| /* ELF linking support for BFD. | 
 |    Copyright (C) 1995-2022 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of BFD, the Binary File Descriptor library. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program; if not, write to the Free Software | 
 |    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 |    MA 02110-1301, USA.  */ | 
 |  | 
 | #include "sysdep.h" | 
 | #include "bfd.h" | 
 | #include "bfdlink.h" | 
 | #include "libbfd.h" | 
 | #define ARCH_SIZE 0 | 
 | #include "elf-bfd.h" | 
 | #include "safe-ctype.h" | 
 | #include "libiberty.h" | 
 | #include "objalloc.h" | 
 | #if BFD_SUPPORTS_PLUGINS | 
 | #include "plugin-api.h" | 
 | #include "plugin.h" | 
 | #endif | 
 |  | 
 | #include <limits.h> | 
 | #ifndef CHAR_BIT | 
 | #define CHAR_BIT 8 | 
 | #endif | 
 |  | 
 | /* This struct is used to pass information to routines called via | 
 |    elf_link_hash_traverse which must return failure.  */ | 
 |  | 
 | struct elf_info_failed | 
 | { | 
 |   struct bfd_link_info *info; | 
 |   bool failed; | 
 | }; | 
 |  | 
 | /* This structure is used to pass information to | 
 |    _bfd_elf_link_find_version_dependencies.  */ | 
 |  | 
 | struct elf_find_verdep_info | 
 | { | 
 |   /* General link information.  */ | 
 |   struct bfd_link_info *info; | 
 |   /* The number of dependencies.  */ | 
 |   unsigned int vers; | 
 |   /* Whether we had a failure.  */ | 
 |   bool failed; | 
 | }; | 
 |  | 
 | static bool _bfd_elf_fix_symbol_flags | 
 |   (struct elf_link_hash_entry *, struct elf_info_failed *); | 
 |  | 
 | asection * | 
 | _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, | 
 | 			     unsigned long r_symndx, | 
 | 			     bool discard) | 
 | { | 
 |   if (r_symndx >= cookie->locsymcount | 
 |       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) | 
 |     { | 
 |       struct elf_link_hash_entry *h; | 
 |  | 
 |       h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; | 
 |  | 
 |       while (h->root.type == bfd_link_hash_indirect | 
 | 	     || h->root.type == bfd_link_hash_warning) | 
 | 	h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |       if ((h->root.type == bfd_link_hash_defined | 
 | 	   || h->root.type == bfd_link_hash_defweak) | 
 | 	   && discarded_section (h->root.u.def.section)) | 
 | 	return h->root.u.def.section; | 
 |       else | 
 | 	return NULL; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* It's not a relocation against a global symbol, | 
 | 	 but it could be a relocation against a local | 
 | 	 symbol for a discarded section.  */ | 
 |       asection *isec; | 
 |       Elf_Internal_Sym *isym; | 
 |  | 
 |       /* Need to: get the symbol; get the section.  */ | 
 |       isym = &cookie->locsyms[r_symndx]; | 
 |       isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); | 
 |       if (isec != NULL | 
 | 	  && discard ? discarded_section (isec) : 1) | 
 | 	return isec; | 
 |      } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Define a symbol in a dynamic linkage section.  */ | 
 |  | 
 | struct elf_link_hash_entry * | 
 | _bfd_elf_define_linkage_sym (bfd *abfd, | 
 | 			     struct bfd_link_info *info, | 
 | 			     asection *sec, | 
 | 			     const char *name) | 
 | { | 
 |   struct elf_link_hash_entry *h; | 
 |   struct bfd_link_hash_entry *bh; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   h = elf_link_hash_lookup (elf_hash_table (info), name, false, false, false); | 
 |   if (h != NULL) | 
 |     { | 
 |       /* Zap symbol defined in an as-needed lib that wasn't linked. | 
 | 	 This is a symptom of a larger problem:  Absolute symbols | 
 | 	 defined in shared libraries can't be overridden, because we | 
 | 	 lose the link to the bfd which is via the symbol section.  */ | 
 |       h->root.type = bfd_link_hash_new; | 
 |       bh = &h->root; | 
 |     } | 
 |   else | 
 |     bh = NULL; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, | 
 | 					 sec, 0, NULL, false, bed->collect, | 
 | 					 &bh)) | 
 |     return NULL; | 
 |   h = (struct elf_link_hash_entry *) bh; | 
 |   BFD_ASSERT (h != NULL); | 
 |   h->def_regular = 1; | 
 |   h->non_elf = 0; | 
 |   h->root.linker_def = 1; | 
 |   h->type = STT_OBJECT; | 
 |   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) | 
 |     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | 
 |  | 
 |   (*bed->elf_backend_hide_symbol) (info, h, true); | 
 |   return h; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   flagword flags; | 
 |   asection *s; | 
 |   struct elf_link_hash_entry *h; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |  | 
 |   /* This function may be called more than once.  */ | 
 |   if (htab->sgot != NULL) | 
 |     return true; | 
 |  | 
 |   flags = bed->dynamic_sec_flags; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, | 
 | 					  (bed->rela_plts_and_copies_p | 
 | 					   ? ".rela.got" : ".rel.got"), | 
 | 					  (bed->dynamic_sec_flags | 
 | 					   | SEC_READONLY)); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |   htab->srelgot = s; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |   htab->sgot = s; | 
 |  | 
 |   if (bed->want_got_plt) | 
 |     { | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); | 
 |       if (s == NULL | 
 | 	  || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 	return false; | 
 |       htab->sgotplt = s; | 
 |     } | 
 |  | 
 |   /* The first bit of the global offset table is the header.  */ | 
 |   s->size += bed->got_header_size; | 
 |  | 
 |   if (bed->want_got_sym) | 
 |     { | 
 |       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got | 
 | 	 (or .got.plt) section.  We don't do this in the linker script | 
 | 	 because we don't want to define the symbol if we are not creating | 
 | 	 a global offset table.  */ | 
 |       h = _bfd_elf_define_linkage_sym (abfd, info, s, | 
 | 				       "_GLOBAL_OFFSET_TABLE_"); | 
 |       elf_hash_table (info)->hgot = h; | 
 |       if (h == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Create a strtab to hold the dynamic symbol names.  */ | 
 | static bool | 
 | _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   struct elf_link_hash_table *hash_table; | 
 |  | 
 |   hash_table = elf_hash_table (info); | 
 |   if (hash_table->dynobj == NULL) | 
 |     { | 
 |       /* We may not set dynobj, an input file holding linker created | 
 | 	 dynamic sections to abfd, which may be a dynamic object with | 
 | 	 its own dynamic sections.  We need to find a normal input file | 
 | 	 to hold linker created sections if possible.  */ | 
 |       if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) | 
 | 	{ | 
 | 	  bfd *ibfd; | 
 | 	  asection *s; | 
 | 	  for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) | 
 | 	    if ((ibfd->flags | 
 | 		 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0 | 
 | 		&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour | 
 | 		&& elf_object_id (ibfd) == elf_hash_table_id (hash_table) | 
 | 		&& !((s = ibfd->sections) != NULL | 
 | 		     && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)) | 
 | 	      { | 
 | 		abfd = ibfd; | 
 | 		break; | 
 | 	      } | 
 | 	} | 
 |       hash_table->dynobj = abfd; | 
 |     } | 
 |  | 
 |   if (hash_table->dynstr == NULL) | 
 |     { | 
 |       hash_table->dynstr = _bfd_elf_strtab_init (); | 
 |       if (hash_table->dynstr == NULL) | 
 | 	return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Create some sections which will be filled in with dynamic linking | 
 |    information.  ABFD is an input file which requires dynamic sections | 
 |    to be created.  The dynamic sections take up virtual memory space | 
 |    when the final executable is run, so we need to create them before | 
 |    addresses are assigned to the output sections.  We work out the | 
 |    actual contents and size of these sections later.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   flagword flags; | 
 |   asection *s; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_link_hash_entry *h; | 
 |  | 
 |   if (! is_elf_hash_table (info->hash)) | 
 |     return false; | 
 |  | 
 |   if (elf_hash_table (info)->dynamic_sections_created) | 
 |     return true; | 
 |  | 
 |   if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | 
 |     return false; | 
 |  | 
 |   abfd = elf_hash_table (info)->dynobj; | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   flags = bed->dynamic_sec_flags; | 
 |  | 
 |   /* A dynamically linked executable has a .interp section, but a | 
 |      shared library does not.  */ | 
 |   if (bfd_link_executable (info) && !info->nointerp) | 
 |     { | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".interp", | 
 | 					      flags | SEC_READONLY); | 
 |       if (s == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   /* Create sections to hold version informations.  These are removed | 
 |      if they are not needed.  */ | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, 1)) | 
 |     return false; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |   elf_hash_table (info)->dynsym = s; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL) | 
 |     return false; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |  | 
 |   /* The special symbol _DYNAMIC is always set to the start of the | 
 |      .dynamic section.  We could set _DYNAMIC in a linker script, but we | 
 |      only want to define it if we are, in fact, creating a .dynamic | 
 |      section.  We don't want to define it if there is no .dynamic | 
 |      section, since on some ELF platforms the start up code examines it | 
 |      to decide how to initialize the process.  */ | 
 |   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); | 
 |   elf_hash_table (info)->hdynamic = h; | 
 |   if (h == NULL) | 
 |     return false; | 
 |  | 
 |   if (info->emit_hash) | 
 |     { | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".hash", | 
 | 					      flags | SEC_READONLY); | 
 |       if (s == NULL | 
 | 	  || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 	return false; | 
 |       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; | 
 |     } | 
 |  | 
 |   if (info->emit_gnu_hash && bed->record_xhash_symbol == NULL) | 
 |     { | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", | 
 | 					      flags | SEC_READONLY); | 
 |       if (s == NULL | 
 | 	  || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 	return false; | 
 |       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: | 
 | 	 4 32-bit words followed by variable count of 64-bit words, then | 
 | 	 variable count of 32-bit words.  */ | 
 |       if (bed->s->arch_size == 64) | 
 | 	elf_section_data (s)->this_hdr.sh_entsize = 0; | 
 |       else | 
 | 	elf_section_data (s)->this_hdr.sh_entsize = 4; | 
 |     } | 
 |  | 
 |   if (info->enable_dt_relr) | 
 |     { | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".relr.dyn", | 
 | 					      (bed->dynamic_sec_flags | 
 | 					       | SEC_READONLY)); | 
 |       if (s == NULL | 
 | 	  || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 	return false; | 
 |       elf_hash_table (info)->srelrdyn = s; | 
 |     } | 
 |  | 
 |   /* Let the backend create the rest of the sections.  This lets the | 
 |      backend set the right flags.  The backend will normally create | 
 |      the .got and .plt sections.  */ | 
 |   if (bed->elf_backend_create_dynamic_sections == NULL | 
 |       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) | 
 |     return false; | 
 |  | 
 |   elf_hash_table (info)->dynamic_sections_created = true; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Create dynamic sections when linking against a dynamic object.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   flagword flags, pltflags; | 
 |   struct elf_link_hash_entry *h; | 
 |   asection *s; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |  | 
 |   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and | 
 |      .rel[a].bss sections.  */ | 
 |   flags = bed->dynamic_sec_flags; | 
 |  | 
 |   pltflags = flags; | 
 |   if (bed->plt_not_loaded) | 
 |     /* We do not clear SEC_ALLOC here because we still want the OS to | 
 |        allocate space for the section; it's just that there's nothing | 
 |        to read in from the object file.  */ | 
 |     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); | 
 |   else | 
 |     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; | 
 |   if (bed->plt_readonly) | 
 |     pltflags |= SEC_READONLY; | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->plt_alignment)) | 
 |     return false; | 
 |   htab->splt = s; | 
 |  | 
 |   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the | 
 |      .plt section.  */ | 
 |   if (bed->want_plt_sym) | 
 |     { | 
 |       h = _bfd_elf_define_linkage_sym (abfd, info, s, | 
 | 				       "_PROCEDURE_LINKAGE_TABLE_"); | 
 |       elf_hash_table (info)->hplt = h; | 
 |       if (h == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   s = bfd_make_section_anyway_with_flags (abfd, | 
 | 					  (bed->rela_plts_and_copies_p | 
 | 					   ? ".rela.plt" : ".rel.plt"), | 
 | 					  flags | SEC_READONLY); | 
 |   if (s == NULL | 
 |       || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 |     return false; | 
 |   htab->srelplt = s; | 
 |  | 
 |   if (! _bfd_elf_create_got_section (abfd, info)) | 
 |     return false; | 
 |  | 
 |   if (bed->want_dynbss) | 
 |     { | 
 |       /* The .dynbss section is a place to put symbols which are defined | 
 | 	 by dynamic objects, are referenced by regular objects, and are | 
 | 	 not functions.  We must allocate space for them in the process | 
 | 	 image and use a R_*_COPY reloc to tell the dynamic linker to | 
 | 	 initialize them at run time.  The linker script puts the .dynbss | 
 | 	 section into the .bss section of the final image.  */ | 
 |       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", | 
 | 					      SEC_ALLOC | SEC_LINKER_CREATED); | 
 |       if (s == NULL) | 
 | 	return false; | 
 |       htab->sdynbss = s; | 
 |  | 
 |       if (bed->want_dynrelro) | 
 | 	{ | 
 | 	  /* Similarly, but for symbols that were originally in read-only | 
 | 	     sections.  This section doesn't really need to have contents, | 
 | 	     but make it like other .data.rel.ro sections.  */ | 
 | 	  s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", | 
 | 						  flags); | 
 | 	  if (s == NULL) | 
 | 	    return false; | 
 | 	  htab->sdynrelro = s; | 
 | 	} | 
 |  | 
 |       /* The .rel[a].bss section holds copy relocs.  This section is not | 
 | 	 normally needed.  We need to create it here, though, so that the | 
 | 	 linker will map it to an output section.  We can't just create it | 
 | 	 only if we need it, because we will not know whether we need it | 
 | 	 until we have seen all the input files, and the first time the | 
 | 	 main linker code calls BFD after examining all the input files | 
 | 	 (size_dynamic_sections) the input sections have already been | 
 | 	 mapped to the output sections.  If the section turns out not to | 
 | 	 be needed, we can discard it later.  We will never need this | 
 | 	 section when generating a shared object, since they do not use | 
 | 	 copy relocs.  */ | 
 |       if (bfd_link_executable (info)) | 
 | 	{ | 
 | 	  s = bfd_make_section_anyway_with_flags (abfd, | 
 | 						  (bed->rela_plts_and_copies_p | 
 | 						   ? ".rela.bss" : ".rel.bss"), | 
 | 						  flags | SEC_READONLY); | 
 | 	  if (s == NULL | 
 | 	      || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 	    return false; | 
 | 	  htab->srelbss = s; | 
 |  | 
 | 	  if (bed->want_dynrelro) | 
 | 	    { | 
 | 	      s = (bfd_make_section_anyway_with_flags | 
 | 		   (abfd, (bed->rela_plts_and_copies_p | 
 | 			   ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), | 
 | 		    flags | SEC_READONLY)); | 
 | 	      if (s == NULL | 
 | 		  || !bfd_set_section_alignment (s, bed->s->log_file_align)) | 
 | 		return false; | 
 | 	      htab->sreldynrelro = s; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Record a new dynamic symbol.  We record the dynamic symbols as we | 
 |    read the input files, since we need to have a list of all of them | 
 |    before we can determine the final sizes of the output sections. | 
 |    Note that we may actually call this function even though we are not | 
 |    going to output any dynamic symbols; in some cases we know that a | 
 |    symbol should be in the dynamic symbol table, but only if there is | 
 |    one.  */ | 
 |  | 
 | bool | 
 | bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, | 
 | 				    struct elf_link_hash_entry *h) | 
 | { | 
 |   if (h->dynindx == -1) | 
 |     { | 
 |       struct elf_strtab_hash *dynstr; | 
 |       char *p; | 
 |       const char *name; | 
 |       size_t indx; | 
 |  | 
 |       if (h->root.type == bfd_link_hash_defined | 
 | 	  || h->root.type == bfd_link_hash_defweak) | 
 | 	{ | 
 | 	  /* An IR symbol should not be made dynamic.  */ | 
 | 	  if (h->root.u.def.section != NULL | 
 | 	      && h->root.u.def.section->owner != NULL | 
 | 	      && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0) | 
 | 	    return true; | 
 | 	} | 
 |  | 
 |       /* XXX: The ABI draft says the linker must turn hidden and | 
 | 	 internal symbols into STB_LOCAL symbols when producing the | 
 | 	 DSO. However, if ld.so honors st_other in the dynamic table, | 
 | 	 this would not be necessary.  */ | 
 |       switch (ELF_ST_VISIBILITY (h->other)) | 
 | 	{ | 
 | 	case STV_INTERNAL: | 
 | 	case STV_HIDDEN: | 
 | 	  if (h->root.type != bfd_link_hash_undefined | 
 | 	      && h->root.type != bfd_link_hash_undefweak) | 
 | 	    { | 
 | 	      h->forced_local = 1; | 
 | 	      if (!elf_hash_table (info)->is_relocatable_executable | 
 | 		  || ((h->root.type == bfd_link_hash_defined | 
 | 		       || h->root.type == bfd_link_hash_defweak) | 
 | 		      && h->root.u.def.section->owner != NULL | 
 | 		      && h->root.u.def.section->owner->no_export) | 
 | 		  || (h->root.type == bfd_link_hash_common | 
 | 		      && h->root.u.c.p->section->owner != NULL | 
 | 		      && h->root.u.c.p->section->owner->no_export)) | 
 | 		return true; | 
 | 	    } | 
 |  | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       h->dynindx = elf_hash_table (info)->dynsymcount; | 
 |       ++elf_hash_table (info)->dynsymcount; | 
 |  | 
 |       dynstr = elf_hash_table (info)->dynstr; | 
 |       if (dynstr == NULL) | 
 | 	{ | 
 | 	  /* Create a strtab to hold the dynamic symbol names.  */ | 
 | 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | 
 | 	  if (dynstr == NULL) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       /* We don't put any version information in the dynamic string | 
 | 	 table.  */ | 
 |       name = h->root.root.string; | 
 |       p = strchr (name, ELF_VER_CHR); | 
 |       if (p != NULL) | 
 | 	/* We know that the p points into writable memory.  In fact, | 
 | 	   there are only a few symbols that have read-only names, being | 
 | 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially | 
 | 	   by the backends.  Most symbols will have names pointing into | 
 | 	   an ELF string table read from a file, or to objalloc memory.  */ | 
 | 	*p = 0; | 
 |  | 
 |       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); | 
 |  | 
 |       if (p != NULL) | 
 | 	*p = ELF_VER_CHR; | 
 |  | 
 |       if (indx == (size_t) -1) | 
 | 	return false; | 
 |       h->dynstr_index = indx; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Mark a symbol dynamic.  */ | 
 |  | 
 | static void | 
 | bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, | 
 | 				  struct elf_link_hash_entry *h, | 
 | 				  Elf_Internal_Sym *sym) | 
 | { | 
 |   struct bfd_elf_dynamic_list *d = info->dynamic_list; | 
 |  | 
 |   /* It may be called more than once on the same H.  */ | 
 |   if(h->dynamic || bfd_link_relocatable (info)) | 
 |     return; | 
 |  | 
 |   if ((info->dynamic_data | 
 |        && (h->type == STT_OBJECT | 
 | 	   || h->type == STT_COMMON | 
 | 	   || (sym != NULL | 
 | 	       && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT | 
 | 		   || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) | 
 |       || (d != NULL | 
 | 	  && h->non_elf | 
 | 	  && (*d->match) (&d->head, NULL, h->root.root.string))) | 
 |     { | 
 |       h->dynamic = 1; | 
 |       /* NB: If a symbol is made dynamic by --dynamic-list, it has | 
 | 	 non-IR reference.  */ | 
 |       h->root.non_ir_ref_dynamic = 1; | 
 |     } | 
 | } | 
 |  | 
 | /* Record an assignment to a symbol made by a linker script.  We need | 
 |    this in case some dynamic object refers to this symbol.  */ | 
 |  | 
 | bool | 
 | bfd_elf_record_link_assignment (bfd *output_bfd, | 
 | 				struct bfd_link_info *info, | 
 | 				const char *name, | 
 | 				bool provide, | 
 | 				bool hidden) | 
 | { | 
 |   struct elf_link_hash_entry *h, *hv; | 
 |   struct elf_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   if (!is_elf_hash_table (info->hash)) | 
 |     return true; | 
 |  | 
 |   htab = elf_hash_table (info); | 
 |   h = elf_link_hash_lookup (htab, name, !provide, true, false); | 
 |   if (h == NULL) | 
 |     return provide; | 
 |  | 
 |   if (h->root.type == bfd_link_hash_warning) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   if (h->versioned == unknown) | 
 |     { | 
 |       /* Set versioned if symbol version is unknown.  */ | 
 |       char *version = strrchr (name, ELF_VER_CHR); | 
 |       if (version) | 
 | 	{ | 
 | 	  if (version > name && version[-1] != ELF_VER_CHR) | 
 | 	    h->versioned = versioned_hidden; | 
 | 	  else | 
 | 	    h->versioned = versioned; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Symbols defined in a linker script but not referenced anywhere | 
 |      else will have non_elf set.  */ | 
 |   if (h->non_elf) | 
 |     { | 
 |       bfd_elf_link_mark_dynamic_symbol (info, h, NULL); | 
 |       h->non_elf = 0; | 
 |     } | 
 |  | 
 |   switch (h->root.type) | 
 |     { | 
 |     case bfd_link_hash_defined: | 
 |     case bfd_link_hash_defweak: | 
 |     case bfd_link_hash_common: | 
 |       break; | 
 |     case bfd_link_hash_undefweak: | 
 |     case bfd_link_hash_undefined: | 
 |       /* Since we're defining the symbol, don't let it seem to have not | 
 | 	 been defined.  record_dynamic_symbol and size_dynamic_sections | 
 | 	 may depend on this.  */ | 
 |       h->root.type = bfd_link_hash_new; | 
 |       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) | 
 | 	bfd_link_repair_undef_list (&htab->root); | 
 |       break; | 
 |     case bfd_link_hash_new: | 
 |       break; | 
 |     case bfd_link_hash_indirect: | 
 |       /* We had a versioned symbol in a dynamic library.  We make the | 
 | 	 the versioned symbol point to this one.  */ | 
 |       bed = get_elf_backend_data (output_bfd); | 
 |       hv = h; | 
 |       while (hv->root.type == bfd_link_hash_indirect | 
 | 	     || hv->root.type == bfd_link_hash_warning) | 
 | 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link; | 
 |       /* We don't need to update h->root.u since linker will set them | 
 | 	 later.  */ | 
 |       h->root.type = bfd_link_hash_undefined; | 
 |       hv->root.type = bfd_link_hash_indirect; | 
 |       hv->root.u.i.link = (struct bfd_link_hash_entry *) h; | 
 |       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); | 
 |       break; | 
 |     default: | 
 |       BFD_FAIL (); | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* If this symbol is being provided by the linker script, and it is | 
 |      currently defined by a dynamic object, but not by a regular | 
 |      object, then mark it as undefined so that the generic linker will | 
 |      force the correct value.  */ | 
 |   if (provide | 
 |       && h->def_dynamic | 
 |       && !h->def_regular) | 
 |     h->root.type = bfd_link_hash_undefined; | 
 |  | 
 |   /* If this symbol is currently defined by a dynamic object, but not | 
 |      by a regular object, then clear out any version information because | 
 |      the symbol will not be associated with the dynamic object any | 
 |      more.  */ | 
 |   if (h->def_dynamic && !h->def_regular) | 
 |     h->verinfo.verdef = NULL; | 
 |  | 
 |   /* Make sure this symbol is not garbage collected.  */ | 
 |   h->mark = 1; | 
 |  | 
 |   h->def_regular = 1; | 
 |  | 
 |   if (hidden) | 
 |     { | 
 |       bed = get_elf_backend_data (output_bfd); | 
 |       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) | 
 | 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; | 
 |       (*bed->elf_backend_hide_symbol) (info, h, true); | 
 |     } | 
 |  | 
 |   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects | 
 |      and executables.  */ | 
 |   if (!bfd_link_relocatable (info) | 
 |       && h->dynindx != -1 | 
 |       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | 
 | 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) | 
 |     h->forced_local = 1; | 
 |  | 
 |   if ((h->def_dynamic | 
 |        || h->ref_dynamic | 
 |        || bfd_link_dll (info) | 
 |        || elf_hash_table (info)->is_relocatable_executable) | 
 |       && !h->forced_local | 
 |       && h->dynindx == -1) | 
 |     { | 
 |       if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 	return false; | 
 |  | 
 |       /* If this is a weak defined symbol, and we know a corresponding | 
 | 	 real symbol from the same dynamic object, make sure the real | 
 | 	 symbol is also made into a dynamic symbol.  */ | 
 |       if (h->is_weakalias) | 
 | 	{ | 
 | 	  struct elf_link_hash_entry *def = weakdef (h); | 
 |  | 
 | 	  if (def->dynindx == -1 | 
 | 	      && !bfd_elf_link_record_dynamic_symbol (info, def)) | 
 | 	    return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on | 
 |    success, and 2 on a failure caused by attempting to record a symbol | 
 |    in a discarded section, eg. a discarded link-once section symbol.  */ | 
 |  | 
 | int | 
 | bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, | 
 | 					  bfd *input_bfd, | 
 | 					  long input_indx) | 
 | { | 
 |   size_t amt; | 
 |   struct elf_link_local_dynamic_entry *entry; | 
 |   struct elf_link_hash_table *eht; | 
 |   struct elf_strtab_hash *dynstr; | 
 |   size_t dynstr_index; | 
 |   char *name; | 
 |   Elf_External_Sym_Shndx eshndx; | 
 |   char esym[sizeof (Elf64_External_Sym)]; | 
 |  | 
 |   if (! is_elf_hash_table (info->hash)) | 
 |     return 0; | 
 |  | 
 |   /* See if the entry exists already.  */ | 
 |   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) | 
 |     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) | 
 |       return 1; | 
 |  | 
 |   amt = sizeof (*entry); | 
 |   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); | 
 |   if (entry == NULL) | 
 |     return 0; | 
 |  | 
 |   /* Go find the symbol, so that we can find it's name.  */ | 
 |   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, | 
 | 			     1, input_indx, &entry->isym, esym, &eshndx)) | 
 |     { | 
 |       bfd_release (input_bfd, entry); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (entry->isym.st_shndx != SHN_UNDEF | 
 |       && entry->isym.st_shndx < SHN_LORESERVE) | 
 |     { | 
 |       asection *s; | 
 |  | 
 |       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); | 
 |       if (s == NULL || bfd_is_abs_section (s->output_section)) | 
 | 	{ | 
 | 	  /* We can still bfd_release here as nothing has done another | 
 | 	     bfd_alloc.  We can't do this later in this function.  */ | 
 | 	  bfd_release (input_bfd, entry); | 
 | 	  return 2; | 
 | 	} | 
 |     } | 
 |  | 
 |   name = (bfd_elf_string_from_elf_section | 
 | 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, | 
 | 	   entry->isym.st_name)); | 
 |  | 
 |   dynstr = elf_hash_table (info)->dynstr; | 
 |   if (dynstr == NULL) | 
 |     { | 
 |       /* Create a strtab to hold the dynamic symbol names.  */ | 
 |       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); | 
 |       if (dynstr == NULL) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   dynstr_index = _bfd_elf_strtab_add (dynstr, name, false); | 
 |   if (dynstr_index == (size_t) -1) | 
 |     return 0; | 
 |   entry->isym.st_name = dynstr_index; | 
 |  | 
 |   eht = elf_hash_table (info); | 
 |  | 
 |   entry->next = eht->dynlocal; | 
 |   eht->dynlocal = entry; | 
 |   entry->input_bfd = input_bfd; | 
 |   entry->input_indx = input_indx; | 
 |   eht->dynsymcount++; | 
 |  | 
 |   /* Whatever binding the symbol had before, it's now local.  */ | 
 |   entry->isym.st_info | 
 |     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); | 
 |  | 
 |   /* The dynindx will be set at the end of size_dynamic_sections.  */ | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Return the dynindex of a local dynamic symbol.  */ | 
 |  | 
 | long | 
 | _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, | 
 | 				    bfd *input_bfd, | 
 | 				    long input_indx) | 
 | { | 
 |   struct elf_link_local_dynamic_entry *e; | 
 |  | 
 |   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) | 
 |     if (e->input_bfd == input_bfd && e->input_indx == input_indx) | 
 |       return e->dynindx; | 
 |   return -1; | 
 | } | 
 |  | 
 | /* This function is used to renumber the dynamic symbols, if some of | 
 |    them are removed because they are marked as local.  This is called | 
 |    via elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, | 
 | 				      void *data) | 
 | { | 
 |   size_t *count = (size_t *) data; | 
 |  | 
 |   if (h->forced_local) | 
 |     return true; | 
 |  | 
 |   if (h->dynindx != -1) | 
 |     h->dynindx = ++(*count); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with | 
 |    STB_LOCAL binding.  */ | 
 |  | 
 | static bool | 
 | elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, | 
 | 					    void *data) | 
 | { | 
 |   size_t *count = (size_t *) data; | 
 |  | 
 |   if (!h->forced_local) | 
 |     return true; | 
 |  | 
 |   if (h->dynindx != -1) | 
 |     h->dynindx = ++(*count); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return true if the dynamic symbol for a given section should be | 
 |    omitted when creating a shared library.  */ | 
 | bool | 
 | _bfd_elf_omit_section_dynsym_default (bfd *output_bfd ATTRIBUTE_UNUSED, | 
 | 				      struct bfd_link_info *info, | 
 | 				      asection *p) | 
 | { | 
 |   struct elf_link_hash_table *htab; | 
 |   asection *ip; | 
 |  | 
 |   switch (elf_section_data (p)->this_hdr.sh_type) | 
 |     { | 
 |     case SHT_PROGBITS: | 
 |     case SHT_NOBITS: | 
 |       /* If sh_type is yet undecided, assume it could be | 
 | 	 SHT_PROGBITS/SHT_NOBITS.  */ | 
 |     case SHT_NULL: | 
 |       htab = elf_hash_table (info); | 
 |       if (htab->text_index_section != NULL) | 
 | 	return p != htab->text_index_section && p != htab->data_index_section; | 
 |  | 
 |       return (htab->dynobj != NULL | 
 | 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL | 
 | 	      && ip->output_section == p); | 
 |  | 
 |       /* There shouldn't be section relative relocations | 
 | 	 against any other section.  */ | 
 |     default: | 
 |       return true; | 
 |     } | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_omit_section_dynsym_all | 
 |     (bfd *output_bfd ATTRIBUTE_UNUSED, | 
 |      struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
 |      asection *p ATTRIBUTE_UNUSED) | 
 | { | 
 |   return true; | 
 | } | 
 |  | 
 | /* Assign dynsym indices.  In a shared library we generate a section | 
 |    symbol for each output section, which come first.  Next come symbols | 
 |    which have been forced to local binding.  Then all of the back-end | 
 |    allocated local dynamic syms, followed by the rest of the global | 
 |    symbols.  If SECTION_SYM_COUNT is NULL, section dynindx is not set. | 
 |    (This prevents the early call before elf_backend_init_index_section | 
 |    and strip_excluded_output_sections setting dynindx for sections | 
 |    that are stripped.)  */ | 
 |  | 
 | static unsigned long | 
 | _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, | 
 | 				struct bfd_link_info *info, | 
 | 				unsigned long *section_sym_count) | 
 | { | 
 |   unsigned long dynsymcount = 0; | 
 |   bool do_sec = section_sym_count != NULL; | 
 |  | 
 |   if (bfd_link_pic (info) | 
 |       || elf_hash_table (info)->is_relocatable_executable) | 
 |     { | 
 |       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | 
 |       asection *p; | 
 |       for (p = output_bfd->sections; p ; p = p->next) | 
 | 	if ((p->flags & SEC_EXCLUDE) == 0 | 
 | 	    && (p->flags & SEC_ALLOC) != 0 | 
 | 	    && elf_hash_table (info)->dynamic_relocs | 
 | 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) | 
 | 	  { | 
 | 	    ++dynsymcount; | 
 | 	    if (do_sec) | 
 | 	      elf_section_data (p)->dynindx = dynsymcount; | 
 | 	  } | 
 | 	else if (do_sec) | 
 | 	  elf_section_data (p)->dynindx = 0; | 
 |     } | 
 |   if (do_sec) | 
 |     *section_sym_count = dynsymcount; | 
 |  | 
 |   elf_link_hash_traverse (elf_hash_table (info), | 
 | 			  elf_link_renumber_local_hash_table_dynsyms, | 
 | 			  &dynsymcount); | 
 |  | 
 |   if (elf_hash_table (info)->dynlocal) | 
 |     { | 
 |       struct elf_link_local_dynamic_entry *p; | 
 |       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) | 
 | 	p->dynindx = ++dynsymcount; | 
 |     } | 
 |   elf_hash_table (info)->local_dynsymcount = dynsymcount; | 
 |  | 
 |   elf_link_hash_traverse (elf_hash_table (info), | 
 | 			  elf_link_renumber_hash_table_dynsyms, | 
 | 			  &dynsymcount); | 
 |  | 
 |   /* There is an unused NULL entry at the head of the table which we | 
 |      must account for in our count even if the table is empty since it | 
 |      is intended for the mandatory DT_SYMTAB tag (.dynsym section) in | 
 |      .dynamic section.  */ | 
 |   dynsymcount++; | 
 |  | 
 |   elf_hash_table (info)->dynsymcount = dynsymcount; | 
 |   return dynsymcount; | 
 | } | 
 |  | 
 | /* Merge st_other field.  */ | 
 |  | 
 | static void | 
 | elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, | 
 | 		    unsigned int st_other, asection *sec, | 
 | 		    bool definition, bool dynamic) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |  | 
 |   /* If st_other has a processor-specific meaning, specific | 
 |      code might be needed here.  */ | 
 |   if (bed->elf_backend_merge_symbol_attribute) | 
 |     (*bed->elf_backend_merge_symbol_attribute) (h, st_other, definition, | 
 | 						dynamic); | 
 |  | 
 |   if (!dynamic) | 
 |     { | 
 |       unsigned symvis = ELF_ST_VISIBILITY (st_other); | 
 |       unsigned hvis = ELF_ST_VISIBILITY (h->other); | 
 |  | 
 |       /* Keep the most constraining visibility.  Leave the remainder | 
 | 	 of the st_other field to elf_backend_merge_symbol_attribute.  */ | 
 |       if (symvis - 1 < hvis - 1) | 
 | 	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); | 
 |     } | 
 |   else if (definition | 
 | 	   && ELF_ST_VISIBILITY (st_other) != STV_DEFAULT | 
 | 	   && (sec->flags & SEC_READONLY) == 0) | 
 |     h->protected_def = 1; | 
 | } | 
 |  | 
 | /* This function is called when we want to merge a new symbol with an | 
 |    existing symbol.  It handles the various cases which arise when we | 
 |    find a definition in a dynamic object, or when there is already a | 
 |    definition in a dynamic object.  The new symbol is described by | 
 |    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table | 
 |    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK | 
 |    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment | 
 |    of an old common symbol.  We set OVERRIDE if the old symbol is | 
 |    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for | 
 |    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size | 
 |    to change.  By OK to change, we mean that we shouldn't warn if the | 
 |    type or size does change.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_merge_symbol (bfd *abfd, | 
 | 		       struct bfd_link_info *info, | 
 | 		       const char *name, | 
 | 		       Elf_Internal_Sym *sym, | 
 | 		       asection **psec, | 
 | 		       bfd_vma *pvalue, | 
 | 		       struct elf_link_hash_entry **sym_hash, | 
 | 		       bfd **poldbfd, | 
 | 		       bool *pold_weak, | 
 | 		       unsigned int *pold_alignment, | 
 | 		       bool *skip, | 
 | 		       bfd **override, | 
 | 		       bool *type_change_ok, | 
 | 		       bool *size_change_ok, | 
 | 		       bool *matched) | 
 | { | 
 |   asection *sec, *oldsec; | 
 |   struct elf_link_hash_entry *h; | 
 |   struct elf_link_hash_entry *hi; | 
 |   struct elf_link_hash_entry *flip; | 
 |   int bind; | 
 |   bfd *oldbfd; | 
 |   bool newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; | 
 |   bool newweak, oldweak, newfunc, oldfunc; | 
 |   const struct elf_backend_data *bed; | 
 |   char *new_version; | 
 |   bool default_sym = *matched; | 
 |   struct elf_link_hash_table *htab; | 
 |  | 
 |   *skip = false; | 
 |   *override = NULL; | 
 |  | 
 |   sec = *psec; | 
 |   bind = ELF_ST_BIND (sym->st_info); | 
 |  | 
 |   if (! bfd_is_und_section (sec)) | 
 |     h = elf_link_hash_lookup (elf_hash_table (info), name, true, false, false); | 
 |   else | 
 |     h = ((struct elf_link_hash_entry *) | 
 | 	 bfd_wrapped_link_hash_lookup (abfd, info, name, true, false, false)); | 
 |   if (h == NULL) | 
 |     return false; | 
 |   *sym_hash = h; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   /* NEW_VERSION is the symbol version of the new symbol.  */ | 
 |   if (h->versioned != unversioned) | 
 |     { | 
 |       /* Symbol version is unknown or versioned.  */ | 
 |       new_version = strrchr (name, ELF_VER_CHR); | 
 |       if (new_version) | 
 | 	{ | 
 | 	  if (h->versioned == unknown) | 
 | 	    { | 
 | 	      if (new_version > name && new_version[-1] != ELF_VER_CHR) | 
 | 		h->versioned = versioned_hidden; | 
 | 	      else | 
 | 		h->versioned = versioned; | 
 | 	    } | 
 | 	  new_version += 1; | 
 | 	  if (new_version[0] == '\0') | 
 | 	    new_version = NULL; | 
 | 	} | 
 |       else | 
 | 	h->versioned = unversioned; | 
 |     } | 
 |   else | 
 |     new_version = NULL; | 
 |  | 
 |   /* For merging, we only care about real symbols.  But we need to make | 
 |      sure that indirect symbol dynamic flags are updated.  */ | 
 |   hi = h; | 
 |   while (h->root.type == bfd_link_hash_indirect | 
 | 	 || h->root.type == bfd_link_hash_warning) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   if (!*matched) | 
 |     { | 
 |       if (hi == h || h->root.type == bfd_link_hash_new) | 
 | 	*matched = true; | 
 |       else | 
 | 	{ | 
 | 	  /* OLD_HIDDEN is true if the existing symbol is only visible | 
 | 	     to the symbol with the same symbol version.  NEW_HIDDEN is | 
 | 	     true if the new symbol is only visible to the symbol with | 
 | 	     the same symbol version.  */ | 
 | 	  bool old_hidden = h->versioned == versioned_hidden; | 
 | 	  bool new_hidden = hi->versioned == versioned_hidden; | 
 | 	  if (!old_hidden && !new_hidden) | 
 | 	    /* The new symbol matches the existing symbol if both | 
 | 	       aren't hidden.  */ | 
 | 	    *matched = true; | 
 | 	  else | 
 | 	    { | 
 | 	      /* OLD_VERSION is the symbol version of the existing | 
 | 		 symbol. */ | 
 | 	      char *old_version; | 
 |  | 
 | 	      if (h->versioned >= versioned) | 
 | 		old_version = strrchr (h->root.root.string, | 
 | 				       ELF_VER_CHR) + 1; | 
 | 	      else | 
 | 		 old_version = NULL; | 
 |  | 
 | 	      /* The new symbol matches the existing symbol if they | 
 | 		 have the same symbol version.  */ | 
 | 	      *matched = (old_version == new_version | 
 | 			  || (old_version != NULL | 
 | 			      && new_version != NULL | 
 | 			      && strcmp (old_version, new_version) == 0)); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the | 
 |      existing symbol.  */ | 
 |  | 
 |   oldbfd = NULL; | 
 |   oldsec = NULL; | 
 |   switch (h->root.type) | 
 |     { | 
 |     default: | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_undefined: | 
 |     case bfd_link_hash_undefweak: | 
 |       oldbfd = h->root.u.undef.abfd; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_defined: | 
 |     case bfd_link_hash_defweak: | 
 |       oldbfd = h->root.u.def.section->owner; | 
 |       oldsec = h->root.u.def.section; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_common: | 
 |       oldbfd = h->root.u.c.p->section->owner; | 
 |       oldsec = h->root.u.c.p->section; | 
 |       if (pold_alignment) | 
 | 	*pold_alignment = h->root.u.c.p->alignment_power; | 
 |       break; | 
 |     } | 
 |   if (poldbfd && *poldbfd == NULL) | 
 |     *poldbfd = oldbfd; | 
 |  | 
 |   /* Differentiate strong and weak symbols.  */ | 
 |   newweak = bind == STB_WEAK; | 
 |   oldweak = (h->root.type == bfd_link_hash_defweak | 
 | 	     || h->root.type == bfd_link_hash_undefweak); | 
 |   if (pold_weak) | 
 |     *pold_weak = oldweak; | 
 |  | 
 |   /* We have to check it for every instance since the first few may be | 
 |      references and not all compilers emit symbol type for undefined | 
 |      symbols.  */ | 
 |   bfd_elf_link_mark_dynamic_symbol (info, h, sym); | 
 |  | 
 |   htab = elf_hash_table (info); | 
 |  | 
 |   /* NEWDYN and OLDDYN indicate whether the new or old symbol, | 
 |      respectively, is from a dynamic object.  */ | 
 |  | 
 |   newdyn = (abfd->flags & DYNAMIC) != 0; | 
 |  | 
 |   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined | 
 |      syms and defined syms in dynamic libraries respectively. | 
 |      ref_dynamic on the other hand can be set for a symbol defined in | 
 |      a dynamic library, and def_dynamic may not be set;  When the | 
 |      definition in a dynamic lib is overridden by a definition in the | 
 |      executable use of the symbol in the dynamic lib becomes a | 
 |      reference to the executable symbol.  */ | 
 |   if (newdyn) | 
 |     { | 
 |       if (bfd_is_und_section (sec)) | 
 | 	{ | 
 | 	  if (bind != STB_WEAK) | 
 | 	    { | 
 | 	      h->ref_dynamic_nonweak = 1; | 
 | 	      hi->ref_dynamic_nonweak = 1; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* Update the existing symbol only if they match. */ | 
 | 	  if (*matched) | 
 | 	    h->dynamic_def = 1; | 
 | 	  hi->dynamic_def = 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we just created the symbol, mark it as being an ELF symbol. | 
 |      Other than that, there is nothing to do--there is no merge issue | 
 |      with a newly defined symbol--so we just return.  */ | 
 |  | 
 |   if (h->root.type == bfd_link_hash_new) | 
 |     { | 
 |       h->non_elf = 0; | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* In cases involving weak versioned symbols, we may wind up trying | 
 |      to merge a symbol with itself.  Catch that here, to avoid the | 
 |      confusion that results if we try to override a symbol with | 
 |      itself.  The additional tests catch cases like | 
 |      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a | 
 |      dynamic object, which we do want to handle here.  */ | 
 |   if (abfd == oldbfd | 
 |       && (newweak || oldweak) | 
 |       && ((abfd->flags & DYNAMIC) == 0 | 
 | 	  || !h->def_regular)) | 
 |     return true; | 
 |  | 
 |   olddyn = false; | 
 |   if (oldbfd != NULL) | 
 |     olddyn = (oldbfd->flags & DYNAMIC) != 0; | 
 |   else if (oldsec != NULL) | 
 |     { | 
 |       /* This handles the special SHN_MIPS_{TEXT,DATA} section | 
 | 	 indices used by MIPS ELF.  */ | 
 |       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; | 
 |     } | 
 |  | 
 |   /* Set non_ir_ref_dynamic only when not handling DT_NEEDED entries.  */ | 
 |   if (!htab->handling_dt_needed | 
 |       && oldbfd != NULL | 
 |       && (oldbfd->flags & BFD_PLUGIN) != (abfd->flags & BFD_PLUGIN)) | 
 |     { | 
 |       if (newdyn != olddyn) | 
 | 	{ | 
 | 	  /* Handle a case where plugin_notice won't be called and thus | 
 | 	     won't set the non_ir_ref flags on the first pass over | 
 | 	     symbols.  */ | 
 | 	  h->root.non_ir_ref_dynamic = true; | 
 | 	  hi->root.non_ir_ref_dynamic = true; | 
 | 	} | 
 |       else if ((oldbfd->flags & BFD_PLUGIN) != 0 | 
 | 	       && hi->root.type == bfd_link_hash_indirect) | 
 | 	{ | 
 | 	  /* Change indirect symbol from IR to undefined.  */ | 
 | 	  hi->root.type = bfd_link_hash_undefined; | 
 | 	  hi->root.u.undef.abfd = oldbfd; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* NEWDEF and OLDDEF indicate whether the new or old symbol, | 
 |      respectively, appear to be a definition rather than reference.  */ | 
 |  | 
 |   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); | 
 |  | 
 |   olddef = (h->root.type != bfd_link_hash_undefined | 
 | 	    && h->root.type != bfd_link_hash_undefweak | 
 | 	    && h->root.type != bfd_link_hash_common); | 
 |  | 
 |   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, | 
 |      respectively, appear to be a function.  */ | 
 |  | 
 |   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | 
 | 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); | 
 |  | 
 |   oldfunc = (h->type != STT_NOTYPE | 
 | 	     && bed->is_function_type (h->type)); | 
 |  | 
 |   if (!(newfunc && oldfunc) | 
 |       && ELF_ST_TYPE (sym->st_info) != h->type | 
 |       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE | 
 |       && h->type != STT_NOTYPE | 
 |       && (newdef || bfd_is_com_section (sec)) | 
 |       && (olddef || h->root.type == bfd_link_hash_common)) | 
 |     { | 
 |       /* If creating a default indirect symbol ("foo" or "foo@") from | 
 | 	 a dynamic versioned definition ("foo@@") skip doing so if | 
 | 	 there is an existing regular definition with a different | 
 | 	 type.  We don't want, for example, a "time" variable in the | 
 | 	 executable overriding a "time" function in a shared library.  */ | 
 |       if (newdyn | 
 | 	  && !olddyn) | 
 | 	{ | 
 | 	  *skip = true; | 
 | 	  return true; | 
 | 	} | 
 |  | 
 |       /* When adding a symbol from a regular object file after we have | 
 | 	 created indirect symbols, undo the indirection and any | 
 | 	 dynamic state.  */ | 
 |       if (hi != h | 
 | 	  && !newdyn | 
 | 	  && olddyn) | 
 | 	{ | 
 | 	  h = hi; | 
 | 	  (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	  h->forced_local = 0; | 
 | 	  h->ref_dynamic = 0; | 
 | 	  h->def_dynamic = 0; | 
 | 	  h->dynamic_def = 0; | 
 | 	  if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) | 
 | 	    { | 
 | 	      h->root.type = bfd_link_hash_undefined; | 
 | 	      h->root.u.undef.abfd = abfd; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      h->root.type = bfd_link_hash_new; | 
 | 	      h->root.u.undef.abfd = NULL; | 
 | 	    } | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Check TLS symbols.  We don't check undefined symbols introduced | 
 |      by "ld -u" which have no type (and oldbfd NULL), and we don't | 
 |      check symbols from plugins because they also have no type.  */ | 
 |   if (oldbfd != NULL | 
 |       && (oldbfd->flags & BFD_PLUGIN) == 0 | 
 |       && (abfd->flags & BFD_PLUGIN) == 0 | 
 |       && ELF_ST_TYPE (sym->st_info) != h->type | 
 |       && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) | 
 |     { | 
 |       bfd *ntbfd, *tbfd; | 
 |       bool ntdef, tdef; | 
 |       asection *ntsec, *tsec; | 
 |  | 
 |       if (h->type == STT_TLS) | 
 | 	{ | 
 | 	  ntbfd = abfd; | 
 | 	  ntsec = sec; | 
 | 	  ntdef = newdef; | 
 | 	  tbfd = oldbfd; | 
 | 	  tsec = oldsec; | 
 | 	  tdef = olddef; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  ntbfd = oldbfd; | 
 | 	  ntsec = oldsec; | 
 | 	  ntdef = olddef; | 
 | 	  tbfd = abfd; | 
 | 	  tsec = sec; | 
 | 	  tdef = newdef; | 
 | 	} | 
 |  | 
 |       if (tdef && ntdef) | 
 | 	_bfd_error_handler | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%s: TLS definition in %pB section %pA " | 
 | 	     "mismatches non-TLS definition in %pB section %pA"), | 
 | 	   h->root.root.string, tbfd, tsec, ntbfd, ntsec); | 
 |       else if (!tdef && !ntdef) | 
 | 	_bfd_error_handler | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%s: TLS reference in %pB " | 
 | 	     "mismatches non-TLS reference in %pB"), | 
 | 	   h->root.root.string, tbfd, ntbfd); | 
 |       else if (tdef) | 
 | 	_bfd_error_handler | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%s: TLS definition in %pB section %pA " | 
 | 	     "mismatches non-TLS reference in %pB"), | 
