| /* ELF executable support for BFD. |
| |
| Copyright (C) 1993-2021 Free Software Foundation, Inc. |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| MA 02110-1301, USA. */ |
| |
| |
| /* |
| SECTION |
| ELF backends |
| |
| BFD support for ELF formats is being worked on. |
| Currently, the best supported back ends are for sparc and i386 |
| (running svr4 or Solaris 2). |
| |
| Documentation of the internals of the support code still needs |
| to be written. The code is changing quickly enough that we |
| haven't bothered yet. */ |
| |
| /* For sparc64-cross-sparc32. */ |
| #define _SYSCALL32 |
| #include "sysdep.h" |
| #include <limits.h> |
| #include "bfd.h" |
| #include "bfdlink.h" |
| #include "libbfd.h" |
| #define ARCH_SIZE 0 |
| #include "elf-bfd.h" |
| #include "libiberty.h" |
| #include "safe-ctype.h" |
| #include "elf-linux-core.h" |
| |
| #ifdef CORE_HEADER |
| #include CORE_HEADER |
| #endif |
| |
| static int elf_sort_sections (const void *, const void *); |
| static bool assign_file_positions_except_relocs (bfd *, struct bfd_link_info *); |
| static bool swap_out_syms (bfd *, struct elf_strtab_hash **, int, |
| struct bfd_link_info *); |
| static bool elf_parse_notes (bfd *abfd, char *buf, size_t size, |
| file_ptr offset, size_t align); |
| |
| /* Swap version information in and out. The version information is |
| currently size independent. If that ever changes, this code will |
| need to move into elfcode.h. */ |
| |
| /* Swap in a Verdef structure. */ |
| |
| void |
| _bfd_elf_swap_verdef_in (bfd *abfd, |
| const Elf_External_Verdef *src, |
| Elf_Internal_Verdef *dst) |
| { |
| dst->vd_version = H_GET_16 (abfd, src->vd_version); |
| dst->vd_flags = H_GET_16 (abfd, src->vd_flags); |
| dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx); |
| dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt); |
| dst->vd_hash = H_GET_32 (abfd, src->vd_hash); |
| dst->vd_aux = H_GET_32 (abfd, src->vd_aux); |
| dst->vd_next = H_GET_32 (abfd, src->vd_next); |
| } |
| |
| /* Swap out a Verdef structure. */ |
| |
| void |
| _bfd_elf_swap_verdef_out (bfd *abfd, |
| const Elf_Internal_Verdef *src, |
| Elf_External_Verdef *dst) |
| { |
| H_PUT_16 (abfd, src->vd_version, dst->vd_version); |
| H_PUT_16 (abfd, src->vd_flags, dst->vd_flags); |
| H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx); |
| H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt); |
| H_PUT_32 (abfd, src->vd_hash, dst->vd_hash); |
| H_PUT_32 (abfd, src->vd_aux, dst->vd_aux); |
| H_PUT_32 (abfd, src->vd_next, dst->vd_next); |
| } |
| |
| /* Swap in a Verdaux structure. */ |
| |
| void |
| _bfd_elf_swap_verdaux_in (bfd *abfd, |
| const Elf_External_Verdaux *src, |
| Elf_Internal_Verdaux *dst) |
| { |
| dst->vda_name = H_GET_32 (abfd, src->vda_name); |
| dst->vda_next = H_GET_32 (abfd, src->vda_next); |
| } |
| |
| /* Swap out a Verdaux structure. */ |
| |
| void |
| _bfd_elf_swap_verdaux_out (bfd *abfd, |
| const Elf_Internal_Verdaux *src, |
| Elf_External_Verdaux *dst) |
| { |
| H_PUT_32 (abfd, src->vda_name, dst->vda_name); |
| H_PUT_32 (abfd, src->vda_next, dst->vda_next); |
| } |
| |
| /* Swap in a Verneed structure. */ |
| |
| void |
| _bfd_elf_swap_verneed_in (bfd *abfd, |
| const Elf_External_Verneed *src, |
| Elf_Internal_Verneed *dst) |
| { |
| dst->vn_version = H_GET_16 (abfd, src->vn_version); |
| dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt); |
| dst->vn_file = H_GET_32 (abfd, src->vn_file); |
| dst->vn_aux = H_GET_32 (abfd, src->vn_aux); |
| dst->vn_next = H_GET_32 (abfd, src->vn_next); |
| } |
| |
| /* Swap out a Verneed structure. */ |
| |
| void |
| _bfd_elf_swap_verneed_out (bfd *abfd, |
| const Elf_Internal_Verneed *src, |
| Elf_External_Verneed *dst) |
| { |
| H_PUT_16 (abfd, src->vn_version, dst->vn_version); |
| H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt); |
| H_PUT_32 (abfd, src->vn_file, dst->vn_file); |
| H_PUT_32 (abfd, src->vn_aux, dst->vn_aux); |
| H_PUT_32 (abfd, src->vn_next, dst->vn_next); |
| } |
| |
| /* Swap in a Vernaux structure. */ |
| |
| void |
| _bfd_elf_swap_vernaux_in (bfd *abfd, |
| const Elf_External_Vernaux *src, |
| Elf_Internal_Vernaux *dst) |
| { |
| dst->vna_hash = H_GET_32 (abfd, src->vna_hash); |
| dst->vna_flags = H_GET_16 (abfd, src->vna_flags); |
| dst->vna_other = H_GET_16 (abfd, src->vna_other); |
| dst->vna_name = H_GET_32 (abfd, src->vna_name); |
| dst->vna_next = H_GET_32 (abfd, src->vna_next); |
| } |
| |
| /* Swap out a Vernaux structure. */ |
| |
| void |
| _bfd_elf_swap_vernaux_out (bfd *abfd, |
| const Elf_Internal_Vernaux *src, |
| Elf_External_Vernaux *dst) |
| { |
| H_PUT_32 (abfd, src->vna_hash, dst->vna_hash); |
| H_PUT_16 (abfd, src->vna_flags, dst->vna_flags); |
| H_PUT_16 (abfd, src->vna_other, dst->vna_other); |
| H_PUT_32 (abfd, src->vna_name, dst->vna_name); |
| H_PUT_32 (abfd, src->vna_next, dst->vna_next); |
| } |
| |
| /* Swap in a Versym structure. */ |
| |
| void |
| _bfd_elf_swap_versym_in (bfd *abfd, |
| const Elf_External_Versym *src, |
| Elf_Internal_Versym *dst) |
| { |
| dst->vs_vers = H_GET_16 (abfd, src->vs_vers); |
| } |
| |
| /* Swap out a Versym structure. */ |
| |
| void |
| _bfd_elf_swap_versym_out (bfd *abfd, |
| const Elf_Internal_Versym *src, |
| Elf_External_Versym *dst) |
| { |
| H_PUT_16 (abfd, src->vs_vers, dst->vs_vers); |
| } |
| |
| /* Standard ELF hash function. Do not change this function; you will |
| cause invalid hash tables to be generated. */ |
| |
| unsigned long |
| bfd_elf_hash (const char *namearg) |
| { |
| const unsigned char *name = (const unsigned char *) namearg; |
| unsigned long h = 0; |
| unsigned long g; |
| int ch; |
| |
| while ((ch = *name++) != '\0') |
| { |
| h = (h << 4) + ch; |
| if ((g = (h & 0xf0000000)) != 0) |
| { |
| h ^= g >> 24; |
| /* The ELF ABI says `h &= ~g', but this is equivalent in |
| this case and on some machines one insn instead of two. */ |
| h ^= g; |
| } |
| } |
| return h & 0xffffffff; |
| } |
| |
| /* DT_GNU_HASH hash function. Do not change this function; you will |
| cause invalid hash tables to be generated. */ |
| |
| unsigned long |
| bfd_elf_gnu_hash (const char *namearg) |
| { |
| const unsigned char *name = (const unsigned char *) namearg; |
| unsigned long h = 5381; |
| unsigned char ch; |
| |
| while ((ch = *name++) != '\0') |
| h = (h << 5) + h + ch; |
| return h & 0xffffffff; |
| } |
| |
| /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with |
| the object_id field of an elf_obj_tdata field set to OBJECT_ID. */ |
| bool |
| bfd_elf_allocate_object (bfd *abfd, |
| size_t object_size, |
| enum elf_target_id object_id) |
| { |
| BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata)); |
| abfd->tdata.any = bfd_zalloc (abfd, object_size); |
| if (abfd->tdata.any == NULL) |
| return false; |
| |
| elf_object_id (abfd) = object_id; |
| if (abfd->direction != read_direction) |
| { |
| struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o); |
| if (o == NULL) |
| return false; |
| elf_tdata (abfd)->o = o; |
| elf_program_header_size (abfd) = (bfd_size_type) -1; |
| } |
| return true; |
| } |
| |
| |
| bool |
| bfd_elf_make_object (bfd *abfd) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata), |
| bed->target_id); |
| } |
| |
| bool |
| bfd_elf_mkcorefile (bfd *abfd) |
| { |
| /* I think this can be done just like an object file. */ |
| if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd)) |
| return false; |
| elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core)); |
| return elf_tdata (abfd)->core != NULL; |
| } |
| |
| char * |
| bfd_elf_get_str_section (bfd *abfd, unsigned int shindex) |
| { |
| Elf_Internal_Shdr **i_shdrp; |
| bfd_byte *shstrtab = NULL; |
| file_ptr offset; |
| bfd_size_type shstrtabsize; |
| |
| i_shdrp = elf_elfsections (abfd); |
| if (i_shdrp == 0 |
| || shindex >= elf_numsections (abfd) |
| || i_shdrp[shindex] == 0) |
| return NULL; |
| |
| shstrtab = i_shdrp[shindex]->contents; |
| if (shstrtab == NULL) |
| { |
| /* No cached one, attempt to read, and cache what we read. */ |
| offset = i_shdrp[shindex]->sh_offset; |
| shstrtabsize = i_shdrp[shindex]->sh_size; |
| |
| /* Allocate and clear an extra byte at the end, to prevent crashes |
| in case the string table is not terminated. */ |
| if (shstrtabsize + 1 <= 1 |
| || bfd_seek (abfd, offset, SEEK_SET) != 0 |
| || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1, |
| shstrtabsize)) == NULL) |
| { |
| /* Once we've failed to read it, make sure we don't keep |
| trying. Otherwise, we'll keep allocating space for |
| the string table over and over. */ |
| i_shdrp[shindex]->sh_size = 0; |
| } |
| else |
| shstrtab[shstrtabsize] = '\0'; |
| i_shdrp[shindex]->contents = shstrtab; |
| } |
| return (char *) shstrtab; |
| } |
| |
| char * |
| bfd_elf_string_from_elf_section (bfd *abfd, |
| unsigned int shindex, |
| unsigned int strindex) |
| { |
| Elf_Internal_Shdr *hdr; |
| |
| if (strindex == 0) |
| return ""; |
| |
| if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd)) |
| return NULL; |
| |
| hdr = elf_elfsections (abfd)[shindex]; |
| |
| if (hdr->contents == NULL) |
| { |
| if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS) |
| { |
| /* PR 17512: file: f057ec89. */ |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: attempt to load strings from" |
| " a non-string section (number %d)"), |
| abfd, shindex); |
| return NULL; |
| } |
| |
| if (bfd_elf_get_str_section (abfd, shindex) == NULL) |
| return NULL; |
| } |
| else |
| { |
| /* PR 24273: The string section's contents may have already |
| been loaded elsewhere, eg because a corrupt file has the |
| string section index in the ELF header pointing at a group |
| section. So be paranoid, and test that the last byte of |
| the section is zero. */ |
| if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0) |
| return NULL; |
| } |
| |
| if (strindex >= hdr->sh_size) |
| { |
| unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx; |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"), |
| abfd, strindex, (uint64_t) hdr->sh_size, |
| (shindex == shstrndx && strindex == hdr->sh_name |
| ? ".shstrtab" |
| : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name))); |
| return NULL; |
| } |
| |
| return ((char *) hdr->contents) + strindex; |
| } |
| |
| /* Read and convert symbols to internal format. |
| SYMCOUNT specifies the number of symbols to read, starting from |
| symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF |
| are non-NULL, they are used to store the internal symbols, external |
| symbols, and symbol section index extensions, respectively. |
| Returns a pointer to the internal symbol buffer (malloced if necessary) |
| or NULL if there were no symbols or some kind of problem. */ |
| |
| Elf_Internal_Sym * |
| bfd_elf_get_elf_syms (bfd *ibfd, |
| Elf_Internal_Shdr *symtab_hdr, |
| size_t symcount, |
| size_t symoffset, |
| Elf_Internal_Sym *intsym_buf, |
| void *extsym_buf, |
| Elf_External_Sym_Shndx *extshndx_buf) |
| { |
| Elf_Internal_Shdr *shndx_hdr; |
| void *alloc_ext; |
| const bfd_byte *esym; |
| Elf_External_Sym_Shndx *alloc_extshndx; |
| Elf_External_Sym_Shndx *shndx; |
| Elf_Internal_Sym *alloc_intsym; |
| Elf_Internal_Sym *isym; |
| Elf_Internal_Sym *isymend; |
| const struct elf_backend_data *bed; |
| size_t extsym_size; |
| size_t amt; |
| file_ptr pos; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| abort (); |
| |
| if (symcount == 0) |
| return intsym_buf; |
| |
| /* Normal syms might have section extension entries. */ |
| shndx_hdr = NULL; |
| if (elf_symtab_shndx_list (ibfd) != NULL) |
| { |
| elf_section_list * entry; |
| Elf_Internal_Shdr **sections = elf_elfsections (ibfd); |
| |
| /* Find an index section that is linked to this symtab section. */ |
| for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next) |
| { |
| /* PR 20063. */ |
| if (entry->hdr.sh_link >= elf_numsections (ibfd)) |
| continue; |
| |
| if (sections[entry->hdr.sh_link] == symtab_hdr) |
| { |
| shndx_hdr = & entry->hdr; |
| break; |
| }; |
| } |
| |
| if (shndx_hdr == NULL) |
| { |
| if (symtab_hdr == & elf_symtab_hdr (ibfd)) |
| /* Not really accurate, but this was how the old code used to work. */ |
| shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr; |
| /* Otherwise we do nothing. The assumption is that |
| the index table will not be needed. */ |
| } |
| } |
| |
| /* Read the symbols. */ |
| alloc_ext = NULL; |
| alloc_extshndx = NULL; |
| alloc_intsym = NULL; |
| bed = get_elf_backend_data (ibfd); |
| extsym_size = bed->s->sizeof_sym; |
| if (_bfd_mul_overflow (symcount, extsym_size, &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| intsym_buf = NULL; |
| goto out; |
| } |
| pos = symtab_hdr->sh_offset + symoffset * extsym_size; |
| if (extsym_buf == NULL) |
| { |
| alloc_ext = bfd_malloc (amt); |
| extsym_buf = alloc_ext; |
| } |
| if (extsym_buf == NULL |
| || bfd_seek (ibfd, pos, SEEK_SET) != 0 |
| || bfd_bread (extsym_buf, amt, ibfd) != amt) |
| { |
| intsym_buf = NULL; |
| goto out; |
| } |
| |
| if (shndx_hdr == NULL || shndx_hdr->sh_size == 0) |
| extshndx_buf = NULL; |
| else |
| { |
| if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| intsym_buf = NULL; |
| goto out; |
| } |
| pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx); |
| if (extshndx_buf == NULL) |
| { |
| alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); |
| extshndx_buf = alloc_extshndx; |
| } |
| if (extshndx_buf == NULL |
| || bfd_seek (ibfd, pos, SEEK_SET) != 0 |
| || bfd_bread (extshndx_buf, amt, ibfd) != amt) |
| { |
| intsym_buf = NULL; |
| goto out; |
| } |
| } |
| |
| if (intsym_buf == NULL) |
| { |
| if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto out; |
| } |
| alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt); |
| intsym_buf = alloc_intsym; |
| if (intsym_buf == NULL) |
| goto out; |
| } |
| |
| /* Convert the symbols to internal form. */ |
| isymend = intsym_buf + symcount; |
| for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf, |
| shndx = extshndx_buf; |
| isym < isymend; |
| esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL) |
| if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym)) |
| { |
| symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size; |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB symbol number %lu references" |
| " nonexistent SHT_SYMTAB_SHNDX section"), |
| ibfd, (unsigned long) symoffset); |
| free (alloc_intsym); |
| intsym_buf = NULL; |
| goto out; |
| } |
| |
| out: |
| free (alloc_ext); |
| free (alloc_extshndx); |
| |
| return intsym_buf; |
| } |
| |
| /* Look up a symbol name. */ |
| const char * |
| bfd_elf_sym_name (bfd *abfd, |
| Elf_Internal_Shdr *symtab_hdr, |
| Elf_Internal_Sym *isym, |
| asection *sym_sec) |
| { |
| const char *name; |
| unsigned int iname = isym->st_name; |
| unsigned int shindex = symtab_hdr->sh_link; |
| |
| if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION |
| /* Check for a bogus st_shndx to avoid crashing. */ |
| && isym->st_shndx < elf_numsections (abfd)) |
| { |
| iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name; |
| shindex = elf_elfheader (abfd)->e_shstrndx; |
| } |
| |
| name = bfd_elf_string_from_elf_section (abfd, shindex, iname); |
| if (name == NULL) |
| name = "(null)"; |
| else if (sym_sec && *name == '\0') |
| name = bfd_section_name (sym_sec); |
| |
| return name; |
| } |
| |
| /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP |
| sections. The first element is the flags, the rest are section |
| pointers. */ |
| |
| typedef union elf_internal_group { |
| Elf_Internal_Shdr *shdr; |
| unsigned int flags; |
| } Elf_Internal_Group; |
| |
| /* Return the name of the group signature symbol. Why isn't the |
| signature just a string? */ |
| |
| static const char * |
| group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr) |
| { |
| Elf_Internal_Shdr *hdr; |
| unsigned char esym[sizeof (Elf64_External_Sym)]; |
| Elf_External_Sym_Shndx eshndx; |
| Elf_Internal_Sym isym; |
| |
| /* First we need to ensure the symbol table is available. Make sure |
| that it is a symbol table section. */ |
| if (ghdr->sh_link >= elf_numsections (abfd)) |
| return NULL; |
| hdr = elf_elfsections (abfd) [ghdr->sh_link]; |
| if (hdr->sh_type != SHT_SYMTAB |
| || ! bfd_section_from_shdr (abfd, ghdr->sh_link)) |
| return NULL; |
| |
| /* Go read the symbol. */ |
| hdr = &elf_tdata (abfd)->symtab_hdr; |
| if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info, |
| &isym, esym, &eshndx) == NULL) |
| return NULL; |
| |
| return bfd_elf_sym_name (abfd, hdr, &isym, NULL); |
| } |
| |
| /* Set next_in_group list pointer, and group name for NEWSECT. */ |
| |
| static bool |
| setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect) |
| { |
| unsigned int num_group = elf_tdata (abfd)->num_group; |
| |
| /* If num_group is zero, read in all SHT_GROUP sections. The count |
| is set to -1 if there are no SHT_GROUP sections. */ |
| if (num_group == 0) |
| { |
| unsigned int i, shnum; |
| |
| /* First count the number of groups. If we have a SHT_GROUP |
| section with just a flag word (ie. sh_size is 4), ignore it. */ |
| shnum = elf_numsections (abfd); |
| num_group = 0; |
| |
| #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \ |
| ( (shdr)->sh_type == SHT_GROUP \ |
| && (shdr)->sh_size >= minsize \ |
| && (shdr)->sh_entsize == GRP_ENTRY_SIZE \ |
| && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0) |
| |
| for (i = 0; i < shnum; i++) |
| { |
| Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; |
| |
| if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) |
| num_group += 1; |
| } |
| |
| if (num_group == 0) |
| { |
| num_group = (unsigned) -1; |
| elf_tdata (abfd)->num_group = num_group; |
| elf_tdata (abfd)->group_sect_ptr = NULL; |
| } |
| else |
| { |
| /* We keep a list of elf section headers for group sections, |
| so we can find them quickly. */ |
| size_t amt; |
| |
| elf_tdata (abfd)->num_group = num_group; |
| amt = num_group * sizeof (Elf_Internal_Shdr *); |
| elf_tdata (abfd)->group_sect_ptr |
| = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt); |
| if (elf_tdata (abfd)->group_sect_ptr == NULL) |
| return false; |
| num_group = 0; |
| |
| for (i = 0; i < shnum; i++) |
| { |
| Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i]; |
| |
| if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE)) |
| { |
| unsigned char *src; |
| Elf_Internal_Group *dest; |
| |
| /* Make sure the group section has a BFD section |
| attached to it. */ |
| if (!bfd_section_from_shdr (abfd, i)) |
| return false; |
| |
| /* Add to list of sections. */ |
| elf_tdata (abfd)->group_sect_ptr[num_group] = shdr; |
| num_group += 1; |
| |
| /* Read the raw contents. */ |
| BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0); |
| shdr->contents = NULL; |
| if (_bfd_mul_overflow (shdr->sh_size, |
| sizeof (*dest) / 4, &amt) |
| || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0 |
| || !(shdr->contents |
| = _bfd_alloc_and_read (abfd, amt, shdr->sh_size))) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: invalid size field in group section" |
| " header: %#" PRIx64 ""), |
| abfd, (uint64_t) shdr->sh_size); |
| bfd_set_error (bfd_error_bad_value); |
| -- num_group; |
| continue; |
| } |
| |
| /* Translate raw contents, a flag word followed by an |
| array of elf section indices all in target byte order, |
| to the flag word followed by an array of elf section |
| pointers. */ |
| src = shdr->contents + shdr->sh_size; |
| dest = (Elf_Internal_Group *) (shdr->contents + amt); |
| |
| while (1) |
| { |
| unsigned int idx; |
| |
| src -= 4; |
| --dest; |
| idx = H_GET_32 (abfd, src); |
| if (src == shdr->contents) |
| { |
| dest->shdr = NULL; |
| dest->flags = idx; |
| if (shdr->bfd_section != NULL && (idx & GRP_COMDAT)) |
| shdr->bfd_section->flags |
| |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| break; |
| } |
| if (idx < shnum) |
| { |
| dest->shdr = elf_elfsections (abfd)[idx]; |
| /* PR binutils/23199: All sections in a |
| section group should be marked with |
| SHF_GROUP. But some tools generate |
| broken objects without SHF_GROUP. Fix |
| them up here. */ |
| dest->shdr->sh_flags |= SHF_GROUP; |
| } |
| if (idx >= shnum |
| || dest->shdr->sh_type == SHT_GROUP) |
| { |
| _bfd_error_handler |
| (_("%pB: invalid entry in SHT_GROUP section [%u]"), |
| abfd, i); |
| dest->shdr = NULL; |
| } |
| } |
| } |
| } |
| |
| /* PR 17510: Corrupt binaries might contain invalid groups. */ |
| if (num_group != (unsigned) elf_tdata (abfd)->num_group) |
| { |
| elf_tdata (abfd)->num_group = num_group; |
| |
| /* If all groups are invalid then fail. */ |
| if (num_group == 0) |
| { |
| elf_tdata (abfd)->group_sect_ptr = NULL; |
| elf_tdata (abfd)->num_group = num_group = -1; |
| _bfd_error_handler |
| (_("%pB: no valid group sections found"), abfd); |
| bfd_set_error (bfd_error_bad_value); |
| } |
| } |
| } |
| } |
| |
| if (num_group != (unsigned) -1) |
| { |
| unsigned int search_offset = elf_tdata (abfd)->group_search_offset; |
| unsigned int j; |
| |
| for (j = 0; j < num_group; j++) |
| { |
| /* Begin search from previous found group. */ |
| unsigned i = (j + search_offset) % num_group; |
| |
| Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; |
| Elf_Internal_Group *idx; |
| bfd_size_type n_elt; |
| |
| if (shdr == NULL) |
| continue; |
| |
| idx = (Elf_Internal_Group *) shdr->contents; |
| if (idx == NULL || shdr->sh_size < 4) |
| { |
| /* See PR 21957 for a reproducer. */ |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: group section '%pA' has no contents"), |
| abfd, shdr->bfd_section); |
| elf_tdata (abfd)->group_sect_ptr[i] = NULL; |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| n_elt = shdr->sh_size / 4; |
| |
| /* Look through this group's sections to see if current |
| section is a member. */ |
| while (--n_elt != 0) |
| if ((++idx)->shdr == hdr) |
| { |
| asection *s = NULL; |
| |
| /* We are a member of this group. Go looking through |
| other members to see if any others are linked via |
| next_in_group. */ |
| idx = (Elf_Internal_Group *) shdr->contents; |
| n_elt = shdr->sh_size / 4; |
| while (--n_elt != 0) |
| if ((++idx)->shdr != NULL |
| && (s = idx->shdr->bfd_section) != NULL |
| && elf_next_in_group (s) != NULL) |
| break; |
| if (n_elt != 0) |
| { |
| /* Snarf the group name from other member, and |
| insert current section in circular list. */ |
| elf_group_name (newsect) = elf_group_name (s); |
| elf_next_in_group (newsect) = elf_next_in_group (s); |
| elf_next_in_group (s) = newsect; |
| } |
| else |
| { |
| const char *gname; |
| |
| gname = group_signature (abfd, shdr); |
| if (gname == NULL) |
| return false; |
| elf_group_name (newsect) = gname; |
| |
| /* Start a circular list with one element. */ |
| elf_next_in_group (newsect) = newsect; |
| } |
| |
| /* If the group section has been created, point to the |
| new member. */ |
| if (shdr->bfd_section != NULL) |
| elf_next_in_group (shdr->bfd_section) = newsect; |
| |
| elf_tdata (abfd)->group_search_offset = i; |
| j = num_group - 1; |
| break; |
| } |
| } |
| } |
| |
| if (elf_group_name (newsect) == NULL) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: no group info for section '%pA'"), |
| abfd, newsect); |
| return false; |
| } |
| return true; |
| } |
| |
| bool |
| _bfd_elf_setup_sections (bfd *abfd) |
| { |
| unsigned int i; |
| unsigned int num_group = elf_tdata (abfd)->num_group; |
| bool result = true; |
| asection *s; |
| |
| /* Process SHF_LINK_ORDER. */ |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr; |
| if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0) |
| { |
| unsigned int elfsec = this_hdr->sh_link; |
| /* An sh_link value of 0 is now allowed. It indicates that linked |
| to section has already been discarded, but that the current |
| section has been retained for some other reason. This linking |
| section is still a candidate for later garbage collection |
| however. */ |
| if (elfsec == 0) |
| { |
| elf_linked_to_section (s) = NULL; |
| } |
| else |
| { |
| asection *linksec = NULL; |
| |
| if (elfsec < elf_numsections (abfd)) |
| { |
| this_hdr = elf_elfsections (abfd)[elfsec]; |
| linksec = this_hdr->bfd_section; |
| } |
| |
| /* PR 1991, 2008: |
| Some strip/objcopy may leave an incorrect value in |
| sh_link. We don't want to proceed. */ |
| if (linksec == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: sh_link [%d] in section `%pA' is incorrect"), |
| s->owner, elfsec, s); |
| result = false; |
| } |
| |
| elf_linked_to_section (s) = linksec; |
| } |
| } |
| else if (this_hdr->sh_type == SHT_GROUP |
| && elf_next_in_group (s) == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"), |
| abfd, elf_section_data (s)->this_idx); |
| result = false; |
| } |
| } |
| |
| /* Process section groups. */ |
| if (num_group == (unsigned) -1) |
| return result; |
| |
| for (i = 0; i < num_group; i++) |
| { |
| Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i]; |
| Elf_Internal_Group *idx; |
| unsigned int n_elt; |
| |
| /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */ |
| if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: section group entry number %u is corrupt"), |
| abfd, i); |
| result = false; |
| continue; |
| } |
| |
| idx = (Elf_Internal_Group *) shdr->contents; |
| n_elt = shdr->sh_size / 4; |
| |
| while (--n_elt != 0) |
| { |
| ++ idx; |
| |
| if (idx->shdr == NULL) |
| continue; |
| else if (idx->shdr->bfd_section) |
| elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section; |
| else if (idx->shdr->sh_type != SHT_RELA |
| && idx->shdr->sh_type != SHT_REL) |
| { |
| /* There are some unknown sections in the group. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown type [%#x] section `%s' in group [%pA]"), |
| abfd, |
| idx->shdr->sh_type, |
| bfd_elf_string_from_elf_section (abfd, |
| (elf_elfheader (abfd) |
| ->e_shstrndx), |
| idx->shdr->sh_name), |
| shdr->bfd_section); |
| result = false; |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| bool |
| bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) |
| { |
| return elf_next_in_group (sec) != NULL; |
| } |
| |
| const char * |
| bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec) |
| { |
| if (elf_sec_group (sec) != NULL) |
| return elf_group_name (sec); |
| return NULL; |
| } |
| |
| static char * |
| convert_debug_to_zdebug (bfd *abfd, const char *name) |
| { |
| unsigned int len = strlen (name); |
| char *new_name = bfd_alloc (abfd, len + 2); |
| if (new_name == NULL) |
| return NULL; |
| new_name[0] = '.'; |
| new_name[1] = 'z'; |
| memcpy (new_name + 2, name + 1, len); |
| return new_name; |
| } |
| |
| static char * |
| convert_zdebug_to_debug (bfd *abfd, const char *name) |
| { |
| unsigned int len = strlen (name); |
| char *new_name = bfd_alloc (abfd, len); |
| if (new_name == NULL) |
| return NULL; |
| new_name[0] = '.'; |
| memcpy (new_name + 1, name + 2, len - 1); |
| return new_name; |
| } |
| |
| /* This a copy of lto_section defined in GCC (lto-streamer.h). */ |
| |
| struct lto_section |
| { |
| int16_t major_version; |
| int16_t minor_version; |
| unsigned char slim_object; |
| |
| /* Flags is a private field that is not defined publicly. */ |
| uint16_t flags; |
| }; |
| |
| /* Make a BFD section from an ELF section. We store a pointer to the |
| BFD section in the bfd_section field of the header. */ |
| |
| bool |
| _bfd_elf_make_section_from_shdr (bfd *abfd, |
| Elf_Internal_Shdr *hdr, |
| const char *name, |
| int shindex) |
| { |
| asection *newsect; |
| flagword flags; |
| const struct elf_backend_data *bed; |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| |
| if (hdr->bfd_section != NULL) |
| return true; |
| |
| newsect = bfd_make_section_anyway (abfd, name); |
| if (newsect == NULL) |
| return false; |
| |
| hdr->bfd_section = newsect; |
| elf_section_data (newsect)->this_hdr = *hdr; |
| elf_section_data (newsect)->this_idx = shindex; |
| |
| /* Always use the real type/flags. */ |
| elf_section_type (newsect) = hdr->sh_type; |
| elf_section_flags (newsect) = hdr->sh_flags; |
| |
| newsect->filepos = hdr->sh_offset; |
| |
| flags = SEC_NO_FLAGS; |
| if (hdr->sh_type != SHT_NOBITS) |
| flags |= SEC_HAS_CONTENTS; |
| if (hdr->sh_type == SHT_GROUP) |
| flags |= SEC_GROUP; |
| if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| { |
| flags |= SEC_ALLOC; |
| if (hdr->sh_type != SHT_NOBITS) |
| flags |= SEC_LOAD; |
| } |
| if ((hdr->sh_flags & SHF_WRITE) == 0) |
| flags |= SEC_READONLY; |
| if ((hdr->sh_flags & SHF_EXECINSTR) != 0) |
| flags |= SEC_CODE; |
| else if ((flags & SEC_LOAD) != 0) |
| flags |= SEC_DATA; |
| if ((hdr->sh_flags & SHF_MERGE) != 0) |
| { |
| flags |= SEC_MERGE; |
| newsect->entsize = hdr->sh_entsize; |
| } |
| if ((hdr->sh_flags & SHF_STRINGS) != 0) |
| flags |= SEC_STRINGS; |
| if (hdr->sh_flags & SHF_GROUP) |
| if (!setup_group (abfd, hdr, newsect)) |
| return false; |
| if ((hdr->sh_flags & SHF_TLS) != 0) |
| flags |= SEC_THREAD_LOCAL; |
| if ((hdr->sh_flags & SHF_EXCLUDE) != 0) |
| flags |= SEC_EXCLUDE; |
| |
| switch (elf_elfheader (abfd)->e_ident[EI_OSABI]) |
| { |
| /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE, |
| but binutils as of 2019-07-23 did not set the EI_OSABI header |
| byte. */ |
| case ELFOSABI_GNU: |
| case ELFOSABI_FREEBSD: |
| if ((hdr->sh_flags & SHF_GNU_RETAIN) != 0) |
| elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_retain; |
| /* Fall through */ |
| case ELFOSABI_NONE: |
| if ((hdr->sh_flags & SHF_GNU_MBIND) != 0) |
| elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind; |
| break; |
| } |
| |
| if ((flags & SEC_ALLOC) == 0) |
| { |
| /* The debugging sections appear to be recognized only by name, |
| not any sort of flag. Their SEC_ALLOC bits are cleared. */ |
| if (name [0] == '.') |
| { |
| if (startswith (name, ".debug") |
| || startswith (name, ".gnu.debuglto_.debug_") |
| || startswith (name, ".gnu.linkonce.wi.") |
| || startswith (name, ".zdebug")) |
| flags |= SEC_DEBUGGING | SEC_ELF_OCTETS; |
| else if (startswith (name, GNU_BUILD_ATTRS_SECTION_NAME) |
| || startswith (name, ".note.gnu")) |
| { |
| flags |= SEC_ELF_OCTETS; |
| opb = 1; |
| } |
| else if (startswith (name, ".line") |
| || startswith (name, ".stab") |
| || strcmp (name, ".gdb_index") == 0) |
| flags |= SEC_DEBUGGING; |
| } |
| } |
| |
| if (!bfd_set_section_vma (newsect, hdr->sh_addr / opb) |
| || !bfd_set_section_size (newsect, hdr->sh_size) |
| || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign))) |
| return false; |
| |
| /* As a GNU extension, if the name begins with .gnu.linkonce, we |
| only link a single copy of the section. This is used to support |
| g++. g++ will emit each template expansion in its own section. |
| The symbols will be defined as weak, so that multiple definitions |
| are permitted. The GNU linker extension is to actually discard |
| all but one of the sections. */ |
| if (startswith (name, ".gnu.linkonce") |
| && elf_next_in_group (newsect) == NULL) |
| flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD; |
| |
| if (!bfd_set_section_flags (newsect, flags)) |
| return false; |
| |
| bed = get_elf_backend_data (abfd); |
| if (bed->elf_backend_section_flags) |
| if (!bed->elf_backend_section_flags (hdr)) |
| return false; |
| |
| /* We do not parse the PT_NOTE segments as we are interested even in the |
| separate debug info files which may have the segments offsets corrupted. |
| PT_NOTEs from the core files are currently not parsed using BFD. */ |
| if (hdr->sh_type == SHT_NOTE) |
| { |
| bfd_byte *contents; |
| |
| if (!bfd_malloc_and_get_section (abfd, newsect, &contents)) |
| return false; |
| |
| elf_parse_notes (abfd, (char *) contents, hdr->sh_size, |
| hdr->sh_offset, hdr->sh_addralign); |
| free (contents); |
| } |
| |
| if ((newsect->flags & SEC_ALLOC) != 0) |
| { |
| Elf_Internal_Phdr *phdr; |
| unsigned int i, nload; |
| |
| /* Some ELF linkers produce binaries with all the program header |
| p_paddr fields zero. If we have such a binary with more than |
| one PT_LOAD header, then leave the section lma equal to vma |
| so that we don't create sections with overlapping lma. */ |
| phdr = elf_tdata (abfd)->phdr; |
| for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| if (phdr->p_paddr != 0) |
| break; |
| else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0) |
| ++nload; |
| if (i >= elf_elfheader (abfd)->e_phnum && nload > 1) |
| return true; |
| |
| phdr = elf_tdata (abfd)->phdr; |
| for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++) |
| { |
| if (((phdr->p_type == PT_LOAD |
| && (hdr->sh_flags & SHF_TLS) == 0) |
| || phdr->p_type == PT_TLS) |
| && ELF_SECTION_IN_SEGMENT (hdr, phdr)) |
| { |
| if ((newsect->flags & SEC_LOAD) == 0) |
| newsect->lma = (phdr->p_paddr |
| + hdr->sh_addr - phdr->p_vaddr) / opb; |
| else |
| /* We used to use the same adjustment for SEC_LOAD |
| sections, but that doesn't work if the segment |
| is packed with code from multiple VMAs. |
| Instead we calculate the section LMA based on |
| the segment LMA. It is assumed that the |
| segment will contain sections with contiguous |
| LMAs, even if the VMAs are not. */ |
| newsect->lma = (phdr->p_paddr |
| + hdr->sh_offset - phdr->p_offset) / opb; |
| |
| /* With contiguous segments, we can't tell from file |
| offsets whether a section with zero size should |
| be placed at the end of one segment or the |
| beginning of the next. Decide based on vaddr. */ |
| if (hdr->sh_addr >= phdr->p_vaddr |
| && (hdr->sh_addr + hdr->sh_size |
| <= phdr->p_vaddr + phdr->p_memsz)) |
| break; |
| } |
| } |
| } |
| |
| /* Compress/decompress DWARF debug sections with names: .debug_* and |
| .zdebug_*, after the section flags is set. */ |
| if ((newsect->flags & SEC_DEBUGGING) |
| && ((name[1] == 'd' && name[6] == '_') |
| || (name[1] == 'z' && name[7] == '_'))) |
| { |
| enum { nothing, compress, decompress } action = nothing; |
| int compression_header_size; |
| bfd_size_type uncompressed_size; |
| unsigned int uncompressed_align_power; |
| bool compressed |
| = bfd_is_section_compressed_with_header (abfd, newsect, |
| &compression_header_size, |
| &uncompressed_size, |
| &uncompressed_align_power); |
| if (compressed) |
| { |
| /* Compressed section. Check if we should decompress. */ |
| if ((abfd->flags & BFD_DECOMPRESS)) |
| action = decompress; |
| } |
| |
| /* Compress the uncompressed section or convert from/to .zdebug* |
| section. Check if we should compress. */ |
| if (action == nothing) |
| { |
| if (newsect->size != 0 |
| && (abfd->flags & BFD_COMPRESS) |
| && compression_header_size >= 0 |
| && uncompressed_size > 0 |
| && (!compressed |
| || ((compression_header_size > 0) |
| != ((abfd->flags & BFD_COMPRESS_GABI) != 0)))) |
| action = compress; |
| else |
| return true; |
| } |
| |
| if (action == compress) |
| { |
| if (!bfd_init_section_compress_status (abfd, newsect)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unable to initialize compress status for section %s"), |
| abfd, name); |
| return false; |
| } |
| } |
| else |
| { |
| if (!bfd_init_section_decompress_status (abfd, newsect)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unable to initialize decompress status for section %s"), |
| abfd, name); |
| return false; |
| } |
| } |
| |
| if (abfd->is_linker_input) |
| { |
| if (name[1] == 'z' |
| && (action == decompress |
| || (action == compress |
| && (abfd->flags & BFD_COMPRESS_GABI) != 0))) |
| { |
| /* Convert section name from .zdebug_* to .debug_* so |
| that linker will consider this section as a debug |
| section. */ |
| char *new_name = convert_zdebug_to_debug (abfd, name); |
| if (new_name == NULL) |
| return false; |
| bfd_rename_section (newsect, new_name); |
| } |
| } |
| else |
| /* For objdump, don't rename the section. For objcopy, delay |
| section rename to elf_fake_sections. */ |
| newsect->flags |= SEC_ELF_RENAME; |
| } |
| |
| /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information |
| section. */ |
| if (startswith (name, ".gnu.lto_.lto.")) |
| { |
| struct lto_section lsection; |
| if (bfd_get_section_contents (abfd, newsect, &lsection, 0, |
| sizeof (struct lto_section))) |
| abfd->lto_slim_object = lsection.slim_object; |
| } |
| |
| return true; |
| } |
| |
| const char *const bfd_elf_section_type_names[] = |
| { |
| "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB", |
| "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE", |
| "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM", |
| }; |
| |
| /* ELF relocs are against symbols. If we are producing relocatable |
| output, and the reloc is against an external symbol, and nothing |
| has given us any additional addend, the resulting reloc will also |
| be against the same symbol. In such a case, we don't want to |
| change anything about the way the reloc is handled, since it will |
| all be done at final link time. Rather than put special case code |
| into bfd_perform_relocation, all the reloc types use this howto |
| function, or should call this function for relocatable output. */ |
| |
| bfd_reloc_status_type |
| bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *reloc_entry, |
| asymbol *symbol, |
| void *data ATTRIBUTE_UNUSED, |
| asection *input_section, |
| bfd *output_bfd, |
| char **error_message ATTRIBUTE_UNUSED) |
| { |
| if (output_bfd != NULL |
| && (symbol->flags & BSF_SECTION_SYM) == 0 |
| && (! reloc_entry->howto->partial_inplace |
| || reloc_entry->addend == 0)) |
| { |
| reloc_entry->address += input_section->output_offset; |
| return bfd_reloc_ok; |
| } |
| |
| /* In some cases the relocation should be treated as output section |
| relative, as when linking ELF DWARF into PE COFF. Many ELF |
| targets lack section relative relocations and instead use |
| ordinary absolute relocations for references between DWARF |
| sections. That is arguably a bug in those targets but it happens |
| to work for the usual case of linking to non-loaded ELF debug |
| sections with VMAs forced to zero. PE COFF on the other hand |
| doesn't allow a section VMA of zero. */ |
| if (output_bfd == NULL |
| && !reloc_entry->howto->pc_relative |
| && (symbol->section->flags & SEC_DEBUGGING) != 0 |
| && (input_section->flags & SEC_DEBUGGING) != 0) |
| reloc_entry->addend -= symbol->section->output_section->vma; |
| |
| return bfd_reloc_continue; |
| } |
| |
| /* Returns TRUE if section A matches section B. |
| Names, addresses and links may be different, but everything else |
| should be the same. */ |
| |
| static bool |
| section_match (const Elf_Internal_Shdr * a, |
| const Elf_Internal_Shdr * b) |
| { |
| if (a->sh_type != b->sh_type |
| || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0 |
| || a->sh_addralign != b->sh_addralign |
| || a->sh_entsize != b->sh_entsize) |
| return false; |
| if (a->sh_type == SHT_SYMTAB |
| || a->sh_type == SHT_STRTAB) |
| return true; |
| return a->sh_size == b->sh_size; |
| } |
| |
| /* Find a section in OBFD that has the same characteristics |
| as IHEADER. Return the index of this section or SHN_UNDEF if |
| none can be found. Check's section HINT first, as this is likely |
| to be the correct section. */ |
| |
| static unsigned int |
| find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader, |
| const unsigned int hint) |
| { |
| Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd); |
| unsigned int i; |
| |
| BFD_ASSERT (iheader != NULL); |
| |
| /* See PR 20922 for a reproducer of the NULL test. */ |
| if (hint < elf_numsections (obfd) |
| && oheaders[hint] != NULL |
| && section_match (oheaders[hint], iheader)) |
| return hint; |
| |
| for (i = 1; i < elf_numsections (obfd); i++) |
| { |
| Elf_Internal_Shdr * oheader = oheaders[i]; |
| |
| if (oheader == NULL) |
| continue; |
| if (section_match (oheader, iheader)) |
| /* FIXME: Do we care if there is a potential for |
| multiple matches ? */ |
| return i; |
| } |
| |
| return SHN_UNDEF; |
| } |
| |
| /* PR 19938: Attempt to set the ELF section header fields of an OS or |
| Processor specific section, based upon a matching input section. |
| Returns TRUE upon success, FALSE otherwise. */ |
| |
| static bool |
| copy_special_section_fields (const bfd *ibfd, |
| bfd *obfd, |
| const Elf_Internal_Shdr *iheader, |
| Elf_Internal_Shdr *oheader, |
| const unsigned int secnum) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (obfd); |
| const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); |
| bool changed = false; |
| unsigned int sh_link; |
| |
| if (oheader->sh_type == SHT_NOBITS) |
| { |
| /* This is a feature for objcopy --only-keep-debug: |
| When a section's type is changed to NOBITS, we preserve |
| the sh_link and sh_info fields so that they can be |
| matched up with the original. |
| |
| Note: Strictly speaking these assignments are wrong. |
| The sh_link and sh_info fields should point to the |
| relevent sections in the output BFD, which may not be in |
| the same location as they were in the input BFD. But |
| the whole point of this action is to preserve the |
| original values of the sh_link and sh_info fields, so |
| that they can be matched up with the section headers in |
| the original file. So strictly speaking we may be |
| creating an invalid ELF file, but it is only for a file |
| that just contains debug info and only for sections |
| without any contents. */ |
| if (oheader->sh_link == 0) |
| oheader->sh_link = iheader->sh_link; |
| if (oheader->sh_info == 0) |
| oheader->sh_info = iheader->sh_info; |
| return true; |
| } |
| |
| /* Allow the target a chance to decide how these fields should be set. */ |
| if (bed->elf_backend_copy_special_section_fields (ibfd, obfd, |
| iheader, oheader)) |
| return true; |
| |
| /* We have an iheader which might match oheader, and which has non-zero |
| sh_info and/or sh_link fields. Attempt to follow those links and find |
| the section in the output bfd which corresponds to the linked section |
| in the input bfd. */ |
| if (iheader->sh_link != SHN_UNDEF) |
| { |
| /* See PR 20931 for a reproducer. */ |
| if (iheader->sh_link >= elf_numsections (ibfd)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: invalid sh_link field (%d) in section number %d"), |
| ibfd, iheader->sh_link, secnum); |
| return false; |
| } |
| |
| sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link); |
| if (sh_link != SHN_UNDEF) |
| { |
| oheader->sh_link = sh_link; |
| changed = true; |
| } |
| else |
| /* FIXME: Should we install iheader->sh_link |
| if we could not find a match ? */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: failed to find link section for section %d"), obfd, secnum); |
| } |
| |
| if (iheader->sh_info) |
| { |
| /* The sh_info field can hold arbitrary information, but if the |
| SHF_LINK_INFO flag is set then it should be interpreted as a |
| section index. */ |
| if (iheader->sh_flags & SHF_INFO_LINK) |
| { |
| sh_link = find_link (obfd, iheaders[iheader->sh_info], |
| iheader->sh_info); |
| if (sh_link != SHN_UNDEF) |
| oheader->sh_flags |= SHF_INFO_LINK; |
| } |
| else |
| /* No idea what it means - just copy it. */ |
| sh_link = iheader->sh_info; |
| |
| if (sh_link != SHN_UNDEF) |
| { |
| oheader->sh_info = sh_link; |
| changed = true; |
| } |
| else |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: failed to find info section for section %d"), obfd, secnum); |
| } |
| |
| return changed; |
| } |
| |
| /* Copy the program header and other data from one object module to |
| another. */ |
| |
| bool |
| _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd) |
| { |
| const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd); |
| Elf_Internal_Shdr **oheaders = elf_elfsections (obfd); |
| const struct elf_backend_data *bed; |
| unsigned int i; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| if (!elf_flags_init (obfd)) |
| { |
| elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; |
| elf_flags_init (obfd) = true; |
| } |
| |
| elf_gp (obfd) = elf_gp (ibfd); |
| |
| /* Also copy the EI_OSABI field. */ |
| elf_elfheader (obfd)->e_ident[EI_OSABI] = |
| elf_elfheader (ibfd)->e_ident[EI_OSABI]; |
| |
| /* If set, copy the EI_ABIVERSION field. */ |
| if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]) |
| elf_elfheader (obfd)->e_ident[EI_ABIVERSION] |
| = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION]; |
| |
| /* Copy object attributes. */ |
| _bfd_elf_copy_obj_attributes (ibfd, obfd); |
| |
| if (iheaders == NULL || oheaders == NULL) |
| return true; |
| |
| bed = get_elf_backend_data (obfd); |
| |
| /* Possibly copy other fields in the section header. */ |
| for (i = 1; i < elf_numsections (obfd); i++) |
| { |
| unsigned int j; |
| Elf_Internal_Shdr * oheader = oheaders[i]; |
| |
| /* Ignore ordinary sections. SHT_NOBITS sections are considered however |
| because of a special case need for generating separate debug info |
| files. See below for more details. */ |
| if (oheader == NULL |
| || (oheader->sh_type != SHT_NOBITS |
| && oheader->sh_type < SHT_LOOS)) |
| continue; |
| |
| /* Ignore empty sections, and sections whose |
| fields have already been initialised. */ |
| if (oheader->sh_size == 0 |
| || (oheader->sh_info != 0 && oheader->sh_link != 0)) |
| continue; |
| |
| /* Scan for the matching section in the input bfd. |
| First we try for a direct mapping between the input and output sections. */ |
| for (j = 1; j < elf_numsections (ibfd); j++) |
| { |
| const Elf_Internal_Shdr * iheader = iheaders[j]; |
| |
| if (iheader == NULL) |
| continue; |
| |
| if (oheader->bfd_section != NULL |
| && iheader->bfd_section != NULL |
| && iheader->bfd_section->output_section != NULL |
| && iheader->bfd_section->output_section == oheader->bfd_section) |
| { |
| /* We have found a connection from the input section to the |
| output section. Attempt to copy the header fields. If |
| this fails then do not try any further sections - there |
| should only be a one-to-one mapping between input and output. */ |
| if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i)) |
| j = elf_numsections (ibfd); |
| break; |
| } |
| } |
| |
| if (j < elf_numsections (ibfd)) |
| continue; |
| |
