxed input section.  If so, the view | 
 |   // covers the whole output section and we need to adjust accordingly. | 
 |   if (needs_special_offset_handling) | 
 |     { | 
 |       const Output_relaxed_input_section* poris = | 
 | 	output_section->find_relaxed_input_section(relinfo->object, | 
 | 						   relinfo->data_shndx); | 
 |       if (poris != NULL) | 
 | 	{ | 
 | 	  Arm_address section_address = poris->address(); | 
 | 	  section_size_type section_size = poris->data_size(); | 
 |  | 
 | 	  gold_assert((section_address >= address) | 
 | 		      && ((section_address + section_size) | 
 | 			  <= (address + view_size))); | 
 |  | 
 | 	  off_t offset = section_address - address; | 
 | 	  view += offset; | 
 | 	  address += offset; | 
 | 	  view_size = section_size; | 
 | 	} | 
 |     } | 
 |  | 
 |   gold::relocate_section<32, big_endian, Target_arm, Arm_relocate, | 
 | 			 gold::Default_comdat_behavior, Classify_reloc>( | 
 |     relinfo, | 
 |     this, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     needs_special_offset_handling, | 
 |     view, | 
 |     address, | 
 |     view_size, | 
 |     reloc_symbol_changes); | 
 | } | 
 |  | 
 | // Return the size of a relocation while scanning during a relocatable | 
 | // link. | 
 |  | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::Classify_reloc::get_size_for_reloc( | 
 |     unsigned int r_type, | 
 |     Relobj* object) | 
 | { | 
 |   Target_arm<big_endian>* arm_target = | 
 |       Target_arm<big_endian>::default_target(); | 
 |   r_type = arm_target->get_real_reloc_type(r_type); | 
 |   const Arm_reloc_property* arp = | 
 |       arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | 
 |   if (arp != NULL) | 
 |     return arp->size(); | 
 |   else | 
 |     { | 
 |       std::string reloc_name = | 
 | 	arm_reloc_property_table->reloc_name_in_error_message(r_type); | 
 |       gold_error(_("%s: unexpected %s in object file"), | 
 | 		 object->name().c_str(), reloc_name.c_str()); | 
 |       return 0; | 
 |     } | 
 | } | 
 |  | 
 | // Scan the relocs during a relocatable link. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::scan_relocatable_relocs( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int data_shndx, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     size_t local_symbol_count, | 
 |     const unsigned char* plocal_symbols, | 
 |     Relocatable_relocs* rr) | 
 | { | 
 |   typedef Arm_scan_relocatable_relocs<big_endian, Classify_reloc> | 
 |       Scan_relocatable_relocs; | 
 |  | 
 |   gold_assert(sh_type == elfcpp::SHT_REL); | 
 |  | 
 |   gold::scan_relocatable_relocs<32, big_endian, Scan_relocatable_relocs>( | 
 |     symtab, | 
 |     layout, | 
 |     object, | 
 |     data_shndx, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     needs_special_offset_handling, | 
 |     local_symbol_count, | 
 |     plocal_symbols, | 
 |     rr); | 
 | } | 
 |  | 
 | // Scan the relocs for --emit-relocs. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::emit_relocs_scan(Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     Sized_relobj_file<32, big_endian>* object, | 
 |     unsigned int data_shndx, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     size_t local_symbol_count, | 
 |     const unsigned char* plocal_syms, | 
 |     Relocatable_relocs* rr) | 
 | { | 
 |   typedef gold::Default_classify_reloc<elfcpp::SHT_REL, 32, big_endian> | 
 |       Classify_reloc; | 
 |   typedef gold::Default_emit_relocs_strategy<Classify_reloc> | 
 |       Emit_relocs_strategy; | 
 |  | 
 |   gold_assert(sh_type == elfcpp::SHT_REL); | 
 |  | 
 |   gold::scan_relocatable_relocs<32, big_endian, Emit_relocs_strategy>( | 
 |     symtab, | 
 |     layout, | 
 |     object, | 
 |     data_shndx, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     needs_special_offset_handling, | 
 |     local_symbol_count, | 
 |     plocal_syms, | 
 |     rr); | 
 | } | 
 |  | 
 | // Emit relocations for a section. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::relocate_relocs( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, | 
 |     unsigned char* view, | 
 |     Arm_address view_address, | 
 |     section_size_type view_size, | 
 |     unsigned char* reloc_view, | 
 |     section_size_type reloc_view_size) | 
 | { | 
 |   gold_assert(sh_type == elfcpp::SHT_REL); | 
 |  | 
 |   gold::relocate_relocs<32, big_endian, Classify_reloc>( | 
 |     relinfo, | 
 |     prelocs, | 
 |     reloc_count, | 
 |     output_section, | 
 |     offset_in_output_section, | 
 |     view, | 
 |     view_address, | 
 |     view_size, | 
 |     reloc_view, | 
 |     reloc_view_size); | 
 | } | 
 |  | 
 | // Perform target-specific processing in a relocatable link.  This is | 
 | // only used if we use the relocation strategy RELOC_SPECIAL. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::relocate_special_relocatable( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* preloc_in, | 
 |     size_t relnum, | 
 |     Output_section* output_section, | 
 |     typename elfcpp::Elf_types<32>::Elf_Off offset_in_output_section, | 
 |     unsigned char* view, | 
 |     elfcpp::Elf_types<32>::Elf_Addr view_address, | 
 |     section_size_type, | 
 |     unsigned char* preloc_out) | 
 | { | 
 |   // We can only handle REL type relocation sections. | 
 |   gold_assert(sh_type == elfcpp::SHT_REL); | 
 |  | 
 |   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc Reltype; | 
 |   typedef typename Reloc_types<elfcpp::SHT_REL, 32, big_endian>::Reloc_write | 
 |     Reltype_write; | 
 |   const Arm_address invalid_address = static_cast<Arm_address>(0) - 1; | 
 |  | 
 |   const Arm_relobj<big_endian>* object = | 
 |     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | 
 |   const unsigned int local_count = object->local_symbol_count(); | 
 |  | 
 |   Reltype reloc(preloc_in); | 
 |   Reltype_write reloc_write(preloc_out); | 
 |  | 
 |   elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); | 
 |   const unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | 
 |   const unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | 
 |  | 
 |   const Arm_reloc_property* arp = | 
 |     arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | 
 |   gold_assert(arp != NULL); | 
 |  | 
 |   // Get the new symbol index. | 
 |   // We only use RELOC_SPECIAL strategy in local relocations. | 
 |   gold_assert(r_sym < local_count); | 
 |  | 
 |   // We are adjusting a section symbol.  We need to find | 
 |   // the symbol table index of the section symbol for | 
 |   // the output section corresponding to input section | 
 |   // in which this symbol is defined. | 
 |   bool is_ordinary; | 
 |   unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary); | 
 |   gold_assert(is_ordinary); | 
 |   Output_section* os = object->output_section(shndx); | 
 |   gold_assert(os != NULL); | 
 |   gold_assert(os->needs_symtab_index()); | 
 |   unsigned int new_symndx = os->symtab_index(); | 
 |  | 
 |   // Get the new offset--the location in the output section where | 
 |   // this relocation should be applied. | 
 |  | 
 |   Arm_address offset = reloc.get_r_offset(); | 
 |   Arm_address new_offset; | 
 |   if (offset_in_output_section != invalid_address) | 
 |     new_offset = offset + offset_in_output_section; | 
 |   else | 
 |     { | 
 |       section_offset_type sot_offset = | 
 | 	  convert_types<section_offset_type, Arm_address>(offset); | 
 |       section_offset_type new_sot_offset = | 
 | 	  output_section->output_offset(object, relinfo->data_shndx, | 
 | 					sot_offset); | 
 |       gold_assert(new_sot_offset != -1); | 
 |       new_offset = new_sot_offset; | 
 |     } | 
 |  | 
 |   // In an object file, r_offset is an offset within the section. | 
 |   // In an executable or dynamic object, generated by | 
 |   // --emit-relocs, r_offset is an absolute address. | 
 |   if (!parameters->options().relocatable()) | 
 |     { | 
 |       new_offset += view_address; | 
 |       if (offset_in_output_section != invalid_address) | 
 | 	new_offset -= offset_in_output_section; | 
 |     } | 
 |  | 
 |   reloc_write.put_r_offset(new_offset); | 
 |   reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type)); | 
 |  | 
 |   // Handle the reloc addend. | 
 |   // The relocation uses a section symbol in the input file. | 
 |   // We are adjusting it to use a section symbol in the output | 
 |   // file.  The input section symbol refers to some address in | 
 |   // the input section.  We need the relocation in the output | 
 |   // file to refer to that same address.  This adjustment to | 
 |   // the addend is the same calculation we use for a simple | 
 |   // absolute relocation for the input section symbol. | 
 |  | 
 |   const Symbol_value<32>* psymval = object->local_symbol(r_sym); | 
 |  | 
 |   // Handle THUMB bit. | 
 |   Symbol_value<32> symval; | 
 |   Arm_address thumb_bit = | 
 |      object->local_symbol_is_thumb_function(r_sym) ? 1 : 0; | 
 |   if (thumb_bit != 0 | 
 |       && arp->uses_thumb_bit() | 
 |       && ((psymval->value(object, 0) & 1) != 0)) | 
 |     { | 
 |       Arm_address stripped_value = | 
 | 	psymval->value(object, 0) & ~static_cast<Arm_address>(1); | 
 |       symval.set_output_value(stripped_value); | 
 |       psymval = &symval; | 
 |     } | 
 |  | 
 |   unsigned char* paddend = view + offset; | 
 |   typename Arm_relocate_functions<big_endian>::Status reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::STATUS_OKAY; | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_ABS8: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::abs8(paddend, object, | 
 | 							      psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS12: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::abs12(paddend, object, | 
 | 							       psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_ABS16: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::abs16(paddend, object, | 
 | 							       psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_ABS5: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::thm_abs5(paddend, | 
 | 								  object, | 
 | 								  psymval); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_MOVW_BREL: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::movw( | 
 | 	  paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_MOVW_ABS_NC: | 
 |     case elfcpp::R_ARM_THM_MOVW_PREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL_NC: | 
 |     case elfcpp::R_ARM_THM_MOVW_BREL: | 
 |       reloc_status = Arm_relocate_functions<big_endian>::thm_movw( | 
 | 	  paddend, object, psymval, 0, thumb_bit, arp->checks_overflow()); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_XPC22: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thumb_branch_common( | 
 | 	    r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, | 
 | 	    false); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PLT32: | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_XPC25: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::arm_branch_common( | 
 | 	    r_type, relinfo, paddend, NULL, object, 0, psymval, 0, thumb_bit, | 
 | 	    false); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_jump19(paddend, object, | 
 | 						       psymval, 0, thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP6: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_jump6(paddend, object, psymval, | 
 | 						      0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP8: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_jump8(paddend, object, psymval, | 
 | 						      0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_JUMP11: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_jump11(paddend, object, psymval, | 
 | 						       0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_PREL31: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::prel31(paddend, object, psymval, 0, | 
 | 						   thumb_bit); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_PC8: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_pc8(paddend, object, psymval, | 
 | 						    0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_PC12: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_pc12(paddend, object, psymval, | 
 | 						     0); | 
 |       break; | 
 |  | 
 |     case elfcpp::R_ARM_THM_ALU_PREL_11_0: | 
 |       reloc_status = | 
 | 	Arm_relocate_functions<big_endian>::thm_alu11(paddend, object, psymval, | 
 | 						      0, thumb_bit); | 
 |       break; | 
 |  | 
 |     // These relocation truncate relocation results so we cannot handle them | 
 |     // in a relocatable link. | 
 |     case elfcpp::R_ARM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_THM_MOVT_ABS: | 
 |     case elfcpp::R_ARM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_THM_MOVT_PREL: | 
 |     case elfcpp::R_ARM_THM_MOVT_BREL: | 
 |     case elfcpp::R_ARM_ALU_PC_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G0: | 
 |     case elfcpp::R_ARM_ALU_PC_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_PC_G1: | 
 |     case elfcpp::R_ARM_ALU_PC_G2: | 
 |     case elfcpp::R_ARM_ALU_SB_G0_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G0: | 
 |     case elfcpp::R_ARM_ALU_SB_G1_NC: | 
 |     case elfcpp::R_ARM_ALU_SB_G1: | 
 |     case elfcpp::R_ARM_ALU_SB_G2: | 
 |     case elfcpp::R_ARM_LDR_PC_G0: | 
 |     case elfcpp::R_ARM_LDR_PC_G1: | 
 |     case elfcpp::R_ARM_LDR_PC_G2: | 
 |     case elfcpp::R_ARM_LDR_SB_G0: | 
 |     case elfcpp::R_ARM_LDR_SB_G1: | 
 |     case elfcpp::R_ARM_LDR_SB_G2: | 
 |     case elfcpp::R_ARM_LDRS_PC_G0: | 
 |     case elfcpp::R_ARM_LDRS_PC_G1: | 
 |     case elfcpp::R_ARM_LDRS_PC_G2: | 
 |     case elfcpp::R_ARM_LDRS_SB_G0: | 