 | 	   h->root.root.string, tbfd, tsec, ntbfd); | 
 |       else | 
 | 	_bfd_error_handler | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%s: TLS reference in %pB " | 
 | 	     "mismatches non-TLS definition in %pB section %pA"), | 
 | 	   h->root.root.string, tbfd, ntbfd, ntsec); | 
 |  | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* If the old symbol has non-default visibility, we ignore the new | 
 |      definition from a dynamic object.  */ | 
 |   if (newdyn | 
 |       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
 |       && !bfd_is_und_section (sec)) | 
 |     { | 
 |       *skip = true; | 
 |       /* Make sure this symbol is dynamic.  */ | 
 |       h->ref_dynamic = 1; | 
 |       hi->ref_dynamic = 1; | 
 |       /* A protected symbol has external availability. Make sure it is | 
 | 	 recorded as dynamic. | 
 |  | 
 | 	 FIXME: Should we check type and size for protected symbol?  */ | 
 |       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) | 
 | 	return bfd_elf_link_record_dynamic_symbol (info, h); | 
 |       else | 
 | 	return true; | 
 |     } | 
 |   else if (!newdyn | 
 | 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT | 
 | 	   && h->def_dynamic) | 
 |     { | 
 |       /* If the new symbol with non-default visibility comes from a | 
 | 	 relocatable file and the old definition comes from a dynamic | 
 | 	 object, we remove the old definition.  */ | 
 |       if (hi->root.type == bfd_link_hash_indirect) | 
 | 	{ | 
 | 	  /* Handle the case where the old dynamic definition is | 
 | 	     default versioned.  We need to copy the symbol info from | 
 | 	     the symbol with default version to the normal one if it | 
 | 	     was referenced before.  */ | 
 | 	  if (h->ref_regular) | 
 | 	    { | 
 | 	      hi->root.type = h->root.type; | 
 | 	      h->root.type = bfd_link_hash_indirect; | 
 | 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); | 
 |  | 
 | 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | 
 | 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) | 
 | 		{ | 
 | 		  /* If the new symbol is hidden or internal, completely undo | 
 | 		     any dynamic link state.  */ | 
 | 		  (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 		  h->forced_local = 0; | 
 | 		  h->ref_dynamic = 0; | 
 | 		} | 
 | 	      else | 
 | 		h->ref_dynamic = 1; | 
 |  | 
 | 	      h->def_dynamic = 0; | 
 | 	      /* FIXME: Should we check type and size for protected symbol?  */ | 
 | 	      h->size = 0; | 
 | 	      h->type = 0; | 
 |  | 
 | 	      h = hi; | 
 | 	    } | 
 | 	  else | 
 | 	    h = hi; | 
 | 	} | 
 |  | 
 |       /* If the old symbol was undefined before, then it will still be | 
 | 	 on the undefs list.  If the new symbol is undefined or | 
 | 	 common, we can't make it bfd_link_hash_new here, because new | 
 | 	 undefined or common symbols will be added to the undefs list | 
 | 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be | 
 | 	 added twice to the undefs list.  Also, if the new symbol is | 
 | 	 undefweak then we don't want to lose the strong undef.  */ | 
 |       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) | 
 | 	{ | 
 | 	  h->root.type = bfd_link_hash_undefined; | 
 | 	  h->root.u.undef.abfd = abfd; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  h->root.type = bfd_link_hash_new; | 
 | 	  h->root.u.undef.abfd = NULL; | 
 | 	} | 
 |  | 
 |       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) | 
 | 	{ | 
 | 	  /* If the new symbol is hidden or internal, completely undo | 
 | 	     any dynamic link state.  */ | 
 | 	  (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	  h->forced_local = 0; | 
 | 	  h->ref_dynamic = 0; | 
 | 	} | 
 |       else | 
 | 	h->ref_dynamic = 1; | 
 |       h->def_dynamic = 0; | 
 |       /* FIXME: Should we check type and size for protected symbol?  */ | 
 |       h->size = 0; | 
 |       h->type = 0; | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* If a new weak symbol definition comes from a regular file and the | 
 |      old symbol comes from a dynamic library, we treat the new one as | 
 |      strong.  Similarly, an old weak symbol definition from a regular | 
 |      file is treated as strong when the new symbol comes from a dynamic | 
 |      library.  Further, an old weak symbol from a dynamic library is | 
 |      treated as strong if the new symbol is from a dynamic library. | 
 |      This reflects the way glibc's ld.so works. | 
 |  | 
 |      Also allow a weak symbol to override a linker script symbol | 
 |      defined by an early pass over the script.  This is done so the | 
 |      linker knows the symbol is defined in an object file, for the | 
 |      DEFINED script function. | 
 |  | 
 |      Do this before setting *type_change_ok or *size_change_ok so that | 
 |      we warn properly when dynamic library symbols are overridden.  */ | 
 |  | 
 |   if (newdef && !newdyn && (olddyn || h->root.ldscript_def)) | 
 |     newweak = false; | 
 |   if (olddef && newdyn) | 
 |     oldweak = false; | 
 |  | 
 |   /* Allow changes between different types of function symbol.  */ | 
 |   if (newfunc && oldfunc) | 
 |     *type_change_ok = true; | 
 |  | 
 |   /* It's OK to change the type if either the existing symbol or the | 
 |      new symbol is weak.  A type change is also OK if the old symbol | 
 |      is undefined and the new symbol is defined.  */ | 
 |  | 
 |   if (oldweak | 
 |       || newweak | 
 |       || (newdef | 
 | 	  && h->root.type == bfd_link_hash_undefined)) | 
 |     *type_change_ok = true; | 
 |  | 
 |   /* It's OK to change the size if either the existing symbol or the | 
 |      new symbol is weak, or if the old symbol is undefined.  */ | 
 |  | 
 |   if (*type_change_ok | 
 |       || h->root.type == bfd_link_hash_undefined) | 
 |     *size_change_ok = true; | 
 |  | 
 |   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old | 
 |      symbol, respectively, appears to be a common symbol in a dynamic | 
 |      object.  If a symbol appears in an uninitialized section, and is | 
 |      not weak, and is not a function, then it may be a common symbol | 
 |      which was resolved when the dynamic object was created.  We want | 
 |      to treat such symbols specially, because they raise special | 
 |      considerations when setting the symbol size: if the symbol | 
 |      appears as a common symbol in a regular object, and the size in | 
 |      the regular object is larger, we must make sure that we use the | 
 |      larger size.  This problematic case can always be avoided in C, | 
 |      but it must be handled correctly when using Fortran shared | 
 |      libraries. | 
 |  | 
 |      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and | 
 |      likewise for OLDDYNCOMMON and OLDDEF. | 
 |  | 
 |      Note that this test is just a heuristic, and that it is quite | 
 |      possible to have an uninitialized symbol in a shared object which | 
 |      is really a definition, rather than a common symbol.  This could | 
 |      lead to some minor confusion when the symbol really is a common | 
 |      symbol in some regular object.  However, I think it will be | 
 |      harmless.  */ | 
 |  | 
 |   if (newdyn | 
 |       && newdef | 
 |       && !newweak | 
 |       && (sec->flags & SEC_ALLOC) != 0 | 
 |       && (sec->flags & SEC_LOAD) == 0 | 
 |       && sym->st_size > 0 | 
 |       && !newfunc) | 
 |     newdyncommon = true; | 
 |   else | 
 |     newdyncommon = false; | 
 |  | 
 |   if (olddyn | 
 |       && olddef | 
 |       && h->root.type == bfd_link_hash_defined | 
 |       && h->def_dynamic | 
 |       && (h->root.u.def.section->flags & SEC_ALLOC) != 0 | 
 |       && (h->root.u.def.section->flags & SEC_LOAD) == 0 | 
 |       && h->size > 0 | 
 |       && !oldfunc) | 
 |     olddyncommon = true; | 
 |   else | 
 |     olddyncommon = false; | 
 |  | 
 |   /* We now know everything about the old and new symbols.  We ask the | 
 |      backend to check if we can merge them.  */ | 
 |   if (bed->merge_symbol != NULL) | 
 |     { | 
 |       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) | 
 | 	return false; | 
 |       sec = *psec; | 
 |     } | 
 |  | 
 |   /* There are multiple definitions of a normal symbol.  Skip the | 
 |      default symbol as well as definition from an IR object.  */ | 
 |   if (olddef && !olddyn && !oldweak && newdef && !newdyn && !newweak | 
 |       && !default_sym && h->def_regular | 
 |       && !(oldbfd != NULL | 
 | 	   && (oldbfd->flags & BFD_PLUGIN) != 0 | 
 | 	   && (abfd->flags & BFD_PLUGIN) == 0)) | 
 |     { | 
 |       /* Handle a multiple definition.  */ | 
 |       (*info->callbacks->multiple_definition) (info, &h->root, | 
 | 					       abfd, sec, *pvalue); | 
 |       *skip = true; | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* If both the old and the new symbols look like common symbols in a | 
 |      dynamic object, set the size of the symbol to the larger of the | 
 |      two.  */ | 
 |  | 
 |   if (olddyncommon | 
 |       && newdyncommon | 
 |       && sym->st_size != h->size) | 
 |     { | 
 |       /* Since we think we have two common symbols, issue a multiple | 
 | 	 common warning if desired.  Note that we only warn if the | 
 | 	 size is different.  If the size is the same, we simply let | 
 | 	 the old symbol override the new one as normally happens with | 
 | 	 symbols defined in dynamic objects.  */ | 
 |  | 
 |       (*info->callbacks->multiple_common) (info, &h->root, abfd, | 
 | 					   bfd_link_hash_common, sym->st_size); | 
 |       if (sym->st_size > h->size) | 
 | 	h->size = sym->st_size; | 
 |  | 
 |       *size_change_ok = true; | 
 |     } | 
 |  | 
 |   /* If we are looking at a dynamic object, and we have found a | 
 |      definition, we need to see if the symbol was already defined by | 
 |      some other object.  If so, we want to use the existing | 
 |      definition, and we do not want to report a multiple symbol | 
 |      definition error; we do this by clobbering *PSEC to be | 
 |      bfd_und_section_ptr. | 
 |  | 
 |      We treat a common symbol as a definition if the symbol in the | 
 |      shared library is a function, since common symbols always | 
 |      represent variables; this can cause confusion in principle, but | 
 |      any such confusion would seem to indicate an erroneous program or | 
 |      shared library.  We also permit a common symbol in a regular | 
 |      object to override a weak symbol in a shared object.  */ | 
 |  | 
 |   if (newdyn | 
 |       && newdef | 
 |       && (olddef | 
 | 	  || (h->root.type == bfd_link_hash_common | 
 | 	      && (newweak || newfunc)))) | 
 |     { | 
 |       *override = abfd; | 
 |       newdef = false; | 
 |       newdyncommon = false; | 
 |  | 
 |       *psec = sec = bfd_und_section_ptr; | 
 |       *size_change_ok = true; | 
 |  | 
 |       /* If we get here when the old symbol is a common symbol, then | 
 | 	 we are explicitly letting it override a weak symbol or | 
 | 	 function in a dynamic object, and we don't want to warn about | 
 | 	 a type change.  If the old symbol is a defined symbol, a type | 
 | 	 change warning may still be appropriate.  */ | 
 |  | 
 |       if (h->root.type == bfd_link_hash_common) | 
 | 	*type_change_ok = true; | 
 |     } | 
 |  | 
 |   /* Handle the special case of an old common symbol merging with a | 
 |      new symbol which looks like a common symbol in a shared object. | 
 |      We change *PSEC and *PVALUE to make the new symbol look like a | 
 |      common symbol, and let _bfd_generic_link_add_one_symbol do the | 
 |      right thing.  */ | 
 |  | 
 |   if (newdyncommon | 
 |       && h->root.type == bfd_link_hash_common) | 
 |     { | 
 |       *override = oldbfd; | 
 |       newdef = false; | 
 |       newdyncommon = false; | 
 |       *pvalue = sym->st_size; | 
 |       *psec = sec = bed->common_section (oldsec); | 
 |       *size_change_ok = true; | 
 |     } | 
 |  | 
 |   /* Skip weak definitions of symbols that are already defined.  */ | 
 |   if (newdef && olddef && newweak) | 
 |     { | 
 |       /* Don't skip new non-IR weak syms.  */ | 
 |       if (!(oldbfd != NULL | 
 | 	    && (oldbfd->flags & BFD_PLUGIN) != 0 | 
 | 	    && (abfd->flags & BFD_PLUGIN) == 0)) | 
 | 	{ | 
 | 	  newdef = false; | 
 | 	  *skip = true; | 
 | 	} | 
 |  | 
 |       /* Merge st_other.  If the symbol already has a dynamic index, | 
 | 	 but visibility says it should not be visible, turn it into a | 
 | 	 local symbol.  */ | 
 |       elf_merge_st_other (abfd, h, sym->st_other, sec, newdef, newdyn); | 
 |       if (h->dynindx != -1) | 
 | 	switch (ELF_ST_VISIBILITY (h->other)) | 
 | 	  { | 
 | 	  case STV_INTERNAL: | 
 | 	  case STV_HIDDEN: | 
 | 	    (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	    break; | 
 | 	  } | 
 |     } | 
 |  | 
 |   /* If the old symbol is from a dynamic object, and the new symbol is | 
 |      a definition which is not from a dynamic object, then the new | 
 |      symbol overrides the old symbol.  Symbols from regular files | 
 |      always take precedence over symbols from dynamic objects, even if | 
 |      they are defined after the dynamic object in the link. | 
 |  | 
 |      As above, we again permit a common symbol in a regular object to | 
 |      override a definition in a shared object if the shared object | 
 |      symbol is a function or is weak.  */ | 
 |  | 
 |   flip = NULL; | 
 |   if (!newdyn | 
 |       && (newdef | 
 | 	  || (bfd_is_com_section (sec) | 
 | 	      && (oldweak || oldfunc))) | 
 |       && olddyn | 
 |       && olddef | 
 |       && h->def_dynamic) | 
 |     { | 
 |       /* Change the hash table entry to undefined, and let | 
 | 	 _bfd_generic_link_add_one_symbol do the right thing with the | 
 | 	 new definition.  */ | 
 |  | 
 |       h->root.type = bfd_link_hash_undefined; | 
 |       h->root.u.undef.abfd = h->root.u.def.section->owner; | 
 |       *size_change_ok = true; | 
 |  | 
 |       olddef = false; | 
 |       olddyncommon = false; | 
 |  | 
 |       /* We again permit a type change when a common symbol may be | 
 | 	 overriding a function.  */ | 
 |  | 
 |       if (bfd_is_com_section (sec)) | 
 | 	{ | 
 | 	  if (oldfunc) | 
 | 	    { | 
 | 	      /* If a common symbol overrides a function, make sure | 
 | 		 that it isn't defined dynamically nor has type | 
 | 		 function.  */ | 
 | 	      h->def_dynamic = 0; | 
 | 	      h->type = STT_NOTYPE; | 
 | 	    } | 
 | 	  *type_change_ok = true; | 
 | 	} | 
 |  | 
 |       if (hi->root.type == bfd_link_hash_indirect) | 
 | 	flip = hi; | 
 |       else | 
 | 	/* This union may have been set to be non-NULL when this symbol | 
 | 	   was seen in a dynamic object.  We must force the union to be | 
 | 	   NULL, so that it is correct for a regular symbol.  */ | 
 | 	h->verinfo.vertree = NULL; | 
 |     } | 
 |  | 
 |   /* Handle the special case of a new common symbol merging with an | 
 |      old symbol that looks like it might be a common symbol defined in | 
 |      a shared object.  Note that we have already handled the case in | 
 |      which a new common symbol should simply override the definition | 
 |      in the shared library.  */ | 
 |  | 
 |   if (! newdyn | 
 |       && bfd_is_com_section (sec) | 
 |       && olddyncommon) | 
 |     { | 
 |       /* It would be best if we could set the hash table entry to a | 
 | 	 common symbol, but we don't know what to use for the section | 
 | 	 or the alignment.  */ | 
 |       (*info->callbacks->multiple_common) (info, &h->root, abfd, | 
 | 					   bfd_link_hash_common, sym->st_size); | 
 |  | 
 |       /* If the presumed common symbol in the dynamic object is | 
 | 	 larger, pretend that the new symbol has its size.  */ | 
 |  | 
 |       if (h->size > *pvalue) | 
 | 	*pvalue = h->size; | 
 |  | 
 |       /* We need to remember the alignment required by the symbol | 
 | 	 in the dynamic object.  */ | 
 |       BFD_ASSERT (pold_alignment); | 
 |       *pold_alignment = h->root.u.def.section->alignment_power; | 
 |  | 
 |       olddef = false; | 
 |       olddyncommon = false; | 
 |  | 
 |       h->root.type = bfd_link_hash_undefined; | 
 |       h->root.u.undef.abfd = h->root.u.def.section->owner; | 
 |  | 
 |       *size_change_ok = true; | 
 |       *type_change_ok = true; | 
 |  | 
 |       if (hi->root.type == bfd_link_hash_indirect) | 
 | 	flip = hi; | 
 |       else | 
 | 	h->verinfo.vertree = NULL; | 
 |     } | 
 |  | 
 |   if (flip != NULL) | 
 |     { | 
 |       /* Handle the case where we had a versioned symbol in a dynamic | 
 | 	 library and now find a definition in a normal object.  In this | 
 | 	 case, we make the versioned symbol point to the normal one.  */ | 
 |       flip->root.type = h->root.type; | 
 |       flip->root.u.undef.abfd = h->root.u.undef.abfd; | 
 |       h->root.type = bfd_link_hash_indirect; | 
 |       h->root.u.i.link = (struct bfd_link_hash_entry *) flip; | 
 |       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); | 
 |       if (h->def_dynamic) | 
 | 	{ | 
 | 	  h->def_dynamic = 0; | 
 | 	  flip->ref_dynamic = 1; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* This function is called to create an indirect symbol from the | 
 |    default for the symbol with the default version if needed. The | 
 |    symbol is described by H, NAME, SYM, SEC, and VALUE.  We | 
 |    set DYNSYM if the new indirect symbol is dynamic.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_add_default_symbol (bfd *abfd, | 
 | 			     struct bfd_link_info *info, | 
 | 			     struct elf_link_hash_entry *h, | 
 | 			     const char *name, | 
 | 			     Elf_Internal_Sym *sym, | 
 | 			     asection *sec, | 
 | 			     bfd_vma value, | 
 | 			     bfd **poldbfd, | 
 | 			     bool *dynsym) | 
 | { | 
 |   bool type_change_ok; | 
 |   bool size_change_ok; | 
 |   bool skip; | 
 |   char *shortname; | 
 |   struct elf_link_hash_entry *hi; | 
 |   struct bfd_link_hash_entry *bh; | 
 |   const struct elf_backend_data *bed; | 
 |   bool collect; | 
 |   bool dynamic; | 
 |   bfd *override; | 
 |   char *p; | 
 |   size_t len, shortlen; | 
 |   asection *tmp_sec; | 
 |   bool matched; | 
 |  | 
 |   if (h->versioned == unversioned || h->versioned == versioned_hidden) | 
 |     return true; | 
 |  | 
 |   /* If this symbol has a version, and it is the default version, we | 
 |      create an indirect symbol from the default name to the fully | 
 |      decorated name.  This will cause external references which do not | 
 |      specify a version to be bound to this version of the symbol.  */ | 
 |   p = strchr (name, ELF_VER_CHR); | 
 |   if (h->versioned == unknown) | 
 |     { | 
 |       if (p == NULL) | 
 | 	{ | 
 | 	  h->versioned = unversioned; | 
 | 	  return true; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (p[1] != ELF_VER_CHR) | 
 | 	    { | 
 | 	      h->versioned = versioned_hidden; | 
 | 	      return true; | 
 | 	    } | 
 | 	  else | 
 | 	    h->versioned = versioned; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* PR ld/19073: We may see an unversioned definition after the | 
 | 	 default version.  */ | 
 |       if (p == NULL) | 
 | 	return true; | 
 |     } | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   collect = bed->collect; | 
 |   dynamic = (abfd->flags & DYNAMIC) != 0; | 
 |  | 
 |   shortlen = p - name; | 
 |   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); | 
 |   if (shortname == NULL) | 
 |     return false; | 
 |   memcpy (shortname, name, shortlen); | 
 |   shortname[shortlen] = '\0'; | 
 |  | 
 |   /* We are going to create a new symbol.  Merge it with any existing | 
 |      symbol with this name.  For the purposes of the merge, act as | 
 |      though we were defining the symbol we just defined, although we | 
 |      actually going to define an indirect symbol.  */ | 
 |   type_change_ok = false; | 
 |   size_change_ok = false; | 
 |   matched = true; | 
 |   tmp_sec = sec; | 
 |   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | 
 | 			      &hi, poldbfd, NULL, NULL, &skip, &override, | 
 | 			      &type_change_ok, &size_change_ok, &matched)) | 
 |     return false; | 
 |  | 
 |   if (skip) | 
 |     goto nondefault; | 
 |  | 
 |   if (hi->def_regular || ELF_COMMON_DEF_P (hi)) | 
 |     { | 
 |       /* If the undecorated symbol will have a version added by a | 
 | 	 script different to H, then don't indirect to/from the | 
 | 	 undecorated symbol.  This isn't ideal because we may not yet | 
 | 	 have seen symbol versions, if given by a script on the | 
 | 	 command line rather than via --version-script.  */ | 
 |       if (hi->verinfo.vertree == NULL && info->version_info != NULL) | 
 | 	{ | 
 | 	  bool hide; | 
 |  | 
 | 	  hi->verinfo.vertree | 
 | 	    = bfd_find_version_for_sym (info->version_info, | 
 | 					hi->root.root.string, &hide); | 
 | 	  if (hi->verinfo.vertree != NULL && hide) | 
 | 	    { | 
 | 	      (*bed->elf_backend_hide_symbol) (info, hi, true); | 
 | 	      goto nondefault; | 
 | 	    } | 
 | 	} | 
 |       if (hi->verinfo.vertree != NULL | 
 | 	  && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) | 
 | 	goto nondefault; | 
 |     } | 
 |  | 
 |   if (! override) | 
 |     { | 
 |       /* Add the default symbol if not performing a relocatable link.  */ | 
 |       if (! bfd_link_relocatable (info)) | 
 | 	{ | 
 | 	  bh = &hi->root; | 
 | 	  if (bh->type == bfd_link_hash_defined | 
 | 	      && bh->u.def.section->owner != NULL | 
 | 	      && (bh->u.def.section->owner->flags & BFD_PLUGIN) != 0) | 
 | 	    { | 
 | 	      /* Mark the previous definition from IR object as | 
 | 		 undefined so that the generic linker will override | 
 | 		 it.  */ | 
 | 	      bh->type = bfd_link_hash_undefined; | 
 | 	      bh->u.undef.abfd = bh->u.def.section->owner; | 
 | 	    } | 
 | 	  if (! (_bfd_generic_link_add_one_symbol | 
 | 		 (info, abfd, shortname, BSF_INDIRECT, | 
 | 		  bfd_ind_section_ptr, | 
 | 		  0, name, false, collect, &bh))) | 
 | 	    return false; | 
 | 	  hi = (struct elf_link_hash_entry *) bh; | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* In this case the symbol named SHORTNAME is overriding the | 
 | 	 indirect symbol we want to add.  We were planning on making | 
 | 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME | 
 | 	 is the name without a version.  NAME is the fully versioned | 
 | 	 name, and it is the default version. | 
 |  | 
 | 	 Overriding means that we already saw a definition for the | 
 | 	 symbol SHORTNAME in a regular object, and it is overriding | 
 | 	 the symbol defined in the dynamic object. | 
 |  | 
 | 	 When this happens, we actually want to change NAME, the | 
 | 	 symbol we just added, to refer to SHORTNAME.  This will cause | 
 | 	 references to NAME in the shared object to become references | 
 | 	 to SHORTNAME in the regular object.  This is what we expect | 
 | 	 when we override a function in a shared object: that the | 
 | 	 references in the shared object will be mapped to the | 
 | 	 definition in the regular object.  */ | 
 |  | 
 |       while (hi->root.type == bfd_link_hash_indirect | 
 | 	     || hi->root.type == bfd_link_hash_warning) | 
 | 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | 
 |  | 
 |       h->root.type = bfd_link_hash_indirect; | 
 |       h->root.u.i.link = (struct bfd_link_hash_entry *) hi; | 
 |       if (h->def_dynamic) | 
 | 	{ | 
 | 	  h->def_dynamic = 0; | 
 | 	  hi->ref_dynamic = 1; | 
 | 	  if (hi->ref_regular | 
 | 	      || hi->def_regular) | 
 | 	    { | 
 | 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi)) | 
 | 		return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Now set HI to H, so that the following code will set the | 
 | 	 other fields correctly.  */ | 
 |       hi = h; | 
 |     } | 
 |  | 
 |   /* Check if HI is a warning symbol.  */ | 
 |   if (hi->root.type == bfd_link_hash_warning) | 
 |     hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | 
 |  | 
 |   /* If there is a duplicate definition somewhere, then HI may not | 
 |      point to an indirect symbol.  We will have reported an error to | 
 |      the user in that case.  */ | 
 |  | 
 |   if (hi->root.type == bfd_link_hash_indirect) | 
 |     { | 
 |       struct elf_link_hash_entry *ht; | 
 |  | 
 |       ht = (struct elf_link_hash_entry *) hi->root.u.i.link; | 
 |       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); | 
 |  | 
 |       /* If we first saw a reference to SHORTNAME with non-default | 
 | 	 visibility, merge that visibility to the @@VER symbol.  */ | 
 |       elf_merge_st_other (abfd, ht, hi->other, sec, true, dynamic); | 
 |  | 
 |       /* A reference to the SHORTNAME symbol from a dynamic library | 
 | 	 will be satisfied by the versioned symbol at runtime.  In | 
 | 	 effect, we have a reference to the versioned symbol.  */ | 
 |       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; | 
 |       hi->dynamic_def |= ht->dynamic_def; | 
 |  | 
 |       /* See if the new flags lead us to realize that the symbol must | 
 | 	 be dynamic.  */ | 
 |       if (! *dynsym) | 
 | 	{ | 
 | 	  if (! dynamic) | 
 | 	    { | 
 | 	      if (! bfd_link_executable (info) | 
 | 		  || hi->def_dynamic | 
 | 		  || hi->ref_dynamic) | 
 | 		*dynsym = true; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (hi->ref_regular) | 
 | 		*dynsym = true; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We also need to define an indirection from the nondefault version | 
 |      of the symbol.  */ | 
 |  | 
 |  nondefault: | 
 |   len = strlen (name); | 
 |   shortname = (char *) bfd_hash_allocate (&info->hash->table, len); | 
 |   if (shortname == NULL) | 
 |     return false; | 
 |   memcpy (shortname, name, shortlen); | 
 |   memcpy (shortname + shortlen, p + 1, len - shortlen); | 
 |  | 
 |   /* Once again, merge with any existing symbol.  */ | 
 |   type_change_ok = false; | 
 |   size_change_ok = false; | 
 |   tmp_sec = sec; | 
 |   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, | 
 | 			      &hi, poldbfd, NULL, NULL, &skip, &override, | 
 | 			      &type_change_ok, &size_change_ok, &matched)) | 
 |     return false; | 
 |  | 
 |   if (skip) | 
 |     { | 
 |       if (!dynamic | 
 | 	  && h->root.type == bfd_link_hash_defweak | 
 | 	  && hi->root.type == bfd_link_hash_defined) | 
 | 	{ | 
 | 	  /* We are handling a weak sym@@ver and attempting to define | 
 | 	     a weak sym@ver, but _bfd_elf_merge_symbol said to skip the | 
 | 	     new weak sym@ver because there is already a strong sym@ver. | 
 | 	     However, sym@ver and sym@@ver are really the same symbol. | 
 | 	     The existing strong sym@ver ought to override sym@@ver.  */ | 
 | 	  h->root.type = bfd_link_hash_defined; | 
 | 	  h->root.u.def.section = hi->root.u.def.section; | 
 | 	  h->root.u.def.value = hi->root.u.def.value; | 
 | 	  hi->root.type = bfd_link_hash_indirect; | 
 | 	  hi->root.u.i.link = &h->root; | 
 | 	} | 
 |       else | 
 | 	return true; | 
 |     } | 
 |   else if (override) | 
 |     { | 
 |       /* Here SHORTNAME is a versioned name, so we don't expect to see | 
 | 	 the type of override we do in the case above unless it is | 
 | 	 overridden by a versioned definition.  */ | 
 |       if (hi->root.type != bfd_link_hash_defined | 
 | 	  && hi->root.type != bfd_link_hash_defweak) | 
 | 	_bfd_error_handler | 
 | 	  /* xgettext:c-format */ | 
 | 	  (_("%pB: unexpected redefinition of indirect versioned symbol `%s'"), | 
 | 	   abfd, shortname); | 
 |       return true; | 
 |     } | 
 |   else | 
 |     { | 
 |       bh = &hi->root; | 
 |       if (! (_bfd_generic_link_add_one_symbol | 
 | 	     (info, abfd, shortname, BSF_INDIRECT, | 
 | 	      bfd_ind_section_ptr, 0, name, false, collect, &bh))) | 
 | 	return false; | 
 |       hi = (struct elf_link_hash_entry *) bh; | 
 |     } | 
 |  | 
 |   /* If there is a duplicate definition somewhere, then HI may not | 
 |      point to an indirect symbol.  We will have reported an error | 
 |      to the user in that case.  */ | 
 |   if (hi->root.type == bfd_link_hash_indirect) | 
 |     { | 
 |       (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | 
 |       h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; | 
 |       hi->dynamic_def |= h->dynamic_def; | 
 |  | 
 |       /* If we first saw a reference to @VER symbol with | 
 | 	 non-default visibility, merge that visibility to the | 
 | 	 @@VER symbol.  */ | 
 |       elf_merge_st_other (abfd, h, hi->other, sec, true, dynamic); | 
 |  | 
 |       /* See if the new flags lead us to realize that the symbol | 
 | 	 must be dynamic.  */ | 
 |       if (! *dynsym) | 
 | 	{ | 
 | 	  if (! dynamic) | 
 | 	    { | 
 | 	      if (! bfd_link_executable (info) | 
 | 		  || hi->ref_dynamic) | 
 | 		*dynsym = true; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (hi->ref_regular) | 
 | 		*dynsym = true; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* This routine is used to export all defined symbols into the dynamic | 
 |    symbol table.  It is called via elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct elf_info_failed *eif = (struct elf_info_failed *) data; | 
 |  | 
 |   /* Ignore indirect symbols.  These are added by the versioning code.  */ | 
 |   if (h->root.type == bfd_link_hash_indirect) | 
 |     return true; | 
 |  | 
 |   /* Ignore this if we won't export it.  */ | 
 |   if (!eif->info->export_dynamic && !h->dynamic) | 
 |     return true; | 
 |  | 
 |   if (h->dynindx == -1 | 
 |       && (h->def_regular || h->ref_regular) | 
 |       && ! bfd_hide_sym_by_version (eif->info->version_info, | 
 | 				    h->root.root.string)) | 
 |     { | 
 |       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | 
 | 	{ | 
 | 	  eif->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return true if GLIBC_ABI_DT_RELR is added to the list of version | 
 |    dependencies successfully.  GLIBC_ABI_DT_RELR will be put into the | 
 |    .gnu.version_r section.  */ | 
 |  | 
 | static bool | 
 | elf_link_add_dt_relr_dependency (struct elf_find_verdep_info *rinfo) | 
 | { | 
 |   bfd *glibc_bfd = NULL; | 
 |   Elf_Internal_Verneed *t; | 
 |   Elf_Internal_Vernaux *a; | 
 |   size_t amt; | 
 |   const char *relr = "GLIBC_ABI_DT_RELR"; | 
 |  | 
 |   /* See if we already know about GLIBC_PRIVATE_DT_RELR.  */ | 
 |   for (t = elf_tdata (rinfo->info->output_bfd)->verref; | 
 |        t != NULL; | 
 |        t = t->vn_nextref) | 
 |     { | 
 |       const char *soname = bfd_elf_get_dt_soname (t->vn_bfd); | 
 |       /* Skip the shared library if it isn't libc.so.  */ | 
 |       if (!soname || !startswith (soname, "libc.so.")) | 
 | 	continue; | 
 |  | 
 |       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 	{ | 
 | 	  /* Return if GLIBC_PRIVATE_DT_RELR dependency has been | 
 | 	     added.  */ | 
 | 	  if (a->vna_nodename == relr | 
 | 	      || strcmp (a->vna_nodename, relr) == 0) | 
 | 	    return true; | 
 |  | 
 | 	  /* Check if libc.so provides GLIBC_2.XX version.  */ | 
 | 	  if (!glibc_bfd && startswith (a->vna_nodename, "GLIBC_2.")) | 
 | 	    glibc_bfd = t->vn_bfd; | 
 | 	} | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |   /* Skip if it isn't linked against glibc.  */ | 
 |   if (glibc_bfd == NULL) | 
 |     return true; | 
 |  | 
 |   /* This is a new version.  Add it to tree we are building.  */ | 
 |   if (t == NULL) | 
 |     { | 
 |       amt = sizeof *t; | 
 |       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, | 
 | 					       amt); | 
 |       if (t == NULL) | 
 | 	{ | 
 | 	  rinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       t->vn_bfd = glibc_bfd; | 
 |       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; | 
 |       elf_tdata (rinfo->info->output_bfd)->verref = t; | 
 |     } | 
 |  | 
 |   amt = sizeof *a; | 
 |   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); | 
 |   if (a == NULL) | 
 |     { | 
 |       rinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   a->vna_nodename = relr; | 
 |   a->vna_flags = 0; | 
 |   a->vna_nextptr = t->vn_auxptr; | 
 |   a->vna_other = rinfo->vers + 1; | 
 |   ++rinfo->vers; | 
 |  | 
 |   t->vn_auxptr = a; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Look through the symbols which are defined in other shared | 
 |    libraries and referenced here.  Update the list of version | 
 |    dependencies.  This will be put into the .gnu.version_r section. | 
 |    This function is called via elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, | 
 | 					 void *data) | 
 | { | 
 |   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; | 
 |   Elf_Internal_Verneed *t; | 
 |   Elf_Internal_Vernaux *a; | 
 |   size_t amt; | 
 |  | 
 |   /* We only care about symbols defined in shared objects with version | 
 |      information.  */ | 
 |   if (!h->def_dynamic | 
 |       || h->def_regular | 
 |       || h->dynindx == -1 | 
 |       || h->verinfo.verdef == NULL | 
 |       || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) | 
 | 	  & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) | 
 |     return true; | 
 |  | 
 |   /* See if we already know about this version.  */ | 
 |   for (t = elf_tdata (rinfo->info->output_bfd)->verref; | 
 |        t != NULL; | 
 |        t = t->vn_nextref) | 
 |     { | 
 |       if (t->vn_bfd != h->verinfo.verdef->vd_bfd) | 
 | 	continue; | 
 |  | 
 |       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename) | 
 | 	  return true; | 
 |  | 
 |       break; | 
 |     } | 
 |  | 
 |   /* This is a new version.  Add it to tree we are building.  */ | 
 |  | 
 |   if (t == NULL) | 
 |     { | 
 |       amt = sizeof *t; | 
 |       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); | 
 |       if (t == NULL) | 
 | 	{ | 
 | 	  rinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       t->vn_bfd = h->verinfo.verdef->vd_bfd; | 
 |       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; | 
 |       elf_tdata (rinfo->info->output_bfd)->verref = t; | 
 |     } | 
 |  | 
 |   amt = sizeof *a; | 
 |   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); | 
 |   if (a == NULL) | 
 |     { | 
 |       rinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* Note that we are copying a string pointer here, and testing it | 
 |      above.  If bfd_elf_string_from_elf_section is ever changed to | 
 |      discard the string data when low in memory, this will have to be | 
 |      fixed.  */ | 
 |   a->vna_nodename = h->verinfo.verdef->vd_nodename; | 
 |  | 
 |   a->vna_flags = h->verinfo.verdef->vd_flags; | 
 |   a->vna_nextptr = t->vn_auxptr; | 
 |  | 
 |   h->verinfo.verdef->vd_exp_refno = rinfo->vers; | 
 |   ++rinfo->vers; | 
 |  | 
 |   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; | 
 |  | 
 |   t->vn_auxptr = a; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return TRUE and set *HIDE to TRUE if the versioned symbol is | 
 |    hidden.  Set *T_P to NULL if there is no match.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_link_hide_versioned_symbol (struct bfd_link_info *info, | 
 | 				     struct elf_link_hash_entry *h, | 
 | 				     const char *version_p, | 
 | 				     struct bfd_elf_version_tree **t_p, | 
 | 				     bool *hide) | 
 | { | 
 |   struct bfd_elf_version_tree *t; | 
 |  | 
 |   /* Look for the version.  If we find it, it is no longer weak.  */ | 
 |   for (t = info->version_info; t != NULL; t = t->next) | 
 |     { | 
 |       if (strcmp (t->name, version_p) == 0) | 
 | 	{ | 
 | 	  size_t len; | 
 | 	  char *alc; | 
 | 	  struct bfd_elf_version_expr *d; | 
 |  | 
 | 	  len = version_p - h->root.root.string; | 
 | 	  alc = (char *) bfd_malloc (len); | 
 | 	  if (alc == NULL) | 
 | 	    return false; | 
 | 	  memcpy (alc, h->root.root.string, len - 1); | 
 | 	  alc[len - 1] = '\0'; | 
 | 	  if (alc[len - 2] == ELF_VER_CHR) | 
 | 	    alc[len - 2] = '\0'; | 
 |  | 
 | 	  h->verinfo.vertree = t; | 
 | 	  t->used = true; | 
 | 	  d = NULL; | 
 |  | 
 | 	  if (t->globals.list != NULL) | 
 | 	    d = (*t->match) (&t->globals, NULL, alc); | 
 |  | 
 | 	  /* See if there is anything to force this symbol to | 
 | 	     local scope.  */ | 
 | 	  if (d == NULL && t->locals.list != NULL) | 
 | 	    { | 
 | 	      d = (*t->match) (&t->locals, NULL, alc); | 
 | 	      if (d != NULL | 
 | 		  && h->dynindx != -1 | 
 | 		  && ! info->export_dynamic) | 
 | 		*hide = true; | 
 | 	    } | 
 |  | 
 | 	  free (alc); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   *t_p = t; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return TRUE if the symbol H is hidden by version script.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_hide_sym_by_version (struct bfd_link_info *info, | 
 | 				   struct elf_link_hash_entry *h) | 
 | { | 
 |   const char *p; | 
 |   bool hide = false; | 
 |   const struct elf_backend_data *bed | 
 |     = get_elf_backend_data (info->output_bfd); | 
 |  | 
 |   /* Version script only hides symbols defined in regular objects.  */ | 
 |   if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | 
 |     return true; | 
 |  | 
 |   p = strchr (h->root.root.string, ELF_VER_CHR); | 
 |   if (p != NULL && h->verinfo.vertree == NULL) | 
 |     { | 
 |       struct bfd_elf_version_tree *t; | 
 |  | 
 |       ++p; | 
 |       if (*p == ELF_VER_CHR) | 
 | 	++p; | 
 |  | 
 |       if (*p != '\0' | 
 | 	  && _bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide) | 
 | 	  && hide) | 
 | 	{ | 
 | 	  if (hide) | 
 | 	    (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we don't have a version for this symbol, see if we can find | 
 |      something.  */ | 
 |   if (h->verinfo.vertree == NULL && info->version_info != NULL) | 
 |     { | 
 |       h->verinfo.vertree | 
 | 	= bfd_find_version_for_sym (info->version_info, | 
 | 				    h->root.root.string, &hide); | 
 |       if (h->verinfo.vertree != NULL && hide) | 
 | 	{ | 
 | 	  (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Figure out appropriate versions for all the symbols.  We may not | 
 |    have the version number script until we have read all of the input | 
 |    files, so until that point we don't know which symbols should be | 
 |    local.  This function is called via elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct elf_info_failed *sinfo; | 
 |   struct bfd_link_info *info; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_info_failed eif; | 
 |   char *p; | 
 |   bool hide; | 
 |  | 
 |   sinfo = (struct elf_info_failed *) data; | 
 |   info = sinfo->info; | 
 |  | 
 |   /* Fix the symbol flags.  */ | 
 |   eif.failed = false; | 
 |   eif.info = info; | 
 |   if (! _bfd_elf_fix_symbol_flags (h, &eif)) | 
 |     { | 
 |       if (eif.failed) | 
 | 	sinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   bed = get_elf_backend_data (info->output_bfd); | 
 |  | 
 |   /* We only need version numbers for symbols defined in regular | 
 |      objects.  */ | 
 |   if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | 
 |     { | 
 |       /* Hide symbols defined in discarded input sections.  */ | 
 |       if ((h->root.type == bfd_link_hash_defined | 
 | 	   || h->root.type == bfd_link_hash_defweak) | 
 | 	  && discarded_section (h->root.u.def.section)) | 
 | 	(*bed->elf_backend_hide_symbol) (info, h, true); | 
 |       return true; | 
 |     } | 
 |  | 
 |   hide = false; | 
 |   p = strchr (h->root.root.string, ELF_VER_CHR); | 
 |   if (p != NULL && h->verinfo.vertree == NULL) | 
 |     { | 
 |       struct bfd_elf_version_tree *t; | 
 |  | 
 |       ++p; | 
 |       if (*p == ELF_VER_CHR) | 
 | 	++p; | 
 |  | 
 |       /* If there is no version string, we can just return out.  */ | 
 |       if (*p == '\0') | 
 | 	return true; | 
 |  | 
 |       if (!_bfd_elf_link_hide_versioned_symbol (info, h, p, &t, &hide)) | 
 | 	{ | 
 | 	  sinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       if (hide) | 
 | 	(*bed->elf_backend_hide_symbol) (info, h, true); | 
 |  | 
 |       /* If we are building an application, we need to create a | 
 | 	 version node for this version.  */ | 
 |       if (t == NULL && bfd_link_executable (info)) | 
 | 	{ | 
 | 	  struct bfd_elf_version_tree **pp; | 
 | 	  int version_index; | 
 |  | 
 | 	  /* If we aren't going to export this symbol, we don't need | 
 | 	     to worry about it.  */ | 
 | 	  if (h->dynindx == -1) | 
 | 	    return true; | 
 |  | 
 | 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, | 
 | 							  sizeof *t); | 
 | 	  if (t == NULL) | 
 | 	    { | 
 | 	      sinfo->failed = true; | 
 | 	      return false; | 
 | 	    } | 
 |  | 
 | 	  t->name = p; | 
 | 	  t->name_indx = (unsigned int) -1; | 
 | 	  t->used = true; | 
 |  | 
 | 	  version_index = 1; | 
 | 	  /* Don't count anonymous version tag.  */ | 
 | 	  if (sinfo->info->version_info != NULL | 
 | 	      && sinfo->info->version_info->vernum == 0) | 
 | 	    version_index = 0; | 
 | 	  for (pp = &sinfo->info->version_info; | 
 | 	       *pp != NULL; | 
 | 	       pp = &(*pp)->next) | 
 | 	    ++version_index; | 
 | 	  t->vernum = version_index; | 
 |  | 
 | 	  *pp = t; | 
 |  | 
 | 	  h->verinfo.vertree = t; | 
 | 	} | 
 |       else if (t == NULL) | 
 | 	{ | 
 | 	  /* We could not find the version for a symbol when | 
 | 	     generating a shared archive.  Return an error.  */ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext:c-format */ | 
 | 	    (_("%pB: version node not found for symbol %s"), | 
 | 	     info->output_bfd, h->root.root.string); | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  sinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we don't have a version for this symbol, see if we can find | 
 |      something.  */ | 
 |   if (!hide | 
 |       && h->verinfo.vertree == NULL | 
 |       && sinfo->info->version_info != NULL) | 
 |     { | 
 |       h->verinfo.vertree | 
 | 	= bfd_find_version_for_sym (sinfo->info->version_info, | 
 | 				    h->root.root.string, &hide); | 
 |       if (h->verinfo.vertree != NULL && hide) | 
 | 	(*bed->elf_backend_hide_symbol) (info, h, true); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Read and swap the relocs from the section indicated by SHDR.  This | 
 |    may be either a REL or a RELA section.  The relocations are | 
 |    translated into RELA relocations and stored in INTERNAL_RELOCS, | 
 |    which should have already been allocated to contain enough space. | 
 |    The EXTERNAL_RELOCS are a buffer where the external form of the | 
 |    relocations should be stored. | 
 |  | 
 |    Returns FALSE if something goes wrong.  */ | 
 |  | 
 | static bool | 
 | elf_link_read_relocs_from_section (bfd *abfd, | 
 | 				   asection *sec, | 
 | 				   Elf_Internal_Shdr *shdr, | 
 | 				   void *external_relocs, | 
 | 				   Elf_Internal_Rela *internal_relocs) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | 
 |   const bfd_byte *erela; | 
 |   const bfd_byte *erelaend; | 
 |   Elf_Internal_Rela *irela; | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   size_t nsyms; | 
 |  | 
 |   /* Position ourselves at the start of the section.  */ | 
 |   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) | 
 |     return false; | 
 |  | 
 |   /* Read the relocations.  */ | 
 |   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) | 
 |     return false; | 
 |  | 
 |   symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   nsyms = NUM_SHDR_ENTRIES (symtab_hdr); | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   /* Convert the external relocations to the internal format.  */ | 
 |   if (shdr->sh_entsize == bed->s->sizeof_rel) | 
 |     swap_in = bed->s->swap_reloc_in; | 
 |   else if (shdr->sh_entsize == bed->s->sizeof_rela) | 
 |     swap_in = bed->s->swap_reloca_in; | 
 |   else | 
 |     { | 
 |       bfd_set_error (bfd_error_wrong_format); | 
 |       return false; | 
 |     } | 
 |  | 
 |   erela = (const bfd_byte *) external_relocs; | 
 |   /* Setting erelaend like this and comparing with <= handles case of | 
 |      a fuzzed object with sh_size not a multiple of sh_entsize.  */ | 
 |   erelaend = erela + shdr->sh_size - shdr->sh_entsize; | 
 |   irela = internal_relocs; | 
 |   while (erela <= erelaend) | 
 |     { | 
 |       bfd_vma r_symndx; | 
 |  | 
 |       (*swap_in) (abfd, erela, irela); | 
 |       r_symndx = ELF32_R_SYM (irela->r_info); | 
 |       if (bed->s->arch_size == 64) | 
 | 	r_symndx >>= 24; | 
 |       if (nsyms > 0) | 
 | 	{ | 
 | 	  if ((size_t) r_symndx >= nsyms) | 
 | 	    { | 
 | 	      _bfd_error_handler | 
 | 		/* xgettext:c-format */ | 
 | 		(_("%pB: bad reloc symbol index (%#" PRIx64 " >= %#lx)" | 
 | 		   " for offset %#" PRIx64 " in section `%pA'"), | 
 | 		 abfd, (uint64_t) r_symndx, (unsigned long) nsyms, | 
 | 		 (uint64_t) irela->r_offset, sec); | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |       else if (r_symndx != STN_UNDEF) | 
 | 	{ | 
 | 	  _bfd_error_handler | 
 | 	    /* xgettext:c-format */ | 
 | 	    (_("%pB: non-zero symbol index (%#" PRIx64 ")" | 
 | 	       " for offset %#" PRIx64 " in section `%pA'" | 
 | 	       " when the object file has no symbol table"), | 
 | 	     abfd, (uint64_t) r_symndx, | 
 | 	     (uint64_t) irela->r_offset, sec); | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  return false; | 
 | 	} | 
 |       irela += bed->s->int_rels_per_ext_rel; | 
 |       erela += shdr->sh_entsize; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Read and swap the relocs for a section O.  They may have been | 
 |    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are | 
 |    not NULL, they are used as buffers to read into.  They are known to | 
 |    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL, | 
 |    the return value is allocated using either malloc or bfd_alloc, | 
 |    according to the KEEP_MEMORY argument.  If O has two relocation | 
 |    sections (both REL and RELA relocations), then the REL_HDR | 
 |    relocations will appear first in INTERNAL_RELOCS, followed by the | 
 |    RELA_HDR relocations.  If INFO isn't NULL and KEEP_MEMORY is true, | 
 |    update cache_size.  */ | 
 |  | 
 | Elf_Internal_Rela * | 
 | _bfd_elf_link_info_read_relocs (bfd *abfd, | 
 | 				struct bfd_link_info *info, | 
 | 				asection *o, | 
 | 				void *external_relocs, | 
 | 				Elf_Internal_Rela *internal_relocs, | 
 | 				bool keep_memory) | 
 | { | 
 |   void *alloc1 = NULL; | 
 |   Elf_Internal_Rela *alloc2 = NULL; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct bfd_elf_section_data *esdo = elf_section_data (o); | 
 |   Elf_Internal_Rela *internal_rela_relocs; | 
 |  | 
 |   if (esdo->relocs != NULL) | 
 |     return esdo->relocs; | 
 |  | 
 |   if (o->reloc_count == 0) | 
 |     return NULL; | 
 |  | 
 |   if (internal_relocs == NULL) | 
 |     { | 
 |       bfd_size_type size; | 
 |  | 
 |       size = (bfd_size_type) o->reloc_count * sizeof (Elf_Internal_Rela); | 
 |       if (keep_memory) | 
 | 	{ | 
 | 	  internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); | 
 | 	  if (info) | 
 | 	    info->cache_size += size; | 
 | 	} | 
 |       else | 
 | 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); | 
 |       if (internal_relocs == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (external_relocs == NULL) | 
 |     { | 
 |       bfd_size_type size = 0; | 
 |  | 
 |       if (esdo->rel.hdr) | 
 | 	size += esdo->rel.hdr->sh_size; | 
 |       if (esdo->rela.hdr) | 
 | 	size += esdo->rela.hdr->sh_size; | 
 |  | 
 |       alloc1 = bfd_malloc (size); | 
 |       if (alloc1 == NULL) | 
 | 	goto error_return; | 
 |       external_relocs = alloc1; | 
 |     } | 
 |  | 
 |   internal_rela_relocs = internal_relocs; | 
 |   if (esdo->rel.hdr) | 
 |     { | 
 |       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, | 
 | 					      external_relocs, | 
 | 					      internal_relocs)) | 
 | 	goto error_return; | 
 |       external_relocs = (((bfd_byte *) external_relocs) | 
 | 			 + esdo->rel.hdr->sh_size); | 
 |       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) | 
 | 			       * bed->s->int_rels_per_ext_rel); | 
 |     } | 
 |  | 
 |   if (esdo->rela.hdr | 
 |       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, | 
 | 					      external_relocs, | 
 | 					      internal_rela_relocs))) | 
 |     goto error_return; | 
 |  | 
 |   /* Cache the results for next time, if we can.  */ | 
 |   if (keep_memory) | 
 |     esdo->relocs = internal_relocs; | 
 |  | 
 |   free (alloc1); | 
 |  | 
 |   /* Don't free alloc2, since if it was allocated we are passing it | 
 |      back (under the name of internal_relocs).  */ | 
 |  | 