| /* That failed. So try to deduce the corresponding input section. |
| Unfortunately we cannot compare names as the output string table |
| is empty, so instead we check size, address and type. */ |
| for (j = 1; j < elf_numsections (ibfd); j++) |
| { |
| const Elf_Internal_Shdr * iheader = iheaders[j]; |
| |
| if (iheader == NULL) |
| continue; |
| |
| /* Try matching fields in the input section's header. |
| Since --only-keep-debug turns all non-debug sections into |
| SHT_NOBITS sections, the output SHT_NOBITS type matches any |
| input type. */ |
| if ((oheader->sh_type == SHT_NOBITS |
| || iheader->sh_type == oheader->sh_type) |
| && (iheader->sh_flags & ~ SHF_INFO_LINK) |
| == (oheader->sh_flags & ~ SHF_INFO_LINK) |
| && iheader->sh_addralign == oheader->sh_addralign |
| && iheader->sh_entsize == oheader->sh_entsize |
| && iheader->sh_size == oheader->sh_size |
| && iheader->sh_addr == oheader->sh_addr |
| && (iheader->sh_info != oheader->sh_info |
| || iheader->sh_link != oheader->sh_link)) |
| { |
| if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i)) |
| break; |
| } |
| } |
| |
| if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS) |
| { |
| /* Final attempt. Call the backend copy function |
| with a NULL input section. */ |
| (void) bed->elf_backend_copy_special_section_fields (ibfd, obfd, |
| NULL, oheader); |
| } |
| } |
| |
| return true; |
| } |
| |
| static const char * |
| get_segment_type (unsigned int p_type) |
| { |
| const char *pt; |
| switch (p_type) |
| { |
| case PT_NULL: pt = "NULL"; break; |
| case PT_LOAD: pt = "LOAD"; break; |
| case PT_DYNAMIC: pt = "DYNAMIC"; break; |
| case PT_INTERP: pt = "INTERP"; break; |
| case PT_NOTE: pt = "NOTE"; break; |
| case PT_SHLIB: pt = "SHLIB"; break; |
| case PT_PHDR: pt = "PHDR"; break; |
| case PT_TLS: pt = "TLS"; break; |
| case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break; |
| case PT_GNU_STACK: pt = "STACK"; break; |
| case PT_GNU_RELRO: pt = "RELRO"; break; |
| default: pt = NULL; break; |
| } |
| return pt; |
| } |
| |
| /* Print out the program headers. */ |
| |
| bool |
| _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg) |
| { |
| FILE *f = (FILE *) farg; |
| Elf_Internal_Phdr *p; |
| asection *s; |
| bfd_byte *dynbuf = NULL; |
| |
| p = elf_tdata (abfd)->phdr; |
| if (p != NULL) |
| { |
| unsigned int i, c; |
| |
| fprintf (f, _("\nProgram Header:\n")); |
| c = elf_elfheader (abfd)->e_phnum; |
| for (i = 0; i < c; i++, p++) |
| { |
| const char *pt = get_segment_type (p->p_type); |
| char buf[20]; |
| |
| if (pt == NULL) |
| { |
| sprintf (buf, "0x%lx", p->p_type); |
| pt = buf; |
| } |
| fprintf (f, "%8s off 0x", pt); |
| bfd_fprintf_vma (abfd, f, p->p_offset); |
| fprintf (f, " vaddr 0x"); |
| bfd_fprintf_vma (abfd, f, p->p_vaddr); |
| fprintf (f, " paddr 0x"); |
| bfd_fprintf_vma (abfd, f, p->p_paddr); |
| fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align)); |
| fprintf (f, " filesz 0x"); |
| bfd_fprintf_vma (abfd, f, p->p_filesz); |
| fprintf (f, " memsz 0x"); |
| bfd_fprintf_vma (abfd, f, p->p_memsz); |
| fprintf (f, " flags %c%c%c", |
| (p->p_flags & PF_R) != 0 ? 'r' : '-', |
| (p->p_flags & PF_W) != 0 ? 'w' : '-', |
| (p->p_flags & PF_X) != 0 ? 'x' : '-'); |
| if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0) |
| fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)); |
| fprintf (f, "\n"); |
| } |
| } |
| |
| s = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (s != NULL) |
| { |
| unsigned int elfsec; |
| unsigned long shlink; |
| bfd_byte *extdyn, *extdynend; |
| size_t extdynsize; |
| void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); |
| |
| fprintf (f, _("\nDynamic Section:\n")); |
| |
| if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) |
| goto error_return; |
| |
| elfsec = _bfd_elf_section_from_bfd_section (abfd, s); |
| if (elfsec == SHN_BAD) |
| goto error_return; |
| shlink = elf_elfsections (abfd)[elfsec]->sh_link; |
| |
| extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; |
| swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; |
| |
| extdyn = dynbuf; |
| /* PR 17512: file: 6f427532. */ |
| if (s->size < extdynsize) |
| goto error_return; |
| extdynend = extdyn + s->size; |
| /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664. |
| Fix range check. */ |
| for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize) |
| { |
| Elf_Internal_Dyn dyn; |
| const char *name = ""; |
| char ab[20]; |
| bool stringp; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| (*swap_dyn_in) (abfd, extdyn, &dyn); |
| |
| if (dyn.d_tag == DT_NULL) |
| break; |
| |
| stringp = false; |
| switch (dyn.d_tag) |
| { |
| default: |
| if (bed->elf_backend_get_target_dtag) |
| name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag); |
| |
| if (!strcmp (name, "")) |
| { |
| sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag); |
| name = ab; |
| } |
| break; |
| |
| case DT_NEEDED: name = "NEEDED"; stringp = true; break; |
| case DT_PLTRELSZ: name = "PLTRELSZ"; break; |
| case DT_PLTGOT: name = "PLTGOT"; break; |
| case DT_HASH: name = "HASH"; break; |
| case DT_STRTAB: name = "STRTAB"; break; |
| case DT_SYMTAB: name = "SYMTAB"; break; |
| case DT_RELA: name = "RELA"; break; |
| case DT_RELASZ: name = "RELASZ"; break; |
| case DT_RELAENT: name = "RELAENT"; break; |
| case DT_STRSZ: name = "STRSZ"; break; |
| case DT_SYMENT: name = "SYMENT"; break; |
| case DT_INIT: name = "INIT"; break; |
| case DT_FINI: name = "FINI"; break; |
| case DT_SONAME: name = "SONAME"; stringp = true; break; |
| case DT_RPATH: name = "RPATH"; stringp = true; break; |
| case DT_SYMBOLIC: name = "SYMBOLIC"; break; |
| case DT_REL: name = "REL"; break; |
| case DT_RELSZ: name = "RELSZ"; break; |
| case DT_RELENT: name = "RELENT"; break; |
| case DT_RELR: name = "RELR"; break; |
| case DT_RELRSZ: name = "RELRSZ"; break; |
| case DT_RELRENT: name = "RELRENT"; break; |
| case DT_PLTREL: name = "PLTREL"; break; |
| case DT_DEBUG: name = "DEBUG"; break; |
| case DT_TEXTREL: name = "TEXTREL"; break; |
| case DT_JMPREL: name = "JMPREL"; break; |
| case DT_BIND_NOW: name = "BIND_NOW"; break; |
| case DT_INIT_ARRAY: name = "INIT_ARRAY"; break; |
| case DT_FINI_ARRAY: name = "FINI_ARRAY"; break; |
| case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break; |
| case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break; |
| case DT_RUNPATH: name = "RUNPATH"; stringp = true; break; |
| case DT_FLAGS: name = "FLAGS"; break; |
| case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break; |
| case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break; |
| case DT_CHECKSUM: name = "CHECKSUM"; break; |
| case DT_PLTPADSZ: name = "PLTPADSZ"; break; |
| case DT_MOVEENT: name = "MOVEENT"; break; |
| case DT_MOVESZ: name = "MOVESZ"; break; |
| case DT_FEATURE: name = "FEATURE"; break; |
| case DT_POSFLAG_1: name = "POSFLAG_1"; break; |
| case DT_SYMINSZ: name = "SYMINSZ"; break; |
| case DT_SYMINENT: name = "SYMINENT"; break; |
| case DT_CONFIG: name = "CONFIG"; stringp = true; break; |
| case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = true; break; |
| case DT_AUDIT: name = "AUDIT"; stringp = true; break; |
| case DT_PLTPAD: name = "PLTPAD"; break; |
| case DT_MOVETAB: name = "MOVETAB"; break; |
| case DT_SYMINFO: name = "SYMINFO"; break; |
| case DT_RELACOUNT: name = "RELACOUNT"; break; |
| case DT_RELCOUNT: name = "RELCOUNT"; break; |
| case DT_FLAGS_1: name = "FLAGS_1"; break; |
| case DT_VERSYM: name = "VERSYM"; break; |
| case DT_VERDEF: name = "VERDEF"; break; |
| case DT_VERDEFNUM: name = "VERDEFNUM"; break; |
| case DT_VERNEED: name = "VERNEED"; break; |
| case DT_VERNEEDNUM: name = "VERNEEDNUM"; break; |
| case DT_AUXILIARY: name = "AUXILIARY"; stringp = true; break; |
| case DT_USED: name = "USED"; break; |
| case DT_FILTER: name = "FILTER"; stringp = true; break; |
| case DT_GNU_HASH: name = "GNU_HASH"; break; |
| } |
| |
| fprintf (f, " %-20s ", name); |
| if (! stringp) |
| { |
| fprintf (f, "0x"); |
| bfd_fprintf_vma (abfd, f, dyn.d_un.d_val); |
| } |
| else |
| { |
| const char *string; |
| unsigned int tagv = dyn.d_un.d_val; |
| |
| string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); |
| if (string == NULL) |
| goto error_return; |
| fprintf (f, "%s", string); |
| } |
| fprintf (f, "\n"); |
| } |
| |
| free (dynbuf); |
| dynbuf = NULL; |
| } |
| |
| if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL) |
| || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL)) |
| { |
| if (! _bfd_elf_slurp_version_tables (abfd, false)) |
| return false; |
| } |
| |
| if (elf_dynverdef (abfd) != 0) |
| { |
| Elf_Internal_Verdef *t; |
| |
| fprintf (f, _("\nVersion definitions:\n")); |
| for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef) |
| { |
| fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx, |
| t->vd_flags, t->vd_hash, |
| t->vd_nodename ? t->vd_nodename : "<corrupt>"); |
| if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL) |
| { |
| Elf_Internal_Verdaux *a; |
| |
| fprintf (f, "\t"); |
| for (a = t->vd_auxptr->vda_nextptr; |
| a != NULL; |
| a = a->vda_nextptr) |
| fprintf (f, "%s ", |
| a->vda_nodename ? a->vda_nodename : "<corrupt>"); |
| fprintf (f, "\n"); |
| } |
| } |
| } |
| |
| if (elf_dynverref (abfd) != 0) |
| { |
| Elf_Internal_Verneed *t; |
| |
| fprintf (f, _("\nVersion References:\n")); |
| for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref) |
| { |
| Elf_Internal_Vernaux *a; |
| |
| fprintf (f, _(" required from %s:\n"), |
| t->vn_filename ? t->vn_filename : "<corrupt>"); |
| for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash, |
| a->vna_flags, a->vna_other, |
| a->vna_nodename ? a->vna_nodename : "<corrupt>"); |
| } |
| } |
| |
| return true; |
| |
| error_return: |
| free (dynbuf); |
| return false; |
| } |
| |
| /* Get version name. If BASE_P is TRUE, return "Base" for VER_FLG_BASE |
| and return symbol version for symbol version itself. */ |
| |
| const char * |
| _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol, |
| bool base_p, |
| bool *hidden) |
| { |
| const char *version_string = NULL; |
| if (elf_dynversym (abfd) != 0 |
| && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0)) |
| { |
| unsigned int vernum = ((elf_symbol_type *) symbol)->version; |
| |
| *hidden = (vernum & VERSYM_HIDDEN) != 0; |
| vernum &= VERSYM_VERSION; |
| |
| if (vernum == 0) |
| version_string = ""; |
| else if (vernum == 1 |
| && (vernum > elf_tdata (abfd)->cverdefs |
| || (elf_tdata (abfd)->verdef[0].vd_flags |
| == VER_FLG_BASE))) |
| version_string = base_p ? "Base" : ""; |
| else if (vernum <= elf_tdata (abfd)->cverdefs) |
| { |
| const char *nodename |
| = elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; |
| version_string = ""; |
| if (base_p |
| || nodename == NULL |
| || symbol->name == NULL |
| || strcmp (symbol->name, nodename) != 0) |
| version_string = nodename; |
| } |
| else |
| { |
| Elf_Internal_Verneed *t; |
| |
| version_string = _("<corrupt>"); |
| for (t = elf_tdata (abfd)->verref; |
| t != NULL; |
| t = t->vn_nextref) |
| { |
| Elf_Internal_Vernaux *a; |
| |
| for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) |
| { |
| if (a->vna_other == vernum) |
| { |
| *hidden = true; |
| version_string = a->vna_nodename; |
| break; |
| } |
| } |
| } |
| } |
| } |
| return version_string; |
| } |
| |
| /* Display ELF-specific fields of a symbol. */ |
| |
| void |
| bfd_elf_print_symbol (bfd *abfd, |
| void *filep, |
| asymbol *symbol, |
| bfd_print_symbol_type how) |
| { |
| FILE *file = (FILE *) filep; |
| switch (how) |
| { |
| case bfd_print_symbol_name: |
| fprintf (file, "%s", symbol->name); |
| break; |
| case bfd_print_symbol_more: |
| fprintf (file, "elf "); |
| bfd_fprintf_vma (abfd, file, symbol->value); |
| fprintf (file, " %x", symbol->flags); |
| break; |
| case bfd_print_symbol_all: |
| { |
| const char *section_name; |
| const char *name = NULL; |
| const struct elf_backend_data *bed; |
| unsigned char st_other; |
| bfd_vma val; |
| const char *version_string; |
| bool hidden; |
| |
| section_name = symbol->section ? symbol->section->name : "(*none*)"; |
| |
| bed = get_elf_backend_data (abfd); |
| if (bed->elf_backend_print_symbol_all) |
| name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol); |
| |
| if (name == NULL) |
| { |
| name = symbol->name; |
| bfd_print_symbol_vandf (abfd, file, symbol); |
| } |
| |
| fprintf (file, " %s\t", section_name); |
| /* Print the "other" value for a symbol. For common symbols, |
| we've already printed the size; now print the alignment. |
| For other symbols, we have no specified alignment, and |
| we've printed the address; now print the size. */ |
| if (symbol->section && bfd_is_com_section (symbol->section)) |
| val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; |
| else |
| val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size; |
| bfd_fprintf_vma (abfd, file, val); |
| |
| /* If we have version information, print it. */ |
| version_string = _bfd_elf_get_symbol_version_string (abfd, |
| symbol, |
| true, |
| &hidden); |
| if (version_string) |
| { |
| if (!hidden) |
| fprintf (file, " %-11s", version_string); |
| else |
| { |
| int i; |
| |
| fprintf (file, " (%s)", version_string); |
| for (i = 10 - strlen (version_string); i > 0; --i) |
| putc (' ', file); |
| } |
| } |
| |
| /* If the st_other field is not zero, print it. */ |
| st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other; |
| |
| switch (st_other) |
| { |
| case 0: break; |
| case STV_INTERNAL: fprintf (file, " .internal"); break; |
| case STV_HIDDEN: fprintf (file, " .hidden"); break; |
| case STV_PROTECTED: fprintf (file, " .protected"); break; |
| default: |
| /* Some other non-defined flags are also present, so print |
| everything hex. */ |
| fprintf (file, " 0x%02x", (unsigned int) st_other); |
| } |
| |
| fprintf (file, " %s", name); |
| } |
| break; |
| } |
| } |
| |
| /* ELF .o/exec file reading */ |
| |
| /* Create a new bfd section from an ELF section header. */ |
| |
| bool |
| bfd_section_from_shdr (bfd *abfd, unsigned int shindex) |
| { |
| Elf_Internal_Shdr *hdr; |
| Elf_Internal_Ehdr *ehdr; |
| const struct elf_backend_data *bed; |
| const char *name; |
| bool ret = true; |
| |
| if (shindex >= elf_numsections (abfd)) |
| return false; |
| |
| /* PR17512: A corrupt ELF binary might contain a loop of sections via |
| sh_link or sh_info. Detect this here, by refusing to load a |
| section that we are already in the process of loading. */ |
| if (elf_tdata (abfd)->being_created[shindex]) |
| { |
| _bfd_error_handler |
| (_("%pB: warning: loop in section dependencies detected"), abfd); |
| return false; |
| } |
| elf_tdata (abfd)->being_created[shindex] = true; |
| |
| hdr = elf_elfsections (abfd)[shindex]; |
| ehdr = elf_elfheader (abfd); |
| name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx, |
| hdr->sh_name); |
| if (name == NULL) |
| goto fail; |
| |
| bed = get_elf_backend_data (abfd); |
| switch (hdr->sh_type) |
| { |
| case SHT_NULL: |
| /* Inactive section. Throw it away. */ |
| goto success; |
| |
| case SHT_PROGBITS: /* Normal section with contents. */ |
| case SHT_NOBITS: /* .bss section. */ |
| case SHT_HASH: /* .hash section. */ |
| case SHT_NOTE: /* .note section. */ |
| case SHT_INIT_ARRAY: /* .init_array section. */ |
| case SHT_FINI_ARRAY: /* .fini_array section. */ |
| case SHT_PREINIT_ARRAY: /* .preinit_array section. */ |
| case SHT_GNU_LIBLIST: /* .gnu.liblist section. */ |
| case SHT_GNU_HASH: /* .gnu.hash section. */ |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_DYNAMIC: /* Dynamic linking information. */ |
| if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| goto fail; |
| |
| if (hdr->sh_link > elf_numsections (abfd)) |
| { |
| /* PR 10478: Accept Solaris binaries with a sh_link |
| field set to SHN_BEFORE or SHN_AFTER. */ |
| switch (bfd_get_arch (abfd)) |
| { |
| case bfd_arch_i386: |
| case bfd_arch_sparc: |
| if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */ |
| || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */) |
| break; |
| /* Otherwise fall through. */ |
| default: |
| goto fail; |
| } |
| } |
| else if (elf_elfsections (abfd)[hdr->sh_link] == NULL) |
| goto fail; |
| else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB) |
| { |
| Elf_Internal_Shdr *dynsymhdr; |
| |
| /* The shared libraries distributed with hpux11 have a bogus |
| sh_link field for the ".dynamic" section. Find the |
| string table for the ".dynsym" section instead. */ |
| if (elf_dynsymtab (abfd) != 0) |
| { |
| dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)]; |
| hdr->sh_link = dynsymhdr->sh_link; |
| } |
| else |
| { |
| unsigned int i, num_sec; |
| |
| num_sec = elf_numsections (abfd); |
| for (i = 1; i < num_sec; i++) |
| { |
| dynsymhdr = elf_elfsections (abfd)[i]; |
| if (dynsymhdr->sh_type == SHT_DYNSYM) |
| { |
| hdr->sh_link = dynsymhdr->sh_link; |
| break; |
| } |
| } |
| } |
| } |
| goto success; |
| |
| case SHT_SYMTAB: /* A symbol table. */ |
| if (elf_onesymtab (abfd) == shindex) |
| goto success; |
| |
| if (hdr->sh_entsize != bed->s->sizeof_sym) |
| goto fail; |
| |
| if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) |
| { |
| if (hdr->sh_size != 0) |
| goto fail; |
| /* Some assemblers erroneously set sh_info to one with a |
| zero sh_size. ld sees this as a global symbol count |
| of (unsigned) -1. Fix it here. */ |
| hdr->sh_info = 0; |
| goto success; |
| } |
| |
| /* PR 18854: A binary might contain more than one symbol table. |
| Unusual, but possible. Warn, but continue. */ |
| if (elf_onesymtab (abfd) != 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: multiple symbol tables detected" |
| " - ignoring the table in section %u"), |
| abfd, shindex); |
| goto success; |
| } |
| elf_onesymtab (abfd) = shindex; |
| elf_symtab_hdr (abfd) = *hdr; |
| elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd); |
| abfd->flags |= HAS_SYMS; |
| |
| /* Sometimes a shared object will map in the symbol table. If |
| SHF_ALLOC is set, and this is a shared object, then we also |
| treat this section as a BFD section. We can not base the |
| decision purely on SHF_ALLOC, because that flag is sometimes |
| set in a relocatable object file, which would confuse the |
| linker. */ |
| if ((hdr->sh_flags & SHF_ALLOC) != 0 |
| && (abfd->flags & DYNAMIC) != 0 |
| && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| shindex)) |
| goto fail; |
| |
| /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we |
| can't read symbols without that section loaded as well. It |
| is most likely specified by the next section header. */ |
| { |
| elf_section_list * entry; |
| unsigned int i, num_sec; |
| |
| for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next) |
| if (entry->hdr.sh_link == shindex) |
| goto success; |
| |
| num_sec = elf_numsections (abfd); |
| for (i = shindex + 1; i < num_sec; i++) |
| { |
| Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| |
| if (hdr2->sh_type == SHT_SYMTAB_SHNDX |
| && hdr2->sh_link == shindex) |
| break; |
| } |
| |
| if (i == num_sec) |
| for (i = 1; i < shindex; i++) |
| { |
| Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| |
| if (hdr2->sh_type == SHT_SYMTAB_SHNDX |
| && hdr2->sh_link == shindex) |
| break; |
| } |
| |
| if (i != shindex) |
| ret = bfd_section_from_shdr (abfd, i); |
| /* else FIXME: we have failed to find the symbol table - should we issue an error ? */ |
| goto success; |
| } |
| |
| case SHT_DYNSYM: /* A dynamic symbol table. */ |
| if (elf_dynsymtab (abfd) == shindex) |
| goto success; |
| |
| if (hdr->sh_entsize != bed->s->sizeof_sym) |
| goto fail; |
| |
| if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size) |
| { |
| if (hdr->sh_size != 0) |
| goto fail; |
| |
| /* Some linkers erroneously set sh_info to one with a |
| zero sh_size. ld sees this as a global symbol count |
| of (unsigned) -1. Fix it here. */ |
| hdr->sh_info = 0; |
| goto success; |
| } |
| |
| /* PR 18854: A binary might contain more than one dynamic symbol table. |
| Unusual, but possible. Warn, but continue. */ |
| if (elf_dynsymtab (abfd) != 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: multiple dynamic symbol tables detected" |
| " - ignoring the table in section %u"), |
| abfd, shindex); |
| goto success; |
| } |
| elf_dynsymtab (abfd) = shindex; |
| elf_tdata (abfd)->dynsymtab_hdr = *hdr; |
| elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| abfd->flags |= HAS_SYMS; |
| |
| /* Besides being a symbol table, we also treat this as a regular |
| section, so that objcopy can handle it. */ |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */ |
| { |
| elf_section_list * entry; |
| |
| for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next) |
| if (entry->ndx == shindex) |
| goto success; |
| |
| entry = bfd_alloc (abfd, sizeof (*entry)); |
| if (entry == NULL) |
| goto fail; |
| entry->ndx = shindex; |
| entry->hdr = * hdr; |
| entry->next = elf_symtab_shndx_list (abfd); |
| elf_symtab_shndx_list (abfd) = entry; |
| elf_elfsections (abfd)[shindex] = & entry->hdr; |
| goto success; |
| } |
| |
| case SHT_STRTAB: /* A string table. */ |
| if (hdr->bfd_section != NULL) |
| goto success; |
| |
| if (ehdr->e_shstrndx == shindex) |
| { |
| elf_tdata (abfd)->shstrtab_hdr = *hdr; |
| elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr; |
| goto success; |
| } |
| |
| if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex) |
| { |
| symtab_strtab: |
| elf_tdata (abfd)->strtab_hdr = *hdr; |
| elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr; |
| goto success; |
| } |
| |
| if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex) |
| { |
| dynsymtab_strtab: |
| elf_tdata (abfd)->dynstrtab_hdr = *hdr; |
| hdr = &elf_tdata (abfd)->dynstrtab_hdr; |
| elf_elfsections (abfd)[shindex] = hdr; |
| /* We also treat this as a regular section, so that objcopy |
| can handle it. */ |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| shindex); |
| goto success; |
| } |
| |
| /* If the string table isn't one of the above, then treat it as a |
| regular section. We need to scan all the headers to be sure, |
| just in case this strtab section appeared before the above. */ |
| if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0) |
| { |
| unsigned int i, num_sec; |
| |
| num_sec = elf_numsections (abfd); |
| for (i = 1; i < num_sec; i++) |
| { |
| Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i]; |
| if (hdr2->sh_link == shindex) |
| { |
| /* Prevent endless recursion on broken objects. */ |
| if (i == shindex) |
| goto fail; |
| if (! bfd_section_from_shdr (abfd, i)) |
| goto fail; |
| if (elf_onesymtab (abfd) == i) |
| goto symtab_strtab; |
| if (elf_dynsymtab (abfd) == i) |
| goto dynsymtab_strtab; |
| } |
| } |
| } |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_REL: |
| case SHT_RELA: |
| /* *These* do a lot of work -- but build no sections! */ |
| { |
| asection *target_sect; |
| Elf_Internal_Shdr *hdr2, **p_hdr; |
| unsigned int num_sec = elf_numsections (abfd); |
| struct bfd_elf_section_data *esdt; |
| |
| if (hdr->sh_entsize |
| != (bfd_size_type) (hdr->sh_type == SHT_REL |
| ? bed->s->sizeof_rel : bed->s->sizeof_rela)) |
| goto fail; |
| |
| /* Check for a bogus link to avoid crashing. */ |
| if (hdr->sh_link >= num_sec) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: invalid link %u for reloc section %s (index %u)"), |
| abfd, hdr->sh_link, name, shindex); |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| shindex); |
| goto success; |
| } |
| |
| /* For some incomprehensible reason Oracle distributes |
| libraries for Solaris in which some of the objects have |
| bogus sh_link fields. It would be nice if we could just |
| reject them, but, unfortunately, some people need to use |
| them. We scan through the section headers; if we find only |
| one suitable symbol table, we clobber the sh_link to point |
| to it. I hope this doesn't break anything. |
| |
| Don't do it on executable nor shared library. */ |
| if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 |
| && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB |
| && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM) |
| { |
| unsigned int scan; |
| int found; |
| |
| found = 0; |
| for (scan = 1; scan < num_sec; scan++) |
| { |
| if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB |
| || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM) |
| { |
| if (found != 0) |
| { |
| found = 0; |
| break; |
| } |
| found = scan; |
| } |
| } |
| if (found != 0) |
| hdr->sh_link = found; |
| } |
| |
| /* Get the symbol table. */ |
| if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB |
| || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM) |
| && ! bfd_section_from_shdr (abfd, hdr->sh_link)) |
| goto fail; |
| |
| /* If this is an alloc section in an executable or shared |
| library, or the reloc section does not use the main symbol |
| table we don't treat it as a reloc section. BFD can't |
| adequately represent such a section, so at least for now, |
| we don't try. We just present it as a normal section. We |
| also can't use it as a reloc section if it points to the |
| null section, an invalid section, another reloc section, or |
| its sh_link points to the null section. */ |
| if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0 |
| && (hdr->sh_flags & SHF_ALLOC) != 0) |
| || hdr->sh_link == SHN_UNDEF |
| || hdr->sh_link != elf_onesymtab (abfd) |
| || hdr->sh_info == SHN_UNDEF |
| || hdr->sh_info >= num_sec |
| || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL |
| || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA) |
| { |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| shindex); |
| goto success; |
| } |
| |
| if (! bfd_section_from_shdr (abfd, hdr->sh_info)) |
| goto fail; |
| |
| target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info); |
| if (target_sect == NULL) |
| goto fail; |
| |
| esdt = elf_section_data (target_sect); |
| if (hdr->sh_type == SHT_RELA) |
| p_hdr = &esdt->rela.hdr; |
| else |
| p_hdr = &esdt->rel.hdr; |
| |
| /* PR 17512: file: 0b4f81b7. |
| Also see PR 24456, for a file which deliberately has two reloc |
| sections. */ |
| if (*p_hdr != NULL) |
| { |
| if (!bed->init_secondary_reloc_section (abfd, hdr, name, shindex)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: secondary relocation section '%s' " |
| "for section %pA found - ignoring"), |
| abfd, name, target_sect); |
| } |
| else |
| esdt->has_secondary_relocs = true; |
| goto success; |
| } |
| |
| hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2)); |
| if (hdr2 == NULL) |
| goto fail; |
| *hdr2 = *hdr; |
| *p_hdr = hdr2; |
| elf_elfsections (abfd)[shindex] = hdr2; |
| target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr) |
| * bed->s->int_rels_per_ext_rel); |
| target_sect->flags |= SEC_RELOC; |
| target_sect->relocation = NULL; |
| target_sect->rel_filepos = hdr->sh_offset; |
| /* In the section to which the relocations apply, mark whether |
| its relocations are of the REL or RELA variety. */ |
| if (hdr->sh_size != 0) |
| { |
| if (hdr->sh_type == SHT_RELA) |
| target_sect->use_rela_p = 1; |
| } |
| abfd->flags |= HAS_RELOC; |
| goto success; |
| } |
| |
| case SHT_GNU_verdef: |
| elf_dynverdef (abfd) = shindex; |
| elf_tdata (abfd)->dynverdef_hdr = *hdr; |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_GNU_versym: |
| if (hdr->sh_entsize != sizeof (Elf_External_Versym)) |
| goto fail; |
| |
| elf_dynversym (abfd) = shindex; |
| elf_tdata (abfd)->dynversym_hdr = *hdr; |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_GNU_verneed: |
| elf_dynverref (abfd) = shindex; |
| elf_tdata (abfd)->dynverref_hdr = *hdr; |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| |
| case SHT_SHLIB: |
| goto success; |
| |
| case SHT_GROUP: |
| if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE)) |
| goto fail; |
| |
| if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| goto fail; |
| |
| goto success; |
| |
| default: |
| /* Possibly an attributes section. */ |
| if (hdr->sh_type == SHT_GNU_ATTRIBUTES |
| || hdr->sh_type == bed->obj_attrs_section_type) |
| { |
| if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) |
| goto fail; |
| _bfd_elf_parse_attributes (abfd, hdr); |
| goto success; |
| } |
| |
| /* Check for any processor-specific section types. */ |
| if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex)) |
| goto success; |
| |
| if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER) |
| { |
| if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| /* FIXME: How to properly handle allocated section reserved |
| for applications? */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown type [%#x] section `%s'"), |
| abfd, hdr->sh_type, name); |
| else |
| { |
| /* Allow sections reserved for applications. */ |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, |
| shindex); |
| goto success; |
| } |
| } |
| else if (hdr->sh_type >= SHT_LOPROC |
| && hdr->sh_type <= SHT_HIPROC) |
| /* FIXME: We should handle this section. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown type [%#x] section `%s'"), |
| abfd, hdr->sh_type, name); |
| else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS) |
| { |
| /* Unrecognised OS-specific sections. */ |
| if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0) |
| /* SHF_OS_NONCONFORMING indicates that special knowledge is |
| required to correctly process the section and the file should |
| be rejected with an error message. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown type [%#x] section `%s'"), |
| abfd, hdr->sh_type, name); |
| else |
| { |
| /* Otherwise it should be processed. */ |
| ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| goto success; |
| } |
| } |
| else |
| /* FIXME: We should handle this section. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: unknown type [%#x] section `%s'"), |
| abfd, hdr->sh_type, name); |
| |
| goto fail; |
| } |
| |
| fail: |
| ret = false; |
| success: |
| elf_tdata (abfd)->being_created[shindex] = false; |
| return ret; |
| } |
| |
| /* Return the local symbol specified by ABFD, R_SYMNDX. */ |
| |
| Elf_Internal_Sym * |
| bfd_sym_from_r_symndx (struct sym_cache *cache, |
| bfd *abfd, |
| unsigned long r_symndx) |
| { |
| unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE; |
| |
| if (cache->abfd != abfd || cache->indx[ent] != r_symndx) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| unsigned char esym[sizeof (Elf64_External_Sym)]; |
| Elf_External_Sym_Shndx eshndx; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx, |
| &cache->sym[ent], esym, &eshndx) == NULL) |
| return NULL; |
| |
| if (cache->abfd != abfd) |
| { |
| memset (cache->indx, -1, sizeof (cache->indx)); |
| cache->abfd = abfd; |
| } |
| cache->indx[ent] = r_symndx; |
| } |
| |
| return &cache->sym[ent]; |
| } |
| |
| /* Given an ELF section number, retrieve the corresponding BFD |
| section. */ |
| |
| asection * |
| bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index) |
| { |
| if (sec_index >= elf_numsections (abfd)) |
| return NULL; |
| return elf_elfsections (abfd)[sec_index]->bfd_section; |
| } |
| |
| static const struct bfd_elf_special_section special_sections_b[] = |
| { |
| { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_c[] = |
| { |
| { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_d[] = |
| { |
| { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| /* There are more DWARF sections than these, but they needn't be added here |
| unless you have to cope with broken compilers that don't emit section |
| attributes or you want to help the user writing assembler. */ |
| { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_f[] = |
| { |
| { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| { NULL, 0 , 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_g[] = |
| { |
| { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".gnu.linkonce.n"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".gnu.linkonce.p"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE }, |
| { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 }, |
| { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 }, |
| { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 }, |
| { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_h[] = |
| { |
| { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_i[] = |
| { |
| { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_l[] = |
| { |
| { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_n[] = |
| { |
| { STRING_COMMA_LEN (".noinit"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_p[] = |
| { |
| { STRING_COMMA_LEN (".persistent.bss"), 0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".persistent"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE }, |
| { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_r[] = |
| { |
| { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC }, |
| { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 }, |
| { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_s[] = |
| { |
| { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 }, |
| { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 }, |
| { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 }, |
| /* See struct bfd_elf_special_section declaration for the semantics of |
| this special case where .prefix_length != strlen (.prefix). */ |
| { ".stabstr", 5, 3, SHT_STRTAB, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_t[] = |
| { |
| { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR }, |
| { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, |
| { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section special_sections_z[] = |
| { |
| { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 }, |
| { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| static const struct bfd_elf_special_section * const special_sections[] = |
| { |
| special_sections_b, /* 'b' */ |
| special_sections_c, /* 'c' */ |
| special_sections_d, /* 'd' */ |
| NULL, /* 'e' */ |
| special_sections_f, /* 'f' */ |
| special_sections_g, /* 'g' */ |
| special_sections_h, /* 'h' */ |
| special_sections_i, /* 'i' */ |
| NULL, /* 'j' */ |
| NULL, /* 'k' */ |
| special_sections_l, /* 'l' */ |
| NULL, /* 'm' */ |
| special_sections_n, /* 'n' */ |
| NULL, /* 'o' */ |
| special_sections_p, /* 'p' */ |
| NULL, /* 'q' */ |
| special_sections_r, /* 'r' */ |
| special_sections_s, /* 's' */ |
| special_sections_t, /* 't' */ |
| NULL, /* 'u' */ |
| NULL, /* 'v' */ |
| NULL, /* 'w' */ |
| NULL, /* 'x' */ |
| NULL, /* 'y' */ |
| special_sections_z /* 'z' */ |
| }; |
| |
| const struct bfd_elf_special_section * |
| _bfd_elf_get_special_section (const char *name, |
| const struct bfd_elf_special_section *spec, |
| unsigned int rela) |
| { |
| int i; |
| int len; |
| |
| len = strlen (name); |
| |
| for (i = 0; spec[i].prefix != NULL; i++) |
| { |
| int suffix_len; |
| int prefix_len = spec[i].prefix_length; |
| |
| if (len < prefix_len) |
| continue; |
| if (memcmp (name, spec[i].prefix, prefix_len) != 0) |
| continue; |
| |
| suffix_len = spec[i].suffix_length; |
| if (suffix_len <= 0) |
| { |
| if (name[prefix_len] != 0) |
| { |
| if (suffix_len == 0) |
| continue; |
| if (name[prefix_len] != '.' |
| && (suffix_len == -2 |
| || (rela && spec[i].type == SHT_REL))) |
| continue; |
| } |
| } |
| else |
| { |
| if (len < prefix_len + suffix_len) |
| continue; |
| if (memcmp (name + len - suffix_len, |
| spec[i].prefix + prefix_len, |
| suffix_len) != 0) |
| continue; |
| } |
| return &spec[i]; |
| } |
| |
| return NULL; |
| } |
| |
| const struct bfd_elf_special_section * |
| _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec) |
| { |
| int i; |
| const struct bfd_elf_special_section *spec; |
| const struct elf_backend_data *bed; |
| |
| /* See if this is one of the special sections. */ |
| if (sec->name == NULL) |
| return NULL; |
| |
| bed = get_elf_backend_data (abfd); |
| spec = bed->special_sections; |
| if (spec) |
| { |
| spec = _bfd_elf_get_special_section (sec->name, |
| bed->special_sections, |
| sec->use_rela_p); |
| if (spec != NULL) |
| return spec; |
| } |
| |
| if (sec->name[0] != '.') |
| return NULL; |
| |
| i = sec->name[1] - 'b'; |
| if (i < 0 || i > 'z' - 'b') |
| return NULL; |
| |
| spec = special_sections[i]; |
| |
| if (spec == NULL) |
| return NULL; |
| |
| return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p); |
| } |
| |
| bool |
| _bfd_elf_new_section_hook (bfd *abfd, asection *sec) |
| { |
| struct bfd_elf_section_data *sdata; |
| const struct elf_backend_data *bed; |
| const struct bfd_elf_special_section *ssect; |
| |
| sdata = (struct bfd_elf_section_data *) sec->used_by_bfd; |
| if (sdata == NULL) |
| { |
| sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd, |
| sizeof (*sdata)); |
| if (sdata == NULL) |
| return false; |
| sec->used_by_bfd = sdata; |
| } |
| |
| /* Indicate whether or not this section should use RELA relocations. */ |
| bed = get_elf_backend_data (abfd); |
| sec->use_rela_p = bed->default_use_rela_p; |
| |
| /* Set up ELF section type and flags for newly created sections, if |
| there is an ABI mandated section. */ |
| ssect = (*bed->get_sec_type_attr) (abfd, sec); |
| if (ssect != NULL) |
| { |
| elf_section_type (sec) = ssect->type; |
| elf_section_flags (sec) = ssect->attr; |
| } |
| |
| return _bfd_generic_new_section_hook (abfd, sec); |
| } |
| |
| /* Create a new bfd section from an ELF program header. |
| |
| Since program segments have no names, we generate a synthetic name |
| of the form segment<NUM>, where NUM is generally the index in the |
| program header table. For segments that are split (see below) we |
| generate the names segment<NUM>a and segment<NUM>b. |
| |
| Note that some program segments may have a file size that is different than |
| (less than) the memory size. All this means is that at execution the |
| system must allocate the amount of memory specified by the memory size, |
| but only initialize it with the first "file size" bytes read from the |
| file. This would occur for example, with program segments consisting |
| of combined data+bss. |
| |
| To handle the above situation, this routine generates TWO bfd sections |
| for the single program segment. The first has the length specified by |
| the file size of the segment, and the second has the length specified |
| by the difference between the two sizes. In effect, the segment is split |
| into its initialized and uninitialized parts. |
| |
| */ |
| |
| bool |
| _bfd_elf_make_section_from_phdr (bfd *abfd, |
| Elf_Internal_Phdr *hdr, |
| int hdr_index, |
| const char *type_name) |
| { |
| asection *newsect; |
| char *name; |
| char namebuf[64]; |
| size_t len; |
| int split; |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| |
| split = ((hdr->p_memsz > 0) |
| && (hdr->p_filesz > 0) |
| && (hdr->p_memsz > hdr->p_filesz)); |
| |
| if (hdr->p_filesz > 0) |
| { |
| sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : ""); |
| len = strlen (namebuf) + 1; |
| name = (char *) bfd_alloc (abfd, len); |
| if (!name) |
| return false; |
| memcpy (name, namebuf, len); |
| newsect = bfd_make_section (abfd, name); |
| if (newsect == NULL) |
| return false; |
| newsect->vma = hdr->p_vaddr / opb; |
| newsect->lma = hdr->p_paddr / opb; |
| newsect->size = hdr->p_filesz; |
| newsect->filepos = hdr->p_offset; |
| newsect->flags |= SEC_HAS_CONTENTS; |
| newsect->alignment_power = bfd_log2 (hdr->p_align); |
| if (hdr->p_type == PT_LOAD) |
| { |
| newsect->flags |= SEC_ALLOC; |
| newsect->flags |= SEC_LOAD; |
| if (hdr->p_flags & PF_X) |
| { |
| /* FIXME: all we known is that it has execute PERMISSION, |
| may be data. */ |
| newsect->flags |= SEC_CODE; |
| } |
| } |
| if (!(hdr->p_flags & PF_W)) |
| { |
| newsect->flags |= SEC_READONLY; |
| } |
| } |
| |
| if (hdr->p_memsz > hdr->p_filesz) |
| { |
| bfd_vma align; |
| |
| sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : ""); |
| len = strlen (namebuf) + 1; |
| name = (char *) bfd_alloc (abfd, len); |
| if (!name) |
| return false; |
| memcpy (name, namebuf, len); |
| newsect = bfd_make_section (abfd, name); |
| if (newsect == NULL) |
| return false; |
| newsect->vma = (hdr->p_vaddr + hdr->p_filesz) / opb; |
| newsect->lma = (hdr->p_paddr + hdr->p_filesz) / opb; |
| newsect->size = hdr->p_memsz - hdr->p_filesz; |
| newsect->filepos = hdr->p_offset + hdr->p_filesz; |
| align = newsect->vma & -newsect->vma; |
| if (align == 0 || align > hdr->p_align) |
| align = hdr->p_align; |
| newsect->alignment_power = bfd_log2 (align); |
| if (hdr->p_type == PT_LOAD) |
| { |
| newsect->flags |= SEC_ALLOC; |
| if (hdr->p_flags & PF_X) |
| newsect->flags |= SEC_CODE; |
| } |
| if (!(hdr->p_flags & PF_W)) |
| newsect->flags |= SEC_READONLY; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset) |
| { |
| /* The return value is ignored. Build-ids are considered optional. */ |
| if (templ->xvec->flavour == bfd_target_elf_flavour) |
| return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id) |
| (templ, offset); |
| return false; |
| } |
| |
| bool |
| bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index) |
| { |
| const struct elf_backend_data *bed; |
| |
| switch (hdr->p_type) |
| { |
| case PT_NULL: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null"); |
| |
| case PT_LOAD: |
| if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load")) |
| return false; |
| if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL) |
| _bfd_elf_core_find_build_id (abfd, hdr->p_offset); |
| return true; |
| |
| case PT_DYNAMIC: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic"); |
| |
| case PT_INTERP: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp"); |
| |
| case PT_NOTE: |
| if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note")) |
| return false; |
| if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz, |
| hdr->p_align)) |
| return false; |
| return true; |
| |
| case PT_SHLIB: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib"); |
| |
| case PT_PHDR: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr"); |
| |
| case PT_GNU_EH_FRAME: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, |
| "eh_frame_hdr"); |
| |
| case PT_GNU_STACK: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack"); |
| |
| case PT_GNU_RELRO: |
| return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro"); |
| |
| default: |
| /* Check for any processor-specific program segment types. */ |
| bed = get_elf_backend_data (abfd); |
| return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc"); |
| } |
| } |
| |
| /* Return the REL_HDR for SEC, assuming there is only a single one, either |
| REL or RELA. */ |
| |
| Elf_Internal_Shdr * |
| _bfd_elf_single_rel_hdr (asection *sec) |
| { |
| if (elf_section_data (sec)->rel.hdr) |
| { |
| BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL); |
| return elf_section_data (sec)->rel.hdr; |
| } |
| else |
| return elf_section_data (sec)->rela.hdr; |
| } |
| |
| static bool |
| _bfd_elf_set_reloc_sh_name (bfd *abfd, |
| Elf_Internal_Shdr *rel_hdr, |
| const char *sec_name, |
| bool use_rela_p) |
| { |
| char *name = (char *) bfd_alloc (abfd, |
| sizeof ".rela" + strlen (sec_name)); |
| if (name == NULL) |
| return false; |
| |
| sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name); |
| rel_hdr->sh_name = |
| (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name, |
| false); |
| if (rel_hdr->sh_name == (unsigned int) -1) |
| return false; |
| |
| return true; |
| } |
| |
| /* Allocate and initialize a section-header for a new reloc section, |
| containing relocations against ASECT. It is stored in RELDATA. If |
| USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL |
| relocations. */ |
| |
| static bool |
| _bfd_elf_init_reloc_shdr (bfd *abfd, |
| struct bfd_elf_section_reloc_data *reldata, |
| const char *sec_name, |
| bool use_rela_p, |
| bool delay_st_name_p) |
| { |
| Elf_Internal_Shdr *rel_hdr; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| BFD_ASSERT (reldata->hdr == NULL); |
| rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr)); |
| reldata->hdr = rel_hdr; |
| |
| if (delay_st_name_p) |
| rel_hdr->sh_name = (unsigned int) -1; |
| else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name, |
| use_rela_p)) |
| return false; |
| rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL; |
| rel_hdr->sh_entsize = (use_rela_p |
| ? bed->s->sizeof_rela |
| : bed->s->sizeof_rel); |
| rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
| rel_hdr->sh_flags = 0; |
| rel_hdr->sh_addr = 0; |
| rel_hdr->sh_size = 0; |
| rel_hdr->sh_offset = 0; |
| |
| return true; |
| } |
| |
| /* Return the default section type based on the passed in section flags. */ |
| |
| int |
| bfd_elf_get_default_section_type (flagword flags) |
| { |
| if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0 |
| && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) |
| return SHT_NOBITS; |
| return SHT_PROGBITS; |
| } |
| |
| struct fake_section_arg |
| { |
| struct bfd_link_info *link_info; |
| bool failed; |
| }; |
| |
| /* Set up an ELF internal section header for a section. */ |
| |
| static void |
| elf_fake_sections (bfd *abfd, asection *asect, void *fsarg) |
| { |
| struct fake_section_arg *arg = (struct fake_section_arg *)fsarg; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct bfd_elf_section_data *esd = elf_section_data (asect); |
| Elf_Internal_Shdr *this_hdr; |
| unsigned int sh_type; |
| const char *name = asect->name; |
| bool delay_st_name_p = false; |
| bfd_vma mask; |
| |
| if (arg->failed) |
| { |
| /* We already failed; just get out of the bfd_map_over_sections |
| loop. */ |
| return; |
| } |
| |
| this_hdr = &esd->this_hdr; |
| |
| if (arg->link_info) |
| { |
| /* ld: compress DWARF debug sections with names: .debug_*. */ |
| if ((arg->link_info->compress_debug & COMPRESS_DEBUG) |
| && (asect->flags & SEC_DEBUGGING) |
| && name[1] == 'd' |
| && name[6] == '_') |
| { |
| /* Set SEC_ELF_COMPRESS to indicate this section should be |
| compressed. */ |
| asect->flags |= SEC_ELF_COMPRESS; |