 |     case elfcpp::R_ARM_LDRS_SB_G1: | 
 |     case elfcpp::R_ARM_LDRS_SB_G2: | 
 |     case elfcpp::R_ARM_LDC_PC_G0: | 
 |     case elfcpp::R_ARM_LDC_PC_G1: | 
 |     case elfcpp::R_ARM_LDC_PC_G2: | 
 |     case elfcpp::R_ARM_LDC_SB_G0: | 
 |     case elfcpp::R_ARM_LDC_SB_G1: | 
 |     case elfcpp::R_ARM_LDC_SB_G2: | 
 |       gold_error(_("cannot handle %s in a relocatable link"), | 
 | 		 arp->name().c_str()); | 
 |       break; | 
 |  | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   // Report any errors. | 
 |   switch (reloc_status) | 
 |     { | 
 |     case Arm_relocate_functions<big_endian>::STATUS_OKAY: | 
 |       break; | 
 |     case Arm_relocate_functions<big_endian>::STATUS_OVERFLOW: | 
 |       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), | 
 | 			     _("relocation overflow in %s"), | 
 | 			     arp->name().c_str()); | 
 |       break; | 
 |     case Arm_relocate_functions<big_endian>::STATUS_BAD_RELOC: | 
 |       gold_error_at_location(relinfo, relnum, reloc.get_r_offset(), | 
 | 	_("unexpected opcode while processing relocation %s"), | 
 | 	arp->name().c_str()); | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // Return the value to use for a dynamic symbol which requires special | 
 | // treatment.  This is how we support equality comparisons of function | 
 | // pointers across shared library boundaries, as described in the | 
 | // processor specific ABI supplement. | 
 |  | 
 | template<bool big_endian> | 
 | uint64_t | 
 | Target_arm<big_endian>::do_dynsym_value(const Symbol* gsym) const | 
 | { | 
 |   gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset()); | 
 |   return this->plt_address_for_global(gsym); | 
 | } | 
 |  | 
 | // Map platform-specific relocs to real relocs | 
 | // | 
 | template<bool big_endian> | 
 | unsigned int | 
 | Target_arm<big_endian>::get_real_reloc_type(unsigned int r_type) const | 
 | { | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_TARGET1: | 
 |       return this->target1_reloc_; | 
 |  | 
 |     case elfcpp::R_ARM_TARGET2: | 
 |       return this->target2_reloc_; | 
 |  | 
 |     default: | 
 |       return r_type; | 
 |     } | 
 | } | 
 |  | 
 | // Whether if two EABI versions V1 and V2 are compatible. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Target_arm<big_endian>::are_eabi_versions_compatible( | 
 |     elfcpp::Elf_Word v1, | 
 |     elfcpp::Elf_Word v2) | 
 | { | 
 |   // v4 and v5 are the same spec before and after it was released, | 
 |   // so allow mixing them. | 
 |   if ((v1 == elfcpp::EF_ARM_EABI_UNKNOWN || v2 == elfcpp::EF_ARM_EABI_UNKNOWN) | 
 |       || (v1 == elfcpp::EF_ARM_EABI_VER4 && v2 == elfcpp::EF_ARM_EABI_VER5) | 
 |       || (v1 == elfcpp::EF_ARM_EABI_VER5 && v2 == elfcpp::EF_ARM_EABI_VER4)) | 
 |     return true; | 
 |  | 
 |   return v1 == v2; | 
 | } | 
 |  | 
 | // Combine FLAGS from an input object called NAME and the processor-specific | 
 | // flags in the ELF header of the output.  Much of this is adapted from the | 
 | // processor-specific flags merging code in elf32_arm_merge_private_bfd_data | 
 | // in bfd/elf32-arm.c. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::merge_processor_specific_flags( | 
 |     const std::string& name, | 
 |     elfcpp::Elf_Word flags) | 
 | { | 
 |   if (this->are_processor_specific_flags_set()) | 
 |     { | 
 |       elfcpp::Elf_Word out_flags = this->processor_specific_flags(); | 
 |  | 
 |       // Nothing to merge if flags equal to those in output. | 
 |       if (flags == out_flags) | 
 | 	return; | 
 |  | 
 |       // Complain about various flag mismatches. | 
 |       elfcpp::Elf_Word version1 = elfcpp::arm_eabi_version(flags); | 
 |       elfcpp::Elf_Word version2 = elfcpp::arm_eabi_version(out_flags); | 
 |       if (!this->are_eabi_versions_compatible(version1, version2) | 
 | 	  && parameters->options().warn_mismatch()) | 
 | 	gold_error(_("Source object %s has EABI version %d but output has " | 
 | 		     "EABI version %d."), | 
 | 		   name.c_str(), | 
 | 		   (flags & elfcpp::EF_ARM_EABIMASK) >> 24, | 
 | 		   (out_flags & elfcpp::EF_ARM_EABIMASK) >> 24); | 
 |     } | 
 |   else | 
 |     { | 
 |       // If the input is the default architecture and had the default | 
 |       // flags then do not bother setting the flags for the output | 
 |       // architecture, instead allow future merges to do this.  If no | 
 |       // future merges ever set these flags then they will retain their | 
 |       // uninitialised values, which surprise surprise, correspond | 
 |       // to the default values. | 
 |       if (flags == 0) | 
 | 	return; | 
 |  | 
 |       // This is the first time, just copy the flags. | 
 |       // We only copy the EABI version for now. | 
 |       this->set_processor_specific_flags(flags & elfcpp::EF_ARM_EABIMASK); | 
 |     } | 
 | } | 
 |  | 
 | // Adjust ELF file header. | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::do_adjust_elf_header( | 
 |     unsigned char* view, | 
 |     int len) | 
 | { | 
 |   gold_assert(len == elfcpp::Elf_sizes<32>::ehdr_size); | 
 |  | 
 |   elfcpp::Ehdr<32, big_endian> ehdr(view); | 
 |   elfcpp::Elf_Word flags = this->processor_specific_flags(); | 
 |   unsigned char e_ident[elfcpp::EI_NIDENT]; | 
 |   memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT); | 
 |  | 
 |   if (elfcpp::arm_eabi_version(flags) | 
 |       == elfcpp::EF_ARM_EABI_UNKNOWN) | 
 |     e_ident[elfcpp::EI_OSABI] = elfcpp::ELFOSABI_ARM; | 
 |   else | 
 |     e_ident[elfcpp::EI_OSABI] = 0; | 
 |   e_ident[elfcpp::EI_ABIVERSION] = 0; | 
 |  | 
 |   // Do EF_ARM_BE8 adjustment. | 
 |   if (parameters->options().be8() && !big_endian) | 
 |     gold_error("BE8 images only valid in big-endian mode."); | 
 |   if (parameters->options().be8()) | 
 |     { | 
 |       flags |= elfcpp::EF_ARM_BE8; | 
 |       this->set_processor_specific_flags(flags); | 
 |     } | 
 |  | 
 |   // If we're working in EABI_VER5, set the hard/soft float ABI flags | 
 |   // as appropriate. | 
 |   if (elfcpp::arm_eabi_version(flags) == elfcpp::EF_ARM_EABI_VER5) | 
 |   { | 
 |     elfcpp::Elf_Half type = ehdr.get_e_type(); | 
 |     if (type == elfcpp::ET_EXEC || type == elfcpp::ET_DYN) | 
 |       { | 
 | 	Object_attribute* attr = this->get_aeabi_object_attribute(elfcpp::Tag_ABI_VFP_args); | 
 | 	if (attr->int_value() == elfcpp::AEABI_VFP_args_vfp) | 
 | 	  flags |= elfcpp::EF_ARM_ABI_FLOAT_HARD; | 
 | 	else | 
 | 	  flags |= elfcpp::EF_ARM_ABI_FLOAT_SOFT; | 
 | 	this->set_processor_specific_flags(flags); | 
 |       } | 
 |   } | 
 |   elfcpp::Ehdr_write<32, big_endian> oehdr(view); | 
 |   oehdr.put_e_ident(e_ident); | 
 |   oehdr.put_e_flags(this->processor_specific_flags()); | 
 | } | 
 |  | 
 | // do_make_elf_object to override the same function in the base class. | 
 | // We need to use a target-specific sub-class of | 
 | // Sized_relobj_file<32, big_endian> to store ARM specific information. | 
 | // Hence we need to have our own ELF object creation. | 
 |  | 
 | template<bool big_endian> | 
 | Object* | 
 | Target_arm<big_endian>::do_make_elf_object( | 
 |     const std::string& name, | 
 |     Input_file* input_file, | 
 |     off_t offset, const elfcpp::Ehdr<32, big_endian>& ehdr) | 
 | { | 
 |   int et = ehdr.get_e_type(); | 
 |   // ET_EXEC files are valid input for --just-symbols/-R, | 
 |   // and we treat them as relocatable objects. | 
 |   if (et == elfcpp::ET_REL | 
 |       || (et == elfcpp::ET_EXEC && input_file->just_symbols())) | 
 |     { | 
 |       Arm_relobj<big_endian>* obj = | 
 | 	new Arm_relobj<big_endian>(name, input_file, offset, ehdr); | 
 |       obj->setup(); | 
 |       return obj; | 
 |     } | 
 |   else if (et == elfcpp::ET_DYN) | 
 |     { | 
 |       Sized_dynobj<32, big_endian>* obj = | 
 | 	new Arm_dynobj<big_endian>(name, input_file, offset, ehdr); | 
 |       obj->setup(); | 
 |       return obj; | 
 |     } | 
 |   else | 
 |     { | 
 |       gold_error(_("%s: unsupported ELF file type %d"), | 
 | 		 name.c_str(), et); | 
 |       return NULL; | 
 |     } | 
 | } | 
 |  | 
 | // Read the architecture from the Tag_also_compatible_with attribute, if any. | 
 | // Returns -1 if no architecture could be read. | 
 | // This is adapted from get_secondary_compatible_arch() in bfd/elf32-arm.c. | 
 |  | 
 | template<bool big_endian> | 
 | int | 
 | Target_arm<big_endian>::get_secondary_compatible_arch( | 
 |     const Attributes_section_data* pasd) | 
 | { | 
 |   const Object_attribute* known_attributes = | 
 |     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); | 
 |  | 
 |   // Note: the tag and its argument below are uleb128 values, though | 
 |   // currently-defined values fit in one byte for each. | 
 |   const std::string& sv = | 
 |     known_attributes[elfcpp::Tag_also_compatible_with].string_value(); | 
 |   if (sv.size() == 2 | 
 |       && sv.data()[0] == elfcpp::Tag_CPU_arch | 
 |       && (sv.data()[1] & 128) != 128) | 
 |    return sv.data()[1]; | 
 |  | 
 |   // This tag is "safely ignorable", so don't complain if it looks funny. | 
 |   return -1; | 
 | } | 
 |  | 
 | // Set, or unset, the architecture of the Tag_also_compatible_with attribute. | 
 | // The tag is removed if ARCH is -1. | 
 | // This is adapted from set_secondary_compatible_arch() in bfd/elf32-arm.c. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::set_secondary_compatible_arch( | 
 |     Attributes_section_data* pasd, | 
 |     int arch) | 
 | { | 
 |   Object_attribute* known_attributes = | 
 |     pasd->known_attributes(Object_attribute::OBJ_ATTR_PROC); | 
 |  | 
 |   if (arch == -1) | 
 |     { | 
 |       known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(""); | 
 |       return; | 
 |     } | 
 |  | 
 |   // Note: the tag and its argument below are uleb128 values, though | 
 |   // currently-defined values fit in one byte for each. | 
 |   char sv[3]; | 
 |   sv[0] = elfcpp::Tag_CPU_arch; | 
 |   gold_assert(arch != 0); | 
 |   sv[1] = arch; | 
 |   sv[2] = '\0'; | 
 |  | 
 |   known_attributes[elfcpp::Tag_also_compatible_with].set_string_value(sv); | 
 | } | 
 |  | 
 | // Combine two values for Tag_CPU_arch, taking secondary compatibility tags | 
 | // into account. | 
 | // This is adapted from tag_cpu_arch_combine() in bfd/elf32-arm.c. | 
 |  | 
 | template<bool big_endian> | 
 | int | 
 | Target_arm<big_endian>::tag_cpu_arch_combine( | 
 |     const char* name, | 
 |     int oldtag, | 
 |     int* secondary_compat_out, | 
 |     int newtag, | 
 |     int secondary_compat) | 
 | { | 
 | #define T(X) elfcpp::TAG_CPU_ARCH_##X | 
 |   static const int v6t2[] = | 
 |     { | 
 |       T(V6T2),   // PRE_V4. | 
 |       T(V6T2),   // V4. | 
 |       T(V6T2),   // V4T. | 
 |       T(V6T2),   // V5T. | 
 |       T(V6T2),   // V5TE. | 
 |       T(V6T2),   // V5TEJ. | 
 |       T(V6T2),   // V6. | 
 |       T(V7),     // V6KZ. | 
 |       T(V6T2)    // V6T2. | 
 |     }; | 
 |   static const int v6k[] = | 
 |     { | 
 |       T(V6K),    // PRE_V4. | 
 |       T(V6K),    // V4. | 
 |       T(V6K),    // V4T. | 
 |       T(V6K),    // V5T. | 
 |       T(V6K),    // V5TE. | 
 |       T(V6K),    // V5TEJ. | 
 |       T(V6K),    // V6. | 
 |       T(V6KZ),   // V6KZ. | 
 |       T(V7),     // V6T2. | 
 |       T(V6K)     // V6K. | 
 |     }; | 
 |   static const int v7[] = | 
 |     { | 
 |       T(V7),     // PRE_V4. | 
 |       T(V7),     // V4. | 
 |       T(V7),     // V4T. | 
 |       T(V7),     // V5T. | 
 |       T(V7),     // V5TE. | 
 |       T(V7),     // V5TEJ. | 
 |       T(V7),     // V6. | 
 |       T(V7),     // V6KZ. | 
 |       T(V7),     // V6T2. | 
 |       T(V7),     // V6K. | 
 |       T(V7)      // V7. | 
 |     }; | 
 |   static const int v6_m[] = | 
 |     { | 
 |       -1,        // PRE_V4. | 
 |       -1,        // V4. | 
 |       T(V6K),    // V4T. | 
 |       T(V6K),    // V5T. | 
 |       T(V6K),    // V5TE. | 
 |       T(V6K),    // V5TEJ. | 
 |       T(V6K),    // V6. | 
 |       T(V6KZ),   // V6KZ. | 
 |       T(V7),     // V6T2. | 
 |       T(V6K),    // V6K. | 
 |       T(V7),     // V7. | 
 |       T(V6_M)    // V6_M. | 
 |     }; | 
 |   static const int v6s_m[] = | 
 |     { | 
 |       -1,        // PRE_V4. | 
 |       -1,        // V4. | 
 |       T(V6K),    // V4T. | 
 |       T(V6K),    // V5T. | 
 |       T(V6K),    // V5TE. | 
 |       T(V6K),    // V5TEJ. | 
 |       T(V6K),    // V6. | 
 |       T(V6KZ),   // V6KZ. | 
 |       T(V7),     // V6T2. | 
 |       T(V6K),    // V6K. | 
 |       T(V7),     // V7. | 
 |       T(V6S_M),  // V6_M. | 
 |       T(V6S_M)   // V6S_M. | 
 |     }; | 
 |   static const int v7e_m[] = | 
 |     { | 
 |       -1,	// PRE_V4. | 
 |       -1,	// V4. | 
 |       T(V7E_M),	// V4T. | 
 |       T(V7E_M),	// V5T. | 
 |       T(V7E_M),	// V5TE. | 
 |       T(V7E_M),	// V5TEJ. | 
 |       T(V7E_M),	// V6. | 
 |       T(V7E_M),	// V6KZ. | 
 |       T(V7E_M),	// V6T2. | 
 |       T(V7E_M),	// V6K. | 
 |       T(V7E_M),	// V7. | 
 |       T(V7E_M),	// V6_M. | 
 |       T(V7E_M),	// V6S_M. | 
 |       T(V7E_M)	// V7E_M. | 
 |     }; | 
 |   static const int v8[] = | 
 |     { | 
 |       T(V8),   // PRE_V4. | 
 |       T(V8),   // V4. | 
 |       T(V8),   // V4T. | 
 |       T(V8),   // V5T. | 
 |       T(V8),   // V5TE. | 
 |       T(V8),   // V5TEJ. | 
 |       T(V8),   // V6. | 
 |       T(V8),   // V6KZ. | 
 |       T(V8),   // V6T2. | 
 |       T(V8),   // V6K. | 
 |       T(V8),   // V7. | 
 |       T(V8),   // V6_M. | 
 |       T(V8),   // V6S_M. | 
 |       T(V8),   // V7E_M. | 
 |       T(V8)    // V8. | 
 |     }; | 
 |   static const int v4t_plus_v6_m[] = | 
 |     { | 
 |       -1,		// PRE_V4. | 
 |       -1,		// V4. | 
 |       T(V4T),		// V4T. | 