 |   return internal_relocs; | 
 |  | 
 |  error_return: | 
 |   free (alloc1); | 
 |   if (alloc2 != NULL) | 
 |     { | 
 |       if (keep_memory) | 
 | 	bfd_release (abfd, alloc2); | 
 |       else | 
 | 	free (alloc2); | 
 |     } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* This is similar to _bfd_elf_link_info_read_relocs, except for that | 
 |    NULL is passed to _bfd_elf_link_info_read_relocs for pointer to | 
 |    struct bfd_link_info.  */ | 
 |  | 
 | Elf_Internal_Rela * | 
 | _bfd_elf_link_read_relocs (bfd *abfd, | 
 | 			   asection *o, | 
 | 			   void *external_relocs, | 
 | 			   Elf_Internal_Rela *internal_relocs, | 
 | 			   bool keep_memory) | 
 | { | 
 |   return _bfd_elf_link_info_read_relocs (abfd, NULL, o, external_relocs, | 
 | 					 internal_relocs, keep_memory); | 
 |  | 
 | } | 
 |  | 
 | /* Compute the size of, and allocate space for, REL_HDR which is the | 
 |    section header for a section containing relocations for O.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_link_size_reloc_section (bfd *abfd, | 
 | 				  struct bfd_elf_section_reloc_data *reldata) | 
 | { | 
 |   Elf_Internal_Shdr *rel_hdr = reldata->hdr; | 
 |  | 
 |   /* That allows us to calculate the size of the section.  */ | 
 |   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; | 
 |  | 
 |   /* The contents field must last into write_object_contents, so we | 
 |      allocate it with bfd_alloc rather than malloc.  Also since we | 
 |      cannot be sure that the contents will actually be filled in, | 
 |      we zero the allocated space.  */ | 
 |   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); | 
 |   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) | 
 |     return false; | 
 |  | 
 |   if (reldata->hashes == NULL && reldata->count) | 
 |     { | 
 |       struct elf_link_hash_entry **p; | 
 |  | 
 |       p = ((struct elf_link_hash_entry **) | 
 | 	   bfd_zmalloc (reldata->count * sizeof (*p))); | 
 |       if (p == NULL) | 
 | 	return false; | 
 |  | 
 |       reldata->hashes = p; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Copy the relocations indicated by the INTERNAL_RELOCS (which | 
 |    originated from the section given by INPUT_REL_HDR) to the | 
 |    OUTPUT_BFD.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_output_relocs (bfd *output_bfd, | 
 | 			     asection *input_section, | 
 | 			     Elf_Internal_Shdr *input_rel_hdr, | 
 | 			     Elf_Internal_Rela *internal_relocs, | 
 | 			     struct elf_link_hash_entry **rel_hash | 
 | 			       ATTRIBUTE_UNUSED) | 
 | { | 
 |   Elf_Internal_Rela *irela; | 
 |   Elf_Internal_Rela *irelaend; | 
 |   bfd_byte *erel; | 
 |   struct bfd_elf_section_reloc_data *output_reldata; | 
 |   asection *output_section; | 
 |   const struct elf_backend_data *bed; | 
 |   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | 
 |   struct bfd_elf_section_data *esdo; | 
 |  | 
 |   output_section = input_section->output_section; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   esdo = elf_section_data (output_section); | 
 |   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) | 
 |     { | 
 |       output_reldata = &esdo->rel; | 
 |       swap_out = bed->s->swap_reloc_out; | 
 |     } | 
 |   else if (esdo->rela.hdr | 
 | 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) | 
 |     { | 
 |       output_reldata = &esdo->rela; | 
 |       swap_out = bed->s->swap_reloca_out; | 
 |     } | 
 |   else | 
 |     { | 
 |       _bfd_error_handler | 
 | 	/* xgettext:c-format */ | 
 | 	(_("%pB: relocation size mismatch in %pB section %pA"), | 
 | 	 output_bfd, input_section->owner, input_section); | 
 |       bfd_set_error (bfd_error_wrong_format); | 
 |       return false; | 
 |     } | 
 |  | 
 |   erel = output_reldata->hdr->contents; | 
 |   erel += output_reldata->count * input_rel_hdr->sh_entsize; | 
 |   irela = internal_relocs; | 
 |   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) | 
 | 		      * bed->s->int_rels_per_ext_rel); | 
 |   while (irela < irelaend) | 
 |     { | 
 |       (*swap_out) (output_bfd, irela, erel); | 
 |       irela += bed->s->int_rels_per_ext_rel; | 
 |       erel += input_rel_hdr->sh_entsize; | 
 |     } | 
 |  | 
 |   /* Bump the counter, so that we know where to add the next set of | 
 |      relocations.  */ | 
 |   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Make weak undefined symbols in PIE dynamic.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, | 
 | 				 struct elf_link_hash_entry *h) | 
 | { | 
 |   if (bfd_link_pie (info) | 
 |       && h->dynindx == -1 | 
 |       && h->root.type == bfd_link_hash_undefweak) | 
 |     return bfd_elf_link_record_dynamic_symbol (info, h); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Fix up the flags for a symbol.  This handles various cases which | 
 |    can only be fixed after all the input files are seen.  This is | 
 |    currently called by both adjust_dynamic_symbol and | 
 |    assign_sym_version, which is unnecessary but perhaps more robust in | 
 |    the face of future changes.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, | 
 | 			   struct elf_info_failed *eif) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   /* If this symbol was mentioned in a non-ELF file, try to set | 
 |      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to | 
 |      permit a non-ELF file to correctly refer to a symbol defined in | 
 |      an ELF dynamic object.  */ | 
 |   if (h->non_elf) | 
 |     { | 
 |       while (h->root.type == bfd_link_hash_indirect) | 
 | 	h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |       if (h->root.type != bfd_link_hash_defined | 
 | 	  && h->root.type != bfd_link_hash_defweak) | 
 | 	{ | 
 | 	  h->ref_regular = 1; | 
 | 	  h->ref_regular_nonweak = 1; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (h->root.u.def.section->owner != NULL | 
 | 	      && (bfd_get_flavour (h->root.u.def.section->owner) | 
 | 		  == bfd_target_elf_flavour)) | 
 | 	    { | 
 | 	      h->ref_regular = 1; | 
 | 	      h->ref_regular_nonweak = 1; | 
 | 	    } | 
 | 	  else | 
 | 	    h->def_regular = 1; | 
 | 	} | 
 |  | 
 |       if (h->dynindx == -1 | 
 | 	  && (h->def_dynamic | 
 | 	      || h->ref_dynamic)) | 
 | 	{ | 
 | 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) | 
 | 	    { | 
 | 	      eif->failed = true; | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Unfortunately, NON_ELF is only correct if the symbol | 
 | 	 was first seen in a non-ELF file.  Fortunately, if the symbol | 
 | 	 was first seen in an ELF file, we're probably OK unless the | 
 | 	 symbol was defined in a non-ELF file.  Catch that case here. | 
 | 	 FIXME: We're still in trouble if the symbol was first seen in | 
 | 	 a dynamic object, and then later in a non-ELF regular object.  */ | 
 |       if ((h->root.type == bfd_link_hash_defined | 
 | 	   || h->root.type == bfd_link_hash_defweak) | 
 | 	  && !h->def_regular | 
 | 	  && (h->root.u.def.section->owner != NULL | 
 | 	      ? (bfd_get_flavour (h->root.u.def.section->owner) | 
 | 		 != bfd_target_elf_flavour) | 
 | 	      : (bfd_is_abs_section (h->root.u.def.section) | 
 | 		 && !h->def_dynamic))) | 
 | 	h->def_regular = 1; | 
 |     } | 
 |  | 
 |   /* Backend specific symbol fixup.  */ | 
 |   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); | 
 |   if (bed->elf_backend_fixup_symbol | 
 |       && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) | 
 |     return false; | 
 |  | 
 |   /* If this is a final link, and the symbol was defined as a common | 
 |      symbol in a regular object file, and there was no definition in | 
 |      any dynamic object, then the linker will have allocated space for | 
 |      the symbol in a common section but the DEF_REGULAR | 
 |      flag will not have been set.  */ | 
 |   if (h->root.type == bfd_link_hash_defined | 
 |       && !h->def_regular | 
 |       && h->ref_regular | 
 |       && !h->def_dynamic | 
 |       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) | 
 |     h->def_regular = 1; | 
 |  | 
 |   /* Symbols defined in discarded sections shouldn't be dynamic.  */ | 
 |   if (h->root.type == bfd_link_hash_undefined && h->indx == -3) | 
 |     (*bed->elf_backend_hide_symbol) (eif->info, h, true); | 
 |  | 
 |   /* If a weak undefined symbol has non-default visibility, we also | 
 |      hide it from the dynamic linker.  */ | 
 |   else if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT | 
 | 	   && h->root.type == bfd_link_hash_undefweak) | 
 |     (*bed->elf_backend_hide_symbol) (eif->info, h, true); | 
 |  | 
 |   /* A hidden versioned symbol in executable should be forced local if | 
 |      it is is locally defined, not referenced by shared library and not | 
 |      exported.  */ | 
 |   else if (bfd_link_executable (eif->info) | 
 | 	   && h->versioned == versioned_hidden | 
 | 	   && !eif->info->export_dynamic | 
 | 	   && !h->dynamic | 
 | 	   && !h->ref_dynamic | 
 | 	   && h->def_regular) | 
 |     (*bed->elf_backend_hide_symbol) (eif->info, h, true); | 
 |  | 
 |   /* If -Bsymbolic was used (which means to bind references to global | 
 |      symbols to the definition within the shared object), and this | 
 |      symbol was defined in a regular object, then it actually doesn't | 
 |      need a PLT entry.  Likewise, if the symbol has non-default | 
 |      visibility.  If the symbol has hidden or internal visibility, we | 
 |      will force it local.  */ | 
 |   else if (h->needs_plt | 
 | 	   && bfd_link_pic (eif->info) | 
 | 	   && is_elf_hash_table (eif->info->hash) | 
 | 	   && (SYMBOLIC_BIND (eif->info, h) | 
 | 	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) | 
 | 	   && h->def_regular) | 
 |     { | 
 |       bool force_local; | 
 |  | 
 |       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL | 
 | 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); | 
 |       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); | 
 |     } | 
 |  | 
 |   /* If this is a weak defined symbol in a dynamic object, and we know | 
 |      the real definition in the dynamic object, copy interesting flags | 
 |      over to the real definition.  */ | 
 |   if (h->is_weakalias) | 
 |     { | 
 |       struct elf_link_hash_entry *def = weakdef (h); | 
 |  | 
 |       /* If the real definition is defined by a regular object file, | 
 | 	 don't do anything special.  See the longer description in | 
 | 	 _bfd_elf_adjust_dynamic_symbol, below.  If the def is not | 
 | 	 bfd_link_hash_defined as it was when put on the alias list | 
 | 	 then it must have originally been a versioned symbol (for | 
 | 	 which a non-versioned indirect symbol is created) and later | 
 | 	 a definition for the non-versioned symbol is found.  In that | 
 | 	 case the indirection is flipped with the versioned symbol | 
 | 	 becoming an indirect pointing at the non-versioned symbol. | 
 | 	 Thus, not an alias any more.  */ | 
 |       if (def->def_regular | 
 | 	  || def->root.type != bfd_link_hash_defined) | 
 | 	{ | 
 | 	  h = def; | 
 | 	  while ((h = h->u.alias) != def) | 
 | 	    h->is_weakalias = 0; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  while (h->root.type == bfd_link_hash_indirect) | 
 | 	    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined | 
 | 		      || h->root.type == bfd_link_hash_defweak); | 
 | 	  BFD_ASSERT (def->def_dynamic); | 
 | 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, def, h); | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Make the backend pick a good value for a dynamic symbol.  This is | 
 |    called via elf_link_hash_traverse, and also calls itself | 
 |    recursively.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct elf_info_failed *eif = (struct elf_info_failed *) data; | 
 |   struct elf_link_hash_table *htab; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   if (! is_elf_hash_table (eif->info->hash)) | 
 |     return false; | 
 |  | 
 |   /* Ignore indirect symbols.  These are added by the versioning code.  */ | 
 |   if (h->root.type == bfd_link_hash_indirect) | 
 |     return true; | 
 |  | 
 |   /* Fix the symbol flags.  */ | 
 |   if (! _bfd_elf_fix_symbol_flags (h, eif)) | 
 |     return false; | 
 |  | 
 |   htab = elf_hash_table (eif->info); | 
 |   bed = get_elf_backend_data (htab->dynobj); | 
 |  | 
 |   if (h->root.type == bfd_link_hash_undefweak) | 
 |     { | 
 |       if (eif->info->dynamic_undefined_weak == 0) | 
 | 	(*bed->elf_backend_hide_symbol) (eif->info, h, true); | 
 |       else if (eif->info->dynamic_undefined_weak > 0 | 
 | 	       && h->ref_regular | 
 | 	       && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
 | 	       && !bfd_hide_sym_by_version (eif->info->version_info, | 
 | 					    h->root.root.string)) | 
 | 	{ | 
 | 	  if (!bfd_elf_link_record_dynamic_symbol (eif->info, h)) | 
 | 	    { | 
 | 	      eif->failed = true; | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If this symbol does not require a PLT entry, and it is not | 
 |      defined by a dynamic object, or is not referenced by a regular | 
 |      object, ignore it.  We do have to handle a weak defined symbol, | 
 |      even if no regular object refers to it, if we decided to add it | 
 |      to the dynamic symbol table.  FIXME: Do we normally need to worry | 
 |      about symbols which are defined by one dynamic object and | 
 |      referenced by another one?  */ | 
 |   if (!h->needs_plt | 
 |       && h->type != STT_GNU_IFUNC | 
 |       && (h->def_regular | 
 | 	  || !h->def_dynamic | 
 | 	  || (!h->ref_regular | 
 | 	      && (!h->is_weakalias || weakdef (h)->dynindx == -1)))) | 
 |     { | 
 |       h->plt = elf_hash_table (eif->info)->init_plt_offset; | 
 |       return true; | 
 |     } | 
 |  | 
 |   /* If we've already adjusted this symbol, don't do it again.  This | 
 |      can happen via a recursive call.  */ | 
 |   if (h->dynamic_adjusted) | 
 |     return true; | 
 |  | 
 |   /* Don't look at this symbol again.  Note that we must set this | 
 |      after checking the above conditions, because we may look at a | 
 |      symbol once, decide not to do anything, and then get called | 
 |      recursively later after REF_REGULAR is set below.  */ | 
 |   h->dynamic_adjusted = 1; | 
 |  | 
 |   /* If this is a weak definition, and we know a real definition, and | 
 |      the real symbol is not itself defined by a regular object file, | 
 |      then get a good value for the real definition.  We handle the | 
 |      real symbol first, for the convenience of the backend routine. | 
 |  | 
 |      Note that there is a confusing case here.  If the real definition | 
 |      is defined by a regular object file, we don't get the real symbol | 
 |      from the dynamic object, but we do get the weak symbol.  If the | 
 |      processor backend uses a COPY reloc, then if some routine in the | 
 |      dynamic object changes the real symbol, we will not see that | 
 |      change in the corresponding weak symbol.  This is the way other | 
 |      ELF linkers work as well, and seems to be a result of the shared | 
 |      library model. | 
 |  | 
 |      I will clarify this issue.  Most SVR4 shared libraries define the | 
 |      variable _timezone and define timezone as a weak synonym.  The | 
 |      tzset call changes _timezone.  If you write | 
 |        extern int timezone; | 
 |        int _timezone = 5; | 
 |        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } | 
 |      you might expect that, since timezone is a synonym for _timezone, | 
 |      the same number will print both times.  However, if the processor | 
 |      backend uses a COPY reloc, then actually timezone will be copied | 
 |      into your process image, and, since you define _timezone | 
 |      yourself, _timezone will not.  Thus timezone and _timezone will | 
 |      wind up at different memory locations.  The tzset call will set | 
 |      _timezone, leaving timezone unchanged.  */ | 
 |  | 
 |   if (h->is_weakalias) | 
 |     { | 
 |       struct elf_link_hash_entry *def = weakdef (h); | 
 |  | 
 |       /* If we get to this point, there is an implicit reference to | 
 | 	 the alias by a regular object file via the weak symbol H.  */ | 
 |       def->ref_regular = 1; | 
 |  | 
 |       /* Ensure that the backend adjust_dynamic_symbol function sees | 
 | 	 the strong alias before H by recursively calling ourselves.  */ | 
 |       if (!_bfd_elf_adjust_dynamic_symbol (def, eif)) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   /* If a symbol has no type and no size and does not require a PLT | 
 |      entry, then we are probably about to do the wrong thing here: we | 
 |      are probably going to create a COPY reloc for an empty object. | 
 |      This case can arise when a shared object is built with assembly | 
 |      code, and the assembly code fails to set the symbol type.  */ | 
 |   if (h->size == 0 | 
 |       && h->type == STT_NOTYPE | 
 |       && !h->needs_plt) | 
 |     _bfd_error_handler | 
 |       (_("warning: type and size of dynamic symbol `%s' are not defined"), | 
 |        h->root.root.string); | 
 |  | 
 |   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) | 
 |     { | 
 |       eif->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, | 
 |    DYNBSS.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, | 
 | 			      struct elf_link_hash_entry *h, | 
 | 			      asection *dynbss) | 
 | { | 
 |   unsigned int power_of_two; | 
 |   bfd_vma mask; | 
 |   asection *sec = h->root.u.def.section; | 
 |  | 
 |   /* The section alignment of the definition is the maximum alignment | 
 |      requirement of symbols defined in the section.  Since we don't | 
 |      know the symbol alignment requirement, we start with the | 
 |      maximum alignment and check low bits of the symbol address | 
 |      for the minimum alignment.  */ | 
 |   power_of_two = bfd_section_alignment (sec); | 
 |   mask = ((bfd_vma) 1 << power_of_two) - 1; | 
 |   while ((h->root.u.def.value & mask) != 0) | 
 |     { | 
 |        mask >>= 1; | 
 |        --power_of_two; | 
 |     } | 
 |  | 
 |   if (power_of_two > bfd_section_alignment (dynbss)) | 
 |     { | 
 |       /* Adjust the section alignment if needed.  */ | 
 |       if (!bfd_set_section_alignment (dynbss, power_of_two)) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   /* We make sure that the symbol will be aligned properly.  */ | 
 |   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); | 
 |  | 
 |   /* Define the symbol as being at this point in DYNBSS.  */ | 
 |   h->root.u.def.section = dynbss; | 
 |   h->root.u.def.value = dynbss->size; | 
 |  | 
 |   /* Increment the size of DYNBSS to make room for the symbol.  */ | 
 |   dynbss->size += h->size; | 
 |  | 
 |   /* No error if extern_protected_data is true.  */ | 
 |   if (h->protected_def | 
 |       && (!info->extern_protected_data | 
 | 	  || (info->extern_protected_data < 0 | 
 | 	      && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) | 
 |     info->callbacks->einfo | 
 |       (_("%P: copy reloc against protected `%pT' is dangerous\n"), | 
 |        h->root.root.string); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Adjust all external symbols pointing into SEC_MERGE sections | 
 |    to reflect the object merging within the sections.  */ | 
 |  | 
 | static bool | 
 | _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   asection *sec; | 
 |  | 
 |   if ((h->root.type == bfd_link_hash_defined | 
 |        || h->root.type == bfd_link_hash_defweak) | 
 |       && ((sec = h->root.u.def.section)->flags & SEC_MERGE) | 
 |       && sec->sec_info_type == SEC_INFO_TYPE_MERGE) | 
 |     { | 
 |       bfd *output_bfd = (bfd *) data; | 
 |  | 
 |       h->root.u.def.value = | 
 | 	_bfd_merged_section_offset (output_bfd, | 
 | 				    &h->root.u.def.section, | 
 | 				    elf_section_data (sec)->sec_info, | 
 | 				    h->root.u.def.value); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Returns false if the symbol referred to by H should be considered | 
 |    to resolve local to the current module, and true if it should be | 
 |    considered to bind dynamically.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, | 
 | 			   struct bfd_link_info *info, | 
 | 			   bool not_local_protected) | 
 | { | 
 |   bool binding_stays_local_p; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_link_hash_table *hash_table; | 
 |  | 
 |   if (h == NULL) | 
 |     return false; | 
 |  | 
 |   while (h->root.type == bfd_link_hash_indirect | 
 | 	 || h->root.type == bfd_link_hash_warning) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   /* If it was forced local, then clearly it's not dynamic.  */ | 
 |   if (h->dynindx == -1) | 
 |     return false; | 
 |   if (h->forced_local) | 
 |     return false; | 
 |  | 
 |   /* Identify the cases where name binding rules say that a | 
 |      visible symbol resolves locally.  */ | 
 |   binding_stays_local_p = (bfd_link_executable (info) | 
 | 			   || SYMBOLIC_BIND (info, h)); | 
 |  | 
 |   switch (ELF_ST_VISIBILITY (h->other)) | 
 |     { | 
 |     case STV_INTERNAL: | 
 |     case STV_HIDDEN: | 
 |       return false; | 
 |  | 
 |     case STV_PROTECTED: | 
 |       hash_table = elf_hash_table (info); | 
 |       if (!is_elf_hash_table (&hash_table->root)) | 
 | 	return false; | 
 |  | 
 |       bed = get_elf_backend_data (hash_table->dynobj); | 
 |  | 
 |       /* Proper resolution for function pointer equality may require | 
 | 	 that these symbols perhaps be resolved dynamically, even though | 
 | 	 we should be resolving them to the current module.  */ | 
 |       if (!not_local_protected || !bed->is_function_type (h->type)) | 
 | 	binding_stays_local_p = true; | 
 |       break; | 
 |  | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |   /* If it isn't defined locally, then clearly it's dynamic.  */ | 
 |   if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | 
 |     return true; | 
 |  | 
 |   /* Otherwise, the symbol is dynamic if binding rules don't tell | 
 |      us that it remains local.  */ | 
 |   return !binding_stays_local_p; | 
 | } | 
 |  | 
 | /* Return true if the symbol referred to by H should be considered | 
 |    to resolve local to the current module, and false otherwise.  Differs | 
 |    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of | 
 |    undefined symbols.  The two functions are virtually identical except | 
 |    for the place where dynindx == -1 is tested.  If that test is true, | 
 |    _bfd_elf_dynamic_symbol_p will say the symbol is local, while | 
 |    _bfd_elf_symbol_refs_local_p will say the symbol is local only for | 
 |    defined symbols. | 
 |    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as | 
 |    !_bfd_elf_symbol_refs_local_p, except that targets differ in their | 
 |    treatment of undefined weak symbols.  For those that do not make | 
 |    undefined weak symbols dynamic, both functions may return false.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, | 
 | 			      struct bfd_link_info *info, | 
 | 			      bool local_protected) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_link_hash_table *hash_table; | 
 |  | 
 |   /* If it's a local sym, of course we resolve locally.  */ | 
 |   if (h == NULL) | 
 |     return true; | 
 |  | 
 |   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */ | 
 |   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN | 
 |       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | 
 |     return true; | 
 |  | 
 |   /* Forced local symbols resolve locally.  */ | 
 |   if (h->forced_local) | 
 |     return true; | 
 |  | 
 |   /* Common symbols that become definitions don't get the DEF_REGULAR | 
 |      flag set, so test it first, and don't bail out.  */ | 
 |   if (ELF_COMMON_DEF_P (h)) | 
 |     /* Do nothing.  */; | 
 |   /* If we don't have a definition in a regular file, then we can't | 
 |      resolve locally.  The sym is either undefined or dynamic.  */ | 
 |   else if (!h->def_regular) | 
 |     return false; | 
 |  | 
 |   /* Non-dynamic symbols resolve locally.  */ | 
 |   if (h->dynindx == -1) | 
 |     return true; | 
 |  | 
 |   /* At this point, we know the symbol is defined and dynamic.  In an | 
 |      executable it must resolve locally, likewise when building symbolic | 
 |      shared libraries.  */ | 
 |   if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) | 
 |     return true; | 
 |  | 
 |   /* Now deal with defined dynamic symbols in shared libraries.  Ones | 
 |      with default visibility might not resolve locally.  */ | 
 |   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | 
 |     return false; | 
 |  | 
 |   hash_table = elf_hash_table (info); | 
 |   if (!is_elf_hash_table (&hash_table->root)) | 
 |     return true; | 
 |  | 
 |   /* STV_PROTECTED symbols with indirect external access are local. */ | 
 |   if (info->indirect_extern_access > 0) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (hash_table->dynobj); | 
 |  | 
 |   /* If extern_protected_data is false, STV_PROTECTED non-function | 
 |      symbols are local.  */ | 
 |   if ((!info->extern_protected_data | 
 |        || (info->extern_protected_data < 0 | 
 | 	   && !bed->extern_protected_data)) | 
 |       && !bed->is_function_type (h->type)) | 
 |     return true; | 
 |  | 
 |   /* Function pointer equality tests may require that STV_PROTECTED | 
 |      symbols be treated as dynamic symbols.  If the address of a | 
 |      function not defined in an executable is set to that function's | 
 |      plt entry in the executable, then the address of the function in | 
 |      a shared library must also be the plt entry in the executable.  */ | 
 |   return local_protected; | 
 | } | 
 |  | 
 | /* Caches some TLS segment info, and ensures that the TLS segment vma is | 
 |    aligned.  Returns the first TLS output section.  */ | 
 |  | 
 | struct bfd_section * | 
 | _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) | 
 | { | 
 |   struct bfd_section *sec, *tls; | 
 |   unsigned int align = 0; | 
 |  | 
 |   for (sec = obfd->sections; sec != NULL; sec = sec->next) | 
 |     if ((sec->flags & SEC_THREAD_LOCAL) != 0) | 
 |       break; | 
 |   tls = sec; | 
 |  | 
 |   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) | 
 |     if (sec->alignment_power > align) | 
 |       align = sec->alignment_power; | 
 |  | 
 |   elf_hash_table (info)->tls_sec = tls; | 
 |  | 
 |   /* Ensure the alignment of the first section (usually .tdata) is the largest | 
 |      alignment, so that the tls segment starts aligned.  */ | 
 |   if (tls != NULL) | 
 |     tls->alignment_power = align; | 
 |  | 
 |   return tls; | 
 | } | 
 |  | 
 | /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */ | 
 | static bool | 
 | is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 				  Elf_Internal_Sym *sym) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   /* Local symbols do not count, but target specific ones might.  */ | 
 |   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL | 
 |       && ELF_ST_BIND (sym->st_info) < STB_LOOS) | 
 |     return false; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   /* Function symbols do not count.  */ | 
 |   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) | 
 |     return false; | 
 |  | 
 |   /* If the section is undefined, then so is the symbol.  */ | 
 |   if (sym->st_shndx == SHN_UNDEF) | 
 |     return false; | 
 |  | 
 |   /* If the symbol is defined in the common section, then | 
 |      it is a common definition and so does not count.  */ | 
 |   if (bed->common_definition (sym)) | 
 |     return false; | 
 |  | 
 |   /* If the symbol is in a target specific section then we | 
 |      must rely upon the backend to tell us what it is.  */ | 
 |   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) | 
 |     /* FIXME - this function is not coded yet: | 
 |  | 
 |        return _bfd_is_global_symbol_definition (abfd, sym); | 
 |  | 
 |        Instead for now assume that the definition is not global, | 
 |        Even if this is wrong, at least the linker will behave | 
 |        in the same way that it used to do.  */ | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Search the symbol table of the archive element of the archive ABFD | 
 |    whose archive map contains a mention of SYMDEF, and determine if | 
 |    the symbol is defined in this element.  */ | 
 | static bool | 
 | elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) | 
 | { | 
 |   Elf_Internal_Shdr * hdr; | 
 |   size_t symcount; | 
 |   size_t extsymcount; | 
 |   size_t extsymoff; | 
 |   Elf_Internal_Sym *isymbuf; | 
 |   Elf_Internal_Sym *isym; | 
 |   Elf_Internal_Sym *isymend; | 
 |   bool result; | 
 |  | 
 |   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, NULL); | 
 |   if (abfd == NULL) | 
 |     return false; | 
 |  | 
 |   if (! bfd_check_format (abfd, bfd_object)) | 
 |     return false; | 
 |  | 
 |   /* Select the appropriate symbol table.  If we don't know if the | 
 |      object file is an IR object, give linker LTO plugin a chance to | 
 |      get the correct symbol table.  */ | 
 |   if (abfd->plugin_format == bfd_plugin_yes | 
 | #if BFD_SUPPORTS_PLUGINS | 
 |       || (abfd->plugin_format == bfd_plugin_unknown | 
 | 	  && bfd_link_plugin_object_p (abfd)) | 
 | #endif | 
 |       ) | 
 |     { | 
 |       /* Use the IR symbol table if the object has been claimed by | 
 | 	 plugin.  */ | 
 |       abfd = abfd->plugin_dummy_bfd; | 
 |       hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |     } | 
 |   else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) | 
 |     hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   else | 
 |     hdr = &elf_tdata (abfd)->dynsymtab_hdr; | 
 |  | 
 |   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; | 
 |  | 
 |   /* The sh_info field of the symtab header tells us where the | 
 |      external symbols start.  We don't care about the local symbols.  */ | 
 |   if (elf_bad_symtab (abfd)) | 
 |     { | 
 |       extsymcount = symcount; | 
 |       extsymoff = 0; | 
 |     } | 
 |   else | 
 |     { | 
 |       extsymcount = symcount - hdr->sh_info; | 
 |       extsymoff = hdr->sh_info; | 
 |     } | 
 |  | 
 |   if (extsymcount == 0) | 
 |     return false; | 
 |  | 
 |   /* Read in the symbol table.  */ | 
 |   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | 
 | 				  NULL, NULL, NULL); | 
 |   if (isymbuf == NULL) | 
 |     return false; | 
 |  | 
 |   /* Scan the symbol table looking for SYMDEF.  */ | 
 |   result = false; | 
 |   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) | 
 |     { | 
 |       const char *name; | 
 |  | 
 |       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | 
 | 					      isym->st_name); | 
 |       if (name == NULL) | 
 | 	break; | 
 |  | 
 |       if (strcmp (name, symdef->name) == 0) | 
 | 	{ | 
 | 	  result = is_global_data_symbol_definition (abfd, isym); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   free (isymbuf); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /* Add an entry to the .dynamic table.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, | 
 | 			    bfd_vma tag, | 
 | 			    bfd_vma val) | 
 | { | 
 |   struct elf_link_hash_table *hash_table; | 
 |   const struct elf_backend_data *bed; | 
 |   asection *s; | 
 |   bfd_size_type newsize; | 
 |   bfd_byte *newcontents; | 
 |   Elf_Internal_Dyn dyn; | 
 |  | 
 |   hash_table = elf_hash_table (info); | 
 |   if (! is_elf_hash_table (&hash_table->root)) | 
 |     return false; | 
 |  | 
 |   if (tag == DT_RELA || tag == DT_REL) | 
 |     hash_table->dynamic_relocs = true; | 
 |  | 
 |   bed = get_elf_backend_data (hash_table->dynobj); | 
 |   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); | 
 |   BFD_ASSERT (s != NULL); | 
 |  | 
 |   newsize = s->size + bed->s->sizeof_dyn; | 
 |   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); | 
 |   if (newcontents == NULL) | 
 |     return false; | 
 |  | 
 |   dyn.d_tag = tag; | 
 |   dyn.d_un.d_val = val; | 
 |   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); | 
 |  | 
 |   s->size = newsize; | 
 |   s->contents = newcontents; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Strip zero-sized dynamic sections.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_strip_zero_sized_dynamic_sections (struct bfd_link_info *info) | 
 | { | 
 |   struct elf_link_hash_table *hash_table; | 
 |   const struct elf_backend_data *bed; | 
 |   asection *s, *sdynamic, **pp; | 
 |   asection *rela_dyn, *rel_dyn; | 
 |   Elf_Internal_Dyn dyn; | 
 |   bfd_byte *extdyn, *next; | 
 |   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | 
 |   bool strip_zero_sized; | 
 |   bool strip_zero_sized_plt; | 
 |  | 
 |   if (bfd_link_relocatable (info)) | 
 |     return true; | 
 |  | 
 |   hash_table = elf_hash_table (info); | 
 |   if (!is_elf_hash_table (&hash_table->root)) | 
 |     return false; | 
 |  | 
 |   if (!hash_table->dynobj) | 
 |     return true; | 
 |  | 
 |   sdynamic= bfd_get_linker_section (hash_table->dynobj, ".dynamic"); | 
 |   if (!sdynamic) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (hash_table->dynobj); | 
 |   swap_dyn_in = bed->s->swap_dyn_in; | 
 |  | 
 |   strip_zero_sized = false; | 
 |   strip_zero_sized_plt = false; | 
 |  | 
 |   /* Strip zero-sized dynamic sections.  */ | 
 |   rela_dyn = bfd_get_section_by_name (info->output_bfd, ".rela.dyn"); | 
 |   rel_dyn = bfd_get_section_by_name (info->output_bfd, ".rel.dyn"); | 
 |   for (pp = &info->output_bfd->sections; (s = *pp) != NULL;) | 
 |     if (s->size == 0 | 
 | 	&& (s == rela_dyn | 
 | 	    || s == rel_dyn | 
 | 	    || s == hash_table->srelplt->output_section | 
 | 	    || s == hash_table->splt->output_section)) | 
 |       { | 
 | 	*pp = s->next; | 
 | 	info->output_bfd->section_count--; | 
 | 	strip_zero_sized = true; | 
 | 	if (s == rela_dyn) | 
 | 	  s = rela_dyn; | 
 | 	if (s == rel_dyn) | 
 | 	  s = rel_dyn; | 
 | 	else if (s == hash_table->splt->output_section) | 
 | 	  { | 
 | 	    s = hash_table->splt; | 
 | 	    strip_zero_sized_plt = true; | 
 | 	  } | 
 | 	else | 
 | 	  s = hash_table->srelplt; | 
 | 	s->flags |= SEC_EXCLUDE; | 
 | 	s->output_section = bfd_abs_section_ptr; | 
 |       } | 
 |     else | 
 |       pp = &s->next; | 
 |  | 
 |   if (strip_zero_sized_plt && sdynamic->size != 0) | 
 |     for (extdyn = sdynamic->contents; | 
 | 	 extdyn < sdynamic->contents + sdynamic->size; | 
 | 	 extdyn = next) | 
 |       { | 
 | 	next = extdyn + bed->s->sizeof_dyn; | 
 | 	swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | 
 | 	switch (dyn.d_tag) | 
 | 	  { | 
 | 	  default: | 
 | 	    break; | 
 | 	  case DT_JMPREL: | 
 | 	  case DT_PLTRELSZ: | 
 | 	  case DT_PLTREL: | 
 | 	    /* Strip DT_PLTRELSZ, DT_JMPREL and DT_PLTREL entries if | 
 | 	       the procedure linkage table (the .plt section) has been | 
 | 	       removed.  */ | 
 | 	    memmove (extdyn, next, | 
 | 		     sdynamic->size - (next - sdynamic->contents)); | 
 | 	    next = extdyn; | 
 | 	  } | 
 |       } | 
 |  | 
 |   if (strip_zero_sized) | 
 |     { | 
 |       /* Regenerate program headers.  */ | 
 |       elf_seg_map (info->output_bfd) = NULL; | 
 |       return _bfd_elf_map_sections_to_segments (info->output_bfd, info, | 
 | 						NULL); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Add a DT_NEEDED entry for this dynamic object.  Returns -1 on error, | 
 |    1 if a DT_NEEDED tag already exists, and 0 on success.  */ | 
 |  | 
 | int | 
 | bfd_elf_add_dt_needed_tag (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   struct elf_link_hash_table *hash_table; | 
 |   size_t strindex; | 
 |   const char *soname; | 
 |  | 
 |   if (!_bfd_elf_link_create_dynstrtab (abfd, info)) | 
 |     return -1; | 
 |  | 
 |   hash_table = elf_hash_table (info); | 
 |   soname = elf_dt_name (abfd); | 
 |   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, false); | 
 |   if (strindex == (size_t) -1) | 
 |     return -1; | 
 |  | 
 |   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) | 
 |     { | 
 |       asection *sdyn; | 
 |       const struct elf_backend_data *bed; | 
 |       bfd_byte *extdyn; | 
 |  | 
 |       bed = get_elf_backend_data (hash_table->dynobj); | 
 |       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); | 
 |       if (sdyn != NULL && sdyn->size != 0) | 
 | 	for (extdyn = sdyn->contents; | 
 | 	     extdyn < sdyn->contents + sdyn->size; | 
 | 	     extdyn += bed->s->sizeof_dyn) | 
 | 	  { | 
 | 	    Elf_Internal_Dyn dyn; | 
 |  | 
 | 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); | 
 | 	    if (dyn.d_tag == DT_NEEDED | 
 | 		&& dyn.d_un.d_val == strindex) | 
 | 	      { | 
 | 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex); | 
 | 		return 1; | 
 | 	      } | 
 | 	  } | 
 |     } | 
 |  | 
 |   if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) | 
 |     return -1; | 
 |  | 
 |   if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) | 
 |     return -1; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Return true if SONAME is on the needed list between NEEDED and STOP | 
 |    (or the end of list if STOP is NULL), and needed by a library that | 
 |    will be loaded.  */ | 
 |  | 
 | static bool | 
 | on_needed_list (const char *soname, | 
 | 		struct bfd_link_needed_list *needed, | 
 | 		struct bfd_link_needed_list *stop) | 
 | { | 
 |   struct bfd_link_needed_list *look; | 
 |   for (look = needed; look != stop; look = look->next) | 
 |     if (strcmp (soname, look->name) == 0 | 
 | 	&& ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 | 
 | 	    /* If needed by a library that itself is not directly | 
 | 	       needed, recursively check whether that library is | 
 | 	       indirectly needed.  Since we add DT_NEEDED entries to | 
 | 	       the end of the list, library dependencies appear after | 
 | 	       the library.  Therefore search prior to the current | 
 | 	       LOOK, preventing possible infinite recursion.  */ | 
 | 	    || on_needed_list (elf_dt_name (look->by), needed, look))) | 
 |       return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Sort symbol by value, section, size, and type.  */ | 
 | static int | 
 | elf_sort_symbol (const void *arg1, const void *arg2) | 
 | { | 
 |   const struct elf_link_hash_entry *h1; | 
 |   const struct elf_link_hash_entry *h2; | 
 |   bfd_signed_vma vdiff; | 
 |   int sdiff; | 
 |   const char *n1; | 
 |   const char *n2; | 
 |  | 
 |   h1 = *(const struct elf_link_hash_entry **) arg1; | 
 |   h2 = *(const struct elf_link_hash_entry **) arg2; | 
 |   vdiff = h1->root.u.def.value - h2->root.u.def.value; | 
 |   if (vdiff != 0) | 
 |     return vdiff > 0 ? 1 : -1; | 
 |  | 
 |   sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; | 
 |   if (sdiff != 0) | 
 |     return sdiff; | 
 |  | 
 |   /* Sort so that sized symbols are selected over zero size symbols.  */ | 
 |   vdiff = h1->size - h2->size; | 
 |   if (vdiff != 0) | 
 |     return vdiff > 0 ? 1 : -1; | 
 |  | 
 |   /* Sort so that STT_OBJECT is selected over STT_NOTYPE.  */ | 
 |   if (h1->type != h2->type) | 
 |     return h1->type - h2->type; | 
 |  | 
 |   /* If symbols are properly sized and typed, and multiple strong | 
 |      aliases are not defined in a shared library by the user we | 
 |      shouldn't get here.  Unfortunately linker script symbols like | 
 |      __bss_start sometimes match a user symbol defined at the start of | 
 |      .bss without proper size and type.  We'd like to preference the | 
 |      user symbol over reserved system symbols.  Sort on leading | 
 |      underscores.  */ | 
 |   n1 = h1->root.root.string; | 
 |   n2 = h2->root.root.string; | 
 |   while (*n1 == *n2) | 
 |     { | 
 |       if (*n1 == 0) | 
 | 	break; | 
 |       ++n1; | 
 |       ++n2; | 
 |     } | 
 |   if (*n1 == '_') | 
 |     return -1; | 
 |   if (*n2 == '_') | 
 |     return 1; | 
 |  | 
 |   /* Final sort on name selects user symbols like '_u' over reserved | 
 |      system symbols like '_Z' and also will avoid qsort instability.  */ | 
 |   return *n1 - *n2; | 
 | } | 
 |  | 
 | /* This function is used to adjust offsets into .dynstr for | 
 |    dynamic symbols.  This is called via elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; | 
 |  | 
 |   if (h->dynindx != -1) | 
 |     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Assign string offsets in .dynstr, update all structures referencing | 
 |    them.  */ | 
 |  | 
 | static bool | 
 | elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) | 
 | { | 
 |   struct elf_link_hash_table *hash_table = elf_hash_table (info); | 
 |   struct elf_link_local_dynamic_entry *entry; | 
 |   struct elf_strtab_hash *dynstr = hash_table->dynstr; | 
 |   bfd *dynobj = hash_table->dynobj; | 
 |   asection *sdyn; | 
 |   bfd_size_type size; | 
 |   const struct elf_backend_data *bed; | 
 |   bfd_byte *extdyn; | 
 |  | 
 |   _bfd_elf_strtab_finalize (dynstr); | 
 |   size = _bfd_elf_strtab_size (dynstr); | 
 |  | 
 |   /* Allow the linker to examine the dynsymtab now it's fully populated.  */ | 
 |  | 
 |   if (info->callbacks->examine_strtab) | 
 |     info->callbacks->examine_strtab (dynstr); | 
 |  | 
 |   bed = get_elf_backend_data (dynobj); | 
 |   sdyn = bfd_get_linker_section (dynobj, ".dynamic"); | 
 |   BFD_ASSERT (sdyn != NULL); | 
 |  | 
 |   /* Update all .dynamic entries referencing .dynstr strings.  */ | 
 |   for (extdyn = sdyn->contents; | 
 |        extdyn < PTR_ADD (sdyn->contents, sdyn->size); | 
 |        extdyn += bed->s->sizeof_dyn) | 
 |     { | 
 |       Elf_Internal_Dyn dyn; | 
 |  | 
 |       bed->s->swap_dyn_in (dynobj, extdyn, &dyn); | 
 |       switch (dyn.d_tag) | 
 | 	{ | 
 | 	case DT_STRSZ: | 
 | 	  dyn.d_un.d_val = size; | 
 | 	  break; | 
 | 	case DT_NEEDED: | 
 | 	case DT_SONAME: | 
 | 	case DT_RPATH: | 
 | 	case DT_RUNPATH: | 
 | 	case DT_FILTER: | 
 | 	case DT_AUXILIARY: | 
 | 	case DT_AUDIT: | 
 | 	case DT_DEPAUDIT: | 
 | 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); | 
 | 	  break; | 
 | 	default: | 
 | 	  continue; | 
 | 	} | 
 |       bed->s->swap_dyn_out (dynobj, &dyn, extdyn); | 
 |     } | 
 |  | 
 |   /* Now update local dynamic symbols.  */ | 
 |   for (entry = hash_table->dynlocal; entry ; entry = entry->next) | 
 |     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, | 
 | 						  entry->isym.st_name); | 
 |  | 
 |   /* And the rest of dynamic symbols.  */ | 
 |   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); | 
 |  | 
 |   /* Adjust version definitions.  */ | 
 |   if (elf_tdata (output_bfd)->cverdefs) | 
 |     { | 
 |       asection *s; | 
 |       bfd_byte *p; | 
 |       size_t i; | 
 |       Elf_Internal_Verdef def; | 
 |       Elf_Internal_Verdaux defaux; | 
 |  | 
 |       s = bfd_get_linker_section (dynobj, ".gnu.version_d"); | 
 |       p = s->contents; | 
 |       do | 
 | 	{ | 
 | 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, | 
 | 				   &def); | 
 | 	  p += sizeof (Elf_External_Verdef); | 
 | 	  if (def.vd_aux != sizeof (Elf_External_Verdef)) | 
 | 	    continue; | 
 | 	  for (i = 0; i < def.vd_cnt; ++i) | 
 | 	    { | 
 | 	      _bfd_elf_swap_verdaux_in (output_bfd, | 
 | 					(Elf_External_Verdaux *) p, &defaux); | 
 | 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr, | 
 | 							defaux.vda_name); | 
 | 	      _bfd_elf_swap_verdaux_out (output_bfd, | 
 | 					 &defaux, (Elf_External_Verdaux *) p); | 
 | 	      p += sizeof (Elf_External_Verdaux); | 
 | 	    } | 
 | 	} | 
 |       while (def.vd_next); | 
 |     } | 
 |  | 
 |   /* Adjust version references.  */ | 
 |   if (elf_tdata (output_bfd)->verref) | 
 |     { | 
 |       asection *s; | 
 |       bfd_byte *p; | 
 |       size_t i; | 
 |       Elf_Internal_Verneed need; | 
 |       Elf_Internal_Vernaux needaux; | 
 |  | 
 |       s = bfd_get_linker_section (dynobj, ".gnu.version_r"); | 
 |       p = s->contents; | 
 |       do | 
 | 	{ | 
 | 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, | 
 | 				    &need); | 
 | 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); | 
 | 	  _bfd_elf_swap_verneed_out (output_bfd, &need, | 
 | 				     (Elf_External_Verneed *) p); | 
 | 	  p += sizeof (Elf_External_Verneed); | 
 | 	  for (i = 0; i < need.vn_cnt; ++i) | 
 | 	    { | 
 | 	      _bfd_elf_swap_vernaux_in (output_bfd, | 
 | 					(Elf_External_Vernaux *) p, &needaux); | 
 | 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr, | 
 | 							 needaux.vna_name); | 
 | 	      _bfd_elf_swap_vernaux_out (output_bfd, | 
 | 					 &needaux, | 
 | 					 (Elf_External_Vernaux *) p); | 
 | 	      p += sizeof (Elf_External_Vernaux); | 
 | 	    } | 
 | 	} | 
 |       while (need.vn_next); | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | 
 |    The default is to only match when the INPUT and OUTPUT are exactly | 
 |    the same target.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_default_relocs_compatible (const bfd_target *input, | 
 | 				    const bfd_target *output) | 
 | { | 
 |   return input == output; | 
 | } | 
 |  | 
 | /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. | 
 |    This version is used when different targets for the same architecture | 
 |    are virtually identical.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_relocs_compatible (const bfd_target *input, | 
 | 			    const bfd_target *output) | 
 | { | 
 |   const struct elf_backend_data *obed, *ibed; | 
 |  | 
 |   if (input == output) | 
 |     return true; | 
 |  | 
 |   ibed = xvec_get_elf_backend_data (input); | 
 |   obed = xvec_get_elf_backend_data (output); | 
 |  | 
 |   if (ibed->arch != obed->arch) | 
 |     return false; | 
 |  | 
 |   /* If both backends are using this function, deem them compatible.  */ | 
 |   return ibed->relocs_compatible == obed->relocs_compatible; | 
 | } | 
 |  | 
 | /* Make a special call to the linker "notice" function to tell it that | 
 |    we are about to handle an as-needed lib, or have finished | 
 |    processing the lib.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_notice_as_needed (bfd *ibfd, | 
 | 			   struct bfd_link_info *info, | 
 | 			   enum notice_asneeded_action act) | 
 | { | 
 |   return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); | 
 | } | 
 |  | 
 | /* Call ACTION on each relocation in an ELF object file.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_iterate_on_relocs | 
 |   (bfd *abfd, struct bfd_link_info *info, | 
 |    bool (*action) (bfd *, struct bfd_link_info *, asection *, | 
 | 		   const Elf_Internal_Rela *)) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |  | 
 |   /* If this object is the same format as the output object, and it is | 
 |      not a shared library, then let the backend look through the | 
 |      relocs. | 
 |  | 
 |      This is required to build global offset table entries and to | 
 |      arrange for dynamic relocs.  It is not required for the | 
 |      particular common case of linking non PIC code, even when linking | 
 |      against shared libraries, but unfortunately there is no way of | 
 |      knowing whether an object file has been compiled PIC or not. | 
 |      Looking through the relocs is not particularly time consuming. | 
 |      The problem is that we must either (1) keep the relocs in memory, | 
 |      which causes the linker to require additional runtime memory or | 
 |      (2) read the relocs twice from the input file, which wastes time. | 
 |      This would be a good case for using mmap. | 
 |  | 
 |      I have no idea how to handle linking PIC code into a file of a | 
 |      different format.  It probably can't be done.  */ | 
 |   if ((abfd->flags & DYNAMIC) == 0 | 
 |       && is_elf_hash_table (&htab->root) | 
 |       && elf_object_id (abfd) == elf_hash_table_id (htab) | 
 |       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) | 
 |     { | 
 |       asection *o; | 
 |  | 
 |       for (o = abfd->sections; o != NULL; o = o->next) | 
 | 	{ | 
 | 	  Elf_Internal_Rela *internal_relocs; | 
 | 	  bool ok; | 
 |  | 
 | 	  /* Don't check relocations in excluded sections.  Don't do | 
 | 	     anything special with non-loaded, non-alloced sections. | 
 | 	     In particular, any relocs in such sections should not | 
 | 	     affect GOT and PLT reference counting (ie.  we don't | 
 | 	     allow them to create GOT or PLT entries), there's no | 
 | 	     possibility or desire to optimize TLS relocs, and | 
 | 	     there's not much point in propagating relocs to shared | 