| /* If this section will be compressed, delay adding section |
| name to section name section after it is compressed in |
| _bfd_elf_assign_file_positions_for_non_load. */ |
| delay_st_name_p = true; |
| } |
| } |
| else if ((asect->flags & SEC_ELF_RENAME)) |
| { |
| /* objcopy: rename output DWARF debug section. */ |
| if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI))) |
| { |
| /* When we decompress or compress with SHF_COMPRESSED, |
| convert section name from .zdebug_* to .debug_* if |
| needed. */ |
| if (name[1] == 'z') |
| { |
| char *new_name = convert_zdebug_to_debug (abfd, name); |
| if (new_name == NULL) |
| { |
| arg->failed = true; |
| return; |
| } |
| name = new_name; |
| } |
| } |
| else if (asect->compress_status == COMPRESS_SECTION_DONE) |
| { |
| /* PR binutils/18087: Compression does not always make a |
| section smaller. So only rename the section when |
| compression has actually taken place. If input section |
| name is .zdebug_*, we should never compress it again. */ |
| char *new_name = convert_debug_to_zdebug (abfd, name); |
| if (new_name == NULL) |
| { |
| arg->failed = true; |
| return; |
| } |
| BFD_ASSERT (name[1] != 'z'); |
| name = new_name; |
| } |
| } |
| |
| if (delay_st_name_p) |
| this_hdr->sh_name = (unsigned int) -1; |
| else |
| { |
| this_hdr->sh_name |
| = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), |
| name, false); |
| if (this_hdr->sh_name == (unsigned int) -1) |
| { |
| arg->failed = true; |
| return; |
| } |
| } |
| |
| /* Don't clear sh_flags. Assembler may set additional bits. */ |
| |
| if ((asect->flags & SEC_ALLOC) != 0 |
| || asect->user_set_vma) |
| this_hdr->sh_addr = asect->vma * bfd_octets_per_byte (abfd, asect); |
| else |
| this_hdr->sh_addr = 0; |
| |
| this_hdr->sh_offset = 0; |
| this_hdr->sh_size = asect->size; |
| this_hdr->sh_link = 0; |
| /* PR 17512: file: 0eb809fe, 8b0535ee. */ |
| if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: error: alignment power %d of section `%pA' is too big"), |
| abfd, asect->alignment_power, asect); |
| arg->failed = true; |
| return; |
| } |
| /* Set sh_addralign to the highest power of two given by alignment |
| consistent with the section VMA. Linker scripts can force VMA. */ |
| mask = ((bfd_vma) 1 << asect->alignment_power) | this_hdr->sh_addr; |
| this_hdr->sh_addralign = mask & -mask; |
| /* The sh_entsize and sh_info fields may have been set already by |
| copy_private_section_data. */ |
| |
| this_hdr->bfd_section = asect; |
| this_hdr->contents = NULL; |
| |
| /* If the section type is unspecified, we set it based on |
| asect->flags. */ |
| if ((asect->flags & SEC_GROUP) != 0) |
| sh_type = SHT_GROUP; |
| else |
| sh_type = bfd_elf_get_default_section_type (asect->flags); |
| |
| if (this_hdr->sh_type == SHT_NULL) |
| this_hdr->sh_type = sh_type; |
| else if (this_hdr->sh_type == SHT_NOBITS |
| && sh_type == SHT_PROGBITS |
| && (asect->flags & SEC_ALLOC) != 0) |
| { |
| /* Warn if we are changing a NOBITS section to PROGBITS, but |
| allow the link to proceed. This can happen when users link |
| non-bss input sections to bss output sections, or emit data |
| to a bss output section via a linker script. */ |
| _bfd_error_handler |
| (_("warning: section `%pA' type changed to PROGBITS"), asect); |
| this_hdr->sh_type = sh_type; |
| } |
| |
| switch (this_hdr->sh_type) |
| { |
| default: |
| break; |
| |
| case SHT_STRTAB: |
| case SHT_NOTE: |
| case SHT_NOBITS: |
| case SHT_PROGBITS: |
| break; |
| |
| case SHT_INIT_ARRAY: |
| case SHT_FINI_ARRAY: |
| case SHT_PREINIT_ARRAY: |
| this_hdr->sh_entsize = bed->s->arch_size / 8; |
| break; |
| |
| case SHT_HASH: |
| this_hdr->sh_entsize = bed->s->sizeof_hash_entry; |
| break; |
| |
| case SHT_DYNSYM: |
| this_hdr->sh_entsize = bed->s->sizeof_sym; |
| break; |
| |
| case SHT_DYNAMIC: |
| this_hdr->sh_entsize = bed->s->sizeof_dyn; |
| break; |
| |
| case SHT_RELA: |
| if (get_elf_backend_data (abfd)->may_use_rela_p) |
| this_hdr->sh_entsize = bed->s->sizeof_rela; |
| break; |
| |
| case SHT_REL: |
| if (get_elf_backend_data (abfd)->may_use_rel_p) |
| this_hdr->sh_entsize = bed->s->sizeof_rel; |
| break; |
| |
| case SHT_GNU_versym: |
| this_hdr->sh_entsize = sizeof (Elf_External_Versym); |
| break; |
| |
| case SHT_GNU_verdef: |
| this_hdr->sh_entsize = 0; |
| /* objcopy or strip will copy over sh_info, but may not set |
| cverdefs. The linker will set cverdefs, but sh_info will be |
| zero. */ |
| if (this_hdr->sh_info == 0) |
| this_hdr->sh_info = elf_tdata (abfd)->cverdefs; |
| else |
| BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0 |
| || this_hdr->sh_info == elf_tdata (abfd)->cverdefs); |
| break; |
| |
| case SHT_GNU_verneed: |
| this_hdr->sh_entsize = 0; |
| /* objcopy or strip will copy over sh_info, but may not set |
| cverrefs. The linker will set cverrefs, but sh_info will be |
| zero. */ |
| if (this_hdr->sh_info == 0) |
| this_hdr->sh_info = elf_tdata (abfd)->cverrefs; |
| else |
| BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0 |
| || this_hdr->sh_info == elf_tdata (abfd)->cverrefs); |
| break; |
| |
| case SHT_GROUP: |
| this_hdr->sh_entsize = GRP_ENTRY_SIZE; |
| break; |
| |
| case SHT_GNU_HASH: |
| this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4; |
| break; |
| } |
| |
| if ((asect->flags & SEC_ALLOC) != 0) |
| this_hdr->sh_flags |= SHF_ALLOC; |
| if ((asect->flags & SEC_READONLY) == 0) |
| this_hdr->sh_flags |= SHF_WRITE; |
| if ((asect->flags & SEC_CODE) != 0) |
| this_hdr->sh_flags |= SHF_EXECINSTR; |
| if ((asect->flags & SEC_MERGE) != 0) |
| { |
| this_hdr->sh_flags |= SHF_MERGE; |
| this_hdr->sh_entsize = asect->entsize; |
| } |
| if ((asect->flags & SEC_STRINGS) != 0) |
| this_hdr->sh_flags |= SHF_STRINGS; |
| if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL) |
| this_hdr->sh_flags |= SHF_GROUP; |
| if ((asect->flags & SEC_THREAD_LOCAL) != 0) |
| { |
| this_hdr->sh_flags |= SHF_TLS; |
| if (asect->size == 0 |
| && (asect->flags & SEC_HAS_CONTENTS) == 0) |
| { |
| struct bfd_link_order *o = asect->map_tail.link_order; |
| |
| this_hdr->sh_size = 0; |
| if (o != NULL) |
| { |
| this_hdr->sh_size = o->offset + o->size; |
| if (this_hdr->sh_size != 0) |
| this_hdr->sh_type = SHT_NOBITS; |
| } |
| } |
| } |
| if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE) |
| this_hdr->sh_flags |= SHF_EXCLUDE; |
| |
| /* If the section has relocs, set up a section header for the |
| SHT_REL[A] section. If two relocation sections are required for |
| this section, it is up to the processor-specific back-end to |
| create the other. */ |
| if ((asect->flags & SEC_RELOC) != 0) |
| { |
| /* When doing a relocatable link, create both REL and RELA sections if |
| needed. */ |
| if (arg->link_info |
| /* Do the normal setup if we wouldn't create any sections here. */ |
| && esd->rel.count + esd->rela.count > 0 |
| && (bfd_link_relocatable (arg->link_info) |
| || arg->link_info->emitrelocations)) |
| { |
| if (esd->rel.count && esd->rel.hdr == NULL |
| && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name, |
| false, delay_st_name_p)) |
| { |
| arg->failed = true; |
| return; |
| } |
| if (esd->rela.count && esd->rela.hdr == NULL |
| && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name, |
| true, delay_st_name_p)) |
| { |
| arg->failed = true; |
| return; |
| } |
| } |
| else if (!_bfd_elf_init_reloc_shdr (abfd, |
| (asect->use_rela_p |
| ? &esd->rela : &esd->rel), |
| name, |
| asect->use_rela_p, |
| delay_st_name_p)) |
| { |
| arg->failed = true; |
| return; |
| } |
| } |
| |
| /* Check for processor-specific section types. */ |
| sh_type = this_hdr->sh_type; |
| if (bed->elf_backend_fake_sections |
| && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect)) |
| { |
| arg->failed = true; |
| return; |
| } |
| |
| if (sh_type == SHT_NOBITS && asect->size != 0) |
| { |
| /* Don't change the header type from NOBITS if we are being |
| called for objcopy --only-keep-debug. */ |
| this_hdr->sh_type = sh_type; |
| } |
| } |
| |
| /* Fill in the contents of a SHT_GROUP section. Called from |
| _bfd_elf_compute_section_file_positions for gas, objcopy, and |
| when ELF targets use the generic linker, ld. Called for ld -r |
| from bfd_elf_final_link. */ |
| |
| void |
| bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg) |
| { |
| bool *failedptr = (bool *) failedptrarg; |
| asection *elt, *first; |
| unsigned char *loc; |
| bool gas; |
| |
| /* Ignore linker created group section. See elfNN_ia64_object_p in |
| elfxx-ia64.c. */ |
| if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP |
| || sec->size == 0 |
| || *failedptr) |
| return; |
| |
| if (elf_section_data (sec)->this_hdr.sh_info == 0) |
| { |
| unsigned long symindx = 0; |
| |
| /* elf_group_id will have been set up by objcopy and the |
| generic linker. */ |
| if (elf_group_id (sec) != NULL) |
| symindx = elf_group_id (sec)->udata.i; |
| |
| if (symindx == 0) |
| { |
| /* If called from the assembler, swap_out_syms will have set up |
| elf_section_syms. |
| PR 25699: A corrupt input file could contain bogus group info. */ |
| if (elf_section_syms (abfd) == NULL) |
| { |
| *failedptr = true; |
| return; |
| } |
| symindx = elf_section_syms (abfd)[sec->index]->udata.i; |
| } |
| elf_section_data (sec)->this_hdr.sh_info = symindx; |
| } |
| else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2) |
| { |
| /* The ELF backend linker sets sh_info to -2 when the group |
| signature symbol is global, and thus the index can't be |
| set until all local symbols are output. */ |
| asection *igroup; |
| struct bfd_elf_section_data *sec_data; |
| unsigned long symndx; |
| unsigned long extsymoff; |
| struct elf_link_hash_entry *h; |
| |
| /* The point of this little dance to the first SHF_GROUP section |
| then back to the SHT_GROUP section is that this gets us to |
| the SHT_GROUP in the input object. */ |
| igroup = elf_sec_group (elf_next_in_group (sec)); |
| sec_data = elf_section_data (igroup); |
| symndx = sec_data->this_hdr.sh_info; |
| extsymoff = 0; |
| if (!elf_bad_symtab (igroup->owner)) |
| { |
| Elf_Internal_Shdr *symtab_hdr; |
| |
| symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr; |
| extsymoff = symtab_hdr->sh_info; |
| } |
| h = elf_sym_hashes (igroup->owner)[symndx - extsymoff]; |
| while (h->root.type == bfd_link_hash_indirect |
| || h->root.type == bfd_link_hash_warning) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| |
| elf_section_data (sec)->this_hdr.sh_info = h->indx; |
| } |
| |
| /* The contents won't be allocated for "ld -r" or objcopy. */ |
| gas = true; |
| if (sec->contents == NULL) |
| { |
| gas = false; |
| sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size); |
| |
| /* Arrange for the section to be written out. */ |
| elf_section_data (sec)->this_hdr.contents = sec->contents; |
| if (sec->contents == NULL) |
| { |
| *failedptr = true; |
| return; |
| } |
| } |
| |
| loc = sec->contents + sec->size; |
| |
| /* Get the pointer to the first section in the group that gas |
| squirreled away here. objcopy arranges for this to be set to the |
| start of the input section group. */ |
| first = elt = elf_next_in_group (sec); |
| |
| /* First element is a flag word. Rest of section is elf section |
| indices for all the sections of the group. Write them backwards |
| just to keep the group in the same order as given in .section |
| directives, not that it matters. */ |
| while (elt != NULL) |
| { |
| asection *s; |
| |
| s = elt; |
| if (!gas) |
| s = s->output_section; |
| if (s != NULL |
| && !bfd_is_abs_section (s)) |
| { |
| struct bfd_elf_section_data *elf_sec = elf_section_data (s); |
| struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt); |
| |
| if (elf_sec->rel.hdr != NULL |
| && (gas |
| || (input_elf_sec->rel.hdr != NULL |
| && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)) |
| { |
| elf_sec->rel.hdr->sh_flags |= SHF_GROUP; |
| loc -= 4; |
| H_PUT_32 (abfd, elf_sec->rel.idx, loc); |
| } |
| if (elf_sec->rela.hdr != NULL |
| && (gas |
| || (input_elf_sec->rela.hdr != NULL |
| && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)) |
| { |
| elf_sec->rela.hdr->sh_flags |= SHF_GROUP; |
| loc -= 4; |
| H_PUT_32 (abfd, elf_sec->rela.idx, loc); |
| } |
| loc -= 4; |
| H_PUT_32 (abfd, elf_sec->this_idx, loc); |
| } |
| elt = elf_next_in_group (elt); |
| if (elt == first) |
| break; |
| } |
| |
| loc -= 4; |
| BFD_ASSERT (loc == sec->contents); |
| |
| H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc); |
| } |
| |
| /* Given NAME, the name of a relocation section stripped of its |
| .rel/.rela prefix, return the section in ABFD to which the |
| relocations apply. */ |
| |
| asection * |
| _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name) |
| { |
| /* If a target needs .got.plt section, relocations in rela.plt/rel.plt |
| section likely apply to .got.plt or .got section. */ |
| if (get_elf_backend_data (abfd)->want_got_plt |
| && strcmp (name, ".plt") == 0) |
| { |
| asection *sec; |
| |
| name = ".got.plt"; |
| sec = bfd_get_section_by_name (abfd, name); |
| if (sec != NULL) |
| return sec; |
| name = ".got"; |
| } |
| |
| return bfd_get_section_by_name (abfd, name); |
| } |
| |
| /* Return the section to which RELOC_SEC applies. */ |
| |
| static asection * |
| elf_get_reloc_section (asection *reloc_sec) |
| { |
| const char *name; |
| unsigned int type; |
| bfd *abfd; |
| const struct elf_backend_data *bed; |
| |
| type = elf_section_data (reloc_sec)->this_hdr.sh_type; |
| if (type != SHT_REL && type != SHT_RELA) |
| return NULL; |
| |
| /* We look up the section the relocs apply to by name. */ |
| name = reloc_sec->name; |
| if (!startswith (name, ".rel")) |
| return NULL; |
| name += 4; |
| if (type == SHT_RELA && *name++ != 'a') |
| return NULL; |
| |
| abfd = reloc_sec->owner; |
| bed = get_elf_backend_data (abfd); |
| return bed->get_reloc_section (abfd, name); |
| } |
| |
| /* Assign all ELF section numbers. The dummy first section is handled here |
| too. The link/info pointers for the standard section types are filled |
| in here too, while we're at it. LINK_INFO will be 0 when arriving |
| here for objcopy, and when using the generic ELF linker. */ |
| |
| static bool |
| assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info) |
| { |
| struct elf_obj_tdata *t = elf_tdata (abfd); |
| asection *sec; |
| unsigned int section_number; |
| Elf_Internal_Shdr **i_shdrp; |
| struct bfd_elf_section_data *d; |
| bool need_symtab; |
| size_t amt; |
| |
| section_number = 1; |
| |
| _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd)); |
| |
| /* SHT_GROUP sections are in relocatable files only. */ |
| if (link_info == NULL || !link_info->resolve_section_groups) |
| { |
| size_t reloc_count = 0; |
| |
| /* Put SHT_GROUP sections first. */ |
| for (sec = abfd->sections; sec != NULL; sec = sec->next) |
| { |
| d = elf_section_data (sec); |
| |
| if (d->this_hdr.sh_type == SHT_GROUP) |
| { |
| if (sec->flags & SEC_LINKER_CREATED) |
| { |
| /* Remove the linker created SHT_GROUP sections. */ |
| bfd_section_list_remove (abfd, sec); |
| abfd->section_count--; |
| } |
| else |
| d->this_idx = section_number++; |
| } |
| |
| /* Count relocations. */ |
| reloc_count += sec->reloc_count; |
| } |
| |
| /* Clear HAS_RELOC if there are no relocations. */ |
| if (reloc_count == 0) |
| abfd->flags &= ~HAS_RELOC; |
| } |
| |
| for (sec = abfd->sections; sec; sec = sec->next) |
| { |
| d = elf_section_data (sec); |
| |
| if (d->this_hdr.sh_type != SHT_GROUP) |
| d->this_idx = section_number++; |
| if (d->this_hdr.sh_name != (unsigned int) -1) |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name); |
| if (d->rel.hdr) |
| { |
| d->rel.idx = section_number++; |
| if (d->rel.hdr->sh_name != (unsigned int) -1) |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name); |
| } |
| else |
| d->rel.idx = 0; |
| |
| if (d->rela.hdr) |
| { |
| d->rela.idx = section_number++; |
| if (d->rela.hdr->sh_name != (unsigned int) -1) |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name); |
| } |
| else |
| d->rela.idx = 0; |
| } |
| |
| need_symtab = (bfd_get_symcount (abfd) > 0 |
| || (link_info == NULL |
| && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) |
| == HAS_RELOC))); |
| if (need_symtab) |
| { |
| elf_onesymtab (abfd) = section_number++; |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name); |
| if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF)) |
| { |
| elf_section_list *entry; |
| |
| BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL); |
| |
| entry = bfd_zalloc (abfd, sizeof (*entry)); |
| entry->ndx = section_number++; |
| elf_symtab_shndx_list (abfd) = entry; |
| entry->hdr.sh_name |
| = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), |
| ".symtab_shndx", false); |
| if (entry->hdr.sh_name == (unsigned int) -1) |
| return false; |
| } |
| elf_strtab_sec (abfd) = section_number++; |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name); |
| } |
| |
| elf_shstrtab_sec (abfd) = section_number++; |
| _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name); |
| elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd); |
| |
| if (section_number >= SHN_LORESERVE) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: too many sections: %u"), |
| abfd, section_number); |
| return false; |
| } |
| |
| elf_numsections (abfd) = section_number; |
| elf_elfheader (abfd)->e_shnum = section_number; |
| |
| /* Set up the list of section header pointers, in agreement with the |
| indices. */ |
| amt = section_number * sizeof (Elf_Internal_Shdr *); |
| i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt); |
| if (i_shdrp == NULL) |
| return false; |
| |
| i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd, |
| sizeof (Elf_Internal_Shdr)); |
| if (i_shdrp[0] == NULL) |
| { |
| bfd_release (abfd, i_shdrp); |
| return false; |
| } |
| |
| elf_elfsections (abfd) = i_shdrp; |
| |
| i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr; |
| if (need_symtab) |
| { |
| i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr; |
| if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)) |
| { |
| elf_section_list * entry = elf_symtab_shndx_list (abfd); |
| BFD_ASSERT (entry != NULL); |
| i_shdrp[entry->ndx] = & entry->hdr; |
| entry->hdr.sh_link = elf_onesymtab (abfd); |
| } |
| i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr; |
| t->symtab_hdr.sh_link = elf_strtab_sec (abfd); |
| } |
| |
| for (sec = abfd->sections; sec; sec = sec->next) |
| { |
| asection *s; |
| |
| d = elf_section_data (sec); |
| |
| i_shdrp[d->this_idx] = &d->this_hdr; |
| if (d->rel.idx != 0) |
| i_shdrp[d->rel.idx] = d->rel.hdr; |
| if (d->rela.idx != 0) |
| i_shdrp[d->rela.idx] = d->rela.hdr; |
| |
| /* Fill in the sh_link and sh_info fields while we're at it. */ |
| |
| /* sh_link of a reloc section is the section index of the symbol |
| table. sh_info is the section index of the section to which |
| the relocation entries apply. */ |
| if (d->rel.idx != 0) |
| { |
| d->rel.hdr->sh_link = elf_onesymtab (abfd); |
| d->rel.hdr->sh_info = d->this_idx; |
| d->rel.hdr->sh_flags |= SHF_INFO_LINK; |
| } |
| if (d->rela.idx != 0) |
| { |
| d->rela.hdr->sh_link = elf_onesymtab (abfd); |
| d->rela.hdr->sh_info = d->this_idx; |
| d->rela.hdr->sh_flags |= SHF_INFO_LINK; |
| } |
| |
| /* We need to set up sh_link for SHF_LINK_ORDER. */ |
| if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0) |
| { |
| s = elf_linked_to_section (sec); |
| /* We can now have a NULL linked section pointer. |
| This happens when the sh_link field is 0, which is done |
| when a linked to section is discarded but the linking |
| section has been retained for some reason. */ |
| if (s) |
| { |
| /* Check discarded linkonce section. */ |
| if (discarded_section (s)) |
| { |
| asection *kept; |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: sh_link of section `%pA' points to" |
| " discarded section `%pA' of `%pB'"), |
| abfd, d->this_hdr.bfd_section, s, s->owner); |
| /* Point to the kept section if it has the same |
| size as the discarded one. */ |
| kept = _bfd_elf_check_kept_section (s, link_info); |
| if (kept == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| s = kept; |
| } |
| /* Handle objcopy. */ |
| else if (s->output_section == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: sh_link of section `%pA' points to" |
| " removed section `%pA' of `%pB'"), |
| abfd, d->this_hdr.bfd_section, s, s->owner); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| s = s->output_section; |
| d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| } |
| } |
| |
| switch (d->this_hdr.sh_type) |
| { |
| case SHT_REL: |
| case SHT_RELA: |
| /* A reloc section which we are treating as a normal BFD |
| section. sh_link is the section index of the symbol |
| table. sh_info is the section index of the section to |
| which the relocation entries apply. We assume that an |
| allocated reloc section uses the dynamic symbol table. |
| FIXME: How can we be sure? */ |
| s = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (s != NULL) |
| d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| |
| s = elf_get_reloc_section (sec); |
| if (s != NULL) |
| { |
| d->this_hdr.sh_info = elf_section_data (s)->this_idx; |
| d->this_hdr.sh_flags |= SHF_INFO_LINK; |
| } |
| break; |
| |
| case SHT_STRTAB: |
| /* We assume that a section named .stab*str is a stabs |
| string section. We look for a section with the same name |
| but without the trailing ``str'', and set its sh_link |
| field to point to this section. */ |
| if (startswith (sec->name, ".stab") |
| && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0) |
| { |
| size_t len; |
| char *alc; |
| |
| len = strlen (sec->name); |
| alc = (char *) bfd_malloc (len - 2); |
| if (alc == NULL) |
| return false; |
| memcpy (alc, sec->name, len - 3); |
| alc[len - 3] = '\0'; |
| s = bfd_get_section_by_name (abfd, alc); |
| free (alc); |
| if (s != NULL) |
| { |
| elf_section_data (s)->this_hdr.sh_link = d->this_idx; |
| |
| /* This is a .stab section. */ |
| elf_section_data (s)->this_hdr.sh_entsize = 12; |
| } |
| } |
| break; |
| |
| case SHT_DYNAMIC: |
| case SHT_DYNSYM: |
| case SHT_GNU_verneed: |
| case SHT_GNU_verdef: |
| /* sh_link is the section header index of the string table |
| used for the dynamic entries, or the symbol table, or the |
| version strings. */ |
| s = bfd_get_section_by_name (abfd, ".dynstr"); |
| if (s != NULL) |
| d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| break; |
| |
| case SHT_GNU_LIBLIST: |
| /* sh_link is the section header index of the prelink library |
| list used for the dynamic entries, or the symbol table, or |
| the version strings. */ |
| s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC) |
| ? ".dynstr" : ".gnu.libstr"); |
| if (s != NULL) |
| d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| break; |
| |
| case SHT_HASH: |
| case SHT_GNU_HASH: |
| case SHT_GNU_versym: |
| /* sh_link is the section header index of the symbol table |
| this hash table or version table is for. */ |
| s = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (s != NULL) |
| d->this_hdr.sh_link = elf_section_data (s)->this_idx; |
| break; |
| |
| case SHT_GROUP: |
| d->this_hdr.sh_link = elf_onesymtab (abfd); |
| } |
| } |
| |
| /* Delay setting sh_name to _bfd_elf_write_object_contents so that |
| _bfd_elf_assign_file_positions_for_non_load can convert DWARF |
| debug section name from .debug_* to .zdebug_* if needed. */ |
| |
| return true; |
| } |
| |
| static bool |
| sym_is_global (bfd *abfd, asymbol *sym) |
| { |
| /* If the backend has a special mapping, use it. */ |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| if (bed->elf_backend_sym_is_global) |
| return (*bed->elf_backend_sym_is_global) (abfd, sym); |
| |
| return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0 |
| || bfd_is_und_section (bfd_asymbol_section (sym)) |
| || bfd_is_com_section (bfd_asymbol_section (sym))); |
| } |
| |
| /* Filter global symbols of ABFD to include in the import library. All |
| SYMCOUNT symbols of ABFD can be examined from their pointers in |
| SYMS. Pointers of symbols to keep should be stored contiguously at |
| the beginning of that array. |
| |
| Returns the number of symbols to keep. */ |
| |
| unsigned int |
| _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info, |
| asymbol **syms, long symcount) |
| { |
| long src_count, dst_count = 0; |
| |
| for (src_count = 0; src_count < symcount; src_count++) |
| { |
| asymbol *sym = syms[src_count]; |
| char *name = (char *) bfd_asymbol_name (sym); |
| struct bfd_link_hash_entry *h; |
| |
| if (!sym_is_global (abfd, sym)) |
| continue; |
| |
| h = bfd_link_hash_lookup (info->hash, name, false, false, false); |
| if (h == NULL) |
| continue; |
| if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak) |
| continue; |
| if (h->linker_def || h->ldscript_def) |
| continue; |
| |
| syms[dst_count++] = sym; |
| } |
| |
| syms[dst_count] = NULL; |
| |
| return dst_count; |
| } |
| |
| /* Don't output section symbols for sections that are not going to be |
| output, that are duplicates or there is no BFD section. */ |
| |
| static bool |
| ignore_section_sym (bfd *abfd, asymbol *sym) |
| { |
| elf_symbol_type *type_ptr; |
| |
| if (sym == NULL) |
| return false; |
| |
| if ((sym->flags & BSF_SECTION_SYM) == 0) |
| return false; |
| |
| /* Ignore the section symbol if it isn't used. */ |
| if ((sym->flags & BSF_SECTION_SYM_USED) == 0) |
| return true; |
| |
| if (sym->section == NULL) |
| return true; |
| |
| type_ptr = elf_symbol_from (sym); |
| return ((type_ptr != NULL |
| && type_ptr->internal_elf_sym.st_shndx != 0 |
| && bfd_is_abs_section (sym->section)) |
| || !(sym->section->owner == abfd |
| || (sym->section->output_section != NULL |
| && sym->section->output_section->owner == abfd |
| && sym->section->output_offset == 0) |
| || bfd_is_abs_section (sym->section))); |
| } |
| |
| /* Map symbol from it's internal number to the external number, moving |
| all local symbols to be at the head of the list. */ |
| |
| static bool |
| elf_map_symbols (bfd *abfd, unsigned int *pnum_locals) |
| { |
| unsigned int symcount = bfd_get_symcount (abfd); |
| asymbol **syms = bfd_get_outsymbols (abfd); |
| asymbol **sect_syms; |
| unsigned int num_locals = 0; |
| unsigned int num_globals = 0; |
| unsigned int num_locals2 = 0; |
| unsigned int num_globals2 = 0; |
| unsigned int max_index = 0; |
| unsigned int idx; |
| asection *asect; |
| asymbol **new_syms; |
| size_t amt; |
| |
| #ifdef DEBUG |
| fprintf (stderr, "elf_map_symbols\n"); |
| fflush (stderr); |
| #endif |
| |
| for (asect = abfd->sections; asect; asect = asect->next) |
| { |
| if (max_index < asect->index) |
| max_index = asect->index; |
| } |
| |
| max_index++; |
| amt = max_index * sizeof (asymbol *); |
| sect_syms = (asymbol **) bfd_zalloc (abfd, amt); |
| if (sect_syms == NULL) |
| return false; |
| elf_section_syms (abfd) = sect_syms; |
| elf_num_section_syms (abfd) = max_index; |
| |
| /* Init sect_syms entries for any section symbols we have already |
| decided to output. */ |
| for (idx = 0; idx < symcount; idx++) |
| { |
| asymbol *sym = syms[idx]; |
| |
| if ((sym->flags & BSF_SECTION_SYM) != 0 |
| && sym->value == 0 |
| && !ignore_section_sym (abfd, sym) |
| && !bfd_is_abs_section (sym->section)) |
| { |
| asection *sec = sym->section; |
| |
| if (sec->owner != abfd) |
| sec = sec->output_section; |
| |
| sect_syms[sec->index] = syms[idx]; |
| } |
| } |
| |
| /* Classify all of the symbols. */ |
| for (idx = 0; idx < symcount; idx++) |
| { |
| if (sym_is_global (abfd, syms[idx])) |
| num_globals++; |
| else if (!ignore_section_sym (abfd, syms[idx])) |
| num_locals++; |
| } |
| |
| /* We will be adding a section symbol for each normal BFD section. Most |
| sections will already have a section symbol in outsymbols, but |
| eg. SHT_GROUP sections will not, and we need the section symbol mapped |
| at least in that case. */ |
| for (asect = abfd->sections; asect; asect = asect->next) |
| { |
| asymbol *sym = asect->symbol; |
| /* Don't include ignored section symbols. */ |
| if (!ignore_section_sym (abfd, sym) |
| && sect_syms[asect->index] == NULL) |
| { |
| if (!sym_is_global (abfd, asect->symbol)) |
| num_locals++; |
| else |
| num_globals++; |
| } |
| } |
| |
| /* Now sort the symbols so the local symbols are first. */ |
| amt = (num_locals + num_globals) * sizeof (asymbol *); |
| new_syms = (asymbol **) bfd_alloc (abfd, amt); |
| if (new_syms == NULL) |
| return false; |
| |
| for (idx = 0; idx < symcount; idx++) |
| { |
| asymbol *sym = syms[idx]; |
| unsigned int i; |
| |
| if (sym_is_global (abfd, sym)) |
| i = num_locals + num_globals2++; |
| /* Don't include ignored section symbols. */ |
| else if (!ignore_section_sym (abfd, sym)) |
| i = num_locals2++; |
| else |
| continue; |
| new_syms[i] = sym; |
| sym->udata.i = i + 1; |
| } |
| for (asect = abfd->sections; asect; asect = asect->next) |
| { |
| asymbol *sym = asect->symbol; |
| if (!ignore_section_sym (abfd, sym) |
| && sect_syms[asect->index] == NULL) |
| { |
| unsigned int i; |
| |
| sect_syms[asect->index] = sym; |
| if (!sym_is_global (abfd, sym)) |
| i = num_locals2++; |
| else |
| i = num_locals + num_globals2++; |
| new_syms[i] = sym; |
| sym->udata.i = i + 1; |
| } |
| } |
| |
| bfd_set_symtab (abfd, new_syms, num_locals + num_globals); |
| |
| *pnum_locals = num_locals; |
| return true; |
| } |
| |
| /* Align to the maximum file alignment that could be required for any |
| ELF data structure. */ |
| |
| static inline file_ptr |
| align_file_position (file_ptr off, int align) |
| { |
| return (off + align - 1) & ~(align - 1); |
| } |
| |
| /* Assign a file position to a section, optionally aligning to the |
| required section alignment. */ |
| |
| file_ptr |
| _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp, |
| file_ptr offset, |
| bool align) |
| { |
| if (align && i_shdrp->sh_addralign > 1) |
| offset = BFD_ALIGN (offset, i_shdrp->sh_addralign); |
| i_shdrp->sh_offset = offset; |
| if (i_shdrp->bfd_section != NULL) |
| i_shdrp->bfd_section->filepos = offset; |
| if (i_shdrp->sh_type != SHT_NOBITS) |
| offset += i_shdrp->sh_size; |
| return offset; |
| } |
| |
| /* Compute the file positions we are going to put the sections at, and |
| otherwise prepare to begin writing out the ELF file. If LINK_INFO |
| is not NULL, this is being called by the ELF backend linker. */ |
| |
| bool |
| _bfd_elf_compute_section_file_positions (bfd *abfd, |
| struct bfd_link_info *link_info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct fake_section_arg fsargs; |
| bool failed; |
| struct elf_strtab_hash *strtab = NULL; |
| Elf_Internal_Shdr *shstrtab_hdr; |
| bool need_symtab; |
| |
| if (abfd->output_has_begun) |
| return true; |
| |
| /* Do any elf backend specific processing first. */ |
| if (bed->elf_backend_begin_write_processing) |
| (*bed->elf_backend_begin_write_processing) (abfd, link_info); |
| |
| if (!(*bed->elf_backend_init_file_header) (abfd, link_info)) |
| return false; |
| |
| fsargs.failed = false; |
| fsargs.link_info = link_info; |
| bfd_map_over_sections (abfd, elf_fake_sections, &fsargs); |
| if (fsargs.failed) |
| return false; |
| |
| if (!assign_section_numbers (abfd, link_info)) |
| return false; |
| |
| /* The backend linker builds symbol table information itself. */ |
| need_symtab = (link_info == NULL |
| && (bfd_get_symcount (abfd) > 0 |
| || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC)) |
| == HAS_RELOC))); |
| if (need_symtab) |
| { |
| /* Non-zero if doing a relocatable link. */ |
| int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC)); |
| |
| if (! swap_out_syms (abfd, &strtab, relocatable_p, link_info)) |
| return false; |
| } |
| |
| failed = false; |
| if (link_info == NULL) |
| { |
| bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); |
| if (failed) |
| return false; |
| } |
| |
| shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr; |
| /* sh_name was set in init_file_header. */ |
| shstrtab_hdr->sh_type = SHT_STRTAB; |
| shstrtab_hdr->sh_flags = bed->elf_strtab_flags; |
| shstrtab_hdr->sh_addr = 0; |
| /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */ |
| shstrtab_hdr->sh_entsize = 0; |
| shstrtab_hdr->sh_link = 0; |
| shstrtab_hdr->sh_info = 0; |
| /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */ |
| shstrtab_hdr->sh_addralign = 1; |
| |
| if (!assign_file_positions_except_relocs (abfd, link_info)) |
| return false; |
| |
| if (need_symtab) |
| { |
| file_ptr off; |
| Elf_Internal_Shdr *hdr; |
| |
| off = elf_next_file_pos (abfd); |
| |
| hdr = & elf_symtab_hdr (abfd); |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| |
| if (elf_symtab_shndx_list (abfd) != NULL) |
| { |
| hdr = & elf_symtab_shndx_list (abfd)->hdr; |
| if (hdr->sh_size != 0) |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| /* FIXME: What about other symtab_shndx sections in the list ? */ |
| } |
| |
| hdr = &elf_tdata (abfd)->strtab_hdr; |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| |
| elf_next_file_pos (abfd) = off; |
| |
| /* Now that we know where the .strtab section goes, write it |
| out. */ |
| if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
| || ! _bfd_elf_strtab_emit (abfd, strtab)) |
| return false; |
| _bfd_elf_strtab_free (strtab); |
| } |
| |
| abfd->output_has_begun = true; |
| |
| return true; |
| } |
| |
| /* Make an initial estimate of the size of the program header. If we |
| get the number wrong here, we'll redo section placement. */ |
| |
| static bfd_size_type |
| get_program_header_size (bfd *abfd, struct bfd_link_info *info) |
| { |
| size_t segs; |
| asection *s; |
| const struct elf_backend_data *bed; |
| |
| /* Assume we will need exactly two PT_LOAD segments: one for text |
| and one for data. */ |
| segs = 2; |
| |
| s = bfd_get_section_by_name (abfd, ".interp"); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0) |
| { |
| /* If we have a loadable interpreter section, we need a |
| PT_INTERP segment. In this case, assume we also need a |
| PT_PHDR segment, although that may not be true for all |
| targets. */ |
| segs += 2; |
| } |
| |
| if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) |
| { |
| /* We need a PT_DYNAMIC segment. */ |
| ++segs; |
| } |
| |
| if (info != NULL && info->relro) |
| { |
| /* We need a PT_GNU_RELRO segment. */ |
| ++segs; |
| } |
| |
| if (elf_eh_frame_hdr (abfd)) |
| { |
| /* We need a PT_GNU_EH_FRAME segment. */ |
| ++segs; |
| } |
| |
| if (elf_stack_flags (abfd)) |
| { |
| /* We need a PT_GNU_STACK segment. */ |
| ++segs; |
| } |
| |
| s = bfd_get_section_by_name (abfd, |
| NOTE_GNU_PROPERTY_SECTION_NAME); |
| if (s != NULL && s->size != 0) |
| { |
| /* We need a PT_GNU_PROPERTY segment. */ |
| ++segs; |
| } |
| |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LOAD) != 0 |
| && elf_section_type (s) == SHT_NOTE) |
| { |
| unsigned int alignment_power; |
| /* We need a PT_NOTE segment. */ |
| ++segs; |
| /* Try to create just one PT_NOTE segment for all adjacent |
| loadable SHT_NOTE sections. gABI requires that within a |
| PT_NOTE segment (and also inside of each SHT_NOTE section) |
| each note should have the same alignment. So we check |
| whether the sections are correctly aligned. */ |
| alignment_power = s->alignment_power; |
| while (s->next != NULL |
| && s->next->alignment_power == alignment_power |
| && (s->next->flags & SEC_LOAD) != 0 |
| && elf_section_type (s->next) == SHT_NOTE) |
| s = s->next; |
| } |
| } |
| |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if (s->flags & SEC_THREAD_LOCAL) |
| { |
| /* We need a PT_TLS segment. */ |
| ++segs; |
| break; |
| } |
| } |
| |
| bed = get_elf_backend_data (abfd); |
| |
| if ((abfd->flags & D_PAGED) != 0 |
| && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0) |
| { |
| /* Add a PT_GNU_MBIND segment for each mbind section. */ |
| bfd_vma commonpagesize; |
| unsigned int page_align_power; |
| |
| if (info != NULL) |
| commonpagesize = info->commonpagesize; |
| else |
| commonpagesize = bed->commonpagesize; |
| page_align_power = bfd_log2 (commonpagesize); |
| for (s = abfd->sections; s != NULL; s = s->next) |
| if (elf_section_flags (s) & SHF_GNU_MBIND) |
| { |
| if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: GNU_MBIND section `%pA' has invalid " |
| "sh_info field: %d"), |
| abfd, s, elf_section_data (s)->this_hdr.sh_info); |
| continue; |
| } |
| /* Align mbind section to page size. */ |
| if (s->alignment_power < page_align_power) |
| s->alignment_power = page_align_power; |
| segs ++; |
| } |
| } |
| |
| /* Let the backend count up any program headers it might need. */ |
| if (bed->elf_backend_additional_program_headers) |
| { |
| int a; |
| |
| a = (*bed->elf_backend_additional_program_headers) (abfd, info); |
| if (a == -1) |
| abort (); |
| segs += a; |
| } |
| |
| return segs * bed->s->sizeof_phdr; |
| } |
| |
| /* Find the segment that contains the output_section of section. */ |
| |
| Elf_Internal_Phdr * |
| _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section) |
| { |
| struct elf_segment_map *m; |
| Elf_Internal_Phdr *p; |
| |
| for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr; |
| m != NULL; |
| m = m->next, p++) |
| { |
| int i; |
| |
| for (i = m->count - 1; i >= 0; i--) |
| if (m->sections[i] == section) |
| return p; |
| } |
| |
| return NULL; |
| } |
| |
| /* Create a mapping from a set of sections to a program segment. */ |
| |
| static struct elf_segment_map * |
| make_mapping (bfd *abfd, |
| asection **sections, |
| unsigned int from, |
| unsigned int to, |
| bool phdr) |
| { |
| struct elf_segment_map *m; |
| unsigned int i; |
| asection **hdrpp; |
| size_t amt; |
| |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += (to - from) * sizeof (asection *); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return NULL; |
| m->next = NULL; |
| m->p_type = PT_LOAD; |
| for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++) |
| m->sections[i - from] = *hdrpp; |
| m->count = to - from; |
| |
| if (from == 0 && phdr) |
| { |
| /* Include the headers in the first PT_LOAD segment. */ |
| m->includes_filehdr = 1; |
| m->includes_phdrs = 1; |
| } |
| |
| return m; |
| } |
| |
| /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL |
| on failure. */ |
| |
| struct elf_segment_map * |
| _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec) |
| { |
| struct elf_segment_map *m; |
| |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, |
| sizeof (struct elf_segment_map)); |
| if (m == NULL) |
| return NULL; |
| m->next = NULL; |
| m->p_type = PT_DYNAMIC; |
| m->count = 1; |
| m->sections[0] = dynsec; |
| |
| return m; |
| } |
| |
| /* Possibly add or remove segments from the segment map. */ |
| |
| static bool |
| elf_modify_segment_map (bfd *abfd, |
| struct bfd_link_info *info, |
| bool remove_empty_load) |
| { |
| struct elf_segment_map **m; |
| const struct elf_backend_data *bed; |
| |
| /* The placement algorithm assumes that non allocated sections are |
| not in PT_LOAD segments. We ensure this here by removing such |
| sections from the segment map. We also remove excluded |
| sections. Finally, any PT_LOAD segment without sections is |
| removed. */ |
| m = &elf_seg_map (abfd); |
| while (*m) |
| { |
| unsigned int i, new_count; |
| |
| for (new_count = 0, i = 0; i < (*m)->count; i++) |
| { |
| if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0 |
| && (((*m)->sections[i]->flags & SEC_ALLOC) != 0 |
| || (*m)->p_type != PT_LOAD)) |
| { |
| (*m)->sections[new_count] = (*m)->sections[i]; |
| new_count++; |
| } |
| } |
| (*m)->count = new_count; |
| |
| if (remove_empty_load |
| && (*m)->p_type == PT_LOAD |
| && (*m)->count == 0 |
| && !(*m)->includes_phdrs) |
| *m = (*m)->next; |
| else |
| m = &(*m)->next; |
| } |
| |
| bed = get_elf_backend_data (abfd); |
| if (bed->elf_backend_modify_segment_map != NULL) |
| { |
| if (!(*bed->elf_backend_modify_segment_map) (abfd, info)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| #define IS_TBSS(s) \ |
| ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL) |
| |
| /* Set up a mapping from BFD sections to program segments. */ |
| |
| bool |
| _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info) |
| { |
| unsigned int count; |
| struct elf_segment_map *m; |
| asection **sections = NULL; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bool no_user_phdrs; |
| |
| no_user_phdrs = elf_seg_map (abfd) == NULL; |
| |
| if (info != NULL) |
| info->user_phdrs = !no_user_phdrs; |
| |
| if (no_user_phdrs && bfd_count_sections (abfd) != 0) |
| { |
| asection *s; |
| unsigned int i; |
| struct elf_segment_map *mfirst; |
| struct elf_segment_map **pm; |
| asection *last_hdr; |
| bfd_vma last_size; |
| unsigned int hdr_index; |
| bfd_vma maxpagesize; |
| asection **hdrpp; |
| bool phdr_in_segment; |
| bool writable; |
| bool executable; |
| unsigned int tls_count = 0; |
| asection *first_tls = NULL; |
| asection *first_mbind = NULL; |
| asection *dynsec, *eh_frame_hdr; |
| size_t amt; |
| bfd_vma addr_mask, wrap_to = 0; /* Bytes. */ |
| bfd_size_type phdr_size; /* Octets/bytes. */ |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| |
| /* Select the allocated sections, and sort them. */ |
| |
| amt = bfd_count_sections (abfd) * sizeof (asection *); |
| sections = (asection **) bfd_malloc (amt); |
| if (sections == NULL) |
| goto error_return; |
| |
| /* Calculate top address, avoiding undefined behaviour of shift |
| left operator when shift count is equal to size of type |
| being shifted. */ |
| addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1; |
| addr_mask = (addr_mask << 1) + 1; |
| |
| i = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_ALLOC) != 0) |
| { |
| /* target_index is unused until bfd_elf_final_link |
| starts output of section symbols. Use it to make |
| qsort stable. */ |
| s->target_index = i; |
| sections[i] = s; |
| ++i; |
| /* A wrapping section potentially clashes with header. */ |
| if (((s->lma + s->size / opb) & addr_mask) < (s->lma & addr_mask)) |
| wrap_to = (s->lma + s->size / opb) & addr_mask; |
| } |
| } |
| BFD_ASSERT (i <= bfd_count_sections (abfd)); |
| count = i; |
| |
| qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections); |
| |
| phdr_size = elf_program_header_size (abfd); |
| if (phdr_size == (bfd_size_type) -1) |
| phdr_size = get_program_header_size (abfd, info); |
| phdr_size += bed->s->sizeof_ehdr; |
| /* phdr_size is compared to LMA values which are in bytes. */ |
| phdr_size /= opb; |
| if (info != NULL) |
| maxpagesize = info->maxpagesize; |
| else |
| maxpagesize = bed->maxpagesize; |
| if (maxpagesize == 0) |
| maxpagesize = 1; |
| phdr_in_segment = info != NULL && info->load_phdrs; |
| if (count != 0 |
| && (((sections[0]->lma & addr_mask) & (maxpagesize - 1)) |
| >= (phdr_size & (maxpagesize - 1)))) |
| /* For compatibility with old scripts that may not be using |
| SIZEOF_HEADERS, add headers when it looks like space has |
| been left for them. */ |
| phdr_in_segment = true; |
| |
| /* Build the mapping. */ |
| mfirst = NULL; |
| pm = &mfirst; |
| |
| /* If we have a .interp section, then create a PT_PHDR segment for |
| the program headers and a PT_INTERP segment for the .interp |
| section. */ |
| s = bfd_get_section_by_name (abfd, ".interp"); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0) |
| { |
| amt = sizeof (struct elf_segment_map); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_PHDR; |
| m->p_flags = PF_R; |
| m->p_flags_valid = 1; |
| m->includes_phdrs = 1; |
| phdr_in_segment = true; |
| *pm = m; |
| pm = &m->next; |
| |
| amt = sizeof (struct elf_segment_map); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_INTERP; |
| m->count = 1; |
| m->sections[0] = s; |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| /* Look through the sections. We put sections in the same program |
| segment when the start of the second section can be placed within |
| a few bytes of the end of the first section. */ |
| last_hdr = NULL; |
| last_size = 0; |
| hdr_index = 0; |
| writable = false; |
| executable = false; |
| dynsec = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (dynsec != NULL |
| && (dynsec->flags & SEC_LOAD) == 0) |
| dynsec = NULL; |
| |
| if ((abfd->flags & D_PAGED) == 0) |
| phdr_in_segment = false; |
| |
| /* Deal with -Ttext or something similar such that the first section |
| is not adjacent to the program headers. This is an |
| approximation, since at this point we don't know exactly how many |
| program headers we will need. */ |
| if (phdr_in_segment && count > 0) |
| { |
| bfd_vma phdr_lma; /* Bytes. */ |
| bool separate_phdr = false; |
| |
| phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize; |
| if (info != NULL |
| && info->separate_code |
| && (sections[0]->flags & SEC_CODE) != 0) |
| { |
| /* If data sections should be separate from code and |
| thus not executable, and the first section is |
| executable then put the file and program headers in |
| their own PT_LOAD. */ |
| separate_phdr = true; |
| if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize) |
| == (sections[0]->lma & addr_mask & -maxpagesize))) |
| { |
| /* The file and program headers are currently on the |
| same page as the first section. Put them on the |
| previous page if we can. */ |
| if (phdr_lma >= maxpagesize) |
| phdr_lma -= maxpagesize; |
| else |
| separate_phdr = false; |
| } |
| } |
| if ((sections[0]->lma & addr_mask) < phdr_lma |
| || (sections[0]->lma & addr_mask) < phdr_size) |
| /* If file and program headers would be placed at the end |
| of memory then it's probably better to omit them. */ |
| phdr_in_segment = false; |
| else if (phdr_lma < wrap_to) |
| /* If a section wraps around to where we'll be placing |
| file and program headers, then the headers will be |
| overwritten. */ |
| phdr_in_segment = false; |
| else if (separate_phdr) |
| { |
| m = make_mapping (abfd, sections, 0, 0, phdr_in_segment); |
| if (m == NULL) |
| goto error_return; |
| m->p_paddr = phdr_lma * opb; |
| m->p_vaddr_offset |
| = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize; |
| m->p_paddr_valid = 1; |
| *pm = m; |
| pm = &m->next; |
| phdr_in_segment = false; |
| } |
| } |
| |
| for (i = 0, hdrpp = sections; i < count; i++, hdrpp++) |
| { |
| asection *hdr; |
| bool new_segment; |
| |
| hdr = *hdrpp; |
| |
| /* See if this section and the last one will fit in the same |
| segment. */ |
| |
| if (last_hdr == NULL) |
| { |
| /* If we don't have a segment yet, then we don't need a new |
| one (we build the last one after this loop). */ |
| new_segment = false; |
| } |
| else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma) |
| { |
| /* If this section has a different relation between the |
| virtual address and the load address, then we need a new |
| segment. */ |
| new_segment = true; |
| } |
| else if (hdr->lma < last_hdr->lma + last_size |
| || last_hdr->lma + last_size < last_hdr->lma) |
| { |
| /* If this section has a load address that makes it overlap |
| the previous section, then we need a new segment. */ |
| new_segment = true; |
| } |
| else if ((abfd->flags & D_PAGED) != 0 |
| && (((last_hdr->lma + last_size - 1) & -maxpagesize) |
| == (hdr->lma & -maxpagesize))) |
| { |
| /* If we are demand paged then we can't map two disk |
| pages onto the same memory page. */ |
| new_segment = false; |
| } |
| /* In the next test we have to be careful when last_hdr->lma is close |
| to the end of the address space. If the aligned address wraps |
| around to the start of the address space, then there are no more |
| pages left in memory and it is OK to assume that the current |
| section can be included in the current segment. */ |
| else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) |
| + maxpagesize > last_hdr->lma) |
| && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize) |
| + maxpagesize <= hdr->lma)) |
| { |
| /* If putting this section in this segment would force us to |
| skip a page in the segment, then we need a new segment. */ |
| new_segment = true; |
| } |
| else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 |
| && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0) |
| { |
| /* We don't want to put a loaded section after a |
| nonloaded (ie. bss style) section in the same segment |
| as that will force the non-loaded section to be loaded. |
| Consider .tbss sections as loaded for this purpose. */ |
| new_segment = true; |
| } |
| else if ((abfd->flags & D_PAGED) == 0) |
| { |
| /* If the file is not demand paged, which means that we |
| don't require the sections to be correctly aligned in the |
| file, then there is no other reason for a new segment. */ |
| new_segment = false; |
| } |
| else if (info != NULL |
| && info->separate_code |
| && executable != ((hdr->flags & SEC_CODE) != 0)) |
| { |
| new_segment = true; |
| } |
| else if (! writable |
| && (hdr->flags & SEC_READONLY) == 0) |
| { |
| /* We don't want to put a writable section in a read only |
| segment. */ |
| new_segment = true; |
| } |
| else |
| { |
| /* Otherwise, we can use the same segment. */ |
| new_segment = false; |
| } |
| |
| /* Allow interested parties a chance to override our decision. */ |
| if (last_hdr != NULL |
| && info != NULL |
| && info->callbacks->override_segment_assignment != NULL) |
| new_segment |
| = info->callbacks->override_segment_assignment (info, abfd, hdr, |
| last_hdr, |
| new_segment); |
| |
| if (! new_segment) |
| { |
| if ((hdr->flags & SEC_READONLY) == 0) |
| writable = true; |
| if ((hdr->flags & SEC_CODE) != 0) |
| executable = true; |
| last_hdr = hdr; |
| /* .tbss sections effectively have zero size. */ |
| last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb; |
| continue; |
| } |
| |
| /* We need a new program segment. We must create a new program |
| header holding all the sections from hdr_index until hdr. */ |
| |
| m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment); |
| if (m == NULL) |
| goto error_return; |
| |
| *pm = m; |
| pm = &m->next; |
| |
| if ((hdr->flags & SEC_READONLY) == 0) |
| writable = true; |
| else |
| writable = false; |
| |
| if ((hdr->flags & SEC_CODE) == 0) |
| executable = false; |
| else |
| executable = true; |
| |
| last_hdr = hdr; |
| /* .tbss sections effectively have zero size. */ |
| last_size = (!IS_TBSS (hdr) ? hdr->size : 0) / opb; |
| hdr_index = i; |
| phdr_in_segment = false; |
| } |
| |
| /* Create a final PT_LOAD program segment, but not if it's just |
| for .tbss. */ |
| if (last_hdr != NULL |
| && (i - hdr_index != 1 |
| || !IS_TBSS (last_hdr))) |
| { |
| m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment); |
| if (m == NULL) |
| goto error_return; |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */ |
| if (dynsec != NULL) |
| { |
| m = _bfd_elf_make_dynamic_segment (abfd, dynsec); |
| if (m == NULL) |
| goto error_return; |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| /* For each batch of consecutive loadable SHT_NOTE sections, |
| add a PT_NOTE segment. We don't use bfd_get_section_by_name, |
| because if we link together nonloadable .note sections and |
| loadable .note sections, we will generate two .note sections |
| in the output file. */ |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LOAD) != 0 |
| && elf_section_type (s) == SHT_NOTE) |
| { |
| asection *s2; |
| unsigned int alignment_power = s->alignment_power; |
| |
| count = 1; |
| for (s2 = s; s2->next != NULL; s2 = s2->next) |
| { |
| if (s2->next->alignment_power == alignment_power |
| && (s2->next->flags & SEC_LOAD) != 0 |
| && elf_section_type (s2->next) == SHT_NOTE |
| && align_power (s2->lma + s2->size / opb, |
| alignment_power) |
| == s2->next->lma) |
| count++; |
| else |
| break; |
| } |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += count * sizeof (asection *); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_NOTE; |
| m->count = count; |
| while (count > 1) |
| { |
| m->sections[m->count - count--] = s; |
| BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); |
| s = s->next; |
| } |
| m->sections[m->count - 1] = s; |
| BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0); |
| *pm = m; |
| pm = &m->next; |
| } |
| if (s->flags & SEC_THREAD_LOCAL) |
| { |
| if (! tls_count) |
| first_tls = s; |
| tls_count++; |
| } |
| if (first_mbind == NULL |
| && (elf_section_flags (s) & SHF_GNU_MBIND) != 0) |
| first_mbind = s; |
| } |
| |
| /* If there are any SHF_TLS output sections, add PT_TLS segment. */ |
| if (tls_count > 0) |
| { |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += tls_count * sizeof (asection *); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_TLS; |
| m->count = tls_count; |
| /* Mandated PF_R. */ |
| m->p_flags = PF_R; |
| m->p_flags_valid = 1; |
| s = first_tls; |
| for (i = 0; i < tls_count; ++i) |
| { |
| if ((s->flags & SEC_THREAD_LOCAL) == 0) |
| { |
| _bfd_error_handler |
| (_("%pB: TLS sections are not adjacent:"), abfd); |
| s = first_tls; |
| i = 0; |
| while (i < tls_count) |
| { |
| if ((s->flags & SEC_THREAD_LOCAL) != 0) |
| { |
| _bfd_error_handler (_(" TLS: %pA"), s); |
| i++; |
| } |
| else |
| _bfd_error_handler (_(" non-TLS: %pA"), s); |
| s = s->next; |
| } |
| bfd_set_error (bfd_error_bad_value); |
| goto error_return; |
| } |
| m->sections[i] = s; |
| s = s->next; |
| } |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| if (first_mbind |
| && (abfd->flags & D_PAGED) != 0 |
| && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0) |
| for (s = first_mbind; s != NULL; s = s->next) |
| if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0 |
| && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM) |
| { |
| /* Mandated PF_R. */ |
| unsigned long p_flags = PF_R; |
| if ((s->flags & SEC_READONLY) == 0) |
| p_flags |= PF_W; |
| if ((s->flags & SEC_CODE) != 0) |
| p_flags |= PF_X; |
| |
| amt = sizeof (struct elf_segment_map) + sizeof (asection *); |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = (PT_GNU_MBIND_LO |
| + elf_section_data (s)->this_hdr.sh_info); |
| m->count = 1; |
| m->p_flags_valid = 1; |
| m->sections[0] = s; |
| m->p_flags = p_flags; |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| s = bfd_get_section_by_name (abfd, |
| NOTE_GNU_PROPERTY_SECTION_NAME); |
| if (s != NULL && s->size != 0) |
| { |
| amt = sizeof (struct elf_segment_map) + sizeof (asection *); |
| m = bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_GNU_PROPERTY; |
| m->count = 1; |
| m->p_flags_valid = 1; |
| m->sections[0] = s; |
| m->p_flags = PF_R; |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME |
| segment. */ |
| eh_frame_hdr = elf_eh_frame_hdr (abfd); |
| if (eh_frame_hdr != NULL |
| && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0) |
| { |
| amt = sizeof (struct elf_segment_map); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_GNU_EH_FRAME; |
| m->count = 1; |
| m->sections[0] = eh_frame_hdr->output_section; |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| if (elf_stack_flags (abfd)) |
| { |
| amt = sizeof (struct elf_segment_map); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_GNU_STACK; |
| m->p_flags = elf_stack_flags (abfd); |
| m->p_align = bed->stack_align; |
| m->p_flags_valid = 1; |
| m->p_align_valid = m->p_align != 0; |
| if (info->stacksize > 0) |
| { |
| m->p_size = info->stacksize; |
| m->p_size_valid = 1; |
| } |
| |
| *pm = m; |
| pm = &m->next; |
| } |
| |
| if (info != NULL && info->relro) |
| { |
| for (m = mfirst; m != NULL; m = m->next) |
| { |
| if (m->p_type == PT_LOAD |
| && m->count != 0 |
| && m->sections[0]->vma >= info->relro_start |
| && m->sections[0]->vma < info->relro_end) |
| { |
| i = m->count; |
| while (--i != (unsigned) -1) |
| { |
| if (m->sections[i]->size > 0 |
| && (m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) |
| == (SEC_LOAD | SEC_HAS_CONTENTS)) |
| break; |
| } |
| |
| if (i != (unsigned) -1) |
| break; |
| } |
| } |
| |
| /* Make a PT_GNU_RELRO segment only when it isn't empty. */ |
| if (m != NULL) |
| { |
| amt = sizeof (struct elf_segment_map); |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| goto error_return; |
| m->next = NULL; |
| m->p_type = PT_GNU_RELRO; |
| *pm = m; |
| pm = &m->next; |
| } |
| } |
| |
| free (sections); |
| elf_seg_map (abfd) = mfirst; |
| } |
| |
| if (!elf_modify_segment_map (abfd, info, no_user_phdrs)) |
| return false; |
| |
| for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next) |
| ++count; |
| elf_program_header_size (abfd) = count * bed->s->sizeof_phdr; |
| |
| return true; |
| |
| error_return: |
| free (sections); |
| return false; |
| } |
| |
| /* Sort sections by address. */ |
| |
| static int |
| elf_sort_sections (const void *arg1, const void *arg2) |
| { |
| const asection *sec1 = *(const asection **) arg1; |
| const asection *sec2 = *(const asection **) arg2; |
| bfd_size_type size1, size2; |
| |
| /* Sort by LMA first, since this is the address used to |
| place the section into a segment. */ |
| if (sec1->lma < sec2->lma) |
| return -1; |
| else if (sec1->lma > sec2->lma) |
| return 1; |
| |
| /* Then sort by VMA. Normally the LMA and the VMA will be |
| the same, and this will do nothing. */ |
| if (sec1->vma < sec2->vma) |
| return -1; |
| else if (sec1->vma > sec2->vma) |
| return 1; |
| |
| /* Put !SEC_LOAD sections after SEC_LOAD ones. */ |
| |
| #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0 \ |
| && (x)->size != 0) |
| |
| if (TOEND (sec1)) |
| { |
| if (!TOEND (sec2)) |
| return 1; |
| } |
| else if (TOEND (sec2)) |
| return -1; |
| |
| #undef TOEND |
| |
| /* Sort by size, to put zero sized sections |
| before others at the same address. */ |
| |
| size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0; |
| size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0; |
| |
| if (size1 < size2) |
| return -1; |
| if (size1 > size2) |
| return 1; |
| |
| return sec1->target_index - sec2->target_index; |
| } |
| |
| /* This qsort comparison functions sorts PT_LOAD segments first and |
| by p_paddr, for assign_file_positions_for_load_sections. */ |
| |
| static int |
| elf_sort_segments (const void *arg1, const void *arg2) |
| { |
| const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1; |
| const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2; |
| |
| if (m1->p_type != m2->p_type) |
| { |
| if (m1->p_type == PT_NULL) |
| return 1; |
| if (m2->p_type == PT_NULL) |
| return -1; |
| return m1->p_type < m2->p_type ? -1 : 1; |
| } |
| if (m1->includes_filehdr != m2->includes_filehdr) |
| return m1->includes_filehdr ? -1 : 1; |
| if (m1->no_sort_lma != m2->no_sort_lma) |
| return m1->no_sort_lma ? -1 : 1; |
| if (m1->p_type == PT_LOAD && !m1->no_sort_lma) |
| { |
| bfd_vma lma1, lma2; /* Octets. */ |
| lma1 = 0; |
| if (m1->p_paddr_valid) |
| lma1 = m1->p_paddr; |
| else if (m1->count != 0) |
| { |
| unsigned int opb = bfd_octets_per_byte (m1->sections[0]->owner, |
| m1->sections[0]); |
| lma1 = (m1->sections[0]->lma + m1->p_vaddr_offset) * opb; |
| } |
| lma2 = 0; |
| if (m2->p_paddr_valid) |
| lma2 = m2->p_paddr; |
| else if (m2->count != 0) |
| { |
| unsigned int opb = bfd_octets_per_byte (m2->sections[0]->owner, |
| m2->sections[0]); |
| lma2 = (m2->sections[0]->lma + m2->p_vaddr_offset) * opb; |
| } |
| if (lma1 != lma2) |
| return lma1 < lma2 ? -1 : 1; |
| } |
| if (m1->idx != m2->idx) |
| return m1->idx < m2->idx ? -1 : 1; |
| return 0; |
| } |
| |
| /* Ian Lance Taylor writes: |
| |
| We shouldn't be using % with a negative signed number. That's just |
| not good. We have to make sure either that the number is not |
| negative, or that the number has an unsigned type. When the types |
| are all the same size they wind up as unsigned. When file_ptr is a |
| larger signed type, the arithmetic winds up as signed long long, |
| which is wrong. |
| |
| What we're trying to say here is something like ``increase OFF by |
| the least amount that will cause it to be equal to the VMA modulo |
| the page size.'' */ |
| /* In other words, something like: |
| |
| vma_offset = m->sections[0]->vma % bed->maxpagesize; |
| off_offset = off % bed->maxpagesize; |
| if (vma_offset < off_offset) |
| adjustment = vma_offset + bed->maxpagesize - off_offset; |
| else |
| adjustment = vma_offset - off_offset; |
| |
| which can be collapsed into the expression below. */ |
| |
| static file_ptr |
| vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize) |
| { |
| /* PR binutils/16199: Handle an alignment of zero. */ |
| if (maxpagesize == 0) |
| maxpagesize = 1; |
| return ((vma - off) % maxpagesize); |
| } |
| |
| static void |
| print_segment_map (const struct elf_segment_map *m) |
| { |
| unsigned int j; |
| const char *pt = get_segment_type (m->p_type); |
| char buf[32]; |
| |
| if (pt == NULL) |
| { |
| if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC) |
| sprintf (buf, "LOPROC+%7.7x", |
| (unsigned int) (m->p_type - PT_LOPROC)); |
| else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS) |
| sprintf (buf, "LOOS+%7.7x", |
| (unsigned int) (m->p_type - PT_LOOS)); |
| else |
| snprintf (buf, sizeof (buf), "%8.8x", |
| (unsigned int) m->p_type); |
| pt = buf; |
| } |
| fflush (stdout); |
| fprintf (stderr, "%s:", pt); |
| for (j = 0; j < m->count; j++) |
| fprintf (stderr, " %s", m->sections [j]->name); |
| putc ('\n',stderr); |
| fflush (stderr); |
| } |
| |
| static bool |
| write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len) |
| { |
| void *buf; |
| bool ret; |
| |
| if (bfd_seek (abfd, pos, SEEK_SET) != 0) |
| return false; |
| buf = bfd_zmalloc (len); |
| if (buf == NULL) |
| return false; |
| ret = bfd_bwrite (buf, len, abfd) == len; |
| free (buf); |
| return ret; |
| } |
| |
| /* Assign file positions to the sections based on the mapping from |
| sections to segments. This function also sets up some fields in |
| the file header. */ |
| |
| static bool |
| assign_file_positions_for_load_sections (bfd *abfd, |
| struct bfd_link_info *link_info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| struct elf_segment_map *m; |
| struct elf_segment_map *phdr_load_seg; |
| Elf_Internal_Phdr *phdrs; |
| Elf_Internal_Phdr *p; |
| file_ptr off; /* Octets. */ |
| bfd_size_type maxpagesize; |
| unsigned int alloc, actual; |
| unsigned int i, j; |
| struct elf_segment_map **sorted_seg_map; |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| |
| if (link_info == NULL |
| && !_bfd_elf_map_sections_to_segments (abfd, link_info)) |
| return false; |
| |
| alloc = 0; |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| m->idx = alloc++; |
| |
| if (alloc) |
| { |
| elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr; |
| elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr; |
| } |
| else |
| { |
| /* PR binutils/12467. */ |
| elf_elfheader (abfd)->e_phoff = 0; |
| elf_elfheader (abfd)->e_phentsize = 0; |
| } |
| |
| elf_elfheader (abfd)->e_phnum = alloc; |
| |
| if (elf_program_header_size (abfd) == (bfd_size_type) -1) |
| { |
| actual = alloc; |
| elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr; |
| } |
| else |
| { |
| actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr; |
| BFD_ASSERT (elf_program_header_size (abfd) |
| == actual * bed->s->sizeof_phdr); |
| BFD_ASSERT (actual >= alloc); |
| } |
| |
| if (alloc == 0) |
| { |
| elf_next_file_pos (abfd) = bed->s->sizeof_ehdr; |
| return true; |
| } |
| |
| /* We're writing the size in elf_program_header_size (abfd), |
| see assign_file_positions_except_relocs, so make sure we have |
| that amount allocated, with trailing space cleared. |
| The variable alloc contains the computed need, while |
| elf_program_header_size (abfd) contains the size used for the |
| layout. |
| See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments |
| where the layout is forced to according to a larger size in the |
| last iterations for the testcase ld-elf/header. */ |
| phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs) |
| + alloc * sizeof (*sorted_seg_map))); |
| sorted_seg_map = (struct elf_segment_map **) (phdrs + actual); |
| elf_tdata (abfd)->phdr = phdrs; |
| if (phdrs == NULL) |
| return false; |
| |
| for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++) |
| { |
| sorted_seg_map[j] = m; |
| /* If elf_segment_map is not from map_sections_to_segments, the |
| sections may not be correctly ordered. NOTE: sorting should |
| not be done to the PT_NOTE section of a corefile, which may |
| contain several pseudo-sections artificially created by bfd. |
| Sorting these pseudo-sections breaks things badly. */ |
| if (m->count > 1 |
| && !(elf_elfheader (abfd)->e_type == ET_CORE |
| && m->p_type == PT_NOTE)) |
| { |
| for (i = 0; i < m->count; i++) |
| m->sections[i]->target_index = i; |
| qsort (m->sections, (size_t) m->count, sizeof (asection *), |
| elf_sort_sections); |
| } |
| } |
| if (alloc > 1) |
| qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map), |
| elf_sort_segments); |
| |
| maxpagesize = 1; |
| if ((abfd->flags & D_PAGED) != 0) |
| { |
| if (link_info != NULL) |
| maxpagesize = link_info->maxpagesize; |
| else |
| maxpagesize = bed->maxpagesize; |
| } |
| |
| /* Sections must map to file offsets past the ELF file header. */ |
| off = bed->s->sizeof_ehdr; |
| /* And if one of the PT_LOAD headers doesn't include the program |
| headers then we'll be mapping program headers in the usual |
| position after the ELF file header. */ |
| phdr_load_seg = NULL; |
| for (j = 0; j < alloc; j++) |
| { |
| m = sorted_seg_map[j]; |
| if (m->p_type != PT_LOAD) |
| break; |
| if (m->includes_phdrs) |
| { |
| phdr_load_seg = m; |
| break; |
| } |
| } |
| if (phdr_load_seg == NULL) |
| off += actual * bed->s->sizeof_phdr; |
| |
| for (j = 0; j < alloc; j++) |
| { |
| asection **secpp; |
| bfd_vma off_adjust; /* Octets. */ |
| bool no_contents; |
| |
| /* An ELF segment (described by Elf_Internal_Phdr) may contain a |
| number of sections with contents contributing to both p_filesz |
| and p_memsz, followed by a number of sections with no contents |
| that just contribute to p_memsz. In this loop, OFF tracks next |
| available file offset for PT_LOAD and PT_NOTE segments. */ |
| m = sorted_seg_map[j]; |
| p = phdrs + m->idx; |
| p->p_type = m->p_type; |
| p->p_flags = m->p_flags; |
| |
| if (m->count == 0) |
| p->p_vaddr = m->p_vaddr_offset * opb; |
| else |
| p->p_vaddr = (m->sections[0]->vma + m->p_vaddr_offset) * opb; |
| |
| if (m->p_paddr_valid) |
| p->p_paddr = m->p_paddr; |
| else if (m->count == 0) |
| p->p_paddr = 0; |
| else |
| p->p_paddr = (m->sections[0]->lma + m->p_vaddr_offset) * opb; |
| |
| if (p->p_type == PT_LOAD |
| && (abfd->flags & D_PAGED) != 0) |
| { |
| /* p_align in demand paged PT_LOAD segments effectively stores |
| the maximum page size. When copying an executable with |
| objcopy, we set m->p_align from the input file. Use this |
| value for maxpagesize rather than bed->maxpagesize, which |
| may be different. Note that we use maxpagesize for PT_TLS |
| segment alignment later in this function, so we are relying |
| on at least one PT_LOAD segment appearing before a PT_TLS |
| segment. */ |
| if (m->p_align_valid) |
| maxpagesize = m->p_align; |
| |
| p->p_align = maxpagesize; |
| } |
| else if (m->p_align_valid) |
| p->p_align = m->p_align; |
| else if (m->count == 0) |
| p->p_align = 1 << bed->s->log_file_align; |
| |
| if (m == phdr_load_seg) |
| { |
| if (!m->includes_filehdr) |
| p->p_offset = off; |
| off += actual * bed->s->sizeof_phdr; |
| } |
| |
| no_contents = false; |
| off_adjust = 0; |
| if (p->p_type == PT_LOAD |
| && m->count > 0) |
| { |
| bfd_size_type align; /* Bytes. */ |
| unsigned int align_power = 0; |
| |
| if (m->p_align_valid) |
| align = p->p_align; |
| else |
| { |
| for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) |
| { |
| unsigned int secalign; |
| |
| secalign = bfd_section_alignment (*secpp); |
| if (secalign > align_power) |
| align_power = secalign; |
| } |
| align = (bfd_size_type) 1 << align_power; |
| if (align < maxpagesize) |
| align = maxpagesize; |
| } |
| |
| for (i = 0; i < m->count; i++) |
| if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0) |
| /* If we aren't making room for this section, then |
| it must be SHT_NOBITS regardless of what we've |
| set via struct bfd_elf_special_section. */ |
| elf_section_type (m->sections[i]) = SHT_NOBITS; |
| |
| /* Find out whether this segment contains any loadable |
| sections. */ |
| no_contents = true; |
| for (i = 0; i < m->count; i++) |
| if (elf_section_type (m->sections[i]) != SHT_NOBITS) |
| { |
| no_contents = false; |
| break; |
| } |
| |
| off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align * opb); |
| |
| /* Broken hardware and/or kernel require that files do not |
| map the same page with different permissions on some hppa |
| processors. */ |
| if (j != 0 |
| && (abfd->flags & D_PAGED) != 0 |
| && bed->no_page_alias |
| && (off & (maxpagesize - 1)) != 0 |
| && ((off & -maxpagesize) |
| == ((off + off_adjust) & -maxpagesize))) |
| off_adjust += maxpagesize; |
| off += off_adjust; |
| if (no_contents) |
| { |
| /* We shouldn't need to align the segment on disk since |
| the segment doesn't need file space, but the gABI |
| arguably requires the alignment and glibc ld.so |
| checks it. So to comply with the alignment |
| requirement but not waste file space, we adjust |
| p_offset for just this segment. (OFF_ADJUST is |
| subtracted from OFF later.) This may put p_offset |
| past the end of file, but that shouldn't matter. */ |
| } |
| else |
| off_adjust = 0; |
| } |
| /* Make sure the .dynamic section is the first section in the |
| PT_DYNAMIC segment. */ |
| else if (p->p_type == PT_DYNAMIC |
| && m->count > 1 |
| && strcmp (m->sections[0]->name, ".dynamic") != 0) |
| { |
| _bfd_error_handler |
| (_("%pB: The first section in the PT_DYNAMIC segment" |
| " is not the .dynamic section"), |
| abfd); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| /* Set the note section type to SHT_NOTE. */ |
| else if (p->p_type == PT_NOTE) |
| for (i = 0; i < m->count; i++) |
| elf_section_type (m->sections[i]) = SHT_NOTE; |
| |
| if (m->includes_filehdr) |
| { |
| if (!m->p_flags_valid) |
| p->p_flags |= PF_R; |
| p->p_filesz = bed->s->sizeof_ehdr; |
| p->p_memsz = bed->s->sizeof_ehdr; |
| if (p->p_type == PT_LOAD) |
| { |
| if (m->count > 0) |
| { |
| if (p->p_vaddr < (bfd_vma) off |
| || (!m->p_paddr_valid |
| && p->p_paddr < (bfd_vma) off)) |
| { |
| _bfd_error_handler |
| (_("%pB: not enough room for program headers," |
| " try linking with -N"), |
| abfd); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| p->p_vaddr -= off; |
| if (!m->p_paddr_valid) |
| p->p_paddr -= off; |
| } |
| } |
| else if (sorted_seg_map[0]->includes_filehdr) |
| { |
| Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx; |
| p->p_vaddr = filehdr->p_vaddr; |
| if (!m->p_paddr_valid) |
| p->p_paddr = filehdr->p_paddr; |
| } |
| } |
| |
| if (m->includes_phdrs) |
| { |
| if (!m->p_flags_valid) |
| p->p_flags |= PF_R; |
| p->p_filesz += actual * bed->s->sizeof_phdr; |
| p->p_memsz += actual * bed->s->sizeof_phdr; |
| if (!m->includes_filehdr) |
| { |
| if (p->p_type == PT_LOAD) |
| { |
| elf_elfheader (abfd)->e_phoff = p->p_offset; |
| if (m->count > 0) |
| { |
| p->p_vaddr -= off - p->p_offset; |
| if (!m->p_paddr_valid) |
| p->p_paddr -= off - p->p_offset; |
| } |
| } |
| else if (phdr_load_seg != NULL) |
| { |
| Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx; |
| bfd_vma phdr_off = 0; /* Octets. */ |
| if (phdr_load_seg->includes_filehdr) |
| phdr_off = bed->s->sizeof_ehdr; |
| p->p_vaddr = phdr->p_vaddr + phdr_off; |
| if (!m->p_paddr_valid) |
| p->p_paddr = phdr->p_paddr + phdr_off; |
| p->p_offset = phdr->p_offset + phdr_off; |
| } |
| else |
| p->p_offset = bed->s->sizeof_ehdr; |
| } |
| } |
| |
| if (p->p_type == PT_LOAD |
| || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)) |
| { |
| if (!m->includes_filehdr && !m->includes_phdrs) |
| { |
| p->p_offset = off; |
| if (no_contents) |
| { |
| /* Put meaningless p_offset for PT_LOAD segments |
| without file contents somewhere within the first |
| page, in an attempt to not point past EOF. */ |
| bfd_size_type align = maxpagesize; |
| if (align < p->p_align) |
| align = p->p_align; |
| if (align < 1) |
| align = 1; |
| p->p_offset = off % align; |
| } |
| } |
| else |
| { |
| file_ptr adjust; /* Octets. */ |
| |
| adjust = off - (p->p_offset + p->p_filesz); |
| if (!no_contents) |
| p->p_filesz += adjust; |
| p->p_memsz += adjust; |
| } |
| } |
| |
| /* Set up p_filesz, p_memsz, p_align and p_flags from the section |
| maps. Set filepos for sections in PT_LOAD segments, and in |
| core files, for sections in PT_NOTE segments. |
| assign_file_positions_for_non_load_sections will set filepos |
| for other sections and update p_filesz for other segments. */ |
| for (i = 0, secpp = m->sections; i < m->count; i++, secpp++) |
| { |
| asection *sec; |
| bfd_size_type align; |
| Elf_Internal_Shdr *this_hdr; |
| |
| sec = *secpp; |
| this_hdr = &elf_section_data (sec)->this_hdr; |
| align = (bfd_size_type) 1 << bfd_section_alignment (sec); |
| |
| if ((p->p_type == PT_LOAD |
| || p->p_type == PT_TLS) |
| && (this_hdr->sh_type != SHT_NOBITS |
| || ((this_hdr->sh_flags & SHF_ALLOC) != 0 |
| && ((this_hdr->sh_flags & SHF_TLS) == 0 |
| || p->p_type == PT_TLS)))) |
| { |
| bfd_vma p_start = p->p_paddr; /* Octets. */ |
| bfd_vma p_end = p_start + p->p_memsz; /* Octets. */ |
| bfd_vma s_start = sec->lma * opb; /* Octets. */ |
| bfd_vma adjust = s_start - p_end; /* Octets. */ |
| |
| if (adjust != 0 |
| && (s_start < p_end |
| || p_end < p_start)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64), |
| abfd, sec, (uint64_t) s_start / opb, |
| (uint64_t) p_end / opb); |
| adjust = 0; |
| sec->lma = p_end / opb; |
| } |
| p->p_memsz += adjust; |
| |
| if (p->p_type == PT_LOAD) |
| { |
| if (this_hdr->sh_type != SHT_NOBITS) |
| { |
| off_adjust = 0; |
| if (p->p_filesz + adjust < p->p_memsz) |
| { |
| /* We have a PROGBITS section following NOBITS ones. |
| Allocate file space for the NOBITS section(s) and |
| zero it. */ |
| adjust = p->p_memsz - p->p_filesz; |
| if (!write_zeros (abfd, off, adjust)) |
| return false; |
| } |
| } |
| /* We only adjust sh_offset in SHT_NOBITS sections |
| as would seem proper for their address when the |
| section is first in the segment. sh_offset |
| doesn't really have any significance for |
| SHT_NOBITS anyway, apart from a notional position |
| relative to other sections. Historically we |
| didn't bother with adjusting sh_offset and some |
| programs depend on it not being adjusted. See |
| pr12921 and pr25662. */ |
| if (this_hdr->sh_type != SHT_NOBITS || i == 0) |
| { |
| off += adjust; |
| if (this_hdr->sh_type == SHT_NOBITS) |
| off_adjust += adjust; |
| } |
| } |
| if (this_hdr->sh_type != SHT_NOBITS) |
| p->p_filesz += adjust; |
| } |
| |
| if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core) |
| { |
| /* The section at i == 0 is the one that actually contains |
| everything. */ |
| if (i == 0) |
| { |
| this_hdr->sh_offset = sec->filepos = off; |
| off += this_hdr->sh_size; |
| p->p_filesz = this_hdr->sh_size; |
| p->p_memsz = 0; |
| p->p_align = 1; |
| } |
| else |
| { |
| /* The rest are fake sections that shouldn't be written. */ |
| sec->filepos = 0; |
| sec->size = 0; |
| sec->flags = 0; |
| continue; |
| } |
| } |
| else |
| { |
| if (p->p_type == PT_LOAD) |
| { |
| this_hdr->sh_offset = sec->filepos = off; |
| if (this_hdr->sh_type != SHT_NOBITS) |
| off += this_hdr->sh_size; |
| } |
| else if (this_hdr->sh_type == SHT_NOBITS |
| && (this_hdr->sh_flags & SHF_TLS) != 0 |
| && this_hdr->sh_offset == 0) |
| { |
| /* This is a .tbss section that didn't get a PT_LOAD. |
| (See _bfd_elf_map_sections_to_segments "Create a |
| final PT_LOAD".) Set sh_offset to the value it |
| would have if we had created a zero p_filesz and |
| p_memsz PT_LOAD header for the section. This |
| also makes the PT_TLS header have the same |
| p_offset value. */ |
| bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr, |
| off, align); |
| this_hdr->sh_offset = sec->filepos = off + adjust; |
| } |
| |
| if (this_hdr->sh_type != SHT_NOBITS) |
| { |
| p->p_filesz += this_hdr->sh_size; |
| /* A load section without SHF_ALLOC is something like |
| a note section in a PT_NOTE segment. These take |
| file space but are not loaded into memory. */ |
| if ((this_hdr->sh_flags & SHF_ALLOC) != 0) |
| p->p_memsz += this_hdr->sh_size; |
| } |
| else if ((this_hdr->sh_flags & SHF_ALLOC) != 0) |
| { |
| if (p->p_type == PT_TLS) |
| p->p_memsz += this_hdr->sh_size; |
| |
| /* .tbss is special. It doesn't contribute to p_memsz of |
| normal segments. */ |
| else if ((this_hdr->sh_flags & SHF_TLS) == 0) |
| p->p_memsz += this_hdr->sh_size; |
| } |
| |
| if (align > p->p_align |
| && !m->p_align_valid |
| && (p->p_type != PT_LOAD |
| || (abfd->flags & D_PAGED) == 0)) |
| p->p_align = align; |
| } |
| |
| if (!m->p_flags_valid) |
| { |
| p->p_flags |= PF_R; |
| if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0) |
| p->p_flags |= PF_X; |
| if ((this_hdr->sh_flags & SHF_WRITE) != 0) |
| p->p_flags |= PF_W; |
| } |
| } |
| |
| off -= off_adjust; |
| |
| /* PR ld/20815 - Check that the program header segment, if |
| present, will be loaded into memory. */ |
| if (p->p_type == PT_PHDR |
| && phdr_load_seg == NULL |
| && !(bed->elf_backend_allow_non_load_phdr != NULL |
| && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc))) |
| { |
| /* The fix for this error is usually to edit the linker script being |
| used and set up the program headers manually. Either that or |
| leave room for the headers at the start of the SECTIONS. */ |
| _bfd_error_handler (_("%pB: error: PHDR segment not covered" |
| " by LOAD segment"), |
| abfd); |
| if (link_info == NULL) |
| return false; |
| /* Arrange for the linker to exit with an error, deleting |
| the output file unless --noinhibit-exec is given. */ |
| link_info->callbacks->info ("%X"); |
| } |
| |
| /* Check that all sections are in a PT_LOAD segment. |
| Don't check funky gdb generated core files. */ |
| if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core) |
| { |
| bool check_vma = true; |
| |
| for (i = 1; i < m->count; i++) |
| if (m->sections[i]->vma == m->sections[i - 1]->vma |
| && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i]) |
| ->this_hdr), p) != 0 |
| && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1]) |
| ->this_hdr), p) != 0) |
| { |
| /* Looks like we have overlays packed into the segment. */ |
| check_vma = false; |
| break; |
| } |
| |
| for (i = 0; i < m->count; i++) |
| { |
| Elf_Internal_Shdr *this_hdr; |
| asection *sec; |
| |
| sec = m->sections[i]; |
| this_hdr = &(elf_section_data(sec)->this_hdr); |
| if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0) |
| && !ELF_TBSS_SPECIAL (this_hdr, p)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: section `%pA' can't be allocated in segment %d"), |
| abfd, sec, j); |
| print_segment_map (m); |
| } |
| } |
| } |
| } |
| |
| elf_next_file_pos (abfd) = off; |
| |
| if (link_info != NULL |
| && phdr_load_seg != NULL |
| && phdr_load_seg->includes_filehdr) |
| { |
| /* There is a segment that contains both the file headers and the |
| program headers, so provide a symbol __ehdr_start pointing there. |
| A program can use this to examine itself robustly. */ |
| |
| struct elf_link_hash_entry *hash |
| = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start", |
| false, false, true); |
| /* If the symbol was referenced and not defined, define it. */ |
| if (hash != NULL |
| && (hash->root.type == bfd_link_hash_new |
| || hash->root.type == bfd_link_hash_undefined |
| || hash->root.type == bfd_link_hash_undefweak |
| || hash->root.type == bfd_link_hash_common)) |
| { |
| asection *s = NULL; |
| bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr / opb; |
| |
| if (phdr_load_seg->count != 0) |
| /* The segment contains sections, so use the first one. */ |
| s = phdr_load_seg->sections[0]; |
| else |
| /* Use the first (i.e. lowest-addressed) section in any segment. */ |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| if (m->p_type == PT_LOAD && m->count != 0) |
| { |
| s = m->sections[0]; |
| break; |
| } |
| |
| if (s != NULL) |
| { |
| hash->root.u.def.value = filehdr_vaddr - s->vma; |
| hash->root.u.def.section = s; |
| } |
| else |
| { |
| hash->root.u.def.value = filehdr_vaddr; |
| hash->root.u.def.section = bfd_abs_section_ptr; |
| } |
| |
| hash->root.type = bfd_link_hash_defined; |
| hash->def_regular = 1; |
| hash->non_elf = 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Determine if a bfd is a debuginfo file. Unfortunately there |
| is no defined method for detecting such files, so we have to |
| use heuristics instead. */ |
| |
| bool |
| is_debuginfo_file (bfd *abfd) |
| { |
| if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| return false; |
| |
| Elf_Internal_Shdr **start_headers = elf_elfsections (abfd); |
| Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd); |
| Elf_Internal_Shdr **headerp; |
| |
| for (headerp = start_headers; headerp < end_headers; headerp ++) |
| { |
| Elf_Internal_Shdr *header = * headerp; |
| |
| /* Debuginfo files do not have any allocated SHT_PROGBITS sections. |
| The only allocated sections are SHT_NOBITS or SHT_NOTES. */ |
| if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC |
| && header->sh_type != SHT_NOBITS |
| && header->sh_type != SHT_NOTE) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /* Assign file positions for the other sections, except for compressed debugging |
| and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */ |
| |
| static bool |
| assign_file_positions_for_non_load_sections (bfd *abfd, |
| struct bfd_link_info *link_info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| Elf_Internal_Shdr **i_shdrpp; |
| Elf_Internal_Shdr **hdrpp, **end_hdrpp; |
| Elf_Internal_Phdr *phdrs; |
| Elf_Internal_Phdr *p; |
| struct elf_segment_map *m; |
| file_ptr off; |
| unsigned int opb = bfd_octets_per_byte (abfd, NULL); |
| bfd_vma maxpagesize; |
| |
| if (link_info != NULL) |
| maxpagesize = link_info->maxpagesize; |
| else |
| maxpagesize = bed->maxpagesize; |
| i_shdrpp = elf_elfsections (abfd); |
| end_hdrpp = i_shdrpp + elf_numsections (abfd); |
| off = elf_next_file_pos (abfd); |
| for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++) |
| { |
| Elf_Internal_Shdr *hdr; |
| |
| hdr = *hdrpp; |
| if (hdr->bfd_section != NULL |
| && (hdr->bfd_section->filepos != 0 |
| || (hdr->sh_type == SHT_NOBITS |
| && hdr->contents == NULL))) |
| BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos); |
| else if ((hdr->sh_flags & SHF_ALLOC) != 0) |
| { |
| if (hdr->sh_size != 0 |
| /* PR 24717 - debuginfo files are known to be not strictly |
| compliant with the ELF standard. In particular they often |
| have .note.gnu.property sections that are outside of any |
| loadable segment. This is not a problem for such files, |
| so do not warn about them. */ |
| && ! is_debuginfo_file (abfd)) |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: warning: allocated section `%s' not in segment"), |
| abfd, |
| (hdr->bfd_section == NULL |
| ? "*unknown*" |
| : hdr->bfd_section->name)); |
| /* We don't need to page align empty sections. */ |
| if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0) |
| off += vma_page_aligned_bias (hdr->sh_addr, off, |
| maxpagesize); |
| else |
| off += vma_page_aligned_bias (hdr->sh_addr, off, |
| hdr->sh_addralign); |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, |
| false); |
| } |
| else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) |
| && hdr->bfd_section == NULL) |
| /* We don't know the offset of these sections yet: their size has |
| not been decided. */ |
| || (hdr->bfd_section != NULL |
| && (hdr->bfd_section->flags & SEC_ELF_COMPRESS |
| || (bfd_section_is_ctf (hdr->bfd_section) |
| && abfd->is_linker_output))) |
| || hdr == i_shdrpp[elf_onesymtab (abfd)] |
| || (elf_symtab_shndx_list (abfd) != NULL |
| && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) |
| || hdr == i_shdrpp[elf_strtab_sec (abfd)] |
| || hdr == i_shdrpp[elf_shstrtab_sec (abfd)]) |
| hdr->sh_offset = -1; |
| else |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| } |
| elf_next_file_pos (abfd) = off; |
| |
| /* Now that we have set the section file positions, we can set up |
| the file positions for the non PT_LOAD segments. */ |
| phdrs = elf_tdata (abfd)->phdr; |
| for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++) |
| { |
| if (p->p_type == PT_GNU_RELRO) |
| { |
| bfd_vma start, end; /* Bytes. */ |
| bool ok; |
| |
| if (link_info != NULL) |
| { |
| /* During linking the range of the RELRO segment is passed |
| in link_info. Note that there may be padding between |
| relro_start and the first RELRO section. */ |
| start = link_info->relro_start; |
| end = link_info->relro_end; |
| } |
| else if (m->count != 0) |
| { |
| if (!m->p_size_valid) |
| abort (); |
| start = m->sections[0]->vma; |
| end = start + m->p_size / opb; |
| } |
| else |
| { |
| start = 0; |
| end = 0; |
| } |
| |
| ok = false; |
| if (start < end) |
| { |
| struct elf_segment_map *lm; |
| const Elf_Internal_Phdr *lp; |
| unsigned int i; |
| |
| /* Find a LOAD segment containing a section in the RELRO |
| segment. */ |
| for (lm = elf_seg_map (abfd), lp = phdrs; |
| lm != NULL; |
| lm = lm->next, lp++) |
| { |
| if (lp->p_type == PT_LOAD |
| && lm->count != 0 |
| && (lm->sections[lm->count - 1]->vma |
| + (!IS_TBSS (lm->sections[lm->count - 1]) |
| ? lm->sections[lm->count - 1]->size / opb |
| : 0)) > start |
| && lm->sections[0]->vma < end) |
| break; |
| } |
| |
| if (lm != NULL) |
| { |
| /* Find the section starting the RELRO segment. */ |
| for (i = 0; i < lm->count; i++) |
| { |
| asection *s = lm->sections[i]; |
| if (s->vma >= start |
| && s->vma < end |
| && s->size != 0) |
| break; |
| } |
| |
| if (i < lm->count) |
| { |
| p->p_vaddr = lm->sections[i]->vma * opb; |
| p->p_paddr = lm->sections[i]->lma * opb; |
| p->p_offset = lm->sections[i]->filepos; |
| p->p_memsz = end * opb - p->p_vaddr; |
| p->p_filesz = p->p_memsz; |
| |
| /* The RELRO segment typically ends a few bytes |
| into .got.plt but other layouts are possible. |
| In cases where the end does not match any |
| loaded section (for instance is in file |
| padding), trim p_filesz back to correspond to |
| the end of loaded section contents. */ |
| if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr) |
| p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr; |
| |
| /* Preserve the alignment and flags if they are |
| valid. The gold linker generates RW/4 for |
| the PT_GNU_RELRO section. It is better for |
| objcopy/strip to honor these attributes |
| otherwise gdb will choke when using separate |
| debug files. */ |
| if (!m->p_align_valid) |
| p->p_align = 1; |
| if (!m->p_flags_valid) |
| p->p_flags = PF_R; |
| ok = true; |
| } |
| } |
| } |
| |
| if (!ok) |
| { |
| if (link_info != NULL) |
| _bfd_error_handler |
| (_("%pB: warning: unable to allocate any sections to PT_GNU_RELRO segment"), |
| abfd); |
| memset (p, 0, sizeof *p); |
| } |
| } |
| else if (p->p_type == PT_GNU_STACK) |
| { |
| if (m->p_size_valid) |
| p->p_memsz = m->p_size; |
| } |
| else if (m->count != 0) |
| { |
| unsigned int i; |
| |
| if (p->p_type != PT_LOAD |
| && (p->p_type != PT_NOTE |
| || bfd_get_format (abfd) != bfd_core)) |
| { |
| /* A user specified segment layout may include a PHDR |
| segment that overlaps with a LOAD segment... */ |
| if (p->p_type == PT_PHDR) |
| { |
| m->count = 0; |
| continue; |
| } |
| |
| if (m->includes_filehdr || m->includes_phdrs) |
| { |
| /* PR 17512: file: 2195325e. */ |
| _bfd_error_handler |
| (_("%pB: error: non-load segment %d includes file header " |
| "and/or program header"), |
| abfd, (int) (p - phdrs)); |
| return false; |
| } |
| |
| p->p_filesz = 0; |
| p->p_offset = m->sections[0]->filepos; |
| for (i = m->count; i-- != 0;) |
| { |
| asection *sect = m->sections[i]; |
| Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr; |
| if (hdr->sh_type != SHT_NOBITS) |
| { |
| p->p_filesz = (sect->filepos - m->sections[0]->filepos |
| + hdr->sh_size); |
| /* NB: p_memsz of the loadable PT_NOTE segment |
| should be the same as p_filesz. */ |
| if (p->p_type == PT_NOTE |
| && (hdr->sh_flags & SHF_ALLOC) != 0) |
| p->p_memsz = p->p_filesz; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| static elf_section_list * |
| find_section_in_list (unsigned int i, elf_section_list * list) |
| { |
| for (;list != NULL; list = list->next) |
| if (list->ndx == i) |
| break; |
| return list; |
| } |
| |
| /* Work out the file positions of all the sections. This is called by |
| _bfd_elf_compute_section_file_positions. All the section sizes and |
| VMAs must be known before this is called. |
| |
| Reloc sections come in two flavours: Those processed specially as |
| "side-channel" data attached to a section to which they apply, and those that |
| bfd doesn't process as relocations. The latter sort are stored in a normal |
| bfd section by bfd_section_from_shdr. We don't consider the former sort |
| here, unless they form part of the loadable image. Reloc sections not |
| assigned here (and compressed debugging sections and CTF sections which |
| nothing else in the file can rely upon) will be handled later by |
| assign_file_positions_for_relocs. |
| |
| We also don't set the positions of the .symtab and .strtab here. */ |
| |
| static bool |
| assign_file_positions_except_relocs (bfd *abfd, |
| struct bfd_link_info *link_info) |
| { |
| struct elf_obj_tdata *tdata = elf_tdata (abfd); |
| Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd); |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| unsigned int alloc; |
| |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 |
| && bfd_get_format (abfd) != bfd_core) |
| { |
| Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd); |
| unsigned int num_sec = elf_numsections (abfd); |
| Elf_Internal_Shdr **hdrpp; |
| unsigned int i; |
| file_ptr off; |
| |
| /* Start after the ELF header. */ |
| off = i_ehdrp->e_ehsize; |
| |
| /* We are not creating an executable, which means that we are |
| not creating a program header, and that the actual order of |
| the sections in the file is unimportant. */ |
| for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++) |
| { |
| Elf_Internal_Shdr *hdr; |
| |
| hdr = *hdrpp; |
| if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA) |
| && hdr->bfd_section == NULL) |
| /* Do not assign offsets for these sections yet: we don't know |
| their sizes. */ |
| || (hdr->bfd_section != NULL |
| && (hdr->bfd_section->flags & SEC_ELF_COMPRESS |
| || (bfd_section_is_ctf (hdr->bfd_section) |
| && abfd->is_linker_output))) |
| || i == elf_onesymtab (abfd) |
| || (elf_symtab_shndx_list (abfd) != NULL |
| && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx]) |
| || i == elf_strtab_sec (abfd) |
| || i == elf_shstrtab_sec (abfd)) |
| { |
| hdr->sh_offset = -1; |
| } |
| else |
| off = _bfd_elf_assign_file_position_for_section (hdr, off, true); |
| } |
| |
| elf_next_file_pos (abfd) = off; |
| elf_program_header_size (abfd) = 0; |
| } |
| else |
| { |
| /* Assign file positions for the loaded sections based on the |
| assignment of sections to segments. */ |
| if (!assign_file_positions_for_load_sections (abfd, link_info)) |
| return false; |
| |
| /* And for non-load sections. */ |
| if (!assign_file_positions_for_non_load_sections (abfd, link_info)) |
| return false; |
| } |
| |
| if (!(*bed->elf_backend_modify_headers) (abfd, link_info)) |
| return false; |
| |
| /* Write out the program headers. */ |
| alloc = i_ehdrp->e_phnum; |
| if (alloc != 0) |
| { |
| if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0 |
| || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_init_file_header (bfd *abfd, |
| struct bfd_link_info *info ATTRIBUTE_UNUSED) |
| { |
| Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */ |
| struct elf_strtab_hash *shstrtab; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| i_ehdrp = elf_elfheader (abfd); |
| |
| shstrtab = _bfd_elf_strtab_init (); |
| if (shstrtab == NULL) |