 |       T(V5T),		// V5T. | 
 |       T(V5TE),		// V5TE. | 
 |       T(V5TEJ),		// V5TEJ. | 
 |       T(V6),		// V6. | 
 |       T(V6KZ),		// V6KZ. | 
 |       T(V6T2),		// V6T2. | 
 |       T(V6K),		// V6K. | 
 |       T(V7),		// V7. | 
 |       T(V6_M),		// V6_M. | 
 |       T(V6S_M),		// V6S_M. | 
 |       T(V7E_M),		// V7E_M. | 
 |       T(V8),		// V8. | 
 |       T(V4T_PLUS_V6_M)	// V4T plus V6_M. | 
 |     }; | 
 |   static const int* comb[] = | 
 |     { | 
 |       v6t2, | 
 |       v6k, | 
 |       v7, | 
 |       v6_m, | 
 |       v6s_m, | 
 |       v7e_m, | 
 |       v8, | 
 |       // Pseudo-architecture. | 
 |       v4t_plus_v6_m | 
 |     }; | 
 |  | 
 |   // Check we've not got a higher architecture than we know about. | 
 |  | 
 |   if (oldtag > elfcpp::MAX_TAG_CPU_ARCH || newtag > elfcpp::MAX_TAG_CPU_ARCH) | 
 |     { | 
 |       gold_error(_("%s: unknown CPU architecture"), name); | 
 |       return -1; | 
 |     } | 
 |  | 
 |   // Override old tag if we have a Tag_also_compatible_with on the output. | 
 |  | 
 |   if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T)) | 
 |       || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M))) | 
 |     oldtag = T(V4T_PLUS_V6_M); | 
 |  | 
 |   // And override the new tag if we have a Tag_also_compatible_with on the | 
 |   // input. | 
 |  | 
 |   if ((newtag == T(V6_M) && secondary_compat == T(V4T)) | 
 |       || (newtag == T(V4T) && secondary_compat == T(V6_M))) | 
 |     newtag = T(V4T_PLUS_V6_M); | 
 |  | 
 |   // Architectures before V6KZ add features monotonically. | 
 |   int tagh = std::max(oldtag, newtag); | 
 |   if (tagh <= elfcpp::TAG_CPU_ARCH_V6KZ) | 
 |     return tagh; | 
 |  | 
 |   int tagl = std::min(oldtag, newtag); | 
 |   int result = comb[tagh - T(V6T2)][tagl]; | 
 |  | 
 |   // Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M) | 
 |   // as the canonical version. | 
 |   if (result == T(V4T_PLUS_V6_M)) | 
 |     { | 
 |       result = T(V4T); | 
 |       *secondary_compat_out = T(V6_M); | 
 |     } | 
 |   else | 
 |     *secondary_compat_out = -1; | 
 |  | 
 |   if (result == -1) | 
 |     { | 
 |       gold_error(_("%s: conflicting CPU architectures %d/%d"), | 
 | 		 name, oldtag, newtag); | 
 |       return -1; | 
 |     } | 
 |  | 
 |   return result; | 
 | #undef T | 
 | } | 
 |  | 
 | // Helper to print AEABI enum tag value. | 
 |  | 
 | template<bool big_endian> | 
 | std::string | 
 | Target_arm<big_endian>::aeabi_enum_name(unsigned int value) | 
 | { | 
 |   static const char* aeabi_enum_names[] = | 
 |     { "", "variable-size", "32-bit", "" }; | 
 |   const size_t aeabi_enum_names_size = | 
 |     sizeof(aeabi_enum_names) / sizeof(aeabi_enum_names[0]); | 
 |  | 
 |   if (value < aeabi_enum_names_size) | 
 |     return std::string(aeabi_enum_names[value]); | 
 |   else | 
 |     { | 
 |       char buffer[100]; | 
 |       sprintf(buffer, "<unknown value %u>", value); | 
 |       return std::string(buffer); | 
 |     } | 
 | } | 
 |  | 
 | // Return the string value to store in TAG_CPU_name. | 
 |  | 
 | template<bool big_endian> | 
 | std::string | 
 | Target_arm<big_endian>::tag_cpu_name_value(unsigned int value) | 
 | { | 
 |   static const char* name_table[] = { | 
 |     // These aren't real CPU names, but we can't guess | 
 |     // that from the architecture version alone. | 
 |    "Pre v4", | 
 |    "ARM v4", | 
 |    "ARM v4T", | 
 |    "ARM v5T", | 
 |    "ARM v5TE", | 
 |    "ARM v5TEJ", | 
 |    "ARM v6", | 
 |    "ARM v6KZ", | 
 |    "ARM v6T2", | 
 |    "ARM v6K", | 
 |    "ARM v7", | 
 |    "ARM v6-M", | 
 |    "ARM v6S-M", | 
 |    "ARM v7E-M", | 
 |    "ARM v8" | 
 |  }; | 
 |  const size_t name_table_size = sizeof(name_table) / sizeof(name_table[0]); | 
 |  | 
 |   if (value < name_table_size) | 
 |     return std::string(name_table[value]); | 
 |   else | 
 |     { | 
 |       char buffer[100]; | 
 |       sprintf(buffer, "<unknown CPU value %u>", value); | 
 |       return std::string(buffer); | 
 |     } | 
 | } | 
 |  | 
 | // Query attributes object to see if integer divide instructions may be | 
 | // present in an object. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Target_arm<big_endian>::attributes_accept_div(int arch, int profile, | 
 |     const Object_attribute* div_attr) | 
 | { | 
 |   switch (div_attr->int_value()) | 
 |     { | 
 |     case 0: | 
 |       // Integer divide allowed if instruction contained in | 
 |       // architecture. | 
 |       if (arch == elfcpp::TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M')) | 
 |         return true; | 
 |       else if (arch >= elfcpp::TAG_CPU_ARCH_V7E_M) | 
 |         return true; | 
 |       else | 
 |         return false; | 
 |  | 
 |     case 1: | 
 |       // Integer divide explicitly prohibited. | 
 |       return false; | 
 |  | 
 |     default: | 
 |       // Unrecognised case - treat as allowing divide everywhere. | 
 |     case 2: | 
 |       // Integer divide allowed in ARM state. | 
 |       return true; | 
 |     } | 
 | } | 
 |  | 
 | // Query attributes object to see if integer divide instructions are | 
 | // forbidden to be in the object.  This is not the inverse of | 
 | // attributes_accept_div. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Target_arm<big_endian>::attributes_forbid_div(const Object_attribute* div_attr) | 
 | { | 
 |   return div_attr->int_value() == 1; | 
 | } | 
 |  | 
 | // Merge object attributes from input file called NAME with those of the | 
 | // output.  The input object attributes are in the object pointed by PASD. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::merge_object_attributes( | 
 |     const char* name, | 
 |     const Attributes_section_data* pasd) | 
 | { | 
 |   // Return if there is no attributes section data. | 
 |   if (pasd == NULL) | 
 |     return; | 
 |  | 
 |   // If output has no object attributes, just copy. | 
 |   const int vendor = Object_attribute::OBJ_ATTR_PROC; | 
 |   if (this->attributes_section_data_ == NULL) | 
 |     { | 
 |       this->attributes_section_data_ = new Attributes_section_data(*pasd); | 
 |       Object_attribute* out_attr = | 
 | 	this->attributes_section_data_->known_attributes(vendor); | 
 |  | 
 |       // We do not output objects with Tag_MPextension_use_legacy - we move | 
 |       //  the attribute's value to Tag_MPextension_use.  */ | 
 |       if (out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() != 0) | 
 | 	{ | 
 | 	  if (out_attr[elfcpp::Tag_MPextension_use].int_value() != 0 | 
 | 	      && out_attr[elfcpp::Tag_MPextension_use_legacy].int_value() | 
 | 		!= out_attr[elfcpp::Tag_MPextension_use].int_value()) | 
 | 	    { | 
 | 	      gold_error(_("%s has both the current and legacy " | 
 | 			   "Tag_MPextension_use attributes"), | 
 | 			 name); | 
 | 	    } | 
 |  | 
 | 	  out_attr[elfcpp::Tag_MPextension_use] = | 
 | 	    out_attr[elfcpp::Tag_MPextension_use_legacy]; | 
 | 	  out_attr[elfcpp::Tag_MPextension_use_legacy].set_type(0); | 
 | 	  out_attr[elfcpp::Tag_MPextension_use_legacy].set_int_value(0); | 
 | 	} | 
 |  | 
 |       return; | 
 |     } | 
 |  | 
 |   const Object_attribute* in_attr = pasd->known_attributes(vendor); | 
 |   Object_attribute* out_attr = | 
 |     this->attributes_section_data_->known_attributes(vendor); | 
 |  | 
 |   // This needs to happen before Tag_ABI_FP_number_model is merged.  */ | 
 |   if (in_attr[elfcpp::Tag_ABI_VFP_args].int_value() | 
 |       != out_attr[elfcpp::Tag_ABI_VFP_args].int_value()) | 
 |     { | 
 |       // Ignore mismatches if the object doesn't use floating point.  */ | 
 |       if (out_attr[elfcpp::Tag_ABI_FP_number_model].int_value() | 
 | 	  == elfcpp::AEABI_FP_number_model_none | 
 | 	  || (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() | 
 | 	      != elfcpp::AEABI_FP_number_model_none | 
 | 	      && out_attr[elfcpp::Tag_ABI_VFP_args].int_value() | 
 | 		 == elfcpp::AEABI_VFP_args_compatible)) | 
 | 	out_attr[elfcpp::Tag_ABI_VFP_args].set_int_value( | 
 | 	    in_attr[elfcpp::Tag_ABI_VFP_args].int_value()); | 
 |       else if (in_attr[elfcpp::Tag_ABI_FP_number_model].int_value() | 
 | 	       != elfcpp::AEABI_FP_number_model_none | 
 | 	       && in_attr[elfcpp::Tag_ABI_VFP_args].int_value() | 
 | 		  != elfcpp::AEABI_VFP_args_compatible | 
 | 	       && parameters->options().warn_mismatch()) | 
 | 	gold_error(_("%s uses VFP register arguments, output does not"), | 
 | 		   name); | 
 |     } | 
 |  | 
 |   for (int i = 4; i < Vendor_object_attributes::NUM_KNOWN_ATTRIBUTES; ++i) | 
 |     { | 
 |       // Merge this attribute with existing attributes. | 
 |       switch (i) | 
 | 	{ | 
 | 	case elfcpp::Tag_CPU_raw_name: | 
 | 	case elfcpp::Tag_CPU_name: | 
 | 	  // These are merged after Tag_CPU_arch. | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_ABI_optimization_goals: | 
 | 	case elfcpp::Tag_ABI_FP_optimization_goals: | 
 | 	  // Use the first value seen. | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_CPU_arch: | 
 | 	  { | 
 | 	    unsigned int saved_out_attr = out_attr->int_value(); | 
 | 	    // Merge Tag_CPU_arch and Tag_also_compatible_with. | 
 | 	    int secondary_compat = | 
 | 	      this->get_secondary_compatible_arch(pasd); | 
 | 	    int secondary_compat_out = | 
 | 	      this->get_secondary_compatible_arch( | 
 | 		  this->attributes_section_data_); | 
 | 	    out_attr[i].set_int_value( | 
 | 		tag_cpu_arch_combine(name, out_attr[i].int_value(), | 
 | 				     &secondary_compat_out, | 
 | 				     in_attr[i].int_value(), | 
 | 				     secondary_compat)); | 
 | 	    this->set_secondary_compatible_arch(this->attributes_section_data_, | 
 | 						secondary_compat_out); | 
 |  | 
 | 	    // Merge Tag_CPU_name and Tag_CPU_raw_name. | 
 | 	    if (out_attr[i].int_value() == saved_out_attr) | 
 | 	      ; // Leave the names alone. | 
 | 	    else if (out_attr[i].int_value() == in_attr[i].int_value()) | 
 | 	      { | 
 | 		// The output architecture has been changed to match the | 
 | 		// input architecture.  Use the input names. | 
 | 		out_attr[elfcpp::Tag_CPU_name].set_string_value( | 
 | 		    in_attr[elfcpp::Tag_CPU_name].string_value()); | 
 | 		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value( | 
 | 		    in_attr[elfcpp::Tag_CPU_raw_name].string_value()); | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		out_attr[elfcpp::Tag_CPU_name].set_string_value(""); | 
 | 		out_attr[elfcpp::Tag_CPU_raw_name].set_string_value(""); | 
 | 	      } | 
 |  | 
 | 	    // If we still don't have a value for Tag_CPU_name, | 
 | 	    // make one up now.  Tag_CPU_raw_name remains blank. | 
 | 	    if (out_attr[elfcpp::Tag_CPU_name].string_value() == "") | 
 | 	      { | 
 | 		const std::string cpu_name = | 
 | 		  this->tag_cpu_name_value(out_attr[i].int_value()); | 
 | 		// FIXME:  If we see an unknown CPU, this will be set | 
 | 		// to "<unknown CPU n>", where n is the attribute value. | 
 | 		// This is different from BFD, which leaves the name alone. | 
 | 		out_attr[elfcpp::Tag_CPU_name].set_string_value(cpu_name); | 
 | 	      } | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_ARM_ISA_use: | 
 | 	case elfcpp::Tag_THUMB_ISA_use: | 
 | 	case elfcpp::Tag_WMMX_arch: | 
 | 	case elfcpp::Tag_Advanced_SIMD_arch: | 
 | 	  // ??? Do Advanced_SIMD (NEON) and WMMX conflict? | 
 | 	case elfcpp::Tag_ABI_FP_rounding: | 
 | 	case elfcpp::Tag_ABI_FP_exceptions: | 
 | 	case elfcpp::Tag_ABI_FP_user_exceptions: | 
 | 	case elfcpp::Tag_ABI_FP_number_model: | 
 | 	case elfcpp::Tag_VFP_HP_extension: | 
 | 	case elfcpp::Tag_CPU_unaligned_access: | 
 | 	case elfcpp::Tag_T2EE_use: | 
 | 	case elfcpp::Tag_Virtualization_use: | 
 | 	case elfcpp::Tag_MPextension_use: | 
 | 	  // Use the largest value specified. | 
 | 	  if (in_attr[i].int_value() > out_attr[i].int_value()) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_ABI_align8_preserved: | 
 | 	case elfcpp::Tag_ABI_PCS_RO_data: | 
 | 	  // Use the smallest value specified. | 
 | 	  if (in_attr[i].int_value() < out_attr[i].int_value()) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_ABI_align8_needed: | 
 | 	  if ((in_attr[i].int_value() > 0 || out_attr[i].int_value() > 0) | 
 | 	      && (in_attr[elfcpp::Tag_ABI_align8_preserved].int_value() == 0 | 
 | 		  || (out_attr[elfcpp::Tag_ABI_align8_preserved].int_value() | 
 | 		      == 0))) | 
 | 	    { | 
 | 	      // This error message should be enabled once all non-conforming | 
 | 	      // binaries in the toolchain have had the attributes set | 
 | 	      // properly. | 
 | 	      // gold_error(_("output 8-byte data alignment conflicts with %s"), | 
 | 	      // 	    name); | 
 | 	    } | 
 | 	  // Fall through. | 
 | 	case elfcpp::Tag_ABI_FP_denormal: | 
 | 	case elfcpp::Tag_ABI_PCS_GOT_use: | 
 | 	  { | 
 | 	    // These tags have 0 = don't care, 1 = strong requirement, | 
 | 	    // 2 = weak requirement. | 
 | 	    static const int order_021[3] = {0, 2, 1}; | 
 |  | 
 | 	    // Use the "greatest" from the sequence 0, 2, 1, or the largest | 
 | 	    // value if greater than 2 (for future-proofing). | 
 | 	    if ((in_attr[i].int_value() > 2 | 
 | 		 && in_attr[i].int_value() > out_attr[i].int_value()) | 
 | 		|| (in_attr[i].int_value() <= 2 | 
 | 		    && out_attr[i].int_value() <= 2 | 
 | 		    && (order_021[in_attr[i].int_value()] | 
 | 			> order_021[out_attr[i].int_value()]))) | 
 | 	      out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_CPU_arch_profile: | 
 | 	  if (out_attr[i].int_value() != in_attr[i].int_value()) | 
 | 	    { | 
 | 	      // 0 will merge with anything. | 
 | 	      // 'A' and 'S' merge to 'A'. | 
 | 	      // 'R' and 'S' merge to 'R'. | 
 | 	      // 'M' and 'A|R|S' is an error. | 