 | 	     libs that the dynamic linker won't relocate.  */ | 
 | 	  if ((o->flags & SEC_ALLOC) == 0 | 
 | 	      || (o->flags & SEC_RELOC) == 0 | 
 | 	      || (o->flags & SEC_EXCLUDE) != 0 | 
 | 	      || o->reloc_count == 0 | 
 | 	      || ((info->strip == strip_all || info->strip == strip_debugger) | 
 | 		  && (o->flags & SEC_DEBUGGING) != 0) | 
 | 	      || bfd_is_abs_section (o->output_section)) | 
 | 	    continue; | 
 |  | 
 | 	  internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info, | 
 | 							    o, NULL, | 
 | 							    NULL, | 
 | 							    _bfd_link_keep_memory (info)); | 
 | 	  if (internal_relocs == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  ok = action (abfd, info, o, internal_relocs); | 
 |  | 
 | 	  if (elf_section_data (o)->relocs != internal_relocs) | 
 | 	    free (internal_relocs); | 
 |  | 
 | 	  if (! ok) | 
 | 	    return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Check relocations in an ELF object file.  This is called after | 
 |    all input files have been opened.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   if (bed->check_relocs != NULL) | 
 |     return _bfd_elf_link_iterate_on_relocs (abfd, info, | 
 | 					    bed->check_relocs); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Add symbols from an ELF object file to the linker hash table.  */ | 
 |  | 
 | static bool | 
 | elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   Elf_Internal_Ehdr *ehdr; | 
 |   Elf_Internal_Shdr *hdr; | 
 |   size_t symcount; | 
 |   size_t extsymcount; | 
 |   size_t extsymoff; | 
 |   struct elf_link_hash_entry **sym_hash; | 
 |   bool dynamic; | 
 |   Elf_External_Versym *extversym = NULL; | 
 |   Elf_External_Versym *extversym_end = NULL; | 
 |   Elf_External_Versym *ever; | 
 |   struct elf_link_hash_entry *weaks; | 
 |   struct elf_link_hash_entry **nondeflt_vers = NULL; | 
 |   size_t nondeflt_vers_cnt = 0; | 
 |   Elf_Internal_Sym *isymbuf = NULL; | 
 |   Elf_Internal_Sym *isym; | 
 |   Elf_Internal_Sym *isymend; | 
 |   const struct elf_backend_data *bed; | 
 |   bool add_needed; | 
 |   struct elf_link_hash_table *htab; | 
 |   void *alloc_mark = NULL; | 
 |   struct bfd_hash_entry **old_table = NULL; | 
 |   unsigned int old_size = 0; | 
 |   unsigned int old_count = 0; | 
 |   void *old_tab = NULL; | 
 |   void *old_ent; | 
 |   struct bfd_link_hash_entry *old_undefs = NULL; | 
 |   struct bfd_link_hash_entry *old_undefs_tail = NULL; | 
 |   void *old_strtab = NULL; | 
 |   size_t tabsize = 0; | 
 |   asection *s; | 
 |   bool just_syms; | 
 |  | 
 |   htab = elf_hash_table (info); | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   if ((abfd->flags & DYNAMIC) == 0) | 
 |     dynamic = false; | 
 |   else | 
 |     { | 
 |       dynamic = true; | 
 |  | 
 |       /* You can't use -r against a dynamic object.  Also, there's no | 
 | 	 hope of using a dynamic object which does not exactly match | 
 | 	 the format of the output file.  */ | 
 |       if (bfd_link_relocatable (info) | 
 | 	  || !is_elf_hash_table (&htab->root) | 
 | 	  || info->output_bfd->xvec != abfd->xvec) | 
 | 	{ | 
 | 	  if (bfd_link_relocatable (info)) | 
 | 	    bfd_set_error (bfd_error_invalid_operation); | 
 | 	  else | 
 | 	    bfd_set_error (bfd_error_wrong_format); | 
 | 	  goto error_return; | 
 | 	} | 
 |     } | 
 |  | 
 |   ehdr = elf_elfheader (abfd); | 
 |   if (info->warn_alternate_em | 
 |       && bed->elf_machine_code != ehdr->e_machine | 
 |       && ((bed->elf_machine_alt1 != 0 | 
 | 	   && ehdr->e_machine == bed->elf_machine_alt1) | 
 | 	  || (bed->elf_machine_alt2 != 0 | 
 | 	      && ehdr->e_machine == bed->elf_machine_alt2))) | 
 |     _bfd_error_handler | 
 |       /* xgettext:c-format */ | 
 |       (_("alternate ELF machine code found (%d) in %pB, expecting %d"), | 
 |        ehdr->e_machine, abfd, bed->elf_machine_code); | 
 |  | 
 |   /* As a GNU extension, any input sections which are named | 
 |      .gnu.warning.SYMBOL are treated as warning symbols for the given | 
 |      symbol.  This differs from .gnu.warning sections, which generate | 
 |      warnings when they are included in an output file.  */ | 
 |   /* PR 12761: Also generate this warning when building shared libraries.  */ | 
 |   for (s = abfd->sections; s != NULL; s = s->next) | 
 |     { | 
 |       const char *name; | 
 |  | 
 |       name = bfd_section_name (s); | 
 |       if (startswith (name, ".gnu.warning.")) | 
 | 	{ | 
 | 	  char *msg; | 
 | 	  bfd_size_type sz; | 
 |  | 
 | 	  name += sizeof ".gnu.warning." - 1; | 
 |  | 
 | 	  /* If this is a shared object, then look up the symbol | 
 | 	     in the hash table.  If it is there, and it is already | 
 | 	     been defined, then we will not be using the entry | 
 | 	     from this shared object, so we don't need to warn. | 
 | 	     FIXME: If we see the definition in a regular object | 
 | 	     later on, we will warn, but we shouldn't.  The only | 
 | 	     fix is to keep track of what warnings we are supposed | 
 | 	     to emit, and then handle them all at the end of the | 
 | 	     link.  */ | 
 | 	  if (dynamic) | 
 | 	    { | 
 | 	      struct elf_link_hash_entry *h; | 
 |  | 
 | 	      h = elf_link_hash_lookup (htab, name, false, false, true); | 
 |  | 
 | 	      /* FIXME: What about bfd_link_hash_common?  */ | 
 | 	      if (h != NULL | 
 | 		  && (h->root.type == bfd_link_hash_defined | 
 | 		      || h->root.type == bfd_link_hash_defweak)) | 
 | 		continue; | 
 | 	    } | 
 |  | 
 | 	  sz = s->size; | 
 | 	  msg = (char *) bfd_alloc (abfd, sz + 1); | 
 | 	  if (msg == NULL) | 
 | 	    goto error_return; | 
 |  | 
 | 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) | 
 | 	    goto error_return; | 
 |  | 
 | 	  msg[sz] = '\0'; | 
 |  | 
 | 	  if (! (_bfd_generic_link_add_one_symbol | 
 | 		 (info, abfd, name, BSF_WARNING, s, 0, msg, | 
 | 		  false, bed->collect, NULL))) | 
 | 	    goto error_return; | 
 |  | 
 | 	  if (bfd_link_executable (info)) | 
 | 	    { | 
 | 	      /* Clobber the section size so that the warning does | 
 | 		 not get copied into the output file.  */ | 
 | 	      s->size = 0; | 
 |  | 
 | 	      /* Also set SEC_EXCLUDE, so that symbols defined in | 
 | 		 the warning section don't get copied to the output.  */ | 
 | 	      s->flags |= SEC_EXCLUDE; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   just_syms = ((s = abfd->sections) != NULL | 
 | 	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); | 
 |  | 
 |   add_needed = true; | 
 |   if (! dynamic) | 
 |     { | 
 |       /* If we are creating a shared library, create all the dynamic | 
 | 	 sections immediately.  We need to attach them to something, | 
 | 	 so we attach them to this BFD, provided it is the right | 
 | 	 format and is not from ld --just-symbols.  Always create the | 
 | 	 dynamic sections for -E/--dynamic-list.  FIXME: If there | 
 | 	 are no input BFD's of the same format as the output, we can't | 
 | 	 make a shared library.  */ | 
 |       if (!just_syms | 
 | 	  && (bfd_link_pic (info) | 
 | 	      || (!bfd_link_relocatable (info) | 
 | 		  && info->nointerp | 
 | 		  && (info->export_dynamic || info->dynamic))) | 
 | 	  && is_elf_hash_table (&htab->root) | 
 | 	  && info->output_bfd->xvec == abfd->xvec | 
 | 	  && !htab->dynamic_sections_created) | 
 | 	{ | 
 | 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) | 
 | 	    goto error_return; | 
 | 	} | 
 |     } | 
 |   else if (!is_elf_hash_table (&htab->root)) | 
 |     goto error_return; | 
 |   else | 
 |     { | 
 |       const char *soname = NULL; | 
 |       char *audit = NULL; | 
 |       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; | 
 |       const Elf_Internal_Phdr *phdr; | 
 |       struct elf_link_loaded_list *loaded_lib; | 
 |  | 
 |       /* ld --just-symbols and dynamic objects don't mix very well. | 
 | 	 ld shouldn't allow it.  */ | 
 |       if (just_syms) | 
 | 	abort (); | 
 |  | 
 |       /* If this dynamic lib was specified on the command line with | 
 | 	 --as-needed in effect, then we don't want to add a DT_NEEDED | 
 | 	 tag unless the lib is actually used.  Similary for libs brought | 
 | 	 in by another lib's DT_NEEDED.  When --no-add-needed is used | 
 | 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for | 
 | 	 any dynamic library in DT_NEEDED tags in the dynamic lib at | 
 | 	 all.  */ | 
 |       add_needed = (elf_dyn_lib_class (abfd) | 
 | 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED | 
 | 		       | DYN_NO_NEEDED)) == 0; | 
 |  | 
 |       s = bfd_get_section_by_name (abfd, ".dynamic"); | 
 |       if (s != NULL && s->size != 0) | 
 | 	{ | 
 | 	  bfd_byte *dynbuf; | 
 | 	  bfd_byte *extdyn; | 
 | 	  unsigned int elfsec; | 
 | 	  unsigned long shlink; | 
 |  | 
 | 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) | 
 | 	    { | 
 | 	    error_free_dyn: | 
 | 	      free (dynbuf); | 
 | 	      goto error_return; | 
 | 	    } | 
 |  | 
 | 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | 
 | 	  if (elfsec == SHN_BAD) | 
 | 	    goto error_free_dyn; | 
 | 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link; | 
 |  | 
 | 	  for (extdyn = dynbuf; | 
 | 	       (size_t) (dynbuf + s->size - extdyn) >= bed->s->sizeof_dyn; | 
 | 	       extdyn += bed->s->sizeof_dyn) | 
 | 	    { | 
 | 	      Elf_Internal_Dyn dyn; | 
 |  | 
 | 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn); | 
 | 	      if (dyn.d_tag == DT_SONAME) | 
 | 		{ | 
 | 		  unsigned int tagv = dyn.d_un.d_val; | 
 | 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 		  if (soname == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		} | 
 | 	      if (dyn.d_tag == DT_NEEDED) | 
 | 		{ | 
 | 		  struct bfd_link_needed_list *n, **pn; | 
 | 		  char *fnm, *anm; | 
 | 		  unsigned int tagv = dyn.d_un.d_val; | 
 | 		  size_t amt = sizeof (struct bfd_link_needed_list); | 
 |  | 
 | 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | 
 | 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 		  if (n == NULL || fnm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  amt = strlen (fnm) + 1; | 
 | 		  anm = (char *) bfd_alloc (abfd, amt); | 
 | 		  if (anm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  memcpy (anm, fnm, amt); | 
 | 		  n->name = anm; | 
 | 		  n->by = abfd; | 
 | 		  n->next = NULL; | 
 | 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) | 
 | 		    ; | 
 | 		  *pn = n; | 
 | 		} | 
 | 	      if (dyn.d_tag == DT_RUNPATH) | 
 | 		{ | 
 | 		  struct bfd_link_needed_list *n, **pn; | 
 | 		  char *fnm, *anm; | 
 | 		  unsigned int tagv = dyn.d_un.d_val; | 
 | 		  size_t amt = sizeof (struct bfd_link_needed_list); | 
 |  | 
 | 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | 
 | 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 		  if (n == NULL || fnm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  amt = strlen (fnm) + 1; | 
 | 		  anm = (char *) bfd_alloc (abfd, amt); | 
 | 		  if (anm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  memcpy (anm, fnm, amt); | 
 | 		  n->name = anm; | 
 | 		  n->by = abfd; | 
 | 		  n->next = NULL; | 
 | 		  for (pn = & runpath; | 
 | 		       *pn != NULL; | 
 | 		       pn = &(*pn)->next) | 
 | 		    ; | 
 | 		  *pn = n; | 
 | 		} | 
 | 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */ | 
 | 	      if (!runpath && dyn.d_tag == DT_RPATH) | 
 | 		{ | 
 | 		  struct bfd_link_needed_list *n, **pn; | 
 | 		  char *fnm, *anm; | 
 | 		  unsigned int tagv = dyn.d_un.d_val; | 
 | 		  size_t amt = sizeof (struct bfd_link_needed_list); | 
 |  | 
 | 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | 
 | 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 		  if (n == NULL || fnm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  amt = strlen (fnm) + 1; | 
 | 		  anm = (char *) bfd_alloc (abfd, amt); | 
 | 		  if (anm == NULL) | 
 | 		    goto error_free_dyn; | 
 | 		  memcpy (anm, fnm, amt); | 
 | 		  n->name = anm; | 
 | 		  n->by = abfd; | 
 | 		  n->next = NULL; | 
 | 		  for (pn = & rpath; | 
 | 		       *pn != NULL; | 
 | 		       pn = &(*pn)->next) | 
 | 		    ; | 
 | 		  *pn = n; | 
 | 		} | 
 | 	      if (dyn.d_tag == DT_AUDIT) | 
 | 		{ | 
 | 		  unsigned int tagv = dyn.d_un.d_val; | 
 | 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 		} | 
 | 	      if (dyn.d_tag == DT_FLAGS_1) | 
 | 		elf_tdata (abfd)->is_pie = (dyn.d_un.d_val & DF_1_PIE) != 0; | 
 | 	    } | 
 |  | 
 | 	  free (dynbuf); | 
 | 	} | 
 |  | 
 |       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that | 
 | 	 frees all more recently bfd_alloc'd blocks as well.  */ | 
 |       if (runpath) | 
 | 	rpath = runpath; | 
 |  | 
 |       if (rpath) | 
 | 	{ | 
 | 	  struct bfd_link_needed_list **pn; | 
 | 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) | 
 | 	    ; | 
 | 	  *pn = rpath; | 
 | 	} | 
 |  | 
 |       /* If we have a PT_GNU_RELRO program header, mark as read-only | 
 | 	 all sections contained fully therein.  This makes relro | 
 | 	 shared library sections appear as they will at run-time.  */ | 
 |       phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; | 
 |       while (phdr-- > elf_tdata (abfd)->phdr) | 
 | 	if (phdr->p_type == PT_GNU_RELRO) | 
 | 	  { | 
 | 	    for (s = abfd->sections; s != NULL; s = s->next) | 
 | 	      { | 
 | 		unsigned int opb = bfd_octets_per_byte (abfd, s); | 
 |  | 
 | 		if ((s->flags & SEC_ALLOC) != 0 | 
 | 		    && s->vma * opb >= phdr->p_vaddr | 
 | 		    && s->vma * opb + s->size <= phdr->p_vaddr + phdr->p_memsz) | 
 | 		  s->flags |= SEC_READONLY; | 
 | 	      } | 
 | 	    break; | 
 | 	  } | 
 |  | 
 |       /* We do not want to include any of the sections in a dynamic | 
 | 	 object in the output file.  We hack by simply clobbering the | 
 | 	 list of sections in the BFD.  This could be handled more | 
 | 	 cleanly by, say, a new section flag; the existing | 
 | 	 SEC_NEVER_LOAD flag is not the one we want, because that one | 
 | 	 still implies that the section takes up space in the output | 
 | 	 file.  */ | 
 |       bfd_section_list_clear (abfd); | 
 |  | 
 |       /* Find the name to use in a DT_NEEDED entry that refers to this | 
 | 	 object.  If the object has a DT_SONAME entry, we use it. | 
 | 	 Otherwise, if the generic linker stuck something in | 
 | 	 elf_dt_name, we use that.  Otherwise, we just use the file | 
 | 	 name.  */ | 
 |       if (soname == NULL || *soname == '\0') | 
 | 	{ | 
 | 	  soname = elf_dt_name (abfd); | 
 | 	  if (soname == NULL || *soname == '\0') | 
 | 	    soname = bfd_get_filename (abfd); | 
 | 	} | 
 |  | 
 |       /* Save the SONAME because sometimes the linker emulation code | 
 | 	 will need to know it.  */ | 
 |       elf_dt_name (abfd) = soname; | 
 |  | 
 |       /* If we have already included this dynamic object in the | 
 | 	 link, just ignore it.  There is no reason to include a | 
 | 	 particular dynamic object more than once.  */ | 
 |       for (loaded_lib = htab->dyn_loaded; | 
 | 	   loaded_lib != NULL; | 
 | 	   loaded_lib = loaded_lib->next) | 
 | 	{ | 
 | 	  if (strcmp (elf_dt_name (loaded_lib->abfd), soname) == 0) | 
 | 	    return true; | 
 | 	} | 
 |  | 
 |       /* Create dynamic sections for backends that require that be done | 
 | 	 before setup_gnu_properties.  */ | 
 |       if (add_needed | 
 | 	  && !_bfd_elf_link_create_dynamic_sections (abfd, info)) | 
 | 	return false; | 
 |  | 
 |       /* Save the DT_AUDIT entry for the linker emulation code. */ | 
 |       elf_dt_audit (abfd) = audit; | 
 |     } | 
 |  | 
 |   /* If this is a dynamic object, we always link against the .dynsym | 
 |      symbol table, not the .symtab symbol table.  The dynamic linker | 
 |      will only see the .dynsym symbol table, so there is no reason to | 
 |      look at .symtab for a dynamic object.  */ | 
 |  | 
 |   if (! dynamic || elf_dynsymtab (abfd) == 0) | 
 |     hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   else | 
 |     hdr = &elf_tdata (abfd)->dynsymtab_hdr; | 
 |  | 
 |   symcount = hdr->sh_size / bed->s->sizeof_sym; | 
 |  | 
 |   /* The sh_info field of the symtab header tells us where the | 
 |      external symbols start.  We don't care about the local symbols at | 
 |      this point.  */ | 
 |   if (elf_bad_symtab (abfd)) | 
 |     { | 
 |       extsymcount = symcount; | 
 |       extsymoff = 0; | 
 |     } | 
 |   else | 
 |     { | 
 |       extsymcount = symcount - hdr->sh_info; | 
 |       extsymoff = hdr->sh_info; | 
 |     } | 
 |  | 
 |   sym_hash = elf_sym_hashes (abfd); | 
 |   if (extsymcount != 0) | 
 |     { | 
 |       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, | 
 | 				      NULL, NULL, NULL); | 
 |       if (isymbuf == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       if (sym_hash == NULL) | 
 | 	{ | 
 | 	  /* We store a pointer to the hash table entry for each | 
 | 	     external symbol.  */ | 
 | 	  size_t amt = extsymcount * sizeof (struct elf_link_hash_entry *); | 
 | 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); | 
 | 	  if (sym_hash == NULL) | 
 | 	    goto error_free_sym; | 
 | 	  elf_sym_hashes (abfd) = sym_hash; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (dynamic) | 
 |     { | 
 |       /* Read in any version definitions.  */ | 
 |       if (!_bfd_elf_slurp_version_tables (abfd, | 
 | 					  info->default_imported_symver)) | 
 | 	goto error_free_sym; | 
 |  | 
 |       /* Read in the symbol versions, but don't bother to convert them | 
 | 	 to internal format.  */ | 
 |       if (elf_dynversym (abfd) != 0) | 
 | 	{ | 
 | 	  Elf_Internal_Shdr *versymhdr = &elf_tdata (abfd)->dynversym_hdr; | 
 | 	  bfd_size_type amt = versymhdr->sh_size; | 
 |  | 
 | 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0) | 
 | 	    goto error_free_sym; | 
 | 	  extversym = (Elf_External_Versym *) | 
 | 	    _bfd_malloc_and_read (abfd, amt, amt); | 
 | 	  if (extversym == NULL) | 
 | 	    goto error_free_sym; | 
 | 	  extversym_end = extversym + amt / sizeof (*extversym); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we are loading an as-needed shared lib, save the symbol table | 
 |      state before we start adding symbols.  If the lib turns out | 
 |      to be unneeded, restore the state.  */ | 
 |   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | 
 |     { | 
 |       unsigned int i; | 
 |       size_t entsize; | 
 |  | 
 |       for (entsize = 0, i = 0; i < htab->root.table.size; i++) | 
 | 	{ | 
 | 	  struct bfd_hash_entry *p; | 
 | 	  struct elf_link_hash_entry *h; | 
 |  | 
 | 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next) | 
 | 	    { | 
 | 	      h = (struct elf_link_hash_entry *) p; | 
 | 	      entsize += htab->root.table.entsize; | 
 | 	      if (h->root.type == bfd_link_hash_warning) | 
 | 		{ | 
 | 		  entsize += htab->root.table.entsize; | 
 | 		  h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 		} | 
 | 	      if (h->root.type == bfd_link_hash_common) | 
 | 		entsize += sizeof (*h->root.u.c.p); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); | 
 |       old_tab = bfd_malloc (tabsize + entsize); | 
 |       if (old_tab == NULL) | 
 | 	goto error_free_vers; | 
 |  | 
 |       /* Remember the current objalloc pointer, so that all mem for | 
 | 	 symbols added can later be reclaimed.  */ | 
 |       alloc_mark = bfd_hash_allocate (&htab->root.table, 1); | 
 |       if (alloc_mark == NULL) | 
 | 	goto error_free_vers; | 
 |  | 
 |       /* Make a special call to the linker "notice" function to | 
 | 	 tell it that we are about to handle an as-needed lib.  */ | 
 |       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) | 
 | 	goto error_free_vers; | 
 |  | 
 |       /* Clone the symbol table.  Remember some pointers into the | 
 | 	 symbol table, and dynamic symbol count.  */ | 
 |       old_ent = (char *) old_tab + tabsize; | 
 |       memcpy (old_tab, htab->root.table.table, tabsize); | 
 |       old_undefs = htab->root.undefs; | 
 |       old_undefs_tail = htab->root.undefs_tail; | 
 |       old_table = htab->root.table.table; | 
 |       old_size = htab->root.table.size; | 
 |       old_count = htab->root.table.count; | 
 |       old_strtab = NULL; | 
 |       if (htab->dynstr != NULL) | 
 | 	{ | 
 | 	  old_strtab = _bfd_elf_strtab_save (htab->dynstr); | 
 | 	  if (old_strtab == NULL) | 
 | 	    goto error_free_vers; | 
 | 	} | 
 |  | 
 |       for (i = 0; i < htab->root.table.size; i++) | 
 | 	{ | 
 | 	  struct bfd_hash_entry *p; | 
 | 	  struct elf_link_hash_entry *h; | 
 |  | 
 | 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next) | 
 | 	    { | 
 | 	      h = (struct elf_link_hash_entry *) p; | 
 | 	      memcpy (old_ent, h, htab->root.table.entsize); | 
 | 	      old_ent = (char *) old_ent + htab->root.table.entsize; | 
 | 	      if (h->root.type == bfd_link_hash_warning) | 
 | 		{ | 
 | 		  h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 		  memcpy (old_ent, h, htab->root.table.entsize); | 
 | 		  old_ent = (char *) old_ent + htab->root.table.entsize; | 
 | 		} | 
 | 	      if (h->root.type == bfd_link_hash_common) | 
 | 		{ | 
 | 		  memcpy (old_ent, h->root.u.c.p, sizeof (*h->root.u.c.p)); | 
 | 		  old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   weaks = NULL; | 
 |   if (extversym == NULL) | 
 |     ever = NULL; | 
 |   else if (extversym + extsymoff < extversym_end) | 
 |     ever = extversym + extsymoff; | 
 |   else | 
 |     { | 
 |       /* xgettext:c-format */ | 
 |       _bfd_error_handler (_("%pB: invalid version offset %lx (max %lx)"), | 
 | 			  abfd, (long) extsymoff, | 
 | 			  (long) (extversym_end - extversym) / sizeof (* extversym)); | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       goto error_free_vers; | 
 |     } | 
 |  | 
 |   if (!bfd_link_relocatable (info) | 
 |       && abfd->lto_slim_object) | 
 |     { | 
 |       _bfd_error_handler | 
 | 	(_("%pB: plugin needed to handle lto object"), abfd); | 
 |     } | 
 |  | 
 |   for (isym = isymbuf, isymend = PTR_ADD (isymbuf, extsymcount); | 
 |        isym < isymend; | 
 |        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) | 
 |     { | 
 |       int bind; | 
 |       bfd_vma value; | 
 |       asection *sec, *new_sec; | 
 |       flagword flags; | 
 |       const char *name; | 
 |       struct elf_link_hash_entry *h; | 
 |       struct elf_link_hash_entry *hi; | 
 |       bool definition; | 
 |       bool size_change_ok; | 
 |       bool type_change_ok; | 
 |       bool new_weak; | 
 |       bool old_weak; | 
 |       bfd *override; | 
 |       bool common; | 
 |       bool discarded; | 
 |       unsigned int old_alignment; | 
 |       unsigned int shindex; | 
 |       bfd *old_bfd; | 
 |       bool matched; | 
 |  | 
 |       override = NULL; | 
 |  | 
 |       flags = BSF_NO_FLAGS; | 
 |       sec = NULL; | 
 |       value = isym->st_value; | 
 |       common = bed->common_definition (isym); | 
 |       if (common && info->inhibit_common_definition) | 
 | 	{ | 
 | 	  /* Treat common symbol as undefined for --no-define-common.  */ | 
 | 	  isym->st_shndx = SHN_UNDEF; | 
 | 	  common = false; | 
 | 	} | 
 |       discarded = false; | 
 |  | 
 |       bind = ELF_ST_BIND (isym->st_info); | 
 |       switch (bind) | 
 | 	{ | 
 | 	case STB_LOCAL: | 
 | 	  /* This should be impossible, since ELF requires that all | 
 | 	     global symbols follow all local symbols, and that sh_info | 
 | 	     point to the first global symbol.  Unfortunately, Irix 5 | 
 | 	     screws this up.  */ | 
 | 	  if (elf_bad_symtab (abfd)) | 
 | 	    continue; | 
 |  | 
 | 	  /* If we aren't prepared to handle locals within the globals | 
 | 	     then we'll likely segfault on a NULL symbol hash if the | 
 | 	     symbol is ever referenced in relocations.  */ | 
 | 	  shindex = elf_elfheader (abfd)->e_shstrndx; | 
 | 	  name = bfd_elf_string_from_elf_section (abfd, shindex, hdr->sh_name); | 
 | 	  _bfd_error_handler (_("%pB: %s local symbol at index %lu" | 
 | 				" (>= sh_info of %lu)"), | 
 | 			      abfd, name, (long) (isym - isymbuf + extsymoff), | 
 | 			      (long) extsymoff); | 
 |  | 
 | 	  /* Dynamic object relocations are not processed by ld, so | 
 | 	     ld won't run into the problem mentioned above.  */ | 
 | 	  if (dynamic) | 
 | 	    continue; | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  goto error_free_vers; | 
 |  | 
 | 	case STB_GLOBAL: | 
 | 	  if (isym->st_shndx != SHN_UNDEF && !common) | 
 | 	    flags = BSF_GLOBAL; | 
 | 	  break; | 
 |  | 
 | 	case STB_WEAK: | 
 | 	  flags = BSF_WEAK; | 
 | 	  break; | 
 |  | 
 | 	case STB_GNU_UNIQUE: | 
 | 	  flags = BSF_GNU_UNIQUE; | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  /* Leave it up to the processor backend.  */ | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       if (isym->st_shndx == SHN_UNDEF) | 
 | 	sec = bfd_und_section_ptr; | 
 |       else if (isym->st_shndx == SHN_ABS) | 
 | 	sec = bfd_abs_section_ptr; | 
 |       else if (isym->st_shndx == SHN_COMMON) | 
 | 	{ | 
 | 	  sec = bfd_com_section_ptr; | 
 | 	  /* What ELF calls the size we call the value.  What ELF | 
 | 	     calls the value we call the alignment.  */ | 
 | 	  value = isym->st_size; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx); | 
 | 	  if (sec == NULL) | 
 | 	    sec = bfd_abs_section_ptr; | 
 | 	  else if (discarded_section (sec)) | 
 | 	    { | 
 | 	      /* Symbols from discarded section are undefined.  We keep | 
 | 		 its visibility.  */ | 
 | 	      sec = bfd_und_section_ptr; | 
 | 	      discarded = true; | 
 | 	      isym->st_shndx = SHN_UNDEF; | 
 | 	    } | 
 | 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) | 
 | 	    value -= sec->vma; | 
 | 	} | 
 |  | 
 |       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, | 
 | 					      isym->st_name); | 
 |       if (name == NULL) | 
 | 	goto error_free_vers; | 
 |  | 
 |       if (isym->st_shndx == SHN_COMMON | 
 | 	  && (abfd->flags & BFD_PLUGIN) != 0) | 
 | 	{ | 
 | 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON"); | 
 |  | 
 | 	  if (xc == NULL) | 
 | 	    { | 
 | 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP | 
 | 				 | SEC_EXCLUDE); | 
 | 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); | 
 | 	      if (xc == NULL) | 
 | 		goto error_free_vers; | 
 | 	    } | 
 | 	  sec = xc; | 
 | 	} | 
 |       else if (isym->st_shndx == SHN_COMMON | 
 | 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS | 
 | 	       && !bfd_link_relocatable (info)) | 
 | 	{ | 
 | 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); | 
 |  | 
 | 	  if (tcomm == NULL) | 
 | 	    { | 
 | 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON | 
 | 				 | SEC_LINKER_CREATED); | 
 | 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); | 
 | 	      if (tcomm == NULL) | 
 | 		goto error_free_vers; | 
 | 	    } | 
 | 	  sec = tcomm; | 
 | 	} | 
 |       else if (bed->elf_add_symbol_hook) | 
 | 	{ | 
 | 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, | 
 | 					     &sec, &value)) | 
 | 	    goto error_free_vers; | 
 |  | 
 | 	  /* The hook function sets the name to NULL if this symbol | 
 | 	     should be skipped for some reason.  */ | 
 | 	  if (name == NULL) | 
 | 	    continue; | 
 | 	} | 
 |  | 
 |       /* Sanity check that all possibilities were handled.  */ | 
 |       if (sec == NULL) | 
 | 	abort (); | 
 |  | 
 |       /* Silently discard TLS symbols from --just-syms.  There's | 
 | 	 no way to combine a static TLS block with a new TLS block | 
 | 	 for this executable.  */ | 
 |       if (ELF_ST_TYPE (isym->st_info) == STT_TLS | 
 | 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       if (bfd_is_und_section (sec) | 
 | 	  || bfd_is_com_section (sec)) | 
 | 	definition = false; | 
 |       else | 
 | 	definition = true; | 
 |  | 
 |       size_change_ok = false; | 
 |       type_change_ok = bed->type_change_ok; | 
 |       old_weak = false; | 
 |       matched = false; | 
 |       old_alignment = 0; | 
 |       old_bfd = NULL; | 
 |       new_sec = sec; | 
 |  | 
 |       if (is_elf_hash_table (&htab->root)) | 
 | 	{ | 
 | 	  Elf_Internal_Versym iver; | 
 | 	  unsigned int vernum = 0; | 
 | 	  bool skip; | 
 |  | 
 | 	  if (ever == NULL) | 
 | 	    { | 
 | 	      if (info->default_imported_symver) | 
 | 		/* Use the default symbol version created earlier.  */ | 
 | 		iver.vs_vers = elf_tdata (abfd)->cverdefs; | 
 | 	      else | 
 | 		iver.vs_vers = 0; | 
 | 	    } | 
 | 	  else if (ever >= extversym_end) | 
 | 	    { | 
 | 	      /* xgettext:c-format */ | 
 | 	      _bfd_error_handler (_("%pB: not enough version information"), | 
 | 				  abfd); | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      goto error_free_vers; | 
 | 	    } | 
 | 	  else | 
 | 	    _bfd_elf_swap_versym_in (abfd, ever, &iver); | 
 |  | 
 | 	  vernum = iver.vs_vers & VERSYM_VERSION; | 
 |  | 
 | 	  /* If this is a hidden symbol, or if it is not version | 
 | 	     1, we append the version name to the symbol name. | 
 | 	     However, we do not modify a non-hidden absolute symbol | 
 | 	     if it is not a function, because it might be the version | 
 | 	     symbol itself.  FIXME: What if it isn't?  */ | 
 | 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0 | 
 | 	      || (vernum > 1 | 
 | 		  && (!bfd_is_abs_section (sec) | 
 | 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) | 
 | 	    { | 
 | 	      const char *verstr; | 
 | 	      size_t namelen, verlen, newlen; | 
 | 	      char *newname, *p; | 
 |  | 
 | 	      if (isym->st_shndx != SHN_UNDEF) | 
 | 		{ | 
 | 		  if (vernum > elf_tdata (abfd)->cverdefs) | 
 | 		    verstr = NULL; | 
 | 		  else if (vernum > 1) | 
 | 		    verstr = | 
 | 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; | 
 | 		  else | 
 | 		    verstr = ""; | 
 |  | 
 | 		  if (verstr == NULL) | 
 | 		    { | 
 | 		      _bfd_error_handler | 
 | 			/* xgettext:c-format */ | 
 | 			(_("%pB: %s: invalid version %u (max %d)"), | 
 | 			 abfd, name, vernum, | 
 | 			 elf_tdata (abfd)->cverdefs); | 
 | 		      bfd_set_error (bfd_error_bad_value); | 
 | 		      goto error_free_vers; | 
 | 		    } | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  /* We cannot simply test for the number of | 
 | 		     entries in the VERNEED section since the | 
 | 		     numbers for the needed versions do not start | 
 | 		     at 0.  */ | 
 | 		  Elf_Internal_Verneed *t; | 
 |  | 
 | 		  verstr = NULL; | 
 | 		  for (t = elf_tdata (abfd)->verref; | 
 | 		       t != NULL; | 
 | 		       t = t->vn_nextref) | 
 | 		    { | 
 | 		      Elf_Internal_Vernaux *a; | 
 |  | 
 | 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 			{ | 
 | 			  if (a->vna_other == vernum) | 
 | 			    { | 
 | 			      verstr = a->vna_nodename; | 
 | 			      break; | 
 | 			    } | 
 | 			} | 
 | 		      if (a != NULL) | 
 | 			break; | 
 | 		    } | 
 | 		  if (verstr == NULL) | 
 | 		    { | 
 | 		      _bfd_error_handler | 
 | 			/* xgettext:c-format */ | 
 | 			(_("%pB: %s: invalid needed version %d"), | 
 | 			 abfd, name, vernum); | 
 | 		      bfd_set_error (bfd_error_bad_value); | 
 | 		      goto error_free_vers; | 
 | 		    } | 
 | 		} | 
 |  | 
 | 	      namelen = strlen (name); | 
 | 	      verlen = strlen (verstr); | 
 | 	      newlen = namelen + verlen + 2; | 
 | 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | 
 | 		  && isym->st_shndx != SHN_UNDEF) | 
 | 		++newlen; | 
 |  | 
 | 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); | 
 | 	      if (newname == NULL) | 
 | 		goto error_free_vers; | 
 | 	      memcpy (newname, name, namelen); | 
 | 	      p = newname + namelen; | 
 | 	      *p++ = ELF_VER_CHR; | 
 | 	      /* If this is a defined non-hidden version symbol, | 
 | 		 we add another @ to the name.  This indicates the | 
 | 		 default version of the symbol.  */ | 
 | 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | 
 | 		  && isym->st_shndx != SHN_UNDEF) | 
 | 		*p++ = ELF_VER_CHR; | 
 | 	      memcpy (p, verstr, verlen + 1); | 
 |  | 
 | 	      name = newname; | 
 | 	    } | 
 |  | 
 | 	  /* If this symbol has default visibility and the user has | 
 | 	     requested we not re-export it, then mark it as hidden.  */ | 
 | 	  if (!bfd_is_und_section (sec) | 
 | 	      && !dynamic | 
 | 	      && abfd->no_export | 
 | 	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) | 
 | 	    isym->st_other = (STV_HIDDEN | 
 | 			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); | 
 |  | 
 | 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, | 
 | 				      sym_hash, &old_bfd, &old_weak, | 
 | 				      &old_alignment, &skip, &override, | 
 | 				      &type_change_ok, &size_change_ok, | 
 | 				      &matched)) | 
 | 	    goto error_free_vers; | 
 |  | 
 | 	  if (skip) | 
 | 	    continue; | 
 |  | 
 | 	  /* Override a definition only if the new symbol matches the | 
 | 	     existing one.  */ | 
 | 	  if (override && matched) | 
 | 	    definition = false; | 
 |  | 
 | 	  h = *sym_hash; | 
 | 	  while (h->root.type == bfd_link_hash_indirect | 
 | 		 || h->root.type == bfd_link_hash_warning) | 
 | 	    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 | 	  if (h->versioned != unversioned | 
 | 	      && elf_tdata (abfd)->verdef != NULL | 
 | 	      && vernum > 1 | 
 | 	      && definition) | 
 | 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; | 
 | 	} | 
 |  | 
 |       if (! (_bfd_generic_link_add_one_symbol | 
 | 	     (info, override ? override : abfd, name, flags, sec, value, | 
 | 	      NULL, false, bed->collect, | 
 | 	      (struct bfd_link_hash_entry **) sym_hash))) | 
 | 	goto error_free_vers; | 
 |  | 
 |       h = *sym_hash; | 
 |       /* We need to make sure that indirect symbol dynamic flags are | 
 | 	 updated.  */ | 
 |       hi = h; | 
 |       while (h->root.type == bfd_link_hash_indirect | 
 | 	     || h->root.type == bfd_link_hash_warning) | 
 | 	h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |       *sym_hash = h; | 
 |  | 
 |       /* Setting the index to -3 tells elf_link_output_extsym that | 
 | 	 this symbol is defined in a discarded section.  */ | 
 |       if (discarded && is_elf_hash_table (&htab->root)) | 
 | 	h->indx = -3; | 
 |  | 
 |       new_weak = (flags & BSF_WEAK) != 0; | 
 |       if (dynamic | 
 | 	  && definition | 
 | 	  && new_weak | 
 | 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) | 
 | 	  && is_elf_hash_table (&htab->root) | 
 | 	  && h->u.alias == NULL) | 
 | 	{ | 
 | 	  /* Keep a list of all weak defined non function symbols from | 
 | 	     a dynamic object, using the alias field.  Later in this | 
 | 	     function we will set the alias field to the correct | 
 | 	     value.  We only put non-function symbols from dynamic | 
 | 	     objects on this list, because that happens to be the only | 
 | 	     time we need to know the normal symbol corresponding to a | 
 | 	     weak symbol, and the information is time consuming to | 
 | 	     figure out.  If the alias field is not already NULL, | 
 | 	     then this symbol was already defined by some previous | 
 | 	     dynamic object, and we will be using that previous | 
 | 	     definition anyhow.  */ | 
 |  | 
 | 	  h->u.alias = weaks; | 
 | 	  weaks = h; | 
 | 	} | 
 |  | 
 |       /* Set the alignment of a common symbol.  */ | 
 |       if ((common || bfd_is_com_section (sec)) | 
 | 	  && h->root.type == bfd_link_hash_common) | 
 | 	{ | 
 | 	  unsigned int align; | 
 |  | 
 | 	  if (common) | 
 | 	    align = bfd_log2 (isym->st_value); | 
 | 	  else | 
 | 	    { | 
 | 	      /* The new symbol is a common symbol in a shared object. | 
 | 		 We need to get the alignment from the section.  */ | 
 | 	      align = new_sec->alignment_power; | 
 | 	    } | 
 | 	  if (align > old_alignment) | 
 | 	    h->root.u.c.p->alignment_power = align; | 
 | 	  else | 
 | 	    h->root.u.c.p->alignment_power = old_alignment; | 
 | 	} | 
 |  | 
 |       if (is_elf_hash_table (&htab->root)) | 
 | 	{ | 
 | 	  /* Set a flag in the hash table entry indicating the type of | 
 | 	     reference or definition we just found.  A dynamic symbol | 
 | 	     is one which is referenced or defined by both a regular | 
 | 	     object and a shared object.  */ | 
 | 	  bool dynsym = false; | 
 |  | 
 | 	  /* Plugin symbols aren't normal.  Don't set def/ref flags.  */ | 
 | 	  if ((abfd->flags & BFD_PLUGIN) != 0) | 
 | 	    { | 
 | 	      /* Except for this flag to track nonweak references.  */ | 
 | 	      if (!definition | 
 | 		  && bind != STB_WEAK) | 
 | 		h->ref_ir_nonweak = 1; | 
 | 	    } | 
 | 	  else if (!dynamic) | 
 | 	    { | 
 | 	      if (! definition) | 
 | 		{ | 
 | 		  h->ref_regular = 1; | 
 | 		  if (bind != STB_WEAK) | 
 | 		    h->ref_regular_nonweak = 1; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  h->def_regular = 1; | 
 | 		  if (h->def_dynamic) | 
 | 		    { | 
 | 		      h->def_dynamic = 0; | 
 | 		      h->ref_dynamic = 1; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (! definition) | 
 | 		{ | 
 | 		  h->ref_dynamic = 1; | 
 | 		  hi->ref_dynamic = 1; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  h->def_dynamic = 1; | 
 | 		  hi->def_dynamic = 1; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* If an indirect symbol has been forced local, don't | 
 | 	     make the real symbol dynamic.  */ | 
 | 	  if (h != hi && hi->forced_local) | 
 | 	    ; | 
 | 	  else if (!dynamic) | 
 | 	    { | 
 | 	      if (bfd_link_dll (info) | 
 | 		  || h->def_dynamic | 
 | 		  || h->ref_dynamic) | 
 | 		dynsym = true; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (h->def_regular | 
 | 		  || h->ref_regular | 
 | 		  || (h->is_weakalias | 
 | 		      && weakdef (h)->dynindx != -1)) | 
 | 		dynsym = true; | 
 | 	    } | 
 |  | 
 | 	  /* Check to see if we need to add an indirect symbol for | 
 | 	     the default name.  */ | 
 | 	  if ((definition | 
 | 	       || (!override && h->root.type == bfd_link_hash_common)) | 
 | 	      && !(hi != h | 
 | 		   && hi->versioned == versioned_hidden)) | 
 | 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, | 
 | 					      sec, value, &old_bfd, &dynsym)) | 
 | 	      goto error_free_vers; | 
 |  | 
 | 	  /* Check the alignment when a common symbol is involved. This | 
 | 	     can change when a common symbol is overridden by a normal | 
 | 	     definition or a common symbol is ignored due to the old | 
 | 	     normal definition. We need to make sure the maximum | 
 | 	     alignment is maintained.  */ | 
 | 	  if ((old_alignment || common) | 
 | 	      && h->root.type != bfd_link_hash_common) | 
 | 	    { | 
 | 	      unsigned int common_align; | 
 | 	      unsigned int normal_align; | 
 | 	      unsigned int symbol_align; | 
 | 	      bfd *normal_bfd; | 
 | 	      bfd *common_bfd; | 
 |  | 
 | 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined | 
 | 			  || h->root.type == bfd_link_hash_defweak); | 
 |  | 
 | 	      symbol_align = ffs (h->root.u.def.value) - 1; | 
 | 	      if (h->root.u.def.section->owner != NULL | 
 | 		  && (h->root.u.def.section->owner->flags | 
 | 		       & (DYNAMIC | BFD_PLUGIN)) == 0) | 
 | 		{ | 
 | 		  normal_align = h->root.u.def.section->alignment_power; | 
 | 		  if (normal_align > symbol_align) | 
 | 		    normal_align = symbol_align; | 
 | 		} | 
 | 	      else | 
 | 		normal_align = symbol_align; | 
 |  | 
 | 	      if (old_alignment) | 
 | 		{ | 
 | 		  common_align = old_alignment; | 
 | 		  common_bfd = old_bfd; | 
 | 		  normal_bfd = abfd; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  common_align = bfd_log2 (isym->st_value); | 
 | 		  common_bfd = abfd; | 
 | 		  normal_bfd = old_bfd; | 
 | 		} | 
 |  | 
 | 	      if (normal_align < common_align) | 
 | 		{ | 
 | 		  /* PR binutils/2735 */ | 
 | 		  if (normal_bfd == NULL) | 
 | 		    _bfd_error_handler | 
 | 		      /* xgettext:c-format */ | 
 | 		      (_("warning: alignment %u of common symbol `%s' in %pB is" | 
 | 			 " greater than the alignment (%u) of its section %pA"), | 
 | 		       1 << common_align, name, common_bfd, | 
 | 		       1 << normal_align, h->root.u.def.section); | 
 | 		  else | 
 | 		    _bfd_error_handler | 
 | 		      /* xgettext:c-format */ | 
 | 		      (_("warning: alignment %u of symbol `%s' in %pB" | 
 | 			 " is smaller than %u in %pB"), | 
 | 		       1 << normal_align, name, normal_bfd, | 
 | 		       1 << common_align, common_bfd); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* Remember the symbol size if it isn't undefined.  */ | 
 | 	  if (isym->st_size != 0 | 
 | 	      && isym->st_shndx != SHN_UNDEF | 
 | 	      && (definition || h->size == 0)) | 
 | 	    { | 
 | 	      if (h->size != 0 | 
 | 		  && h->size != isym->st_size | 
 | 		  && ! size_change_ok) | 
 | 		_bfd_error_handler | 
 | 		  /* xgettext:c-format */ | 
 | 		  (_("warning: size of symbol `%s' changed" | 
 | 		     " from %" PRIu64 " in %pB to %" PRIu64 " in %pB"), | 
 | 		   name, (uint64_t) h->size, old_bfd, | 
 | 		   (uint64_t) isym->st_size, abfd); | 
 |  | 
 | 	      h->size = isym->st_size; | 
 | 	    } | 
 |  | 
 | 	  /* If this is a common symbol, then we always want H->SIZE | 
 | 	     to be the size of the common symbol.  The code just above | 
 | 	     won't fix the size if a common symbol becomes larger.  We | 
 | 	     don't warn about a size change here, because that is | 
 | 	     covered by --warn-common.  Allow changes between different | 
 | 	     function types.  */ | 
 | 	  if (h->root.type == bfd_link_hash_common) | 
 | 	    h->size = h->root.u.c.size; | 
 |  | 
 | 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE | 
 | 	      && ((definition && !new_weak) | 
 | 		  || (old_weak && h->root.type == bfd_link_hash_common) | 
 | 		  || h->type == STT_NOTYPE)) | 
 | 	    { | 
 | 	      unsigned int type = ELF_ST_TYPE (isym->st_info); | 
 |  | 
 | 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC | 
 | 		 symbol.  */ | 
 | 	      if (type == STT_GNU_IFUNC | 
 | 		  && (abfd->flags & DYNAMIC) != 0) | 
 | 		type = STT_FUNC; | 
 |  | 
 | 	      if (h->type != type) | 
 | 		{ | 
 | 		  if (h->type != STT_NOTYPE && ! type_change_ok) | 
 | 		    /* xgettext:c-format */ | 
 | 		    _bfd_error_handler | 
 | 		      (_("warning: type of symbol `%s' changed" | 
 | 			 " from %d to %d in %pB"), | 
 | 		       name, h->type, type, abfd); | 
 |  | 
 | 		  h->type = type; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* Merge st_other field.  */ | 
 | 	  elf_merge_st_other (abfd, h, isym->st_other, sec, | 
 | 			      definition, dynamic); | 
 |  | 
 | 	  /* We don't want to make debug symbol dynamic.  */ | 
 | 	  if (definition | 
 | 	      && (sec->flags & SEC_DEBUGGING) | 
 | 	      && !bfd_link_relocatable (info)) | 
 | 	    dynsym = false; | 
 |  | 
 | 	  /* Nor should we make plugin symbols dynamic.  */ | 
 | 	  if ((abfd->flags & BFD_PLUGIN) != 0) | 
 | 	    dynsym = false; | 
 |  | 
 | 	  if (definition) | 
 | 	    { | 
 | 	      h->target_internal = isym->st_target_internal; | 
 | 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; | 
 | 	    } | 
 |  | 
 | 	  if (definition && !dynamic) | 
 | 	    { | 
 | 	      char *p = strchr (name, ELF_VER_CHR); | 
 | 	      if (p != NULL && p[1] != ELF_VER_CHR) | 
 | 		{ | 
 | 		  /* Queue non-default versions so that .symver x, x@FOO | 
 | 		     aliases can be checked.  */ | 
 | 		  if (!nondeflt_vers) | 
 | 		    { | 
 | 		      size_t amt = ((isymend - isym + 1) | 
 | 				    * sizeof (struct elf_link_hash_entry *)); | 
 | 		      nondeflt_vers | 
 | 			= (struct elf_link_hash_entry **) bfd_malloc (amt); | 
 | 		      if (!nondeflt_vers) | 
 | 			goto error_free_vers; | 
 | 		    } | 
 | 		  nondeflt_vers[nondeflt_vers_cnt++] = h; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (dynsym && h->dynindx == -1) | 
 | 	    { | 
 | 	      if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 		goto error_free_vers; | 
 | 	      if (h->is_weakalias | 
 | 		  && weakdef (h)->dynindx == -1) | 
 | 		{ | 
 | 		  if (!bfd_elf_link_record_dynamic_symbol (info, weakdef (h))) | 
 | 		    goto error_free_vers; | 
 | 		} | 
 | 	    } | 
 | 	  else if (h->dynindx != -1) | 
 | 	    /* If the symbol already has a dynamic index, but | 
 | 	       visibility says it should not be visible, turn it into | 
 | 	       a local symbol.  */ | 
 | 	    switch (ELF_ST_VISIBILITY (h->other)) | 
 | 	      { | 
 | 	      case STV_INTERNAL: | 
 | 	      case STV_HIDDEN: | 
 | 		(*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 		dynsym = false; | 
 | 		break; | 
 | 	      } | 
 |  | 
 | 	  if (!add_needed | 
 | 	      && matched | 
 | 	      && definition | 
 | 	      && h->root.type != bfd_link_hash_indirect | 
 | 	      && ((dynsym | 
 | 		   && h->ref_regular_nonweak) | 
 | 		  || (old_bfd != NULL | 
 | 		      && (old_bfd->flags & BFD_PLUGIN) != 0 | 
 | 		      && h->ref_ir_nonweak | 
 | 		      && !info->lto_all_symbols_read) | 
 | 		  || (h->ref_dynamic_nonweak | 
 | 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 | 
 | 		      && !on_needed_list (elf_dt_name (abfd), | 
 | 					  htab->needed, NULL)))) | 
 | 	    { | 
 | 	      const char *soname = elf_dt_name (abfd); | 
 |  | 
 | 	      info->callbacks->minfo ("%!", soname, old_bfd, | 
 | 				      h->root.root.string); | 
 |  | 
 | 	      /* A symbol from a library loaded via DT_NEEDED of some | 
 | 		 other library is referenced by a regular object. | 
 | 		 Add a DT_NEEDED entry for it.  Issue an error if | 
 | 		 --no-add-needed is used and the reference was not | 
 | 		 a weak one.  */ | 
 | 	      if (old_bfd != NULL | 
 | 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) | 
 | 		{ | 
 | 		  _bfd_error_handler | 
 | 		    /* xgettext:c-format */ | 
 | 		    (_("%pB: undefined reference to symbol '%s'"), | 
 | 		     old_bfd, name); | 
 | 		  bfd_set_error (bfd_error_missing_dso); | 
 | 		  goto error_free_vers; | 
 | 		} | 
 |  | 
 | 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) | 
 | 		(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); | 
 |  | 
 | 	      /* Create dynamic sections for backends that require | 
 | 		 that be done before setup_gnu_properties.  */ | 
 | 	      if (!_bfd_elf_link_create_dynamic_sections (abfd, info)) | 
 | 		return false; | 
 | 	      add_needed = true; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (info->lto_plugin_active | 
 |       && !bfd_link_relocatable (info) | 
 |       && (abfd->flags & BFD_PLUGIN) == 0 | 
 |       && !just_syms | 
 |       && extsymcount) | 
 |     { | 
 |       int r_sym_shift; | 
 |  | 
 |       if (bed->s->arch_size == 32) | 
 | 	r_sym_shift = 8; | 
 |       else | 
 | 	r_sym_shift = 32; | 
 |  | 
 |       /* If linker plugin is enabled, set non_ir_ref_regular on symbols | 
 | 	 referenced in regular objects so that linker plugin will get | 
 | 	 the correct symbol resolution.  */ | 
 |  | 
 |       sym_hash = elf_sym_hashes (abfd); | 
 |       for (s = abfd->sections; s != NULL; s = s->next) | 
 | 	{ | 
 | 	  Elf_Internal_Rela *internal_relocs; | 
 | 	  Elf_Internal_Rela *rel, *relend; | 
 |  | 
 | 	  /* Don't check relocations in excluded sections.  */ | 
 | 	  if ((s->flags & SEC_RELOC) == 0 | 
 | 	      || s->reloc_count == 0 | 
 | 	      || (s->flags & SEC_EXCLUDE) != 0 | 
 | 	      || ((info->strip == strip_all | 
 | 		   || info->strip == strip_debugger) | 
 | 		  && (s->flags & SEC_DEBUGGING) != 0)) | 
 | 	    continue; | 
 |  | 
 | 	  internal_relocs = _bfd_elf_link_info_read_relocs (abfd, info, | 
 | 							    s, NULL, | 
 | 							    NULL, | 
 | 							    _bfd_link_keep_memory (info)); | 
 | 	  if (internal_relocs == NULL) | 
 | 	    goto error_free_vers; | 
 |  | 
 | 	  rel = internal_relocs; | 
 | 	  relend = rel + s->reloc_count; | 
 | 	  for ( ; rel < relend; rel++) | 
 | 	    { | 
 | 	      unsigned long r_symndx = rel->r_info >> r_sym_shift; | 
 | 	      struct elf_link_hash_entry *h; | 
 |  | 
 | 	      /* Skip local symbols.  */ | 
 | 	      if (r_symndx < extsymoff) | 
 | 		continue; | 
 |  | 
 | 	      h = sym_hash[r_symndx - extsymoff]; | 
 | 	      if (h != NULL) | 
 | 		h->root.non_ir_ref_regular = 1; | 
 | 	    } | 
 |  | 
 | 	  if (elf_section_data (s)->relocs != internal_relocs) | 
 | 	    free (internal_relocs); | 
 | 	} | 
 |     } | 
 |  | 
 |   free (extversym); | 
 |   extversym = NULL; | 
 |   free (isymbuf); | 
 |   isymbuf = NULL; | 
 |  | 
 |   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) | 
 |     { | 
 |       unsigned int i; | 
 |  | 
 |       /* Restore the symbol table.  */ | 
 |       old_ent = (char *) old_tab + tabsize; | 
 |       memset (elf_sym_hashes (abfd), 0, | 