| return false; |
| |
| elf_shstrtab (abfd) = shstrtab; |
| |
| i_ehdrp->e_ident[EI_MAG0] = ELFMAG0; |
| i_ehdrp->e_ident[EI_MAG1] = ELFMAG1; |
| i_ehdrp->e_ident[EI_MAG2] = ELFMAG2; |
| i_ehdrp->e_ident[EI_MAG3] = ELFMAG3; |
| |
| i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass; |
| i_ehdrp->e_ident[EI_DATA] = |
| bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB; |
| i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current; |
| |
| if ((abfd->flags & DYNAMIC) != 0) |
| i_ehdrp->e_type = ET_DYN; |
| else if ((abfd->flags & EXEC_P) != 0) |
| i_ehdrp->e_type = ET_EXEC; |
| else if (bfd_get_format (abfd) == bfd_core) |
| i_ehdrp->e_type = ET_CORE; |
| else |
| i_ehdrp->e_type = ET_REL; |
| |
| switch (bfd_get_arch (abfd)) |
| { |
| case bfd_arch_unknown: |
| i_ehdrp->e_machine = EM_NONE; |
| break; |
| |
| /* There used to be a long list of cases here, each one setting |
| e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE |
| in the corresponding bfd definition. To avoid duplication, |
| the switch was removed. Machines that need special handling |
| can generally do it in elf_backend_final_write_processing(), |
| unless they need the information earlier than the final write. |
| Such need can generally be supplied by replacing the tests for |
| e_machine with the conditions used to determine it. */ |
| default: |
| i_ehdrp->e_machine = bed->elf_machine_code; |
| } |
| |
| i_ehdrp->e_version = bed->s->ev_current; |
| i_ehdrp->e_ehsize = bed->s->sizeof_ehdr; |
| |
| /* No program header, for now. */ |
| i_ehdrp->e_phoff = 0; |
| i_ehdrp->e_phentsize = 0; |
| i_ehdrp->e_phnum = 0; |
| |
| /* Each bfd section is section header entry. */ |
| i_ehdrp->e_entry = bfd_get_start_address (abfd); |
| i_ehdrp->e_shentsize = bed->s->sizeof_shdr; |
| |
| elf_tdata (abfd)->symtab_hdr.sh_name = |
| (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", false); |
| elf_tdata (abfd)->strtab_hdr.sh_name = |
| (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", false); |
| elf_tdata (abfd)->shstrtab_hdr.sh_name = |
| (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", false); |
| if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1 |
| || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1 |
| || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1) |
| return false; |
| |
| return true; |
| } |
| |
| /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. |
| |
| FIXME: We used to have code here to sort the PT_LOAD segments into |
| ascending order, as per the ELF spec. But this breaks some programs, |
| including the Linux kernel. But really either the spec should be |
| changed or the programs updated. */ |
| |
| bool |
| _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info) |
| { |
| if (link_info != NULL && bfd_link_pie (link_info)) |
| { |
| Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd); |
| unsigned int num_segments = i_ehdrp->e_phnum; |
| struct elf_obj_tdata *tdata = elf_tdata (obfd); |
| Elf_Internal_Phdr *segment = tdata->phdr; |
| Elf_Internal_Phdr *end_segment = &segment[num_segments]; |
| |
| /* Find the lowest p_vaddr in PT_LOAD segments. */ |
| bfd_vma p_vaddr = (bfd_vma) -1; |
| for (; segment < end_segment; segment++) |
| if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr) |
| p_vaddr = segment->p_vaddr; |
| |
| /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD |
| segments is non-zero. */ |
| if (p_vaddr) |
| i_ehdrp->e_type = ET_EXEC; |
| } |
| return true; |
| } |
| |
| /* Assign file positions for all the reloc sections which are not part |
| of the loadable file image, and the file position of section headers. */ |
| |
| static bool |
| _bfd_elf_assign_file_positions_for_non_load (bfd *abfd) |
| { |
| file_ptr off; |
| Elf_Internal_Shdr **shdrpp, **end_shdrpp; |
| Elf_Internal_Shdr *shdrp; |
| Elf_Internal_Ehdr *i_ehdrp; |
| const struct elf_backend_data *bed; |
| |
| off = elf_next_file_pos (abfd); |
| |
| shdrpp = elf_elfsections (abfd); |
| end_shdrpp = shdrpp + elf_numsections (abfd); |
| for (shdrpp++; shdrpp < end_shdrpp; shdrpp++) |
| { |
| shdrp = *shdrpp; |
| if (shdrp->sh_offset == -1) |
| { |
| asection *sec = shdrp->bfd_section; |
| bool is_rel = (shdrp->sh_type == SHT_REL |
| || shdrp->sh_type == SHT_RELA); |
| bool is_ctf = sec && bfd_section_is_ctf (sec); |
| if (is_rel |
| || is_ctf |
| || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS))) |
| { |
| if (!is_rel && !is_ctf) |
| { |
| const char *name = sec->name; |
| struct bfd_elf_section_data *d; |
| |
| /* Compress DWARF debug sections. */ |
| if (!bfd_compress_section (abfd, sec, |
| shdrp->contents)) |
| return false; |
| |
| if (sec->compress_status == COMPRESS_SECTION_DONE |
| && (abfd->flags & BFD_COMPRESS_GABI) == 0) |
| { |
| /* If section is compressed with zlib-gnu, convert |
| section name from .debug_* to .zdebug_*. */ |
| char *new_name |
| = convert_debug_to_zdebug (abfd, name); |
| if (new_name == NULL) |
| return false; |
| name = new_name; |
| } |
| /* Add section name to section name section. */ |
| if (shdrp->sh_name != (unsigned int) -1) |
| abort (); |
| shdrp->sh_name |
| = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), |
| name, false); |
| d = elf_section_data (sec); |
| |
| /* Add reloc section name to section name section. */ |
| if (d->rel.hdr |
| && !_bfd_elf_set_reloc_sh_name (abfd, |
| d->rel.hdr, |
| name, false)) |
| return false; |
| if (d->rela.hdr |
| && !_bfd_elf_set_reloc_sh_name (abfd, |
| d->rela.hdr, |
| name, true)) |
| return false; |
| |
| /* Update section size and contents. */ |
| shdrp->sh_size = sec->size; |
| shdrp->contents = sec->contents; |
| shdrp->bfd_section->contents = NULL; |
| } |
| else if (is_ctf) |
| { |
| /* Update section size and contents. */ |
| shdrp->sh_size = sec->size; |
| shdrp->contents = sec->contents; |
| } |
| |
| off = _bfd_elf_assign_file_position_for_section (shdrp, |
| off, |
| true); |
| } |
| } |
| } |
| |
| /* Place section name section after DWARF debug sections have been |
| compressed. */ |
| _bfd_elf_strtab_finalize (elf_shstrtab (abfd)); |
| shdrp = &elf_tdata (abfd)->shstrtab_hdr; |
| shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd)); |
| off = _bfd_elf_assign_file_position_for_section (shdrp, off, true); |
| |
| /* Place the section headers. */ |
| i_ehdrp = elf_elfheader (abfd); |
| bed = get_elf_backend_data (abfd); |
| off = align_file_position (off, 1 << bed->s->log_file_align); |
| i_ehdrp->e_shoff = off; |
| off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize; |
| elf_next_file_pos (abfd) = off; |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_write_object_contents (bfd *abfd) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| Elf_Internal_Shdr **i_shdrp; |
| bool failed; |
| unsigned int count, num_sec; |
| struct elf_obj_tdata *t; |
| |
| if (! abfd->output_has_begun |
| && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) |
| return false; |
| /* Do not rewrite ELF data when the BFD has been opened for update. |
| abfd->output_has_begun was set to TRUE on opening, so creation of new |
| sections, and modification of existing section sizes was restricted. |
| This means the ELF header, program headers and section headers can't have |
| changed. |
| If the contents of any sections has been modified, then those changes have |
| already been written to the BFD. */ |
| else if (abfd->direction == both_direction) |
| { |
| BFD_ASSERT (abfd->output_has_begun); |
| return true; |
| } |
| |
| i_shdrp = elf_elfsections (abfd); |
| |
| failed = false; |
| bfd_map_over_sections (abfd, bed->s->write_relocs, &failed); |
| if (failed) |
| return false; |
| |
| if (!_bfd_elf_assign_file_positions_for_non_load (abfd)) |
| return false; |
| |
| /* After writing the headers, we need to write the sections too... */ |
| num_sec = elf_numsections (abfd); |
| for (count = 1; count < num_sec; count++) |
| { |
| i_shdrp[count]->sh_name |
| = _bfd_elf_strtab_offset (elf_shstrtab (abfd), |
| i_shdrp[count]->sh_name); |
| if (bed->elf_backend_section_processing) |
| if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count])) |
| return false; |
| if (i_shdrp[count]->contents) |
| { |
| bfd_size_type amt = i_shdrp[count]->sh_size; |
| |
| if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0 |
| || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt) |
| return false; |
| } |
| } |
| |
| /* Write out the section header names. */ |
| t = elf_tdata (abfd); |
| if (elf_shstrtab (abfd) != NULL |
| && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0 |
| || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))) |
| return false; |
| |
| if (!(*bed->elf_backend_final_write_processing) (abfd)) |
| return false; |
| |
| if (!bed->s->write_shdrs_and_ehdr (abfd)) |
| return false; |
| |
| /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */ |
| if (t->o->build_id.after_write_object_contents != NULL) |
| return (*t->o->build_id.after_write_object_contents) (abfd); |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_write_corefile_contents (bfd *abfd) |
| { |
| /* Hopefully this can be done just like an object file. */ |
| return _bfd_elf_write_object_contents (abfd); |
| } |
| |
| /* Given a section, search the header to find them. */ |
| |
| unsigned int |
| _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect) |
| { |
| const struct elf_backend_data *bed; |
| unsigned int sec_index; |
| |
| if (elf_section_data (asect) != NULL |
| && elf_section_data (asect)->this_idx != 0) |
| return elf_section_data (asect)->this_idx; |
| |
| if (bfd_is_abs_section (asect)) |
| sec_index = SHN_ABS; |
| else if (bfd_is_com_section (asect)) |
| sec_index = SHN_COMMON; |
| else if (bfd_is_und_section (asect)) |
| sec_index = SHN_UNDEF; |
| else |
| sec_index = SHN_BAD; |
| |
| bed = get_elf_backend_data (abfd); |
| if (bed->elf_backend_section_from_bfd_section) |
| { |
| int retval = sec_index; |
| |
| if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval)) |
| return retval; |
| } |
| |
| if (sec_index == SHN_BAD) |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| |
| return sec_index; |
| } |
| |
| /* Given a BFD symbol, return the index in the ELF symbol table, or -1 |
| on error. */ |
| |
| int |
| _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr) |
| { |
| asymbol *asym_ptr = *asym_ptr_ptr; |
| int idx; |
| flagword flags = asym_ptr->flags; |
| |
| /* When gas creates relocations against local labels, it creates its |
| own symbol for the section, but does put the symbol into the |
| symbol chain, so udata is 0. When the linker is generating |
| relocatable output, this section symbol may be for one of the |
| input sections rather than the output section. */ |
| if (asym_ptr->udata.i == 0 |
| && (flags & BSF_SECTION_SYM) |
| && asym_ptr->section) |
| { |
| asection *sec; |
| int indx; |
| |
| sec = asym_ptr->section; |
| if (sec->owner != abfd && sec->output_section != NULL) |
| sec = sec->output_section; |
| if (sec->owner == abfd |
| && (indx = sec->index) < elf_num_section_syms (abfd) |
| && elf_section_syms (abfd)[indx] != NULL) |
| asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i; |
| } |
| |
| idx = asym_ptr->udata.i; |
| |
| if (idx == 0) |
| { |
| /* This case can occur when using --strip-symbol on a symbol |
| which is used in a relocation entry. */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB: symbol `%s' required but not present"), |
| abfd, bfd_asymbol_name (asym_ptr)); |
| bfd_set_error (bfd_error_no_symbols); |
| return -1; |
| } |
| |
| #if DEBUG & 4 |
| { |
| fprintf (stderr, |
| "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n", |
| (long) asym_ptr, asym_ptr->name, idx, flags); |
| fflush (stderr); |
| } |
| #endif |
| |
| return idx; |
| } |
| |
| /* Rewrite program header information. */ |
| |
| static bool |
| rewrite_elf_program_header (bfd *ibfd, bfd *obfd, bfd_vma maxpagesize) |
| { |
| Elf_Internal_Ehdr *iehdr; |
| struct elf_segment_map *map; |
| struct elf_segment_map *map_first; |
| struct elf_segment_map **pointer_to_map; |
| Elf_Internal_Phdr *segment; |
| asection *section; |
| unsigned int i; |
| unsigned int num_segments; |
| bool phdr_included = false; |
| bool p_paddr_valid; |
| struct elf_segment_map *phdr_adjust_seg = NULL; |
| unsigned int phdr_adjust_num = 0; |
| const struct elf_backend_data *bed; |
| unsigned int opb = bfd_octets_per_byte (ibfd, NULL); |
| |
| bed = get_elf_backend_data (ibfd); |
| iehdr = elf_elfheader (ibfd); |
| |
| map_first = NULL; |
| pointer_to_map = &map_first; |
| |
| num_segments = elf_elfheader (ibfd)->e_phnum; |
| |
| /* Returns the end address of the segment + 1. */ |
| #define SEGMENT_END(segment, start) \ |
| (start + (segment->p_memsz > segment->p_filesz \ |
| ? segment->p_memsz : segment->p_filesz)) |
| |
| #define SECTION_SIZE(section, segment) \ |
| (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \ |
| != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \ |
| ? section->size : 0) |
| |
| /* Returns TRUE if the given section is contained within |
| the given segment. VMA addresses are compared. */ |
| #define IS_CONTAINED_BY_VMA(section, segment, opb) \ |
| (section->vma * (opb) >= segment->p_vaddr \ |
| && (section->vma * (opb) + SECTION_SIZE (section, segment) \ |
| <= (SEGMENT_END (segment, segment->p_vaddr)))) |
| |
| /* Returns TRUE if the given section is contained within |
| the given segment. LMA addresses are compared. */ |
| #define IS_CONTAINED_BY_LMA(section, segment, base, opb) \ |
| (section->lma * (opb) >= base \ |
| && (section->lma + SECTION_SIZE (section, segment) / (opb) >= section->lma) \ |
| && (section->lma * (opb) + SECTION_SIZE (section, segment) \ |
| <= SEGMENT_END (segment, base))) |
| |
| /* Handle PT_NOTE segment. */ |
| #define IS_NOTE(p, s) \ |
| (p->p_type == PT_NOTE \ |
| && elf_section_type (s) == SHT_NOTE \ |
| && (bfd_vma) s->filepos >= p->p_offset \ |
| && ((bfd_vma) s->filepos + s->size \ |
| <= p->p_offset + p->p_filesz)) |
| |
| /* Special case: corefile "NOTE" section containing regs, prpsinfo |
| etc. */ |
| #define IS_COREFILE_NOTE(p, s) \ |
| (IS_NOTE (p, s) \ |
| && bfd_get_format (ibfd) == bfd_core \ |
| && s->vma == 0 \ |
| && s->lma == 0) |
| |
| /* The complicated case when p_vaddr is 0 is to handle the Solaris |
| linker, which generates a PT_INTERP section with p_vaddr and |
| p_memsz set to 0. */ |
| #define IS_SOLARIS_PT_INTERP(p, s) \ |
| (p->p_vaddr == 0 \ |
| && p->p_paddr == 0 \ |
| && p->p_memsz == 0 \ |
| && p->p_filesz > 0 \ |
| && (s->flags & SEC_HAS_CONTENTS) != 0 \ |
| && s->size > 0 \ |
| && (bfd_vma) s->filepos >= p->p_offset \ |
| && ((bfd_vma) s->filepos + s->size \ |
| <= p->p_offset + p->p_filesz)) |
| |
| /* Decide if the given section should be included in the given segment. |
| A section will be included if: |
| 1. It is within the address space of the segment -- we use the LMA |
| if that is set for the segment and the VMA otherwise, |
| 2. It is an allocated section or a NOTE section in a PT_NOTE |
| segment. |
| 3. There is an output section associated with it, |
| 4. The section has not already been allocated to a previous segment. |
| 5. PT_GNU_STACK segments do not include any sections. |
| 6. PT_TLS segment includes only SHF_TLS sections. |
| 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. |
| 8. PT_DYNAMIC should not contain empty sections at the beginning |
| (with the possible exception of .dynamic). */ |
| #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed, opb) \ |
| ((((segment->p_paddr \ |
| ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr, opb) \ |
| : IS_CONTAINED_BY_VMA (section, segment, opb)) \ |
| && (section->flags & SEC_ALLOC) != 0) \ |
| || IS_NOTE (segment, section)) \ |
| && segment->p_type != PT_GNU_STACK \ |
| && (segment->p_type != PT_TLS \ |
| || (section->flags & SEC_THREAD_LOCAL)) \ |
| && (segment->p_type == PT_LOAD \ |
| || segment->p_type == PT_TLS \ |
| || (section->flags & SEC_THREAD_LOCAL) == 0) \ |
| && (segment->p_type != PT_DYNAMIC \ |
| || SECTION_SIZE (section, segment) > 0 \ |
| || (segment->p_paddr \ |
| ? segment->p_paddr != section->lma * (opb) \ |
| : segment->p_vaddr != section->vma * (opb)) \ |
| || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \ |
| && (segment->p_type != PT_LOAD || !section->segment_mark)) |
| |
| /* If the output section of a section in the input segment is NULL, |
| it is removed from the corresponding output segment. */ |
| #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed, opb) \ |
| (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb) \ |
| && section->output_section != NULL) |
| |
| /* Returns TRUE iff seg1 starts after the end of seg2. */ |
| #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \ |
| (seg1->field >= SEGMENT_END (seg2, seg2->field)) |
| |
| /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both |
| their VMA address ranges and their LMA address ranges overlap. |
| It is possible to have overlapping VMA ranges without overlapping LMA |
| ranges. RedBoot images for example can have both .data and .bss mapped |
| to the same VMA range, but with the .data section mapped to a different |
| LMA. */ |
| #define SEGMENT_OVERLAPS(seg1, seg2) \ |
| ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \ |
| || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \ |
| && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \ |
| || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr))) |
| |
| /* Initialise the segment mark field, and discard stupid alignment. */ |
| for (section = ibfd->sections; section != NULL; section = section->next) |
| { |
| asection *o = section->output_section; |
| if (o != NULL && o->alignment_power >= (sizeof (bfd_vma) * 8) - 1) |
| o->alignment_power = 0; |
| section->segment_mark = false; |
| } |
| |
| /* The Solaris linker creates program headers in which all the |
| p_paddr fields are zero. When we try to objcopy or strip such a |
| file, we get confused. Check for this case, and if we find it |
| don't set the p_paddr_valid fields. */ |
| p_paddr_valid = false; |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| if (segment->p_paddr != 0) |
| { |
| p_paddr_valid = true; |
| break; |
| } |
| |
| /* Scan through the segments specified in the program header |
| of the input BFD. For this first scan we look for overlaps |
| in the loadable segments. These can be created by weird |
| parameters to objcopy. Also, fix some solaris weirdness. */ |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| { |
| unsigned int j; |
| Elf_Internal_Phdr *segment2; |
| |
| if (segment->p_type == PT_INTERP) |
| for (section = ibfd->sections; section; section = section->next) |
| if (IS_SOLARIS_PT_INTERP (segment, section)) |
| { |
| /* Mininal change so that the normal section to segment |
| assignment code will work. */ |
| segment->p_vaddr = section->vma * opb; |
| break; |
| } |
| |
| if (segment->p_type != PT_LOAD) |
| { |
| /* Remove PT_GNU_RELRO segment. */ |
| if (segment->p_type == PT_GNU_RELRO) |
| segment->p_type = PT_NULL; |
| continue; |
| } |
| |
| /* Determine if this segment overlaps any previous segments. */ |
| for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++) |
| { |
| bfd_signed_vma extra_length; |
| |
| if (segment2->p_type != PT_LOAD |
| || !SEGMENT_OVERLAPS (segment, segment2)) |
| continue; |
| |
| /* Merge the two segments together. */ |
| if (segment2->p_vaddr < segment->p_vaddr) |
| { |
| /* Extend SEGMENT2 to include SEGMENT and then delete |
| SEGMENT. */ |
| extra_length = (SEGMENT_END (segment, segment->p_vaddr) |
| - SEGMENT_END (segment2, segment2->p_vaddr)); |
| |
| if (extra_length > 0) |
| { |
| segment2->p_memsz += extra_length; |
| segment2->p_filesz += extra_length; |
| } |
| |
| segment->p_type = PT_NULL; |
| |
| /* Since we have deleted P we must restart the outer loop. */ |
| i = 0; |
| segment = elf_tdata (ibfd)->phdr; |
| break; |
| } |
| else |
| { |
| /* Extend SEGMENT to include SEGMENT2 and then delete |
| SEGMENT2. */ |
| extra_length = (SEGMENT_END (segment2, segment2->p_vaddr) |
| - SEGMENT_END (segment, segment->p_vaddr)); |
| |
| if (extra_length > 0) |
| { |
| segment->p_memsz += extra_length; |
| segment->p_filesz += extra_length; |
| } |
| |
| segment2->p_type = PT_NULL; |
| } |
| } |
| } |
| |
| /* The second scan attempts to assign sections to segments. */ |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| { |
| unsigned int section_count; |
| asection **sections; |
| asection *output_section; |
| unsigned int isec; |
| asection *matching_lma; |
| asection *suggested_lma; |
| unsigned int j; |
| size_t amt; |
| asection *first_section; |
| |
| if (segment->p_type == PT_NULL) |
| continue; |
| |
| first_section = NULL; |
| /* Compute how many sections might be placed into this segment. */ |
| for (section = ibfd->sections, section_count = 0; |
| section != NULL; |
| section = section->next) |
| { |
| /* Find the first section in the input segment, which may be |
| removed from the corresponding output segment. */ |
| if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed, opb)) |
| { |
| if (first_section == NULL) |
| first_section = section; |
| if (section->output_section != NULL) |
| ++section_count; |
| } |
| } |
| |
| /* Allocate a segment map big enough to contain |
| all of the sections we have selected. */ |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += section_count * sizeof (asection *); |
| map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); |
| if (map == NULL) |
| return false; |
| |
| /* Initialise the fields of the segment map. Default to |
| using the physical address of the segment in the input BFD. */ |
| map->next = NULL; |
| map->p_type = segment->p_type; |
| map->p_flags = segment->p_flags; |
| map->p_flags_valid = 1; |
| |
| if (map->p_type == PT_LOAD |
| && (ibfd->flags & D_PAGED) != 0 |
| && maxpagesize > 1 |
| && segment->p_align > 1) |
| { |
| map->p_align = segment->p_align; |
| if (segment->p_align > maxpagesize) |
| map->p_align = maxpagesize; |
| map->p_align_valid = 1; |
| } |
| |
| /* If the first section in the input segment is removed, there is |
| no need to preserve segment physical address in the corresponding |
| output segment. */ |
| if (!first_section || first_section->output_section != NULL) |
| { |
| map->p_paddr = segment->p_paddr; |
| map->p_paddr_valid = p_paddr_valid; |
| } |
| |
| /* Determine if this segment contains the ELF file header |
| and if it contains the program headers themselves. */ |
| map->includes_filehdr = (segment->p_offset == 0 |
| && segment->p_filesz >= iehdr->e_ehsize); |
| map->includes_phdrs = 0; |
| |
| if (!phdr_included || segment->p_type != PT_LOAD) |
| { |
| map->includes_phdrs = |
| (segment->p_offset <= (bfd_vma) iehdr->e_phoff |
| && (segment->p_offset + segment->p_filesz |
| >= ((bfd_vma) iehdr->e_phoff |
| + iehdr->e_phnum * iehdr->e_phentsize))); |
| |
| if (segment->p_type == PT_LOAD && map->includes_phdrs) |
| phdr_included = true; |
| } |
| |
| if (section_count == 0) |
| { |
| /* Special segments, such as the PT_PHDR segment, may contain |
| no sections, but ordinary, loadable segments should contain |
| something. They are allowed by the ELF spec however, so only |
| a warning is produced. |
| There is however the valid use case of embedded systems which |
| have segments with p_filesz of 0 and a p_memsz > 0 to initialize |
| flash memory with zeros. No warning is shown for that case. */ |
| if (segment->p_type == PT_LOAD |
| && (segment->p_filesz > 0 || segment->p_memsz == 0)) |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("%pB: warning: empty loadable segment detected" |
| " at vaddr=%#" PRIx64 ", is this intentional?"), |
| ibfd, (uint64_t) segment->p_vaddr); |
| |
| map->p_vaddr_offset = segment->p_vaddr / opb; |
| map->count = 0; |
| *pointer_to_map = map; |
| pointer_to_map = &map->next; |
| |
| continue; |
| } |
| |
| /* Now scan the sections in the input BFD again and attempt |
| to add their corresponding output sections to the segment map. |
| The problem here is how to handle an output section which has |
| been moved (ie had its LMA changed). There are four possibilities: |
| |
| 1. None of the sections have been moved. |
| In this case we can continue to use the segment LMA from the |
| input BFD. |
| |
| 2. All of the sections have been moved by the same amount. |
| In this case we can change the segment's LMA to match the LMA |
| of the first section. |
| |
| 3. Some of the sections have been moved, others have not. |
| In this case those sections which have not been moved can be |
| placed in the current segment which will have to have its size, |
| and possibly its LMA changed, and a new segment or segments will |
| have to be created to contain the other sections. |
| |
| 4. The sections have been moved, but not by the same amount. |
| In this case we can change the segment's LMA to match the LMA |
| of the first section and we will have to create a new segment |
| or segments to contain the other sections. |
| |
| In order to save time, we allocate an array to hold the section |
| pointers that we are interested in. As these sections get assigned |
| to a segment, they are removed from this array. */ |
| |
| amt = section_count * sizeof (asection *); |
| sections = (asection **) bfd_malloc (amt); |
| if (sections == NULL) |
| return false; |
| |
| /* Step One: Scan for segment vs section LMA conflicts. |
| Also add the sections to the section array allocated above. |
| Also add the sections to the current segment. In the common |
| case, where the sections have not been moved, this means that |
| we have completely filled the segment, and there is nothing |
| more to do. */ |
| isec = 0; |
| matching_lma = NULL; |
| suggested_lma = NULL; |
| |
| for (section = first_section, j = 0; |
| section != NULL; |
| section = section->next) |
| { |
| if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed, opb)) |
| { |
| output_section = section->output_section; |
| |
| sections[j++] = section; |
| |
| /* The Solaris native linker always sets p_paddr to 0. |
| We try to catch that case here, and set it to the |
| correct value. Note - some backends require that |
| p_paddr be left as zero. */ |
| if (!p_paddr_valid |
| && segment->p_vaddr != 0 |
| && !bed->want_p_paddr_set_to_zero |
| && isec == 0 |
| && output_section->lma != 0 |
| && (align_power (segment->p_vaddr |
| + (map->includes_filehdr |
| ? iehdr->e_ehsize : 0) |
| + (map->includes_phdrs |
| ? iehdr->e_phnum * iehdr->e_phentsize |
| : 0), |
| output_section->alignment_power * opb) |
| == (output_section->vma * opb))) |
| map->p_paddr = segment->p_vaddr; |
| |
| /* Match up the physical address of the segment with the |
| LMA address of the output section. */ |
| if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr, |
| opb) |
| || IS_COREFILE_NOTE (segment, section) |
| || (bed->want_p_paddr_set_to_zero |
| && IS_CONTAINED_BY_VMA (output_section, segment, opb))) |
| { |
| if (matching_lma == NULL |
| || output_section->lma < matching_lma->lma) |
| matching_lma = output_section; |
| |
| /* We assume that if the section fits within the segment |
| then it does not overlap any other section within that |
| segment. */ |
| map->sections[isec++] = output_section; |
| } |
| else if (suggested_lma == NULL) |
| suggested_lma = output_section; |
| |
| if (j == section_count) |
| break; |
| } |
| } |
| |
| BFD_ASSERT (j == section_count); |
| |
| /* Step Two: Adjust the physical address of the current segment, |
| if necessary. */ |
| if (isec == section_count) |
| { |
| /* All of the sections fitted within the segment as currently |
| specified. This is the default case. Add the segment to |
| the list of built segments and carry on to process the next |
| program header in the input BFD. */ |
| map->count = section_count; |
| *pointer_to_map = map; |
| pointer_to_map = &map->next; |
| |
| if (p_paddr_valid |
| && !bed->want_p_paddr_set_to_zero) |
| { |
| bfd_vma hdr_size = 0; |
| if (map->includes_filehdr) |
| hdr_size = iehdr->e_ehsize; |
| if (map->includes_phdrs) |
| hdr_size += iehdr->e_phnum * iehdr->e_phentsize; |
| |
| /* Account for padding before the first section in the |
| segment. */ |
| map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb |
| - matching_lma->lma); |
| } |
| |
| free (sections); |
| continue; |
| } |
| else |
| { |
| /* Change the current segment's physical address to match |
| the LMA of the first section that fitted, or if no |
| section fitted, the first section. */ |
| if (matching_lma == NULL) |
| matching_lma = suggested_lma; |
| |
| map->p_paddr = matching_lma->lma * opb; |
| |
| /* Offset the segment physical address from the lma |
| to allow for space taken up by elf headers. */ |
| if (map->includes_phdrs) |
| { |
| map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize; |
| |
| /* iehdr->e_phnum is just an estimate of the number |
| of program headers that we will need. Make a note |
| here of the number we used and the segment we chose |
| to hold these headers, so that we can adjust the |
| offset when we know the correct value. */ |
| phdr_adjust_num = iehdr->e_phnum; |
| phdr_adjust_seg = map; |
| } |
| |
| if (map->includes_filehdr) |
| { |
| bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power; |
| map->p_paddr -= iehdr->e_ehsize; |
| /* We've subtracted off the size of headers from the |
| first section lma, but there may have been some |
| alignment padding before that section too. Try to |
| account for that by adjusting the segment lma down to |
| the same alignment. */ |
| if (segment->p_align != 0 && segment->p_align < align) |
| align = segment->p_align; |
| map->p_paddr &= -(align * opb); |
| } |
| } |
| |
| /* Step Three: Loop over the sections again, this time assigning |
| those that fit to the current segment and removing them from the |
| sections array; but making sure not to leave large gaps. Once all |
| possible sections have been assigned to the current segment it is |
| added to the list of built segments and if sections still remain |
| to be assigned, a new segment is constructed before repeating |
| the loop. */ |
| isec = 0; |
| do |
| { |
| map->count = 0; |
| suggested_lma = NULL; |
| |
| /* Fill the current segment with sections that fit. */ |
| for (j = 0; j < section_count; j++) |
| { |
| section = sections[j]; |
| |
| if (section == NULL) |
| continue; |
| |
| output_section = section->output_section; |
| |
| BFD_ASSERT (output_section != NULL); |
| |
| if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr, |
| opb) |
| || IS_COREFILE_NOTE (segment, section)) |
| { |
| if (map->count == 0) |
| { |
| /* If the first section in a segment does not start at |
| the beginning of the segment, then something is |
| wrong. */ |
| if (align_power (map->p_paddr |
| + (map->includes_filehdr |
| ? iehdr->e_ehsize : 0) |
| + (map->includes_phdrs |
| ? iehdr->e_phnum * iehdr->e_phentsize |
| : 0), |
| output_section->alignment_power * opb) |
| != output_section->lma * opb) |
| goto sorry; |
| } |
| else |
| { |
| asection *prev_sec; |
| |
| prev_sec = map->sections[map->count - 1]; |
| |
| /* If the gap between the end of the previous section |
| and the start of this section is more than |
| maxpagesize then we need to start a new segment. */ |
| if ((BFD_ALIGN (prev_sec->lma + prev_sec->size, |
| maxpagesize) |
| < BFD_ALIGN (output_section->lma, maxpagesize)) |
| || (prev_sec->lma + prev_sec->size |
| > output_section->lma)) |
| { |
| if (suggested_lma == NULL) |
| suggested_lma = output_section; |
| |
| continue; |
| } |
| } |
| |
| map->sections[map->count++] = output_section; |
| ++isec; |
| sections[j] = NULL; |
| if (segment->p_type == PT_LOAD) |
| section->segment_mark = true; |
| } |
| else if (suggested_lma == NULL) |
| suggested_lma = output_section; |
| } |
| |
| /* PR 23932. A corrupt input file may contain sections that cannot |
| be assigned to any segment - because for example they have a |
| negative size - or segments that do not contain any sections. |
| But there are also valid reasons why a segment can be empty. |
| So allow a count of zero. */ |
| |
| /* Add the current segment to the list of built segments. */ |
| *pointer_to_map = map; |
| pointer_to_map = &map->next; |
| |
| if (isec < section_count) |
| { |
| /* We still have not allocated all of the sections to |
| segments. Create a new segment here, initialise it |
| and carry on looping. */ |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += section_count * sizeof (asection *); |
| map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); |
| if (map == NULL) |
| { |
| free (sections); |
| return false; |
| } |
| |
| /* Initialise the fields of the segment map. Set the physical |
| physical address to the LMA of the first section that has |
| not yet been assigned. */ |
| map->next = NULL; |
| map->p_type = segment->p_type; |
| map->p_flags = segment->p_flags; |
| map->p_flags_valid = 1; |
| map->p_paddr = suggested_lma->lma * opb; |
| map->p_paddr_valid = p_paddr_valid; |
| map->includes_filehdr = 0; |
| map->includes_phdrs = 0; |
| } |
| |
| continue; |
| sorry: |
| bfd_set_error (bfd_error_sorry); |
| free (sections); |
| return false; |
| } |
| while (isec < section_count); |
| |
| free (sections); |
| } |
| |
| elf_seg_map (obfd) = map_first; |
| |
| /* If we had to estimate the number of program headers that were |
| going to be needed, then check our estimate now and adjust |
| the offset if necessary. */ |
| if (phdr_adjust_seg != NULL) |
| { |
| unsigned int count; |
| |
| for (count = 0, map = map_first; map != NULL; map = map->next) |
| count++; |
| |
| if (count > phdr_adjust_num) |
| phdr_adjust_seg->p_paddr |
| -= (count - phdr_adjust_num) * iehdr->e_phentsize; |
| |
| for (map = map_first; map != NULL; map = map->next) |
| if (map->p_type == PT_PHDR) |
| { |
| bfd_vma adjust |
| = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0; |
| map->p_paddr = phdr_adjust_seg->p_paddr + adjust; |
| break; |
| } |
| } |
| |
| #undef SEGMENT_END |
| #undef SECTION_SIZE |
| #undef IS_CONTAINED_BY_VMA |
| #undef IS_CONTAINED_BY_LMA |
| #undef IS_NOTE |
| #undef IS_COREFILE_NOTE |
| #undef IS_SOLARIS_PT_INTERP |
| #undef IS_SECTION_IN_INPUT_SEGMENT |
| #undef INCLUDE_SECTION_IN_SEGMENT |
| #undef SEGMENT_AFTER_SEGMENT |
| #undef SEGMENT_OVERLAPS |
| return true; |
| } |
| |
| /* Copy ELF program header information. */ |
| |
| static bool |
| copy_elf_program_header (bfd *ibfd, bfd *obfd) |
| { |
| Elf_Internal_Ehdr *iehdr; |
| struct elf_segment_map *map; |
| struct elf_segment_map *map_first; |
| struct elf_segment_map **pointer_to_map; |
| Elf_Internal_Phdr *segment; |
| unsigned int i; |
| unsigned int num_segments; |
| bool phdr_included = false; |
| bool p_paddr_valid; |
| unsigned int opb = bfd_octets_per_byte (ibfd, NULL); |
| |
| iehdr = elf_elfheader (ibfd); |
| |
| map_first = NULL; |
| pointer_to_map = &map_first; |
| |
| /* If all the segment p_paddr fields are zero, don't set |
| map->p_paddr_valid. */ |
| p_paddr_valid = false; |
| num_segments = elf_elfheader (ibfd)->e_phnum; |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| if (segment->p_paddr != 0) |
| { |
| p_paddr_valid = true; |
| break; |
| } |
| |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| { |
| asection *section; |
| unsigned int section_count; |
| size_t amt; |
| Elf_Internal_Shdr *this_hdr; |
| asection *first_section = NULL; |
| asection *lowest_section; |
| |
| /* Compute how many sections are in this segment. */ |
| for (section = ibfd->sections, section_count = 0; |
| section != NULL; |
| section = section->next) |
| { |
| this_hdr = &(elf_section_data(section)->this_hdr); |
| if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) |
| { |
| if (first_section == NULL) |
| first_section = section; |
| section_count++; |
| } |
| } |
| |
| /* Allocate a segment map big enough to contain |
| all of the sections we have selected. */ |
| amt = sizeof (struct elf_segment_map) - sizeof (asection *); |
| amt += section_count * sizeof (asection *); |
| map = (struct elf_segment_map *) bfd_zalloc (obfd, amt); |
| if (map == NULL) |
| return false; |
| |
| /* Initialize the fields of the output segment map with the |
| input segment. */ |
| map->next = NULL; |
| map->p_type = segment->p_type; |
| map->p_flags = segment->p_flags; |
| map->p_flags_valid = 1; |
| map->p_paddr = segment->p_paddr; |
| map->p_paddr_valid = p_paddr_valid; |
| map->p_align = segment->p_align; |
| map->p_align_valid = 1; |
| map->p_vaddr_offset = 0; |
| |
| if (map->p_type == PT_GNU_RELRO |
| || map->p_type == PT_GNU_STACK) |
| { |
| /* The PT_GNU_RELRO segment may contain the first a few |
| bytes in the .got.plt section even if the whole .got.plt |
| section isn't in the PT_GNU_RELRO segment. We won't |
| change the size of the PT_GNU_RELRO segment. |
| Similarly, PT_GNU_STACK size is significant on uclinux |
| systems. */ |
| map->p_size = segment->p_memsz; |
| map->p_size_valid = 1; |
| } |
| |
| /* Determine if this segment contains the ELF file header |
| and if it contains the program headers themselves. */ |
| map->includes_filehdr = (segment->p_offset == 0 |
| && segment->p_filesz >= iehdr->e_ehsize); |
| |
| map->includes_phdrs = 0; |
| if (! phdr_included || segment->p_type != PT_LOAD) |
| { |
| map->includes_phdrs = |
| (segment->p_offset <= (bfd_vma) iehdr->e_phoff |
| && (segment->p_offset + segment->p_filesz |
| >= ((bfd_vma) iehdr->e_phoff |
| + iehdr->e_phnum * iehdr->e_phentsize))); |
| |
| if (segment->p_type == PT_LOAD && map->includes_phdrs) |
| phdr_included = true; |
| } |
| |
| lowest_section = NULL; |
| if (section_count != 0) |
| { |
| unsigned int isec = 0; |
| |
| for (section = first_section; |
| section != NULL; |
| section = section->next) |
| { |
| this_hdr = &(elf_section_data(section)->this_hdr); |
| if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) |
| { |
| map->sections[isec++] = section->output_section; |
| if ((section->flags & SEC_ALLOC) != 0) |
| { |
| bfd_vma seg_off; |
| |
| if (lowest_section == NULL |
| || section->lma < lowest_section->lma) |
| lowest_section = section; |
| |
| /* Section lmas are set up from PT_LOAD header |
| p_paddr in _bfd_elf_make_section_from_shdr. |
| If this header has a p_paddr that disagrees |
| with the section lma, flag the p_paddr as |
| invalid. */ |
| if ((section->flags & SEC_LOAD) != 0) |
| seg_off = this_hdr->sh_offset - segment->p_offset; |
| else |
| seg_off = this_hdr->sh_addr - segment->p_vaddr; |
| if (section->lma * opb - segment->p_paddr != seg_off) |
| map->p_paddr_valid = false; |
| } |
| if (isec == section_count) |
| break; |
| } |
| } |
| } |
| |
| if (section_count == 0) |
| map->p_vaddr_offset = segment->p_vaddr / opb; |
| else if (map->p_paddr_valid) |
| { |
| /* Account for padding before the first section in the segment. */ |
| bfd_vma hdr_size = 0; |
| if (map->includes_filehdr) |
| hdr_size = iehdr->e_ehsize; |
| if (map->includes_phdrs) |
| hdr_size += iehdr->e_phnum * iehdr->e_phentsize; |
| |
| map->p_vaddr_offset = ((map->p_paddr + hdr_size) / opb |
| - (lowest_section ? lowest_section->lma : 0)); |
| } |
| |
| map->count = section_count; |
| *pointer_to_map = map; |
| pointer_to_map = &map->next; |
| } |
| |
| elf_seg_map (obfd) = map_first; |
| return true; |
| } |
| |
| /* Copy private BFD data. This copies or rewrites ELF program header |
| information. */ |
| |
| static bool |
| copy_private_bfd_data (bfd *ibfd, bfd *obfd) |
| { |
| bfd_vma maxpagesize; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| if (elf_tdata (ibfd)->phdr == NULL) |
| return true; |
| |
| if (ibfd->xvec == obfd->xvec) |
| { |
| /* Check to see if any sections in the input BFD |
| covered by ELF program header have changed. */ |
| Elf_Internal_Phdr *segment; |
| asection *section, *osec; |
| unsigned int i, num_segments; |
| Elf_Internal_Shdr *this_hdr; |
| const struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (ibfd); |
| |
| /* Regenerate the segment map if p_paddr is set to 0. */ |
| if (bed->want_p_paddr_set_to_zero) |
| goto rewrite; |
| |
| /* Initialize the segment mark field. */ |
| for (section = obfd->sections; section != NULL; |
| section = section->next) |
| section->segment_mark = false; |
| |
| num_segments = elf_elfheader (ibfd)->e_phnum; |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| { |
| /* PR binutils/3535. The Solaris linker always sets the p_paddr |
| and p_memsz fields of special segments (DYNAMIC, INTERP) to 0 |
| which severly confuses things, so always regenerate the segment |
| map in this case. */ |
| if (segment->p_paddr == 0 |
| && segment->p_memsz == 0 |
| && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC)) |
| goto rewrite; |
| |
| for (section = ibfd->sections; |
| section != NULL; section = section->next) |
| { |
| /* We mark the output section so that we know it comes |
| from the input BFD. */ |
| osec = section->output_section; |
| if (osec) |
| osec->segment_mark = true; |
| |
| /* Check if this section is covered by the segment. */ |
| this_hdr = &(elf_section_data(section)->this_hdr); |
| if (ELF_SECTION_IN_SEGMENT (this_hdr, segment)) |
| { |
| /* FIXME: Check if its output section is changed or |
| removed. What else do we need to check? */ |
| if (osec == NULL |
| || section->flags != osec->flags |
| || section->lma != osec->lma |
| || section->vma != osec->vma |
| || section->size != osec->size |
| || section->rawsize != osec->rawsize |
| || section->alignment_power != osec->alignment_power) |
| goto rewrite; |
| } |
| } |
| } |
| |
| /* Check to see if any output section do not come from the |
| input BFD. */ |
| for (section = obfd->sections; section != NULL; |
| section = section->next) |
| { |
| if (!section->segment_mark) |
| goto rewrite; |
| else |
| section->segment_mark = false; |
| } |
| |
| return copy_elf_program_header (ibfd, obfd); |
| } |
| |
| rewrite: |
| maxpagesize = 0; |
| if (ibfd->xvec == obfd->xvec) |
| { |
| /* When rewriting program header, set the output maxpagesize to |
| the maximum alignment of input PT_LOAD segments. */ |
| Elf_Internal_Phdr *segment; |
| unsigned int i; |
| unsigned int num_segments = elf_elfheader (ibfd)->e_phnum; |
| |
| for (i = 0, segment = elf_tdata (ibfd)->phdr; |
| i < num_segments; |
| i++, segment++) |
| if (segment->p_type == PT_LOAD |
| && maxpagesize < segment->p_align) |
| { |
| /* PR 17512: file: f17299af. */ |
| if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2)) |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: warning: segment alignment of %#" |
| PRIx64 " is too large"), |
| ibfd, (uint64_t) segment->p_align); |
| else |
| maxpagesize = segment->p_align; |
| } |
| } |
| if (maxpagesize == 0) |
| maxpagesize = get_elf_backend_data (obfd)->maxpagesize; |
| |
| return rewrite_elf_program_header (ibfd, obfd, maxpagesize); |
| } |
| |
| /* Initialize private output section information from input section. */ |
| |
| bool |
| _bfd_elf_init_private_section_data (bfd *ibfd, |
| asection *isec, |
| bfd *obfd, |
| asection *osec, |
| struct bfd_link_info *link_info) |
| |
| { |
| Elf_Internal_Shdr *ihdr, *ohdr; |
| bool final_link = (link_info != NULL |
| && !bfd_link_relocatable (link_info)); |
| |
| if (ibfd->xvec->flavour != bfd_target_elf_flavour |
| || obfd->xvec->flavour != bfd_target_elf_flavour) |
| return true; |
| |
| BFD_ASSERT (elf_section_data (osec) != NULL); |
| |
| /* If this is a known ABI section, ELF section type and flags may |
| have been set up when OSEC was created. For normal sections we |
| allow the user to override the type and flags other than |
| SHF_MASKOS and SHF_MASKPROC. */ |
| if (elf_section_type (osec) == SHT_PROGBITS |
| || elf_section_type (osec) == SHT_NOTE |
| || elf_section_type (osec) == SHT_NOBITS) |
| elf_section_type (osec) = SHT_NULL; |
| /* For objcopy and relocatable link, copy the ELF section type from |
| the input file if the BFD section flags are the same. (If they |
| are different the user may be doing something like |
| "objcopy --set-section-flags .text=alloc,data".) For a final |
| link allow some flags that the linker clears to differ. */ |
| if (elf_section_type (osec) == SHT_NULL |
| && (osec->flags == isec->flags |
| || (final_link |
| && ((osec->flags ^ isec->flags) |
| & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0))) |
| elf_section_type (osec) = elf_section_type (isec); |
| |
| /* FIXME: Is this correct for all OS/PROC specific flags? */ |
| elf_section_flags (osec) = (elf_section_flags (isec) |
| & (SHF_MASKOS | SHF_MASKPROC)); |
| |
| /* Copy sh_info from input for mbind section. */ |
| if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0 |
| && elf_section_flags (isec) & SHF_GNU_MBIND) |
| elf_section_data (osec)->this_hdr.sh_info |
| = elf_section_data (isec)->this_hdr.sh_info; |
| |
| /* Set things up for objcopy and relocatable link. The output |
| SHT_GROUP section will have its elf_next_in_group pointing back |
| to the input group members. Ignore linker created group section. |
| See elfNN_ia64_object_p in elfxx-ia64.c. */ |
| if ((link_info == NULL |
| || !link_info->resolve_section_groups) |
| && (elf_sec_group (isec) == NULL |
| || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0)) |
| { |
| if (elf_section_flags (isec) & SHF_GROUP) |
| elf_section_flags (osec) |= SHF_GROUP; |
| elf_next_in_group (osec) = elf_next_in_group (isec); |
| elf_section_data (osec)->group = elf_section_data (isec)->group; |
| } |
| |
| /* If not decompress, preserve SHF_COMPRESSED. */ |
| if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0) |
| elf_section_flags (osec) |= (elf_section_flags (isec) |
| & SHF_COMPRESSED); |
| |
| ihdr = &elf_section_data (isec)->this_hdr; |
| |
| /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We |
| don't use the output section of the linked-to section since it |
| may be NULL at this point. */ |
| if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0) |
| { |
| ohdr = &elf_section_data (osec)->this_hdr; |
| ohdr->sh_flags |= SHF_LINK_ORDER; |
| elf_linked_to_section (osec) = elf_linked_to_section (isec); |