 | 	      if (out_attr[i].int_value() == 0 | 
 | 		  || (out_attr[i].int_value() == 'S' | 
 | 		      && (in_attr[i].int_value() == 'A' | 
 | 			  || in_attr[i].int_value() == 'R'))) | 
 | 		out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	      else if (in_attr[i].int_value() == 0 | 
 | 		       || (in_attr[i].int_value() == 'S' | 
 | 			   && (out_attr[i].int_value() == 'A' | 
 | 			       || out_attr[i].int_value() == 'R'))) | 
 | 		; // Do nothing. | 
 | 	      else if (parameters->options().warn_mismatch()) | 
 | 		{ | 
 | 		  gold_error | 
 | 		    (_("conflicting architecture profiles %c/%c"), | 
 | 		     in_attr[i].int_value() ? in_attr[i].int_value() : '0', | 
 | 		     out_attr[i].int_value() ? out_attr[i].int_value() : '0'); | 
 | 		} | 
 | 	    } | 
 | 	  break; | 
 | 	case elfcpp::Tag_VFP_arch: | 
 | 	    { | 
 | 	      static const struct | 
 | 	      { | 
 | 		  int ver; | 
 | 		  int regs; | 
 | 	      } vfp_versions[7] = | 
 | 		{ | 
 | 		  {0, 0}, | 
 | 		  {1, 16}, | 
 | 		  {2, 16}, | 
 | 		  {3, 32}, | 
 | 		  {3, 16}, | 
 | 		  {4, 32}, | 
 | 		  {4, 16} | 
 | 		}; | 
 |  | 
 | 	      // Values greater than 6 aren't defined, so just pick the | 
 | 	      // biggest. | 
 | 	      if (in_attr[i].int_value() > 6 | 
 | 		  && in_attr[i].int_value() > out_attr[i].int_value()) | 
 | 		{ | 
 | 		  *out_attr = *in_attr; | 
 | 		  break; | 
 | 		} | 
 | 	      // The output uses the superset of input features | 
 | 	      // (ISA version) and registers. | 
 | 	      int ver = std::max(vfp_versions[in_attr[i].int_value()].ver, | 
 | 				 vfp_versions[out_attr[i].int_value()].ver); | 
 | 	      int regs = std::max(vfp_versions[in_attr[i].int_value()].regs, | 
 | 				  vfp_versions[out_attr[i].int_value()].regs); | 
 | 	      // This assumes all possible supersets are also a valid | 
 | 	      // options. | 
 | 	      int newval; | 
 | 	      for (newval = 6; newval > 0; newval--) | 
 | 		{ | 
 | 		  if (regs == vfp_versions[newval].regs | 
 | 		      && ver == vfp_versions[newval].ver) | 
 | 		    break; | 
 | 		} | 
 | 	      out_attr[i].set_int_value(newval); | 
 | 	    } | 
 | 	  break; | 
 | 	case elfcpp::Tag_PCS_config: | 
 | 	  if (out_attr[i].int_value() == 0) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  else if (in_attr[i].int_value() != 0 | 
 | 		   && out_attr[i].int_value() != 0 | 
 | 		   && parameters->options().warn_mismatch()) | 
 | 	    { | 
 | 	      // It's sometimes ok to mix different configs, so this is only | 
 | 	      // a warning. | 
 | 	      gold_warning(_("%s: conflicting platform configuration"), name); | 
 | 	    } | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_PCS_R9_use: | 
 | 	  if (in_attr[i].int_value() != out_attr[i].int_value() | 
 | 	      && out_attr[i].int_value() != elfcpp::AEABI_R9_unused | 
 | 	      && in_attr[i].int_value() != elfcpp::AEABI_R9_unused | 
 | 	      && parameters->options().warn_mismatch()) | 
 | 	    { | 
 | 	      gold_error(_("%s: conflicting use of R9"), name); | 
 | 	    } | 
 | 	  if (out_attr[i].int_value() == elfcpp::AEABI_R9_unused) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_PCS_RW_data: | 
 | 	  if (in_attr[i].int_value() == elfcpp::AEABI_PCS_RW_data_SBrel | 
 | 	      && (in_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() | 
 | 		  != elfcpp::AEABI_R9_SB) | 
 | 	      && (out_attr[elfcpp::Tag_ABI_PCS_R9_use].int_value() | 
 | 		  != elfcpp::AEABI_R9_unused) | 
 | 	      && parameters->options().warn_mismatch()) | 
 | 	    { | 
 | 	      gold_error(_("%s: SB relative addressing conflicts with use " | 
 | 			   "of R9"), | 
 | 			   name); | 
 | 	    } | 
 | 	  // Use the smallest value specified. | 
 | 	  if (in_attr[i].int_value() < out_attr[i].int_value()) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_PCS_wchar_t: | 
 | 	  if (out_attr[i].int_value() | 
 | 	      && in_attr[i].int_value() | 
 | 	      && out_attr[i].int_value() != in_attr[i].int_value() | 
 | 	      && parameters->options().warn_mismatch() | 
 | 	      && parameters->options().wchar_size_warning()) | 
 | 	    { | 
 | 	      gold_warning(_("%s uses %u-byte wchar_t yet the output is to " | 
 | 			     "use %u-byte wchar_t; use of wchar_t values " | 
 | 			     "across objects may fail"), | 
 | 			   name, in_attr[i].int_value(), | 
 | 			   out_attr[i].int_value()); | 
 | 	    } | 
 | 	  else if (in_attr[i].int_value() && !out_attr[i].int_value()) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_enum_size: | 
 | 	  if (in_attr[i].int_value() != elfcpp::AEABI_enum_unused) | 
 | 	    { | 
 | 	      if (out_attr[i].int_value() == elfcpp::AEABI_enum_unused | 
 | 		  || out_attr[i].int_value() == elfcpp::AEABI_enum_forced_wide) | 
 | 		{ | 
 | 		  // The existing object is compatible with anything. | 
 | 		  // Use whatever requirements the new object has. | 
 | 		  out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 		} | 
 | 	      else if (in_attr[i].int_value() != elfcpp::AEABI_enum_forced_wide | 
 | 		       && out_attr[i].int_value() != in_attr[i].int_value() | 
 | 		       && parameters->options().warn_mismatch() | 
 | 		       && parameters->options().enum_size_warning()) | 
 | 		{ | 
 | 		  unsigned int in_value = in_attr[i].int_value(); | 
 | 		  unsigned int out_value = out_attr[i].int_value(); | 
 | 		  gold_warning(_("%s uses %s enums yet the output is to use " | 
 | 				 "%s enums; use of enum values across objects " | 
 | 				 "may fail"), | 
 | 			       name, | 
 | 			       this->aeabi_enum_name(in_value).c_str(), | 
 | 			       this->aeabi_enum_name(out_value).c_str()); | 
 | 		} | 
 | 	    } | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_VFP_args: | 
 | 	  // Already done. | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_WMMX_args: | 
 | 	  if (in_attr[i].int_value() != out_attr[i].int_value() | 
 | 	      && parameters->options().warn_mismatch()) | 
 | 	    { | 
 | 	      gold_error(_("%s uses iWMMXt register arguments, output does " | 
 | 			   "not"), | 
 | 			 name); | 
 | 	    } | 
 | 	  break; | 
 | 	case Object_attribute::Tag_compatibility: | 
 | 	  // Merged in target-independent code. | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_HardFP_use: | 
 | 	  // 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). | 
 | 	  if ((in_attr[i].int_value() == 1 && out_attr[i].int_value() == 2) | 
 | 	      || (in_attr[i].int_value() == 2 && out_attr[i].int_value() == 1)) | 
 | 	    out_attr[i].set_int_value(3); | 
 | 	  else if (in_attr[i].int_value() > out_attr[i].int_value()) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 | 	case elfcpp::Tag_ABI_FP_16bit_format: | 
 | 	  if (in_attr[i].int_value() != 0 && out_attr[i].int_value() != 0) | 
 | 	    { | 
 | 	      if (in_attr[i].int_value() != out_attr[i].int_value() | 
 | 		  && parameters->options().warn_mismatch()) | 
 | 		gold_error(_("fp16 format mismatch between %s and output"), | 
 | 			   name); | 
 | 	    } | 
 | 	  if (in_attr[i].int_value() != 0) | 
 | 	    out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_DIV_use: | 
 | 	  { | 
 | 	    // A value of zero on input means that the divide | 
 | 	    // instruction may be used if available in the base | 
 | 	    // architecture as specified via Tag_CPU_arch and | 
 | 	    // Tag_CPU_arch_profile.  A value of 1 means that the user | 
 | 	    // did not want divide instructions.  A value of 2 | 
 | 	    // explicitly means that divide instructions were allowed | 
 | 	    // in ARM and Thumb state. | 
 | 	    int arch = this-> | 
 | 	      get_aeabi_object_attribute(elfcpp::Tag_CPU_arch)-> | 
 | 	      int_value(); | 
 | 	    int profile = this-> | 
 | 	      get_aeabi_object_attribute(elfcpp::Tag_CPU_arch_profile)-> | 
 | 	      int_value(); | 
 | 	    if (in_attr[i].int_value() == out_attr[i].int_value()) | 
 | 	      { | 
 | 		// Do nothing. | 
 | 	      } | 
 | 	    else if (attributes_forbid_div(&in_attr[i]) | 
 | 		     && !attributes_accept_div(arch, profile, &out_attr[i])) | 
 | 	      out_attr[i].set_int_value(1); | 
 | 	    else if (attributes_forbid_div(&out_attr[i]) | 
 | 		     && attributes_accept_div(arch, profile, &in_attr[i])) | 
 | 	      out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	    else if (in_attr[i].int_value() == 2) | 
 | 	      out_attr[i].set_int_value(in_attr[i].int_value()); | 
 | 	  } | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_MPextension_use_legacy: | 
 | 	  // We don't output objects with Tag_MPextension_use_legacy - we | 
 | 	  // move the value to Tag_MPextension_use. | 
 | 	  if (in_attr[i].int_value() != 0 | 
 | 	      && in_attr[elfcpp::Tag_MPextension_use].int_value() != 0) | 
 | 	    { | 
 | 	      if (in_attr[elfcpp::Tag_MPextension_use].int_value() | 
 | 		  != in_attr[i].int_value()) | 
 | 		{ | 
 | 		  gold_error(_("%s has both the current and legacy " | 
 | 			       "Tag_MPextension_use attributes"), | 
 | 			     name); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (in_attr[i].int_value() | 
 | 	      > out_attr[elfcpp::Tag_MPextension_use].int_value()) | 
 | 	    out_attr[elfcpp::Tag_MPextension_use] = in_attr[i]; | 
 |  | 
 | 	  break; | 
 |  | 
 | 	case elfcpp::Tag_nodefaults: | 
 | 	  // This tag is set if it exists, but the value is unused (and is | 
 | 	  // typically zero).  We don't actually need to do anything here - | 
 | 	  // the merge happens automatically when the type flags are merged | 
 | 	  // below. | 
 | 	  break; | 
 | 	case elfcpp::Tag_also_compatible_with: | 
 | 	  // Already done in Tag_CPU_arch. | 
 | 	  break; | 
 | 	case elfcpp::Tag_conformance: | 
 | 	  // Keep the attribute if it matches.  Throw it away otherwise. | 
 | 	  // No attribute means no claim to conform. | 
 | 	  if (in_attr[i].string_value() != out_attr[i].string_value()) | 
 | 	    out_attr[i].set_string_value(""); | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  { | 
 | 	    const char* err_object = NULL; | 
 |  | 
 | 	    // The "known_obj_attributes" table does contain some undefined | 
 | 	    // attributes.  Ensure that there are unused. | 
 | 	    if (out_attr[i].int_value() != 0 | 
 | 		|| out_attr[i].string_value() != "") | 
 | 	      err_object = "output"; | 
 | 	    else if (in_attr[i].int_value() != 0 | 
 | 		     || in_attr[i].string_value() != "") | 
 | 	      err_object = name; | 
 |  | 
 | 	    if (err_object != NULL | 
 | 		&& parameters->options().warn_mismatch()) | 
 | 	      { | 
 | 		// Attribute numbers >=64 (mod 128) can be safely ignored. | 
 | 		if ((i & 127) < 64) | 
 | 		  gold_error(_("%s: unknown mandatory EABI object attribute " | 
 | 			       "%d"), | 
 | 			     err_object, i); | 
 | 		else | 
 | 		  gold_warning(_("%s: unknown EABI object attribute %d"), | 
 | 			       err_object, i); | 
 | 	      } | 
 |  | 
 | 	    // Only pass on attributes that match in both inputs. | 
 | 	    if (!in_attr[i].matches(out_attr[i])) | 
 | 	      { | 
 | 		out_attr[i].set_int_value(0); | 
 | 		out_attr[i].set_string_value(""); | 
 | 	      } | 
 | 	  } | 
 | 	} | 
 |  | 
 |       // If out_attr was copied from in_attr then it won't have a type yet. | 
 |       if (in_attr[i].type() && !out_attr[i].type()) | 
 | 	out_attr[i].set_type(in_attr[i].type()); | 
 |     } | 
 |  | 
 |   // Merge Tag_compatibility attributes and any common GNU ones. | 
 |   this->attributes_section_data_->merge(name, pasd); | 
 |  | 
 |   // Check for any attributes not known on ARM. | 
 |   typedef Vendor_object_attributes::Other_attributes Other_attributes; | 
 |   const Other_attributes* in_other_attributes = pasd->other_attributes(vendor); | 
 |   Other_attributes::const_iterator in_iter = in_other_attributes->begin(); | 
 |   Other_attributes* out_other_attributes = | 
 |     this->attributes_section_data_->other_attributes(vendor); | 
 |   Other_attributes::iterator out_iter = out_other_attributes->begin(); | 
 |  | 
 |   while (in_iter != in_other_attributes->end() | 
 | 	 || out_iter != out_other_attributes->end()) | 
 |     { | 
 |       const char* err_object = NULL; | 
 |       int err_tag = 0; | 
 |  | 
 |       // The tags for each list are in numerical order. | 
 |       // If the tags are equal, then merge. | 
 |       if (out_iter != out_other_attributes->end() | 
 | 	  && (in_iter == in_other_attributes->end() | 
 | 	      || in_iter->first > out_iter->first)) | 
 | 	{ | 
 | 	  // This attribute only exists in output.  We can't merge, and we | 
 | 	  // don't know what the tag means, so delete it. | 
 | 	  err_object = "output"; | 
 | 	  err_tag = out_iter->first; | 
 | 	  int saved_tag = out_iter->first; | 
 | 	  delete out_iter->second; | 
 | 	  out_other_attributes->erase(out_iter); | 
 | 	  out_iter = out_other_attributes->upper_bound(saved_tag); | 
 | 	} | 
 |       else if (in_iter != in_other_attributes->end() | 
 | 	       && (out_iter != out_other_attributes->end() | 
 | 		   || in_iter->first < out_iter->first)) | 
 | 	{ | 
 | 	  // This attribute only exists in input. We can't merge, and we | 
 | 	  // don't know what the tag means, so ignore it. | 
 | 	  err_object = name; | 
 | 	  err_tag = in_iter->first; | 
 | 	  ++in_iter; | 
 | 	} | 
 |       else // The tags are equal. | 
 | 	{ | 
 | 	  // As present, all attributes in the list are unknown, and | 
 | 	  // therefore can't be merged meaningfully. | 
 | 	  err_object = "output"; | 
 | 	  err_tag = out_iter->first; | 
 |  | 
 | 	  //  Only pass on attributes that match in both inputs. | 
 | 	  if (!in_iter->second->matches(*(out_iter->second))) | 
 | 	    { | 
 | 	      // No match.  Delete the attribute. | 
 | 	      int saved_tag = out_iter->first; | 
 | 	      delete out_iter->second; | 
 | 	      out_other_attributes->erase(out_iter); | 