 | 	      extsymcount * sizeof (struct elf_link_hash_entry *)); | 
 |       htab->root.table.table = old_table; | 
 |       htab->root.table.size = old_size; | 
 |       htab->root.table.count = old_count; | 
 |       memcpy (htab->root.table.table, old_tab, tabsize); | 
 |       htab->root.undefs = old_undefs; | 
 |       htab->root.undefs_tail = old_undefs_tail; | 
 |       if (htab->dynstr != NULL) | 
 | 	_bfd_elf_strtab_restore (htab->dynstr, old_strtab); | 
 |       free (old_strtab); | 
 |       old_strtab = NULL; | 
 |       for (i = 0; i < htab->root.table.size; i++) | 
 | 	{ | 
 | 	  struct bfd_hash_entry *p; | 
 | 	  struct elf_link_hash_entry *h; | 
 | 	  unsigned int non_ir_ref_dynamic; | 
 |  | 
 | 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next) | 
 | 	    { | 
 | 	      /* Preserve non_ir_ref_dynamic so that this symbol | 
 | 		 will be exported when the dynamic lib becomes needed | 
 | 		 in the second pass.  */ | 
 | 	      h = (struct elf_link_hash_entry *) p; | 
 | 	      if (h->root.type == bfd_link_hash_warning) | 
 | 		h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 	      non_ir_ref_dynamic = h->root.non_ir_ref_dynamic; | 
 |  | 
 | 	      h = (struct elf_link_hash_entry *) p; | 
 | 	      memcpy (h, old_ent, htab->root.table.entsize); | 
 | 	      old_ent = (char *) old_ent + htab->root.table.entsize; | 
 | 	      if (h->root.type == bfd_link_hash_warning) | 
 | 		{ | 
 | 		  h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 		  memcpy (h, old_ent, htab->root.table.entsize); | 
 | 		  old_ent = (char *) old_ent + htab->root.table.entsize; | 
 | 		} | 
 | 	      if (h->root.type == bfd_link_hash_common) | 
 | 		{ | 
 | 		  memcpy (h->root.u.c.p, old_ent, sizeof (*h->root.u.c.p)); | 
 | 		  old_ent = (char *) old_ent + sizeof (*h->root.u.c.p); | 
 | 		} | 
 | 	      h->root.non_ir_ref_dynamic = non_ir_ref_dynamic; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Make a special call to the linker "notice" function to | 
 | 	 tell it that symbols added for crefs may need to be removed.  */ | 
 |       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) | 
 | 	goto error_free_vers; | 
 |  | 
 |       free (old_tab); | 
 |       objalloc_free_block ((struct objalloc *) htab->root.table.memory, | 
 | 			   alloc_mark); | 
 |       free (nondeflt_vers); | 
 |       return true; | 
 |     } | 
 |  | 
 |   if (old_tab != NULL) | 
 |     { | 
 |       if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) | 
 | 	goto error_free_vers; | 
 |       free (old_tab); | 
 |       old_tab = NULL; | 
 |     } | 
 |  | 
 |   /* Now that all the symbols from this input file are created, if | 
 |      not performing a relocatable link, handle .symver foo, foo@BAR | 
 |      such that any relocs against foo become foo@BAR.  */ | 
 |   if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) | 
 |     { | 
 |       size_t cnt, symidx; | 
 |  | 
 |       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) | 
 | 	{ | 
 | 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; | 
 | 	  char *shortname, *p; | 
 | 	  size_t amt; | 
 |  | 
 | 	  p = strchr (h->root.root.string, ELF_VER_CHR); | 
 | 	  if (p == NULL | 
 | 	      || (h->root.type != bfd_link_hash_defined | 
 | 		  && h->root.type != bfd_link_hash_defweak)) | 
 | 	    continue; | 
 |  | 
 | 	  amt = p - h->root.root.string; | 
 | 	  shortname = (char *) bfd_malloc (amt + 1); | 
 | 	  if (!shortname) | 
 | 	    goto error_free_vers; | 
 | 	  memcpy (shortname, h->root.root.string, amt); | 
 | 	  shortname[amt] = '\0'; | 
 |  | 
 | 	  hi = (struct elf_link_hash_entry *) | 
 | 	       bfd_link_hash_lookup (&htab->root, shortname, | 
 | 				     false, false, false); | 
 | 	  if (hi != NULL | 
 | 	      && hi->root.type == h->root.type | 
 | 	      && hi->root.u.def.value == h->root.u.def.value | 
 | 	      && hi->root.u.def.section == h->root.u.def.section) | 
 | 	    { | 
 | 	      (*bed->elf_backend_hide_symbol) (info, hi, true); | 
 | 	      hi->root.type = bfd_link_hash_indirect; | 
 | 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h; | 
 | 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); | 
 | 	      sym_hash = elf_sym_hashes (abfd); | 
 | 	      if (sym_hash) | 
 | 		for (symidx = 0; symidx < extsymcount; ++symidx) | 
 | 		  if (sym_hash[symidx] == hi) | 
 | 		    { | 
 | 		      sym_hash[symidx] = h; | 
 | 		      break; | 
 | 		    } | 
 | 	    } | 
 | 	  free (shortname); | 
 | 	} | 
 |       free (nondeflt_vers); | 
 |       nondeflt_vers = NULL; | 
 |     } | 
 |  | 
 |   /* Now set the alias field correctly for all the weak defined | 
 |      symbols we found.  The only way to do this is to search all the | 
 |      symbols.  Since we only need the information for non functions in | 
 |      dynamic objects, that's the only time we actually put anything on | 
 |      the list WEAKS.  We need this information so that if a regular | 
 |      object refers to a symbol defined weakly in a dynamic object, the | 
 |      real symbol in the dynamic object is also put in the dynamic | 
 |      symbols; we also must arrange for both symbols to point to the | 
 |      same memory location.  We could handle the general case of symbol | 
 |      aliasing, but a general symbol alias can only be generated in | 
 |      assembler code, handling it correctly would be very time | 
 |      consuming, and other ELF linkers don't handle general aliasing | 
 |      either.  */ | 
 |   if (weaks != NULL) | 
 |     { | 
 |       struct elf_link_hash_entry **hpp; | 
 |       struct elf_link_hash_entry **hppend; | 
 |       struct elf_link_hash_entry **sorted_sym_hash; | 
 |       struct elf_link_hash_entry *h; | 
 |       size_t sym_count, amt; | 
 |  | 
 |       /* Since we have to search the whole symbol list for each weak | 
 | 	 defined symbol, search time for N weak defined symbols will be | 
 | 	 O(N^2). Binary search will cut it down to O(NlogN).  */ | 
 |       amt = extsymcount * sizeof (*sorted_sym_hash); | 
 |       sorted_sym_hash = bfd_malloc (amt); | 
 |       if (sorted_sym_hash == NULL) | 
 | 	goto error_return; | 
 |       sym_hash = sorted_sym_hash; | 
 |       hpp = elf_sym_hashes (abfd); | 
 |       hppend = hpp + extsymcount; | 
 |       sym_count = 0; | 
 |       for (; hpp < hppend; hpp++) | 
 | 	{ | 
 | 	  h = *hpp; | 
 | 	  if (h != NULL | 
 | 	      && h->root.type == bfd_link_hash_defined | 
 | 	      && !bed->is_function_type (h->type)) | 
 | 	    { | 
 | 	      *sym_hash = h; | 
 | 	      sym_hash++; | 
 | 	      sym_count++; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       qsort (sorted_sym_hash, sym_count, sizeof (*sorted_sym_hash), | 
 | 	     elf_sort_symbol); | 
 |  | 
 |       while (weaks != NULL) | 
 | 	{ | 
 | 	  struct elf_link_hash_entry *hlook; | 
 | 	  asection *slook; | 
 | 	  bfd_vma vlook; | 
 | 	  size_t i, j, idx = 0; | 
 |  | 
 | 	  hlook = weaks; | 
 | 	  weaks = hlook->u.alias; | 
 | 	  hlook->u.alias = NULL; | 
 |  | 
 | 	  if (hlook->root.type != bfd_link_hash_defined | 
 | 	      && hlook->root.type != bfd_link_hash_defweak) | 
 | 	    continue; | 
 |  | 
 | 	  slook = hlook->root.u.def.section; | 
 | 	  vlook = hlook->root.u.def.value; | 
 |  | 
 | 	  i = 0; | 
 | 	  j = sym_count; | 
 | 	  while (i != j) | 
 | 	    { | 
 | 	      bfd_signed_vma vdiff; | 
 | 	      idx = (i + j) / 2; | 
 | 	      h = sorted_sym_hash[idx]; | 
 | 	      vdiff = vlook - h->root.u.def.value; | 
 | 	      if (vdiff < 0) | 
 | 		j = idx; | 
 | 	      else if (vdiff > 0) | 
 | 		i = idx + 1; | 
 | 	      else | 
 | 		{ | 
 | 		  int sdiff = slook->id - h->root.u.def.section->id; | 
 | 		  if (sdiff < 0) | 
 | 		    j = idx; | 
 | 		  else if (sdiff > 0) | 
 | 		    i = idx + 1; | 
 | 		  else | 
 | 		    break; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* We didn't find a value/section match.  */ | 
 | 	  if (i == j) | 
 | 	    continue; | 
 |  | 
 | 	  /* With multiple aliases, or when the weak symbol is already | 
 | 	     strongly defined, we have multiple matching symbols and | 
 | 	     the binary search above may land on any of them.  Step | 
 | 	     one past the matching symbol(s).  */ | 
 | 	  while (++idx != j) | 
 | 	    { | 
 | 	      h = sorted_sym_hash[idx]; | 
 | 	      if (h->root.u.def.section != slook | 
 | 		  || h->root.u.def.value != vlook) | 
 | 		break; | 
 | 	    } | 
 |  | 
 | 	  /* Now look back over the aliases.  Since we sorted by size | 
 | 	     as well as value and section, we'll choose the one with | 
 | 	     the largest size.  */ | 
 | 	  while (idx-- != i) | 
 | 	    { | 
 | 	      h = sorted_sym_hash[idx]; | 
 |  | 
 | 	      /* Stop if value or section doesn't match.  */ | 
 | 	      if (h->root.u.def.section != slook | 
 | 		  || h->root.u.def.value != vlook) | 
 | 		break; | 
 | 	      else if (h != hlook) | 
 | 		{ | 
 | 		  struct elf_link_hash_entry *t; | 
 |  | 
 | 		  hlook->u.alias = h; | 
 | 		  hlook->is_weakalias = 1; | 
 | 		  t = h; | 
 | 		  if (t->u.alias != NULL) | 
 | 		    while (t->u.alias != h) | 
 | 		      t = t->u.alias; | 
 | 		  t->u.alias = hlook; | 
 |  | 
 | 		  /* If the weak definition is in the list of dynamic | 
 | 		     symbols, make sure the real definition is put | 
 | 		     there as well.  */ | 
 | 		  if (hlook->dynindx != -1 && h->dynindx == -1) | 
 | 		    { | 
 | 		      if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 			{ | 
 | 			err_free_sym_hash: | 
 | 			  free (sorted_sym_hash); | 
 | 			  goto error_return; | 
 | 			} | 
 | 		    } | 
 |  | 
 | 		  /* If the real definition is in the list of dynamic | 
 | 		     symbols, make sure the weak definition is put | 
 | 		     there as well.  If we don't do this, then the | 
 | 		     dynamic loader might not merge the entries for the | 
 | 		     real definition and the weak definition.  */ | 
 | 		  if (h->dynindx != -1 && hlook->dynindx == -1) | 
 | 		    { | 
 | 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) | 
 | 			goto err_free_sym_hash; | 
 | 		    } | 
 | 		  break; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       free (sorted_sym_hash); | 
 |     } | 
 |  | 
 |   if (bed->check_directives | 
 |       && !(*bed->check_directives) (abfd, info)) | 
 |     return false; | 
 |  | 
 |   /* If this is a non-traditional link, try to optimize the handling | 
 |      of the .stab/.stabstr sections.  */ | 
 |   if (! dynamic | 
 |       && ! info->traditional_format | 
 |       && is_elf_hash_table (&htab->root) | 
 |       && (info->strip != strip_all && info->strip != strip_debugger)) | 
 |     { | 
 |       asection *stabstr; | 
 |  | 
 |       stabstr = bfd_get_section_by_name (abfd, ".stabstr"); | 
 |       if (stabstr != NULL) | 
 | 	{ | 
 | 	  bfd_size_type string_offset = 0; | 
 | 	  asection *stab; | 
 |  | 
 | 	  for (stab = abfd->sections; stab; stab = stab->next) | 
 | 	    if (startswith (stab->name, ".stab") | 
 | 		&& (!stab->name[5] || | 
 | 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) | 
 | 		&& (stab->flags & SEC_MERGE) == 0 | 
 | 		&& !bfd_is_abs_section (stab->output_section)) | 
 | 	      { | 
 | 		struct bfd_elf_section_data *secdata; | 
 |  | 
 | 		secdata = elf_section_data (stab); | 
 | 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, | 
 | 					       stabstr, &secdata->sec_info, | 
 | 					       &string_offset)) | 
 | 		  goto error_return; | 
 | 		if (secdata->sec_info) | 
 | 		  stab->sec_info_type = SEC_INFO_TYPE_STABS; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (dynamic && add_needed) | 
 |     { | 
 |       /* Add this bfd to the loaded list.  */ | 
 |       struct elf_link_loaded_list *n; | 
 |  | 
 |       n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); | 
 |       if (n == NULL) | 
 | 	goto error_return; | 
 |       n->abfd = abfd; | 
 |       n->next = htab->dyn_loaded; | 
 |       htab->dyn_loaded = n; | 
 |     } | 
 |   if (dynamic && !add_needed | 
 |       && (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) != 0) | 
 |     elf_dyn_lib_class (abfd) |= DYN_NO_NEEDED; | 
 |  | 
 |   return true; | 
 |  | 
 |  error_free_vers: | 
 |   free (old_tab); | 
 |   free (old_strtab); | 
 |   free (nondeflt_vers); | 
 |   free (extversym); | 
 |  error_free_sym: | 
 |   free (isymbuf); | 
 |  error_return: | 
 |   return false; | 
 | } | 
 |  | 
 | /* Return the linker hash table entry of a symbol that might be | 
 |    satisfied by an archive symbol.  Return -1 on error.  */ | 
 |  | 
 | struct bfd_link_hash_entry * | 
 | _bfd_elf_archive_symbol_lookup (bfd *abfd, | 
 | 				struct bfd_link_info *info, | 
 | 				const char *name) | 
 | { | 
 |   struct bfd_link_hash_entry *h; | 
 |   char *p, *copy; | 
 |   size_t len, first; | 
 |  | 
 |   h = bfd_link_hash_lookup (info->hash, name, false, false, true); | 
 |   if (h != NULL) | 
 |     return h; | 
 |  | 
 |   /* If this is a default version (the name contains @@), look up the | 
 |      symbol again with only one `@' as well as without the version. | 
 |      The effect is that references to the symbol with and without the | 
 |      version will be matched by the default symbol in the archive.  */ | 
 |  | 
 |   p = strchr (name, ELF_VER_CHR); | 
 |   if (p == NULL || p[1] != ELF_VER_CHR) | 
 |     return h; | 
 |  | 
 |   /* First check with only one `@'.  */ | 
 |   len = strlen (name); | 
 |   copy = (char *) bfd_alloc (abfd, len); | 
 |   if (copy == NULL) | 
 |     return (struct bfd_link_hash_entry *) -1; | 
 |  | 
 |   first = p - name + 1; | 
 |   memcpy (copy, name, first); | 
 |   memcpy (copy + first, name + first + 1, len - first); | 
 |  | 
 |   h = bfd_link_hash_lookup (info->hash, copy, false, false, true); | 
 |   if (h == NULL) | 
 |     { | 
 |       /* We also need to check references to the symbol without the | 
 | 	 version.  */ | 
 |       copy[first - 1] = '\0'; | 
 |       h = bfd_link_hash_lookup (info->hash, copy, false, false, true); | 
 |     } | 
 |  | 
 |   bfd_release (abfd, copy); | 
 |   return h; | 
 | } | 
 |  | 
 | /* Add symbols from an ELF archive file to the linker hash table.  We | 
 |    don't use _bfd_generic_link_add_archive_symbols because we need to | 
 |    handle versioned symbols. | 
 |  | 
 |    Fortunately, ELF archive handling is simpler than that done by | 
 |    _bfd_generic_link_add_archive_symbols, which has to allow for a.out | 
 |    oddities.  In ELF, if we find a symbol in the archive map, and the | 
 |    symbol is currently undefined, we know that we must pull in that | 
 |    object file. | 
 |  | 
 |    Unfortunately, we do have to make multiple passes over the symbol | 
 |    table until nothing further is resolved.  */ | 
 |  | 
 | static bool | 
 | elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   symindex c; | 
 |   unsigned char *included = NULL; | 
 |   carsym *symdefs; | 
 |   bool loop; | 
 |   size_t amt; | 
 |   const struct elf_backend_data *bed; | 
 |   struct bfd_link_hash_entry * (*archive_symbol_lookup) | 
 |     (bfd *, struct bfd_link_info *, const char *); | 
 |  | 
 |   if (! bfd_has_map (abfd)) | 
 |     { | 
 |       /* An empty archive is a special case.  */ | 
 |       if (bfd_openr_next_archived_file (abfd, NULL) == NULL) | 
 | 	return true; | 
 |       bfd_set_error (bfd_error_no_armap); | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* Keep track of all symbols we know to be already defined, and all | 
 |      files we know to be already included.  This is to speed up the | 
 |      second and subsequent passes.  */ | 
 |   c = bfd_ardata (abfd)->symdef_count; | 
 |   if (c == 0) | 
 |     return true; | 
 |   amt = c * sizeof (*included); | 
 |   included = (unsigned char *) bfd_zmalloc (amt); | 
 |   if (included == NULL) | 
 |     return false; | 
 |  | 
 |   symdefs = bfd_ardata (abfd)->symdefs; | 
 |   bed = get_elf_backend_data (abfd); | 
 |   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; | 
 |  | 
 |   do | 
 |     { | 
 |       file_ptr last; | 
 |       symindex i; | 
 |       carsym *symdef; | 
 |       carsym *symdefend; | 
 |  | 
 |       loop = false; | 
 |       last = -1; | 
 |  | 
 |       symdef = symdefs; | 
 |       symdefend = symdef + c; | 
 |       for (i = 0; symdef < symdefend; symdef++, i++) | 
 | 	{ | 
 | 	  struct bfd_link_hash_entry *h; | 
 | 	  bfd *element; | 
 | 	  struct bfd_link_hash_entry *undefs_tail; | 
 | 	  symindex mark; | 
 |  | 
 | 	  if (included[i]) | 
 | 	    continue; | 
 | 	  if (symdef->file_offset == last) | 
 | 	    { | 
 | 	      included[i] = true; | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  h = archive_symbol_lookup (abfd, info, symdef->name); | 
 | 	  if (h == (struct bfd_link_hash_entry *) -1) | 
 | 	    goto error_return; | 
 |  | 
 | 	  if (h == NULL) | 
 | 	    continue; | 
 |  | 
 | 	  if (h->type == bfd_link_hash_undefined) | 
 | 	    { | 
 | 	      /* If the archive element has already been loaded then one | 
 | 		 of the symbols defined by that element might have been | 
 | 		 made undefined due to being in a discarded section.  */ | 
 | 	      if (is_elf_hash_table (info->hash) | 
 | 		  && ((struct elf_link_hash_entry *) h)->indx == -3) | 
 | 		continue; | 
 | 	    } | 
 | 	  else if (h->type == bfd_link_hash_common) | 
 | 	    { | 
 | 	      /* We currently have a common symbol.  The archive map contains | 
 | 		 a reference to this symbol, so we may want to include it.  We | 
 | 		 only want to include it however, if this archive element | 
 | 		 contains a definition of the symbol, not just another common | 
 | 		 declaration of it. | 
 |  | 
 | 		 Unfortunately some archivers (including GNU ar) will put | 
 | 		 declarations of common symbols into their archive maps, as | 
 | 		 well as real definitions, so we cannot just go by the archive | 
 | 		 map alone.  Instead we must read in the element's symbol | 
 | 		 table and check that to see what kind of symbol definition | 
 | 		 this is.  */ | 
 | 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef)) | 
 | 		continue; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (h->type != bfd_link_hash_undefweak) | 
 | 		/* Symbol must be defined.  Don't check it again.  */ | 
 | 		included[i] = true; | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 | 	  /* We need to include this archive member.  */ | 
 | 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset, | 
 | 					     info); | 
 | 	  if (element == NULL) | 
 | 	    goto error_return; | 
 |  | 
 | 	  if (! bfd_check_format (element, bfd_object)) | 
 | 	    goto error_return; | 
 |  | 
 | 	  undefs_tail = info->hash->undefs_tail; | 
 |  | 
 | 	  if (!(*info->callbacks | 
 | 		->add_archive_element) (info, element, symdef->name, &element)) | 
 | 	    continue; | 
 | 	  if (!bfd_link_add_symbols (element, info)) | 
 | 	    goto error_return; | 
 |  | 
 | 	  /* If there are any new undefined symbols, we need to make | 
 | 	     another pass through the archive in order to see whether | 
 | 	     they can be defined.  FIXME: This isn't perfect, because | 
 | 	     common symbols wind up on undefs_tail and because an | 
 | 	     undefined symbol which is defined later on in this pass | 
 | 	     does not require another pass.  This isn't a bug, but it | 
 | 	     does make the code less efficient than it could be.  */ | 
 | 	  if (undefs_tail != info->hash->undefs_tail) | 
 | 	    loop = true; | 
 |  | 
 | 	  /* Look backward to mark all symbols from this object file | 
 | 	     which we have already seen in this pass.  */ | 
 | 	  mark = i; | 
 | 	  do | 
 | 	    { | 
 | 	      included[mark] = true; | 
 | 	      if (mark == 0) | 
 | 		break; | 
 | 	      --mark; | 
 | 	    } | 
 | 	  while (symdefs[mark].file_offset == symdef->file_offset); | 
 |  | 
 | 	  /* We mark subsequent symbols from this object file as we go | 
 | 	     on through the loop.  */ | 
 | 	  last = symdef->file_offset; | 
 | 	} | 
 |     } | 
 |   while (loop); | 
 |  | 
 |   free (included); | 
 |   return true; | 
 |  | 
 |  error_return: | 
 |   free (included); | 
 |   return false; | 
 | } | 
 |  | 
 | /* Given an ELF BFD, add symbols to the global hash table as | 
 |    appropriate.  */ | 
 |  | 
 | bool | 
 | bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   switch (bfd_get_format (abfd)) | 
 |     { | 
 |     case bfd_object: | 
 |       return elf_link_add_object_symbols (abfd, info); | 
 |     case bfd_archive: | 
 |       return elf_link_add_archive_symbols (abfd, info); | 
 |     default: | 
 |       bfd_set_error (bfd_error_wrong_format); | 
 |       return false; | 
 |     } | 
 | } | 
 |  | 
 | struct hash_codes_info | 
 | { | 
 |   unsigned long *hashcodes; | 
 |   bool error; | 
 | }; | 
 |  | 
 | /* This function will be called though elf_link_hash_traverse to store | 
 |    all hash value of the exported symbols in an array.  */ | 
 |  | 
 | static bool | 
 | elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct hash_codes_info *inf = (struct hash_codes_info *) data; | 
 |   const char *name; | 
 |   unsigned long ha; | 
 |   char *alc = NULL; | 
 |  | 
 |   /* Ignore indirect symbols.  These are added by the versioning code.  */ | 
 |   if (h->dynindx == -1) | 
 |     return true; | 
 |  | 
 |   name = h->root.root.string; | 
 |   if (h->versioned >= versioned) | 
 |     { | 
 |       char *p = strchr (name, ELF_VER_CHR); | 
 |       if (p != NULL) | 
 | 	{ | 
 | 	  alc = (char *) bfd_malloc (p - name + 1); | 
 | 	  if (alc == NULL) | 
 | 	    { | 
 | 	      inf->error = true; | 
 | 	      return false; | 
 | 	    } | 
 | 	  memcpy (alc, name, p - name); | 
 | 	  alc[p - name] = '\0'; | 
 | 	  name = alc; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Compute the hash value.  */ | 
 |   ha = bfd_elf_hash (name); | 
 |  | 
 |   /* Store the found hash value in the array given as the argument.  */ | 
 |   *(inf->hashcodes)++ = ha; | 
 |  | 
 |   /* And store it in the struct so that we can put it in the hash table | 
 |      later.  */ | 
 |   h->u.elf_hash_value = ha; | 
 |  | 
 |   free (alc); | 
 |   return true; | 
 | } | 
 |  | 
 | struct collect_gnu_hash_codes | 
 | { | 
 |   bfd *output_bfd; | 
 |   const struct elf_backend_data *bed; | 
 |   unsigned long int nsyms; | 
 |   unsigned long int maskbits; | 
 |   unsigned long int *hashcodes; | 
 |   unsigned long int *hashval; | 
 |   unsigned long int *indx; | 
 |   unsigned long int *counts; | 
 |   bfd_vma *bitmask; | 
 |   bfd_byte *contents; | 
 |   bfd_size_type xlat; | 
 |   long int min_dynindx; | 
 |   unsigned long int bucketcount; | 
 |   unsigned long int symindx; | 
 |   long int local_indx; | 
 |   long int shift1, shift2; | 
 |   unsigned long int mask; | 
 |   bool error; | 
 | }; | 
 |  | 
 | /* This function will be called though elf_link_hash_traverse to store | 
 |    all hash value of the exported symbols in an array.  */ | 
 |  | 
 | static bool | 
 | elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; | 
 |   const char *name; | 
 |   unsigned long ha; | 
 |   char *alc = NULL; | 
 |  | 
 |   /* Ignore indirect symbols.  These are added by the versioning code.  */ | 
 |   if (h->dynindx == -1) | 
 |     return true; | 
 |  | 
 |   /* Ignore also local symbols and undefined symbols.  */ | 
 |   if (! (*s->bed->elf_hash_symbol) (h)) | 
 |     return true; | 
 |  | 
 |   name = h->root.root.string; | 
 |   if (h->versioned >= versioned) | 
 |     { | 
 |       char *p = strchr (name, ELF_VER_CHR); | 
 |       if (p != NULL) | 
 | 	{ | 
 | 	  alc = (char *) bfd_malloc (p - name + 1); | 
 | 	  if (alc == NULL) | 
 | 	    { | 
 | 	      s->error = true; | 
 | 	      return false; | 
 | 	    } | 
 | 	  memcpy (alc, name, p - name); | 
 | 	  alc[p - name] = '\0'; | 
 | 	  name = alc; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Compute the hash value.  */ | 
 |   ha = bfd_elf_gnu_hash (name); | 
 |  | 
 |   /* Store the found hash value in the array for compute_bucket_count, | 
 |      and also for .dynsym reordering purposes.  */ | 
 |   s->hashcodes[s->nsyms] = ha; | 
 |   s->hashval[h->dynindx] = ha; | 
 |   ++s->nsyms; | 
 |   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) | 
 |     s->min_dynindx = h->dynindx; | 
 |  | 
 |   free (alc); | 
 |   return true; | 
 | } | 
 |  | 
 | /* This function will be called though elf_link_hash_traverse to do | 
 |    final dynamic symbol renumbering in case of .gnu.hash. | 
 |    If using .MIPS.xhash, invoke record_xhash_symbol to add symbol index | 
 |    to the translation table.  */ | 
 |  | 
 | static bool | 
 | elf_gnu_hash_process_symidx (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; | 
 |   unsigned long int bucket; | 
 |   unsigned long int val; | 
 |  | 
 |   /* Ignore indirect symbols.  */ | 
 |   if (h->dynindx == -1) | 
 |     return true; | 
 |  | 
 |   /* Ignore also local symbols and undefined symbols.  */ | 
 |   if (! (*s->bed->elf_hash_symbol) (h)) | 
 |     { | 
 |       if (h->dynindx >= s->min_dynindx) | 
 | 	{ | 
 | 	  if (s->bed->record_xhash_symbol != NULL) | 
 | 	    { | 
 | 	      (*s->bed->record_xhash_symbol) (h, 0); | 
 | 	      s->local_indx++; | 
 | 	    } | 
 | 	  else | 
 | 	    h->dynindx = s->local_indx++; | 
 | 	} | 
 |       return true; | 
 |     } | 
 |  | 
 |   bucket = s->hashval[h->dynindx] % s->bucketcount; | 
 |   val = (s->hashval[h->dynindx] >> s->shift1) | 
 | 	& ((s->maskbits >> s->shift1) - 1); | 
 |   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); | 
 |   s->bitmask[val] | 
 |     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); | 
 |   val = s->hashval[h->dynindx] & ~(unsigned long int) 1; | 
 |   if (s->counts[bucket] == 1) | 
 |     /* Last element terminates the chain.  */ | 
 |     val |= 1; | 
 |   bfd_put_32 (s->output_bfd, val, | 
 | 	      s->contents + (s->indx[bucket] - s->symindx) * 4); | 
 |   --s->counts[bucket]; | 
 |   if (s->bed->record_xhash_symbol != NULL) | 
 |     { | 
 |       bfd_vma xlat_loc = s->xlat + (s->indx[bucket]++ - s->symindx) * 4; | 
 |  | 
 |       (*s->bed->record_xhash_symbol) (h, xlat_loc); | 
 |     } | 
 |   else | 
 |     h->dynindx = s->indx[bucket]++; | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) | 
 | { | 
 |   return !(h->forced_local | 
 | 	   || h->root.type == bfd_link_hash_undefined | 
 | 	   || h->root.type == bfd_link_hash_undefweak | 
 | 	   || ((h->root.type == bfd_link_hash_defined | 
 | 		|| h->root.type == bfd_link_hash_defweak) | 
 | 	       && h->root.u.def.section->output_section == NULL)); | 
 | } | 
 |  | 
 | /* Array used to determine the number of hash table buckets to use | 
 |    based on the number of symbols there are.  If there are fewer than | 
 |    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, | 
 |    fewer than 37 we use 17 buckets, and so forth.  We never use more | 
 |    than 32771 buckets.  */ | 
 |  | 
 | static const size_t elf_buckets[] = | 
 | { | 
 |   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, | 
 |   16411, 32771, 0 | 
 | }; | 
 |  | 
 | /* Compute bucket count for hashing table.  We do not use a static set | 
 |    of possible tables sizes anymore.  Instead we determine for all | 
 |    possible reasonable sizes of the table the outcome (i.e., the | 
 |    number of collisions etc) and choose the best solution.  The | 
 |    weighting functions are not too simple to allow the table to grow | 
 |    without bounds.  Instead one of the weighting factors is the size. | 
 |    Therefore the result is always a good payoff between few collisions | 
 |    (= short chain lengths) and table size.  */ | 
 | static size_t | 
 | compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
 | 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED, | 
 | 		      unsigned long int nsyms, | 
 | 		      int gnu_hash) | 
 | { | 
 |   size_t best_size = 0; | 
 |   unsigned long int i; | 
 |  | 
 |   if (info->optimize) | 
 |     { | 
 |       size_t minsize; | 
 |       size_t maxsize; | 
 |       uint64_t best_chlen = ~((uint64_t) 0); | 
 |       bfd *dynobj = elf_hash_table (info)->dynobj; | 
 |       size_t dynsymcount = elf_hash_table (info)->dynsymcount; | 
 |       const struct elf_backend_data *bed = get_elf_backend_data (dynobj); | 
 |       unsigned long int *counts; | 
 |       bfd_size_type amt; | 
 |       unsigned int no_improvement_count = 0; | 
 |  | 
 |       /* Possible optimization parameters: if we have NSYMS symbols we say | 
 | 	 that the hashing table must at least have NSYMS/4 and at most | 
 | 	 2*NSYMS buckets.  */ | 
 |       minsize = nsyms / 4; | 
 |       if (minsize == 0) | 
 | 	minsize = 1; | 
 |       best_size = maxsize = nsyms * 2; | 
 |       if (gnu_hash) | 
 | 	{ | 
 | 	  if (minsize < 2) | 
 | 	    minsize = 2; | 
 | 	  if ((best_size & 31) == 0) | 
 | 	    ++best_size; | 
 | 	} | 
 |  | 
 |       /* Create array where we count the collisions in.  We must use bfd_malloc | 
 | 	 since the size could be large.  */ | 
 |       amt = maxsize; | 
 |       amt *= sizeof (unsigned long int); | 
 |       counts = (unsigned long int *) bfd_malloc (amt); | 
 |       if (counts == NULL) | 
 | 	return 0; | 
 |  | 
 |       /* Compute the "optimal" size for the hash table.  The criteria is a | 
 | 	 minimal chain length.  The minor criteria is (of course) the size | 
 | 	 of the table.  */ | 
 |       for (i = minsize; i < maxsize; ++i) | 
 | 	{ | 
 | 	  /* Walk through the array of hashcodes and count the collisions.  */ | 
 | 	  uint64_t max; | 
 | 	  unsigned long int j; | 
 | 	  unsigned long int fact; | 
 |  | 
 | 	  if (gnu_hash && (i & 31) == 0) | 
 | 	    continue; | 
 |  | 
 | 	  memset (counts, '\0', i * sizeof (unsigned long int)); | 
 |  | 
 | 	  /* Determine how often each hash bucket is used.  */ | 
 | 	  for (j = 0; j < nsyms; ++j) | 
 | 	    ++counts[hashcodes[j] % i]; | 
 |  | 
 | 	  /* For the weight function we need some information about the | 
 | 	     pagesize on the target.  This is information need not be 100% | 
 | 	     accurate.  Since this information is not available (so far) we | 
 | 	     define it here to a reasonable default value.  If it is crucial | 
 | 	     to have a better value some day simply define this value.  */ | 
 | # ifndef BFD_TARGET_PAGESIZE | 
 | #  define BFD_TARGET_PAGESIZE	(4096) | 
 | # endif | 
 |  | 
 | 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values | 
 | 	     and the chains.  */ | 
 | 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; | 
 |  | 
 | # if 1 | 
 | 	  /* Variant 1: optimize for short chains.  We add the squares | 
 | 	     of all the chain lengths (which favors many small chain | 
 | 	     over a few long chains).  */ | 
 | 	  for (j = 0; j < i; ++j) | 
 | 	    max += counts[j] * counts[j]; | 
 |  | 
 | 	  /* This adds penalties for the overall size of the table.  */ | 
 | 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; | 
 | 	  max *= fact * fact; | 
 | # else | 
 | 	  /* Variant 2: Optimize a lot more for small table.  Here we | 
 | 	     also add squares of the size but we also add penalties for | 
 | 	     empty slots (the +1 term).  */ | 
 | 	  for (j = 0; j < i; ++j) | 
 | 	    max += (1 + counts[j]) * (1 + counts[j]); | 
 |  | 
 | 	  /* The overall size of the table is considered, but not as | 
 | 	     strong as in variant 1, where it is squared.  */ | 
 | 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; | 
 | 	  max *= fact; | 
 | # endif | 
 |  | 
 | 	  /* Compare with current best results.  */ | 
 | 	  if (max < best_chlen) | 
 | 	    { | 
 | 	      best_chlen = max; | 
 | 	      best_size = i; | 
 | 	      no_improvement_count = 0; | 
 | 	    } | 
 | 	  /* PR 11843: Avoid futile long searches for the best bucket size | 
 | 	     when there are a large number of symbols.  */ | 
 | 	  else if (++no_improvement_count == 100) | 
 | 	    break; | 
 | 	} | 
 |  | 
 |       free (counts); | 
 |     } | 
 |   else | 
 |     { | 
 |       for (i = 0; elf_buckets[i] != 0; i++) | 
 | 	{ | 
 | 	  best_size = elf_buckets[i]; | 
 | 	  if (nsyms < elf_buckets[i + 1]) | 
 | 	    break; | 
 | 	} | 
 |       if (gnu_hash && best_size < 2) | 
 | 	best_size = 2; | 
 |     } | 
 |  | 
 |   return best_size; | 
 | } | 
 |  | 
 | /* Size any SHT_GROUP section for ld -r.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_size_group_sections (struct bfd_link_info *info) | 
 | { | 
 |   bfd *ibfd; | 
 |   asection *s; | 
 |  | 
 |   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
 |     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour | 
 | 	&& (s = ibfd->sections) != NULL | 
 | 	&& s->sec_info_type != SEC_INFO_TYPE_JUST_SYMS | 
 | 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) | 
 |       return false; | 
 |   return true; | 
 | } | 
 |  | 
 | /* Set a default stack segment size.  The value in INFO wins.  If it | 
 |    is unset, LEGACY_SYMBOL's value is used, and if that symbol is | 
 |    undefined it is initialized.  */ | 
 |  | 
 | bool | 
 | bfd_elf_stack_segment_size (bfd *output_bfd, | 
 | 			    struct bfd_link_info *info, | 
 | 			    const char *legacy_symbol, | 
 | 			    bfd_vma default_size) | 
 | { | 
 |   struct elf_link_hash_entry *h = NULL; | 
 |  | 
 |   /* Look for legacy symbol.  */ | 
 |   if (legacy_symbol) | 
 |     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, | 
 | 			      false, false, false); | 
 |   if (h && (h->root.type == bfd_link_hash_defined | 
 | 	    || h->root.type == bfd_link_hash_defweak) | 
 |       && h->def_regular | 
 |       && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) | 
 |     { | 
 |       /* The symbol has no type if specified on the command line.  */ | 
 |       h->type = STT_OBJECT; | 
 |       if (info->stacksize) | 
 | 	/* xgettext:c-format */ | 
 | 	_bfd_error_handler (_("%pB: stack size specified and %s set"), | 
 | 			    output_bfd, legacy_symbol); | 
 |       else if (h->root.u.def.section != bfd_abs_section_ptr) | 
 | 	/* xgettext:c-format */ | 
 | 	_bfd_error_handler (_("%pB: %s not absolute"), | 
 | 			    output_bfd, legacy_symbol); | 
 |       else | 
 | 	info->stacksize = h->root.u.def.value; | 
 |     } | 
 |  | 
 |   if (!info->stacksize) | 
 |     /* If the user didn't set a size, or explicitly inhibit the | 
 |        size, set it now.  */ | 
 |     info->stacksize = default_size; | 
 |  | 
 |   /* Provide the legacy symbol, if it is referenced.  */ | 
 |   if (h && (h->root.type == bfd_link_hash_undefined | 
 | 	    || h->root.type == bfd_link_hash_undefweak)) | 
 |     { | 
 |       struct bfd_link_hash_entry *bh = NULL; | 
 |  | 
 |       if (!(_bfd_generic_link_add_one_symbol | 
 | 	    (info, output_bfd, legacy_symbol, | 
 | 	     BSF_GLOBAL, bfd_abs_section_ptr, | 
 | 	     info->stacksize >= 0 ? info->stacksize : 0, | 
 | 	     NULL, false, get_elf_backend_data (output_bfd)->collect, &bh))) | 
 | 	return false; | 
 |  | 
 |       h = (struct elf_link_hash_entry *) bh; | 
 |       h->def_regular = 1; | 
 |       h->type = STT_OBJECT; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */ | 
 |  | 
 | struct elf_gc_sweep_symbol_info | 
 | { | 
 |   struct bfd_link_info *info; | 
 |   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, | 
 | 		       bool); | 
 | }; | 
 |  | 
 | static bool | 
 | elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) | 
 | { | 
 |   if (!h->mark | 
 |       && (((h->root.type == bfd_link_hash_defined | 
 | 	    || h->root.type == bfd_link_hash_defweak) | 
 | 	   && !((h->def_regular || ELF_COMMON_DEF_P (h)) | 
 | 		&& h->root.u.def.section->gc_mark)) | 
 | 	  || h->root.type == bfd_link_hash_undefined | 
 | 	  || h->root.type == bfd_link_hash_undefweak)) | 
 |     { | 
 |       struct elf_gc_sweep_symbol_info *inf; | 
 |  | 
 |       inf = (struct elf_gc_sweep_symbol_info *) data; | 
 |       (*inf->hide_symbol) (inf->info, h, true); | 
 |       h->def_regular = 0; | 
 |       h->ref_regular = 0; | 
 |       h->ref_regular_nonweak = 0; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Set up the sizes and contents of the ELF dynamic sections.  This is | 
 |    called by the ELF linker emulation before_allocation routine.  We | 
 |    must set the sizes of the sections before the linker sets the | 
 |    addresses of the various sections.  */ | 
 |  | 
 | bool | 
 | bfd_elf_size_dynamic_sections (bfd *output_bfd, | 
 | 			       const char *soname, | 
 | 			       const char *rpath, | 
 | 			       const char *filter_shlib, | 
 | 			       const char *audit, | 
 | 			       const char *depaudit, | 
 | 			       const char * const *auxiliary_filters, | 
 | 			       struct bfd_link_info *info, | 
 | 			       asection **sinterpptr) | 
 | { | 
 |   bfd *dynobj; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   *sinterpptr = NULL; | 
 |  | 
 |   if (!is_elf_hash_table (info->hash)) | 
 |     return true; | 
 |  | 
 |   /* Any syms created from now on start with -1 in | 
 |      got.refcount/offset and plt.refcount/offset.  */ | 
 |   elf_hash_table (info)->init_got_refcount | 
 |     = elf_hash_table (info)->init_got_offset; | 
 |   elf_hash_table (info)->init_plt_refcount | 
 |     = elf_hash_table (info)->init_plt_offset; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |  | 
 |   /* The backend may have to create some sections regardless of whether | 
 |      we're dynamic or not.  */ | 
 |   if (bed->elf_backend_always_size_sections | 
 |       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) | 
 |     return false; | 
 |  | 
 |   dynobj = elf_hash_table (info)->dynobj; | 
 |  | 
 |   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | 
 |     { | 
 |       struct bfd_elf_version_tree *verdefs; | 
 |       struct elf_info_failed asvinfo; | 
 |       struct bfd_elf_version_tree *t; | 
 |       struct bfd_elf_version_expr *d; | 
 |       asection *s; | 
 |       size_t soname_indx; | 
 |  | 
 |       /* If we are supposed to export all symbols into the dynamic symbol | 
 | 	 table (this is not the normal case), then do so.  */ | 
 |       if (info->export_dynamic | 
 | 	  || (bfd_link_executable (info) && info->dynamic)) | 
 | 	{ | 
 | 	  struct elf_info_failed eif; | 
 |  | 
 | 	  eif.info = info; | 
 | 	  eif.failed = false; | 
 | 	  elf_link_hash_traverse (elf_hash_table (info), | 
 | 				  _bfd_elf_export_symbol, | 
 | 				  &eif); | 
 | 	  if (eif.failed) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (soname != NULL) | 
 | 	{ | 
 | 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 					     soname, true); | 
 | 	  if (soname_indx == (size_t) -1 | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) | 
 | 	    return false; | 
 | 	} | 
 |       else | 
 | 	soname_indx = (size_t) -1; | 
 |  | 
 |       /* Make all global versions with definition.  */ | 
 |       for (t = info->version_info; t != NULL; t = t->next) | 
 | 	for (d = t->globals.list; d != NULL; d = d->next) | 
 | 	  if (!d->symver && d->literal) | 
 | 	    { | 
 | 	      const char *verstr, *name; | 
 | 	      size_t namelen, verlen, newlen; | 
 | 	      char *newname, *p, leading_char; | 
 | 	      struct elf_link_hash_entry *newh; | 
 |  | 
 | 	      leading_char = bfd_get_symbol_leading_char (output_bfd); | 
 | 	      name = d->pattern; | 
 | 	      namelen = strlen (name) + (leading_char != '\0'); | 
 | 	      verstr = t->name; | 
 | 	      verlen = strlen (verstr); | 
 | 	      newlen = namelen + verlen + 3; | 
 |  | 
 | 	      newname = (char *) bfd_malloc (newlen); | 
 | 	      if (newname == NULL) | 
 | 		return false; | 
 | 	      newname[0] = leading_char; | 
 | 	      memcpy (newname + (leading_char != '\0'), name, namelen); | 
 |  | 
 | 	      /* Check the hidden versioned definition.  */ | 
 | 	      p = newname + namelen; | 
 | 	      *p++ = ELF_VER_CHR; | 
 | 	      memcpy (p, verstr, verlen + 1); | 
 | 	      newh = elf_link_hash_lookup (elf_hash_table (info), | 
 | 					   newname, false, false, | 
 | 					   false); | 
 | 	      if (newh == NULL | 
 | 		  || (newh->root.type != bfd_link_hash_defined | 
 | 		      && newh->root.type != bfd_link_hash_defweak)) | 
 | 		{ | 
 | 		  /* Check the default versioned definition.  */ | 
 | 		  *p++ = ELF_VER_CHR; | 
 | 		  memcpy (p, verstr, verlen + 1); | 
 | 		  newh = elf_link_hash_lookup (elf_hash_table (info), | 
 | 					       newname, false, false, | 
 | 					       false); | 
 | 		} | 
 | 	      free (newname); | 
 |  | 
 | 	      /* Mark this version if there is a definition and it is | 
 | 		 not defined in a shared object.  */ | 
 | 	      if (newh != NULL | 
 | 		  && !newh->def_dynamic | 
 | 		  && (newh->root.type == bfd_link_hash_defined | 
 | 		      || newh->root.type == bfd_link_hash_defweak)) | 
 | 		d->symver = 1; | 
 | 	    } | 
 |  | 
 |       /* Attach all the symbols to their version information.  */ | 
 |       asvinfo.info = info; | 
 |       asvinfo.failed = false; | 
 |  | 
 |       elf_link_hash_traverse (elf_hash_table (info), | 
 | 			      _bfd_elf_link_assign_sym_version, | 
 | 			      &asvinfo); | 
 |       if (asvinfo.failed) | 
 | 	return false; | 
 |  | 
 |       if (!info->allow_undefined_version) | 
 | 	{ | 
 | 	  /* Check if all global versions have a definition.  */ | 
 | 	  bool all_defined = true; | 
 | 	  for (t = info->version_info; t != NULL; t = t->next) | 
 | 	    for (d = t->globals.list; d != NULL; d = d->next) | 
 | 	      if (d->literal && !d->symver && !d->script) | 
 | 		{ | 
 | 		  _bfd_error_handler | 
 | 		    (_("%s: undefined version: %s"), | 
 | 		     d->pattern, t->name); | 
 | 		  all_defined = false; | 
 | 		} | 
 |  | 
 | 	  if (!all_defined) | 
 | 	    { | 
 | 	      bfd_set_error (bfd_error_bad_value); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Set up the version definition section.  */ | 
 |       s = bfd_get_linker_section (dynobj, ".gnu.version_d"); | 
 |       BFD_ASSERT (s != NULL); | 
 |  | 
 |       /* We may have created additional version definitions if we are | 
 | 	 just linking a regular application.  */ | 
 |       verdefs = info->version_info; | 
 |  | 
 |       /* Skip anonymous version tag.  */ | 
 |       if (verdefs != NULL && verdefs->vernum == 0) | 
 | 	verdefs = verdefs->next; | 
 |  | 
 |       if (verdefs == NULL && !info->create_default_symver) | 
 | 	s->flags |= SEC_EXCLUDE; | 
 |       else | 
 | 	{ | 
 | 	  unsigned int cdefs; | 
 | 	  bfd_size_type size; | 
 | 	  bfd_byte *p; | 
 | 	  Elf_Internal_Verdef def; | 
 | 	  Elf_Internal_Verdaux defaux; | 
 | 	  struct bfd_link_hash_entry *bh; | 
 | 	  struct elf_link_hash_entry *h; | 
 | 	  const char *name; | 
 |  | 
 | 	  cdefs = 0; | 
 | 	  size = 0; | 
 |  | 
 | 	  /* Make space for the base version.  */ | 
 | 	  size += sizeof (Elf_External_Verdef); | 
 | 	  size += sizeof (Elf_External_Verdaux); | 
 | 	  ++cdefs; | 
 |  | 
 | 	  /* Make space for the default version.  */ | 
 | 	  if (info->create_default_symver) | 
 | 	    { | 
 | 	      size += sizeof (Elf_External_Verdef); | 
 | 	      ++cdefs; | 
 | 	    } | 
 |  | 
 | 	  for (t = verdefs; t != NULL; t = t->next) | 
 | 	    { | 
 | 	      struct bfd_elf_version_deps *n; | 
 |  | 
 | 	      /* Don't emit base version twice.  */ | 
 | 	      if (t->vernum == 0) | 
 | 		continue; | 
 |  | 
 | 	      size += sizeof (Elf_External_Verdef); | 
 | 	      size += sizeof (Elf_External_Verdaux); | 
 | 	      ++cdefs; | 
 |  | 
 | 	      for (n = t->deps; n != NULL; n = n->next) | 
 | 		size += sizeof (Elf_External_Verdaux); | 
 | 	    } | 
 |  | 
 | 	  s->size = size; | 
 | 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | 
 | 	  if (s->contents == NULL && s->size != 0) | 
 | 	    return false; | 
 |  | 
 | 	  /* Fill in the version definition section.  */ | 
 |  | 
 | 	  p = s->contents; | 
 |  | 
 | 	  def.vd_version = VER_DEF_CURRENT; | 
 | 	  def.vd_flags = VER_FLG_BASE; | 
 | 	  def.vd_ndx = 1; | 
 | 	  def.vd_cnt = 1; | 
 | 	  if (info->create_default_symver) | 
 | 	    { | 
 | 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef); | 
 | 	      def.vd_next = sizeof (Elf_External_Verdef); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      def.vd_aux = sizeof (Elf_External_Verdef); | 
 | 	      def.vd_next = (sizeof (Elf_External_Verdef) | 
 | 			     + sizeof (Elf_External_Verdaux)); | 
 | 	    } | 
 |  | 
 | 	  if (soname_indx != (size_t) -1) | 
 | 	    { | 
 | 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | 
 | 				      soname_indx); | 
 | 	      def.vd_hash = bfd_elf_hash (soname); | 
 | 	      defaux.vda_name = soname_indx; | 
 | 	      name = soname; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      size_t indx; | 
 |  | 
 | 	      name = lbasename (bfd_get_filename (output_bfd)); | 
 | 	      def.vd_hash = bfd_elf_hash (name); | 
 | 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 					  name, false); | 
 | 	      if (indx == (size_t) -1) | 
 | 		return false; | 
 | 	      defaux.vda_name = indx; | 
 | 	    } | 
 | 	  defaux.vda_next = 0; | 
 |  | 
 | 	  _bfd_elf_swap_verdef_out (output_bfd, &def, | 
 | 				    (Elf_External_Verdef *) p); | 
 | 	  p += sizeof (Elf_External_Verdef); | 
 | 	  if (info->create_default_symver) | 
 | 	    { | 
 | 	      /* Add a symbol representing this version.  */ | 
 | 	      bh = NULL; | 
 | 	      if (! (_bfd_generic_link_add_one_symbol | 
 | 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, | 
 | 		      0, NULL, false, | 
 | 		      get_elf_backend_data (dynobj)->collect, &bh))) | 
 | 		return false; | 
 | 	      h = (struct elf_link_hash_entry *) bh; | 
 | 	      h->non_elf = 0; | 
 | 	      h->def_regular = 1; | 
 | 	      h->type = STT_OBJECT; | 
 | 	      h->verinfo.vertree = NULL; | 
 |  | 
 | 	      if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 		return false; | 
 |  | 
 | 	      /* Create a duplicate of the base version with the same | 
 | 		 aux block, but different flags.  */ | 
 | 	      def.vd_flags = 0; | 
 | 	      def.vd_ndx = 2; | 
 | 	      def.vd_aux = sizeof (Elf_External_Verdef); | 
 | 	      if (verdefs) | 
 | 		def.vd_next = (sizeof (Elf_External_Verdef) | 
 | 			       + sizeof (Elf_External_Verdaux)); | 
 | 	      else | 
 | 		def.vd_next = 0; | 
 | 	      _bfd_elf_swap_verdef_out (output_bfd, &def, | 
 | 					(Elf_External_Verdef *) p); | 
 | 	      p += sizeof (Elf_External_Verdef); | 
 | 	    } | 
 | 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | 
 | 				     (Elf_External_Verdaux *) p); | 
 | 	  p += sizeof (Elf_External_Verdaux); | 
 |  | 
 | 	  for (t = verdefs; t != NULL; t = t->next) | 
 | 	    { | 
 | 	      unsigned int cdeps; | 
 | 	      struct bfd_elf_version_deps *n; | 
 |  | 
 | 	      /* Don't emit the base version twice.  */ | 
 | 	      if (t->vernum == 0) | 
 | 		continue; | 
 |  | 
 | 	      cdeps = 0; | 
 | 	      for (n = t->deps; n != NULL; n = n->next) | 
 | 		++cdeps; | 
 |  | 
 | 	      /* Add a symbol representing this version.  */ | 
 | 	      bh = NULL; | 
 | 	      if (! (_bfd_generic_link_add_one_symbol | 
 | 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, | 
 | 		      0, NULL, false, | 
 | 		      get_elf_backend_data (dynobj)->collect, &bh))) | 
 | 		return false; | 
 | 	      h = (struct elf_link_hash_entry *) bh; | 
 | 	      h->non_elf = 0; | 
 | 	      h->def_regular = 1; | 
 | 	      h->type = STT_OBJECT; | 
 | 	      h->verinfo.vertree = t; | 
 |  | 
 | 	      if (! bfd_elf_link_record_dynamic_symbol (info, h)) | 
 | 		return false; | 
 |  | 
 | 	      def.vd_version = VER_DEF_CURRENT; | 
 | 	      def.vd_flags = 0; | 
 | 	      if (t->globals.list == NULL | 
 | 		  && t->locals.list == NULL | 
 | 		  && ! t->used) | 
 | 		def.vd_flags |= VER_FLG_WEAK; | 
 | 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); | 
 | 	      def.vd_cnt = cdeps + 1; | 
 | 	      def.vd_hash = bfd_elf_hash (t->name); | 
 | 	      def.vd_aux = sizeof (Elf_External_Verdef); | 
 | 	      def.vd_next = 0; | 
 |  | 
 | 	      /* If a basever node is next, it *must* be the last node in | 
 | 		 the chain, otherwise Verdef construction breaks.  */ | 
 | 	      if (t->next != NULL && t->next->vernum == 0) | 
 | 		BFD_ASSERT (t->next->next == NULL); | 
 |  | 
 | 	      if (t->next != NULL && t->next->vernum != 0) | 
 | 		def.vd_next = (sizeof (Elf_External_Verdef) | 
 | 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux)); | 
 |  | 
 | 	      _bfd_elf_swap_verdef_out (output_bfd, &def, | 
 | 					(Elf_External_Verdef *) p); | 
 | 	      p += sizeof (Elf_External_Verdef); | 
 |  | 
 | 	      defaux.vda_name = h->dynstr_index; | 
 | 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | 
 | 				      h->dynstr_index); | 
 | 	      defaux.vda_next = 0; | 
 | 	      if (t->deps != NULL) | 
 | 		defaux.vda_next = sizeof (Elf_External_Verdaux); | 