| } |
| |
| osec->use_rela_p = isec->use_rela_p; |
| |
| return true; |
| } |
| |
| /* Copy private section information. This copies over the entsize |
| field, and sometimes the info field. */ |
| |
| bool |
| _bfd_elf_copy_private_section_data (bfd *ibfd, |
| asection *isec, |
| bfd *obfd, |
| asection *osec) |
| { |
| Elf_Internal_Shdr *ihdr, *ohdr; |
| |
| if (ibfd->xvec->flavour != bfd_target_elf_flavour |
| || obfd->xvec->flavour != bfd_target_elf_flavour) |
| return true; |
| |
| ihdr = &elf_section_data (isec)->this_hdr; |
| ohdr = &elf_section_data (osec)->this_hdr; |
| |
| ohdr->sh_entsize = ihdr->sh_entsize; |
| |
| if (ihdr->sh_type == SHT_SYMTAB |
| || ihdr->sh_type == SHT_DYNSYM |
| || ihdr->sh_type == SHT_GNU_verneed |
| || ihdr->sh_type == SHT_GNU_verdef) |
| ohdr->sh_info = ihdr->sh_info; |
| |
| return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec, |
| NULL); |
| } |
| |
| /* Look at all the SHT_GROUP sections in IBFD, making any adjustments |
| necessary if we are removing either the SHT_GROUP section or any of |
| the group member sections. DISCARDED is the value that a section's |
| output_section has if the section will be discarded, NULL when this |
| function is called from objcopy, bfd_abs_section_ptr when called |
| from the linker. */ |
| |
| bool |
| _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded) |
| { |
| asection *isec; |
| |
| for (isec = ibfd->sections; isec != NULL; isec = isec->next) |
| if (elf_section_type (isec) == SHT_GROUP) |
| { |
| asection *first = elf_next_in_group (isec); |
| asection *s = first; |
| bfd_size_type removed = 0; |
| |
| while (s != NULL) |
| { |
| /* If this member section is being output but the |
| SHT_GROUP section is not, then clear the group info |
| set up by _bfd_elf_copy_private_section_data. */ |
| if (s->output_section != discarded |
| && isec->output_section == discarded) |
| { |
| elf_section_flags (s->output_section) &= ~SHF_GROUP; |
| elf_group_name (s->output_section) = NULL; |
| } |
| else |
| { |
| struct bfd_elf_section_data *elf_sec = elf_section_data (s); |
| if (s->output_section == discarded |
| && isec->output_section != discarded) |
| { |
| /* Conversely, if the member section is not being |
| output but the SHT_GROUP section is, then adjust |
| its size. */ |
| removed += 4; |
| if (elf_sec->rel.hdr != NULL |
| && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0) |
| removed += 4; |
| if (elf_sec->rela.hdr != NULL |
| && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0) |
| removed += 4; |
| } |
| else |
| { |
| /* Also adjust for zero-sized relocation member |
| section. */ |
| if (elf_sec->rel.hdr != NULL |
| && elf_sec->rel.hdr->sh_size == 0) |
| removed += 4; |
| if (elf_sec->rela.hdr != NULL |
| && elf_sec->rela.hdr->sh_size == 0) |
| removed += 4; |
| } |
| } |
| s = elf_next_in_group (s); |
| if (s == first) |
| break; |
| } |
| if (removed != 0) |
| { |
| if (discarded != NULL) |
| { |
| /* If we've been called for ld -r, then we need to |
| adjust the input section size. */ |
| if (isec->rawsize == 0) |
| isec->rawsize = isec->size; |
| isec->size = isec->rawsize - removed; |
| if (isec->size <= 4) |
| { |
| isec->size = 0; |
| isec->flags |= SEC_EXCLUDE; |
| } |
| } |
| else if (isec->output_section != NULL) |
| { |
| /* Adjust the output section size when called from |
| objcopy. */ |
| isec->output_section->size -= removed; |
| if (isec->output_section->size <= 4) |
| { |
| isec->output_section->size = 0; |
| isec->output_section->flags |= SEC_EXCLUDE; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| /* Copy private header information. */ |
| |
| bool |
| _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd) |
| { |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| /* Copy over private BFD data if it has not already been copied. |
| This must be done here, rather than in the copy_private_bfd_data |
| entry point, because the latter is called after the section |
| contents have been set, which means that the program headers have |
| already been worked out. */ |
| if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL) |
| { |
| if (! copy_private_bfd_data (ibfd, obfd)) |
| return false; |
| } |
| |
| return _bfd_elf_fixup_group_sections (ibfd, NULL); |
| } |
| |
| /* Copy private symbol information. If this symbol is in a section |
| which we did not map into a BFD section, try to map the section |
| index correctly. We use special macro definitions for the mapped |
| section indices; these definitions are interpreted by the |
| swap_out_syms function. */ |
| |
| #define MAP_ONESYMTAB (SHN_HIOS + 1) |
| #define MAP_DYNSYMTAB (SHN_HIOS + 2) |
| #define MAP_STRTAB (SHN_HIOS + 3) |
| #define MAP_SHSTRTAB (SHN_HIOS + 4) |
| #define MAP_SYM_SHNDX (SHN_HIOS + 5) |
| |
| bool |
| _bfd_elf_copy_private_symbol_data (bfd *ibfd, |
| asymbol *isymarg, |
| bfd *obfd, |
| asymbol *osymarg) |
| { |
| elf_symbol_type *isym, *osym; |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return true; |
| |
| isym = elf_symbol_from (isymarg); |
| osym = elf_symbol_from (osymarg); |
| |
| if (isym != NULL |
| && isym->internal_elf_sym.st_shndx != 0 |
| && osym != NULL |
| && bfd_is_abs_section (isym->symbol.section)) |
| { |
| unsigned int shndx; |
| |
| shndx = isym->internal_elf_sym.st_shndx; |
| if (shndx == elf_onesymtab (ibfd)) |
| shndx = MAP_ONESYMTAB; |
| else if (shndx == elf_dynsymtab (ibfd)) |
| shndx = MAP_DYNSYMTAB; |
| else if (shndx == elf_strtab_sec (ibfd)) |
| shndx = MAP_STRTAB; |
| else if (shndx == elf_shstrtab_sec (ibfd)) |
| shndx = MAP_SHSTRTAB; |
| else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd))) |
| shndx = MAP_SYM_SHNDX; |
| osym->internal_elf_sym.st_shndx = shndx; |
| } |
| |
| return true; |
| } |
| |
| /* Swap out the symbols. */ |
| |
| static bool |
| swap_out_syms (bfd *abfd, |
| struct elf_strtab_hash **sttp, |
| int relocatable_p, |
| struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed; |
| unsigned int symcount; |
| asymbol **syms; |
| struct elf_strtab_hash *stt; |
| Elf_Internal_Shdr *symtab_hdr; |
| Elf_Internal_Shdr *symtab_shndx_hdr; |
| Elf_Internal_Shdr *symstrtab_hdr; |
| struct elf_sym_strtab *symstrtab; |
| bfd_byte *outbound_syms; |
| bfd_byte *outbound_shndx; |
| unsigned long outbound_syms_index; |
| unsigned int idx; |
| unsigned int num_locals; |
| size_t amt; |
| bool name_local_sections; |
| |
| if (!elf_map_symbols (abfd, &num_locals)) |
| return false; |
| |
| /* Dump out the symtabs. */ |
| stt = _bfd_elf_strtab_init (); |
| if (stt == NULL) |
| return false; |
| |
| bed = get_elf_backend_data (abfd); |
| symcount = bfd_get_symcount (abfd); |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| symtab_hdr->sh_type = SHT_SYMTAB; |
| symtab_hdr->sh_entsize = bed->s->sizeof_sym; |
| symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1); |
| symtab_hdr->sh_info = num_locals + 1; |
| symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; |
| |
| symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; |
| symstrtab_hdr->sh_type = SHT_STRTAB; |
| |
| /* Allocate buffer to swap out the .strtab section. */ |
| if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt) |
| || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| _bfd_elf_strtab_free (stt); |
| return false; |
| } |
| |
| if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt) |
| || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL) |
| { |
| error_no_mem: |
| bfd_set_error (bfd_error_no_memory); |
| error_return: |
| free (symstrtab); |
| _bfd_elf_strtab_free (stt); |
| return false; |
| } |
| symtab_hdr->contents = outbound_syms; |
| outbound_syms_index = 0; |
| |
| outbound_shndx = NULL; |
| |
| if (elf_symtab_shndx_list (abfd)) |
| { |
| symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; |
| if (symtab_shndx_hdr->sh_name != 0) |
| { |
| if (_bfd_mul_overflow (symcount + 1, |
| sizeof (Elf_External_Sym_Shndx), &amt)) |
| goto error_no_mem; |
| outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt); |
| if (outbound_shndx == NULL) |
| goto error_return; |
| |
| symtab_shndx_hdr->contents = outbound_shndx; |
| symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; |
| symtab_shndx_hdr->sh_size = amt; |
| symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); |
| symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); |
| } |
| /* FIXME: What about any other headers in the list ? */ |
| } |
| |
| /* Now generate the data (for "contents"). */ |
| { |
| /* Fill in zeroth symbol and swap it out. */ |
| Elf_Internal_Sym sym; |
| sym.st_name = 0; |
| sym.st_value = 0; |
| sym.st_size = 0; |
| sym.st_info = 0; |
| sym.st_other = 0; |
| sym.st_shndx = SHN_UNDEF; |
| sym.st_target_internal = 0; |
| symstrtab[0].sym = sym; |
| symstrtab[0].dest_index = outbound_syms_index; |
| outbound_syms_index++; |
| } |
| |
| name_local_sections |
| = (bed->elf_backend_name_local_section_symbols |
| && bed->elf_backend_name_local_section_symbols (abfd)); |
| |
| syms = bfd_get_outsymbols (abfd); |
| for (idx = 0; idx < symcount;) |
| { |
| Elf_Internal_Sym sym; |
| bfd_vma value = syms[idx]->value; |
| elf_symbol_type *type_ptr; |
| flagword flags = syms[idx]->flags; |
| int type; |
| |
| if (!name_local_sections |
| && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM) |
| { |
| /* Local section symbols have no name. */ |
| sym.st_name = (unsigned long) -1; |
| } |
| else |
| { |
| /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize |
| to get the final offset for st_name. */ |
| sym.st_name |
| = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name, |
| false); |
| if (sym.st_name == (unsigned long) -1) |
| goto error_return; |
| } |
| |
| type_ptr = elf_symbol_from (syms[idx]); |
| |
| if ((flags & BSF_SECTION_SYM) == 0 |
| && bfd_is_com_section (syms[idx]->section)) |
| { |
| /* ELF common symbols put the alignment into the `value' field, |
| and the size into the `size' field. This is backwards from |
| how BFD handles it, so reverse it here. */ |
| sym.st_size = value; |
| if (type_ptr == NULL |
| || type_ptr->internal_elf_sym.st_value == 0) |
| sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value)); |
| else |
| sym.st_value = type_ptr->internal_elf_sym.st_value; |
| sym.st_shndx = _bfd_elf_section_from_bfd_section |
| (abfd, syms[idx]->section); |
| } |
| else |
| { |
| asection *sec = syms[idx]->section; |
| unsigned int shndx; |
| |
| if (sec->output_section) |
| { |
| value += sec->output_offset; |
| sec = sec->output_section; |
| } |
| |
| /* Don't add in the section vma for relocatable output. */ |
| if (! relocatable_p) |
| value += sec->vma; |
| sym.st_value = value; |
| sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0; |
| |
| if (bfd_is_abs_section (sec) |
| && type_ptr != NULL |
| && type_ptr->internal_elf_sym.st_shndx != 0) |
| { |
| /* This symbol is in a real ELF section which we did |
| not create as a BFD section. Undo the mapping done |
| by copy_private_symbol_data. */ |
| shndx = type_ptr->internal_elf_sym.st_shndx; |
| switch (shndx) |
| { |
| case MAP_ONESYMTAB: |
| shndx = elf_onesymtab (abfd); |
| break; |
| case MAP_DYNSYMTAB: |
| shndx = elf_dynsymtab (abfd); |
| break; |
| case MAP_STRTAB: |
| shndx = elf_strtab_sec (abfd); |
| break; |
| case MAP_SHSTRTAB: |
| shndx = elf_shstrtab_sec (abfd); |
| break; |
| case MAP_SYM_SHNDX: |
| if (elf_symtab_shndx_list (abfd)) |
| shndx = elf_symtab_shndx_list (abfd)->ndx; |
| break; |
| case SHN_COMMON: |
| case SHN_ABS: |
| shndx = SHN_ABS; |
| break; |
| default: |
| if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS) |
| { |
| if (bed->symbol_section_index) |
| shndx = bed->symbol_section_index (abfd, type_ptr); |
| /* Otherwise just leave the index alone. */ |
| } |
| else |
| { |
| if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE) |
| _bfd_error_handler (_("%pB: \ |
| Unable to handle section index %x in ELF symbol. Using ABS instead."), |
| abfd, shndx); |
| shndx = SHN_ABS; |
| } |
| break; |
| } |
| } |
| else |
| { |
| shndx = _bfd_elf_section_from_bfd_section (abfd, sec); |
| |
| if (shndx == SHN_BAD) |
| { |
| asection *sec2; |
| |
| /* Writing this would be a hell of a lot easier if |
| we had some decent documentation on bfd, and |
| knew what to expect of the library, and what to |
| demand of applications. For example, it |
| appears that `objcopy' might not set the |
| section of a symbol to be a section that is |
| actually in the output file. */ |
| sec2 = bfd_get_section_by_name (abfd, sec->name); |
| if (sec2 != NULL) |
| shndx = _bfd_elf_section_from_bfd_section (abfd, sec2); |
| if (shndx == SHN_BAD) |
| { |
| /* xgettext:c-format */ |
| _bfd_error_handler |
| (_("unable to find equivalent output section" |
| " for symbol '%s' from section '%s'"), |
| syms[idx]->name ? syms[idx]->name : "<Local sym>", |
| sec->name); |
| bfd_set_error (bfd_error_invalid_operation); |
| goto error_return; |
| } |
| } |
| } |
| |
| sym.st_shndx = shndx; |
| } |
| |
| if ((flags & BSF_THREAD_LOCAL) != 0) |
| type = STT_TLS; |
| else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0) |
| type = STT_GNU_IFUNC; |
| else if ((flags & BSF_FUNCTION) != 0) |
| type = STT_FUNC; |
| else if ((flags & BSF_OBJECT) != 0) |
| type = STT_OBJECT; |
| else if ((flags & BSF_RELC) != 0) |
| type = STT_RELC; |
| else if ((flags & BSF_SRELC) != 0) |
| type = STT_SRELC; |
| else |
| type = STT_NOTYPE; |
| |
| if (syms[idx]->section->flags & SEC_THREAD_LOCAL) |
| type = STT_TLS; |
| |
| /* Processor-specific types. */ |
| if (type_ptr != NULL |
| && bed->elf_backend_get_symbol_type) |
| type = ((*bed->elf_backend_get_symbol_type) |
| (&type_ptr->internal_elf_sym, type)); |
| |
| if (flags & BSF_SECTION_SYM) |
| { |
| if (flags & BSF_GLOBAL) |
| sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| else |
| sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); |
| } |
| else if (bfd_is_com_section (syms[idx]->section)) |
| { |
| if (type != STT_TLS) |
| { |
| if ((abfd->flags & BFD_CONVERT_ELF_COMMON)) |
| type = ((abfd->flags & BFD_USE_ELF_STT_COMMON) |
| ? STT_COMMON : STT_OBJECT); |
| else |
| type = ((flags & BSF_ELF_COMMON) != 0 |
| ? STT_COMMON : STT_OBJECT); |
| } |
| sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); |
| } |
| else if (bfd_is_und_section (syms[idx]->section)) |
| sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK) |
| ? STB_WEAK |
| : STB_GLOBAL), |
| type); |
| else if (flags & BSF_FILE) |
| sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); |
| else |
| { |
| int bind = STB_LOCAL; |
| |
| if (flags & BSF_LOCAL) |
| bind = STB_LOCAL; |
| else if (flags & BSF_GNU_UNIQUE) |
| bind = STB_GNU_UNIQUE; |
| else if (flags & BSF_WEAK) |
| bind = STB_WEAK; |
| else if (flags & BSF_GLOBAL) |
| bind = STB_GLOBAL; |
| |
| sym.st_info = ELF_ST_INFO (bind, type); |
| } |
| |
| if (type_ptr != NULL) |
| { |
| sym.st_other = type_ptr->internal_elf_sym.st_other; |
| sym.st_target_internal |
| = type_ptr->internal_elf_sym.st_target_internal; |
| } |
| else |
| { |
| sym.st_other = 0; |
| sym.st_target_internal = 0; |
| } |
| |
| idx++; |
| symstrtab[idx].sym = sym; |
| symstrtab[idx].dest_index = outbound_syms_index; |
| |
| outbound_syms_index++; |
| } |
| |
| /* Finalize the .strtab section. */ |
| _bfd_elf_strtab_finalize (stt); |
| |
| /* Swap out the .strtab section. */ |
| for (idx = 0; idx <= symcount; idx++) |
| { |
| struct elf_sym_strtab *elfsym = &symstrtab[idx]; |
| if (elfsym->sym.st_name == (unsigned long) -1) |
| elfsym->sym.st_name = 0; |
| else |
| elfsym->sym.st_name = _bfd_elf_strtab_offset (stt, |
| elfsym->sym.st_name); |
| if (info && info->callbacks->ctf_new_symbol) |
| info->callbacks->ctf_new_symbol (elfsym->dest_index, |
| &elfsym->sym); |
| |
| /* Inform the linker of the addition of this symbol. */ |
| |
| bed->s->swap_symbol_out (abfd, &elfsym->sym, |
| (outbound_syms |
| + (elfsym->dest_index |
| * bed->s->sizeof_sym)), |
| NPTR_ADD (outbound_shndx, |
| (elfsym->dest_index |
| * sizeof (Elf_External_Sym_Shndx)))); |
| } |
| free (symstrtab); |
| |
| *sttp = stt; |
| symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt); |
| symstrtab_hdr->sh_type = SHT_STRTAB; |
| symstrtab_hdr->sh_flags = bed->elf_strtab_flags; |
| symstrtab_hdr->sh_addr = 0; |
| symstrtab_hdr->sh_entsize = 0; |
| symstrtab_hdr->sh_link = 0; |
| symstrtab_hdr->sh_info = 0; |
| symstrtab_hdr->sh_addralign = 1; |
| |
| return true; |
| } |
| |
| /* Return the number of bytes required to hold the symtab vector. |
| |
| Note that we base it on the count plus 1, since we will null terminate |
| the vector allocated based on this size. However, the ELF symbol table |
| always has a dummy entry as symbol #0, so it ends up even. */ |
| |
| long |
| _bfd_elf_get_symtab_upper_bound (bfd *abfd) |
| { |
| bfd_size_type symcount; |
| long symtab_size; |
| Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr; |
| |
| symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
| if (symcount > LONG_MAX / sizeof (asymbol *)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return -1; |
| } |
| symtab_size = symcount * (sizeof (asymbol *)); |
| if (symcount == 0) |
| symtab_size = sizeof (asymbol *); |
| else if (!bfd_write_p (abfd)) |
| { |
| ufile_ptr filesize = bfd_get_file_size (abfd); |
| |
| if (filesize != 0 && (unsigned long) symtab_size > filesize) |
| { |
| bfd_set_error (bfd_error_file_truncated); |
| return -1; |
| } |
| } |
| |
| return symtab_size; |
| } |
| |
| long |
| _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd) |
| { |
| bfd_size_type symcount; |
| long symtab_size; |
| Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr; |
| |
| if (elf_dynsymtab (abfd) == 0) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return -1; |
| } |
| |
| symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; |
| if (symcount > LONG_MAX / sizeof (asymbol *)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return -1; |
| } |
| symtab_size = symcount * (sizeof (asymbol *)); |
| if (symcount == 0) |
| symtab_size = sizeof (asymbol *); |
| else if (!bfd_write_p (abfd)) |
| { |
| ufile_ptr filesize = bfd_get_file_size (abfd); |
| |
| if (filesize != 0 && (unsigned long) symtab_size > filesize) |
| { |
| bfd_set_error (bfd_error_file_truncated); |
| return -1; |
| } |
| } |
| |
| return symtab_size; |
| } |
| |
| long |
| _bfd_elf_get_reloc_upper_bound (bfd *abfd, sec_ptr asect) |
| { |
| if (asect->reloc_count != 0 && !bfd_write_p (abfd)) |
| { |
| /* Sanity check reloc section size. */ |
| struct bfd_elf_section_data *d = elf_section_data (asect); |
| Elf_Internal_Shdr *rel_hdr = &d->this_hdr; |
| bfd_size_type ext_rel_size = rel_hdr->sh_size; |
| ufile_ptr filesize = bfd_get_file_size (abfd); |
| |
| if (filesize != 0 && ext_rel_size > filesize) |
| { |
| bfd_set_error (bfd_error_file_truncated); |
| return -1; |
| } |
| } |
| |
| #if SIZEOF_LONG == SIZEOF_INT |
| if (asect->reloc_count >= LONG_MAX / sizeof (arelent *)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return -1; |
| } |
| #endif |
| return (asect->reloc_count + 1L) * sizeof (arelent *); |
| } |
| |
| /* Canonicalize the relocs. */ |
| |
| long |
| _bfd_elf_canonicalize_reloc (bfd *abfd, |
| sec_ptr section, |
| arelent **relptr, |
| asymbol **symbols) |
| { |
| arelent *tblptr; |
| unsigned int i; |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| if (! bed->s->slurp_reloc_table (abfd, section, symbols, false)) |
| return -1; |
| |
| tblptr = section->relocation; |
| for (i = 0; i < section->reloc_count; i++) |
| *relptr++ = tblptr++; |
| |
| *relptr = NULL; |
| |
| return section->reloc_count; |
| } |
| |
| long |
| _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| long symcount = bed->s->slurp_symbol_table (abfd, allocation, false); |
| |
| if (symcount >= 0) |
| abfd->symcount = symcount; |
| return symcount; |
| } |
| |
| long |
| _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd, |
| asymbol **allocation) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| long symcount = bed->s->slurp_symbol_table (abfd, allocation, true); |
| |
| if (symcount >= 0) |
| abfd->dynsymcount = symcount; |
| return symcount; |
| } |
| |
| /* Return the size required for the dynamic reloc entries. Any loadable |
| section that was actually installed in the BFD, and has type SHT_REL |
| or SHT_RELA, and uses the dynamic symbol table, is considered to be a |
| dynamic reloc section. */ |
| |
| long |
| _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd) |
| { |
| bfd_size_type count, ext_rel_size; |
| asection *s; |
| |
| if (elf_dynsymtab (abfd) == 0) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return -1; |
| } |
| |
| count = 1; |
| ext_rel_size = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) |
| && (elf_section_data (s)->this_hdr.sh_type == SHT_REL |
| || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) |
| { |
| ext_rel_size += s->size; |
| if (ext_rel_size < s->size) |
| { |
| bfd_set_error (bfd_error_file_truncated); |
| return -1; |
| } |
| count += s->size / elf_section_data (s)->this_hdr.sh_entsize; |
| if (count > LONG_MAX / sizeof (arelent *)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| return -1; |
| } |
| } |
| if (count > 1 && !bfd_write_p (abfd)) |
| { |
| /* Sanity check reloc section sizes. */ |
| ufile_ptr filesize = bfd_get_file_size (abfd); |
| if (filesize != 0 && ext_rel_size > filesize) |
| { |
| bfd_set_error (bfd_error_file_truncated); |
| return -1; |
| } |
| } |
| return count * sizeof (arelent *); |
| } |
| |
| /* Canonicalize the dynamic relocation entries. Note that we return the |
| dynamic relocations as a single block, although they are actually |
| associated with particular sections; the interface, which was |
| designed for SunOS style shared libraries, expects that there is only |
| one set of dynamic relocs. Any loadable section that was actually |
| installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the |
| dynamic symbol table, is considered to be a dynamic reloc section. */ |
| |
| long |
| _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd, |
| arelent **storage, |
| asymbol **syms) |
| { |
| bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); |
| asection *s; |
| long ret; |
| |
| if (elf_dynsymtab (abfd) == 0) |
| { |
| bfd_set_error (bfd_error_invalid_operation); |
| return -1; |
| } |
| |
| slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
| ret = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) |
| && (elf_section_data (s)->this_hdr.sh_type == SHT_REL |
| || elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) |
| { |
| arelent *p; |
| long count, i; |
| |
| if (! (*slurp_relocs) (abfd, s, syms, true)) |
| return -1; |
| count = s->size / elf_section_data (s)->this_hdr.sh_entsize; |
| p = s->relocation; |
| for (i = 0; i < count; i++) |
| *storage++ = p++; |
| ret += count; |
| } |
| } |
| |
| *storage = NULL; |
| |
| return ret; |
| } |
| |
| /* Read in the version information. */ |
| |
| bool |
| _bfd_elf_slurp_version_tables (bfd *abfd, bool default_imported_symver) |
| { |
| bfd_byte *contents = NULL; |
| unsigned int freeidx = 0; |
| size_t amt; |
| |
| if (elf_dynverref (abfd) != 0) |
| { |
| Elf_Internal_Shdr *hdr; |
| Elf_External_Verneed *everneed; |
| Elf_Internal_Verneed *iverneed; |
| unsigned int i; |
| bfd_byte *contents_end; |
| |
| hdr = &elf_tdata (abfd)->dynverref_hdr; |
| |
| if (hdr->sh_info == 0 |
| || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed)) |
| { |
| error_return_bad_verref: |
| _bfd_error_handler |
| (_("%pB: .gnu.version_r invalid entry"), abfd); |
| bfd_set_error (bfd_error_bad_value); |
| error_return_verref: |
| elf_tdata (abfd)->verref = NULL; |
| elf_tdata (abfd)->cverrefs = 0; |
| goto error_return; |
| } |
| |
| if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0) |
| goto error_return_verref; |
| contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size); |
| if (contents == NULL) |
| goto error_return_verref; |
| |
| if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return_verref; |
| } |
| elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt); |
| if (elf_tdata (abfd)->verref == NULL) |
| goto error_return_verref; |
| |
| BFD_ASSERT (sizeof (Elf_External_Verneed) |
| == sizeof (Elf_External_Vernaux)); |
| contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed); |
| everneed = (Elf_External_Verneed *) contents; |
| iverneed = elf_tdata (abfd)->verref; |
| for (i = 0; i < hdr->sh_info; i++, iverneed++) |
| { |
| Elf_External_Vernaux *evernaux; |
| Elf_Internal_Vernaux *ivernaux; |
| unsigned int j; |
| |
| _bfd_elf_swap_verneed_in (abfd, everneed, iverneed); |
| |
| iverneed->vn_bfd = abfd; |
| |
| iverneed->vn_filename = |
| bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| iverneed->vn_file); |
| if (iverneed->vn_filename == NULL) |
| goto error_return_bad_verref; |
| |
| if (iverneed->vn_cnt == 0) |
| iverneed->vn_auxptr = NULL; |
| else |
| { |
| if (_bfd_mul_overflow (iverneed->vn_cnt, |
| sizeof (Elf_Internal_Vernaux), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return_verref; |
| } |
| iverneed->vn_auxptr = (struct elf_internal_vernaux *) |
| bfd_alloc (abfd, amt); |
| if (iverneed->vn_auxptr == NULL) |
| goto error_return_verref; |
| } |
| |
| if (iverneed->vn_aux |
| > (size_t) (contents_end - (bfd_byte *) everneed)) |
| goto error_return_bad_verref; |
| |
| evernaux = ((Elf_External_Vernaux *) |
| ((bfd_byte *) everneed + iverneed->vn_aux)); |
| ivernaux = iverneed->vn_auxptr; |
| for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++) |
| { |
| _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux); |
| |
| ivernaux->vna_nodename = |
| bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| ivernaux->vna_name); |
| if (ivernaux->vna_nodename == NULL) |
| goto error_return_bad_verref; |
| |
| if (ivernaux->vna_other > freeidx) |
| freeidx = ivernaux->vna_other; |
| |
| ivernaux->vna_nextptr = NULL; |
| if (ivernaux->vna_next == 0) |
| { |
| iverneed->vn_cnt = j + 1; |
| break; |
| } |
| if (j + 1 < iverneed->vn_cnt) |
| ivernaux->vna_nextptr = ivernaux + 1; |
| |
| if (ivernaux->vna_next |
| > (size_t) (contents_end - (bfd_byte *) evernaux)) |
| goto error_return_bad_verref; |
| |
| evernaux = ((Elf_External_Vernaux *) |
| ((bfd_byte *) evernaux + ivernaux->vna_next)); |
| } |
| |
| iverneed->vn_nextref = NULL; |
| if (iverneed->vn_next == 0) |
| break; |
| if (i + 1 < hdr->sh_info) |
| iverneed->vn_nextref = iverneed + 1; |
| |
| if (iverneed->vn_next |
| > (size_t) (contents_end - (bfd_byte *) everneed)) |
| goto error_return_bad_verref; |
| |
| everneed = ((Elf_External_Verneed *) |
| ((bfd_byte *) everneed + iverneed->vn_next)); |
| } |
| elf_tdata (abfd)->cverrefs = i; |
| |
| free (contents); |
| contents = NULL; |
| } |
| |
| if (elf_dynverdef (abfd) != 0) |
| { |
| Elf_Internal_Shdr *hdr; |
| Elf_External_Verdef *everdef; |
| Elf_Internal_Verdef *iverdef; |
| Elf_Internal_Verdef *iverdefarr; |
| Elf_Internal_Verdef iverdefmem; |
| unsigned int i; |
| unsigned int maxidx; |
| bfd_byte *contents_end_def, *contents_end_aux; |
| |
| hdr = &elf_tdata (abfd)->dynverdef_hdr; |
| |
| if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef)) |
| { |
| error_return_bad_verdef: |
| _bfd_error_handler |
| (_("%pB: .gnu.version_d invalid entry"), abfd); |
| bfd_set_error (bfd_error_bad_value); |
| error_return_verdef: |
| elf_tdata (abfd)->verdef = NULL; |
| elf_tdata (abfd)->cverdefs = 0; |
| goto error_return; |
| } |
| |
| if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0) |
| goto error_return_verdef; |
| contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size); |
| if (contents == NULL) |
| goto error_return_verdef; |
| |
| BFD_ASSERT (sizeof (Elf_External_Verdef) |
| >= sizeof (Elf_External_Verdaux)); |
| contents_end_def = contents + hdr->sh_size |
| - sizeof (Elf_External_Verdef); |
| contents_end_aux = contents + hdr->sh_size |
| - sizeof (Elf_External_Verdaux); |
| |
| /* We know the number of entries in the section but not the maximum |
| index. Therefore we have to run through all entries and find |
| the maximum. */ |
| everdef = (Elf_External_Verdef *) contents; |
| maxidx = 0; |
| for (i = 0; i < hdr->sh_info; ++i) |
| { |
| _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); |
| |
| if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0) |
| goto error_return_bad_verdef; |
| if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx) |
| maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION); |
| |
| if (iverdefmem.vd_next == 0) |
| break; |
| |
| if (iverdefmem.vd_next |
| > (size_t) (contents_end_def - (bfd_byte *) everdef)) |
| goto error_return_bad_verdef; |
| |
| everdef = ((Elf_External_Verdef *) |
| ((bfd_byte *) everdef + iverdefmem.vd_next)); |
| } |
| |
| if (default_imported_symver) |
| { |
| if (freeidx > maxidx) |
| maxidx = ++freeidx; |
| else |
| freeidx = ++maxidx; |
| } |
| if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return_verdef; |
| } |
| elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt); |
| if (elf_tdata (abfd)->verdef == NULL) |
| goto error_return_verdef; |
| |
| elf_tdata (abfd)->cverdefs = maxidx; |
| |
| everdef = (Elf_External_Verdef *) contents; |
| iverdefarr = elf_tdata (abfd)->verdef; |
| for (i = 0; i < hdr->sh_info; i++) |
| { |
| Elf_External_Verdaux *everdaux; |
| Elf_Internal_Verdaux *iverdaux; |
| unsigned int j; |
| |
| _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem); |
| |
| if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0) |
| goto error_return_bad_verdef; |
| |
| iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1]; |
| memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd)); |
| |
| iverdef->vd_bfd = abfd; |
| |
| if (iverdef->vd_cnt == 0) |
| iverdef->vd_auxptr = NULL; |
| else |
| { |
| if (_bfd_mul_overflow (iverdef->vd_cnt, |
| sizeof (Elf_Internal_Verdaux), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return_verdef; |
| } |
| iverdef->vd_auxptr = (struct elf_internal_verdaux *) |
| bfd_alloc (abfd, amt); |
| if (iverdef->vd_auxptr == NULL) |
| goto error_return_verdef; |
| } |
| |
| if (iverdef->vd_aux |
| > (size_t) (contents_end_aux - (bfd_byte *) everdef)) |
| goto error_return_bad_verdef; |
| |
| everdaux = ((Elf_External_Verdaux *) |
| ((bfd_byte *) everdef + iverdef->vd_aux)); |
| iverdaux = iverdef->vd_auxptr; |
| for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++) |
| { |
| _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux); |
| |
| iverdaux->vda_nodename = |
| bfd_elf_string_from_elf_section (abfd, hdr->sh_link, |
| iverdaux->vda_name); |
| if (iverdaux->vda_nodename == NULL) |
| goto error_return_bad_verdef; |
| |
| iverdaux->vda_nextptr = NULL; |
| if (iverdaux->vda_next == 0) |
| { |
| iverdef->vd_cnt = j + 1; |
| break; |
| } |
| if (j + 1 < iverdef->vd_cnt) |
| iverdaux->vda_nextptr = iverdaux + 1; |
| |
| if (iverdaux->vda_next |
| > (size_t) (contents_end_aux - (bfd_byte *) everdaux)) |
| goto error_return_bad_verdef; |
| |
| everdaux = ((Elf_External_Verdaux *) |
| ((bfd_byte *) everdaux + iverdaux->vda_next)); |
| } |
| |
| iverdef->vd_nodename = NULL; |
| if (iverdef->vd_cnt) |
| iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename; |
| |
| iverdef->vd_nextdef = NULL; |
| if (iverdef->vd_next == 0) |
| break; |
| if ((size_t) (iverdef - iverdefarr) + 1 < maxidx) |
| iverdef->vd_nextdef = iverdef + 1; |
| |
| everdef = ((Elf_External_Verdef *) |
| ((bfd_byte *) everdef + iverdef->vd_next)); |
| } |
| |
| free (contents); |
| contents = NULL; |
| } |
| else if (default_imported_symver) |
| { |
| if (freeidx < 3) |
| freeidx = 3; |
| else |
| freeidx++; |
| |
| if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt)) |
| { |
| bfd_set_error (bfd_error_file_too_big); |
| goto error_return; |
| } |
| elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt); |
| if (elf_tdata (abfd)->verdef == NULL) |
| goto error_return; |
| |
| elf_tdata (abfd)->cverdefs = freeidx; |
| } |
| |
| /* Create a default version based on the soname. */ |
| if (default_imported_symver) |
| { |
| Elf_Internal_Verdef *iverdef; |
| Elf_Internal_Verdaux *iverdaux; |
| |
| iverdef = &elf_tdata (abfd)->verdef[freeidx - 1]; |
| |
| iverdef->vd_version = VER_DEF_CURRENT; |
| iverdef->vd_flags = 0; |
| iverdef->vd_ndx = freeidx; |
| iverdef->vd_cnt = 1; |
| |
| iverdef->vd_bfd = abfd; |
| |
| iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd); |
| if (iverdef->vd_nodename == NULL) |
| goto error_return_verdef; |
| iverdef->vd_nextdef = NULL; |
| iverdef->vd_auxptr = ((struct elf_internal_verdaux *) |
| bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux))); |
| if (iverdef->vd_auxptr == NULL) |
| goto error_return_verdef; |
| |
| iverdaux = iverdef->vd_auxptr; |
| iverdaux->vda_nodename = iverdef->vd_nodename; |
| } |
| |
| return true; |
| |
| error_return: |
| free (contents); |
| return false; |
| } |
| |
| asymbol * |
| _bfd_elf_make_empty_symbol (bfd *abfd) |
| { |
| elf_symbol_type *newsym; |
| |
| newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym)); |
| if (!newsym) |
| return NULL; |
| newsym->symbol.the_bfd = abfd; |
| return &newsym->symbol; |
| } |
| |
| void |
| _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, |
| asymbol *symbol, |
| symbol_info *ret) |
| { |
| bfd_symbol_info (symbol, ret); |
| } |
| |
| /* Return whether a symbol name implies a local symbol. Most targets |
| use this function for the is_local_label_name entry point, but some |
| override it. */ |
| |
| bool |
| _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, |
| const char *name) |
| { |
| /* Normal local symbols start with ``.L''. */ |
| if (name[0] == '.' && name[1] == 'L') |
| return true; |
| |
| /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate |
| DWARF debugging symbols starting with ``..''. */ |
| if (name[0] == '.' && name[1] == '.') |
| return true; |
| |
| /* gcc will sometimes generate symbols beginning with ``_.L_'' when |
| emitting DWARF debugging output. I suspect this is actually a |
| small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call |
| ASM_GENERATE_INTERNAL_LABEL, and this causes the leading |
| underscore to be emitted on some ELF targets). For ease of use, |
| we treat such symbols as local. */ |
| if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_') |
| return true; |
| |
| /* Treat assembler generated fake symbols, dollar local labels and |
| forward-backward labels (aka local labels) as locals. |
| These labels have the form: |
| |
| L0^A.* (fake symbols) |
| |
| [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels) |
| |
| Versions which start with .L will have already been matched above, |
| so we only need to match the rest. */ |
| if (name[0] == 'L' && ISDIGIT (name[1])) |
| { |
| bool ret = false; |
| const char * p; |
| char c; |
| |
| for (p = name + 2; (c = *p); p++) |
| { |
| if (c == 1 || c == 2) |
| { |
| if (c == 1 && p == name + 2) |
| /* A fake symbol. */ |
| return true; |
| |
| /* FIXME: We are being paranoid here and treating symbols like |
| L0^Bfoo as if there were non-local, on the grounds that the |
| assembler will never generate them. But can any symbol |
| containing an ASCII value in the range 1-31 ever be anything |
| other than some kind of local ? */ |
| ret = true; |
| } |
| |
| if (! ISDIGIT (c)) |
| { |
| ret = false; |
| break; |
| } |
| } |
| return ret; |
| } |
| |
| return false; |
| } |
| |
| alent * |
| _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED, |
| asymbol *symbol ATTRIBUTE_UNUSED) |
| { |
| abort (); |
| return NULL; |
| } |
| |
| bool |
| _bfd_elf_set_arch_mach (bfd *abfd, |
| enum bfd_architecture arch, |
| unsigned long machine) |
| { |
| /* If this isn't the right architecture for this backend, and this |
| isn't the generic backend, fail. */ |
| if (arch != get_elf_backend_data (abfd)->arch |
| && arch != bfd_arch_unknown |
| && get_elf_backend_data (abfd)->arch != bfd_arch_unknown) |
| return false; |
| |
| return bfd_default_set_arch_mach (abfd, arch, machine); |
| } |
| |
| /* Find the nearest line to a particular section and offset, |
| for error reporting. */ |
| |
| bool |
| _bfd_elf_find_nearest_line (bfd *abfd, |
| asymbol **symbols, |
| asection *section, |
| bfd_vma offset, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr, |
| unsigned int *discriminator_ptr) |
| { |
| bool found; |
| |
| if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr, discriminator_ptr, |
| dwarf_debug_sections, |
| &elf_tdata (abfd)->dwarf2_find_line_info)) |
| return true; |
| |
| if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, |
| filename_ptr, functionname_ptr, line_ptr)) |
| { |
| if (!*functionname_ptr) |
| _bfd_elf_find_function (abfd, symbols, section, offset, |
| *filename_ptr ? NULL : filename_ptr, |
| functionname_ptr); |
| return true; |
| } |
| |
| if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, |
| &found, filename_ptr, |
| functionname_ptr, line_ptr, |
| &elf_tdata (abfd)->line_info)) |
| return false; |
| if (found && (*functionname_ptr || *line_ptr)) |
| return true; |
| |
| if (symbols == NULL) |
| return false; |
| |
| if (! _bfd_elf_find_function (abfd, symbols, section, offset, |
| filename_ptr, functionname_ptr)) |
| return false; |
| |
| *line_ptr = 0; |
| return true; |
| } |
| |
| /* Find the line for a symbol. */ |
| |
| bool |
| _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol, |
| const char **filename_ptr, unsigned int *line_ptr) |
| { |
| return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0, |
| filename_ptr, NULL, line_ptr, NULL, |
| dwarf_debug_sections, |
| &elf_tdata (abfd)->dwarf2_find_line_info); |
| } |
| |
| /* After a call to bfd_find_nearest_line, successive calls to |
| bfd_find_inliner_info can be used to get source information about |
| each level of function inlining that terminated at the address |
| passed to bfd_find_nearest_line. Currently this is only supported |
| for DWARF2 with appropriate DWARF3 extensions. */ |
| |
| bool |
| _bfd_elf_find_inliner_info (bfd *abfd, |
| const char **filename_ptr, |
| const char **functionname_ptr, |
| unsigned int *line_ptr) |
| { |
| bool found; |
| found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, |
| functionname_ptr, line_ptr, |
| & elf_tdata (abfd)->dwarf2_find_line_info); |
| return found; |
| } |
| |
| int |
| _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| int ret = bed->s->sizeof_ehdr; |
| |
| if (!bfd_link_relocatable (info)) |
| { |
| bfd_size_type phdr_size = elf_program_header_size (abfd); |
| |
| if (phdr_size == (bfd_size_type) -1) |
| { |
| struct elf_segment_map *m; |
| |
| phdr_size = 0; |
| for (m = elf_seg_map (abfd); m != NULL; m = m->next) |
| phdr_size += bed->s->sizeof_phdr; |
| |
| if (phdr_size == 0) |
| phdr_size = get_program_header_size (abfd, info); |
| } |
| |
| elf_program_header_size (abfd) = phdr_size; |
| ret += phdr_size; |
| } |
| |
| return ret; |
| } |
| |
| bool |
| _bfd_elf_set_section_contents (bfd *abfd, |
| sec_ptr section, |
| const void *location, |
| file_ptr offset, |
| bfd_size_type count) |
| { |
| Elf_Internal_Shdr *hdr; |
| file_ptr pos; |
| |
| if (! abfd->output_has_begun |
| && ! _bfd_elf_compute_section_file_positions (abfd, NULL)) |
| return false; |
| |
| if (!count) |
| return true; |
| |
| hdr = &elf_section_data (section)->this_hdr; |
| if (hdr->sh_offset == (file_ptr) -1) |
| { |
| unsigned char *contents; |
| |
| if (bfd_section_is_ctf (section)) |
| /* Nothing to do with this section: the contents are generated |
| later. */ |
| return true; |
| |
| if ((section->flags & SEC_ELF_COMPRESS) == 0) |
| { |
| _bfd_error_handler |
| (_("%pB:%pA: error: attempting to write into an unallocated compressed section"), |
| abfd, section); |
| bfd_set_error (bfd_error_invalid_operation); |
| return false; |
| } |
| |
| if ((offset + count) > hdr->sh_size) |
| { |
| _bfd_error_handler |
| (_("%pB:%pA: error: attempting to write over the end of the section"), |
| abfd, section); |
| |
| bfd_set_error (bfd_error_invalid_operation); |
| return false; |
| } |
| |
| contents = hdr->contents; |
| if (contents == NULL) |
| { |
| _bfd_error_handler |
| (_("%pB:%pA: error: attempting to write section into an empty buffer"), |
| abfd, section); |
| |
| bfd_set_error (bfd_error_invalid_operation); |
| return false; |
| } |
| |
| memcpy (contents + offset, location, count); |
| return true; |
| } |
| |
| pos = hdr->sh_offset + offset; |
| if (bfd_seek (abfd, pos, SEEK_SET) != 0 |
| || bfd_bwrite (location, count, abfd) != count) |
| return false; |
| |
| return true; |
| } |
| |
| bool |
| _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, |
| arelent *cache_ptr ATTRIBUTE_UNUSED, |
| Elf_Internal_Rela *dst ATTRIBUTE_UNUSED) |
| { |
| abort (); |
| return false; |
| } |
| |
| /* Try to convert a non-ELF reloc into an ELF one. */ |
| |
| bool |
| _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc) |
| { |
| /* Check whether we really have an ELF howto. */ |
| |
| if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec) |
| { |
| bfd_reloc_code_real_type code; |
| reloc_howto_type *howto; |
| |
| /* Alien reloc: Try to determine its type to replace it with an |
| equivalent ELF reloc. */ |
| |
| if (areloc->howto->pc_relative) |
| { |
| switch (areloc->howto->bitsize) |
| { |
| case 8: |
| code = BFD_RELOC_8_PCREL; |
| break; |
| case 12: |
| code = BFD_RELOC_12_PCREL; |
| break; |
| case 16: |
| code = BFD_RELOC_16_PCREL; |
| break; |
| case 24: |
| code = BFD_RELOC_24_PCREL; |
| break; |
| case 32: |
| code = BFD_RELOC_32_PCREL; |
| break; |
| case 64: |
| code = BFD_RELOC_64_PCREL; |
| break; |
| default: |
| goto fail; |
| } |
| |
| howto = bfd_reloc_type_lookup (abfd, code); |
| |
| if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset) |
| { |
| if (howto->pcrel_offset) |
| areloc->addend += areloc->address; |
| else |
| areloc->addend -= areloc->address; /* addend is unsigned!! */ |
| } |
| } |
| else |
| { |
| switch (areloc->howto->bitsize) |
| { |
| case 8: |
| code = BFD_RELOC_8; |
| break; |
| case 14: |
| code = BFD_RELOC_14; |
| break; |
| case 16: |
| code = BFD_RELOC_16; |
| break; |
| case 26: |
| code = BFD_RELOC_26; |
| break; |
| case 32: |
| code = BFD_RELOC_32; |
| break; |
| case 64: |
| code = BFD_RELOC_64; |
| break; |
| default: |
| goto fail; |
| } |
| |
| howto = bfd_reloc_type_lookup (abfd, code); |
| } |
| |
| if (howto) |
| areloc->howto = howto; |
| else |
| goto fail; |
| } |
| |
| return true; |
| |
| fail: |
| /* xgettext:c-format */ |
| _bfd_error_handler (_("%pB: %s unsupported"), |
| abfd, areloc->howto->name); |
| bfd_set_error (bfd_error_sorry); |
| return false; |
| } |
| |
| bool |
| _bfd_elf_close_and_cleanup (bfd *abfd) |
| { |
| struct elf_obj_tdata *tdata = elf_tdata (abfd); |
| if (tdata != NULL |
| && (bfd_get_format (abfd) == bfd_object |
| || bfd_get_format (abfd) == bfd_core)) |
| { |
| if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL) |
| _bfd_elf_strtab_free (elf_shstrtab (abfd)); |
| _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info); |
| } |
| |
| return _bfd_generic_close_and_cleanup (abfd); |
| } |
| |
| /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY |
| in the relocation's offset. Thus we cannot allow any sort of sanity |
| range-checking to interfere. There is nothing else to do in processing |
| this reloc. */ |
| |
| bfd_reloc_status_type |
| _bfd_elf_rel_vtable_reloc_fn |
| (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED, |
| struct bfd_symbol *symbol ATTRIBUTE_UNUSED, |
| void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED, |
| bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED) |
| { |
| return bfd_reloc_ok; |
| } |
| |
| /* Elf core file support. Much of this only works on native |
| toolchains, since we rely on knowing the |
| machine-dependent procfs structure in order to pick |
| out details about the corefile. */ |
| |
| #ifdef HAVE_SYS_PROCFS_H |
| # include <sys/procfs.h> |
| #endif |
| |
| /* Return a PID that identifies a "thread" for threaded cores, or the |
| PID of the main process for non-threaded cores. */ |
| |
| static int |
| elfcore_make_pid (bfd *abfd) |
| { |
| int pid; |
| |
| pid = elf_tdata (abfd)->core->lwpid; |
| if (pid == 0) |
| pid = elf_tdata (abfd)->core->pid; |
| |
| return pid; |
| } |
| |
| /* If there isn't a section called NAME, make one, using |
| data from SECT. Note, this function will generate a |
| reference to NAME, so you shouldn't deallocate or |
| overwrite it. */ |
| |
| static bool |
| elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect) |
| { |
| asection *sect2; |
| |
| if (bfd_get_section_by_name (abfd, name) != NULL) |
| return true; |
| |
| sect2 = bfd_make_section_with_flags (abfd, name, sect->flags); |
| if (sect2 == NULL) |
| return false; |
| |
| sect2->size = sect->size; |
| sect2->filepos = sect->filepos; |
| sect2->alignment_power = sect->alignment_power; |
| return true; |
| } |
| |
| /* Create a pseudosection containing SIZE bytes at FILEPOS. This |
| actually creates up to two pseudosections: |
| - For the single-threaded case, a section named NAME, unless |
| such a section already exists. |
| - For the multi-threaded case, a section named "NAME/PID", where |
| PID is elfcore_make_pid (abfd). |
| Both pseudosections have identical contents. */ |
| bool |
| _bfd_elfcore_make_pseudosection (bfd *abfd, |
| char *name, |
| size_t size, |
| ufile_ptr filepos) |
| { |
| char buf[100]; |
| char *threaded_name; |
| size_t len; |
| asection *sect; |
| |
| /* Build the section name. */ |
| |
| sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd)); |
| len = strlen (buf) + 1; |
| threaded_name = (char *) bfd_alloc (abfd, len); |
| if (threaded_name == NULL) |
| return false; |
| memcpy (threaded_name, buf, len); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, threaded_name, |
| SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| sect->size = size; |
| sect->filepos = filepos; |
| sect->alignment_power = 2; |
| |
| return elfcore_maybe_make_sect (abfd, name, sect); |
| } |
| |
| static bool |
| elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note, |
| size_t offs) |
| { |
| asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv", |
| SEC_HAS_CONTENTS); |
| |
| if (sect == NULL) |
| return false; |
| |
| sect->size = note->descsz - offs; |
| sect->filepos = note->descpos + offs; |
| sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; |
| |
| return true; |
| } |
| |
| /* prstatus_t exists on: |
| solaris 2.5+ |
| linux 2.[01] + glibc |
| unixware 4.2 |
| */ |
| |
| #if defined (HAVE_PRSTATUS_T) |
| |
| static bool |
| elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| size_t size; |
| int offset; |
| |
| if (note->descsz == sizeof (prstatus_t)) |
| { |
| prstatus_t prstat; |
| |
| size = sizeof (prstat.pr_reg); |
| offset = offsetof (prstatus_t, pr_reg); |
| memcpy (&prstat, note->descdata, sizeof (prstat)); |
| |
| /* Do not overwrite the core signal if it |
| has already been set by another thread. */ |
| if (elf_tdata (abfd)->core->signal == 0) |
| elf_tdata (abfd)->core->signal = prstat.pr_cursig; |
| if (elf_tdata (abfd)->core->pid == 0) |
| elf_tdata (abfd)->core->pid = prstat.pr_pid; |
| |
| /* pr_who exists on: |
| solaris 2.5+ |
| unixware 4.2 |
| pr_who doesn't exist on: |
| linux 2.[01] |
| */ |
| #if defined (HAVE_PRSTATUS_T_PR_WHO) |
| elf_tdata (abfd)->core->lwpid = prstat.pr_who; |
| #else |
| elf_tdata (abfd)->core->lwpid = prstat.pr_pid; |
| #endif |
| } |
| #if defined (HAVE_PRSTATUS32_T) |
| else if (note->descsz == sizeof (prstatus32_t)) |
| { |
| /* 64-bit host, 32-bit corefile */ |
| prstatus32_t prstat; |
| |
| size = sizeof (prstat.pr_reg); |
| offset = offsetof (prstatus32_t, pr_reg); |
| memcpy (&prstat, note->descdata, sizeof (prstat)); |
| |
| /* Do not overwrite the core signal if it |
| has already been set by another thread. */ |
| if (elf_tdata (abfd)->core->signal == 0) |
| elf_tdata (abfd)->core->signal = prstat.pr_cursig; |
| if (elf_tdata (abfd)->core->pid == 0) |
| elf_tdata (abfd)->core->pid = prstat.pr_pid; |
| |
| /* pr_who exists on: |
| solaris 2.5+ |
| unixware 4.2 |
| pr_who doesn't exist on: |
| linux 2.[01] |
| */ |
| #if defined (HAVE_PRSTATUS32_T_PR_WHO) |
| elf_tdata (abfd)->core->lwpid = prstat.pr_who; |
| #else |
| elf_tdata (abfd)->core->lwpid = prstat.pr_pid; |
| #endif |
| } |
| #endif /* HAVE_PRSTATUS32_T */ |
| else |
| { |
| /* Fail - we don't know how to handle any other |
| note size (ie. data object type). */ |
| return true; |
| } |
| |
| /* Make a ".reg/999" section and a ".reg" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| #endif /* defined (HAVE_PRSTATUS_T) */ |
| |
| /* Create a pseudosection containing the exact contents of NOTE. */ |
| static bool |
| elfcore_make_note_pseudosection (bfd *abfd, |
| char *name, |
| Elf_Internal_Note *note) |
| { |
| return _bfd_elfcore_make_pseudosection (abfd, name, |
| note->descsz, note->descpos); |
| } |
| |
| /* There isn't a consistent prfpregset_t across platforms, |
| but it doesn't matter, because we don't have to pick this |
| data structure apart. */ |
| |
| static bool |
| elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| } |
| |
| /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note |
| type of NT_PRXFPREG. Just include the whole note's contents |
| literally. */ |
| |
| static bool |
| elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); |
| } |
| |
| /* Linux dumps the Intel XSAVE extended state in a note named "LINUX" |
| with a note type of NT_X86_XSTATE. Just include the whole note's |
| contents literally. */ |
| |
| static bool |
| elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note); |
| } |
| |
| static bool |
| elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note); |
| } |
| |
| static bool |
| elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note); |
| } |
| |
| static bool |
| elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note); |
| } |
| |
| static bool |
| elfcore_grok_aarch_mte (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-aarch-mte", |
| note); |
| } |
| |
| static bool |
| elfcore_grok_arc_v2 (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-arc-v2", note); |
| } |
| |
| /* Convert NOTE into a bfd_section called ".reg-riscv-csr". Return TRUE if |
| successful otherwise, return FALSE. */ |
| |
| static bool |
| elfcore_grok_riscv_csr (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-riscv-csr", note); |
| } |
| |
| /* Convert NOTE into a bfd_section called ".gdb-tdesc". Return TRUE if |
| successful otherwise, return FALSE. */ |
| |
| static bool |
| elfcore_grok_gdb_tdesc (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".gdb-tdesc", note); |
| } |
| |
| static bool |
| elfcore_grok_loongarch_cpucfg (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-cpucfg", note); |
| } |
| |
| static bool |
| elfcore_grok_loongarch_lbt (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lbt", note); |
| } |
| |
| static bool |
| elfcore_grok_loongarch_lsx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lsx", note); |
| } |
| |
| static bool |
| elfcore_grok_loongarch_lasx (bfd *abfd, Elf_Internal_Note *note) |
| { |
| return elfcore_make_note_pseudosection (abfd, ".reg-loongarch-lasx", note); |
| } |
| |
| #if defined (HAVE_PRPSINFO_T) |
| typedef prpsinfo_t elfcore_psinfo_t; |
| #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */ |
| typedef prpsinfo32_t elfcore_psinfo32_t; |
| #endif |
| #endif |
| |
| #if defined (HAVE_PSINFO_T) |
| typedef psinfo_t elfcore_psinfo_t; |
| #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */ |
| typedef psinfo32_t elfcore_psinfo32_t; |
| #endif |
| #endif |
| |
| /* return a malloc'ed copy of a string at START which is at |
| most MAX bytes long, possibly without a terminating '\0'. |
| the copy will always have a terminating '\0'. */ |
| |
| char * |
| _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max) |
| { |
| char *dups; |
| char *end = (char *) memchr (start, '\0', max); |
| size_t len; |
| |
| if (end == NULL) |
| len = max; |
| else |
| len = end - start; |
| |
| dups = (char *) bfd_alloc (abfd, len + 1); |
| if (dups == NULL) |
| return NULL; |
| |
| memcpy (dups, start, len); |
| dups[len] = '\0'; |
| |
| return dups; |
| } |
| |
| #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) |
| static bool |
| elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->descsz == sizeof (elfcore_psinfo_t)) |
| { |
| elfcore_psinfo_t psinfo; |
| |
| memcpy (&psinfo, note->descdata, sizeof (psinfo)); |
| |
| #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID) |
| elf_tdata (abfd)->core->pid = psinfo.pr_pid; |
| #endif |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, |
| sizeof (psinfo.pr_fname)); |
| |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, |
| sizeof (psinfo.pr_psargs)); |
| } |
| #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) |
| else if (note->descsz == sizeof (elfcore_psinfo32_t)) |
| { |
| /* 64-bit host, 32-bit corefile */ |
| elfcore_psinfo32_t psinfo; |
| |
| memcpy (&psinfo, note->descdata, sizeof (psinfo)); |
| |
| #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID) |
| elf_tdata (abfd)->core->pid = psinfo.pr_pid; |
| #endif |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, psinfo.pr_fname, |
| sizeof (psinfo.pr_fname)); |
| |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs, |
| sizeof (psinfo.pr_psargs)); |
| } |
| #endif |
| |
| else |
| { |
| /* Fail - we don't know how to handle any other |
| note size (ie. data object type). */ |
| return true; |
| } |
| |
| /* Note that for some reason, a spurious space is tacked |
| onto the end of the args in some (at least one anyway) |
| implementations, so strip it off if it exists. */ |
| |
| { |
| char *command = elf_tdata (abfd)->core->command; |
| int n = strlen (command); |
| |
| if (0 < n && command[n - 1] == ' ') |
| command[n - 1] = '\0'; |
| } |
| |
| return true; |
| } |
| #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */ |
| |
| #if defined (HAVE_PSTATUS_T) |
| static bool |
| elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->descsz == sizeof (pstatus_t) |
| #if defined (HAVE_PXSTATUS_T) |
| || note->descsz == sizeof (pxstatus_t) |
| #endif |
| ) |
| { |
| pstatus_t pstat; |
| |
| memcpy (&pstat, note->descdata, sizeof (pstat)); |
| |
| elf_tdata (abfd)->core->pid = pstat.pr_pid; |
| } |
| #if defined (HAVE_PSTATUS32_T) |
| else if (note->descsz == sizeof (pstatus32_t)) |
| { |
| /* 64-bit host, 32-bit corefile */ |
| pstatus32_t pstat; |
| |
| memcpy (&pstat, note->descdata, sizeof (pstat)); |
| |
| elf_tdata (abfd)->core->pid = pstat.pr_pid; |
| } |
| #endif |
| /* Could grab some more details from the "representative" |
| lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an |
| NT_LWPSTATUS note, presumably. */ |
| |
| return true; |
| } |
| #endif /* defined (HAVE_PSTATUS_T) */ |
| |
| #if defined (HAVE_LWPSTATUS_T) |
| static bool |
| elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| lwpstatus_t lwpstat; |
| char buf[100]; |
| char *name; |
| size_t len; |
| asection *sect; |
| |
| if (note->descsz != sizeof (lwpstat) |
| #if defined (HAVE_LWPXSTATUS_T) |
| && note->descsz != sizeof (lwpxstatus_t) |
| #endif |
| ) |
| return true; |
| |
| memcpy (&lwpstat, note->descdata, sizeof (lwpstat)); |
| |
| elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid; |
| /* Do not overwrite the core signal if it has already been set by |
| another thread. */ |
| if (elf_tdata (abfd)->core->signal == 0) |
| elf_tdata (abfd)->core->signal = lwpstat.pr_cursig; |
| |
| /* Make a ".reg/999" section. */ |
| |
| sprintf (buf, ".reg/%d", elfcore_make_pid (abfd)); |
| len = strlen (buf) + 1; |
| name = bfd_alloc (abfd, len); |
| if (name == NULL) |
| return false; |
| memcpy (name, buf, len); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) |
| sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs); |
| sect->filepos = note->descpos |
| + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs); |
| #endif |
| |
| #if defined (HAVE_LWPSTATUS_T_PR_REG) |
| sect->size = sizeof (lwpstat.pr_reg); |
| sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg); |
| #endif |
| |
| sect->alignment_power = 2; |
| |
| if (!elfcore_maybe_make_sect (abfd, ".reg", sect)) |
| return false; |
| |
| /* Make a ".reg2/999" section */ |
| |
| sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd)); |
| len = strlen (buf) + 1; |
| name = bfd_alloc (abfd, len); |
| if (name == NULL) |
| return false; |
| memcpy (name, buf, len); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT) |
| sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs); |
| sect->filepos = note->descpos |
| + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs); |
| #endif |
| |
| #if defined (HAVE_LWPSTATUS_T_PR_FPREG) |
| sect->size = sizeof (lwpstat.pr_fpreg); |
| sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg); |
| #endif |
| |
| sect->alignment_power = 2; |
| |
| return elfcore_maybe_make_sect (abfd, ".reg2", sect); |
| } |
| #endif /* defined (HAVE_LWPSTATUS_T) */ |
| |
| /* These constants, and the structure offsets used below, are defined by |
| Cygwin's core_dump.h */ |
| #define NOTE_INFO_PROCESS 1 |
| #define NOTE_INFO_THREAD 2 |
| #define NOTE_INFO_MODULE 3 |
| #define NOTE_INFO_MODULE64 4 |
| |
| static bool |
| elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| char buf[30]; |
| char *name; |
| size_t len; |
| unsigned int name_size; |
| asection *sect; |
| unsigned int type; |
| int is_active_thread; |
| bfd_vma base_addr; |
| |
| if (note->descsz < 4) |
| return true; |
| |
| if (! startswith (note->namedata, "win32")) |
| return true; |
| |
| type = bfd_get_32 (abfd, note->descdata); |
| |
| struct |
| { |
| const char *type_name; |
| unsigned long min_size; |
| } size_check[] = |
| { |
| { "NOTE_INFO_PROCESS", 12 }, |
| { "NOTE_INFO_THREAD", 12 }, |
| { "NOTE_INFO_MODULE", 12 }, |
| { "NOTE_INFO_MODULE64", 16 }, |
| }; |
| |
| if (type == 0 || type > (sizeof(size_check)/sizeof(size_check[0]))) |
| return true; |
| |
| if (note->descsz < size_check[type - 1].min_size) |
| { |
| _bfd_error_handler (_("%pB: warning: win32pstatus %s of size %lu bytes is too small"), |
| abfd, size_check[type - 1].type_name, note->descsz); |
| return true; |
| } |
| |
| switch (type) |
| { |
| case NOTE_INFO_PROCESS: |
| /* FIXME: need to add ->core->command. */ |
| elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 4); |
| elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 8); |
| break; |
| |
| case NOTE_INFO_THREAD: |
| /* Make a ".reg/<tid>" section containing the Win32 API thread CONTEXT |
| structure. */ |
| /* thread_info.tid */ |
| sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 4)); |
| |
| len = strlen (buf) + 1; |
| name = (char *) bfd_alloc (abfd, len); |
| if (name == NULL) |
| return false; |
| |
| memcpy (name, buf, len); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| /* sizeof (thread_info.thread_context) */ |
| sect->size = note->descsz - 12; |
| /* offsetof (thread_info.thread_context) */ |
| sect->filepos = note->descpos + 12; |
| sect->alignment_power = 2; |
| |
| /* thread_info.is_active_thread */ |
| is_active_thread = bfd_get_32 (abfd, note->descdata + 8); |
| |
| if (is_active_thread) |
| if (! elfcore_maybe_make_sect (abfd, ".reg", sect)) |
| return false; |
| break; |
| |
| case NOTE_INFO_MODULE: |
| case NOTE_INFO_MODULE64: |
| /* Make a ".module/xxxxxxxx" section. */ |
| if (type == NOTE_INFO_MODULE) |
| { |
| /* module_info.base_address */ |
| base_addr = bfd_get_32 (abfd, note->descdata + 4); |
| sprintf (buf, ".module/%08lx", (unsigned long) base_addr); |
| /* module_info.module_name_size */ |
| name_size = bfd_get_32 (abfd, note->descdata + 8); |
| } |
| else /* NOTE_INFO_MODULE64 */ |
| { |
| /* module_info.base_address */ |
| base_addr = bfd_get_64 (abfd, note->descdata + 4); |
| sprintf (buf, ".module/%016lx", (unsigned long) base_addr); |
| /* module_info.module_name_size */ |
| name_size = bfd_get_32 (abfd, note->descdata + 12); |
| } |
| |
| len = strlen (buf) + 1; |
| name = (char *) bfd_alloc (abfd, len); |
| if (name == NULL) |
| return false; |
| |
| memcpy (name, buf, len); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| |
| if (sect == NULL) |
| return false; |
| |
| if (note->descsz < 12 + name_size) |
| { |
| _bfd_error_handler (_("%pB: win32pstatus NOTE_INFO_MODULE of size %lu is too small to contain a name of size %u"), |
| abfd, note->descsz, name_size); |
| return true; |
| } |
| |
| sect->size = note->descsz; |
| sect->filepos = note->descpos; |
| sect->alignment_power = 2; |
| break; |
| |
| default: |
| return true; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| switch (note->type) |
| { |
| default: |
| return true; |
| |
| case NT_PRSTATUS: |
| if (bed->elf_backend_grok_prstatus) |
| if ((*bed->elf_backend_grok_prstatus) (abfd, note)) |
| return true; |
| #if defined (HAVE_PRSTATUS_T) |
| return elfcore_grok_prstatus (abfd, note); |
| #else |
| return true; |
| #endif |
| |
| #if defined (HAVE_PSTATUS_T) |
| case NT_PSTATUS: |
| return elfcore_grok_pstatus (abfd, note); |
| #endif |
| |
| #if defined (HAVE_LWPSTATUS_T) |
| case NT_LWPSTATUS: |
| return elfcore_grok_lwpstatus (abfd, note); |
| #endif |
| |
| case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */ |
| return elfcore_grok_prfpreg (abfd, note); |
| |
| case NT_WIN32PSTATUS: |
| return elfcore_grok_win32pstatus (abfd, note); |
| |
| case NT_PRXFPREG: /* Linux SSE extension */ |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_prxfpreg (abfd, note); |
| else |
| return true; |
| |
| case NT_X86_XSTATE: /* Linux XSAVE extension */ |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_xstatereg (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_VMX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_vmx (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_VSX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_vsx (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TAR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tar (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_PPR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_ppr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_DSCR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_dscr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_EBB: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_ebb (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_PMU: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_pmu (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CGPR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cgpr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CFPR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cfpr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CVMX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cvmx (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CVSX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cvsx (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_SPR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_spr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CTAR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_ctar (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CPPR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cppr (abfd, note); |
| else |
| return true; |
| |
| case NT_PPC_TM_CDSCR: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_ppc_tm_cdscr (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_HIGH_GPRS: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_high_gprs (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_TIMER: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_timer (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_TODCMP: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_todcmp (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_TODPREG: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_todpreg (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_CTRS: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_ctrs (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_PREFIX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_prefix (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_LAST_BREAK: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_last_break (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_SYSTEM_CALL: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_system_call (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_TDB: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_tdb (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_VXRS_LOW: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_vxrs_low (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_VXRS_HIGH: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_vxrs_high (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_GS_CB: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_gs_cb (abfd, note); |
| else |
| return true; |
| |
| case NT_S390_GS_BC: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_s390_gs_bc (abfd, note); |
| else |
| return true; |
| |
| case NT_ARC_V2: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_arc_v2 (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_VFP: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_arm_vfp (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_TLS: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_tls (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_HW_BREAK: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_hw_break (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_HW_WATCH: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_hw_watch (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_SVE: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_sve (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_PAC_MASK: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_pauth (abfd, note); |
| else |
| return true; |
| |
| case NT_ARM_TAGGED_ADDR_CTRL: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_aarch_mte (abfd, note); |
| else |
| return true; |
| |
| case NT_GDB_TDESC: |
| if (note->namesz == 4 |
| && strcmp (note->namedata, "GDB") == 0) |
| return elfcore_grok_gdb_tdesc (abfd, note); |
| else |
| return true; |
| |
| case NT_RISCV_CSR: |
| if (note->namesz == 4 |
| && strcmp (note->namedata, "GDB") == 0) |
| return elfcore_grok_riscv_csr (abfd, note); |
| else |
| return true; |
| |
| case NT_LARCH_CPUCFG: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_loongarch_cpucfg (abfd, note); |
| else |
| return true; |
| |
| case NT_LARCH_LBT: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_loongarch_lbt (abfd, note); |
| else |
| return true; |
| |
| case NT_LARCH_LSX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_loongarch_lsx (abfd, note); |
| else |
| return true; |
| |
| case NT_LARCH_LASX: |
| if (note->namesz == 6 |
| && strcmp (note->namedata, "LINUX") == 0) |
| return elfcore_grok_loongarch_lasx (abfd, note); |
| else |
| return true; |
| |
| case NT_PRPSINFO: |
| case NT_PSINFO: |
| if (bed->elf_backend_grok_psinfo) |
| if ((*bed->elf_backend_grok_psinfo) (abfd, note)) |
| return true; |
| #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) |
| return elfcore_grok_psinfo (abfd, note); |
| #else |
| return true; |
| #endif |
| |
| case NT_AUXV: |
| return elfcore_make_auxv_note_section (abfd, note, 0); |
| |
| case NT_FILE: |
| return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file", |
| note); |
| |
| case NT_SIGINFO: |
| return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo", |
| note); |
| |
| } |
| } |
| |
| static bool |
| elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note) |
| { |
| struct bfd_build_id* build_id; |
| |
| if (note->descsz == 0) |
| return false; |
| |
| build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz); |
| if (build_id == NULL) |
| return false; |
| |
| build_id->size = note->descsz; |
| memcpy (build_id->data, note->descdata, note->descsz); |
| abfd->build_id = build_id; |
| |
| return true; |
| } |
| |
| static bool |
| elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->type) |
| { |
| default: |
| return true; |
| |
| case NT_GNU_PROPERTY_TYPE_0: |
| return _bfd_elf_parse_gnu_properties (abfd, note); |
| |
| case NT_GNU_BUILD_ID: |
| return elfobj_grok_gnu_build_id (abfd, note); |
| } |
| } |
| |
| static bool |
| elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note) |
| { |
| struct sdt_note *cur = |
| (struct sdt_note *) bfd_alloc (abfd, |
| sizeof (struct sdt_note) + note->descsz); |
| |
| cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head; |
| cur->size = (bfd_size_type) note->descsz; |
| memcpy (cur->data, note->descdata, note->descsz); |
| |
| elf_tdata (abfd)->sdt_note_head = cur; |
| |
| return true; |
| } |
| |
| static bool |
| elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| switch (note->type) |
| { |
| case NT_STAPSDT: |
| return elfobj_grok_stapsdt_note_1 (abfd, note); |
| |
| default: |
| return true; |
| } |
| } |
| |
| static bool |
| elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| size_t offset; |
| |
| switch (elf_elfheader (abfd)->e_ident[EI_CLASS]) |
| { |
| case ELFCLASS32: |
| if (note->descsz < 108) |
| return false; |
| break; |
| |
| case ELFCLASS64: |
| if (note->descsz < 120) |
| return false; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| /* Check for version 1 in pr_version. */ |
| if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) |
| return false; |
| |
| offset = 4; |
| |
| /* Skip over pr_psinfosz. */ |
| if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32) |
| offset += 4; |
| else |
| { |
| offset += 4; /* Padding before pr_psinfosz. */ |
| offset += 8; |
| } |
| |
| /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */ |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17); |
| offset += 17; |
| |
| /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */ |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81); |
| offset += 81; |
| |
| /* Padding before pr_pid. */ |
| offset += 2; |
| |
| /* The pr_pid field was added in version "1a". */ |
| if (note->descsz < offset + 4) |
| return true; |
| |
| elf_tdata (abfd)->core->pid |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); |
| |
| return true; |
| } |
| |
| static bool |
| elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note) |
| { |
| size_t offset; |
| size_t size; |
| size_t min_size; |
| |
| /* Compute offset of pr_getregsz, skipping over pr_statussz. |
| Also compute minimum size of this note. */ |
| switch (elf_elfheader (abfd)->e_ident[EI_CLASS]) |
| { |
| case ELFCLASS32: |
| offset = 4 + 4; |
| min_size = offset + (4 * 2) + 4 + 4 + 4; |
| break; |
| |
| case ELFCLASS64: |
| offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */ |
| min_size = offset + (8 * 2) + 4 + 4 + 4 + 4; |
| break; |
| |
| default: |
| return false; |
| } |
| |
| if (note->descsz < min_size) |
| return false; |
| |
| /* Check for version 1 in pr_version. */ |
| if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1) |
| return false; |
| |
| /* Extract size of pr_reg from pr_gregsetsz. */ |
| /* Skip over pr_gregsetsz and pr_fpregsetsz. */ |
| if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32) |
| { |
| size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); |
| offset += 4 * 2; |
| } |
| else |
| { |
| size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset); |
| offset += 8 * 2; |
| } |
| |
| /* Skip over pr_osreldate. */ |
| offset += 4; |
| |
| /* Read signal from pr_cursig. */ |
| if (elf_tdata (abfd)->core->signal == 0) |
| elf_tdata (abfd)->core->signal |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); |
| offset += 4; |
| |
| /* Read TID from pr_pid. */ |
| elf_tdata (abfd)->core->lwpid |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset); |
| offset += 4; |
| |
| /* Padding before pr_reg. */ |
| if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) |
| offset += 4; |
| |
| /* Make sure that there is enough data remaining in the note. */ |
| if ((note->descsz - offset) < size) |
| return false; |
| |
| /* Make a ".reg/999" section and a ".reg" section. */ |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", |
| size, note->descpos + offset); |
| } |
| |
| static bool |
| elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| switch (note->type) |
| { |
| case NT_PRSTATUS: |
| if (bed->elf_backend_grok_freebsd_prstatus) |
| if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note)) |
| return true; |
| return elfcore_grok_freebsd_prstatus (abfd, note); |
| |
| case NT_FPREGSET: |
| return elfcore_grok_prfpreg (abfd, note); |
| |
| case NT_PRPSINFO: |
| return elfcore_grok_freebsd_psinfo (abfd, note); |
| |
| case NT_FREEBSD_THRMISC: |
| if (note->namesz == 8) |
| return elfcore_make_note_pseudosection (abfd, ".thrmisc", note); |
| else |
| return true; |
| |
| case NT_FREEBSD_PROCSTAT_PROC: |
| return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc", |
| note); |
| |
| case NT_FREEBSD_PROCSTAT_FILES: |
| return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files", |
| note); |
| |
| case NT_FREEBSD_PROCSTAT_VMMAP: |
| return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap", |
| note); |
| |
| case NT_FREEBSD_PROCSTAT_AUXV: |
| return elfcore_make_auxv_note_section (abfd, note, 4); |
| |
| case NT_X86_XSTATE: |
| if (note->namesz == 8) |
| return elfcore_grok_xstatereg (abfd, note); |
| else |
| return true; |
| |
| case NT_FREEBSD_PTLWPINFO: |
| return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo", |
| note); |
| |
| case NT_ARM_VFP: |
| return elfcore_grok_arm_vfp (abfd, note); |
| |
| default: |
| return true; |
| } |
| } |
| |
| static bool |
| elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp) |
| { |
| char *cp; |
| |
| cp = strchr (note->namedata, '@'); |
| if (cp != NULL) |
| { |
| *lwpidp = atoi(cp + 1); |
| return true; |
| } |
| return false; |
| } |
| |
| static bool |
| elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->descsz <= 0x7c + 31) |
| return false; |
| |
| /* Signal number at offset 0x08. */ |
| elf_tdata (abfd)->core->signal |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); |
| |
| /* Process ID at offset 0x50. */ |
| elf_tdata (abfd)->core->pid |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50); |
| |
| /* Command name at 0x7c (max 32 bytes, including nul). */ |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31); |
| |
| return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo", |
| note); |
| } |
| |
| static bool |
| elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| int lwp; |
| |
| if (elfcore_netbsd_get_lwpid (note, &lwp)) |
| elf_tdata (abfd)->core->lwpid = lwp; |
| |
| switch (note->type) |
| { |
| case NT_NETBSDCORE_PROCINFO: |
| /* NetBSD-specific core "procinfo". Note that we expect to |
| find this note before any of the others, which is fine, |
| since the kernel writes this note out first when it |
| creates a core file. */ |
| return elfcore_grok_netbsd_procinfo (abfd, note); |
| case NT_NETBSDCORE_AUXV: |
| /* NetBSD-specific Elf Auxiliary Vector data. */ |
| return elfcore_make_auxv_note_section (abfd, note, 4); |
| case NT_NETBSDCORE_LWPSTATUS: |
| return elfcore_make_note_pseudosection (abfd, |
| ".note.netbsdcore.lwpstatus", |
| note); |
| default: |
| break; |
| } |
| |
| /* As of March 2020 there are no other machine-independent notes |
| defined for NetBSD core files. If the note type is less |
| than the start of the machine-dependent note types, we don't |
| understand it. */ |
| |
| if (note->type < NT_NETBSDCORE_FIRSTMACH) |
| return true; |
| |
| |
| switch (bfd_get_arch (abfd)) |
| { |
| /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and |
| PT_GETFPREGS == mach+2. */ |
| |
| case bfd_arch_aarch64: |
| case bfd_arch_alpha: |
| case bfd_arch_sparc: |
| switch (note->type) |
| { |
| case NT_NETBSDCORE_FIRSTMACH+0: |
| return elfcore_make_note_pseudosection (abfd, ".reg", note); |
| |
| case NT_NETBSDCORE_FIRSTMACH+2: |
| return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| |
| default: |
| return true; |
| } |
| |
| /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5. |
| There's also old PT___GETREGS40 == mach + 1 for old reg |
| structure which lacks GBR. */ |
| |
| case bfd_arch_sh: |
| switch (note->type) |
| { |
| case NT_NETBSDCORE_FIRSTMACH+3: |
| return elfcore_make_note_pseudosection (abfd, ".reg", note); |
| |
| case NT_NETBSDCORE_FIRSTMACH+5: |
| return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| |
| default: |
| return true; |
| } |
| |
| /* On all other arch's, PT_GETREGS == mach+1 and |
| PT_GETFPREGS == mach+3. */ |
| |
| default: |
| switch (note->type) |
| { |
| case NT_NETBSDCORE_FIRSTMACH+1: |
| return elfcore_make_note_pseudosection (abfd, ".reg", note); |
| |
| case NT_NETBSDCORE_FIRSTMACH+3: |
| return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| |
| default: |
| return true; |
| } |
| } |
| /* NOTREACHED */ |
| } |
| |
| static bool |
| elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->descsz <= 0x48 + 31) |
| return false; |
| |
| /* Signal number at offset 0x08. */ |
| elf_tdata (abfd)->core->signal |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08); |
| |
| /* Process ID at offset 0x20. */ |
| elf_tdata (abfd)->core->pid |
| = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20); |
| |
| /* Command name at 0x48 (max 32 bytes, including nul). */ |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31); |
| |
| return true; |
| } |
| |
| /* Processes Solaris's process status note. |
| sig_off ~ offsetof(prstatus_t, pr_cursig) |
| pid_off ~ offsetof(prstatus_t, pr_pid) |
| lwpid_off ~ offsetof(prstatus_t, pr_who) |
| gregset_size ~ sizeof(gregset_t) |
| gregset_offset ~ offsetof(prstatus_t, pr_reg) */ |
| |
| static bool |
| elfcore_grok_solaris_prstatus (bfd *abfd, Elf_Internal_Note* note, int sig_off, |
| int pid_off, int lwpid_off, size_t gregset_size, |
| size_t gregset_offset) |
| { |
| asection *sect = NULL; |
| elf_tdata (abfd)->core->signal |
| = bfd_get_16 (abfd, note->descdata + sig_off); |
| elf_tdata (abfd)->core->pid |
| = bfd_get_32 (abfd, note->descdata + pid_off); |
| elf_tdata (abfd)->core->lwpid |
| = bfd_get_32 (abfd, note->descdata + lwpid_off); |
| |
| sect = bfd_get_section_by_name (abfd, ".reg"); |
| if (sect != NULL) |
| sect->size = gregset_size; |
| |
| return _bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size, |
| note->descpos + gregset_offset); |
| } |
| |
| /* Gets program and arguments from a core. |
| prog_off ~ offsetof(prpsinfo | psinfo_t, pr_fname) |
| comm_off ~ offsetof(prpsinfo | psinfo_t, pr_psargs) */ |
| |
| static bool |
| elfcore_grok_solaris_info(bfd *abfd, Elf_Internal_Note* note, |
| int prog_off, int comm_off) |
| { |
| elf_tdata (abfd)->core->program |
| = _bfd_elfcore_strndup (abfd, note->descdata + prog_off, 16); |
| elf_tdata (abfd)->core->command |
| = _bfd_elfcore_strndup (abfd, note->descdata + comm_off, 80); |
| |
| return true; |
| } |
| |
| /* Processes Solaris's LWP status note. |
| gregset_size ~ sizeof(gregset_t) |
| gregset_off ~ offsetof(lwpstatus_t, pr_reg) |
| fpregset_size ~ sizeof(fpregset_t) |
| fpregset_off ~ offsetof(lwpstatus_t, pr_fpreg) */ |
| |
| static bool |
| elfcore_grok_solaris_lwpstatus (bfd *abfd, Elf_Internal_Note* note, |
| size_t gregset_size, int gregset_off, |
| size_t fpregset_size, int fpregset_off) |
| { |
| asection *sect = NULL; |
| char reg2_section_name[16] = { 0 }; |
| |
| (void) snprintf (reg2_section_name, 16, "%s/%i", ".reg2", |
| elf_tdata (abfd)->core->lwpid); |
| |
| /* offsetof(lwpstatus_t, pr_lwpid) */ |
| elf_tdata (abfd)->core->lwpid |
| = bfd_get_32 (abfd, note->descdata + 4); |
| /* offsetof(lwpstatus_t, pr_cursig) */ |
| elf_tdata (abfd)->core->signal |
| = bfd_get_16 (abfd, note->descdata + 12); |
| |
| sect = bfd_get_section_by_name (abfd, ".reg"); |
| if (sect != NULL) |
| sect->size = gregset_size; |
| else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg", gregset_size, |
| note->descpos + gregset_off)) |
| return false; |
| |
| sect = bfd_get_section_by_name (abfd, reg2_section_name); |
| if (sect != NULL) |
| { |
| sect->size = fpregset_size; |
| sect->filepos = note->descpos + fpregset_off; |
| sect->alignment_power = 2; |
| } |
| else if (!_bfd_elfcore_make_pseudosection (abfd, ".reg2", fpregset_size, |
| note->descpos + fpregset_off)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| elfcore_grok_solaris_note_impl (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note == NULL) |
| return false; |
| |
| /* core files are identified as 32- or 64-bit, SPARC or x86, |
| by the size of the descsz which matches the sizeof() |
| the type appropriate for that note type (e.g., prstatus_t for |
| SOLARIS_NT_PRSTATUS) for the corresponding architecture |
| on Solaris. The core file bitness may differ from the bitness of |
| gdb itself, so fixed values are used instead of sizeof(). |
| Appropriate fixed offsets are also used to obtain data from |
| the note. */ |
| |
| switch ((int) note->type) |
| { |
| case SOLARIS_NT_PRSTATUS: |
| switch (note->descsz) |
| { |
| case 508: /* sizeof(prstatus_t) SPARC 32-bit */ |
| return elfcore_grok_solaris_prstatus(abfd, note, |
| 136, 216, 308, 152, 356); |
| case 904: /* sizeof(prstatus_t) SPARC 64-bit */ |
| return elfcore_grok_solaris_prstatus(abfd, note, |
| 264, 360, 520, 304, 600); |
| case 432: /* sizeof(prstatus_t) Intel 32-bit */ |
| return elfcore_grok_solaris_prstatus(abfd, note, |
| 136, 216, 308, 76, 356); |
| case 824: /* sizeof(prstatus_t) Intel 64-bit */ |
| return elfcore_grok_solaris_prstatus(abfd, note, |
| 264, 360, 520, 224, 600); |
| default: |
| return true; |
| } |
| |
| case SOLARIS_NT_PSINFO: |
| case SOLARIS_NT_PRPSINFO: |
| switch (note->descsz) |
| { |
| case 260: /* sizeof(prpsinfo_t) SPARC and Intel 32-bit */ |
| return elfcore_grok_solaris_info(abfd, note, 84, 100); |
| case 328: /* sizeof(prpsinfo_t) SPARC and Intel 64-bit */ |
| return elfcore_grok_solaris_info(abfd, note, 120, 136); |
| case 360: /* sizeof(psinfo_t) SPARC and Intel 32-bit */ |
| return elfcore_grok_solaris_info(abfd, note, 88, 104); |
| case 440: /* sizeof(psinfo_t) SPARC and Intel 64-bit */ |
| return elfcore_grok_solaris_info(abfd, note, 136, 152); |
| default: |
| return true; |
| } |
| |
| case SOLARIS_NT_LWPSTATUS: |
| switch (note->descsz) |
| { |
| case 896: /* sizeof(lwpstatus_t) SPARC 32-bit */ |
| return elfcore_grok_solaris_lwpstatus(abfd, note, |
| 152, 344, 400, 496); |
| case 1392: /* sizeof(lwpstatus_t) SPARC 64-bit */ |
| return elfcore_grok_solaris_lwpstatus(abfd, note, |
| 304, 544, 544, 848); |
| case 800: /* sizeof(lwpstatus_t) Intel 32-bit */ |
| return elfcore_grok_solaris_lwpstatus(abfd, note, |
| 76, 344, 380, 420); |
| case 1296: /* sizeof(lwpstatus_t) Intel 64-bit */ |
| return elfcore_grok_solaris_lwpstatus(abfd, note, |
| 224, 544, 528, 768); |
| default: |
| return true; |
| } |
| |
| case SOLARIS_NT_LWPSINFO: |
| /* sizeof(lwpsinfo_t) on 32- and 64-bit, respectively */ |
| if (note->descsz == 128 || note->descsz == 152) |
| elf_tdata (abfd)->core->lwpid = |
| bfd_get_32 (abfd, note->descdata + 4); |
| break; |
| |
| default: |
| break; |
| } |
| |
| return true; |
| } |
| |
| /* For name starting with "CORE" this may be either a Solaris |
| core file or a gdb-generated core file. Do Solaris-specific |
| processing on selected note types first with |
| elfcore_grok_solaris_note(), then process the note |
| in elfcore_grok_note(). */ |
| |
| static bool |
| elfcore_grok_solaris_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (!elfcore_grok_solaris_note_impl (abfd, note)) |
| return false; |
| |
| return elfcore_grok_note (abfd, note); |
| } |
| |
| static bool |
| elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| if (note->type == NT_OPENBSD_PROCINFO) |
| return elfcore_grok_openbsd_procinfo (abfd, note); |
| |
| if (note->type == NT_OPENBSD_REGS) |
| return elfcore_make_note_pseudosection (abfd, ".reg", note); |
| |
| if (note->type == NT_OPENBSD_FPREGS) |
| return elfcore_make_note_pseudosection (abfd, ".reg2", note); |
| |
| if (note->type == NT_OPENBSD_XFPREGS) |
| return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note); |
| |
| if (note->type == NT_OPENBSD_AUXV) |
| return elfcore_make_auxv_note_section (abfd, note, 0); |
| |
| if (note->type == NT_OPENBSD_WCOOKIE) |
| { |
| asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie", |
| SEC_HAS_CONTENTS); |
| |
| if (sect == NULL) |
| return false; |
| sect->size = note->descsz; |
| sect->filepos = note->descpos; |
| sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32; |
| |
| return true; |
| } |
| |
| return true; |
| } |
| |
| static bool |
| elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid) |
| { |
| void *ddata = note->descdata; |
| char buf[100]; |
| char *name; |
| asection *sect; |
| short sig; |
| unsigned flags; |
| |
| if (note->descsz < 16) |
| return false; |
| |
| /* nto_procfs_status 'pid' field is at offset 0. */ |
| elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata); |
| |
| /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */ |
| *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4); |
| |
| /* nto_procfs_status 'flags' field is at offset 8. */ |
| flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8); |
| |
| /* nto_procfs_status 'what' field is at offset 14. */ |
| if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0) |
| { |
| elf_tdata (abfd)->core->signal = sig; |
| elf_tdata (abfd)->core->lwpid = *tid; |
| } |
| |
| /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores |
| do not come from signals so we make sure we set the current |
| thread just in case. */ |
| if (flags & 0x00000080) |
| elf_tdata (abfd)->core->lwpid = *tid; |
| |
| /* Make a ".qnx_core_status/%d" section. */ |
| sprintf (buf, ".qnx_core_status/%ld", *tid); |
| |
| name = (char *) bfd_alloc (abfd, strlen (buf) + 1); |
| if (name == NULL) |
| return false; |
| strcpy (name, buf); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| sect->size = note->descsz; |
| sect->filepos = note->descpos; |
| sect->alignment_power = 2; |
| |
| return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect)); |
| } |
| |
| static bool |
| elfcore_grok_nto_regs (bfd *abfd, |
| Elf_Internal_Note *note, |
| long tid, |
| char *base) |
| { |
| char buf[100]; |
| char *name; |
| asection *sect; |
| |
| /* Make a "(base)/%d" section. */ |
| sprintf (buf, "%s/%ld", base, tid); |
| |
| name = (char *) bfd_alloc (abfd, strlen (buf) + 1); |
| if (name == NULL) |
| return false; |
| strcpy (name, buf); |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| sect->size = note->descsz; |
| sect->filepos = note->descpos; |
| sect->alignment_power = 2; |
| |
| /* This is the current thread. */ |
| if (elf_tdata (abfd)->core->lwpid == tid) |
| return elfcore_maybe_make_sect (abfd, base, sect); |
| |
| return true; |
| } |
| |
| #define BFD_QNT_CORE_INFO 7 |
| #define BFD_QNT_CORE_STATUS 8 |
| #define BFD_QNT_CORE_GREG 9 |
| #define BFD_QNT_CORE_FPREG 10 |
| |
| static bool |
| elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| /* Every GREG section has a STATUS section before it. Store the |
| tid from the previous call to pass down to the next gregs |
| function. */ |
| static long tid = 1; |
| |
| switch (note->type) |
| { |
| case BFD_QNT_CORE_INFO: |
| return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note); |
| case BFD_QNT_CORE_STATUS: |
| return elfcore_grok_nto_status (abfd, note, &tid); |
| case BFD_QNT_CORE_GREG: |
| return elfcore_grok_nto_regs (abfd, note, tid, ".reg"); |
| case BFD_QNT_CORE_FPREG: |
| return elfcore_grok_nto_regs (abfd, note, tid, ".reg2"); |
| default: |
| return true; |
| } |
| } |
| |
| static bool |
| elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note) |
| { |
| char *name; |
| asection *sect; |
| size_t len; |
| |
| /* Use note name as section name. */ |
| len = note->namesz; |
| name = (char *) bfd_alloc (abfd, len); |
| if (name == NULL) |
| return false; |
| memcpy (name, note->namedata, len); |
| name[len - 1] = '\0'; |
| |
| sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS); |
| if (sect == NULL) |
| return false; |
| |
| sect->size = note->descsz; |
| sect->filepos = note->descpos; |
| sect->alignment_power = 1; |
| |
| return true; |
| } |
| |
| /* Function: elfcore_write_note |
| |
| Inputs: |
| buffer to hold note, and current size of buffer |
| name of note |
| type of note |
| data for note |
| size of data for note |
| |
| Writes note to end of buffer. ELF64 notes are written exactly as |
| for ELF32, despite the current (as of 2006) ELF gabi specifying |
| that they ought to have 8-byte namesz and descsz field, and have |
| 8-byte alignment. Other writers, eg. Linux kernel, do the same. |
| |
| Return: |
| Pointer to realloc'd buffer, *BUFSIZ updated. */ |
| |
| char * |
| elfcore_write_note (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const char *name, |
| int type, |
| const void *input, |
| int size) |
| { |
| Elf_External_Note *xnp; |
| size_t namesz; |
| size_t newspace; |
| char *dest; |
| |
| namesz = 0; |
| if (name != NULL) |
| namesz = strlen (name) + 1; |
| |
| newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4); |
| |
| buf = (char *) realloc (buf, *bufsiz + newspace); |
| if (buf == NULL) |
| return buf; |
| dest = buf + *bufsiz; |
| *bufsiz += newspace; |
| xnp = (Elf_External_Note *) dest; |
| H_PUT_32 (abfd, namesz, xnp->namesz); |
| H_PUT_32 (abfd, size, xnp->descsz); |
| H_PUT_32 (abfd, type, xnp->type); |
| dest = xnp->name; |
| if (name != NULL) |
| { |
| memcpy (dest, name, namesz); |
| dest += namesz; |
| while (namesz & 3) |
| { |
| *dest++ = '\0'; |
| ++namesz; |
| } |
| } |
| memcpy (dest, input, size); |
| dest += size; |
| while (size & 3) |
| { |
| *dest++ = '\0'; |
| ++size; |
| } |
| return buf; |
| } |
| |
| /* gcc-8 warns (*) on all the strncpy calls in this function about |
| possible string truncation. The "truncation" is not a bug. We |
| have an external representation of structs with fields that are not |
| necessarily NULL terminated and corresponding internal |
| representation fields that are one larger so that they can always |
| be NULL terminated. |
| gcc versions between 4.2 and 4.6 do not allow pragma control of |
| diagnostics inside functions, giving a hard error if you try to use |
| the finer control available with later versions. |
| gcc prior to 4.2 warns about diagnostic push and pop. |
| gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown, |
| unless you also add #pragma GCC diagnostic ignored "-Wpragma". |
| (*) Depending on your system header files! */ |
| #if GCC_VERSION >= 8000 |
| # pragma GCC diagnostic push |
| # pragma GCC diagnostic ignored "-Wstringop-truncation" |
| #endif |
| char * |
| elfcore_write_prpsinfo (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const char *fname, |
| const char *psargs) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| if (bed->elf_backend_write_core_note != NULL) |
| { |
| char *ret; |
| ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, |
| NT_PRPSINFO, fname, psargs); |
| if (ret != NULL) |
| return ret; |
| } |
| |
| #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) |
| # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T) |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| # if defined (HAVE_PSINFO32_T) |
| psinfo32_t data; |
| int note_type = NT_PSINFO; |
| # else |
| prpsinfo32_t data; |
| int note_type = NT_PRPSINFO; |
| # endif |
| |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", note_type, &data, sizeof (data)); |
| } |
| else |
| # endif |
| { |
| # if defined (HAVE_PSINFO_T) |
| psinfo_t data; |
| int note_type = NT_PSINFO; |
| # else |
| prpsinfo_t data; |
| int note_type = NT_PRPSINFO; |
| # endif |
| |
| memset (&data, 0, sizeof (data)); |
| strncpy (data.pr_fname, fname, sizeof (data.pr_fname)); |
| strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs)); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", note_type, &data, sizeof (data)); |