 | 	      out_iter = out_other_attributes->upper_bound(saved_tag); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      // Matched.  Keep the attribute and move to the next. | 
 | 	      ++out_iter; | 
 | 	      ++in_iter; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (err_object && parameters->options().warn_mismatch()) | 
 | 	{ | 
 | 	  // Attribute numbers >=64 (mod 128) can be safely ignored.  */ | 
 | 	  if ((err_tag & 127) < 64) | 
 | 	    { | 
 | 	      gold_error(_("%s: unknown mandatory EABI object attribute %d"), | 
 | 			 err_object, err_tag); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      gold_warning(_("%s: unknown EABI object attribute %d"), | 
 | 			   err_object, err_tag); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | // Stub-generation methods for Target_arm. | 
 |  | 
 | // Make a new Arm_input_section object. | 
 |  | 
 | template<bool big_endian> | 
 | Arm_input_section<big_endian>* | 
 | Target_arm<big_endian>::new_arm_input_section( | 
 |     Relobj* relobj, | 
 |     unsigned int shndx) | 
 | { | 
 |   Section_id sid(relobj, shndx); | 
 |  | 
 |   Arm_input_section<big_endian>* arm_input_section = | 
 |     new Arm_input_section<big_endian>(relobj, shndx); | 
 |   arm_input_section->init(); | 
 |  | 
 |   // Register new Arm_input_section in map for look-up. | 
 |   std::pair<typename Arm_input_section_map::iterator, bool> ins = | 
 |     this->arm_input_section_map_.insert(std::make_pair(sid, arm_input_section)); | 
 |  | 
 |   // Make sure that it we have not created another Arm_input_section | 
 |   // for this input section already. | 
 |   gold_assert(ins.second); | 
 |  | 
 |   return arm_input_section; | 
 | } | 
 |  | 
 | // Find the Arm_input_section object corresponding to the SHNDX-th input | 
 | // section of RELOBJ. | 
 |  | 
 | template<bool big_endian> | 
 | Arm_input_section<big_endian>* | 
 | Target_arm<big_endian>::find_arm_input_section( | 
 |     Relobj* relobj, | 
 |     unsigned int shndx) const | 
 | { | 
 |   Section_id sid(relobj, shndx); | 
 |   typename Arm_input_section_map::const_iterator p = | 
 |     this->arm_input_section_map_.find(sid); | 
 |   return (p != this->arm_input_section_map_.end()) ? p->second : NULL; | 
 | } | 
 |  | 
 | // Make a new stub table. | 
 |  | 
 | template<bool big_endian> | 
 | Stub_table<big_endian>* | 
 | Target_arm<big_endian>::new_stub_table(Arm_input_section<big_endian>* owner) | 
 | { | 
 |   Stub_table<big_endian>* stub_table = | 
 |     new Stub_table<big_endian>(owner); | 
 |   this->stub_tables_.push_back(stub_table); | 
 |  | 
 |   stub_table->set_address(owner->address() + owner->data_size()); | 
 |   stub_table->set_file_offset(owner->offset() + owner->data_size()); | 
 |   stub_table->finalize_data_size(); | 
 |  | 
 |   return stub_table; | 
 | } | 
 |  | 
 | // Scan a relocation for stub generation. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::scan_reloc_for_stub( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int r_type, | 
 |     const Sized_symbol<32>* gsym, | 
 |     unsigned int r_sym, | 
 |     const Symbol_value<32>* psymval, | 
 |     elfcpp::Elf_types<32>::Elf_Swxword addend, | 
 |     Arm_address address) | 
 | { | 
 |   const Arm_relobj<big_endian>* arm_relobj = | 
 |     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | 
 |  | 
 |   bool target_is_thumb; | 
 |   Symbol_value<32> symval; | 
 |   if (gsym != NULL) | 
 |     { | 
 |       // This is a global symbol.  Determine if we use PLT and if the | 
 |       // final target is THUMB. | 
 |       if (gsym->use_plt_offset(Scan::get_reference_flags(r_type))) | 
 | 	{ | 
 | 	  // This uses a PLT, change the symbol value. | 
 | 	  symval.set_output_value(this->plt_address_for_global(gsym)); | 
 | 	  psymval = &symval; | 
 | 	  target_is_thumb = false; | 
 | 	} | 
 |       else if (gsym->is_undefined()) | 
 | 	// There is no need to generate a stub symbol is undefined. | 
 | 	return; | 
 |       else | 
 | 	{ | 
 | 	  target_is_thumb = | 
 | 	    ((gsym->type() == elfcpp::STT_ARM_TFUNC) | 
 | 	     || (gsym->type() == elfcpp::STT_FUNC | 
 | 		 && !gsym->is_undefined() | 
 | 		 && ((psymval->value(arm_relobj, 0) & 1) != 0))); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       // This is a local symbol.  Determine if the final target is THUMB. | 
 |       target_is_thumb = arm_relobj->local_symbol_is_thumb_function(r_sym); | 
 |     } | 
 |  | 
 |   // Strip LSB if this points to a THUMB target. | 
 |   const Arm_reloc_property* reloc_property = | 
 |     arm_reloc_property_table->get_implemented_static_reloc_property(r_type); | 
 |   gold_assert(reloc_property != NULL); | 
 |   if (target_is_thumb | 
 |       && reloc_property->uses_thumb_bit() | 
 |       && ((psymval->value(arm_relobj, 0) & 1) != 0)) | 
 |     { | 
 |       Arm_address stripped_value = | 
 | 	psymval->value(arm_relobj, 0) & ~static_cast<Arm_address>(1); | 
 |       symval.set_output_value(stripped_value); | 
 |       psymval = &symval; | 
 |     } | 
 |  | 
 |   // Get the symbol value. | 
 |   Symbol_value<32>::Value value = psymval->value(arm_relobj, 0); | 
 |  | 
 |   // Owing to pipelining, the PC relative branches below actually skip | 
 |   // two instructions when the branch offset is 0. | 
 |   Arm_address destination; | 
 |   switch (r_type) | 
 |     { | 
 |     case elfcpp::R_ARM_CALL: | 
 |     case elfcpp::R_ARM_JUMP24: | 
 |     case elfcpp::R_ARM_PLT32: | 
 |       // ARM branches. | 
 |       destination = value + addend + 8; | 
 |       break; | 
 |     case elfcpp::R_ARM_THM_CALL: | 
 |     case elfcpp::R_ARM_THM_XPC22: | 
 |     case elfcpp::R_ARM_THM_JUMP24: | 
 |     case elfcpp::R_ARM_THM_JUMP19: | 
 |       // THUMB branches. | 
 |       destination = value + addend + 4; | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   Reloc_stub* stub = NULL; | 
 |   Stub_type stub_type = | 
 |     Reloc_stub::stub_type_for_reloc(r_type, address, destination, | 
 | 				    target_is_thumb); | 
 |   if (stub_type != arm_stub_none) | 
 |     { | 
 |       // Try looking up an existing stub from a stub table. | 
 |       Stub_table<big_endian>* stub_table = | 
 | 	arm_relobj->stub_table(relinfo->data_shndx); | 
 |       gold_assert(stub_table != NULL); | 
 |  | 
 |       // Locate stub by destination. | 
 |       Reloc_stub::Key stub_key(stub_type, gsym, arm_relobj, r_sym, addend); | 
 |  | 
 |       // Create a stub if there is not one already | 
 |       stub = stub_table->find_reloc_stub(stub_key); | 
 |       if (stub == NULL) | 
 | 	{ | 
 | 	  // create a new stub and add it to stub table. | 
 | 	  stub = this->stub_factory().make_reloc_stub(stub_type); | 
 | 	  stub_table->add_reloc_stub(stub, stub_key); | 
 | 	} | 
 |  | 
 |       // Record the destination address. | 
 |       stub->set_destination_address(destination | 
 | 				    | (target_is_thumb ? 1 : 0)); | 
 |     } | 
 |  | 
 |   // For Cortex-A8, we need to record a relocation at 4K page boundary. | 
 |   if (this->fix_cortex_a8_ | 
 |       && (r_type == elfcpp::R_ARM_THM_JUMP24 | 
 | 	  || r_type == elfcpp::R_ARM_THM_JUMP19 | 
 | 	  || r_type == elfcpp::R_ARM_THM_CALL | 
 | 	  || r_type == elfcpp::R_ARM_THM_XPC22) | 
 |       && (address & 0xfffU) == 0xffeU) | 
 |     { | 
 |       // Found a candidate.  Note we haven't checked the destination is | 
 |       // within 4K here: if we do so (and don't create a record) we can't | 
 |       // tell that a branch should have been relocated when scanning later. | 
 |       this->cortex_a8_relocs_info_[address] = | 
 | 	new Cortex_a8_reloc(stub, r_type, | 
 | 			    destination | (target_is_thumb ? 1 : 0)); | 
 |     } | 
 | } | 
 |  | 
 | // This function scans a relocation sections for stub generation. | 
 | // The template parameter Relocate must be a class type which provides | 
 | // a single function, relocate(), which implements the machine | 
 | // specific part of a relocation. | 
 |  | 
 | // BIG_ENDIAN is the endianness of the data.  SH_TYPE is the section type: | 
 | // SHT_REL or SHT_RELA. | 
 |  | 
 | // PRELOCS points to the relocation data.  RELOC_COUNT is the number | 
 | // of relocs.  OUTPUT_SECTION is the output section. | 
 | // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be | 
 | // mapped to output offsets. | 
 |  | 
 | // VIEW is the section data, VIEW_ADDRESS is its memory address, and | 
 | // VIEW_SIZE is the size.  These refer to the input section, unless | 
 | // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to | 
 | // the output section. | 
 |  | 
 | template<bool big_endian> | 
 | template<int sh_type> | 
 | void inline | 
 | Target_arm<big_endian>::scan_reloc_section_for_stubs( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     const unsigned char* view, | 
 |     elfcpp::Elf_types<32>::Elf_Addr view_address, | 
 |     section_size_type) | 
 | { | 
 |   typedef typename Reloc_types<sh_type, 32, big_endian>::Reloc Reltype; | 
 |   const int reloc_size = | 
 |     Reloc_types<sh_type, 32, big_endian>::reloc_size; | 
 |  | 
 |   Arm_relobj<big_endian>* arm_object = | 
 |     Arm_relobj<big_endian>::as_arm_relobj(relinfo->object); | 
 |   unsigned int local_count = arm_object->local_symbol_count(); | 
 |  | 
 |   gold::Default_comdat_behavior default_comdat_behavior; | 
 |   Comdat_behavior comdat_behavior = CB_UNDETERMINED; | 
 |  | 
 |   for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size) | 
 |     { | 
 |       Reltype reloc(prelocs); | 
 |  | 
 |       typename elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info(); | 
 |       unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info); | 
 |       unsigned int r_type = elfcpp::elf_r_type<32>(r_info); | 
 |  | 
 |       r_type = this->get_real_reloc_type(r_type); | 
 |  | 
 |       // Only a few relocation types need stubs. | 
 |       if ((r_type != elfcpp::R_ARM_CALL) | 
 | 	 && (r_type != elfcpp::R_ARM_JUMP24) | 
 | 	 && (r_type != elfcpp::R_ARM_PLT32) | 
 | 	 && (r_type != elfcpp::R_ARM_THM_CALL) | 
 | 	 && (r_type != elfcpp::R_ARM_THM_XPC22) | 
 | 	 && (r_type != elfcpp::R_ARM_THM_JUMP24) | 
 | 	 && (r_type != elfcpp::R_ARM_THM_JUMP19) | 
 | 	 && (r_type != elfcpp::R_ARM_V4BX)) | 
 | 	continue; | 
 |  | 
 |       section_offset_type offset = | 
 | 	convert_to_section_size_type(reloc.get_r_offset()); | 
 |  | 
 |       if (needs_special_offset_handling) | 
 | 	{ | 
 | 	  offset = output_section->output_offset(relinfo->object, | 
 | 						 relinfo->data_shndx, | 
 | 						 offset); | 
 | 	  if (offset == -1) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       // Create a v4bx stub if --fix-v4bx-interworking is used. | 
 |       if (r_type == elfcpp::R_ARM_V4BX) | 
 | 	{ | 
 | 	  if (this->fix_v4bx() == General_options::FIX_V4BX_INTERWORKING) | 
 | 	    { | 
 | 	      // Get the BX instruction. | 
 | 	      typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype; | 
 | 	      const Valtype* wv = | 
 | 		reinterpret_cast<const Valtype*>(view + offset); | 
 | 	      elfcpp::Elf_types<32>::Elf_Swxword insn = | 
 | 		elfcpp::Swap<32, big_endian>::readval(wv); | 
 | 	      const uint32_t reg = (insn & 0xf); | 
 |  | 
 | 	      if (reg < 0xf) | 
 | 		{ | 
 | 		  // Try looking up an existing stub from a stub table. | 
 | 		  Stub_table<big_endian>* stub_table = | 
 | 		    arm_object->stub_table(relinfo->data_shndx); | 
 | 		  gold_assert(stub_table != NULL); | 
 |  | 
 | 		  if (stub_table->find_arm_v4bx_stub(reg) == NULL) | 
 | 		    { | 
 | 		      // create a new stub and add it to stub table. | 
 | 		      Arm_v4bx_stub* stub = | 
 | 			this->stub_factory().make_arm_v4bx_stub(reg); | 
 | 		      gold_assert(stub != NULL); | 
 | 		      stub_table->add_arm_v4bx_stub(stub); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       // Get the addend. | 
 |       Stub_addend_reader<sh_type, big_endian> stub_addend_reader; | 
 |       elfcpp::Elf_types<32>::Elf_Swxword addend = | 
 | 	stub_addend_reader(r_type, view + offset, reloc); | 
 |  | 
 |       const Sized_symbol<32>* sym; | 
 |  | 
 |       Symbol_value<32> symval; | 
 |       const Symbol_value<32> *psymval; | 
 |       bool is_defined_in_discarded_section; | 
 |       unsigned int shndx; | 
 |       const Symbol* gsym = NULL; | 
 |       if (r_sym < local_count) | 
 | 	{ | 
 | 	  sym = NULL; | 
 | 	  psymval = arm_object->local_symbol(r_sym); | 
 |  | 
 | 	  // If the local symbol belongs to a section we are discarding, | 
 | 	  // and that section is a debug section, try to find the | 
 | 	  // corresponding kept section and map this symbol to its | 
 | 	  // counterpart in the kept section.  The symbol must not | 
 | 	  // correspond to a section we are folding. | 
 | 	  bool is_ordinary; | 
 | 	  shndx = psymval->input_shndx(&is_ordinary); | 
 | 	  is_defined_in_discarded_section = | 
 | 	    (is_ordinary | 
 | 	     && shndx != elfcpp::SHN_UNDEF | 
 | 	     && !arm_object->is_section_included(shndx) | 
 | 	     && !relinfo->symtab->is_section_folded(arm_object, shndx)); | 
 |  | 
 | 	  // We need to compute the would-be final value of this local | 
 | 	  // symbol. | 
 | 	  if (!is_defined_in_discarded_section) | 
 | 	    { | 
 | 	      typedef Sized_relobj_file<32, big_endian> ObjType; | 
 | 	      if (psymval->is_section_symbol()) | 
 | 		symval.set_is_section_symbol(); | 
 | 	      typename ObjType::Compute_final_local_value_status status = | 
 | 		arm_object->compute_final_local_value(r_sym, psymval, &symval, | 
 | 						      relinfo->symtab); | 
 | 	      if (status == ObjType::CFLV_OK) | 
 | 		{ | 
 | 		  // Currently we cannot handle a branch to a target in | 
 | 		  // a merged section.  If this is the case, issue an error | 
 | 		  // and also free the merge symbol value. | 