 | 	      t->name_indx = defaux.vda_name; | 
 |  | 
 | 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | 
 | 					 (Elf_External_Verdaux *) p); | 
 | 	      p += sizeof (Elf_External_Verdaux); | 
 |  | 
 | 	      for (n = t->deps; n != NULL; n = n->next) | 
 | 		{ | 
 | 		  if (n->version_needed == NULL) | 
 | 		    { | 
 | 		      /* This can happen if there was an error in the | 
 | 			 version script.  */ | 
 | 		      defaux.vda_name = 0; | 
 | 		    } | 
 | 		  else | 
 | 		    { | 
 | 		      defaux.vda_name = n->version_needed->name_indx; | 
 | 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, | 
 | 					      defaux.vda_name); | 
 | 		    } | 
 | 		  if (n->next == NULL) | 
 | 		    defaux.vda_next = 0; | 
 | 		  else | 
 | 		    defaux.vda_next = sizeof (Elf_External_Verdaux); | 
 |  | 
 | 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux, | 
 | 					     (Elf_External_Verdaux *) p); | 
 | 		  p += sizeof (Elf_External_Verdaux); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  elf_tdata (output_bfd)->cverdefs = cdefs; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (info->gc_sections && bed->can_gc_sections) | 
 |     { | 
 |       struct elf_gc_sweep_symbol_info sweep_info; | 
 |  | 
 |       /* Remove the symbols that were in the swept sections from the | 
 | 	 dynamic symbol table.  */ | 
 |       sweep_info.info = info; | 
 |       sweep_info.hide_symbol = bed->elf_backend_hide_symbol; | 
 |       elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, | 
 | 			      &sweep_info); | 
 |     } | 
 |  | 
 |   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | 
 |     { | 
 |       asection *s; | 
 |       struct elf_find_verdep_info sinfo; | 
 |  | 
 |       /* Work out the size of the version reference section.  */ | 
 |  | 
 |       s = bfd_get_linker_section (dynobj, ".gnu.version_r"); | 
 |       BFD_ASSERT (s != NULL); | 
 |  | 
 |       sinfo.info = info; | 
 |       sinfo.vers = elf_tdata (output_bfd)->cverdefs; | 
 |       if (sinfo.vers == 0) | 
 | 	sinfo.vers = 1; | 
 |       sinfo.failed = false; | 
 |  | 
 |       elf_link_hash_traverse (elf_hash_table (info), | 
 | 			      _bfd_elf_link_find_version_dependencies, | 
 | 			      &sinfo); | 
 |       if (sinfo.failed) | 
 | 	return false; | 
 |  | 
 |       if (info->enable_dt_relr) | 
 | 	{ | 
 | 	  elf_link_add_dt_relr_dependency (&sinfo); | 
 | 	  if (sinfo.failed) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (elf_tdata (output_bfd)->verref == NULL) | 
 | 	s->flags |= SEC_EXCLUDE; | 
 |       else | 
 | 	{ | 
 | 	  Elf_Internal_Verneed *vn; | 
 | 	  unsigned int size; | 
 | 	  unsigned int crefs; | 
 | 	  bfd_byte *p; | 
 |  | 
 | 	  /* Build the version dependency section.  */ | 
 | 	  size = 0; | 
 | 	  crefs = 0; | 
 | 	  for (vn = elf_tdata (output_bfd)->verref; | 
 | 	       vn != NULL; | 
 | 	       vn = vn->vn_nextref) | 
 | 	    { | 
 | 	      Elf_Internal_Vernaux *a; | 
 |  | 
 | 	      size += sizeof (Elf_External_Verneed); | 
 | 	      ++crefs; | 
 | 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 		size += sizeof (Elf_External_Vernaux); | 
 | 	    } | 
 |  | 
 | 	  s->size = size; | 
 | 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | 
 | 	  if (s->contents == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  p = s->contents; | 
 | 	  for (vn = elf_tdata (output_bfd)->verref; | 
 | 	       vn != NULL; | 
 | 	       vn = vn->vn_nextref) | 
 | 	    { | 
 | 	      unsigned int caux; | 
 | 	      Elf_Internal_Vernaux *a; | 
 | 	      size_t indx; | 
 |  | 
 | 	      caux = 0; | 
 | 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 		++caux; | 
 |  | 
 | 	      vn->vn_version = VER_NEED_CURRENT; | 
 | 	      vn->vn_cnt = caux; | 
 | 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 					  elf_dt_name (vn->vn_bfd) != NULL | 
 | 					  ? elf_dt_name (vn->vn_bfd) | 
 | 					  : lbasename (bfd_get_filename | 
 | 						       (vn->vn_bfd)), | 
 | 					  false); | 
 | 	      if (indx == (size_t) -1) | 
 | 		return false; | 
 | 	      vn->vn_file = indx; | 
 | 	      vn->vn_aux = sizeof (Elf_External_Verneed); | 
 | 	      if (vn->vn_nextref == NULL) | 
 | 		vn->vn_next = 0; | 
 | 	      else | 
 | 		vn->vn_next = (sizeof (Elf_External_Verneed) | 
 | 			       + caux * sizeof (Elf_External_Vernaux)); | 
 |  | 
 | 	      _bfd_elf_swap_verneed_out (output_bfd, vn, | 
 | 					 (Elf_External_Verneed *) p); | 
 | 	      p += sizeof (Elf_External_Verneed); | 
 |  | 
 | 	      for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) | 
 | 		{ | 
 | 		  a->vna_hash = bfd_elf_hash (a->vna_nodename); | 
 | 		  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 					      a->vna_nodename, false); | 
 | 		  if (indx == (size_t) -1) | 
 | 		    return false; | 
 | 		  a->vna_name = indx; | 
 | 		  if (a->vna_nextptr == NULL) | 
 | 		    a->vna_next = 0; | 
 | 		  else | 
 | 		    a->vna_next = sizeof (Elf_External_Vernaux); | 
 |  | 
 | 		  _bfd_elf_swap_vernaux_out (output_bfd, a, | 
 | 					     (Elf_External_Vernaux *) p); | 
 | 		  p += sizeof (Elf_External_Vernaux); | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  elf_tdata (output_bfd)->cverrefs = crefs; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (bfd_link_relocatable (info) | 
 |       && !_bfd_elf_size_group_sections (info)) | 
 |     return false; | 
 |  | 
 |   /* Determine any GNU_STACK segment requirements, after the backend | 
 |      has had a chance to set a default segment size.  */ | 
 |   if (info->execstack) | 
 |     { | 
 |       /* If the user has explicitly requested warnings, then generate one even | 
 | 	 though the choice is the result of another command line option.  */ | 
 |       if (info->warn_execstack == 1) | 
 | 	_bfd_error_handler | 
 | 	  (_("\ | 
 | warning: enabling an executable stack because of -z execstack command line option")); | 
 |       elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; | 
 |     } | 
 |   else if (info->noexecstack) | 
 |     elf_stack_flags (output_bfd) = PF_R | PF_W; | 
 |   else | 
 |     { | 
 |       bfd *inputobj; | 
 |       asection *notesec = NULL; | 
 |       bfd *noteobj = NULL; | 
 |       bfd *emptyobj = NULL; | 
 |       int exec = 0; | 
 |  | 
 |       for (inputobj = info->input_bfds; | 
 | 	   inputobj; | 
 | 	   inputobj = inputobj->link.next) | 
 | 	{ | 
 | 	  asection *s; | 
 |  | 
 | 	  if (inputobj->flags | 
 | 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) | 
 | 	    continue; | 
 | 	  s = inputobj->sections; | 
 | 	  if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	    continue; | 
 |  | 
 | 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); | 
 | 	  if (s) | 
 | 	    { | 
 | 	      notesec = s; | 
 | 	      if (s->flags & SEC_CODE) | 
 | 		{ | 
 | 		  noteobj = inputobj; | 
 | 		  exec = PF_X; | 
 | 		  /* There is no point in scanning the remaining bfds.  */ | 
 | 		  break; | 
 | 		} | 
 | 	    } | 
 | 	  else if (bed->default_execstack && info->default_execstack) | 
 | 	    { | 
 | 	      exec = PF_X; | 
 | 	      emptyobj = inputobj; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (notesec || info->stacksize > 0) | 
 | 	{ | 
 | 	  if (exec) | 
 | 	    { | 
 | 	      if (info->warn_execstack != 0) | 
 | 		{ | 
 | 		  /* PR 29072: Because an executable stack is a serious | 
 | 		     security risk, make sure that the user knows that it is | 
 | 		     being enabled despite the fact that it was not requested | 
 | 		     on the command line.  */ | 
 | 		  if (noteobj) | 
 | 		    _bfd_error_handler (_("\ | 
 | warning: %s: requires executable stack (because the .note.GNU-stack section is executable)"), | 
 | 		       bfd_get_filename (noteobj)); | 
 | 		  else if (emptyobj) | 
 | 		    { | 
 | 		      _bfd_error_handler (_("\ | 
 | warning: %s: missing .note.GNU-stack section implies executable stack"), | 
 | 					  bfd_get_filename (emptyobj)); | 
 | 		      _bfd_error_handler (_("\ | 
 | NOTE: This behaviour is deprecated and will be removed in a future version of the linker")); | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	  elf_stack_flags (output_bfd) = PF_R | PF_W | exec; | 
 | 	} | 
 |  | 
 |       if (notesec && exec && bfd_link_relocatable (info) | 
 | 	  && notesec->output_section != bfd_abs_section_ptr) | 
 | 	notesec->output_section->flags |= SEC_CODE; | 
 |     } | 
 |  | 
 |   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | 
 |     { | 
 |       struct elf_info_failed eif; | 
 |       struct elf_link_hash_entry *h; | 
 |       asection *dynstr; | 
 |       asection *s; | 
 |  | 
 |       *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); | 
 |       BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); | 
 |  | 
 |       if (info->symbolic) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) | 
 | 	    return false; | 
 | 	  info->flags |= DF_SYMBOLIC; | 
 | 	} | 
 |  | 
 |       if (rpath != NULL) | 
 | 	{ | 
 | 	  size_t indx; | 
 | 	  bfd_vma tag; | 
 |  | 
 | 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, | 
 | 				      true); | 
 | 	  if (indx == (size_t) -1) | 
 | 	    return false; | 
 |  | 
 | 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (filter_shlib != NULL) | 
 | 	{ | 
 | 	  size_t indx; | 
 |  | 
 | 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 				      filter_shlib, true); | 
 | 	  if (indx == (size_t) -1 | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (auxiliary_filters != NULL) | 
 | 	{ | 
 | 	  const char * const *p; | 
 |  | 
 | 	  for (p = auxiliary_filters; *p != NULL; p++) | 
 | 	    { | 
 | 	      size_t indx; | 
 |  | 
 | 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, | 
 | 					  *p, true); | 
 | 	      if (indx == (size_t) -1 | 
 | 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) | 
 | 		return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (audit != NULL) | 
 | 	{ | 
 | 	  size_t indx; | 
 |  | 
 | 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, | 
 | 				      true); | 
 | 	  if (indx == (size_t) -1 | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (depaudit != NULL) | 
 | 	{ | 
 | 	  size_t indx; | 
 |  | 
 | 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, | 
 | 				      true); | 
 | 	  if (indx == (size_t) -1 | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       eif.info = info; | 
 |       eif.failed = false; | 
 |  | 
 |       /* Find all symbols which were defined in a dynamic object and make | 
 | 	 the backend pick a reasonable value for them.  */ | 
 |       elf_link_hash_traverse (elf_hash_table (info), | 
 | 			      _bfd_elf_adjust_dynamic_symbol, | 
 | 			      &eif); | 
 |       if (eif.failed) | 
 | 	return false; | 
 |  | 
 |       /* Add some entries to the .dynamic section.  We fill in some of the | 
 | 	 values later, in bfd_elf_final_link, but we must add the entries | 
 | 	 now so that we know the final size of the .dynamic section.  */ | 
 |  | 
 |       /* If there are initialization and/or finalization functions to | 
 | 	 call then add the corresponding DT_INIT/DT_FINI entries.  */ | 
 |       h = (info->init_function | 
 | 	   ? elf_link_hash_lookup (elf_hash_table (info), | 
 | 				   info->init_function, false, | 
 | 				   false, false) | 
 | 	   : NULL); | 
 |       if (h != NULL | 
 | 	  && (h->ref_regular | 
 | 	      || h->def_regular)) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) | 
 | 	    return false; | 
 | 	} | 
 |       h = (info->fini_function | 
 | 	   ? elf_link_hash_lookup (elf_hash_table (info), | 
 | 				   info->fini_function, false, | 
 | 				   false, false) | 
 | 	   : NULL); | 
 |       if (h != NULL | 
 | 	  && (h->ref_regular | 
 | 	      || h->def_regular)) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       s = bfd_get_section_by_name (output_bfd, ".preinit_array"); | 
 |       if (s != NULL && s->linker_has_input) | 
 | 	{ | 
 | 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */ | 
 | 	  if (! bfd_link_executable (info)) | 
 | 	    { | 
 | 	      bfd *sub; | 
 | 	      asection *o; | 
 |  | 
 | 	      for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
 | 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour | 
 | 		    && (o = sub->sections) != NULL | 
 | 		    && o->sec_info_type != SEC_INFO_TYPE_JUST_SYMS) | 
 | 		  for (o = sub->sections; o != NULL; o = o->next) | 
 | 		    if (elf_section_data (o)->this_hdr.sh_type | 
 | 			== SHT_PREINIT_ARRAY) | 
 | 		      { | 
 | 			_bfd_error_handler | 
 | 			  (_("%pB: .preinit_array section is not allowed in DSO"), | 
 | 			   sub); | 
 | 			break; | 
 | 		      } | 
 |  | 
 | 	      bfd_set_error (bfd_error_nonrepresentable_section); | 
 | 	      return false; | 
 | 	    } | 
 |  | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) | 
 | 	    return false; | 
 | 	} | 
 |       s = bfd_get_section_by_name (output_bfd, ".init_array"); | 
 |       if (s != NULL && s->linker_has_input) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) | 
 | 	    return false; | 
 | 	} | 
 |       s = bfd_get_section_by_name (output_bfd, ".fini_array"); | 
 |       if (s != NULL && s->linker_has_input) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       dynstr = bfd_get_linker_section (dynobj, ".dynstr"); | 
 |       /* If .dynstr is excluded from the link, we don't want any of | 
 | 	 these tags.  Strictly, we should be checking each section | 
 | 	 individually;  This quick check covers for the case where | 
 | 	 someone does a /DISCARD/ : { *(*) }.  */ | 
 |       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) | 
 | 	{ | 
 | 	  bfd_size_type strsize; | 
 |  | 
 | 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | 
 | 	  if ((info->emit_hash | 
 | 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) | 
 | 	      || (info->emit_gnu_hash | 
 | 		  && (bed->record_xhash_symbol == NULL | 
 | 		      && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, | 
 | 					      bed->s->sizeof_sym) | 
 | 	      || (info->gnu_flags_1 | 
 | 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_FLAGS_1, | 
 | 						  info->gnu_flags_1))) | 
 | 	    return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) | 
 |     return false; | 
 |  | 
 |   /* The backend must work out the sizes of all the other dynamic | 
 |      sections.  */ | 
 |   if (dynobj != NULL | 
 |       && bed->elf_backend_size_dynamic_sections != NULL | 
 |       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) | 
 |     return false; | 
 |  | 
 |   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) | 
 |     { | 
 |       if (elf_tdata (output_bfd)->cverdefs) | 
 | 	{ | 
 | 	  unsigned int crefs = elf_tdata (output_bfd)->cverdefs; | 
 |  | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) | 
 | 	    return false; | 
 | 	} | 
 |       else if (info->flags & DF_BIND_NOW) | 
 | 	{ | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (info->flags_1) | 
 | 	{ | 
 | 	  if (bfd_link_executable (info)) | 
 | 	    info->flags_1 &= ~ (DF_1_INITFIRST | 
 | 				| DF_1_NODELETE | 
 | 				| DF_1_NOOPEN); | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (elf_tdata (output_bfd)->cverrefs) | 
 | 	{ | 
 | 	  unsigned int crefs = elf_tdata (output_bfd)->cverrefs; | 
 |  | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) | 
 | 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if ((elf_tdata (output_bfd)->cverrefs == 0 | 
 | 	   && elf_tdata (output_bfd)->cverdefs == 0) | 
 | 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info, NULL) <= 1) | 
 | 	{ | 
 | 	  asection *s; | 
 |  | 
 | 	  s = bfd_get_linker_section (dynobj, ".gnu.version"); | 
 | 	  s->flags |= SEC_EXCLUDE; | 
 | 	} | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Find the first non-excluded output section.  We'll use its | 
 |    section symbol for some emitted relocs.  */ | 
 | void | 
 | _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) | 
 | { | 
 |   asection *s; | 
 |   asection *found = NULL; | 
 |  | 
 |   for (s = output_bfd->sections; s != NULL; s = s->next) | 
 |     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | 
 | 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | 
 |       { | 
 | 	found = s; | 
 | 	if ((s->flags & SEC_THREAD_LOCAL) == 0) | 
 | 	  break; | 
 |       } | 
 |   elf_hash_table (info)->text_index_section = found; | 
 | } | 
 |  | 
 | /* Find two non-excluded output sections, one for code, one for data. | 
 |    We'll use their section symbols for some emitted relocs.  */ | 
 | void | 
 | _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) | 
 | { | 
 |   asection *s; | 
 |   asection *found = NULL; | 
 |  | 
 |   /* Data first, since setting text_index_section changes | 
 |      _bfd_elf_omit_section_dynsym_default.  */ | 
 |   for (s = output_bfd->sections; s != NULL; s = s->next) | 
 |     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | 
 | 	&& !(s->flags & SEC_READONLY) | 
 | 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | 
 |       { | 
 | 	found = s; | 
 | 	if ((s->flags & SEC_THREAD_LOCAL) == 0) | 
 | 	  break; | 
 |       } | 
 |   elf_hash_table (info)->data_index_section = found; | 
 |  | 
 |   for (s = output_bfd->sections; s != NULL; s = s->next) | 
 |     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC | 
 | 	&& (s->flags & SEC_READONLY) | 
 | 	&& !_bfd_elf_omit_section_dynsym_default (output_bfd, info, s)) | 
 |       { | 
 | 	found = s; | 
 | 	break; | 
 |       } | 
 |   elf_hash_table (info)->text_index_section = found; | 
 | } | 
 |  | 
 | #define GNU_HASH_SECTION_NAME(bed)			    \ | 
 |   (bed)->record_xhash_symbol != NULL ? ".MIPS.xhash" : ".gnu.hash" | 
 |  | 
 | bool | 
 | bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |   unsigned long section_sym_count; | 
 |   bfd_size_type dynsymcount = 0; | 
 |  | 
 |   if (!is_elf_hash_table (info->hash)) | 
 |     return true; | 
 |  | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   (*bed->elf_backend_init_index_section) (output_bfd, info); | 
 |  | 
 |   /* Assign dynsym indices.  In a shared library we generate a section | 
 |      symbol for each output section, which come first.  Next come all | 
 |      of the back-end allocated local dynamic syms, followed by the rest | 
 |      of the global symbols. | 
 |  | 
 |      This is usually not needed for static binaries, however backends | 
 |      can request to always do it, e.g. the MIPS backend uses dynamic | 
 |      symbol counts to lay out GOT, which will be produced in the | 
 |      presence of GOT relocations even in static binaries (holding fixed | 
 |      data in that case, to satisfy those relocations).  */ | 
 |  | 
 |   if (elf_hash_table (info)->dynamic_sections_created | 
 |       || bed->always_renumber_dynsyms) | 
 |     dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, | 
 | 						  §ion_sym_count); | 
 |  | 
 |   if (elf_hash_table (info)->dynamic_sections_created) | 
 |     { | 
 |       bfd *dynobj; | 
 |       asection *s; | 
 |       unsigned int dtagcount; | 
 |  | 
 |       dynobj = elf_hash_table (info)->dynobj; | 
 |  | 
 |       /* Work out the size of the symbol version section.  */ | 
 |       s = bfd_get_linker_section (dynobj, ".gnu.version"); | 
 |       BFD_ASSERT (s != NULL); | 
 |       if ((s->flags & SEC_EXCLUDE) == 0) | 
 | 	{ | 
 | 	  s->size = dynsymcount * sizeof (Elf_External_Versym); | 
 | 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | 
 | 	  if (s->contents == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       /* Set the size of the .dynsym and .hash sections.  We counted | 
 | 	 the number of dynamic symbols in elf_link_add_object_symbols. | 
 | 	 We will build the contents of .dynsym and .hash when we build | 
 | 	 the final symbol table, because until then we do not know the | 
 | 	 correct value to give the symbols.  We built the .dynstr | 
 | 	 section as we went along in elf_link_add_object_symbols.  */ | 
 |       s = elf_hash_table (info)->dynsym; | 
 |       BFD_ASSERT (s != NULL); | 
 |       s->size = dynsymcount * bed->s->sizeof_sym; | 
 |  | 
 |       s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); | 
 |       if (s->contents == NULL) | 
 | 	return false; | 
 |  | 
 |       /* The first entry in .dynsym is a dummy symbol.  Clear all the | 
 | 	 section syms, in case we don't output them all.  */ | 
 |       ++section_sym_count; | 
 |       memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); | 
 |  | 
 |       elf_hash_table (info)->bucketcount = 0; | 
 |  | 
 |       /* Compute the size of the hashing table.  As a side effect this | 
 | 	 computes the hash values for all the names we export.  */ | 
 |       if (info->emit_hash) | 
 | 	{ | 
 | 	  unsigned long int *hashcodes; | 
 | 	  struct hash_codes_info hashinf; | 
 | 	  bfd_size_type amt; | 
 | 	  unsigned long int nsyms; | 
 | 	  size_t bucketcount; | 
 | 	  size_t hash_entry_size; | 
 |  | 
 | 	  /* Compute the hash values for all exported symbols.  At the same | 
 | 	     time store the values in an array so that we could use them for | 
 | 	     optimizations.  */ | 
 | 	  amt = dynsymcount * sizeof (unsigned long int); | 
 | 	  hashcodes = (unsigned long int *) bfd_malloc (amt); | 
 | 	  if (hashcodes == NULL) | 
 | 	    return false; | 
 | 	  hashinf.hashcodes = hashcodes; | 
 | 	  hashinf.error = false; | 
 |  | 
 | 	  /* Put all hash values in HASHCODES.  */ | 
 | 	  elf_link_hash_traverse (elf_hash_table (info), | 
 | 				  elf_collect_hash_codes, &hashinf); | 
 | 	  if (hashinf.error) | 
 | 	    { | 
 | 	      free (hashcodes); | 
 | 	      return false; | 
 | 	    } | 
 |  | 
 | 	  nsyms = hashinf.hashcodes - hashcodes; | 
 | 	  bucketcount | 
 | 	    = compute_bucket_count (info, hashcodes, nsyms, 0); | 
 | 	  free (hashcodes); | 
 |  | 
 | 	  if (bucketcount == 0 && nsyms > 0) | 
 | 	    return false; | 
 |  | 
 | 	  elf_hash_table (info)->bucketcount = bucketcount; | 
 |  | 
 | 	  s = bfd_get_linker_section (dynobj, ".hash"); | 
 | 	  BFD_ASSERT (s != NULL); | 
 | 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; | 
 | 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); | 
 | 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | 
 | 	  if (s->contents == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); | 
 | 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, | 
 | 		   s->contents + hash_entry_size); | 
 | 	} | 
 |  | 
 |       if (info->emit_gnu_hash) | 
 | 	{ | 
 | 	  size_t i, cnt; | 
 | 	  unsigned char *contents; | 
 | 	  struct collect_gnu_hash_codes cinfo; | 
 | 	  bfd_size_type amt; | 
 | 	  size_t bucketcount; | 
 |  | 
 | 	  memset (&cinfo, 0, sizeof (cinfo)); | 
 |  | 
 | 	  /* Compute the hash values for all exported symbols.  At the same | 
 | 	     time store the values in an array so that we could use them for | 
 | 	     optimizations.  */ | 
 | 	  amt = dynsymcount * 2 * sizeof (unsigned long int); | 
 | 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); | 
 | 	  if (cinfo.hashcodes == NULL) | 
 | 	    return false; | 
 |  | 
 | 	  cinfo.hashval = cinfo.hashcodes + dynsymcount; | 
 | 	  cinfo.min_dynindx = -1; | 
 | 	  cinfo.output_bfd = output_bfd; | 
 | 	  cinfo.bed = bed; | 
 |  | 
 | 	  /* Put all hash values in HASHCODES.  */ | 
 | 	  elf_link_hash_traverse (elf_hash_table (info), | 
 | 				  elf_collect_gnu_hash_codes, &cinfo); | 
 | 	  if (cinfo.error) | 
 | 	    { | 
 | 	      free (cinfo.hashcodes); | 
 | 	      return false; | 
 | 	    } | 
 |  | 
 | 	  bucketcount | 
 | 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); | 
 |  | 
 | 	  if (bucketcount == 0) | 
 | 	    { | 
 | 	      free (cinfo.hashcodes); | 
 | 	      return false; | 
 | 	    } | 
 |  | 
 | 	  s = bfd_get_linker_section (dynobj, GNU_HASH_SECTION_NAME (bed)); | 
 | 	  BFD_ASSERT (s != NULL); | 
 |  | 
 | 	  if (cinfo.nsyms == 0) | 
 | 	    { | 
 | 	      /* Empty .gnu.hash or .MIPS.xhash section is special.  */ | 
 | 	      BFD_ASSERT (cinfo.min_dynindx == -1); | 
 | 	      free (cinfo.hashcodes); | 
 | 	      s->size = 5 * 4 + bed->s->arch_size / 8; | 
 | 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | 
 | 	      if (contents == NULL) | 
 | 		return false; | 
 | 	      s->contents = contents; | 
 | 	      /* 1 empty bucket.  */ | 
 | 	      bfd_put_32 (output_bfd, 1, contents); | 
 | 	      /* SYMIDX above the special symbol 0.  */ | 
 | 	      bfd_put_32 (output_bfd, 1, contents + 4); | 
 | 	      /* Just one word for bitmask.  */ | 
 | 	      bfd_put_32 (output_bfd, 1, contents + 8); | 
 | 	      /* Only hash fn bloom filter.  */ | 
 | 	      bfd_put_32 (output_bfd, 0, contents + 12); | 
 | 	      /* No hashes are valid - empty bitmask.  */ | 
 | 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); | 
 | 	      /* No hashes in the only bucket.  */ | 
 | 	      bfd_put_32 (output_bfd, 0, | 
 | 			  contents + 16 + bed->s->arch_size / 8); | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      unsigned long int maskwords, maskbitslog2, x; | 
 | 	      BFD_ASSERT (cinfo.min_dynindx != -1); | 
 |  | 
 | 	      x = cinfo.nsyms; | 
 | 	      maskbitslog2 = 1; | 
 | 	      while ((x >>= 1) != 0) | 
 | 		++maskbitslog2; | 
 | 	      if (maskbitslog2 < 3) | 
 | 		maskbitslog2 = 5; | 
 | 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) | 
 | 		maskbitslog2 = maskbitslog2 + 3; | 
 | 	      else | 
 | 		maskbitslog2 = maskbitslog2 + 2; | 
 | 	      if (bed->s->arch_size == 64) | 
 | 		{ | 
 | 		  if (maskbitslog2 == 5) | 
 | 		    maskbitslog2 = 6; | 
 | 		  cinfo.shift1 = 6; | 
 | 		} | 
 | 	      else | 
 | 		cinfo.shift1 = 5; | 
 | 	      cinfo.mask = (1 << cinfo.shift1) - 1; | 
 | 	      cinfo.shift2 = maskbitslog2; | 
 | 	      cinfo.maskbits = 1 << maskbitslog2; | 
 | 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1); | 
 | 	      amt = bucketcount * sizeof (unsigned long int) * 2; | 
 | 	      amt += maskwords * sizeof (bfd_vma); | 
 | 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); | 
 | 	      if (cinfo.bitmask == NULL) | 
 | 		{ | 
 | 		  free (cinfo.hashcodes); | 
 | 		  return false; | 
 | 		} | 
 |  | 
 | 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); | 
 | 	      cinfo.indx = cinfo.counts + bucketcount; | 
 | 	      cinfo.symindx = dynsymcount - cinfo.nsyms; | 
 | 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); | 
 |  | 
 | 	      /* Determine how often each hash bucket is used.  */ | 
 | 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); | 
 | 	      for (i = 0; i < cinfo.nsyms; ++i) | 
 | 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; | 
 |  | 
 | 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) | 
 | 		if (cinfo.counts[i] != 0) | 
 | 		  { | 
 | 		    cinfo.indx[i] = cnt; | 
 | 		    cnt += cinfo.counts[i]; | 
 | 		  } | 
 | 	      BFD_ASSERT (cnt == dynsymcount); | 
 | 	      cinfo.bucketcount = bucketcount; | 
 | 	      cinfo.local_indx = cinfo.min_dynindx; | 
 |  | 
 | 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4; | 
 | 	      s->size += cinfo.maskbits / 8; | 
 | 	      if (bed->record_xhash_symbol != NULL) | 
 | 		s->size += cinfo.nsyms * 4; | 
 | 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); | 
 | 	      if (contents == NULL) | 
 | 		{ | 
 | 		  free (cinfo.bitmask); | 
 | 		  free (cinfo.hashcodes); | 
 | 		  return false; | 
 | 		} | 
 |  | 
 | 	      s->contents = contents; | 
 | 	      bfd_put_32 (output_bfd, bucketcount, contents); | 
 | 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); | 
 | 	      bfd_put_32 (output_bfd, maskwords, contents + 8); | 
 | 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); | 
 | 	      contents += 16 + cinfo.maskbits / 8; | 
 |  | 
 | 	      for (i = 0; i < bucketcount; ++i) | 
 | 		{ | 
 | 		  if (cinfo.counts[i] == 0) | 
 | 		    bfd_put_32 (output_bfd, 0, contents); | 
 | 		  else | 
 | 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents); | 
 | 		  contents += 4; | 
 | 		} | 
 |  | 
 | 	      cinfo.contents = contents; | 
 |  | 
 | 	      cinfo.xlat = contents + cinfo.nsyms * 4 - s->contents; | 
 | 	      /* Renumber dynamic symbols, if populating .gnu.hash section. | 
 | 		 If using .MIPS.xhash, populate the translation table.  */ | 
 | 	      elf_link_hash_traverse (elf_hash_table (info), | 
 | 				      elf_gnu_hash_process_symidx, &cinfo); | 
 |  | 
 | 	      contents = s->contents + 16; | 
 | 	      for (i = 0; i < maskwords; ++i) | 
 | 		{ | 
 | 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], | 
 | 			   contents); | 
 | 		  contents += bed->s->arch_size / 8; | 
 | 		} | 
 |  | 
 | 	      free (cinfo.bitmask); | 
 | 	      free (cinfo.hashcodes); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       s = bfd_get_linker_section (dynobj, ".dynstr"); | 
 |       BFD_ASSERT (s != NULL); | 
 |  | 
 |       elf_finalize_dynstr (output_bfd, info); | 
 |  | 
 |       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); | 
 |  | 
 |       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) | 
 | 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) | 
 | 	  return false; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Make sure sec_info_type is cleared if sec_info is cleared too.  */ | 
 |  | 
 | static void | 
 | merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 			    asection *sec) | 
 | { | 
 |   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); | 
 |   sec->sec_info_type = SEC_INFO_TYPE_NONE; | 
 | } | 
 |  | 
 | /* Finish SHF_MERGE section merging.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) | 
 | { | 
 |   bfd *ibfd; | 
 |   asection *sec; | 
 |  | 
 |   if (!is_elf_hash_table (info->hash)) | 
 |     return false; | 
 |  | 
 |   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
 |     if ((ibfd->flags & DYNAMIC) == 0 | 
 | 	&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour | 
 | 	&& (elf_elfheader (ibfd)->e_ident[EI_CLASS] | 
 | 	    == get_elf_backend_data (obfd)->s->elfclass)) | 
 |       for (sec = ibfd->sections; sec != NULL; sec = sec->next) | 
 | 	if ((sec->flags & SEC_MERGE) != 0 | 
 | 	    && !bfd_is_abs_section (sec->output_section)) | 
 | 	  { | 
 | 	    struct bfd_elf_section_data *secdata; | 
 |  | 
 | 	    secdata = elf_section_data (sec); | 
 | 	    if (! _bfd_add_merge_section (obfd, | 
 | 					  &elf_hash_table (info)->merge_info, | 
 | 					  sec, &secdata->sec_info)) | 
 | 	      return false; | 
 | 	    else if (secdata->sec_info) | 
 | 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE; | 
 | 	  } | 
 |  | 
 |   if (elf_hash_table (info)->merge_info != NULL) | 
 |     _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, | 
 | 			 merge_sections_remove_hook); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Create an entry in an ELF linker hash table.  */ | 
 |  | 
 | struct bfd_hash_entry * | 
 | _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, | 
 | 			    struct bfd_hash_table *table, | 
 | 			    const char *string) | 
 | { | 
 |   /* Allocate the structure if it has not already been allocated by a | 
 |      subclass.  */ | 
 |   if (entry == NULL) | 
 |     { | 
 |       entry = (struct bfd_hash_entry *) | 
 | 	bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); | 
 |       if (entry == NULL) | 
 | 	return entry; | 
 |     } | 
 |  | 
 |   /* Call the allocation method of the superclass.  */ | 
 |   entry = _bfd_link_hash_newfunc (entry, table, string); | 
 |   if (entry != NULL) | 
 |     { | 
 |       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; | 
 |       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; | 
 |  | 
 |       /* Set local fields.  */ | 
 |       ret->indx = -1; | 
 |       ret->dynindx = -1; | 
 |       ret->got = htab->init_got_refcount; | 
 |       ret->plt = htab->init_plt_refcount; | 
 |       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) | 
 | 			      - offsetof (struct elf_link_hash_entry, size))); | 
 |       /* Assume that we have been called by a non-ELF symbol reader. | 
 | 	 This flag is then reset by the code which reads an ELF input | 
 | 	 file.  This ensures that a symbol created by a non-ELF symbol | 
 | 	 reader will have the flag set correctly.  */ | 
 |       ret->non_elf = 1; | 
 |     } | 
 |  | 
 |   return entry; | 
 | } | 
 |  | 
 | /* Copy data from an indirect symbol to its direct symbol, hiding the | 
 |    old indirect symbol.  Also used for copying flags to a weakdef.  */ | 
 |  | 
 | void | 
 | _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, | 
 | 				  struct elf_link_hash_entry *dir, | 
 | 				  struct elf_link_hash_entry *ind) | 
 | { | 
 |   struct elf_link_hash_table *htab; | 
 |  | 
 |   if (ind->dyn_relocs != NULL) | 
 |     { | 
 |       if (dir->dyn_relocs != NULL) | 
 | 	{ | 
 | 	  struct elf_dyn_relocs **pp; | 
 | 	  struct elf_dyn_relocs *p; | 
 |  | 
 | 	  /* Add reloc counts against the indirect sym to the direct sym | 
 | 	     list.  Merge any entries against the same section.  */ | 
 | 	  for (pp = &ind->dyn_relocs; (p = *pp) != NULL; ) | 
 | 	    { | 
 | 	      struct elf_dyn_relocs *q; | 
 |  | 
 | 	      for (q = dir->dyn_relocs; q != NULL; q = q->next) | 
 | 		if (q->sec == p->sec) | 
 | 		  { | 
 | 		    q->pc_count += p->pc_count; | 
 | 		    q->count += p->count; | 
 | 		    *pp = p->next; | 
 | 		    break; | 
 | 		  } | 
 | 	      if (q == NULL) | 
 | 		pp = &p->next; | 
 | 	    } | 
 | 	  *pp = dir->dyn_relocs; | 
 | 	} | 
 |  | 
 |       dir->dyn_relocs = ind->dyn_relocs; | 
 |       ind->dyn_relocs = NULL; | 
 |     } | 
 |  | 
 |   /* Copy down any references that we may have already seen to the | 
 |      symbol which just became indirect.  */ | 
 |  | 
 |   if (dir->versioned != versioned_hidden) | 
 |     dir->ref_dynamic |= ind->ref_dynamic; | 
 |   dir->ref_regular |= ind->ref_regular; | 
 |   dir->ref_regular_nonweak |= ind->ref_regular_nonweak; | 
 |   dir->non_got_ref |= ind->non_got_ref; | 
 |   dir->needs_plt |= ind->needs_plt; | 
 |   dir->pointer_equality_needed |= ind->pointer_equality_needed; | 
 |  | 
 |   if (ind->root.type != bfd_link_hash_indirect) | 
 |     return; | 
 |  | 
 |   /* Copy over the global and procedure linkage table refcount entries. | 
 |      These may have been already set up by a check_relocs routine.  */ | 
 |   htab = elf_hash_table (info); | 
 |   if (ind->got.refcount > htab->init_got_refcount.refcount) | 
 |     { | 
 |       if (dir->got.refcount < 0) | 
 | 	dir->got.refcount = 0; | 
 |       dir->got.refcount += ind->got.refcount; | 
 |       ind->got.refcount = htab->init_got_refcount.refcount; | 
 |     } | 
 |  | 
 |   if (ind->plt.refcount > htab->init_plt_refcount.refcount) | 
 |     { | 
 |       if (dir->plt.refcount < 0) | 
 | 	dir->plt.refcount = 0; | 
 |       dir->plt.refcount += ind->plt.refcount; | 
 |       ind->plt.refcount = htab->init_plt_refcount.refcount; | 
 |     } | 
 |  | 
 |   if (ind->dynindx != -1) | 
 |     { | 
 |       if (dir->dynindx != -1) | 
 | 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); | 
 |       dir->dynindx = ind->dynindx; | 
 |       dir->dynstr_index = ind->dynstr_index; | 
 |       ind->dynindx = -1; | 
 |       ind->dynstr_index = 0; | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, | 
 | 				struct elf_link_hash_entry *h, | 
 | 				bool force_local) | 
 | { | 
 |   /* STT_GNU_IFUNC symbol must go through PLT.  */ | 
 |   if (h->type != STT_GNU_IFUNC) | 
 |     { | 
 |       h->plt = elf_hash_table (info)->init_plt_offset; | 
 |       h->needs_plt = 0; | 
 |     } | 
 |   if (force_local) | 
 |     { | 
 |       h->forced_local = 1; | 
 |       if (h->dynindx != -1) | 
 | 	{ | 
 | 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, | 
 | 				  h->dynstr_index); | 
 | 	  h->dynindx = -1; | 
 | 	  h->dynstr_index = 0; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* Hide a symbol. */ | 
 |  | 
 | void | 
 | _bfd_elf_link_hide_symbol (bfd *output_bfd, | 
 | 			   struct bfd_link_info *info, | 
 | 			   struct bfd_link_hash_entry *h) | 
 | { | 
 |   if (is_elf_hash_table (info->hash)) | 
 |     { | 
 |       const struct elf_backend_data *bed | 
 | 	= get_elf_backend_data (output_bfd); | 
 |       struct elf_link_hash_entry *eh | 
 | 	= (struct elf_link_hash_entry *) h; | 
 |       bed->elf_backend_hide_symbol (info, eh, true); | 
 |       eh->def_dynamic = 0; | 
 |       eh->ref_dynamic = 0; | 
 |       eh->dynamic_def = 0; | 
 |     } | 
 | } | 
 |  | 
 | /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our | 
 |    caller.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_link_hash_table_init | 
 |   (struct elf_link_hash_table *table, | 
 |    bfd *abfd, | 
 |    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, | 
 | 				      struct bfd_hash_table *, | 
 | 				      const char *), | 
 |    unsigned int entsize, | 
 |    enum elf_target_id target_id) | 
 | { | 
 |   bool ret; | 
 |   int can_refcount = get_elf_backend_data (abfd)->can_refcount; | 
 |  | 
 |   table->init_got_refcount.refcount = can_refcount - 1; | 
 |   table->init_plt_refcount.refcount = can_refcount - 1; | 
 |   table->init_got_offset.offset = -(bfd_vma) 1; | 
 |   table->init_plt_offset.offset = -(bfd_vma) 1; | 
 |   /* The first dynamic symbol is a dummy.  */ | 
 |   table->dynsymcount = 1; | 
 |  | 
 |   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); | 
 |  | 
 |   table->root.type = bfd_link_elf_hash_table; | 
 |   table->hash_table_id = target_id; | 
 |   table->target_os = get_elf_backend_data (abfd)->target_os; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Create an ELF linker hash table.  */ | 
 |  | 
 | struct bfd_link_hash_table * | 
 | _bfd_elf_link_hash_table_create (bfd *abfd) | 
 | { | 
 |   struct elf_link_hash_table *ret; | 
 |   size_t amt = sizeof (struct elf_link_hash_table); | 
 |  | 
 |   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); | 
 |   if (ret == NULL) | 
 |     return NULL; | 
 |  | 
 |   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, | 
 | 				       sizeof (struct elf_link_hash_entry), | 
 | 				       GENERIC_ELF_DATA)) | 
 |     { | 
 |       free (ret); | 
 |       return NULL; | 
 |     } | 
 |   ret->root.hash_table_free = _bfd_elf_link_hash_table_free; | 
 |  | 
 |   return &ret->root; | 
 | } | 
 |  | 
 | /* Destroy an ELF linker hash table.  */ | 
 |  | 
 | void | 
 | _bfd_elf_link_hash_table_free (bfd *obfd) | 
 | { | 
 |   struct elf_link_hash_table *htab; | 
 |  | 
 |   htab = (struct elf_link_hash_table *) obfd->link.hash; | 
 |   if (htab->dynstr != NULL) | 
 |     _bfd_elf_strtab_free (htab->dynstr); | 
 |   _bfd_merge_sections_free (htab->merge_info); | 
 |   _bfd_generic_link_hash_table_free (obfd); | 
 | } | 
 |  | 
 | /* This is a hook for the ELF emulation code in the generic linker to | 
 |    tell the backend linker what file name to use for the DT_NEEDED | 
 |    entry for a dynamic object.  */ | 
 |  | 
 | void | 
 | bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) | 
 | { | 
 |   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | 
 |       && bfd_get_format (abfd) == bfd_object) | 
 |     elf_dt_name (abfd) = name; | 
 | } | 
 |  | 
 | int | 
 | bfd_elf_get_dyn_lib_class (bfd *abfd) | 
 | { | 
 |   int lib_class; | 
 |   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | 
 |       && bfd_get_format (abfd) == bfd_object) | 
 |     lib_class = elf_dyn_lib_class (abfd); | 
 |   else | 
 |     lib_class = 0; | 
 |   return lib_class; | 
 | } | 
 |  | 
 | void | 
 | bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) | 
 | { | 
 |   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | 
 |       && bfd_get_format (abfd) == bfd_object) | 
 |     elf_dyn_lib_class (abfd) = lib_class; | 
 | } | 
 |  | 
 | /* Get the list of DT_NEEDED entries for a link.  This is a hook for | 
 |    the linker ELF emulation code.  */ | 
 |  | 
 | struct bfd_link_needed_list * | 
 | bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 			 struct bfd_link_info *info) | 
 | { | 
 |   if (! is_elf_hash_table (info->hash)) | 
 |     return NULL; | 
 |   return elf_hash_table (info)->needed; | 
 | } | 
 |  | 
 | /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a | 
 |    hook for the linker ELF emulation code.  */ | 
 |  | 
 | struct bfd_link_needed_list * | 
 | bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 			  struct bfd_link_info *info) | 
 | { | 
 |   if (! is_elf_hash_table (info->hash)) | 
 |     return NULL; | 
 |   return elf_hash_table (info)->runpath; | 
 | } | 
 |  | 
 | /* Get the name actually used for a dynamic object for a link.  This | 
 |    is the SONAME entry if there is one.  Otherwise, it is the string | 
 |    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */ | 
 |  | 
 | const char * | 
 | bfd_elf_get_dt_soname (bfd *abfd) | 
 | { | 
 |   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour | 
 |       && bfd_get_format (abfd) == bfd_object) | 
 |     return elf_dt_name (abfd); | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for | 
 |    the ELF linker emulation code.  */ | 
 |  | 
 | bool | 
 | bfd_elf_get_bfd_needed_list (bfd *abfd, | 
 | 			     struct bfd_link_needed_list **pneeded) | 
 | { | 
 |   asection *s; | 
 |   bfd_byte *dynbuf = NULL; | 
 |   unsigned int elfsec; | 
 |   unsigned long shlink; | 
 |   bfd_byte *extdyn, *extdynend; | 
 |   size_t extdynsize; | 
 |   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); | 
 |  | 
 |   *pneeded = NULL; | 
 |  | 
 |   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour | 
 |       || bfd_get_format (abfd) != bfd_object) | 
 |     return true; | 
 |  | 
 |   s = bfd_get_section_by_name (abfd, ".dynamic"); | 
 |   if (s == NULL || s->size == 0) | 
 |     return true; | 
 |  | 
 |   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) | 
 |     goto error_return; | 
 |  | 
 |   elfsec = _bfd_elf_section_from_bfd_section (abfd, s); | 
 |   if (elfsec == SHN_BAD) | 
 |     goto error_return; | 
 |  | 
 |   shlink = elf_elfsections (abfd)[elfsec]->sh_link; | 
 |  | 
 |   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; | 
 |   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; | 
 |  | 
 |   for (extdyn = dynbuf, extdynend = dynbuf + s->size; | 
 |        (size_t) (extdynend - extdyn) >= extdynsize; | 
 |        extdyn += extdynsize) | 
 |     { | 
 |       Elf_Internal_Dyn dyn; | 
 |  | 
 |       (*swap_dyn_in) (abfd, extdyn, &dyn); | 
 |  | 
 |       if (dyn.d_tag == DT_NULL) | 
 | 	break; | 
 |  | 
 |       if (dyn.d_tag == DT_NEEDED) | 
 | 	{ | 
 | 	  const char *string; | 
 | 	  struct bfd_link_needed_list *l; | 
 | 	  unsigned int tagv = dyn.d_un.d_val; | 
 | 	  size_t amt; | 
 |  | 
 | 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); | 
 | 	  if (string == NULL) | 
 | 	    goto error_return; | 
 |  | 
 | 	  amt = sizeof *l; | 
 | 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); | 
 | 	  if (l == NULL) | 
 | 	    goto error_return; | 
 |  | 
 | 	  l->by = abfd; | 
 | 	  l->name = string; | 
 | 	  l->next = *pneeded; | 
 | 	  *pneeded = l; | 
 | 	} | 
 |     } | 
 |  | 
 |   free (dynbuf); | 
 |  | 
 |   return true; | 
 |  | 
 |  error_return: | 
 |   free (dynbuf); | 
 |   return false; | 
 | } | 
 |  | 
 | struct elf_symbuf_symbol | 
 | { | 
 |   unsigned long st_name;	/* Symbol name, index in string tbl */ | 
 |   unsigned char st_info;	/* Type and binding attributes */ | 
 |   unsigned char st_other;	/* Visibilty, and target specific */ | 
 | }; | 
 |  | 
 | struct elf_symbuf_head | 
 | { | 
 |   struct elf_symbuf_symbol *ssym; | 
 |   size_t count; | 
 |   unsigned int st_shndx; | 
 | }; | 
 |  | 
 | struct elf_symbol | 
 | { | 
 |   union | 
 |     { | 
 |       Elf_Internal_Sym *isym; | 
 |       struct elf_symbuf_symbol *ssym; | 
 |       void *p; | 
 |     } u; | 
 |   const char *name; | 
 | }; | 
 |  | 
 | /* Sort references to symbols by ascending section number.  */ | 
 |  | 
 | static int | 
 | elf_sort_elf_symbol (const void *arg1, const void *arg2) | 
 | { | 
 |   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; | 
 |   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; | 
 |  | 
 |   if (s1->st_shndx != s2->st_shndx) | 
 |     return s1->st_shndx > s2->st_shndx ? 1 : -1; | 
 |   /* Final sort by the address of the sym in the symbuf ensures | 
 |      a stable sort.  */ | 
 |   if (s1 != s2) | 
 |     return s1 > s2 ? 1 : -1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | elf_sym_name_compare (const void *arg1, const void *arg2) | 
 | { | 
 |   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; | 
 |   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; | 
 |   int ret = strcmp (s1->name, s2->name); | 
 |   if (ret != 0) | 
 |     return ret; | 
 |   if (s1->u.p != s2->u.p) | 
 |     return s1->u.p > s2->u.p ? 1 : -1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static struct elf_symbuf_head * | 
 | elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) | 
 | { | 
 |   Elf_Internal_Sym **ind, **indbufend, **indbuf; | 
 |   struct elf_symbuf_symbol *ssym; | 
 |   struct elf_symbuf_head *ssymbuf, *ssymhead; | 
 |   size_t i, shndx_count, total_size, amt; | 
 |  | 
 |   amt = symcount * sizeof (*indbuf); | 
 |   indbuf = (Elf_Internal_Sym **) bfd_malloc (amt); | 
 |   if (indbuf == NULL) | 
 |     return NULL; | 
 |  | 
 |   for (ind = indbuf, i = 0; i < symcount; i++) | 
 |     if (isymbuf[i].st_shndx != SHN_UNDEF) | 
 |       *ind++ = &isymbuf[i]; | 
 |   indbufend = ind; | 
 |  | 
 |   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), | 
 | 	 elf_sort_elf_symbol); | 
 |  | 
 |   shndx_count = 0; | 
 |   if (indbufend > indbuf) | 
 |     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) | 
 |       if (ind[0]->st_shndx != ind[1]->st_shndx) | 
 | 	shndx_count++; | 
 |  | 
 |   total_size = ((shndx_count + 1) * sizeof (*ssymbuf) | 
 | 		+ (indbufend - indbuf) * sizeof (*ssym)); | 
 |   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); | 
 |   if (ssymbuf == NULL) | 
 |     { | 
 |       free (indbuf); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); | 
 |   ssymbuf->ssym = NULL; | 
 |   ssymbuf->count = shndx_count; | 
 |   ssymbuf->st_shndx = 0; | 
 |   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) | 
 |     { | 
 |       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) | 
 | 	{ | 
 | 	  ssymhead++; | 
 | 	  ssymhead->ssym = ssym; | 
 | 	  ssymhead->count = 0; | 
 | 	  ssymhead->st_shndx = (*ind)->st_shndx; | 
 | 	} | 
 |       ssym->st_name = (*ind)->st_name; | 
 |       ssym->st_info = (*ind)->st_info; | 
 |       ssym->st_other = (*ind)->st_other; | 
 |       ssymhead->count++; | 
 |     } | 
 |   BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count | 
 | 	      && (uintptr_t) ssym - (uintptr_t) ssymbuf == total_size); | 
 |  | 
 |   free (indbuf); | 
 |   return ssymbuf; | 
 | } | 
 |  | 
 | /* Check if 2 sections define the same set of local and global | 
 |    symbols.  */ | 
 |  | 
 | static bool | 
 | bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, | 
 | 				   struct bfd_link_info *info) | 
 | { | 
 |   bfd *bfd1, *bfd2; | 
 |   const struct elf_backend_data *bed1, *bed2; | 
 |   Elf_Internal_Shdr *hdr1, *hdr2; | 
 |   size_t symcount1, symcount2; | 
 |   Elf_Internal_Sym *isymbuf1, *isymbuf2; | 
 |   struct elf_symbuf_head *ssymbuf1, *ssymbuf2; | 
 |   Elf_Internal_Sym *isym, *isymend; | 
 |   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; | 
 |   size_t count1, count2, sec_count1, sec_count2, i; | 
 |   unsigned int shndx1, shndx2; | 
 |   bool result; | 
 |   bool ignore_section_symbol_p; | 
 |  | 
 |   bfd1 = sec1->owner; | 
 |   bfd2 = sec2->owner; | 
 |  | 
 |   /* Both sections have to be in ELF.  */ | 
 |   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour | 
 |       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) | 
 |     return false; | 
 |  | 
 |   if (elf_section_type (sec1) != elf_section_type (sec2)) | 
 |     return false; | 
 |  | 
 |   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); | 
 |   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); | 
 |   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) | 
 |     return false; | 
 |  | 
 |   bed1 = get_elf_backend_data (bfd1); | 
 |   bed2 = get_elf_backend_data (bfd2); | 
 |   hdr1 = &elf_tdata (bfd1)->symtab_hdr; | 
 |   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; | 
 |   hdr2 = &elf_tdata (bfd2)->symtab_hdr; | 
 |   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; | 
 |  | 
 |   if (symcount1 == 0 || symcount2 == 0) | 
 |     return false; | 
 |  | 
 |   result = false; | 
 |   isymbuf1 = NULL; | 
 |   isymbuf2 = NULL; | 
 |   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; | 