| } |
| #endif /* PSINFO_T or PRPSINFO_T */ |
| |
| free (buf); |
| return NULL; |
| } |
| #if GCC_VERSION >= 8000 |
| # pragma GCC diagnostic pop |
| #endif |
| |
| char * |
| elfcore_write_linux_prpsinfo32 |
| (bfd *abfd, char *buf, int *bufsiz, |
| const struct elf_internal_linux_prpsinfo *prpsinfo) |
| { |
| if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16) |
| { |
| struct elf_external_linux_prpsinfo32_ugid16 data; |
| |
| swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, |
| &data, sizeof (data)); |
| } |
| else |
| { |
| struct elf_external_linux_prpsinfo32_ugid32 data; |
| |
| swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO, |
| &data, sizeof (data)); |
| } |
| } |
| |
| char * |
| elfcore_write_linux_prpsinfo64 |
| (bfd *abfd, char *buf, int *bufsiz, |
| const struct elf_internal_linux_prpsinfo *prpsinfo) |
| { |
| if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16) |
| { |
| struct elf_external_linux_prpsinfo64_ugid16 data; |
| |
| swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", NT_PRPSINFO, &data, sizeof (data)); |
| } |
| else |
| { |
| struct elf_external_linux_prpsinfo64_ugid32 data; |
| |
| swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data); |
| return elfcore_write_note (abfd, buf, bufsiz, |
| "CORE", NT_PRPSINFO, &data, sizeof (data)); |
| } |
| } |
| |
| char * |
| elfcore_write_prstatus (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| long pid, |
| int cursig, |
| const void *gregs) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| if (bed->elf_backend_write_core_note != NULL) |
| { |
| char *ret; |
| ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz, |
| NT_PRSTATUS, |
| pid, cursig, gregs); |
| if (ret != NULL) |
| return ret; |
| } |
| |
| #if defined (HAVE_PRSTATUS_T) |
| #if defined (HAVE_PRSTATUS32_T) |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| prstatus32_t prstat; |
| |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", |
| NT_PRSTATUS, &prstat, sizeof (prstat)); |
| } |
| else |
| #endif |
| { |
| prstatus_t prstat; |
| |
| memset (&prstat, 0, sizeof (prstat)); |
| prstat.pr_pid = pid; |
| prstat.pr_cursig = cursig; |
| memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg)); |
| return elfcore_write_note (abfd, buf, bufsiz, "CORE", |
| NT_PRSTATUS, &prstat, sizeof (prstat)); |
| } |
| #endif /* HAVE_PRSTATUS_T */ |
| |
| free (buf); |
| return NULL; |
| } |
| |
| #if defined (HAVE_LWPSTATUS_T) |
| char * |
| elfcore_write_lwpstatus (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| long pid, |
| int cursig, |
| const void *gregs) |
| { |
| lwpstatus_t lwpstat; |
| const char *note_name = "CORE"; |
| |
| memset (&lwpstat, 0, sizeof (lwpstat)); |
| lwpstat.pr_lwpid = pid >> 16; |
| lwpstat.pr_cursig = cursig; |
| #if defined (HAVE_LWPSTATUS_T_PR_REG) |
| memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg)); |
| #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT) |
| #if !defined(gregs) |
| memcpy (lwpstat.pr_context.uc_mcontext.gregs, |
| gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs)); |
| #else |
| memcpy (lwpstat.pr_context.uc_mcontext.__gregs, |
| gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs)); |
| #endif |
| #endif |
| return elfcore_write_note (abfd, buf, bufsiz, note_name, |
| NT_LWPSTATUS, &lwpstat, sizeof (lwpstat)); |
| } |
| #endif /* HAVE_LWPSTATUS_T */ |
| |
| #if defined (HAVE_PSTATUS_T) |
| char * |
| elfcore_write_pstatus (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| long pid, |
| int cursig ATTRIBUTE_UNUSED, |
| const void *gregs ATTRIBUTE_UNUSED) |
| { |
| const char *note_name = "CORE"; |
| #if defined (HAVE_PSTATUS32_T) |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| |
| if (bed->s->elfclass == ELFCLASS32) |
| { |
| pstatus32_t pstat; |
| |
| memset (&pstat, 0, sizeof (pstat)); |
| pstat.pr_pid = pid & 0xffff; |
| buf = elfcore_write_note (abfd, buf, bufsiz, note_name, |
| NT_PSTATUS, &pstat, sizeof (pstat)); |
| return buf; |
| } |
| else |
| #endif |
| { |
| pstatus_t pstat; |
| |
| memset (&pstat, 0, sizeof (pstat)); |
| pstat.pr_pid = pid & 0xffff; |
| buf = elfcore_write_note (abfd, buf, bufsiz, note_name, |
| NT_PSTATUS, &pstat, sizeof (pstat)); |
| return buf; |
| } |
| } |
| #endif /* HAVE_PSTATUS_T */ |
| |
| char * |
| elfcore_write_prfpreg (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *fpregs, |
| int size) |
| { |
| const char *note_name = "CORE"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_FPREGSET, fpregs, size); |
| } |
| |
| char * |
| elfcore_write_prxfpreg (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *xfpregs, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PRXFPREG, xfpregs, size); |
| } |
| |
| char * |
| elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz, |
| const void *xfpregs, int size) |
| { |
| char *note_name; |
| if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD) |
| note_name = "FreeBSD"; |
| else |
| note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_X86_XSTATE, xfpregs, size); |
| } |
| |
| char * |
| elfcore_write_ppc_vmx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_vmx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_VMX, ppc_vmx, size); |
| } |
| |
| char * |
| elfcore_write_ppc_vsx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_vsx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_VSX, ppc_vsx, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tar (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tar, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TAR, ppc_tar, size); |
| } |
| |
| char * |
| elfcore_write_ppc_ppr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_ppr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_PPR, ppc_ppr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_dscr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_dscr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_DSCR, ppc_dscr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_ebb (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_ebb, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_EBB, ppc_ebb, size); |
| } |
| |
| char * |
| elfcore_write_ppc_pmu (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_pmu, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_PMU, ppc_pmu, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cgpr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cgpr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cfpr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cfpr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cvmx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cvmx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cvsx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cvsx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_spr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_spr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_SPR, ppc_tm_spr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_ctar (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_ctar, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cppr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cppr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size); |
| } |
| |
| char * |
| elfcore_write_ppc_tm_cdscr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *ppc_tm_cdscr, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size); |
| } |
| |
| static char * |
| elfcore_write_s390_high_gprs (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_high_gprs, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_HIGH_GPRS, |
| s390_high_gprs, size); |
| } |
| |
| char * |
| elfcore_write_s390_timer (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_timer, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_TIMER, s390_timer, size); |
| } |
| |
| char * |
| elfcore_write_s390_todcmp (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_todcmp, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_TODCMP, s390_todcmp, size); |
| } |
| |
| char * |
| elfcore_write_s390_todpreg (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_todpreg, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_TODPREG, s390_todpreg, size); |
| } |
| |
| char * |
| elfcore_write_s390_ctrs (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_ctrs, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_CTRS, s390_ctrs, size); |
| } |
| |
| char * |
| elfcore_write_s390_prefix (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_prefix, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_PREFIX, s390_prefix, size); |
| } |
| |
| char * |
| elfcore_write_s390_last_break (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_last_break, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_LAST_BREAK, |
| s390_last_break, size); |
| } |
| |
| char * |
| elfcore_write_s390_system_call (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_system_call, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_SYSTEM_CALL, |
| s390_system_call, size); |
| } |
| |
| char * |
| elfcore_write_s390_tdb (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_tdb, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_TDB, s390_tdb, size); |
| } |
| |
| char * |
| elfcore_write_s390_vxrs_low (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_vxrs_low, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size); |
| } |
| |
| char * |
| elfcore_write_s390_vxrs_high (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_vxrs_high, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_VXRS_HIGH, |
| s390_vxrs_high, size); |
| } |
| |
| char * |
| elfcore_write_s390_gs_cb (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_gs_cb, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_GS_CB, |
| s390_gs_cb, size); |
| } |
| |
| char * |
| elfcore_write_s390_gs_bc (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *s390_gs_bc, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_S390_GS_BC, |
| s390_gs_bc, size); |
| } |
| |
| char * |
| elfcore_write_arm_vfp (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *arm_vfp, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_VFP, arm_vfp, size); |
| } |
| |
| char * |
| elfcore_write_aarch_tls (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_tls, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_TLS, aarch_tls, size); |
| } |
| |
| char * |
| elfcore_write_aarch_hw_break (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_hw_break, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_HW_BREAK, aarch_hw_break, size); |
| } |
| |
| char * |
| elfcore_write_aarch_hw_watch (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_hw_watch, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size); |
| } |
| |
| char * |
| elfcore_write_aarch_sve (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_sve, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_SVE, aarch_sve, size); |
| } |
| |
| char * |
| elfcore_write_aarch_pauth (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_pauth, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_PAC_MASK, aarch_pauth, size); |
| } |
| |
| char * |
| elfcore_write_aarch_mte (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *aarch_mte, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARM_TAGGED_ADDR_CTRL, |
| aarch_mte, |
| size); |
| } |
| |
| char * |
| elfcore_write_arc_v2 (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *arc_v2, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_ARC_V2, arc_v2, size); |
| } |
| |
| char * |
| elfcore_write_loongarch_cpucfg (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *loongarch_cpucfg, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_LARCH_CPUCFG, |
| loongarch_cpucfg, size); |
| } |
| |
| char * |
| elfcore_write_loongarch_lbt (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *loongarch_lbt, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_LARCH_LBT, loongarch_lbt, size); |
| } |
| |
| char * |
| elfcore_write_loongarch_lsx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *loongarch_lsx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_LARCH_LSX, loongarch_lsx, size); |
| } |
| |
| char * |
| elfcore_write_loongarch_lasx (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *loongarch_lasx, |
| int size) |
| { |
| char *note_name = "LINUX"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_LARCH_LASX, loongarch_lasx, size); |
| } |
| |
| /* Write the buffer of csr values in CSRS (length SIZE) into the note |
| buffer BUF and update *BUFSIZ. ABFD is the bfd the note is being |
| written into. Return a pointer to the new start of the note buffer, to |
| replace BUF which may no longer be valid. */ |
| |
| char * |
| elfcore_write_riscv_csr (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *csrs, |
| int size) |
| { |
| const char *note_name = "GDB"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_RISCV_CSR, csrs, size); |
| } |
| |
| /* Write the target description (a string) pointed to by TDESC, length |
| SIZE, into the note buffer BUF, and update *BUFSIZ. ABFD is the bfd the |
| note is being written into. Return a pointer to the new start of the |
| note buffer, to replace BUF which may no longer be valid. */ |
| |
| char * |
| elfcore_write_gdb_tdesc (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const void *tdesc, |
| int size) |
| { |
| const char *note_name = "GDB"; |
| return elfcore_write_note (abfd, buf, bufsiz, |
| note_name, NT_GDB_TDESC, tdesc, size); |
| } |
| |
| char * |
| elfcore_write_register_note (bfd *abfd, |
| char *buf, |
| int *bufsiz, |
| const char *section, |
| const void *data, |
| int size) |
| { |
| if (strcmp (section, ".reg2") == 0) |
| return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-xfp") == 0) |
| return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-xstate") == 0) |
| return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-vmx") == 0) |
| return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-vsx") == 0) |
| return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tar") == 0) |
| return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-ppr") == 0) |
| return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-dscr") == 0) |
| return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-ebb") == 0) |
| return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-pmu") == 0) |
| return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cgpr") == 0) |
| return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cfpr") == 0) |
| return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cvmx") == 0) |
| return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cvsx") == 0) |
| return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-spr") == 0) |
| return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-ctar") == 0) |
| return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cppr") == 0) |
| return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-ppc-tm-cdscr") == 0) |
| return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-high-gprs") == 0) |
| return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-timer") == 0) |
| return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-todcmp") == 0) |
| return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-todpreg") == 0) |
| return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-ctrs") == 0) |
| return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-prefix") == 0) |
| return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-last-break") == 0) |
| return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-system-call") == 0) |
| return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-tdb") == 0) |
| return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-vxrs-low") == 0) |
| return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-vxrs-high") == 0) |
| return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-gs-cb") == 0) |
| return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-s390-gs-bc") == 0) |
| return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-arm-vfp") == 0) |
| return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-tls") == 0) |
| return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-hw-break") == 0) |
| return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-hw-watch") == 0) |
| return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-sve") == 0) |
| return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-pauth") == 0) |
| return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-aarch-mte") == 0) |
| return elfcore_write_aarch_mte (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-arc-v2") == 0) |
| return elfcore_write_arc_v2 (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".gdb-tdesc") == 0) |
| return elfcore_write_gdb_tdesc (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-riscv-csr") == 0) |
| return elfcore_write_riscv_csr (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-loongarch-cpucfg") == 0) |
| return elfcore_write_loongarch_cpucfg (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-loongarch-lbt") == 0) |
| return elfcore_write_loongarch_lbt (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-loongarch-lsx") == 0) |
| return elfcore_write_loongarch_lsx (abfd, buf, bufsiz, data, size); |
| if (strcmp (section, ".reg-loongarch-lasx") == 0) |
| return elfcore_write_loongarch_lasx (abfd, buf, bufsiz, data, size); |
| return NULL; |
| } |
| |
| char * |
| elfcore_write_file_note (bfd *obfd, char *note_data, int *note_size, |
| const void *buf, int bufsiz) |
| { |
| return elfcore_write_note (obfd, note_data, note_size, |
| "CORE", NT_FILE, buf, bufsiz); |
| } |
| |
| static bool |
| elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset, |
| size_t align) |
| { |
| char *p; |
| |
| /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1. |
| gABI specifies that PT_NOTE alignment should be aligned to 4 |
| bytes for 32-bit objects and to 8 bytes for 64-bit objects. If |
| align is less than 4, we use 4 byte alignment. */ |
| if (align < 4) |
| align = 4; |
| if (align != 4 && align != 8) |
| return false; |
| |
| p = buf; |
| while (p < buf + size) |
| { |
| Elf_External_Note *xnp = (Elf_External_Note *) p; |
| Elf_Internal_Note in; |
| |
| if (offsetof (Elf_External_Note, name) > buf - p + size) |
| return false; |
| |
| in.type = H_GET_32 (abfd, xnp->type); |
| |
| in.namesz = H_GET_32 (abfd, xnp->namesz); |
| in.namedata = xnp->name; |
| if (in.namesz > buf - in.namedata + size) |
| return false; |
| |
| in.descsz = H_GET_32 (abfd, xnp->descsz); |
| in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align); |
| in.descpos = offset + (in.descdata - buf); |
| if (in.descsz != 0 |
| && (in.descdata >= buf + size |
| || in.descsz > buf - in.descdata + size)) |
| return false; |
| |
| switch (bfd_get_format (abfd)) |
| { |
| default: |
| return true; |
| |
| case bfd_core: |
| { |
| #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F} |
| struct |
| { |
| const char * string; |
| size_t len; |
| bool (*func) (bfd *, Elf_Internal_Note *); |
| } |
| grokers[] = |
| { |
| GROKER_ELEMENT ("", elfcore_grok_note), |
| GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note), |
| GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note), |
| GROKER_ELEMENT ("OpenBSD", elfcore_grok_openbsd_note), |
| GROKER_ELEMENT ("QNX", elfcore_grok_nto_note), |
| GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note), |
| GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note), |
| GROKER_ELEMENT ("CORE", elfcore_grok_solaris_note) |
| }; |
| #undef GROKER_ELEMENT |
| int i; |
| |
| for (i = ARRAY_SIZE (grokers); i--;) |
| { |
| if (in.namesz >= grokers[i].len |
| && strncmp (in.namedata, grokers[i].string, |
| grokers[i].len) == 0) |
| { |
| if (! grokers[i].func (abfd, & in)) |
| return false; |
| break; |
| } |
| } |
| break; |
| } |
| |
| case bfd_object: |
| if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0) |
| { |
| if (! elfobj_grok_gnu_note (abfd, &in)) |
| return false; |
| } |
| else if (in.namesz == sizeof "stapsdt" |
| && strcmp (in.namedata, "stapsdt") == 0) |
| { |
| if (! elfobj_grok_stapsdt_note (abfd, &in)) |
| return false; |
| } |
| break; |
| } |
| |
| p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align); |
| } |
| |
| return true; |
| } |
| |
| bool |
| elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size, |
| size_t align) |
| { |
| char *buf; |
| |
| if (size == 0 || (size + 1) == 0) |
| return true; |
| |
| if (bfd_seek (abfd, offset, SEEK_SET) != 0) |
| return false; |
| |
| buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size); |
| if (buf == NULL) |
| return false; |
| |
| /* PR 17512: file: ec08f814 |
| 0-termintate the buffer so that string searches will not overflow. */ |
| buf[size] = 0; |
| |
| if (!elf_parse_notes (abfd, buf, size, offset, align)) |
| { |
| free (buf); |
| return false; |
| } |
| |
| free (buf); |
| return true; |
| } |
| |
| /* Providing external access to the ELF program header table. */ |
| |
| /* Return an upper bound on the number of bytes required to store a |
| copy of ABFD's program header table entries. Return -1 if an error |
| occurs; bfd_get_error will return an appropriate code. */ |
| |
| long |
| bfd_get_elf_phdr_upper_bound (bfd *abfd) |
| { |
| if (abfd->xvec->flavour != bfd_target_elf_flavour) |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return -1; |
| } |
| |
| return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr); |
| } |
| |
| /* Copy ABFD's program header table entries to *PHDRS. The entries |
| will be stored as an array of Elf_Internal_Phdr structures, as |
| defined in include/elf/internal.h. To find out how large the |
| buffer needs to be, call bfd_get_elf_phdr_upper_bound. |
| |
| Return the number of program header table entries read, or -1 if an |
| error occurs; bfd_get_error will return an appropriate code. */ |
| |
| int |
| bfd_get_elf_phdrs (bfd *abfd, void *phdrs) |
| { |
| int num_phdrs; |
| |
| if (abfd->xvec->flavour != bfd_target_elf_flavour) |
| { |
| bfd_set_error (bfd_error_wrong_format); |
| return -1; |
| } |
| |
| num_phdrs = elf_elfheader (abfd)->e_phnum; |
| if (num_phdrs != 0) |
| memcpy (phdrs, elf_tdata (abfd)->phdr, |
| num_phdrs * sizeof (Elf_Internal_Phdr)); |
| |
| return num_phdrs; |
| } |
| |
| enum elf_reloc_type_class |
| _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, |
| const asection *rel_sec ATTRIBUTE_UNUSED, |
| const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED) |
| { |
| return reloc_class_normal; |
| } |
| |
| /* For RELA architectures, return the relocation value for a |
| relocation against a local symbol. */ |
| |
| bfd_vma |
| _bfd_elf_rela_local_sym (bfd *abfd, |
| Elf_Internal_Sym *sym, |
| asection **psec, |
| Elf_Internal_Rela *rel) |
| { |
| asection *sec = *psec; |
| bfd_vma relocation; |
| |
| relocation = (sec->output_section->vma |
| + sec->output_offset |
| + sym->st_value); |
| if ((sec->flags & SEC_MERGE) |
| && ELF_ST_TYPE (sym->st_info) == STT_SECTION |
| && sec->sec_info_type == SEC_INFO_TYPE_MERGE) |
| { |
| rel->r_addend = |
| _bfd_merged_section_offset (abfd, psec, |
| elf_section_data (sec)->sec_info, |
| sym->st_value + rel->r_addend); |
| if (sec != *psec) |
| { |
| /* If we have changed the section, and our original section is |
| marked with SEC_EXCLUDE, it means that the original |
| SEC_MERGE section has been completely subsumed in some |
| other SEC_MERGE section. In this case, we need to leave |
| some info around for --emit-relocs. */ |
| if ((sec->flags & SEC_EXCLUDE) != 0) |
| sec->kept_section = *psec; |
| sec = *psec; |
| } |
| rel->r_addend -= relocation; |
| rel->r_addend += sec->output_section->vma + sec->output_offset; |
| } |
| return relocation; |
| } |
| |
| bfd_vma |
| _bfd_elf_rel_local_sym (bfd *abfd, |
| Elf_Internal_Sym *sym, |
| asection **psec, |
| bfd_vma addend) |
| { |
| asection *sec = *psec; |
| |
| if (sec->sec_info_type != SEC_INFO_TYPE_MERGE) |
| return sym->st_value + addend; |
| |
| return _bfd_merged_section_offset (abfd, psec, |
| elf_section_data (sec)->sec_info, |
| sym->st_value + addend); |
| } |
| |
| /* Adjust an address within a section. Given OFFSET within SEC, return |
| the new offset within the section, based upon changes made to the |
| section. Returns -1 if the offset is now invalid. |
| The offset (in abnd out) is in target sized bytes, however big a |
| byte may be. */ |
| |
| bfd_vma |
| _bfd_elf_section_offset (bfd *abfd, |
| struct bfd_link_info *info, |
| asection *sec, |
| bfd_vma offset) |
| { |
| switch (sec->sec_info_type) |
| { |
| case SEC_INFO_TYPE_STABS: |
| return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info, |
| offset); |
| case SEC_INFO_TYPE_EH_FRAME: |
| return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset); |
| |
| default: |
| if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0) |
| { |
| /* Reverse the offset. */ |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| bfd_size_type address_size = bed->s->arch_size / 8; |
| |
| /* address_size and sec->size are in octets. Convert |
| to bytes before subtracting the original offset. */ |
| offset = ((sec->size - address_size) |
| / bfd_octets_per_byte (abfd, sec) - offset); |
| } |
| return offset; |
| } |
| } |
| |
| /* Create a new BFD as if by bfd_openr. Rather than opening a file, |
| reconstruct an ELF file by reading the segments out of remote memory |
| based on the ELF file header at EHDR_VMA and the ELF program headers it |
| points to. If not null, *LOADBASEP is filled in with the difference |
| between the VMAs from which the segments were read, and the VMAs the |
| file headers (and hence BFD's idea of each section's VMA) put them at. |
| |
| The function TARGET_READ_MEMORY is called to copy LEN bytes from the |
| remote memory at target address VMA into the local buffer at MYADDR; it |
| should return zero on success or an `errno' code on failure. TEMPL must |
| be a BFD for an ELF target with the word size and byte order found in |
| the remote memory. */ |
| |
| bfd * |
| bfd_elf_bfd_from_remote_memory |
| (bfd *templ, |
| bfd_vma ehdr_vma, |
| bfd_size_type size, |
| bfd_vma *loadbasep, |
| int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type)) |
| { |
| return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory) |
| (templ, ehdr_vma, size, loadbasep, target_read_memory); |
| } |
| |
| long |
| _bfd_elf_get_synthetic_symtab (bfd *abfd, |
| long symcount ATTRIBUTE_UNUSED, |
| asymbol **syms ATTRIBUTE_UNUSED, |
| long dynsymcount, |
| asymbol **dynsyms, |
| asymbol **ret) |
| { |
| const struct elf_backend_data *bed = get_elf_backend_data (abfd); |
| asection *relplt; |
| asymbol *s; |
| const char *relplt_name; |
| bool (*slurp_relocs) (bfd *, asection *, asymbol **, bool); |
| arelent *p; |
| long count, i, n; |
| size_t size; |
| Elf_Internal_Shdr *hdr; |
| char *names; |
| asection *plt; |
| |
| *ret = NULL; |
| |
| if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0) |
| return 0; |
| |
| if (dynsymcount <= 0) |
| return 0; |
| |
| if (!bed->plt_sym_val) |
| return 0; |
| |
| relplt_name = bed->relplt_name; |
| if (relplt_name == NULL) |
| relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt"; |
| relplt = bfd_get_section_by_name (abfd, relplt_name); |
| if (relplt == NULL) |
| return 0; |
| |
| hdr = &elf_section_data (relplt)->this_hdr; |
| if (hdr->sh_link != elf_dynsymtab (abfd) |
| || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA)) |
| return 0; |
| |
| plt = bfd_get_section_by_name (abfd, ".plt"); |
| if (plt == NULL) |
| return 0; |
| |
| slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; |
| if (! (*slurp_relocs) (abfd, relplt, dynsyms, true)) |
| return -1; |
| |
| count = relplt->size / hdr->sh_entsize; |
| size = count * sizeof (asymbol); |
| p = relplt->relocation; |
| for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) |
| { |
| size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt"); |
| if (p->addend != 0) |
| { |
| #ifdef BFD64 |
| size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64); |
| #else |
| size += sizeof ("+0x") - 1 + 8; |
| #endif |
| } |
| } |
| |
| s = *ret = (asymbol *) bfd_malloc (size); |
| if (s == NULL) |
| return -1; |
| |
| names = (char *) (s + count); |
| p = relplt->relocation; |
| n = 0; |
| for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel) |
| { |
| size_t len; |
| bfd_vma addr; |
| |
| addr = bed->plt_sym_val (i, plt, p); |
| if (addr == (bfd_vma) -1) |
| continue; |
| |
| *s = **p->sym_ptr_ptr; |
| /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since |
| we are defining a symbol, ensure one of them is set. */ |
| if ((s->flags & BSF_LOCAL) == 0) |
| s->flags |= BSF_GLOBAL; |
| s->flags |= BSF_SYNTHETIC; |
| s->section = plt; |
| s->value = addr - plt->vma; |
| s->name = names; |
| s->udata.p = NULL; |
| len = strlen ((*p->sym_ptr_ptr)->name); |
| memcpy (names, (*p->sym_ptr_ptr)->name, len); |
| names += len; |
| if (p->addend != 0) |
| { |
| char buf[30], *a; |
| |
| memcpy (names, "+0x", sizeof ("+0x") - 1); |
| names += sizeof ("+0x") - 1; |
| bfd_sprintf_vma (abfd, buf, p->addend); |
| for (a = buf; *a == '0'; ++a) |
| ; |
| len = strlen (a); |
| memcpy (names, a, len); |
| names += len; |
| } |
| memcpy (names, "@plt", sizeof ("@plt")); |
| names += sizeof ("@plt"); |
| ++s, ++n; |
| } |
| |
| return n; |
| } |
| |
| /* It is only used by x86-64 so far. |
| ??? This repeats *COM* id of zero. sec->id is supposed to be unique, |
| but current usage would allow all of _bfd_std_section to be zero. */ |
| static const asymbol lcomm_sym |
| = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section); |
| asection _bfd_elf_large_com_section |
| = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym, |
| "LARGE_COMMON", 0, SEC_IS_COMMON); |
| |
| bool |
| _bfd_elf_final_write_processing (bfd *abfd) |
| { |
| Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */ |
| |
| i_ehdrp = elf_elfheader (abfd); |
| |
| if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE) |
| i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi; |
| |
| /* Set the osabi field to ELFOSABI_GNU if the binary contains |
| SHF_GNU_MBIND or SHF_GNU_RETAIN sections or symbols of STT_GNU_IFUNC type |
| or STB_GNU_UNIQUE binding. */ |
| if (elf_tdata (abfd)->has_gnu_osabi != 0) |
| { |
| if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE) |
| i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU; |
| else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU |
| && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD) |
| { |
| if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) |
| _bfd_error_handler (_("GNU_MBIND section is supported only by GNU " |
| "and FreeBSD targets")); |
| if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc) |
| _bfd_error_handler (_("symbol type STT_GNU_IFUNC is supported " |
| "only by GNU and FreeBSD targets")); |
| if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique) |
| _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is supported " |
| "only by GNU and FreeBSD targets")); |
| if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_retain) |
| _bfd_error_handler (_("GNU_RETAIN section is supported " |
| "only by GNU and FreeBSD targets")); |
| bfd_set_error (bfd_error_sorry); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| /* Return TRUE for ELF symbol types that represent functions. |
| This is the default version of this function, which is sufficient for |
| most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */ |
| |
| bool |
| _bfd_elf_is_function_type (unsigned int type) |
| { |
| return (type == STT_FUNC |
| || type == STT_GNU_IFUNC); |
| } |
| |
| /* If the ELF symbol SYM might be a function in SEC, return the |
| function size and set *CODE_OFF to the function's entry point, |
| otherwise return zero. */ |
| |
| bfd_size_type |
| _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec, |
| bfd_vma *code_off) |
| { |
| bfd_size_type size; |
| elf_symbol_type * elf_sym = (elf_symbol_type *) sym; |
| |
| if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT |
| | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0 |
| || sym->section != sec) |
| return 0; |
| |
| size = (sym->flags & BSF_SYNTHETIC) ? 0 : elf_sym->internal_elf_sym.st_size; |
| |
| /* In theory we should check that the symbol's type satisfies |
| _bfd_elf_is_function_type(), but there are some function-like |
| symbols which would fail this test. (eg _start). Instead |
| we check for hidden, local, notype symbols with zero size. |
| This type of symbol is generated by the annobin plugin for gcc |
| and clang, and should not be considered to be a function symbol. */ |
| if (size == 0 |
| && ((sym->flags & (BSF_SYNTHETIC | BSF_LOCAL)) == BSF_LOCAL) |
| && ELF_ST_TYPE (elf_sym->internal_elf_sym.st_info) == STT_NOTYPE |
| && ELF_ST_VISIBILITY (elf_sym->internal_elf_sym.st_other) == STV_HIDDEN) |
| return 0; |
| |
| *code_off = sym->value; |
| /* Do not return 0 for the function's size. */ |
| return size ? size : 1; |
| } |
| |
| /* Set to non-zero to enable some debug messages. */ |
| #define DEBUG_SECONDARY_RELOCS 0 |
| |
| /* An internal-to-the-bfd-library only section type |
| used to indicate a cached secondary reloc section. */ |
| #define SHT_SECONDARY_RELOC (SHT_LOOS + SHT_RELA) |
| |
| /* Create a BFD section to hold a secondary reloc section. */ |
| |
| bool |
| _bfd_elf_init_secondary_reloc_section (bfd * abfd, |
| Elf_Internal_Shdr *hdr, |
| const char * name, |
| unsigned int shindex) |
| { |
| /* We only support RELA secondary relocs. */ |
| if (hdr->sh_type != SHT_RELA) |
| return false; |
| |
| #if DEBUG_SECONDARY_RELOCS |
| fprintf (stderr, "secondary reloc section %s encountered\n", name); |
| #endif |
| hdr->sh_type = SHT_SECONDARY_RELOC; |
| return _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex); |
| } |
| |
| /* Read in any secondary relocs associated with SEC. */ |
| |
| bool |
| _bfd_elf_slurp_secondary_reloc_section (bfd * abfd, |
| asection * sec, |
| asymbol ** symbols, |
| bool dynamic) |
| { |
| const struct elf_backend_data * const ebd = get_elf_backend_data (abfd); |
| asection * relsec; |
| bool result = true; |
| bfd_vma (*r_sym) (bfd_vma); |
| |
| #if BFD_DEFAULT_TARGET_SIZE > 32 |
| if (bfd_arch_bits_per_address (abfd) != 32) |
| r_sym = elf64_r_sym; |
| else |
| #endif |
| r_sym = elf32_r_sym; |
| |
| if (!elf_section_data (sec)->has_secondary_relocs) |
| return true; |
| |
| /* Discover if there are any secondary reloc sections |
| associated with SEC. */ |
| for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next) |
| { |
| Elf_Internal_Shdr * hdr = & elf_section_data (relsec)->this_hdr; |
| |
| if (hdr->sh_type == SHT_SECONDARY_RELOC |
| && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx |
| && (hdr->sh_entsize == ebd->s->sizeof_rel |
| || hdr->sh_entsize == ebd->s->sizeof_rela)) |
| { |
| bfd_byte * native_relocs; |
| bfd_byte * native_reloc; |
| arelent * internal_relocs; |
| arelent * internal_reloc; |
| unsigned int i; |
| unsigned int entsize; |
| unsigned int symcount; |
| unsigned int reloc_count; |
| size_t amt; |
| |
| if (ebd->elf_info_to_howto == NULL) |
| return false; |
| |
| #if DEBUG_SECONDARY_RELOCS |
| fprintf (stderr, "read secondary relocs for %s from %s\n", |
| sec->name, relsec->name); |
| #endif |
| entsize = hdr->sh_entsize; |
| |
| native_relocs = bfd_malloc (hdr->sh_size); |
| if (native_relocs == NULL) |
| { |
| result = false; |
| continue; |
| } |
| |
| reloc_count = NUM_SHDR_ENTRIES (hdr); |
| if (_bfd_mul_overflow (reloc_count, sizeof (arelent), & amt)) |
| { |
| free (native_relocs); |
| bfd_set_error (bfd_error_file_too_big); |
| result = false; |
| continue; |
| } |
| |
| internal_relocs = (arelent *) bfd_alloc (abfd, amt); |
| if (internal_relocs == NULL) |
| { |
| free (native_relocs); |
| result = false; |
| continue; |
| } |
| |
| if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0 |
| || (bfd_bread (native_relocs, hdr->sh_size, abfd) |
| != hdr->sh_size)) |
| { |
| free (native_relocs); |
| /* The internal_relocs will be freed when |
| the memory for the bfd is released. */ |
| result = false; |
| continue; |
| } |
| |
| if (dynamic) |
| symcount = bfd_get_dynamic_symcount (abfd); |
| else |
| symcount = bfd_get_symcount (abfd); |
| |
| for (i = 0, internal_reloc = internal_relocs, |
| native_reloc = native_relocs; |
| i < reloc_count; |
| i++, internal_reloc++, native_reloc += entsize) |
| { |
| bool res; |
| Elf_Internal_Rela rela; |
| |
| if (entsize == ebd->s->sizeof_rel) |
| ebd->s->swap_reloc_in (abfd, native_reloc, & rela); |
| else /* entsize == ebd->s->sizeof_rela */ |
| ebd->s->swap_reloca_in (abfd, native_reloc, & rela); |
| |
| /* The address of an ELF reloc is section relative for an object |
| file, and absolute for an executable file or shared library. |
| The address of a normal BFD reloc is always section relative, |
| and the address of a dynamic reloc is absolute.. */ |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0) |
| internal_reloc->address = rela.r_offset; |
| else |
| internal_reloc->address = rela.r_offset - sec->vma; |
| |
| if (r_sym (rela.r_info) == STN_UNDEF) |
| { |
| /* FIXME: This and the error case below mean that we |
| have a symbol on relocs that is not elf_symbol_type. */ |
| internal_reloc->sym_ptr_ptr = |
| bfd_abs_section_ptr->symbol_ptr_ptr; |
| } |
| else if (r_sym (rela.r_info) > symcount) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): relocation %d has invalid symbol index %ld"), |
| abfd, sec, i, (long) r_sym (rela.r_info)); |
| bfd_set_error (bfd_error_bad_value); |
| internal_reloc->sym_ptr_ptr = |
| bfd_abs_section_ptr->symbol_ptr_ptr; |
| result = false; |
| } |
| else |
| { |
| asymbol **ps; |
| |
| ps = symbols + r_sym (rela.r_info) - 1; |
| internal_reloc->sym_ptr_ptr = ps; |
| /* Make sure that this symbol is not removed by strip. */ |
| (*ps)->flags |= BSF_KEEP; |
| } |
| |
| internal_reloc->addend = rela.r_addend; |
| |
| res = ebd->elf_info_to_howto (abfd, internal_reloc, & rela); |
| if (! res || internal_reloc->howto == NULL) |
| { |
| #if DEBUG_SECONDARY_RELOCS |
| fprintf (stderr, "there is no howto associated with reloc %lx\n", |
| rela.r_info); |
| #endif |
| result = false; |
| } |
| } |
| |
| free (native_relocs); |
| /* Store the internal relocs. */ |
| elf_section_data (relsec)->sec_info = internal_relocs; |
| } |
| } |
| |
| return result; |
| } |
| |
| /* Set the ELF section header fields of an output secondary reloc section. */ |
| |
| bool |
| _bfd_elf_copy_special_section_fields (const bfd * ibfd ATTRIBUTE_UNUSED, |
| bfd * obfd ATTRIBUTE_UNUSED, |
| const Elf_Internal_Shdr * isection, |
| Elf_Internal_Shdr * osection) |
| { |
| asection * isec; |
| asection * osec; |
| struct bfd_elf_section_data * esd; |
| |
| if (isection == NULL) |
| return false; |
| |
| if (isection->sh_type != SHT_SECONDARY_RELOC) |
| return true; |
| |
| isec = isection->bfd_section; |
| if (isec == NULL) |
| return false; |
| |
| osec = osection->bfd_section; |
| if (osec == NULL) |
| return false; |
| |
| esd = elf_section_data (osec); |
| BFD_ASSERT (esd->sec_info == NULL); |
| esd->sec_info = elf_section_data (isec)->sec_info; |
| osection->sh_type = SHT_RELA; |
| osection->sh_link = elf_onesymtab (obfd); |
| if (osection->sh_link == 0) |
| { |
| /* There is no symbol table - we are hosed... */ |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): link section cannot be set because the output file does not have a symbol table"), |
| obfd, osec); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| /* Find the output section that corresponds to the isection's sh_info link. */ |
| if (isection->sh_info == 0 |
| || isection->sh_info >= elf_numsections (ibfd)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): info section index is invalid"), |
| obfd, osec); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| isection = elf_elfsections (ibfd)[isection->sh_info]; |
| |
| if (isection == NULL |
| || isection->bfd_section == NULL |
| || isection->bfd_section->output_section == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): info section index cannot be set because the section is not in the output"), |
| obfd, osec); |
| bfd_set_error (bfd_error_bad_value); |
| return false; |
| } |
| |
| esd = elf_section_data (isection->bfd_section->output_section); |
| BFD_ASSERT (esd != NULL); |
| osection->sh_info = esd->this_idx; |
| esd->has_secondary_relocs = true; |
| #if DEBUG_SECONDARY_RELOCS |
| fprintf (stderr, "update header of %s, sh_link = %u, sh_info = %u\n", |
| osec->name, osection->sh_link, osection->sh_info); |
| fprintf (stderr, "mark section %s as having secondary relocs\n", |
| bfd_section_name (isection->bfd_section->output_section)); |
| #endif |
| |
| return true; |
| } |
| |
| /* Write out a secondary reloc section. |
| |
| FIXME: Currently this function can result in a serious performance penalty |
| for files with secondary relocs and lots of sections. The proper way to |
| fix this is for _bfd_elf_copy_special_section_fields() to chain secondary |
| relocs together and then to have this function just walk that chain. */ |
| |
| bool |
| _bfd_elf_write_secondary_reloc_section (bfd *abfd, asection *sec) |
| { |
| const struct elf_backend_data * const ebd = get_elf_backend_data (abfd); |
| bfd_vma addr_offset; |
| asection * relsec; |
| bfd_vma (*r_info) (bfd_vma, bfd_vma); |
| bool result = true; |
| |
| if (sec == NULL) |
| return false; |
| |
| #if BFD_DEFAULT_TARGET_SIZE > 32 |
| if (bfd_arch_bits_per_address (abfd) != 32) |
| r_info = elf64_r_info; |
| else |
| #endif |
| r_info = elf32_r_info; |
| |
| /* The address of an ELF reloc is section relative for an object |
| file, and absolute for an executable file or shared library. |
| The address of a BFD reloc is always section relative. */ |
| addr_offset = 0; |
| if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) |
| addr_offset = sec->vma; |
| |
| /* Discover if there are any secondary reloc sections |
| associated with SEC. */ |
| for (relsec = abfd->sections; relsec != NULL; relsec = relsec->next) |
| { |
| const struct bfd_elf_section_data * const esd = elf_section_data (relsec); |
| Elf_Internal_Shdr * const hdr = (Elf_Internal_Shdr *) & esd->this_hdr; |
| |
| if (hdr->sh_type == SHT_RELA |
| && hdr->sh_info == (unsigned) elf_section_data (sec)->this_idx) |
| { |
| asymbol * last_sym; |
| int last_sym_idx; |
| unsigned int reloc_count; |
| unsigned int idx; |
| unsigned int entsize; |
| arelent * src_irel; |
| bfd_byte * dst_rela; |
| |
| if (hdr->contents != NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc section processed twice"), |
| abfd, relsec); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| continue; |
| } |
| |
| entsize = hdr->sh_entsize; |
| if (entsize == 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc section has zero sized entries"), |
| abfd, relsec); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| continue; |
| } |
| else if (entsize != ebd->s->sizeof_rel |
| && entsize != ebd->s->sizeof_rela) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc section has non-standard sized entries"), |
| abfd, relsec); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| continue; |
| } |
| |
| reloc_count = hdr->sh_size / entsize; |
| if (reloc_count <= 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc section is empty!"), |
| abfd, relsec); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| continue; |
| } |
| |
| hdr->contents = bfd_alloc (abfd, hdr->sh_size); |
| if (hdr->contents == NULL) |
| continue; |
| |
| #if DEBUG_SECONDARY_RELOCS |
| fprintf (stderr, "write %u secondary relocs for %s from %s\n", |
| reloc_count, sec->name, relsec->name); |
| #endif |
| last_sym = NULL; |
| last_sym_idx = 0; |
| dst_rela = hdr->contents; |
| src_irel = (arelent *) esd->sec_info; |
| if (src_irel == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: internal relocs missing for secondary reloc section"), |
| abfd, relsec); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| continue; |
| } |
| |
| for (idx = 0; idx < reloc_count; idx++, dst_rela += entsize) |
| { |
| Elf_Internal_Rela src_rela; |
| arelent *ptr; |
| asymbol *sym; |
| int n; |
| |
| ptr = src_irel + idx; |
| if (ptr == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: reloc table entry %u is empty"), |
| abfd, relsec, idx); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| break; |
| } |
| |
| if (ptr->sym_ptr_ptr == NULL) |
| { |
| /* FIXME: Is this an error ? */ |
| n = 0; |
| } |
| else |
| { |
| sym = *ptr->sym_ptr_ptr; |
| |
| if (sym == last_sym) |
| n = last_sym_idx; |
| else |
| { |
| n = _bfd_elf_symbol_from_bfd_symbol (abfd, & sym); |
| if (n < 0) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc %u references a missing symbol"), |
| abfd, relsec, idx); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| n = 0; |
| } |
| |
| last_sym = sym; |
| last_sym_idx = n; |
| } |
| |
| if (sym->the_bfd != NULL |
| && sym->the_bfd->xvec != abfd->xvec |
| && ! _bfd_elf_validate_reloc (abfd, ptr)) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc %u references a deleted symbol"), |
| abfd, relsec, idx); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| n = 0; |
| } |
| } |
| |
| src_rela.r_offset = ptr->address + addr_offset; |
| if (ptr->howto == NULL) |
| { |
| _bfd_error_handler |
| /* xgettext:c-format */ |
| (_("%pB(%pA): error: secondary reloc %u is of an unknown type"), |
| abfd, relsec, idx); |
| bfd_set_error (bfd_error_bad_value); |
| result = false; |
| src_rela.r_info = r_info (0, 0); |
| } |
| else |
| src_rela.r_info = r_info (n, ptr->howto->type); |
| src_rela.r_addend = ptr->addend; |
| |
| if (entsize == ebd->s->sizeof_rel) |
| ebd->s->swap_reloc_out (abfd, &src_rela, dst_rela); |
| else /* entsize == ebd->s->sizeof_rela */ |
| ebd->s->swap_reloca_out (abfd, &src_rela, dst_rela); |
| } |
| } |
| } |
| |
| return result; |
| } |