 | 		  if (!symval.has_output_value()) | 
 | 		    { | 
 | 		      const std::string& section_name = | 
 | 			arm_object->section_name(shndx); | 
 | 		      arm_object->error(_("cannot handle branch to local %u " | 
 | 					  "in a merged section %s"), | 
 | 					r_sym, section_name.c_str()); | 
 | 		    } | 
 | 		  psymval = &symval; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  // We cannot determine the final value. | 
 | 		  continue; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  gsym = arm_object->global_symbol(r_sym); | 
 | 	  gold_assert(gsym != NULL); | 
 | 	  if (gsym->is_forwarder()) | 
 | 	    gsym = relinfo->symtab->resolve_forwards(gsym); | 
 |  | 
 | 	  sym = static_cast<const Sized_symbol<32>*>(gsym); | 
 | 	  if (sym->has_symtab_index() && sym->symtab_index() != -1U) | 
 | 	    symval.set_output_symtab_index(sym->symtab_index()); | 
 | 	  else | 
 | 	    symval.set_no_output_symtab_entry(); | 
 |  | 
 | 	  // We need to compute the would-be final value of this global | 
 | 	  // symbol. | 
 | 	  const Symbol_table* symtab = relinfo->symtab; | 
 | 	  const Sized_symbol<32>* sized_symbol = | 
 | 	    symtab->get_sized_symbol<32>(gsym); | 
 | 	  Symbol_table::Compute_final_value_status status; | 
 | 	  Arm_address value = | 
 | 	    symtab->compute_final_value<32>(sized_symbol, &status); | 
 |  | 
 | 	  // Skip this if the symbol has not output section. | 
 | 	  if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION) | 
 | 	    continue; | 
 | 	  symval.set_output_value(value); | 
 |  | 
 | 	  if (gsym->type() == elfcpp::STT_TLS) | 
 | 	    symval.set_is_tls_symbol(); | 
 | 	  else if (gsym->type() == elfcpp::STT_GNU_IFUNC) | 
 | 	    symval.set_is_ifunc_symbol(); | 
 | 	  psymval = &symval; | 
 |  | 
 | 	  is_defined_in_discarded_section = | 
 | 	    (gsym->is_defined_in_discarded_section() | 
 | 	     && gsym->is_undefined()); | 
 | 	  shndx = 0; | 
 | 	} | 
 |  | 
 |       Symbol_value<32> symval2; | 
 |       if (is_defined_in_discarded_section) | 
 | 	{ | 
 | 	  std::string name = arm_object->section_name(relinfo->data_shndx); | 
 |  | 
 | 	  if (comdat_behavior == CB_UNDETERMINED) | 
 |  	      comdat_behavior = default_comdat_behavior.get(name.c_str()); | 
 |  | 
 | 	  if (comdat_behavior == CB_PRETEND) | 
 | 	    { | 
 | 	      // FIXME: This case does not work for global symbols. | 
 | 	      // We have no place to store the original section index. | 
 | 	      // Fortunately this does not matter for comdat sections, | 
 | 	      // only for sections explicitly discarded by a linker | 
 | 	      // script. | 
 | 	      bool found; | 
 | 	      typename elfcpp::Elf_types<32>::Elf_Addr value = | 
 | 		arm_object->map_to_kept_section(shndx, name, &found); | 
 | 	      if (found) | 
 | 		symval2.set_output_value(value + psymval->input_value()); | 
 | 	      else | 
 | 		symval2.set_output_value(0); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (comdat_behavior == CB_ERROR) | 
 | 	        issue_discarded_error(relinfo, i, offset, r_sym, gsym); | 
 | 	      symval2.set_output_value(0); | 
 | 	    } | 
 | 	  symval2.set_no_output_symtab_entry(); | 
 | 	  psymval = &symval2; | 
 | 	} | 
 |  | 
 |       // If symbol is a section symbol, we don't know the actual type of | 
 |       // destination.  Give up. | 
 |       if (psymval->is_section_symbol()) | 
 | 	continue; | 
 |  | 
 |       this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval, | 
 | 				addend, view_address + offset); | 
 |     } | 
 | } | 
 |  | 
 | // Scan an input section for stub generation. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::scan_section_for_stubs( | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     unsigned int sh_type, | 
 |     const unsigned char* prelocs, | 
 |     size_t reloc_count, | 
 |     Output_section* output_section, | 
 |     bool needs_special_offset_handling, | 
 |     const unsigned char* view, | 
 |     Arm_address view_address, | 
 |     section_size_type view_size) | 
 | { | 
 |   if (sh_type == elfcpp::SHT_REL) | 
 |     this->scan_reloc_section_for_stubs<elfcpp::SHT_REL>( | 
 | 	relinfo, | 
 | 	prelocs, | 
 | 	reloc_count, | 
 | 	output_section, | 
 | 	needs_special_offset_handling, | 
 | 	view, | 
 | 	view_address, | 
 | 	view_size); | 
 |   else if (sh_type == elfcpp::SHT_RELA) | 
 |     // We do not support RELA type relocations yet.  This is provided for | 
 |     // completeness. | 
 |     this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>( | 
 | 	relinfo, | 
 | 	prelocs, | 
 | 	reloc_count, | 
 | 	output_section, | 
 | 	needs_special_offset_handling, | 
 | 	view, | 
 | 	view_address, | 
 | 	view_size); | 
 |   else | 
 |     gold_unreachable(); | 
 | } | 
 |  | 
 | // Group input sections for stub generation. | 
 | // | 
 | // We group input sections in an output section so that the total size, | 
 | // including any padding space due to alignment is smaller than GROUP_SIZE | 
 | // unless the only input section in group is bigger than GROUP_SIZE already. | 
 | // Then an ARM stub table is created to follow the last input section | 
 | // in group.  For each group an ARM stub table is created an is placed | 
 | // after the last group.  If STUB_ALWAYS_AFTER_BRANCH is false, we further | 
 | // extend the group after the stub table. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::group_sections( | 
 |     Layout* layout, | 
 |     section_size_type group_size, | 
 |     bool stubs_always_after_branch, | 
 |     const Task* task) | 
 | { | 
 |   // Group input sections and insert stub table | 
 |   Layout::Section_list section_list; | 
 |   layout->get_executable_sections(§ion_list); | 
 |   for (Layout::Section_list::const_iterator p = section_list.begin(); | 
 |        p != section_list.end(); | 
 |        ++p) | 
 |     { | 
 |       Arm_output_section<big_endian>* output_section = | 
 | 	Arm_output_section<big_endian>::as_arm_output_section(*p); | 
 |       output_section->group_sections(group_size, stubs_always_after_branch, | 
 | 				     this, task); | 
 |     } | 
 | } | 
 |  | 
 | // Relaxation hook.  This is where we do stub generation. | 
 |  | 
 | template<bool big_endian> | 
 | bool | 
 | Target_arm<big_endian>::do_relax( | 
 |     int pass, | 
 |     const Input_objects* input_objects, | 
 |     Symbol_table* symtab, | 
 |     Layout* layout, | 
 |     const Task* task) | 
 | { | 
 |   // No need to generate stubs if this is a relocatable link. | 
 |   gold_assert(!parameters->options().relocatable()); | 
 |  | 
 |   // If this is the first pass, we need to group input sections into | 
 |   // stub groups. | 
 |   bool done_exidx_fixup = false; | 
 |   typedef typename Stub_table_list::iterator Stub_table_iterator; | 
 |   if (pass == 1) | 
 |     { | 
 |       // Determine the stub group size.  The group size is the absolute | 
 |       // value of the parameter --stub-group-size.  If --stub-group-size | 
 |       // is passed a negative value, we restrict stubs to be always after | 
 |       // the stubbed branches. | 
 |       int32_t stub_group_size_param = | 
 | 	parameters->options().stub_group_size(); | 
 |       bool stubs_always_after_branch = stub_group_size_param < 0; | 
 |       section_size_type stub_group_size = abs(stub_group_size_param); | 
 |  | 
 |       if (stub_group_size == 1) | 
 | 	{ | 
 | 	  // Default value. | 
 | 	  // Thumb branch range is +-4MB has to be used as the default | 
 | 	  // maximum size (a given section can contain both ARM and Thumb | 
 | 	  // code, so the worst case has to be taken into account).  If we are | 
 | 	  // fixing cortex-a8 errata, the branch range has to be even smaller, | 
 | 	  // since wide conditional branch has a range of +-1MB only. | 
 | 	  // | 
 | 	  // This value is 48K less than that, which allows for 4096 | 
 | 	  // 12-byte stubs.  If we exceed that, then we will fail to link. | 
 | 	  // The user will have to relink with an explicit group size | 
 | 	  // option. | 
 | 	    stub_group_size = 4145152; | 
 | 	} | 
 |  | 
 |       // The Cortex-A8 erratum fix depends on stubs not being in the same 4K | 
 |       // page as the first half of a 32-bit branch straddling two 4K pages. | 
 |       // This is a crude way of enforcing that.  In addition, long conditional | 
 |       // branches of THUMB-2 have a range of +-1M.  If we are fixing cortex-A8 | 
 |       // erratum, limit the group size to  (1M - 12k) to avoid unreachable | 
 |       // cortex-A8 stubs from long conditional branches. | 
 |       if (this->fix_cortex_a8_) | 
 | 	{ | 
 | 	  stubs_always_after_branch = true; | 
 | 	  const section_size_type cortex_a8_group_size = 1024 * (1024 - 12); | 
 | 	  stub_group_size = std::max(stub_group_size, cortex_a8_group_size); | 
 | 	} | 
 |  | 
 |       group_sections(layout, stub_group_size, stubs_always_after_branch, task); | 
 |  | 
 |       // Also fix .ARM.exidx section coverage. | 
 |       Arm_output_section<big_endian>* exidx_output_section = NULL; | 
 |       for (Layout::Section_list::const_iterator p = | 
 | 	     layout->section_list().begin(); | 
 | 	   p != layout->section_list().end(); | 
 | 	   ++p) | 
 | 	if ((*p)->type() == elfcpp::SHT_ARM_EXIDX) | 
 | 	  { | 
 | 	    if (exidx_output_section == NULL) | 
 | 	      exidx_output_section = | 
 | 		Arm_output_section<big_endian>::as_arm_output_section(*p); | 
 | 	    else | 
 | 	      // We cannot handle this now. | 
 | 	      gold_error(_("multiple SHT_ARM_EXIDX sections %s and %s in a " | 
 | 			   "non-relocatable link"), | 
 | 			  exidx_output_section->name(), | 
 | 			  (*p)->name()); | 
 | 	  } | 
 |  | 
 |       if (exidx_output_section != NULL) | 
 | 	{ | 
 | 	  this->fix_exidx_coverage(layout, input_objects, exidx_output_section, | 
 | 				   symtab, task); | 
 | 	  done_exidx_fixup = true; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       // If this is not the first pass, addresses and file offsets have | 
 |       // been reset at this point, set them here. | 
 |       for (Stub_table_iterator sp = this->stub_tables_.begin(); | 
 | 	   sp != this->stub_tables_.end(); | 
 | 	   ++sp) | 
 | 	{ | 
 | 	  Arm_input_section<big_endian>* owner = (*sp)->owner(); | 
 | 	  off_t off = align_address(owner->original_size(), | 
 | 				    (*sp)->addralign()); | 
 | 	  (*sp)->set_address_and_file_offset(owner->address() + off, | 
 | 					     owner->offset() + off); | 
 | 	} | 
 |     } | 
 |  | 
 |   // The Cortex-A8 stubs are sensitive to layout of code sections.  At the | 
 |   // beginning of each relaxation pass, just blow away all the stubs. | 
 |   // Alternatively, we could selectively remove only the stubs and reloc | 
 |   // information for code sections that have moved since the last pass. | 
 |   // That would require more book-keeping. | 
 |   if (this->fix_cortex_a8_) | 
 |     { | 
 |       // Clear all Cortex-A8 reloc information. | 
 |       for (typename Cortex_a8_relocs_info::const_iterator p = | 
 | 	     this->cortex_a8_relocs_info_.begin(); | 
 | 	   p != this->cortex_a8_relocs_info_.end(); | 
 | 	   ++p) | 
 | 	delete p->second; | 
 |       this->cortex_a8_relocs_info_.clear(); | 
 |  | 
 |       // Remove all Cortex-A8 stubs. | 
 |       for (Stub_table_iterator sp = this->stub_tables_.begin(); | 
 | 	   sp != this->stub_tables_.end(); | 
 | 	   ++sp) | 
 | 	(*sp)->remove_all_cortex_a8_stubs(); | 
 |     } | 
 |  | 
 |   // Scan relocs for relocation stubs | 
 |   for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); | 
 |        op != input_objects->relobj_end(); | 
 |        ++op) | 
 |     { | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj(*op); | 
 |       // Lock the object so we can read from it.  This is only called | 
 |       // single-threaded from Layout::finalize, so it is OK to lock. | 
 |       Task_lock_obj<Object> tl(task, arm_relobj); | 
 |       arm_relobj->scan_sections_for_stubs(this, symtab, layout); | 
 |     } | 
 |  | 
 |   // Check all stub tables to see if any of them have their data sizes | 
 |   // or addresses alignments changed.  These are the only things that | 
 |   // matter. | 
 |   bool any_stub_table_changed = false; | 
 |   Unordered_set<const Output_section*> sections_needing_adjustment; | 
 |   for (Stub_table_iterator sp = this->stub_tables_.begin(); | 
 |        (sp != this->stub_tables_.end()) && !any_stub_table_changed; | 
 |        ++sp) | 
 |     { | 
 |       if ((*sp)->update_data_size_and_addralign()) | 
 | 	{ | 
 | 	  // Update data size of stub table owner. | 
 | 	  Arm_input_section<big_endian>* owner = (*sp)->owner(); | 
 | 	  uint64_t address = owner->address(); | 
 | 	  off_t offset = owner->offset(); | 
 | 	  owner->reset_address_and_file_offset(); | 
 | 	  owner->set_address_and_file_offset(address, offset); | 
 |  | 
 | 	  sections_needing_adjustment.insert(owner->output_section()); | 
 | 	  any_stub_table_changed = true; | 
 | 	} | 
 |     } | 
 |  | 
 |   // Output_section_data::output_section() returns a const pointer but we | 
 |   // need to update output sections, so we record all output sections needing | 
 |   // update above and scan the sections here to find out what sections need | 
 |   // to be updated. | 
 |   for (Layout::Section_list::const_iterator p = layout->section_list().begin(); | 
 |       p != layout->section_list().end(); | 
 |       ++p) | 
 |     { | 
 |       if (sections_needing_adjustment.find(*p) | 
 | 	  != sections_needing_adjustment.end()) | 
 | 	(*p)->set_section_offsets_need_adjustment(); | 
 |     } | 
 |  | 
 |   // Stop relaxation if no EXIDX fix-up and no stub table change. | 
 |   bool continue_relaxation = done_exidx_fixup || any_stub_table_changed; | 
 |  | 
 |   // Finalize the stubs in the last relaxation pass. | 