 |   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; | 
 |  | 
 |   /* Ignore section symbols only when matching non-debugging sections | 
 |      or linkonce section with comdat section.  */ | 
 |   ignore_section_symbol_p | 
 |     = ((sec1->flags & SEC_DEBUGGING) == 0 | 
 |        || ((elf_section_flags (sec1) & SHF_GROUP) | 
 | 	   != (elf_section_flags (sec2) & SHF_GROUP))); | 
 |  | 
 |   if (ssymbuf1 == NULL) | 
 |     { | 
 |       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, | 
 | 				       NULL, NULL, NULL); | 
 |       if (isymbuf1 == NULL) | 
 | 	goto done; | 
 |  | 
 |       if (info != NULL && !info->reduce_memory_overheads) | 
 | 	{ | 
 | 	  ssymbuf1 = elf_create_symbuf (symcount1, isymbuf1); | 
 | 	  elf_tdata (bfd1)->symbuf = ssymbuf1; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (ssymbuf1 == NULL || ssymbuf2 == NULL) | 
 |     { | 
 |       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, | 
 | 				       NULL, NULL, NULL); | 
 |       if (isymbuf2 == NULL) | 
 | 	goto done; | 
 |  | 
 |       if (ssymbuf1 != NULL && info != NULL && !info->reduce_memory_overheads) | 
 | 	{ | 
 | 	  ssymbuf2 = elf_create_symbuf (symcount2, isymbuf2); | 
 | 	  elf_tdata (bfd2)->symbuf = ssymbuf2; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (ssymbuf1 != NULL && ssymbuf2 != NULL) | 
 |     { | 
 |       /* Optimized faster version.  */ | 
 |       size_t lo, hi, mid; | 
 |       struct elf_symbol *symp; | 
 |       struct elf_symbuf_symbol *ssym, *ssymend; | 
 |  | 
 |       lo = 0; | 
 |       hi = ssymbuf1->count; | 
 |       ssymbuf1++; | 
 |       count1 = 0; | 
 |       sec_count1 = 0; | 
 |       while (lo < hi) | 
 | 	{ | 
 | 	  mid = (lo + hi) / 2; | 
 | 	  if (shndx1 < ssymbuf1[mid].st_shndx) | 
 | 	    hi = mid; | 
 | 	  else if (shndx1 > ssymbuf1[mid].st_shndx) | 
 | 	    lo = mid + 1; | 
 | 	  else | 
 | 	    { | 
 | 	      count1 = ssymbuf1[mid].count; | 
 | 	      ssymbuf1 += mid; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       if (ignore_section_symbol_p) | 
 | 	{ | 
 | 	  for (i = 0; i < count1; i++) | 
 | 	    if (ELF_ST_TYPE (ssymbuf1->ssym[i].st_info) == STT_SECTION) | 
 | 	      sec_count1++; | 
 | 	  count1 -= sec_count1; | 
 | 	} | 
 |  | 
 |       lo = 0; | 
 |       hi = ssymbuf2->count; | 
 |       ssymbuf2++; | 
 |       count2 = 0; | 
 |       sec_count2 = 0; | 
 |       while (lo < hi) | 
 | 	{ | 
 | 	  mid = (lo + hi) / 2; | 
 | 	  if (shndx2 < ssymbuf2[mid].st_shndx) | 
 | 	    hi = mid; | 
 | 	  else if (shndx2 > ssymbuf2[mid].st_shndx) | 
 | 	    lo = mid + 1; | 
 | 	  else | 
 | 	    { | 
 | 	      count2 = ssymbuf2[mid].count; | 
 | 	      ssymbuf2 += mid; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       if (ignore_section_symbol_p) | 
 | 	{ | 
 | 	  for (i = 0; i < count2; i++) | 
 | 	    if (ELF_ST_TYPE (ssymbuf2->ssym[i].st_info) == STT_SECTION) | 
 | 	      sec_count2++; | 
 | 	  count2 -= sec_count2; | 
 | 	} | 
 |  | 
 |       if (count1 == 0 || count2 == 0 || count1 != count2) | 
 | 	goto done; | 
 |  | 
 |       symtable1 | 
 | 	= (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); | 
 |       symtable2 | 
 | 	= (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); | 
 |       if (symtable1 == NULL || symtable2 == NULL) | 
 | 	goto done; | 
 |  | 
 |       symp = symtable1; | 
 |       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1 + sec_count1; | 
 | 	   ssym < ssymend; ssym++) | 
 | 	if (sec_count1 == 0 | 
 | 	    || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) | 
 | 	  { | 
 | 	    symp->u.ssym = ssym; | 
 | 	    symp->name = bfd_elf_string_from_elf_section (bfd1, | 
 | 							  hdr1->sh_link, | 
 | 							  ssym->st_name); | 
 | 	    symp++; | 
 | 	  } | 
 |  | 
 |       symp = symtable2; | 
 |       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2 + sec_count2; | 
 | 	   ssym < ssymend; ssym++) | 
 | 	if (sec_count2 == 0 | 
 | 	    || ELF_ST_TYPE (ssym->st_info) != STT_SECTION) | 
 | 	  { | 
 | 	    symp->u.ssym = ssym; | 
 | 	    symp->name = bfd_elf_string_from_elf_section (bfd2, | 
 | 							  hdr2->sh_link, | 
 | 							  ssym->st_name); | 
 | 	    symp++; | 
 | 	  } | 
 |  | 
 |       /* Sort symbol by name.  */ | 
 |       qsort (symtable1, count1, sizeof (struct elf_symbol), | 
 | 	     elf_sym_name_compare); | 
 |       qsort (symtable2, count1, sizeof (struct elf_symbol), | 
 | 	     elf_sym_name_compare); | 
 |  | 
 |       for (i = 0; i < count1; i++) | 
 | 	/* Two symbols must have the same binding, type and name.  */ | 
 | 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info | 
 | 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other | 
 | 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | 
 | 	  goto done; | 
 |  | 
 |       result = true; | 
 |       goto done; | 
 |     } | 
 |  | 
 |   symtable1 = (struct elf_symbol *) | 
 |       bfd_malloc (symcount1 * sizeof (struct elf_symbol)); | 
 |   symtable2 = (struct elf_symbol *) | 
 |       bfd_malloc (symcount2 * sizeof (struct elf_symbol)); | 
 |   if (symtable1 == NULL || symtable2 == NULL) | 
 |     goto done; | 
 |  | 
 |   /* Count definitions in the section.  */ | 
 |   count1 = 0; | 
 |   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) | 
 |     if (isym->st_shndx == shndx1 | 
 | 	&& (!ignore_section_symbol_p | 
 | 	    || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) | 
 |       symtable1[count1++].u.isym = isym; | 
 |  | 
 |   count2 = 0; | 
 |   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) | 
 |     if (isym->st_shndx == shndx2 | 
 | 	&& (!ignore_section_symbol_p | 
 | 	    || ELF_ST_TYPE (isym->st_info) != STT_SECTION)) | 
 |       symtable2[count2++].u.isym = isym; | 
 |  | 
 |   if (count1 == 0 || count2 == 0 || count1 != count2) | 
 |     goto done; | 
 |  | 
 |   for (i = 0; i < count1; i++) | 
 |     symtable1[i].name | 
 |       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, | 
 | 					 symtable1[i].u.isym->st_name); | 
 |  | 
 |   for (i = 0; i < count2; i++) | 
 |     symtable2[i].name | 
 |       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, | 
 | 					 symtable2[i].u.isym->st_name); | 
 |  | 
 |   /* Sort symbol by name.  */ | 
 |   qsort (symtable1, count1, sizeof (struct elf_symbol), | 
 | 	 elf_sym_name_compare); | 
 |   qsort (symtable2, count1, sizeof (struct elf_symbol), | 
 | 	 elf_sym_name_compare); | 
 |  | 
 |   for (i = 0; i < count1; i++) | 
 |     /* Two symbols must have the same binding, type and name.  */ | 
 |     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info | 
 | 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other | 
 | 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0) | 
 |       goto done; | 
 |  | 
 |   result = true; | 
 |  | 
 |  done: | 
 |   free (symtable1); | 
 |   free (symtable2); | 
 |   free (isymbuf1); | 
 |   free (isymbuf2); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | /* Return TRUE if 2 section types are compatible.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, | 
 | 				 bfd *bbfd, const asection *bsec) | 
 | { | 
 |   if (asec == NULL | 
 |       || bsec == NULL | 
 |       || abfd->xvec->flavour != bfd_target_elf_flavour | 
 |       || bbfd->xvec->flavour != bfd_target_elf_flavour) | 
 |     return true; | 
 |  | 
 |   return elf_section_type (asec) == elf_section_type (bsec); | 
 | } | 
 |  | 
 | /* Final phase of ELF linker.  */ | 
 |  | 
 | /* A structure we use to avoid passing large numbers of arguments.  */ | 
 |  | 
 | struct elf_final_link_info | 
 | { | 
 |   /* General link information.  */ | 
 |   struct bfd_link_info *info; | 
 |   /* Output BFD.  */ | 
 |   bfd *output_bfd; | 
 |   /* Symbol string table.  */ | 
 |   struct elf_strtab_hash *symstrtab; | 
 |   /* .hash section.  */ | 
 |   asection *hash_sec; | 
 |   /* symbol version section (.gnu.version).  */ | 
 |   asection *symver_sec; | 
 |   /* Buffer large enough to hold contents of any section.  */ | 
 |   bfd_byte *contents; | 
 |   /* Buffer large enough to hold external relocs of any section.  */ | 
 |   void *external_relocs; | 
 |   /* Buffer large enough to hold internal relocs of any section.  */ | 
 |   Elf_Internal_Rela *internal_relocs; | 
 |   /* Buffer large enough to hold external local symbols of any input | 
 |      BFD.  */ | 
 |   bfd_byte *external_syms; | 
 |   /* And a buffer for symbol section indices.  */ | 
 |   Elf_External_Sym_Shndx *locsym_shndx; | 
 |   /* Buffer large enough to hold internal local symbols of any input | 
 |      BFD.  */ | 
 |   Elf_Internal_Sym *internal_syms; | 
 |   /* Array large enough to hold a symbol index for each local symbol | 
 |      of any input BFD.  */ | 
 |   long *indices; | 
 |   /* Array large enough to hold a section pointer for each local | 
 |      symbol of any input BFD.  */ | 
 |   asection **sections; | 
 |   /* Buffer for SHT_SYMTAB_SHNDX section.  */ | 
 |   Elf_External_Sym_Shndx *symshndxbuf; | 
 |   /* Number of STT_FILE syms seen.  */ | 
 |   size_t filesym_count; | 
 |   /* Local symbol hash table.  */ | 
 |   struct bfd_hash_table local_hash_table; | 
 | }; | 
 |  | 
 | struct local_hash_entry | 
 | { | 
 |   /* Base hash table entry structure.  */ | 
 |   struct bfd_hash_entry root; | 
 |   /* Size of the local symbol name.  */ | 
 |   size_t size; | 
 |   /* Number of the duplicated local symbol names.  */ | 
 |   long count; | 
 | }; | 
 |  | 
 | /* Create an entry in the local symbol hash table.  */ | 
 |  | 
 | static struct bfd_hash_entry * | 
 | local_hash_newfunc (struct bfd_hash_entry *entry, | 
 | 		    struct bfd_hash_table *table, | 
 | 		    const char *string) | 
 | { | 
 |  | 
 |   /* Allocate the structure if it has not already been allocated by a | 
 |      subclass.  */ | 
 |   if (entry == NULL) | 
 |     { | 
 |       entry = bfd_hash_allocate (table, | 
 | 				 sizeof (struct local_hash_entry)); | 
 |       if (entry == NULL) | 
 |         return entry; | 
 |     } | 
 |  | 
 |   /* Call the allocation method of the superclass.  */ | 
 |   entry = bfd_hash_newfunc (entry, table, string); | 
 |   if (entry != NULL) | 
 |     { | 
 |       ((struct local_hash_entry *) entry)->count = 0; | 
 |       ((struct local_hash_entry *) entry)->size = 0; | 
 |     } | 
 |  | 
 |   return entry; | 
 | } | 
 |  | 
 | /* This struct is used to pass information to elf_link_output_extsym.  */ | 
 |  | 
 | struct elf_outext_info | 
 | { | 
 |   bool failed; | 
 |   bool localsyms; | 
 |   bool file_sym_done; | 
 |   struct elf_final_link_info *flinfo; | 
 | }; | 
 |  | 
 |  | 
 | /* Support for evaluating a complex relocation. | 
 |  | 
 |    Complex relocations are generalized, self-describing relocations.  The | 
 |    implementation of them consists of two parts: complex symbols, and the | 
 |    relocations themselves. | 
 |  | 
 |    The relocations use a reserved elf-wide relocation type code (R_RELC | 
 |    external / BFD_RELOC_RELC internal) and an encoding of relocation field | 
 |    information (start bit, end bit, word width, etc) into the addend.  This | 
 |    information is extracted from CGEN-generated operand tables within gas. | 
 |  | 
 |    Complex symbols are mangled symbols (STT_RELC external / BSF_RELC | 
 |    internal) representing prefix-notation expressions, including but not | 
 |    limited to those sorts of expressions normally encoded as addends in the | 
 |    addend field.  The symbol mangling format is: | 
 |  | 
 |    <node> := <literal> | 
 | 	  |  <unary-operator> ':' <node> | 
 | 	  |  <binary-operator> ':' <node> ':' <node> | 
 | 	  ; | 
 |  | 
 |    <literal> := 's' <digits=N> ':' <N character symbol name> | 
 | 	     |  'S' <digits=N> ':' <N character section name> | 
 | 	     |  '#' <hexdigits> | 
 | 	     ; | 
 |  | 
 |    <binary-operator> := as in C | 
 |    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */ | 
 |  | 
 | static void | 
 | set_symbol_value (bfd *bfd_with_globals, | 
 | 		  Elf_Internal_Sym *isymbuf, | 
 | 		  size_t locsymcount, | 
 | 		  size_t symidx, | 
 | 		  bfd_vma val) | 
 | { | 
 |   struct elf_link_hash_entry **sym_hashes; | 
 |   struct elf_link_hash_entry *h; | 
 |   size_t extsymoff = locsymcount; | 
 |  | 
 |   if (symidx < locsymcount) | 
 |     { | 
 |       Elf_Internal_Sym *sym; | 
 |  | 
 |       sym = isymbuf + symidx; | 
 |       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) | 
 | 	{ | 
 | 	  /* It is a local symbol: move it to the | 
 | 	     "absolute" section and give it a value.  */ | 
 | 	  sym->st_shndx = SHN_ABS; | 
 | 	  sym->st_value = val; | 
 | 	  return; | 
 | 	} | 
 |       BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); | 
 |       extsymoff = 0; | 
 |     } | 
 |  | 
 |   /* It is a global symbol: set its link type | 
 |      to "defined" and give it a value.  */ | 
 |  | 
 |   sym_hashes = elf_sym_hashes (bfd_with_globals); | 
 |   h = sym_hashes [symidx - extsymoff]; | 
 |   while (h->root.type == bfd_link_hash_indirect | 
 | 	 || h->root.type == bfd_link_hash_warning) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |   h->root.type = bfd_link_hash_defined; | 
 |   h->root.u.def.value = val; | 
 |   h->root.u.def.section = bfd_abs_section_ptr; | 
 | } | 
 |  | 
 | static bool | 
 | resolve_symbol (const char *name, | 
 | 		bfd *input_bfd, | 
 | 		struct elf_final_link_info *flinfo, | 
 | 		bfd_vma *result, | 
 | 		Elf_Internal_Sym *isymbuf, | 
 | 		size_t locsymcount) | 
 | { | 
 |   Elf_Internal_Sym *sym; | 
 |   struct bfd_link_hash_entry *global_entry; | 
 |   const char *candidate = NULL; | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   size_t i; | 
 |  | 
 |   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; | 
 |  | 
 |   for (i = 0; i < locsymcount; ++ i) | 
 |     { | 
 |       sym = isymbuf + i; | 
 |  | 
 |       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) | 
 | 	continue; | 
 |  | 
 |       candidate = bfd_elf_string_from_elf_section (input_bfd, | 
 | 						   symtab_hdr->sh_link, | 
 | 						   sym->st_name); | 
 | #ifdef DEBUG | 
 |       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", | 
 | 	      name, candidate, (unsigned long) sym->st_value); | 
 | #endif | 
 |       if (candidate && strcmp (candidate, name) == 0) | 
 | 	{ | 
 | 	  asection *sec = flinfo->sections [i]; | 
 |  | 
 | 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); | 
 | 	  *result += sec->output_offset + sec->output_section->vma; | 
 | #ifdef DEBUG | 
 | 	  printf ("Found symbol with value %8.8lx\n", | 
 | 		  (unsigned long) *result); | 
 | #endif | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Hmm, haven't found it yet. perhaps it is a global.  */ | 
 |   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, | 
 | 				       false, false, true); | 
 |   if (!global_entry) | 
 |     return false; | 
 |  | 
 |   if (global_entry->type == bfd_link_hash_defined | 
 |       || global_entry->type == bfd_link_hash_defweak) | 
 |     { | 
 |       *result = (global_entry->u.def.value | 
 | 		 + global_entry->u.def.section->output_section->vma | 
 | 		 + global_entry->u.def.section->output_offset); | 
 | #ifdef DEBUG | 
 |       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", | 
 | 	      global_entry->root.string, (unsigned long) *result); | 
 | #endif | 
 |       return true; | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Looks up NAME in SECTIONS.  If found sets RESULT to NAME's address (in | 
 |    bytes) and returns TRUE, otherwise returns FALSE.  Accepts pseudo-section | 
 |    names like "foo.end" which is the end address of section "foo".  */ | 
 |  | 
 | static bool | 
 | resolve_section (const char *name, | 
 | 		 asection *sections, | 
 | 		 bfd_vma *result, | 
 | 		 bfd * abfd) | 
 | { | 
 |   asection *curr; | 
 |   unsigned int len; | 
 |  | 
 |   for (curr = sections; curr; curr = curr->next) | 
 |     if (strcmp (curr->name, name) == 0) | 
 |       { | 
 | 	*result = curr->vma; | 
 | 	return true; | 
 |       } | 
 |  | 
 |   /* Hmm. still haven't found it. try pseudo-section names.  */ | 
 |   /* FIXME: This could be coded more efficiently...  */ | 
 |   for (curr = sections; curr; curr = curr->next) | 
 |     { | 
 |       len = strlen (curr->name); | 
 |       if (len > strlen (name)) | 
 | 	continue; | 
 |  | 
 |       if (strncmp (curr->name, name, len) == 0) | 
 | 	{ | 
 | 	  if (startswith (name + len, ".end")) | 
 | 	    { | 
 | 	      *result = (curr->vma | 
 | 			 + curr->size / bfd_octets_per_byte (abfd, curr)); | 
 | 	      return true; | 
 | 	    } | 
 |  | 
 | 	  /* Insert more pseudo-section names here, if you like.  */ | 
 | 	} | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | static void | 
 | undefined_reference (const char *reftype, const char *name) | 
 | { | 
 |   /* xgettext:c-format */ | 
 |   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), | 
 | 		      reftype, name); | 
 |   bfd_set_error (bfd_error_bad_value); | 
 | } | 
 |  | 
 | static bool | 
 | eval_symbol (bfd_vma *result, | 
 | 	     const char **symp, | 
 | 	     bfd *input_bfd, | 
 | 	     struct elf_final_link_info *flinfo, | 
 | 	     bfd_vma dot, | 
 | 	     Elf_Internal_Sym *isymbuf, | 
 | 	     size_t locsymcount, | 
 | 	     int signed_p) | 
 | { | 
 |   size_t len; | 
 |   size_t symlen; | 
 |   bfd_vma a; | 
 |   bfd_vma b; | 
 |   char symbuf[4096]; | 
 |   const char *sym = *symp; | 
 |   const char *symend; | 
 |   bool symbol_is_section = false; | 
 |  | 
 |   len = strlen (sym); | 
 |   symend = sym + len; | 
 |  | 
 |   if (len < 1 || len > sizeof (symbuf)) | 
 |     { | 
 |       bfd_set_error (bfd_error_invalid_operation); | 
 |       return false; | 
 |     } | 
 |  | 
 |   switch (* sym) | 
 |     { | 
 |     case '.': | 
 |       *result = dot; | 
 |       *symp = sym + 1; | 
 |       return true; | 
 |  | 
 |     case '#': | 
 |       ++sym; | 
 |       *result = strtoul (sym, (char **) symp, 16); | 
 |       return true; | 
 |  | 
 |     case 'S': | 
 |       symbol_is_section = true; | 
 |       /* Fall through.  */ | 
 |     case 's': | 
 |       ++sym; | 
 |       symlen = strtol (sym, (char **) symp, 10); | 
 |       sym = *symp + 1; /* Skip the trailing ':'.  */ | 
 |  | 
 |       if (symend < sym || symlen + 1 > sizeof (symbuf)) | 
 | 	{ | 
 | 	  bfd_set_error (bfd_error_invalid_operation); | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       memcpy (symbuf, sym, symlen); | 
 |       symbuf[symlen] = '\0'; | 
 |       *symp = sym + symlen; | 
 |  | 
 |       /* Is it always possible, with complex symbols, that gas "mis-guessed" | 
 | 	 the symbol as a section, or vice-versa. so we're pretty liberal in our | 
 | 	 interpretation here; section means "try section first", not "must be a | 
 | 	 section", and likewise with symbol.  */ | 
 |  | 
 |       if (symbol_is_section) | 
 | 	{ | 
 | 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) | 
 | 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result, | 
 | 				  isymbuf, locsymcount)) | 
 | 	    { | 
 | 	      undefined_reference ("section", symbuf); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result, | 
 | 			       isymbuf, locsymcount) | 
 | 	      && !resolve_section (symbuf, flinfo->output_bfd->sections, | 
 | 				   result, input_bfd)) | 
 | 	    { | 
 | 	      undefined_reference ("symbol", symbuf); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       return true; | 
 |  | 
 |       /* All that remains are operators.  */ | 
 |  | 
 | #define UNARY_OP(op)						\ | 
 |   if (startswith (sym, #op))					\ | 
 |     {								\ | 
 |       sym += strlen (#op);					\ | 
 |       if (*sym == ':')						\ | 
 | 	++sym;							\ | 
 |       *symp = sym;						\ | 
 |       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\ | 
 | 			isymbuf, locsymcount, signed_p))	\ | 
 | 	return false;						\ | 
 |       if (signed_p)						\ | 
 | 	*result = op ((bfd_signed_vma) a);			\ | 
 |       else							\ | 
 | 	*result = op a;						\ | 
 |       return true;						\ | 
 |     } | 
 |  | 
 | #define BINARY_OP_HEAD(op)					\ | 
 |   if (startswith (sym, #op))					\ | 
 |     {								\ | 
 |       sym += strlen (#op);					\ | 
 |       if (*sym == ':')						\ | 
 | 	++sym;							\ | 
 |       *symp = sym;						\ | 
 |       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\ | 
 | 			isymbuf, locsymcount, signed_p))	\ | 
 | 	return false;						\ | 
 |       ++*symp;							\ | 
 |       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\ | 
 | 			isymbuf, locsymcount, signed_p))	\ | 
 | 	return false; | 
 | #define BINARY_OP_TAIL(op)					\ | 
 |       if (signed_p)						\ | 
 | 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\ | 
 |       else							\ | 
 | 	*result = a op b;					\ | 
 |       return true;						\ | 
 |     } | 
 | #define BINARY_OP(op) BINARY_OP_HEAD(op) BINARY_OP_TAIL(op) | 
 |  | 
 |     default: | 
 |       UNARY_OP  (0-); | 
 |       BINARY_OP_HEAD (<<); | 
 |       if (b >= sizeof (a) * CHAR_BIT) | 
 | 	{ | 
 | 	  *result = 0; | 
 | 	  return true; | 
 | 	} | 
 |       signed_p = 0; | 
 |       BINARY_OP_TAIL (<<); | 
 |       BINARY_OP_HEAD (>>); | 
 |       if (b >= sizeof (a) * CHAR_BIT) | 
 | 	{ | 
 | 	  *result = signed_p && (bfd_signed_vma) a < 0 ? -1 : 0; | 
 | 	  return true; | 
 | 	} | 
 |       BINARY_OP_TAIL (>>); | 
 |       BINARY_OP (==); | 
 |       BINARY_OP (!=); | 
 |       BINARY_OP (<=); | 
 |       BINARY_OP (>=); | 
 |       BINARY_OP (&&); | 
 |       BINARY_OP (||); | 
 |       UNARY_OP  (~); | 
 |       UNARY_OP  (!); | 
 |       BINARY_OP (*); | 
 |       BINARY_OP_HEAD (/); | 
 |       if (b == 0) | 
 | 	{ | 
 | 	  _bfd_error_handler (_("division by zero")); | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  return false; | 
 | 	} | 
 |       BINARY_OP_TAIL (/); | 
 |       BINARY_OP_HEAD (%); | 
 |       if (b == 0) | 
 | 	{ | 
 | 	  _bfd_error_handler (_("division by zero")); | 
 | 	  bfd_set_error (bfd_error_bad_value); | 
 | 	  return false; | 
 | 	} | 
 |       BINARY_OP_TAIL (%); | 
 |       BINARY_OP (^); | 
 |       BINARY_OP (|); | 
 |       BINARY_OP (&); | 
 |       BINARY_OP (+); | 
 |       BINARY_OP (-); | 
 |       BINARY_OP (<); | 
 |       BINARY_OP (>); | 
 | #undef UNARY_OP | 
 | #undef BINARY_OP | 
 |       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); | 
 |       bfd_set_error (bfd_error_invalid_operation); | 
 |       return false; | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | put_value (bfd_vma size, | 
 | 	   unsigned long chunksz, | 
 | 	   bfd *input_bfd, | 
 | 	   bfd_vma x, | 
 | 	   bfd_byte *location) | 
 | { | 
 |   location += (size - chunksz); | 
 |  | 
 |   for (; size; size -= chunksz, location -= chunksz) | 
 |     { | 
 |       switch (chunksz) | 
 | 	{ | 
 | 	case 1: | 
 | 	  bfd_put_8 (input_bfd, x, location); | 
 | 	  x >>= 8; | 
 | 	  break; | 
 | 	case 2: | 
 | 	  bfd_put_16 (input_bfd, x, location); | 
 | 	  x >>= 16; | 
 | 	  break; | 
 | 	case 4: | 
 | 	  bfd_put_32 (input_bfd, x, location); | 
 | 	  /* Computed this way because x >>= 32 is undefined if x is a 32-bit value.  */ | 
 | 	  x >>= 16; | 
 | 	  x >>= 16; | 
 | 	  break; | 
 | #ifdef BFD64 | 
 | 	case 8: | 
 | 	  bfd_put_64 (input_bfd, x, location); | 
 | 	  /* Computed this way because x >>= 64 is undefined if x is a 64-bit value.  */ | 
 | 	  x >>= 32; | 
 | 	  x >>= 32; | 
 | 	  break; | 
 | #endif | 
 | 	default: | 
 | 	  abort (); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | static bfd_vma | 
 | get_value (bfd_vma size, | 
 | 	   unsigned long chunksz, | 
 | 	   bfd *input_bfd, | 
 | 	   bfd_byte *location) | 
 | { | 
 |   int shift; | 
 |   bfd_vma x = 0; | 
 |  | 
 |   /* Sanity checks.  */ | 
 |   BFD_ASSERT (chunksz <= sizeof (x) | 
 | 	      && size >= chunksz | 
 | 	      && chunksz != 0 | 
 | 	      && (size % chunksz) == 0 | 
 | 	      && input_bfd != NULL | 
 | 	      && location != NULL); | 
 |  | 
 |   if (chunksz == sizeof (x)) | 
 |     { | 
 |       BFD_ASSERT (size == chunksz); | 
 |  | 
 |       /* Make sure that we do not perform an undefined shift operation. | 
 | 	 We know that size == chunksz so there will only be one iteration | 
 | 	 of the loop below.  */ | 
 |       shift = 0; | 
 |     } | 
 |   else | 
 |     shift = 8 * chunksz; | 
 |  | 
 |   for (; size; size -= chunksz, location += chunksz) | 
 |     { | 
 |       switch (chunksz) | 
 | 	{ | 
 | 	case 1: | 
 | 	  x = (x << shift) | bfd_get_8 (input_bfd, location); | 
 | 	  break; | 
 | 	case 2: | 
 | 	  x = (x << shift) | bfd_get_16 (input_bfd, location); | 
 | 	  break; | 
 | 	case 4: | 
 | 	  x = (x << shift) | bfd_get_32 (input_bfd, location); | 
 | 	  break; | 
 | #ifdef BFD64 | 
 | 	case 8: | 
 | 	  x = (x << shift) | bfd_get_64 (input_bfd, location); | 
 | 	  break; | 
 | #endif | 
 | 	default: | 
 | 	  abort (); | 
 | 	} | 
 |     } | 
 |   return x; | 
 | } | 
 |  | 
 | static void | 
 | decode_complex_addend (unsigned long *start,   /* in bits */ | 
 | 		       unsigned long *oplen,   /* in bits */ | 
 | 		       unsigned long *len,     /* in bits */ | 
 | 		       unsigned long *wordsz,  /* in bytes */ | 
 | 		       unsigned long *chunksz, /* in bytes */ | 
 | 		       unsigned long *lsb0_p, | 
 | 		       unsigned long *signed_p, | 
 | 		       unsigned long *trunc_p, | 
 | 		       unsigned long encoded) | 
 | { | 
 |   * start     =	 encoded	& 0x3F; | 
 |   * len	      = (encoded >>  6) & 0x3F; | 
 |   * oplen     = (encoded >> 12) & 0x3F; | 
 |   * wordsz    = (encoded >> 18) & 0xF; | 
 |   * chunksz   = (encoded >> 22) & 0xF; | 
 |   * lsb0_p    = (encoded >> 27) & 1; | 
 |   * signed_p  = (encoded >> 28) & 1; | 
 |   * trunc_p   = (encoded >> 29) & 1; | 
 | } | 
 |  | 
 | bfd_reloc_status_type | 
 | bfd_elf_perform_complex_relocation (bfd *input_bfd, | 
 | 				    asection *input_section, | 
 | 				    bfd_byte *contents, | 
 | 				    Elf_Internal_Rela *rel, | 
 | 				    bfd_vma relocation) | 
 | { | 
 |   bfd_vma shift, x, mask; | 
 |   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; | 
 |   bfd_reloc_status_type r; | 
 |   bfd_size_type octets; | 
 |  | 
 |   /*  Perform this reloc, since it is complex. | 
 |       (this is not to say that it necessarily refers to a complex | 
 |       symbol; merely that it is a self-describing CGEN based reloc. | 
 |       i.e. the addend has the complete reloc information (bit start, end, | 
 |       word size, etc) encoded within it.).  */ | 
 |  | 
 |   decode_complex_addend (&start, &oplen, &len, &wordsz, | 
 | 			 &chunksz, &lsb0_p, &signed_p, | 
 | 			 &trunc_p, rel->r_addend); | 
 |  | 
 |   mask = (((1L << (len - 1)) - 1) << 1) | 1; | 
 |  | 
 |   if (lsb0_p) | 
 |     shift = (start + 1) - len; | 
 |   else | 
 |     shift = (8 * wordsz) - (start + len); | 
 |  | 
 |   octets = rel->r_offset * bfd_octets_per_byte (input_bfd, input_section); | 
 |   x = get_value (wordsz, chunksz, input_bfd, contents + octets); | 
 |  | 
 | #ifdef DEBUG | 
 |   printf ("Doing complex reloc: " | 
 | 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " | 
 | 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n" | 
 | 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", | 
 | 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, | 
 | 	  oplen, (unsigned long) x, (unsigned long) mask, | 
 | 	  (unsigned long) relocation); | 
 | #endif | 
 |  | 
 |   r = bfd_reloc_ok; | 
 |   if (! trunc_p) | 
 |     /* Now do an overflow check.  */ | 
 |     r = bfd_check_overflow ((signed_p | 
 | 			     ? complain_overflow_signed | 
 | 			     : complain_overflow_unsigned), | 
 | 			    len, 0, (8 * wordsz), | 
 | 			    relocation); | 
 |  | 
 |   /* Do the deed.  */ | 
 |   x = (x & ~(mask << shift)) | ((relocation & mask) << shift); | 
 |  | 
 | #ifdef DEBUG | 
 |   printf ("           relocation: %8.8lx\n" | 
 | 	  "         shifted mask: %8.8lx\n" | 
 | 	  " shifted/masked reloc: %8.8lx\n" | 
 | 	  "               result: %8.8lx\n", | 
 | 	  (unsigned long) relocation, (unsigned long) (mask << shift), | 
 | 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x); | 
 | #endif | 
 |   put_value (wordsz, chunksz, input_bfd, x, contents + octets); | 
 |   return r; | 
 | } | 
 |  | 
 | /* Functions to read r_offset from external (target order) reloc | 
 |    entry.  Faster than bfd_getl32 et al, because we let the compiler | 
 |    know the value is aligned.  */ | 
 |  | 
 | static bfd_vma | 
 | ext32l_r_offset (const void *p) | 
 | { | 
 |   union aligned32 | 
 |   { | 
 |     uint32_t v; | 
 |     unsigned char c[4]; | 
 |   }; | 
 |   const union aligned32 *a | 
 |     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; | 
 |  | 
 |   uint32_t aval = (  (uint32_t) a->c[0] | 
 | 		   | (uint32_t) a->c[1] << 8 | 
 | 		   | (uint32_t) a->c[2] << 16 | 
 | 		   | (uint32_t) a->c[3] << 24); | 
 |   return aval; | 
 | } | 
 |  | 
 | static bfd_vma | 
 | ext32b_r_offset (const void *p) | 
 | { | 
 |   union aligned32 | 
 |   { | 
 |     uint32_t v; | 
 |     unsigned char c[4]; | 
 |   }; | 
 |   const union aligned32 *a | 
 |     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; | 
 |  | 
 |   uint32_t aval = (  (uint32_t) a->c[0] << 24 | 
 | 		   | (uint32_t) a->c[1] << 16 | 
 | 		   | (uint32_t) a->c[2] << 8 | 
 | 		   | (uint32_t) a->c[3]); | 
 |   return aval; | 
 | } | 
 |  | 
 | static bfd_vma | 
 | ext64l_r_offset (const void *p) | 
 | { | 
 |   union aligned64 | 
 |   { | 
 |     uint64_t v; | 
 |     unsigned char c[8]; | 
 |   }; | 
 |   const union aligned64 *a | 
 |     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; | 
 |  | 
 |   uint64_t aval = (  (uint64_t) a->c[0] | 
 | 		   | (uint64_t) a->c[1] << 8 | 
 | 		   | (uint64_t) a->c[2] << 16 | 
 | 		   | (uint64_t) a->c[3] << 24 | 
 | 		   | (uint64_t) a->c[4] << 32 | 
 | 		   | (uint64_t) a->c[5] << 40 | 
 | 		   | (uint64_t) a->c[6] << 48 | 
 | 		   | (uint64_t) a->c[7] << 56); | 
 |   return aval; | 
 | } | 
 |  | 
 | static bfd_vma | 
 | ext64b_r_offset (const void *p) | 
 | { | 
 |   union aligned64 | 
 |   { | 
 |     uint64_t v; | 
 |     unsigned char c[8]; | 
 |   }; | 
 |   const union aligned64 *a | 
 |     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; | 
 |  | 
 |   uint64_t aval = (  (uint64_t) a->c[0] << 56 | 
 | 		   | (uint64_t) a->c[1] << 48 | 
 | 		   | (uint64_t) a->c[2] << 40 | 
 | 		   | (uint64_t) a->c[3] << 32 | 
 | 		   | (uint64_t) a->c[4] << 24 | 
 | 		   | (uint64_t) a->c[5] << 16 | 
 | 		   | (uint64_t) a->c[6] << 8 | 
 | 		   | (uint64_t) a->c[7]); | 
 |   return aval; | 
 | } | 
 |  | 
 | /* When performing a relocatable link, the input relocations are | 
 |    preserved.  But, if they reference global symbols, the indices | 
 |    referenced must be updated.  Update all the relocations found in | 
 |    RELDATA.  */ | 
 |  | 
 | static bool | 
 | elf_link_adjust_relocs (bfd *abfd, | 
 | 			asection *sec, | 
 | 			struct bfd_elf_section_reloc_data *reldata, | 
 | 			bool sort, | 
 | 			struct bfd_link_info *info) | 
 | { | 
 |   unsigned int i; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   bfd_byte *erela; | 
 |   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | 
 |   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | 
 |   bfd_vma r_type_mask; | 
 |   int r_sym_shift; | 
 |   unsigned int count = reldata->count; | 
 |   struct elf_link_hash_entry **rel_hash = reldata->hashes; | 
 |  | 
 |   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) | 
 |     { | 
 |       swap_in = bed->s->swap_reloc_in; | 
 |       swap_out = bed->s->swap_reloc_out; | 
 |     } | 
 |   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) | 
 |     { | 
 |       swap_in = bed->s->swap_reloca_in; | 
 |       swap_out = bed->s->swap_reloca_out; | 
 |     } | 
 |   else | 
 |     abort (); | 
 |  | 
 |   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) | 
 |     abort (); | 
 |  | 
 |   if (bed->s->arch_size == 32) | 
 |     { | 
 |       r_type_mask = 0xff; | 
 |       r_sym_shift = 8; | 
 |     } | 
 |   else | 
 |     { | 
 |       r_type_mask = 0xffffffff; | 
 |       r_sym_shift = 32; | 
 |     } | 
 |  | 
 |   erela = reldata->hdr->contents; | 
 |   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) | 
 |     { | 
 |       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; | 
 |       unsigned int j; | 
 |  | 
 |       if (*rel_hash == NULL) | 
 | 	continue; | 
 |  | 
 |       if ((*rel_hash)->indx == -2 | 
 | 	  && info->gc_sections | 
 | 	  && ! info->gc_keep_exported) | 
 | 	{ | 
 | 	  /* PR 21524: Let the user know if a symbol was removed by garbage collection.  */ | 
 | 	  _bfd_error_handler (_("%pB:%pA: error: relocation references symbol %s which was removed by garbage collection"), | 
 | 			      abfd, sec, | 
 | 			      (*rel_hash)->root.root.string); | 
 | 	  _bfd_error_handler (_("%pB:%pA: error: try relinking with --gc-keep-exported enabled"), | 
 | 			      abfd, sec); | 
 | 	  bfd_set_error (bfd_error_invalid_operation); | 
 | 	  return false; | 
 | 	} | 
 |       BFD_ASSERT ((*rel_hash)->indx >= 0); | 
 |  | 
 |       (*swap_in) (abfd, erela, irela); | 
 |       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) | 
 | 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift | 
 | 			   | (irela[j].r_info & r_type_mask)); | 
 |       (*swap_out) (abfd, irela, erela); | 
 |     } | 
 |  | 
 |   if (bed->elf_backend_update_relocs) | 
 |     (*bed->elf_backend_update_relocs) (sec, reldata); | 
 |  | 
 |   if (sort && count != 0) | 
 |     { | 
 |       bfd_vma (*ext_r_off) (const void *); | 
 |       bfd_vma r_off; | 
 |       size_t elt_size; | 
 |       bfd_byte *base, *end, *p, *loc; | 
 |       bfd_byte *buf = NULL; | 
 |  | 
 |       if (bed->s->arch_size == 32) | 
 | 	{ | 
 | 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) | 
 | 	    ext_r_off = ext32l_r_offset; | 
 | 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) | 
 | 	    ext_r_off = ext32b_r_offset; | 
 | 	  else | 
 | 	    abort (); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) | 
 | 	    ext_r_off = ext64l_r_offset; | 
 | 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) | 
 | 	    ext_r_off = ext64b_r_offset; | 
 | 	  else | 
 | 	    abort (); | 
 | 	} | 
 |  | 
 |       /*  Must use a stable sort here.  A modified insertion sort, | 
 | 	  since the relocs are mostly sorted already.  */ | 
 |       elt_size = reldata->hdr->sh_entsize; | 
 |       base = reldata->hdr->contents; | 
 |       end = base + count * elt_size; | 
 |       if (elt_size > sizeof (Elf64_External_Rela)) | 
 | 	abort (); | 
 |  | 
 |       /* Ensure the first element is lowest.  This acts as a sentinel, | 
 | 	 speeding the main loop below.  */ | 
 |       r_off = (*ext_r_off) (base); | 
 |       for (p = loc = base; (p += elt_size) < end; ) | 
 | 	{ | 
 | 	  bfd_vma r_off2 = (*ext_r_off) (p); | 
 | 	  if (r_off > r_off2) | 
 | 	    { | 
 | 	      r_off = r_off2; | 
 | 	      loc = p; | 
 | 	    } | 
 | 	} | 
 |       if (loc != base) | 
 | 	{ | 
 | 	  /* Don't just swap *base and *loc as that changes the order | 
 | 	     of the original base[0] and base[1] if they happen to | 
 | 	     have the same r_offset.  */ | 
 | 	  bfd_byte onebuf[sizeof (Elf64_External_Rela)]; | 
 | 	  memcpy (onebuf, loc, elt_size); | 
 | 	  memmove (base + elt_size, base, loc - base); | 
 | 	  memcpy (base, onebuf, elt_size); | 
 | 	} | 
 |  | 
 |       for (p = base + elt_size; (p += elt_size) < end; ) | 
 | 	{ | 
 | 	  /* base to p is sorted, *p is next to insert.  */ | 
 | 	  r_off = (*ext_r_off) (p); | 
 | 	  /* Search the sorted region for location to insert.  */ | 
 | 	  loc = p - elt_size; | 
 | 	  while (r_off < (*ext_r_off) (loc)) | 
 | 	    loc -= elt_size; | 
 | 	  loc += elt_size; | 
 | 	  if (loc != p) | 
 | 	    { | 
 | 	      /* Chances are there is a run of relocs to insert here, | 
 | 		 from one of more input files.  Files are not always | 
 | 		 linked in order due to the way elf_link_input_bfd is | 
 | 		 called.  See pr17666.  */ | 
 | 	      size_t sortlen = p - loc; | 
 | 	      bfd_vma r_off2 = (*ext_r_off) (loc); | 
 | 	      size_t runlen = elt_size; | 
 | 	      bfd_vma r_off_runend = r_off; | 
 | 	      bfd_vma r_off_runend_next; | 
 | 	      size_t buf_size = 96 * 1024; | 
 | 	      while (p + runlen < end | 
 | 		     && (sortlen <= buf_size | 
 | 			 || runlen + elt_size <= buf_size) | 
 | 		     /* run must not break the ordering of base..loc+1 */ | 
 | 		     && r_off2 > (r_off_runend_next = (*ext_r_off) (p + runlen)) | 
 | 		     /* run must be already sorted */ | 
 | 		     && r_off_runend_next >= r_off_runend) | 
 | 		{ | 
 | 		  runlen += elt_size; | 
 | 		  r_off_runend = r_off_runend_next; | 
 | 		} | 
 | 	      if (buf == NULL) | 
 | 		{ | 
 | 		  buf = bfd_malloc (buf_size); | 
 | 		  if (buf == NULL) | 
 | 		    return false; | 
 | 		} | 
 | 	      if (runlen < sortlen) | 
 | 		{ | 
 | 		  memcpy (buf, p, runlen); | 
 | 		  memmove (loc + runlen, loc, sortlen); | 
 | 		  memcpy (loc, buf, runlen); | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  memcpy (buf, loc, sortlen); | 
 | 		  memmove (loc, p, runlen); | 
 | 		  memcpy (loc + runlen, buf, sortlen); | 
 | 		} | 
 | 	      p += runlen - elt_size; | 
 | 	    } | 
 | 	} | 
 |       /* Hashes are no longer valid.  */ | 
 |       free (reldata->hashes); | 
 |       reldata->hashes = NULL; | 
 |       free (buf); | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | struct elf_link_sort_rela | 
 | { | 
 |   union { | 
 |     bfd_vma offset; | 
 |     bfd_vma sym_mask; | 
 |   } u; | 
 |   enum elf_reloc_type_class type; | 
 |   /* We use this as an array of size int_rels_per_ext_rel.  */ | 
 |   Elf_Internal_Rela rela[1]; | 
 | }; | 
 |  | 
 | /* qsort stability here and for cmp2 is only an issue if multiple | 
 |    dynamic relocations are emitted at the same address.  But targets | 
 |    that apply a series of dynamic relocations each operating on the | 
 |    result of the prior relocation can't use -z combreloc as | 
 |    implemented anyway.  Such schemes tend to be broken by sorting on | 
 |    symbol index.  That leaves dynamic NONE relocs as the only other | 
 |    case where ld might emit multiple relocs at the same address, and | 
 |    those are only emitted due to target bugs.  */ | 
 |  | 
 | static int | 
 | elf_link_sort_cmp1 (const void *A, const void *B) | 
 | { | 
 |   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; | 
 |   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | 
 |   int relativea, relativeb; | 
 |  | 
 |   relativea = a->type == reloc_class_relative; | 
 |   relativeb = b->type == reloc_class_relative; | 
 |  | 
 |   if (relativea < relativeb) | 
 |     return 1; | 
 |   if (relativea > relativeb) | 
 |     return -1; | 
 |   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) | 
 |     return -1; | 
 |   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) | 
 |     return 1; | 
 |   if (a->rela->r_offset < b->rela->r_offset) | 
 |     return -1; | 
 |   if (a->rela->r_offset > b->rela->r_offset) | 
 |     return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | elf_link_sort_cmp2 (const void *A, const void *B) | 
 | { | 
 |   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; | 
 |   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; | 
 |  | 
 |   if (a->type < b->type) | 
 |     return -1; | 
 |   if (a->type > b->type) | 
 |     return 1; | 
 |   if (a->u.offset < b->u.offset) | 
 |     return -1; | 
 |   if (a->u.offset > b->u.offset) | 
 |     return 1; | 
 |   if (a->rela->r_offset < b->rela->r_offset) | 
 |     return -1; | 
 |   if (a->rela->r_offset > b->rela->r_offset) | 
 |     return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static size_t | 
 | elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) | 
 | { | 
 |   asection *dynamic_relocs; | 
 |   asection *rela_dyn; | 
 |   asection *rel_dyn; | 
 |   bfd_size_type count, size; | 
 |   size_t i, ret, sort_elt, ext_size; | 
 |   bfd_byte *sort, *s_non_relative, *p; | 
 |   struct elf_link_sort_rela *sq; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   int i2e = bed->s->int_rels_per_ext_rel; | 
 |   unsigned int opb = bfd_octets_per_byte (abfd, NULL); | 
 |   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); | 
 |   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); | 
 |   struct bfd_link_order *lo; | 
 |   bfd_vma r_sym_mask; | 
 |   bool use_rela; | 
 |  | 
 |   /* Find a dynamic reloc section.  */ | 
 |   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); | 
 |   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn"); | 
 |   if (rela_dyn != NULL && rela_dyn->size > 0 | 
 |       && rel_dyn != NULL && rel_dyn->size > 0) | 
 |     { | 
 |       bool use_rela_initialised = false; | 
 |  | 
 |       /* This is just here to stop gcc from complaining. | 
 | 	 Its initialization checking code is not perfect.  */ | 
 |       use_rela = true; | 
 |  | 
 |       /* Both sections are present.  Examine the sizes | 
 | 	 of the indirect sections to help us choose.  */ | 
 |       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) | 
 | 	if (lo->type == bfd_indirect_link_order) | 
 | 	  { | 
 | 	    asection *o = lo->u.indirect.section; | 
 |  | 
 | 	    if ((o->size % bed->s->sizeof_rela) == 0) | 
 | 	      { | 
 | 		if ((o->size % bed->s->sizeof_rel) == 0) | 
 | 		  /* Section size is divisible by both rel and rela sizes. | 
 | 		     It is of no help to us.  */ | 
 | 		  ; | 
 | 		else | 
 | 		  { | 
 | 		    /* Section size is only divisible by rela.  */ | 
 | 		    if (use_rela_initialised && !use_rela) | 
 | 		      { | 
 | 			_bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 					      "they are in more than one size"), | 
 | 					    abfd); | 
 | 			bfd_set_error (bfd_error_invalid_operation); | 
 | 			return 0; | 
 | 		      } | 
 | 		    else | 
 | 		      { | 
 | 			use_rela = true; | 
 | 			use_rela_initialised = true; | 
 | 		      } | 
 | 		  } | 
 | 	      } | 
 | 	    else if ((o->size % bed->s->sizeof_rel) == 0) | 
 | 	      { | 
 | 		/* Section size is only divisible by rel.  */ | 
 | 		if (use_rela_initialised && use_rela) | 
 | 		  { | 
 | 		    _bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 					  "they are in more than one size"), | 
 | 					abfd); | 
 | 		    bfd_set_error (bfd_error_invalid_operation); | 
 | 		    return 0; | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    use_rela = false; | 
 | 		    use_rela_initialised = true; | 
 | 		  } | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		/* The section size is not divisible by either - | 
 | 		   something is wrong.  */ | 
 | 		_bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 				      "they are of an unknown size"), abfd); | 
 | 		bfd_set_error (bfd_error_invalid_operation); | 
 | 		return 0; | 
 | 	      } | 
 | 	  } | 
 |  | 
 |       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) | 
 | 	if (lo->type == bfd_indirect_link_order) | 
 | 	  { | 
 | 	    asection *o = lo->u.indirect.section; | 
 |  | 
 | 	    if ((o->size % bed->s->sizeof_rela) == 0) | 
 | 	      { | 
 | 		if ((o->size % bed->s->sizeof_rel) == 0) | 
 | 		  /* Section size is divisible by both rel and rela sizes. | 
 | 		     It is of no help to us.  */ | 
 | 		  ; | 
 | 		else | 
 | 		  { | 
 | 		    /* Section size is only divisible by rela.  */ | 
 | 		    if (use_rela_initialised && !use_rela) | 
 | 		      { | 
 | 			_bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 					      "they are in more than one size"), | 
 | 					    abfd); | 
 | 			bfd_set_error (bfd_error_invalid_operation); | 
 | 			return 0; | 
 | 		      } | 
 | 		    else | 
 | 		      { | 
 | 			use_rela = true; | 
 | 			use_rela_initialised = true; | 
 | 		      } | 
 | 		  } | 
 | 	      } | 
 | 	    else if ((o->size % bed->s->sizeof_rel) == 0) | 
 | 	      { | 
 | 		/* Section size is only divisible by rel.  */ | 
 | 		if (use_rela_initialised && use_rela) | 
 | 		  { | 
 | 		    _bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 					  "they are in more than one size"), | 
 | 					abfd); | 
 | 		    bfd_set_error (bfd_error_invalid_operation); | 
 | 		    return 0; | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    use_rela = false; | 
 | 		    use_rela_initialised = true; | 
 | 		  } | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		/* The section size is not divisible by either - | 
 | 		   something is wrong.  */ | 
 | 		_bfd_error_handler (_("%pB: unable to sort relocs - " | 
 | 				      "they are of an unknown size"), abfd); | 
 | 		bfd_set_error (bfd_error_invalid_operation); | 
 | 		return 0; | 
 | 	      } | 
 | 	  } | 
 |  | 
 |       if (! use_rela_initialised) | 
 | 	/* Make a guess.  */ | 
 | 	use_rela = true; | 
 |     } | 
 |   else if (rela_dyn != NULL && rela_dyn->size > 0) | 
 |     use_rela = true; | 
 |   else if (rel_dyn != NULL && rel_dyn->size > 0) | 
 |     use_rela = false; | 
 |   else | 
 |     return 0; | 
 |  | 
 |   if (use_rela) | 
 |     { | 
 |       dynamic_relocs = rela_dyn; | 
 |       ext_size = bed->s->sizeof_rela; | 
 |       swap_in = bed->s->swap_reloca_in; | 
 |       swap_out = bed->s->swap_reloca_out; | 
 |     } | 
 |   else | 
 |     { | 
 |       dynamic_relocs = rel_dyn; | 
 |       ext_size = bed->s->sizeof_rel; | 
 |       swap_in = bed->s->swap_reloc_in; | 
 |       swap_out = bed->s->swap_reloc_out; | 
 |     } | 
 |  | 
 |   size = 0; | 
 |   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | 
 |     if (lo->type == bfd_indirect_link_order) | 
 |       size += lo->u.indirect.section->size; | 
 |  | 
 |   if (size != dynamic_relocs->size) | 
 |     return 0; | 
 |  | 
 |   sort_elt = (sizeof (struct elf_link_sort_rela) | 
 | 	      + (i2e - 1) * sizeof (Elf_Internal_Rela)); | 
 |  | 
 |   count = dynamic_relocs->size / ext_size; | 
 |   if (count == 0) | 
 |     return 0; | 
 |   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); | 
 |  | 
 |   if (sort == NULL) | 
 |     { | 
 |       (*info->callbacks->warning) | 
 | 	(info, _("not enough memory to sort relocations"), 0, abfd, 0, 0); | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (bed->s->arch_size == 32) | 
 |     r_sym_mask = ~(bfd_vma) 0xff; | 
 |   else | 
 |     r_sym_mask = ~(bfd_vma) 0xffffffff; | 
 |  | 
 |   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | 
 |     if (lo->type == bfd_indirect_link_order) | 
 |       { | 
 | 	bfd_byte *erel, *erelend; | 
 | 	asection *o = lo->u.indirect.section; | 
 |  | 
 | 	if (o->contents == NULL && o->size != 0) | 
 | 	  { | 
 | 	    /* This is a reloc section that is being handled as a normal | 
 | 	       section.  See bfd_section_from_shdr.  We can't combine | 
 | 	       relocs in this case.  */ | 
 | 	    free (sort); | 
 | 	    return 0; | 
 | 	  } | 
 | 	erel = o->contents; | 
 | 	erelend = o->contents + o->size; | 
 | 	p = sort + o->output_offset * opb / ext_size * sort_elt; | 
 |  | 
 | 	while (erel < erelend) | 
 | 	  { | 
 | 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | 
 |  | 
 | 	    (*swap_in) (abfd, erel, s->rela); | 
 | 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); | 
 | 	    s->u.sym_mask = r_sym_mask; | 
 | 	    p += sort_elt; | 
 | 	    erel += ext_size; | 
 | 	  } | 
 |       } | 
 |  | 
 |   qsort (sort, count, sort_elt, elf_link_sort_cmp1); | 
 |  | 
 |   for (i = 0, p = sort; i < count; i++, p += sort_elt) | 
 |     { | 
 |       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | 
 |       if (s->type != reloc_class_relative) | 
 | 	break; | 
 |     } | 
 |   ret = i; | 
 |   s_non_relative = p; | 
 |  | 
 |   sq = (struct elf_link_sort_rela *) s_non_relative; | 
 |   for (; i < count; i++, p += sort_elt) | 
 |     { | 
 |       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; | 
 |       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) | 
 | 	sq = sp; | 
 |       sp->u.offset = sq->rela->r_offset; | 
 |     } | 
 |  | 
 |   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); | 
 |  | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |   if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) | 
 |     { | 
 |       /* We have plt relocs in .rela.dyn.  */ | 
 |       sq = (struct elf_link_sort_rela *) sort; | 
 |       for (i = 0; i < count; i++) | 
 | 	if (sq[count - i - 1].type != reloc_class_plt) | 
 | 	  break; | 
 |       if (i != 0 && htab->srelplt->size == i * ext_size) | 
 | 	{ | 
 | 	  struct bfd_link_order **plo; | 
 | 	  /* Put srelplt link_order last.  This is so the output_offset | 