 |   if (!continue_relaxation) | 
 |     { | 
 |       for (Stub_table_iterator sp = this->stub_tables_.begin(); | 
 | 	   (sp != this->stub_tables_.end()) && !any_stub_table_changed; | 
 | 	    ++sp) | 
 | 	(*sp)->finalize_stubs(); | 
 |  | 
 |       // Update output local symbol counts of objects if necessary. | 
 |       for (Input_objects::Relobj_iterator op = input_objects->relobj_begin(); | 
 | 	   op != input_objects->relobj_end(); | 
 | 	   ++op) | 
 | 	{ | 
 | 	  Arm_relobj<big_endian>* arm_relobj = | 
 | 	    Arm_relobj<big_endian>::as_arm_relobj(*op); | 
 |  | 
 | 	  // Update output local symbol counts.  We need to discard local | 
 | 	  // symbols defined in parts of input sections that are discarded by | 
 | 	  // relaxation. | 
 | 	  if (arm_relobj->output_local_symbol_count_needs_update()) | 
 | 	    { | 
 | 	      // We need to lock the object's file to update it. | 
 | 	      Task_lock_obj<Object> tl(task, arm_relobj); | 
 | 	      arm_relobj->update_output_local_symbol_count(); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return continue_relaxation; | 
 | } | 
 |  | 
 | // Relocate a stub. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::relocate_stub( | 
 |     Stub* stub, | 
 |     const Relocate_info<32, big_endian>* relinfo, | 
 |     Output_section* output_section, | 
 |     unsigned char* view, | 
 |     Arm_address address, | 
 |     section_size_type view_size) | 
 | { | 
 |   Relocate relocate; | 
 |   const Stub_template* stub_template = stub->stub_template(); | 
 |   for (size_t i = 0; i < stub_template->reloc_count(); i++) | 
 |     { | 
 |       size_t reloc_insn_index = stub_template->reloc_insn_index(i); | 
 |       const Insn_template* insn = &stub_template->insns()[reloc_insn_index]; | 
 |  | 
 |       unsigned int r_type = insn->r_type(); | 
 |       section_size_type reloc_offset = stub_template->reloc_offset(i); | 
 |       section_size_type reloc_size = insn->size(); | 
 |       gold_assert(reloc_offset + reloc_size <= view_size); | 
 |  | 
 |       // This is the address of the stub destination. | 
 |       Arm_address target = stub->reloc_target(i) + insn->reloc_addend(); | 
 |       Symbol_value<32> symval; | 
 |       symval.set_output_value(target); | 
 |  | 
 |       // Synthesize a fake reloc just in case.  We don't have a symbol so | 
 |       // we use 0. | 
 |       unsigned char reloc_buffer[elfcpp::Elf_sizes<32>::rel_size]; | 
 |       memset(reloc_buffer, 0, sizeof(reloc_buffer)); | 
 |       elfcpp::Rel_write<32, big_endian> reloc_write(reloc_buffer); | 
 |       reloc_write.put_r_offset(reloc_offset); | 
 |       reloc_write.put_r_info(elfcpp::elf_r_info<32>(0, r_type)); | 
 |  | 
 |       relocate.relocate(relinfo, elfcpp::SHT_REL, this, output_section, | 
 | 			this->fake_relnum_for_stubs, reloc_buffer, | 
 | 			NULL, &symval, view + reloc_offset, | 
 | 			address + reloc_offset, reloc_size); | 
 |     } | 
 | } | 
 |  | 
 | // Determine whether an object attribute tag takes an integer, a | 
 | // string or both. | 
 |  | 
 | template<bool big_endian> | 
 | int | 
 | Target_arm<big_endian>::do_attribute_arg_type(int tag) const | 
 | { | 
 |   if (tag == Object_attribute::Tag_compatibility) | 
 |     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL | 
 | 	    | Object_attribute::ATTR_TYPE_FLAG_STR_VAL); | 
 |   else if (tag == elfcpp::Tag_nodefaults) | 
 |     return (Object_attribute::ATTR_TYPE_FLAG_INT_VAL | 
 | 	    | Object_attribute::ATTR_TYPE_FLAG_NO_DEFAULT); | 
 |   else if (tag == elfcpp::Tag_CPU_raw_name || tag == elfcpp::Tag_CPU_name) | 
 |     return Object_attribute::ATTR_TYPE_FLAG_STR_VAL; | 
 |   else if (tag < 32) | 
 |     return Object_attribute::ATTR_TYPE_FLAG_INT_VAL; | 
 |   else | 
 |     return ((tag & 1) != 0 | 
 | 	    ? Object_attribute::ATTR_TYPE_FLAG_STR_VAL | 
 | 	    : Object_attribute::ATTR_TYPE_FLAG_INT_VAL); | 
 | } | 
 |  | 
 | // Reorder attributes. | 
 | // | 
 | // The ABI defines that Tag_conformance should be emitted first, and that | 
 | // Tag_nodefaults should be second (if either is defined).  This sets those | 
 | // two positions, and bumps up the position of all the remaining tags to | 
 | // compensate. | 
 |  | 
 | template<bool big_endian> | 
 | int | 
 | Target_arm<big_endian>::do_attributes_order(int num) const | 
 | { | 
 |   // Reorder the known object attributes in output.  We want to move | 
 |   // Tag_conformance to position 4 and Tag_conformance to position 5 | 
 |   // and shift everything between 4 .. Tag_conformance - 1 to make room. | 
 |   if (num == 4) | 
 |     return elfcpp::Tag_conformance; | 
 |   if (num == 5) | 
 |     return elfcpp::Tag_nodefaults; | 
 |   if ((num - 2) < elfcpp::Tag_nodefaults) | 
 |     return num - 2; | 
 |   if ((num - 1) < elfcpp::Tag_conformance) | 
 |     return num - 1; | 
 |   return num; | 
 | } | 
 |  | 
 | // Scan a span of THUMB code for Cortex-A8 erratum. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::scan_span_for_cortex_a8_erratum( | 
 |     Arm_relobj<big_endian>* arm_relobj, | 
 |     unsigned int shndx, | 
 |     section_size_type span_start, | 
 |     section_size_type span_end, | 
 |     const unsigned char* view, | 
 |     Arm_address address) | 
 | { | 
 |   // Scan for 32-bit Thumb-2 branches which span two 4K regions, where: | 
 |   // | 
 |   // The opcode is BLX.W, BL.W, B.W, Bcc.W | 
 |   // The branch target is in the same 4KB region as the | 
 |   // first half of the branch. | 
 |   // The instruction before the branch is a 32-bit | 
 |   // length non-branch instruction. | 
 |   section_size_type i = span_start; | 
 |   bool last_was_32bit = false; | 
 |   bool last_was_branch = false; | 
 |   while (i < span_end) | 
 |     { | 
 |       typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |       const Valtype* wv = reinterpret_cast<const Valtype*>(view + i); | 
 |       uint32_t insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |       bool is_blx = false, is_b = false; | 
 |       bool is_bl = false, is_bcc = false; | 
 |  | 
 |       bool insn_32bit = (insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000; | 
 |       if (insn_32bit) | 
 | 	{ | 
 | 	  // Load the rest of the insn (in manual-friendly order). | 
 | 	  insn = (insn << 16) | elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |  | 
 | 	  // Encoding T4: B<c>.W. | 
 | 	  is_b = (insn & 0xf800d000U) == 0xf0009000U; | 
 | 	  // Encoding T1: BL<c>.W. | 
 | 	  is_bl = (insn & 0xf800d000U) == 0xf000d000U; | 
 | 	  // Encoding T2: BLX<c>.W. | 
 | 	  is_blx = (insn & 0xf800d000U) == 0xf000c000U; | 
 | 	  // Encoding T3: B<c>.W (not permitted in IT block). | 
 | 	  is_bcc = ((insn & 0xf800d000U) == 0xf0008000U | 
 | 		    && (insn & 0x07f00000U) != 0x03800000U); | 
 | 	} | 
 |  | 
 |       bool is_32bit_branch = is_b || is_bl || is_blx || is_bcc; | 
 |  | 
 |       // If this instruction is a 32-bit THUMB branch that crosses a 4K | 
 |       // page boundary and it follows 32-bit non-branch instruction, | 
 |       // we need to work around. | 
 |       if (is_32bit_branch | 
 | 	  && ((address + i) & 0xfffU) == 0xffeU | 
 | 	  && last_was_32bit | 
 | 	  && !last_was_branch) | 
 | 	{ | 
 | 	  // Check to see if there is a relocation stub for this branch. | 
 | 	  bool force_target_arm = false; | 
 | 	  bool force_target_thumb = false; | 
 | 	  const Cortex_a8_reloc* cortex_a8_reloc = NULL; | 
 | 	  Cortex_a8_relocs_info::const_iterator p = | 
 | 	    this->cortex_a8_relocs_info_.find(address + i); | 
 |  | 
 | 	  if (p != this->cortex_a8_relocs_info_.end()) | 
 | 	    { | 
 | 	      cortex_a8_reloc = p->second; | 
 | 	      bool target_is_thumb = (cortex_a8_reloc->destination() & 1) != 0; | 
 |  | 
 | 	      if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL | 
 | 		  && !target_is_thumb) | 
 | 		force_target_arm = true; | 
 | 	      else if (cortex_a8_reloc->r_type() == elfcpp::R_ARM_THM_CALL | 
 | 		       && target_is_thumb) | 
 | 		force_target_thumb = true; | 
 | 	    } | 
 |  | 
 | 	  off_t offset; | 
 | 	  Stub_type stub_type = arm_stub_none; | 
 |  | 
 | 	  // Check if we have an offending branch instruction. | 
 | 	  uint16_t upper_insn = (insn >> 16) & 0xffffU; | 
 | 	  uint16_t lower_insn = insn & 0xffffU; | 
 | 	  typedef class Arm_relocate_functions<big_endian> RelocFuncs; | 
 |  | 
 | 	  if (cortex_a8_reloc != NULL | 
 | 	      && cortex_a8_reloc->reloc_stub() != NULL) | 
 | 	    // We've already made a stub for this instruction, e.g. | 
 | 	    // it's a long branch or a Thumb->ARM stub.  Assume that | 
 | 	    // stub will suffice to work around the A8 erratum (see | 
 | 	    // setting of always_after_branch above). | 
 | 	    ; | 
 | 	  else if (is_bcc) | 
 | 	    { | 
 | 	      offset = RelocFuncs::thumb32_cond_branch_offset(upper_insn, | 
 | 							      lower_insn); | 
 | 	      stub_type = arm_stub_a8_veneer_b_cond; | 
 | 	    } | 
 | 	  else if (is_b || is_bl || is_blx) | 
 | 	    { | 
 | 	      offset = RelocFuncs::thumb32_branch_offset(upper_insn, | 
 | 							 lower_insn); | 
 | 	      if (is_blx) | 
 | 		offset &= ~3; | 
 |  | 
 | 	      stub_type = (is_blx | 
 | 			   ? arm_stub_a8_veneer_blx | 
 | 			   : (is_bl | 
 | 			      ? arm_stub_a8_veneer_bl | 
 | 			      : arm_stub_a8_veneer_b)); | 
 | 	    } | 
 |  | 
 | 	  if (stub_type != arm_stub_none) | 
 | 	    { | 
 | 	      Arm_address pc_for_insn = address + i + 4; | 
 |  | 
 | 	      // The original instruction is a BL, but the target is | 
 | 	      // an ARM instruction.  If we were not making a stub, | 
 | 	      // the BL would have been converted to a BLX.  Use the | 
 | 	      // BLX stub instead in that case. | 
 | 	      if (this->may_use_v5t_interworking() && force_target_arm | 
 | 		  && stub_type == arm_stub_a8_veneer_bl) | 
 | 		{ | 
 | 		  stub_type = arm_stub_a8_veneer_blx; | 
 | 		  is_blx = true; | 
 | 		  is_bl = false; | 
 | 		} | 
 | 	      // Conversely, if the original instruction was | 
 | 	      // BLX but the target is Thumb mode, use the BL stub. | 
 | 	      else if (force_target_thumb | 
 | 		       && stub_type == arm_stub_a8_veneer_blx) | 
 | 		{ | 
 | 		  stub_type = arm_stub_a8_veneer_bl; | 
 | 		  is_blx = false; | 
 | 		  is_bl = true; | 
 | 		} | 
 |  | 
 | 	      if (is_blx) | 
 | 		pc_for_insn &= ~3; | 
 |  | 
 | 	      // If we found a relocation, use the proper destination, | 
 | 	      // not the offset in the (unrelocated) instruction. | 
 | 	      // Note this is always done if we switched the stub type above. | 
 | 	      if (cortex_a8_reloc != NULL) | 
 | 		offset = (off_t) (cortex_a8_reloc->destination() - pc_for_insn); | 
 |  | 
 | 	      Arm_address target = (pc_for_insn + offset) | (is_blx ? 0 : 1); | 
 |  | 
 | 	      // Add a new stub if destination address is in the same page. | 
 | 	      if (((address + i) & ~0xfffU) == (target & ~0xfffU)) | 
 | 		{ | 
 | 		  Cortex_a8_stub* stub = | 
 | 		    this->stub_factory_.make_cortex_a8_stub(stub_type, | 
 | 							    arm_relobj, shndx, | 
 | 							    address + i, | 
 | 							    target, insn); | 
 | 		  Stub_table<big_endian>* stub_table = | 
 | 		    arm_relobj->stub_table(shndx); | 
 | 		  gold_assert(stub_table != NULL); | 
 | 		  stub_table->add_cortex_a8_stub(address + i, stub); | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       i += insn_32bit ? 4 : 2; | 
 |       last_was_32bit = insn_32bit; | 
 |       last_was_branch = is_32bit_branch; | 
 |     } | 
 | } | 
 |  | 
 | // Apply the Cortex-A8 workaround. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::apply_cortex_a8_workaround( | 
 |     const Cortex_a8_stub* stub, | 
 |     Arm_address stub_address, | 
 |     unsigned char* insn_view, | 
 |     Arm_address insn_address) | 
 | { | 
 |   typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype; | 
 |   Valtype* wv = reinterpret_cast<Valtype*>(insn_view); | 
 |   Valtype upper_insn = elfcpp::Swap<16, big_endian>::readval(wv); | 
 |   Valtype lower_insn = elfcpp::Swap<16, big_endian>::readval(wv + 1); | 
 |   off_t branch_offset = stub_address - (insn_address + 4); | 
 |  | 
 |   typedef class Arm_relocate_functions<big_endian> RelocFuncs; | 
 |   switch (stub->stub_template()->type()) | 
 |     { | 
 |     case arm_stub_a8_veneer_b_cond: | 
 |       // For a conditional branch, we re-write it to be an unconditional | 
 |       // branch to the stub.  We use the THUMB-2 encoding here. | 
 |       upper_insn = 0xf000U; | 
 |       lower_insn = 0xb800U; | 
 |       // Fall through. | 
 |     case arm_stub_a8_veneer_b: | 
 |     case arm_stub_a8_veneer_bl: | 
 |     case arm_stub_a8_veneer_blx: | 
 |       if ((lower_insn & 0x5000U) == 0x4000U) | 
 | 	// For a BLX instruction, make sure that the relocation is | 
 | 	// rounded up to a word boundary.  This follows the semantics of | 
 | 	// the instruction which specifies that bit 1 of the target | 
 | 	// address will come from bit 1 of the base address. | 
 | 	branch_offset = (branch_offset + 2) & ~3; | 
 |  | 
 |       // Put BRANCH_OFFSET back into the insn. | 
 |       gold_assert(!Bits<25>::has_overflow32(branch_offset)); | 
 |       upper_insn = RelocFuncs::thumb32_branch_upper(upper_insn, branch_offset); | 
 |       lower_insn = RelocFuncs::thumb32_branch_lower(lower_insn, branch_offset); | 
 |       break; | 
 |  | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 |  | 
 |   // Put the relocated value back in the object file: | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv, upper_insn); | 
 |   elfcpp::Swap<16, big_endian>::writeval(wv + 1, lower_insn); | 
 | } | 
 |  | 
 | // Target selector for ARM.  Note this is never instantiated directly. | 
 | // It's only used in Target_selector_arm_nacl, below. | 
 |  | 
 | template<bool big_endian> | 
 | class Target_selector_arm : public Target_selector | 
 | { | 
 |  public: | 
 |   Target_selector_arm() | 
 |     : Target_selector(elfcpp::EM_ARM, 32, big_endian, | 
 | 		      (big_endian ? "elf32-bigarm" : "elf32-littlearm"), | 
 | 		      (big_endian ? "armelfb" : "armelf")) | 
 |   { } | 
 |  | 
 |   Target* | 
 |   do_instantiate_target() | 
 |   { return new Target_arm<big_endian>(); } | 
 | }; | 
 |  | 
 | // Fix .ARM.exidx section coverage. | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::fix_exidx_coverage( | 
 |     Layout* layout, | 
 |     const Input_objects* input_objects, | 
 |     Arm_output_section<big_endian>* exidx_section, | 
 |     Symbol_table* symtab, | 
 |     const Task* task) | 
 | { | 
 |   // We need to look at all the input sections in output in ascending | 
 |   // order of output address.  We do that by building a sorted list | 
 |   // of output sections by addresses.  Then we looks at the output sections | 
 |   // in order.  The input sections in an output section are already sorted | 
 |   // by addresses within the output section. | 
 |  | 
 |   typedef std::set<Output_section*, output_section_address_less_than> | 
 |       Sorted_output_section_list; | 
 |   Sorted_output_section_list sorted_output_sections; | 
 |  | 
 |   // Find out all the output sections of input sections pointed by | 
 |   // EXIDX input sections. | 
 |   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | 
 |        p != input_objects->relobj_end(); | 
 |        ++p) | 
 |     { | 
 |       Arm_relobj<big_endian>* arm_relobj = | 
 | 	Arm_relobj<big_endian>::as_arm_relobj(*p); | 
 |       std::vector<unsigned int> shndx_list; | 
 |       arm_relobj->get_exidx_shndx_list(&shndx_list); | 
 |       for (size_t i = 0; i < shndx_list.size(); ++i) | 
 | 	{ | 
 | 	  const Arm_exidx_input_section* exidx_input_section = | 
 | 	    arm_relobj->exidx_input_section_by_shndx(shndx_list[i]); | 
 | 	  gold_assert(exidx_input_section != NULL); | 
 | 	  if (!exidx_input_section->has_errors()) | 
 | 	    { | 
 | 	      unsigned int text_shndx = exidx_input_section->link(); | 
 | 	      Output_section* os = arm_relobj->output_section(text_shndx); | 
 | 	      if (os != NULL && (os->flags() & elfcpp::SHF_ALLOC) != 0) | 
 | 		sorted_output_sections.insert(os); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   // Go over the output sections in ascending order of output addresses. | 
 |   typedef typename Arm_output_section<big_endian>::Text_section_list | 
 |       Text_section_list; | 
 |   Text_section_list sorted_text_sections; | 
 |   for (typename Sorted_output_section_list::iterator p = | 
 | 	sorted_output_sections.begin(); | 
 |       p != sorted_output_sections.end(); | 
 |       ++p) | 
 |     { | 
 |       Arm_output_section<big_endian>* arm_output_section = | 
 | 	Arm_output_section<big_endian>::as_arm_output_section(*p); | 
 |       arm_output_section->append_text_sections_to_list(&sorted_text_sections); | 
 |     } | 
 |  | 
 |   exidx_section->fix_exidx_coverage(layout, sorted_text_sections, symtab, | 
 | 				    merge_exidx_entries(), task); | 
 | } | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Target_arm<big_endian>::do_define_standard_symbols( | 
 |     Symbol_table* symtab, | 
 |     Layout* layout) | 
 | { | 
 |   // Handle the .ARM.exidx section. | 
 |   Output_section* exidx_section = layout->find_output_section(".ARM.exidx"); | 
 |  | 
 |   if (exidx_section != NULL) | 
 |     { | 
 |       // Create __exidx_start and __exidx_end symbols. | 
 |       symtab->define_in_output_data("__exidx_start", | 
 | 				    NULL, // version | 
 | 				    Symbol_table::PREDEFINED, | 
 | 				    exidx_section, | 
 | 				    0, // value | 
 | 				    0, // symsize | 
 | 				    elfcpp::STT_NOTYPE, | 
 | 				    elfcpp::STB_GLOBAL, | 
 | 				    elfcpp::STV_HIDDEN, | 
 | 				    0, // nonvis | 
 | 				    false, // offset_is_from_end | 
 | 				    true); // only_if_ref | 
 |  | 
 |       symtab->define_in_output_data("__exidx_end", | 
 | 				    NULL, // version | 
 | 				    Symbol_table::PREDEFINED, | 
 | 				    exidx_section, | 
 | 				    0, // value | 
 | 				    0, // symsize | 
 | 				    elfcpp::STT_NOTYPE, | 
 | 				    elfcpp::STB_GLOBAL, | 
 | 				    elfcpp::STV_HIDDEN, | 
 | 				    0, // nonvis | 
 | 				    true, // offset_is_from_end | 
 | 				    true); // only_if_ref | 
 |     } | 
 |   else | 
 |     { | 
 |       // Define __exidx_start and __exidx_end even when .ARM.exidx | 
 |       // section is missing to match ld's behaviour. | 
 |       symtab->define_as_constant("__exidx_start", NULL, | 
 | 				 Symbol_table::PREDEFINED, | 
 | 				 0, 0, elfcpp::STT_OBJECT, | 
 | 				 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, | 
 | 				 true, false); | 
 |       symtab->define_as_constant("__exidx_end", NULL, | 
 | 				 Symbol_table::PREDEFINED, | 
 | 				 0, 0, elfcpp::STT_OBJECT, | 
 | 				 elfcpp::STB_GLOBAL, elfcpp::STV_HIDDEN, 0, | 
 | 				 true, false); | 
 |     } | 
 | } | 
 |  | 
 | // NaCl variant.  It uses different PLT contents. | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_nacl; | 
 |  | 
 | template<bool big_endian> | 
 | class Target_arm_nacl : public Target_arm<big_endian> | 
 | { | 
 |  public: | 
 |   Target_arm_nacl() | 
 |     : Target_arm<big_endian>(&arm_nacl_info) | 
 |   { } | 
 |  | 
 |  protected: | 
 |   virtual Output_data_plt_arm<big_endian>* | 
 |   do_make_data_plt( | 
 | 		   Layout* layout, | 
 | 		   Arm_output_data_got<big_endian>* got, | 
 | 		   Output_data_space* got_plt, | 
 | 		   Output_data_space* got_irelative) | 
 |   { return new Output_data_plt_arm_nacl<big_endian>( | 
 |       layout, got, got_plt, got_irelative); } | 
 |  | 
 |  private: | 
 |   static const Target::Target_info arm_nacl_info; | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | const Target::Target_info Target_arm_nacl<big_endian>::arm_nacl_info = | 
 | { | 
 |   32,			// size | 
 |   big_endian,		// is_big_endian | 
 |   elfcpp::EM_ARM,	// machine_code | 
 |   false,		// has_make_symbol | 
 |   false,		// has_resolve | 
 |   false,		// has_code_fill | 
 |   true,			// is_default_stack_executable | 
 |   false,		// can_icf_inline_merge_sections | 
 |   '\0',			// wrap_char | 
 |   "/lib/ld-nacl-arm.so.1", // dynamic_linker | 
 |   0x20000,		// default_text_segment_address | 
 |   0x10000,		// abi_pagesize (overridable by -z max-page-size) | 
 |   0x10000,		// common_pagesize (overridable by -z common-page-size) | 
 |   true,                 // isolate_execinstr | 
 |   0x10000000,           // rosegment_gap | 
 |   elfcpp::SHN_UNDEF,	// small_common_shndx | 
 |   elfcpp::SHN_UNDEF,	// large_common_shndx | 
 |   0,			// small_common_section_flags | 
 |   0,			// large_common_section_flags | 
 |   ".ARM.attributes",	// attributes_section | 
 |   "aeabi",		// attributes_vendor | 
 |   "_start",		// entry_symbol_name | 
 |   32,			// hash_entry_size | 
 |   elfcpp::SHT_PROGBITS,	// unwind_section_type | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | class Output_data_plt_arm_nacl : public Output_data_plt_arm<big_endian> | 
 | { | 
 |  public: | 
 |   Output_data_plt_arm_nacl( | 
 |       Layout* layout, | 
 |       Arm_output_data_got<big_endian>* got, | 
 |       Output_data_space* got_plt, | 
 |       Output_data_space* got_irelative) | 
 |     : Output_data_plt_arm<big_endian>(layout, 16, got, got_plt, got_irelative) | 
 |   { } | 
 |  | 
 |  protected: | 
 |   // Return the offset of the first non-reserved PLT entry. | 
 |   virtual unsigned int | 
 |   do_first_plt_entry_offset() const | 
 |   { return sizeof(first_plt_entry); } | 
 |  | 
 |   // Return the size of a PLT entry. | 
 |   virtual unsigned int | 
 |   do_get_plt_entry_size() const | 
 |   { return sizeof(plt_entry); } | 
 |  | 
 |   virtual void | 
 |   do_fill_first_plt_entry(unsigned char* pov, | 
 | 			  Arm_address got_address, | 
 | 			  Arm_address plt_address); | 
 |  | 
 |   virtual void | 
 |   do_fill_plt_entry(unsigned char* pov, | 
 | 		    Arm_address got_address, | 
 | 		    Arm_address plt_address, | 
 | 		    unsigned int got_offset, | 
 | 		    unsigned int plt_offset); | 
 |  | 
 |  private: | 
 |   inline uint32_t arm_movw_immediate(uint32_t value) | 
 |   { | 
 |     return (value & 0x00000fff) | ((value & 0x0000f000) << 4); | 
 |   } | 
 |  | 
 |   inline uint32_t arm_movt_immediate(uint32_t value) | 
 |   { | 
 |     return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12); | 
 |   } | 
 |  | 
 |   // Template for the first PLT entry. | 
 |   static const uint32_t first_plt_entry[16]; | 
 |  | 
 |   // Template for subsequent PLT entries. | 
 |   static const uint32_t plt_entry[4]; | 
 | }; | 
 |  | 
 | // The first entry in the PLT. | 
 | template<bool big_endian> | 
 | const uint32_t Output_data_plt_arm_nacl<big_endian>::first_plt_entry[16] = | 
 | { | 
 |   // First bundle: | 
 |   0xe300c000,                           // movw	ip, #:lower16:&GOT[2]-.+8 | 
 |   0xe340c000,                           // movt	ip, #:upper16:&GOT[2]-.+8 | 
 |   0xe08cc00f,                           // add	ip, ip, pc | 
 |   0xe52dc008,                           // str	ip, [sp, #-8]! | 
 |   // Second bundle: | 
 |   0xe3ccc103,                           // bic	ip, ip, #0xc0000000 | 
 |   0xe59cc000,                           // ldr	ip, [ip] | 
 |   0xe3ccc13f,                           // bic	ip, ip, #0xc000000f | 
 |   0xe12fff1c,                           // bx	ip | 
 |   // Third bundle: | 
 |   0xe320f000,                           // nop | 
 |   0xe320f000,                           // nop | 
 |   0xe320f000,                           // nop | 
 |   // .Lplt_tail: | 
 |   0xe50dc004,                           // str	ip, [sp, #-4] | 
 |   // Fourth bundle: | 
 |   0xe3ccc103,                           // bic	ip, ip, #0xc0000000 | 
 |   0xe59cc000,                           // ldr	ip, [ip] | 
 |   0xe3ccc13f,                           // bic	ip, ip, #0xc000000f | 
 |   0xe12fff1c,                           // bx	ip | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm_nacl<big_endian>::do_fill_first_plt_entry( | 
 |     unsigned char* pov, | 
 |     Arm_address got_address, | 
 |     Arm_address plt_address) | 
 | { | 
 |   // Write first PLT entry.  All but first two words are constants. | 
 |   const size_t num_first_plt_words = (sizeof(first_plt_entry) | 
 | 				      / sizeof(first_plt_entry[0])); | 
 |  | 
 |   int32_t got_displacement = got_address + 8 - (plt_address + 16); | 
 |  | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 0, first_plt_entry[0] | arm_movw_immediate (got_displacement)); | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 4, first_plt_entry[1] | arm_movt_immediate (got_displacement)); | 
 |  | 
 |   for (size_t i = 2; i < num_first_plt_words; ++i) | 
 |     elfcpp::Swap<32, big_endian>::writeval(pov + i * 4, first_plt_entry[i]); | 
 | } | 
 |  | 
 | // Subsequent entries in the PLT. | 
 |  | 
 | template<bool big_endian> | 
 | const uint32_t Output_data_plt_arm_nacl<big_endian>::plt_entry[4] = | 
 | { | 
 |   0xe300c000,                           // movw	ip, #:lower16:&GOT[n]-.+8 | 
 |   0xe340c000,                           // movt	ip, #:upper16:&GOT[n]-.+8 | 
 |   0xe08cc00f,                           // add	ip, ip, pc | 
 |   0xea000000,                           // b	.Lplt_tail | 
 | }; | 
 |  | 
 | template<bool big_endian> | 
 | void | 
 | Output_data_plt_arm_nacl<big_endian>::do_fill_plt_entry( | 
 |     unsigned char* pov, | 
 |     Arm_address got_address, | 
 |     Arm_address plt_address, | 
 |     unsigned int got_offset, | 
 |     unsigned int plt_offset) | 
 | { | 
 |   // Calculate the displacement between the PLT slot and the | 
 |   // common tail that's part of the special initial PLT slot. | 
 |   int32_t tail_displacement = (plt_address + (11 * sizeof(uint32_t)) | 
 | 			       - (plt_address + plt_offset | 
 | 				  + sizeof(plt_entry) + sizeof(uint32_t))); | 
 |   gold_assert((tail_displacement & 3) == 0); | 
 |   tail_displacement >>= 2; | 
 |  | 
 |   gold_assert ((tail_displacement & 0xff000000) == 0 | 
 | 	       || (-tail_displacement & 0xff000000) == 0); | 
 |  | 
 |   // Calculate the displacement between the PLT slot and the entry | 
 |   // in the GOT.  The offset accounts for the value produced by | 
 |   // adding to pc in the penultimate instruction of the PLT stub. | 
 |   const int32_t got_displacement = (got_address + got_offset | 
 | 				    - (plt_address + sizeof(plt_entry))); | 
 |  | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 0, plt_entry[0] | arm_movw_immediate (got_displacement)); | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 4, plt_entry[1] | arm_movt_immediate (got_displacement)); | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 8, plt_entry[2]); | 
 |   elfcpp::Swap<32, big_endian>::writeval | 
 |     (pov + 12, plt_entry[3] | (tail_displacement & 0x00ffffff)); | 
 | } | 
 |  | 
 | // Target selectors. | 
 |  | 
 | template<bool big_endian> | 
 | class Target_selector_arm_nacl | 
 |   : public Target_selector_nacl<Target_selector_arm<big_endian>, | 
 | 				Target_arm_nacl<big_endian> > | 
 | { | 
 |  public: | 
 |   Target_selector_arm_nacl() | 
 |     : Target_selector_nacl<Target_selector_arm<big_endian>, | 
 | 			   Target_arm_nacl<big_endian> >( | 
 | 	  "arm", | 
 | 	  big_endian ? "elf32-bigarm-nacl" : "elf32-littlearm-nacl", | 
 | 	  big_endian ? "armelfb_nacl" : "armelf_nacl") | 
 |   { } | 
 | }; | 
 |  | 
 | Target_selector_arm_nacl<false> target_selector_arm; | 
 | Target_selector_arm_nacl<true> target_selector_armbe; | 
 |  | 
 | } // End anonymous namespace. |