 | 	     set in the next loop is correct for DT_JMPREL.  */ | 
 | 	  for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) | 
 | 	    if ((*plo)->type == bfd_indirect_link_order | 
 | 		&& (*plo)->u.indirect.section == htab->srelplt) | 
 | 	      { | 
 | 		lo = *plo; | 
 | 		*plo = lo->next; | 
 | 	      } | 
 | 	    else | 
 | 	      plo = &(*plo)->next; | 
 | 	  *plo = lo; | 
 | 	  lo->next = NULL; | 
 | 	  dynamic_relocs->map_tail.link_order = lo; | 
 | 	} | 
 |     } | 
 |  | 
 |   p = sort; | 
 |   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) | 
 |     if (lo->type == bfd_indirect_link_order) | 
 |       { | 
 | 	bfd_byte *erel, *erelend; | 
 | 	asection *o = lo->u.indirect.section; | 
 |  | 
 | 	erel = o->contents; | 
 | 	erelend = o->contents + o->size; | 
 | 	o->output_offset = (p - sort) / sort_elt * ext_size / opb; | 
 | 	while (erel < erelend) | 
 | 	  { | 
 | 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; | 
 | 	    (*swap_out) (abfd, s->rela, erel); | 
 | 	    p += sort_elt; | 
 | 	    erel += ext_size; | 
 | 	  } | 
 |       } | 
 |  | 
 |   free (sort); | 
 |   *psec = dynamic_relocs; | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Add a symbol to the output symbol string table.  */ | 
 |  | 
 | static int | 
 | elf_link_output_symstrtab (void *finf, | 
 | 			   const char *name, | 
 | 			   Elf_Internal_Sym *elfsym, | 
 | 			   asection *input_sec, | 
 | 			   struct elf_link_hash_entry *h) | 
 | { | 
 |   struct elf_final_link_info *flinfo = finf; | 
 |   int (*output_symbol_hook) | 
 |     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, | 
 |      struct elf_link_hash_entry *); | 
 |   struct elf_link_hash_table *hash_table; | 
 |   const struct elf_backend_data *bed; | 
 |   bfd_size_type strtabsize; | 
 |  | 
 |   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); | 
 |  | 
 |   bed = get_elf_backend_data (flinfo->output_bfd); | 
 |   output_symbol_hook = bed->elf_backend_link_output_symbol_hook; | 
 |   if (output_symbol_hook != NULL) | 
 |     { | 
 |       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); | 
 |       if (ret != 1) | 
 | 	return ret; | 
 |     } | 
 |  | 
 |   if (ELF_ST_TYPE (elfsym->st_info) == STT_GNU_IFUNC) | 
 |     elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_ifunc; | 
 |   if (ELF_ST_BIND (elfsym->st_info) == STB_GNU_UNIQUE) | 
 |     elf_tdata (flinfo->output_bfd)->has_gnu_osabi |= elf_gnu_osabi_unique; | 
 |  | 
 |   if (name == NULL | 
 |       || *name == '\0' | 
 |       || (!bfd_link_relocatable (flinfo->info) | 
 | 	  && (input_sec->flags & SEC_EXCLUDE))) | 
 |     elfsym->st_name = (unsigned long) -1; | 
 |   else | 
 |     { | 
 |       /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize | 
 | 	 to get the final offset for st_name.  */ | 
 |       char *versioned_name = (char *) name; | 
 |       if (h != NULL) | 
 | 	{ | 
 | 	  if (h->versioned == versioned && h->def_dynamic) | 
 | 	    { | 
 | 	      /* Keep only one '@' for versioned symbols defined in | 
 | 	         shared objects.  */ | 
 | 	      char *version = strrchr (name, ELF_VER_CHR); | 
 | 	      char *base_end = strchr (name, ELF_VER_CHR); | 
 | 	      if (version != base_end) | 
 | 		{ | 
 | 		  size_t base_len; | 
 | 		  size_t len = strlen (name); | 
 | 		  versioned_name = bfd_alloc (flinfo->output_bfd, len); | 
 | 		  if (versioned_name == NULL) | 
 | 		    return 0; | 
 | 		  base_len = base_end - name; | 
 | 		  memcpy (versioned_name, name, base_len); | 
 | 		  memcpy (versioned_name + base_len, version, | 
 | 			  len - base_len); | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |       else if (flinfo->info->unique_symbol | 
 | 	       && ELF_ST_BIND (elfsym->st_info) == STB_LOCAL) | 
 | 	{ | 
 | 	  struct local_hash_entry *lh; | 
 | 	  size_t count_len; | 
 | 	  size_t base_len; | 
 | 	  char buf[30]; | 
 | 	  switch (ELF_ST_TYPE (elfsym->st_info)) | 
 | 	    { | 
 | 	    case STT_FILE: | 
 | 	    case STT_SECTION: | 
 | 	      break; | 
 | 	    default: | 
 | 	      lh = (struct local_hash_entry *) bfd_hash_lookup | 
 | 		     (&flinfo->local_hash_table, name, true, false); | 
 | 	      if (lh == NULL) | 
 | 		return 0; | 
 | 	      /* Always append ".COUNT" to local symbols to avoid | 
 | 		 potential conflicts with local symbol "XXX.COUNT".  */ | 
 | 	      sprintf (buf, "%lx", lh->count); | 
 | 	      base_len = lh->size; | 
 | 	      if (!base_len) | 
 | 		{ | 
 | 		  base_len = strlen (name); | 
 | 		  lh->size = base_len; | 
 | 		} | 
 | 	      count_len = strlen (buf); | 
 | 	      versioned_name = bfd_alloc (flinfo->output_bfd, | 
 | 					  base_len + count_len + 2); | 
 | 	      if (versioned_name == NULL) | 
 | 		return 0; | 
 | 	      memcpy (versioned_name, name, base_len); | 
 | 	      versioned_name[base_len] = '.'; | 
 | 	      memcpy (versioned_name + base_len + 1, buf, | 
 | 		      count_len + 1); | 
 | 	      lh->count++; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |       elfsym->st_name | 
 | 	= (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, | 
 | 					       versioned_name, false); | 
 |       if (elfsym->st_name == (unsigned long) -1) | 
 | 	return 0; | 
 |     } | 
 |  | 
 |   hash_table = elf_hash_table (flinfo->info); | 
 |   strtabsize = hash_table->strtabsize; | 
 |   if (strtabsize <= flinfo->output_bfd->symcount) | 
 |     { | 
 |       strtabsize += strtabsize; | 
 |       hash_table->strtabsize = strtabsize; | 
 |       strtabsize *= sizeof (*hash_table->strtab); | 
 |       hash_table->strtab | 
 | 	= (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, | 
 | 						 strtabsize); | 
 |       if (hash_table->strtab == NULL) | 
 | 	return 0; | 
 |     } | 
 |   hash_table->strtab[flinfo->output_bfd->symcount].sym = *elfsym; | 
 |   hash_table->strtab[flinfo->output_bfd->symcount].dest_index | 
 |     = flinfo->output_bfd->symcount; | 
 |   flinfo->output_bfd->symcount += 1; | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | /* Swap symbols out to the symbol table and flush the output symbols to | 
 |    the file.  */ | 
 |  | 
 | static bool | 
 | elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) | 
 | { | 
 |   struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); | 
 |   size_t amt; | 
 |   size_t i; | 
 |   const struct elf_backend_data *bed; | 
 |   bfd_byte *symbuf; | 
 |   Elf_Internal_Shdr *hdr; | 
 |   file_ptr pos; | 
 |   bool ret; | 
 |  | 
 |   if (flinfo->output_bfd->symcount == 0) | 
 |     return true; | 
 |  | 
 |   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); | 
 |  | 
 |   bed = get_elf_backend_data (flinfo->output_bfd); | 
 |  | 
 |   amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; | 
 |   symbuf = (bfd_byte *) bfd_malloc (amt); | 
 |   if (symbuf == NULL) | 
 |     return false; | 
 |  | 
 |   if (flinfo->symshndxbuf) | 
 |     { | 
 |       amt = sizeof (Elf_External_Sym_Shndx); | 
 |       amt *= bfd_get_symcount (flinfo->output_bfd); | 
 |       flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); | 
 |       if (flinfo->symshndxbuf == NULL) | 
 | 	{ | 
 | 	  free (symbuf); | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Now swap out the symbols.  */ | 
 |   for (i = 0; i < flinfo->output_bfd->symcount; i++) | 
 |     { | 
 |       struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; | 
 |       if (elfsym->sym.st_name == (unsigned long) -1) | 
 | 	elfsym->sym.st_name = 0; | 
 |       else | 
 | 	elfsym->sym.st_name | 
 | 	  = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, | 
 | 						    elfsym->sym.st_name); | 
 |  | 
 |       /* Inform the linker of the addition of this symbol.  */ | 
 |  | 
 |       if (flinfo->info->callbacks->ctf_new_symbol) | 
 | 	flinfo->info->callbacks->ctf_new_symbol (elfsym->dest_index, | 
 | 						 &elfsym->sym); | 
 |  | 
 |       bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, | 
 | 			       ((bfd_byte *) symbuf | 
 | 				+ (elfsym->dest_index | 
 | 				   * bed->s->sizeof_sym)), | 
 | 			       NPTR_ADD (flinfo->symshndxbuf, | 
 | 					 elfsym->dest_index)); | 
 |     } | 
 |  | 
 |   hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; | 
 |   pos = hdr->sh_offset + hdr->sh_size; | 
 |   amt = bed->s->sizeof_sym * flinfo->output_bfd->symcount; | 
 |   if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 | 
 |       && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) | 
 |     { | 
 |       hdr->sh_size += amt; | 
 |       ret = true; | 
 |     } | 
 |   else | 
 |     ret = false; | 
 |  | 
 |   free (symbuf); | 
 |  | 
 |   free (hash_table->strtab); | 
 |   hash_table->strtab = NULL; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */ | 
 |  | 
 | static bool | 
 | check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) | 
 | { | 
 |   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) | 
 |       && sym->st_shndx < SHN_LORESERVE) | 
 |     { | 
 |       /* The gABI doesn't support dynamic symbols in output sections | 
 | 	 beyond 64k.  */ | 
 |       _bfd_error_handler | 
 | 	/* xgettext:c-format */ | 
 | 	(_("%pB: too many sections: %d (>= %d)"), | 
 | 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); | 
 |       bfd_set_error (bfd_error_nonrepresentable_section); | 
 |       return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in | 
 |    allowing an unsatisfied unversioned symbol in the DSO to match a | 
 |    versioned symbol that would normally require an explicit version. | 
 |    We also handle the case that a DSO references a hidden symbol | 
 |    which may be satisfied by a versioned symbol in another DSO.  */ | 
 |  | 
 | static bool | 
 | elf_link_check_versioned_symbol (struct bfd_link_info *info, | 
 | 				 const struct elf_backend_data *bed, | 
 | 				 struct elf_link_hash_entry *h) | 
 | { | 
 |   bfd *abfd; | 
 |   struct elf_link_loaded_list *loaded; | 
 |  | 
 |   if (!is_elf_hash_table (info->hash)) | 
 |     return false; | 
 |  | 
 |   /* Check indirect symbol.  */ | 
 |   while (h->root.type == bfd_link_hash_indirect) | 
 |     h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |   switch (h->root.type) | 
 |     { | 
 |     default: | 
 |       abfd = NULL; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_undefined: | 
 |     case bfd_link_hash_undefweak: | 
 |       abfd = h->root.u.undef.abfd; | 
 |       if (abfd == NULL | 
 | 	  || (abfd->flags & DYNAMIC) == 0 | 
 | 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) | 
 | 	return false; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_defined: | 
 |     case bfd_link_hash_defweak: | 
 |       abfd = h->root.u.def.section->owner; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_common: | 
 |       abfd = h->root.u.c.p->section->owner; | 
 |       break; | 
 |     } | 
 |   BFD_ASSERT (abfd != NULL); | 
 |  | 
 |   for (loaded = elf_hash_table (info)->dyn_loaded; | 
 |        loaded != NULL; | 
 |        loaded = loaded->next) | 
 |     { | 
 |       bfd *input; | 
 |       Elf_Internal_Shdr *hdr; | 
 |       size_t symcount; | 
 |       size_t extsymcount; | 
 |       size_t extsymoff; | 
 |       Elf_Internal_Shdr *versymhdr; | 
 |       Elf_Internal_Sym *isym; | 
 |       Elf_Internal_Sym *isymend; | 
 |       Elf_Internal_Sym *isymbuf; | 
 |       Elf_External_Versym *ever; | 
 |       Elf_External_Versym *extversym; | 
 |  | 
 |       input = loaded->abfd; | 
 |  | 
 |       /* We check each DSO for a possible hidden versioned definition.  */ | 
 |       if (input == abfd | 
 | 	  || elf_dynversym (input) == 0) | 
 | 	continue; | 
 |  | 
 |       hdr = &elf_tdata (input)->dynsymtab_hdr; | 
 |  | 
 |       symcount = hdr->sh_size / bed->s->sizeof_sym; | 
 |       if (elf_bad_symtab (input)) | 
 | 	{ | 
 | 	  extsymcount = symcount; | 
 | 	  extsymoff = 0; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  extsymcount = symcount - hdr->sh_info; | 
 | 	  extsymoff = hdr->sh_info; | 
 | 	} | 
 |  | 
 |       if (extsymcount == 0) | 
 | 	continue; | 
 |  | 
 |       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, | 
 | 				      NULL, NULL, NULL); | 
 |       if (isymbuf == NULL) | 
 | 	return false; | 
 |  | 
 |       /* Read in any version definitions.  */ | 
 |       versymhdr = &elf_tdata (input)->dynversym_hdr; | 
 |       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 | 
 | 	  || (extversym = (Elf_External_Versym *) | 
 | 	      _bfd_malloc_and_read (input, versymhdr->sh_size, | 
 | 				    versymhdr->sh_size)) == NULL) | 
 | 	{ | 
 | 	  free (isymbuf); | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       ever = extversym + extsymoff; | 
 |       isymend = isymbuf + extsymcount; | 
 |       for (isym = isymbuf; isym < isymend; isym++, ever++) | 
 | 	{ | 
 | 	  const char *name; | 
 | 	  Elf_Internal_Versym iver; | 
 | 	  unsigned short version_index; | 
 |  | 
 | 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL | 
 | 	      || isym->st_shndx == SHN_UNDEF) | 
 | 	    continue; | 
 |  | 
 | 	  name = bfd_elf_string_from_elf_section (input, | 
 | 						  hdr->sh_link, | 
 | 						  isym->st_name); | 
 | 	  if (strcmp (name, h->root.root.string) != 0) | 
 | 	    continue; | 
 |  | 
 | 	  _bfd_elf_swap_versym_in (input, ever, &iver); | 
 |  | 
 | 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0 | 
 | 	      && !(h->def_regular | 
 | 		   && h->forced_local)) | 
 | 	    { | 
 | 	      /* If we have a non-hidden versioned sym, then it should | 
 | 		 have provided a definition for the undefined sym unless | 
 | 		 it is defined in a non-shared object and forced local. | 
 | 	       */ | 
 | 	      abort (); | 
 | 	    } | 
 |  | 
 | 	  version_index = iver.vs_vers & VERSYM_VERSION; | 
 | 	  if (version_index == 1 || version_index == 2) | 
 | 	    { | 
 | 	      /* This is the base or first version.  We can use it.  */ | 
 | 	      free (extversym); | 
 | 	      free (isymbuf); | 
 | 	      return true; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       free (extversym); | 
 |       free (isymbuf); | 
 |     } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Convert ELF common symbol TYPE.  */ | 
 |  | 
 | static int | 
 | elf_link_convert_common_type (struct bfd_link_info *info, int type) | 
 | { | 
 |   /* Commom symbol can only appear in relocatable link.  */ | 
 |   if (!bfd_link_relocatable (info)) | 
 |     abort (); | 
 |   switch (info->elf_stt_common) | 
 |     { | 
 |     case unchanged: | 
 |       break; | 
 |     case elf_stt_common: | 
 |       type = STT_COMMON; | 
 |       break; | 
 |     case no_elf_stt_common: | 
 |       type = STT_OBJECT; | 
 |       break; | 
 |     } | 
 |   return type; | 
 | } | 
 |  | 
 | /* Add an external symbol to the symbol table.  This is called from | 
 |    the hash table traversal routine.  When generating a shared object, | 
 |    we go through the symbol table twice.  The first time we output | 
 |    anything that might have been forced to local scope in a version | 
 |    script.  The second time we output the symbols that are still | 
 |    global symbols.  */ | 
 |  | 
 | static bool | 
 | elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) | 
 | { | 
 |   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; | 
 |   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; | 
 |   struct elf_final_link_info *flinfo = eoinfo->flinfo; | 
 |   bool strip; | 
 |   Elf_Internal_Sym sym; | 
 |   asection *input_sec; | 
 |   const struct elf_backend_data *bed; | 
 |   long indx; | 
 |   int ret; | 
 |   unsigned int type; | 
 |  | 
 |   if (h->root.type == bfd_link_hash_warning) | 
 |     { | 
 |       h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |       if (h->root.type == bfd_link_hash_new) | 
 | 	return true; | 
 |     } | 
 |  | 
 |   /* Decide whether to output this symbol in this pass.  */ | 
 |   if (eoinfo->localsyms) | 
 |     { | 
 |       if (!h->forced_local) | 
 | 	return true; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (h->forced_local) | 
 | 	return true; | 
 |     } | 
 |  | 
 |   bed = get_elf_backend_data (flinfo->output_bfd); | 
 |  | 
 |   if (h->root.type == bfd_link_hash_undefined) | 
 |     { | 
 |       /* If we have an undefined symbol reference here then it must have | 
 | 	 come from a shared library that is being linked in.  (Undefined | 
 | 	 references in regular files have already been handled unless | 
 | 	 they are in unreferenced sections which are removed by garbage | 
 | 	 collection).  */ | 
 |       bool ignore_undef = false; | 
 |  | 
 |       /* Some symbols may be special in that the fact that they're | 
 | 	 undefined can be safely ignored - let backend determine that.  */ | 
 |       if (bed->elf_backend_ignore_undef_symbol) | 
 | 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h); | 
 |  | 
 |       /* If we are reporting errors for this situation then do so now.  */ | 
 |       if (!ignore_undef | 
 | 	  && h->ref_dynamic_nonweak | 
 | 	  && (!h->ref_regular || flinfo->info->gc_sections) | 
 | 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h) | 
 | 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) | 
 | 	{ | 
 | 	  flinfo->info->callbacks->undefined_symbol | 
 | 	    (flinfo->info, h->root.root.string, | 
 | 	     h->ref_regular ? NULL : h->root.u.undef.abfd, NULL, 0, | 
 | 	     flinfo->info->unresolved_syms_in_shared_libs == RM_DIAGNOSE | 
 | 	     && !flinfo->info->warn_unresolved_syms); | 
 | 	} | 
 |  | 
 |       /* Strip a global symbol defined in a discarded section.  */ | 
 |       if (h->indx == -3) | 
 | 	return true; | 
 |     } | 
 |  | 
 |   /* We should also warn if a forced local symbol is referenced from | 
 |      shared libraries.  */ | 
 |   if (bfd_link_executable (flinfo->info) | 
 |       && h->forced_local | 
 |       && h->ref_dynamic | 
 |       && h->def_regular | 
 |       && !h->dynamic_def | 
 |       && h->ref_dynamic_nonweak | 
 |       && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) | 
 |     { | 
 |       bfd *def_bfd; | 
 |       const char *msg; | 
 |       struct elf_link_hash_entry *hi = h; | 
 |  | 
 |       /* Check indirect symbol.  */ | 
 |       while (hi->root.type == bfd_link_hash_indirect) | 
 | 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link; | 
 |  | 
 |       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: internal symbol `%s' in %pB is referenced by DSO"); | 
 |       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: hidden symbol `%s' in %pB is referenced by DSO"); | 
 |       else | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: local symbol `%s' in %pB is referenced by DSO"); | 
 |       def_bfd = flinfo->output_bfd; | 
 |       if (hi->root.u.def.section != bfd_abs_section_ptr) | 
 | 	def_bfd = hi->root.u.def.section->owner; | 
 |       _bfd_error_handler (msg, flinfo->output_bfd, | 
 | 			  h->root.root.string, def_bfd); | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       eoinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* We don't want to output symbols that have never been mentioned by | 
 |      a regular file, or that we have been told to strip.  However, if | 
 |      h->indx is set to -2, the symbol is used by a reloc and we must | 
 |      output it.  */ | 
 |   strip = false; | 
 |   if (h->indx == -2) | 
 |     ; | 
 |   else if ((h->def_dynamic | 
 | 	    || h->ref_dynamic | 
 | 	    || h->root.type == bfd_link_hash_new) | 
 | 	   && !h->def_regular | 
 | 	   && !h->ref_regular) | 
 |     strip = true; | 
 |   else if (flinfo->info->strip == strip_all) | 
 |     strip = true; | 
 |   else if (flinfo->info->strip == strip_some | 
 | 	   && bfd_hash_lookup (flinfo->info->keep_hash, | 
 | 			       h->root.root.string, false, false) == NULL) | 
 |     strip = true; | 
 |   else if ((h->root.type == bfd_link_hash_defined | 
 | 	    || h->root.type == bfd_link_hash_defweak) | 
 | 	   && ((flinfo->info->strip_discarded | 
 | 		&& discarded_section (h->root.u.def.section)) | 
 | 	       || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 | 
 | 		   && h->root.u.def.section->owner != NULL | 
 | 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) | 
 |     strip = true; | 
 |   else if ((h->root.type == bfd_link_hash_undefined | 
 | 	    || h->root.type == bfd_link_hash_undefweak) | 
 | 	   && h->root.u.undef.abfd != NULL | 
 | 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) | 
 |     strip = true; | 
 |  | 
 |   type = h->type; | 
 |  | 
 |   /* If we're stripping it, and it's not a dynamic symbol, there's | 
 |      nothing else to do.   However, if it is a forced local symbol or | 
 |      an ifunc symbol we need to give the backend finish_dynamic_symbol | 
 |      function a chance to make it dynamic.  */ | 
 |   if (strip | 
 |       && h->dynindx == -1 | 
 |       && type != STT_GNU_IFUNC | 
 |       && !h->forced_local) | 
 |     return true; | 
 |  | 
 |   sym.st_value = 0; | 
 |   sym.st_size = h->size; | 
 |   sym.st_other = h->other; | 
 |   switch (h->root.type) | 
 |     { | 
 |     default: | 
 |     case bfd_link_hash_new: | 
 |     case bfd_link_hash_warning: | 
 |       abort (); | 
 |       return false; | 
 |  | 
 |     case bfd_link_hash_undefined: | 
 |     case bfd_link_hash_undefweak: | 
 |       input_sec = bfd_und_section_ptr; | 
 |       sym.st_shndx = SHN_UNDEF; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_defined: | 
 |     case bfd_link_hash_defweak: | 
 |       { | 
 | 	input_sec = h->root.u.def.section; | 
 | 	if (input_sec->output_section != NULL) | 
 | 	  { | 
 | 	    sym.st_shndx = | 
 | 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd, | 
 | 						 input_sec->output_section); | 
 | 	    if (sym.st_shndx == SHN_BAD) | 
 | 	      { | 
 | 		_bfd_error_handler | 
 | 		  /* xgettext:c-format */ | 
 | 		  (_("%pB: could not find output section %pA for input section %pA"), | 
 | 		   flinfo->output_bfd, input_sec->output_section, input_sec); | 
 | 		bfd_set_error (bfd_error_nonrepresentable_section); | 
 | 		eoinfo->failed = true; | 
 | 		return false; | 
 | 	      } | 
 |  | 
 | 	    /* ELF symbols in relocatable files are section relative, | 
 | 	       but in nonrelocatable files they are virtual | 
 | 	       addresses.  */ | 
 | 	    sym.st_value = h->root.u.def.value + input_sec->output_offset; | 
 | 	    if (!bfd_link_relocatable (flinfo->info)) | 
 | 	      { | 
 | 		sym.st_value += input_sec->output_section->vma; | 
 | 		if (h->type == STT_TLS) | 
 | 		  { | 
 | 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; | 
 | 		    if (tls_sec != NULL) | 
 | 		      sym.st_value -= tls_sec->vma; | 
 | 		  } | 
 | 	      } | 
 | 	  } | 
 | 	else | 
 | 	  { | 
 | 	    BFD_ASSERT (input_sec->owner == NULL | 
 | 			|| (input_sec->owner->flags & DYNAMIC) != 0); | 
 | 	    sym.st_shndx = SHN_UNDEF; | 
 | 	    input_sec = bfd_und_section_ptr; | 
 | 	  } | 
 |       } | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_common: | 
 |       input_sec = h->root.u.c.p->section; | 
 |       sym.st_shndx = bed->common_section_index (input_sec); | 
 |       sym.st_value = 1 << h->root.u.c.p->alignment_power; | 
 |       break; | 
 |  | 
 |     case bfd_link_hash_indirect: | 
 |       /* These symbols are created by symbol versioning.  They point | 
 | 	 to the decorated version of the name.  For example, if the | 
 | 	 symbol foo@@GNU_1.2 is the default, which should be used when | 
 | 	 foo is used with no version, then we add an indirect symbol | 
 | 	 foo which points to foo@@GNU_1.2.  We ignore these symbols, | 
 | 	 since the indirected symbol is already in the hash table.  */ | 
 |       return true; | 
 |     } | 
 |  | 
 |   if (type == STT_COMMON || type == STT_OBJECT) | 
 |     switch (h->root.type) | 
 |       { | 
 |       case bfd_link_hash_common: | 
 | 	type = elf_link_convert_common_type (flinfo->info, type); | 
 | 	break; | 
 |       case bfd_link_hash_defined: | 
 |       case bfd_link_hash_defweak: | 
 | 	if (bed->common_definition (&sym)) | 
 | 	  type = elf_link_convert_common_type (flinfo->info, type); | 
 | 	else | 
 | 	  type = STT_OBJECT; | 
 | 	break; | 
 |       case bfd_link_hash_undefined: | 
 |       case bfd_link_hash_undefweak: | 
 | 	break; | 
 |       default: | 
 | 	abort (); | 
 |       } | 
 |  | 
 |   if (h->forced_local) | 
 |     { | 
 |       sym.st_info = ELF_ST_INFO (STB_LOCAL, type); | 
 |       /* Turn off visibility on local symbol.  */ | 
 |       sym.st_other &= ~ELF_ST_VISIBILITY (-1); | 
 |     } | 
 |   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */ | 
 |   else if (h->unique_global && h->def_regular) | 
 |     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); | 
 |   else if (h->root.type == bfd_link_hash_undefweak | 
 | 	   || h->root.type == bfd_link_hash_defweak) | 
 |     sym.st_info = ELF_ST_INFO (STB_WEAK, type); | 
 |   else | 
 |     sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); | 
 |   sym.st_target_internal = h->target_internal; | 
 |  | 
 |   /* Give the processor backend a chance to tweak the symbol value, | 
 |      and also to finish up anything that needs to be done for this | 
 |      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for | 
 |      forced local syms when non-shared is due to a historical quirk. | 
 |      STT_GNU_IFUNC symbol must go through PLT.  */ | 
 |   if ((h->type == STT_GNU_IFUNC | 
 |        && h->def_regular | 
 |        && !bfd_link_relocatable (flinfo->info)) | 
 |       || ((h->dynindx != -1 | 
 | 	   || h->forced_local) | 
 | 	  && ((bfd_link_pic (flinfo->info) | 
 | 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT | 
 | 		   || h->root.type != bfd_link_hash_undefweak)) | 
 | 	      || !h->forced_local) | 
 | 	  && elf_hash_table (flinfo->info)->dynamic_sections_created)) | 
 |     { | 
 |       if (! ((*bed->elf_backend_finish_dynamic_symbol) | 
 | 	     (flinfo->output_bfd, flinfo->info, h, &sym))) | 
 | 	{ | 
 | 	  eoinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we are marking the symbol as undefined, and there are no | 
 |      non-weak references to this symbol from a regular object, then | 
 |      mark the symbol as weak undefined; if there are non-weak | 
 |      references, mark the symbol as strong.  We can't do this earlier, | 
 |      because it might not be marked as undefined until the | 
 |      finish_dynamic_symbol routine gets through with it.  */ | 
 |   if (sym.st_shndx == SHN_UNDEF | 
 |       && h->ref_regular | 
 |       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL | 
 | 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK)) | 
 |     { | 
 |       int bindtype; | 
 |       type = ELF_ST_TYPE (sym.st_info); | 
 |  | 
 |       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ | 
 |       if (type == STT_GNU_IFUNC) | 
 | 	type = STT_FUNC; | 
 |  | 
 |       if (h->ref_regular_nonweak) | 
 | 	bindtype = STB_GLOBAL; | 
 |       else | 
 | 	bindtype = STB_WEAK; | 
 |       sym.st_info = ELF_ST_INFO (bindtype, type); | 
 |     } | 
 |  | 
 |   /* If this is a symbol defined in a dynamic library, don't use the | 
 |      symbol size from the dynamic library.  Relinking an executable | 
 |      against a new library may introduce gratuitous changes in the | 
 |      executable's symbols if we keep the size.  */ | 
 |   if (sym.st_shndx == SHN_UNDEF | 
 |       && !h->def_regular | 
 |       && h->def_dynamic) | 
 |     sym.st_size = 0; | 
 |  | 
 |   /* If a non-weak symbol with non-default visibility is not defined | 
 |      locally, it is a fatal error.  */ | 
 |   if (!bfd_link_relocatable (flinfo->info) | 
 |       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT | 
 |       && ELF_ST_BIND (sym.st_info) != STB_WEAK | 
 |       && h->root.type == bfd_link_hash_undefined | 
 |       && !h->def_regular) | 
 |     { | 
 |       const char *msg; | 
 |  | 
 |       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: protected symbol `%s' isn't defined"); | 
 |       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: internal symbol `%s' isn't defined"); | 
 |       else | 
 | 	/* xgettext:c-format */ | 
 | 	msg = _("%pB: hidden symbol `%s' isn't defined"); | 
 |       _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       eoinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |  | 
 |   /* If this symbol should be put in the .dynsym section, then put it | 
 |      there now.  We already know the symbol index.  We also fill in | 
 |      the entry in the .hash section.  */ | 
 |   if (h->dynindx != -1 | 
 |       && elf_hash_table (flinfo->info)->dynamic_sections_created | 
 |       && elf_hash_table (flinfo->info)->dynsym != NULL | 
 |       && !discarded_section (elf_hash_table (flinfo->info)->dynsym)) | 
 |     { | 
 |       bfd_byte *esym; | 
 |  | 
 |       /* Since there is no version information in the dynamic string, | 
 | 	 if there is no version info in symbol version section, we will | 
 | 	 have a run-time problem if not linking executable, referenced | 
 | 	 by shared library, or not bound locally.  */ | 
 |       if (h->verinfo.verdef == NULL | 
 | 	  && (!bfd_link_executable (flinfo->info) | 
 | 	      || h->ref_dynamic | 
 | 	      || !h->def_regular)) | 
 | 	{ | 
 | 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR); | 
 |  | 
 | 	  if (p && p [1] != '\0') | 
 | 	    { | 
 | 	      _bfd_error_handler | 
 | 		/* xgettext:c-format */ | 
 | 		(_("%pB: no symbol version section for versioned symbol `%s'"), | 
 | 		 flinfo->output_bfd, h->root.root.string); | 
 | 	      eoinfo->failed = true; | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       sym.st_name = h->dynstr_index; | 
 |       esym = (elf_hash_table (flinfo->info)->dynsym->contents | 
 | 	      + h->dynindx * bed->s->sizeof_sym); | 
 |       if (!check_dynsym (flinfo->output_bfd, &sym)) | 
 | 	{ | 
 | 	  eoinfo->failed = true; | 
 | 	  return false; | 
 | 	} | 
 |  | 
 |       /* Inform the linker of the addition of this symbol.  */ | 
 |  | 
 |       if (flinfo->info->callbacks->ctf_new_dynsym) | 
 | 	flinfo->info->callbacks->ctf_new_dynsym (h->dynindx, &sym); | 
 |  | 
 |       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); | 
 |  | 
 |       if (flinfo->hash_sec != NULL) | 
 | 	{ | 
 | 	  size_t hash_entry_size; | 
 | 	  bfd_byte *bucketpos; | 
 | 	  bfd_vma chain; | 
 | 	  size_t bucketcount; | 
 | 	  size_t bucket; | 
 |  | 
 | 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount; | 
 | 	  bucket = h->u.elf_hash_value % bucketcount; | 
 |  | 
 | 	  hash_entry_size | 
 | 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; | 
 | 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents | 
 | 		       + (bucket + 2) * hash_entry_size); | 
 | 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); | 
 | 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, | 
 | 		   bucketpos); | 
 | 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, | 
 | 		   ((bfd_byte *) flinfo->hash_sec->contents | 
 | 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size)); | 
 | 	} | 
 |  | 
 |       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) | 
 | 	{ | 
 | 	  Elf_Internal_Versym iversym; | 
 | 	  Elf_External_Versym *eversym; | 
 |  | 
 | 	  if (!h->def_regular && !ELF_COMMON_DEF_P (h)) | 
 | 	    { | 
 | 	      if (h->verinfo.verdef == NULL | 
 | 		  || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) | 
 | 		      & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) | 
 | 		iversym.vs_vers = 1; | 
 | 	      else | 
 | 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (h->verinfo.vertree == NULL) | 
 | 		iversym.vs_vers = 1; | 
 | 	      else | 
 | 		iversym.vs_vers = h->verinfo.vertree->vernum + 1; | 
 | 	      if (flinfo->info->create_default_symver) | 
 | 		iversym.vs_vers++; | 
 | 	    } | 
 |  | 
 | 	  /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is | 
 | 	     defined locally.  */ | 
 | 	  if (h->versioned == versioned_hidden && h->def_regular) | 
 | 	    iversym.vs_vers |= VERSYM_HIDDEN; | 
 |  | 
 | 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; | 
 | 	  eversym += h->dynindx; | 
 | 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If the symbol is undefined, and we didn't output it to .dynsym, | 
 |      strip it from .symtab too.  Obviously we can't do this for | 
 |      relocatable output or when needed for --emit-relocs.  */ | 
 |   else if (input_sec == bfd_und_section_ptr | 
 | 	   && h->indx != -2 | 
 | 	   /* PR 22319 Do not strip global undefined symbols marked as being needed.  */ | 
 | 	   && (h->mark != 1 || ELF_ST_BIND (sym.st_info) != STB_GLOBAL) | 
 | 	   && !bfd_link_relocatable (flinfo->info)) | 
 |     return true; | 
 |  | 
 |   /* Also strip others that we couldn't earlier due to dynamic symbol | 
 |      processing.  */ | 
 |   if (strip) | 
 |     return true; | 
 |   if ((input_sec->flags & SEC_EXCLUDE) != 0) | 
 |     return true; | 
 |  | 
 |   /* Output a FILE symbol so that following locals are not associated | 
 |      with the wrong input file.  We need one for forced local symbols | 
 |      if we've seen more than one FILE symbol or when we have exactly | 
 |      one FILE symbol but global symbols are present in a file other | 
 |      than the one with the FILE symbol.  We also need one if linker | 
 |      defined symbols are present.  In practice these conditions are | 
 |      always met, so just emit the FILE symbol unconditionally.  */ | 
 |   if (eoinfo->localsyms | 
 |       && !eoinfo->file_sym_done | 
 |       && eoinfo->flinfo->filesym_count != 0) | 
 |     { | 
 |       Elf_Internal_Sym fsym; | 
 |  | 
 |       memset (&fsym, 0, sizeof (fsym)); | 
 |       fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | 
 |       fsym.st_shndx = SHN_ABS; | 
 |       if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, | 
 | 				      bfd_und_section_ptr, NULL)) | 
 | 	return false; | 
 |  | 
 |       eoinfo->file_sym_done = true; | 
 |     } | 
 |  | 
 |   indx = bfd_get_symcount (flinfo->output_bfd); | 
 |   ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, | 
 | 				   input_sec, h); | 
 |   if (ret == 0) | 
 |     { | 
 |       eoinfo->failed = true; | 
 |       return false; | 
 |     } | 
 |   else if (ret == 1) | 
 |     h->indx = indx; | 
 |   else if (h->indx == -2) | 
 |     abort(); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Return TRUE if special handling is done for relocs in SEC against | 
 |    symbols defined in discarded sections.  */ | 
 |  | 
 | static bool | 
 | elf_section_ignore_discarded_relocs (asection *sec) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   switch (sec->sec_info_type) | 
 |     { | 
 |     case SEC_INFO_TYPE_STABS: | 
 |     case SEC_INFO_TYPE_EH_FRAME: | 
 |     case SEC_INFO_TYPE_EH_FRAME_ENTRY: | 
 |       return true; | 
 |     default: | 
 |       break; | 
 |     } | 
 |  | 
 |   bed = get_elf_backend_data (sec->owner); | 
 |   if (bed->elf_backend_ignore_discarded_relocs != NULL | 
 |       && (*bed->elf_backend_ignore_discarded_relocs) (sec)) | 
 |     return true; | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /* Return a mask saying how ld should treat relocations in SEC against | 
 |    symbols defined in discarded sections.  If this function returns | 
 |    COMPLAIN set, ld will issue a warning message.  If this function | 
 |    returns PRETEND set, and the discarded section was link-once and the | 
 |    same size as the kept link-once section, ld will pretend that the | 
 |    symbol was actually defined in the kept section.  Otherwise ld will | 
 |    zero the reloc (at least that is the intent, but some cooperation by | 
 |    the target dependent code is needed, particularly for REL targets).  */ | 
 |  | 
 | unsigned int | 
 | _bfd_elf_default_action_discarded (asection *sec) | 
 | { | 
 |   const struct elf_backend_data *bed; | 
 |   bed = get_elf_backend_data (sec->owner); | 
 |  | 
 |   if (sec->flags & SEC_DEBUGGING) | 
 |     return PRETEND; | 
 |  | 
 |   if (strcmp (".eh_frame", sec->name) == 0) | 
 |     return 0; | 
 |  | 
 |   if (bed->elf_backend_can_make_multiple_eh_frame | 
 |       && strncmp (sec->name, ".eh_frame.", 10) == 0) | 
 |     return 0; | 
 |  | 
 |   if (strcmp (".gcc_except_table", sec->name) == 0) | 
 |     return 0; | 
 |  | 
 |   return COMPLAIN | PRETEND; | 
 | } | 
 |  | 
 | /* Find a match between a section and a member of a section group.  */ | 
 |  | 
 | static asection * | 
 | match_group_member (asection *sec, asection *group, | 
 | 		    struct bfd_link_info *info) | 
 | { | 
 |   asection *first = elf_next_in_group (group); | 
 |   asection *s = first; | 
 |  | 
 |   while (s != NULL) | 
 |     { | 
 |       if (bfd_elf_match_symbols_in_sections (s, sec, info)) | 
 | 	return s; | 
 |  | 
 |       s = elf_next_in_group (s); | 
 |       if (s == first) | 
 | 	break; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Check if the kept section of a discarded section SEC can be used | 
 |    to replace it.  Return the replacement if it is OK.  Otherwise return | 
 |    NULL.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) | 
 | { | 
 |   asection *kept; | 
 |  | 
 |   kept = sec->kept_section; | 
 |   if (kept != NULL) | 
 |     { | 
 |       if ((kept->flags & SEC_GROUP) != 0) | 
 | 	kept = match_group_member (sec, kept, info); | 
 |       if (kept != NULL) | 
 | 	{ | 
 | 	  if ((sec->rawsize != 0 ? sec->rawsize : sec->size) | 
 | 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)) | 
 | 	    kept = NULL; | 
 | 	  else | 
 | 	    { | 
 | 	      /* Get the real kept section.  */ | 
 | 	      asection *next; | 
 | 	      for (next = kept->kept_section; | 
 | 		   next != NULL; | 
 | 		   next = next->kept_section) | 
 | 		kept = next; | 
 | 	    } | 
 | 	} | 
 |       sec->kept_section = kept; | 
 |     } | 
 |   return kept; | 
 | } | 
 |  | 
 | /* Link an input file into the linker output file.  This function | 
 |    handles all the sections and relocations of the input file at once. | 
 |    This is so that we only have to read the local symbols once, and | 
 |    don't have to keep them in memory.  */ | 
 |  | 
 | static bool | 
 | elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) | 
 | { | 
 |   int (*relocate_section) | 
 |     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, | 
 |      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); | 
 |   bfd *output_bfd; | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   size_t locsymcount; | 
 |   size_t extsymoff; | 
 |   Elf_Internal_Sym *isymbuf; | 
 |   Elf_Internal_Sym *isym; | 
 |   Elf_Internal_Sym *isymend; | 
 |   long *pindex; | 
 |   asection **ppsection; | 
 |   asection *o; | 
 |   const struct elf_backend_data *bed; | 
 |   struct elf_link_hash_entry **sym_hashes; | 
 |   bfd_size_type address_size; | 
 |   bfd_vma r_type_mask; | 
 |   int r_sym_shift; | 
 |   bool have_file_sym = false; | 
 |  | 
 |   output_bfd = flinfo->output_bfd; | 
 |   bed = get_elf_backend_data (output_bfd); | 
 |   relocate_section = bed->elf_backend_relocate_section; | 
 |  | 
 |   /* If this is a dynamic object, we don't want to do anything here: | 
 |      we don't want the local symbols, and we don't want the section | 
 |      contents.  */ | 
 |   if ((input_bfd->flags & DYNAMIC) != 0) | 
 |     return true; | 
 |  | 
 |   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; | 
 |   if (elf_bad_symtab (input_bfd)) | 
 |     { | 
 |       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | 
 |       extsymoff = 0; | 
 |     } | 
 |   else | 
 |     { | 
 |       locsymcount = symtab_hdr->sh_info; | 
 |       extsymoff = symtab_hdr->sh_info; | 
 |     } | 
 |  | 
 |   /* Enable GNU OSABI features in the output BFD that are used in the input | 
 |      BFD.  */ | 
 |   if (bed->elf_osabi == ELFOSABI_NONE | 
 |       || bed->elf_osabi == ELFOSABI_GNU | 
 |       || bed->elf_osabi == ELFOSABI_FREEBSD) | 
 |     elf_tdata (output_bfd)->has_gnu_osabi | 
 |       |= (elf_tdata (input_bfd)->has_gnu_osabi | 
 | 	  & (bfd_link_relocatable (flinfo->info) | 
 | 	     ? -1 : ~elf_gnu_osabi_retain)); | 
 |  | 
 |   /* Read the local symbols.  */ | 
 |   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; | 
 |   if (isymbuf == NULL && locsymcount != 0) | 
 |     { | 
 |       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, | 
 | 				      flinfo->internal_syms, | 
 | 				      flinfo->external_syms, | 
 | 				      flinfo->locsym_shndx); | 
 |       if (isymbuf == NULL) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   /* Find local symbol sections and adjust values of symbols in | 
 |      SEC_MERGE sections.  Write out those local symbols we know are | 
 |      going into the output file.  */ | 
 |   isymend = PTR_ADD (isymbuf, locsymcount); | 
 |   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; | 
 |        isym < isymend; | 
 |        isym++, pindex++, ppsection++) | 
 |     { | 
 |       asection *isec; | 
 |       const char *name; | 
 |       Elf_Internal_Sym osym; | 
 |       long indx; | 
 |       int ret; | 
 |  | 
 |       *pindex = -1; | 
 |  | 
 |       if (elf_bad_symtab (input_bfd)) | 
 | 	{ | 
 | 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) | 
 | 	    { | 
 | 	      *ppsection = NULL; | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (isym->st_shndx == SHN_UNDEF) | 
 | 	isec = bfd_und_section_ptr; | 
 |       else if (isym->st_shndx == SHN_ABS) | 
 | 	isec = bfd_abs_section_ptr; | 
 |       else if (isym->st_shndx == SHN_COMMON) | 
 | 	isec = bfd_com_section_ptr; | 
 |       else | 
 | 	{ | 
 | 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); | 
 | 	  if (isec == NULL) | 
 | 	    { | 
 | 	      /* Don't attempt to output symbols with st_shnx in the | 
 | 		 reserved range other than SHN_ABS and SHN_COMMON.  */ | 
 | 	      isec = bfd_und_section_ptr; | 
 | 	    } | 
 | 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE | 
 | 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION) | 
 | 	    isym->st_value = | 
 | 	      _bfd_merged_section_offset (output_bfd, &isec, | 
 | 					  elf_section_data (isec)->sec_info, | 
 | 					  isym->st_value); | 
 | 	} | 
 |  | 
 |       *ppsection = isec; | 
 |  | 
 |       /* Don't output the first, undefined, symbol.  In fact, don't | 
 | 	 output any undefined local symbol.  */ | 
 |       if (isec == bfd_und_section_ptr) | 
 | 	continue; | 
 |  | 
 |       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) | 
 | 	{ | 
 | 	  /* We never output section symbols.  Instead, we use the | 
 | 	     section symbol of the corresponding section in the output | 
 | 	     file.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* If we are stripping all symbols, we don't want to output this | 
 | 	 one.  */ | 
 |       if (flinfo->info->strip == strip_all) | 
 | 	continue; | 
 |  | 
 |       /* If we are discarding all local symbols, we don't want to | 
 | 	 output this one.  If we are generating a relocatable output | 
 | 	 file, then some of the local symbols may be required by | 
 | 	 relocs; we output them below as we discover that they are | 
 | 	 needed.  */ | 
 |       if (flinfo->info->discard == discard_all) | 
 | 	continue; | 
 |  | 
 |       /* If this symbol is defined in a section which we are | 
 | 	 discarding, we don't need to keep it.  */ | 
 |       if (isym->st_shndx != SHN_UNDEF | 
 | 	  && isym->st_shndx < SHN_LORESERVE | 
 | 	  && isec->output_section == NULL | 
 | 	  && flinfo->info->non_contiguous_regions | 
 | 	  && flinfo->info->non_contiguous_regions_warnings) | 
 | 	{ | 
 | 	  _bfd_error_handler (_("warning: --enable-non-contiguous-regions " | 
 | 				"discards section `%s' from '%s'\n"), | 
 | 			      isec->name, bfd_get_filename (isec->owner)); | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (isym->st_shndx != SHN_UNDEF | 
 | 	  && isym->st_shndx < SHN_LORESERVE | 
 | 	  && bfd_section_removed_from_list (output_bfd, | 
 | 					    isec->output_section)) | 
 | 	continue; | 
 |  | 
 |       /* Get the name of the symbol.  */ | 
 |       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, | 
 | 					      isym->st_name); | 
 |       if (name == NULL) | 
 | 	return false; | 
 |  | 
 |       /* See if we are discarding symbols with this name.  */ | 
 |       if ((flinfo->info->strip == strip_some | 
 | 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, false, false) | 
 | 	       == NULL)) | 
 | 	  || (((flinfo->info->discard == discard_sec_merge | 
 | 		&& (isec->flags & SEC_MERGE) | 
 | 		&& !bfd_link_relocatable (flinfo->info)) | 
 | 	       || flinfo->info->discard == discard_l) | 
 | 	      && bfd_is_local_label_name (input_bfd, name))) | 
 | 	continue; | 
 |  | 
 |       if (ELF_ST_TYPE (isym->st_info) == STT_FILE) | 
 | 	{ | 
 | 	  if (input_bfd->lto_output) | 
 | 	    /* -flto puts a temp file name here.  This means builds | 
 | 	       are not reproducible.  Discard the symbol.  */ | 
 | 	    continue; | 
 | 	  have_file_sym = true; | 
 | 	  flinfo->filesym_count += 1; | 
 | 	} | 
 |       if (!have_file_sym) | 
 | 	{ | 
 | 	  /* In the absence of debug info, bfd_find_nearest_line uses | 
 | 	     FILE symbols to determine the source file for local | 
 | 	     function symbols.  Provide a FILE symbol here if input | 
 | 	     files lack such, so that their symbols won't be | 
 | 	     associated with a previous input file.  It's not the | 
 | 	     source file, but the best we can do.  */ | 
 | 	  const char *filename; | 
 | 	  have_file_sym = true; | 
 | 	  flinfo->filesym_count += 1; | 
 | 	  memset (&osym, 0, sizeof (osym)); | 
 | 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); | 
 | 	  osym.st_shndx = SHN_ABS; | 
 | 	  if (input_bfd->lto_output) | 
 | 	    filename = NULL; | 
 | 	  else | 
 | 	    filename = lbasename (bfd_get_filename (input_bfd)); | 
 | 	  if (!elf_link_output_symstrtab (flinfo, filename, &osym, | 
 | 					  bfd_abs_section_ptr, NULL)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       osym = *isym; | 
 |  | 
 |       /* Adjust the section index for the output file.  */ | 
 |       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | 
 | 							 isec->output_section); | 
 |       if (osym.st_shndx == SHN_BAD) | 
 | 	return false; | 
 |  | 
 |       /* ELF symbols in relocatable files are section relative, but | 
 | 	 in executable files they are virtual addresses.  Note that | 
 | 	 this code assumes that all ELF sections have an associated | 
 | 	 BFD section with a reasonable value for output_offset; below | 
 | 	 we assume that they also have a reasonable value for | 
 | 	 output_section.  Any special sections must be set up to meet | 
 | 	 these requirements.  */ | 
 |       osym.st_value += isec->output_offset; | 
 |       if (!bfd_link_relocatable (flinfo->info)) | 
 | 	{ | 
 | 	  osym.st_value += isec->output_section->vma; | 
 | 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS) | 
 | 	    { | 
 | 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */ | 
 | 	      if (elf_hash_table (flinfo->info)->tls_sec != NULL) | 
 | 		osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; | 
 | 	      else | 
 | 		osym.st_info = ELF_ST_INFO (ELF_ST_BIND (osym.st_info), | 
 | 					    STT_NOTYPE); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       indx = bfd_get_symcount (output_bfd); | 
 |       ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); | 
 |       if (ret == 0) | 
 | 	return false; | 
 |       else if (ret == 1) | 
 | 	*pindex = indx; | 
 |     } | 
 |  | 
 |   if (bed->s->arch_size == 32) | 
 |     { | 
 |       r_type_mask = 0xff; | 
 |       r_sym_shift = 8; | 
 |       address_size = 4; | 
 |     } | 
 |   else | 
 |     { | 
 |       r_type_mask = 0xffffffff; | 
 |       r_sym_shift = 32; | 
 |       address_size = 8; | 
 |     } | 
 |  | 
 |   /* Relocate the contents of each section.  */ | 
 |   sym_hashes = elf_sym_hashes (input_bfd); | 
 |   for (o = input_bfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       bfd_byte *contents; | 
 |  | 
 |       if (! o->linker_mark) | 
 | 	{ | 
 | 	  /* This section was omitted from the link.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       if (!flinfo->info->resolve_section_groups | 
 | 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) | 
 | 	{ | 
 | 	  /* Deal with the group signature symbol.  */ | 
 | 	  struct bfd_elf_section_data *sec_data = elf_section_data (o); | 
 | 	  unsigned long symndx = sec_data->this_hdr.sh_info; | 
 | 	  asection *osec = o->output_section; | 
 |  | 
 | 	  BFD_ASSERT (bfd_link_relocatable (flinfo->info)); | 
 | 	  if (symndx >= locsymcount | 
 | 	      || (elf_bad_symtab (input_bfd) | 
 | 		  && flinfo->sections[symndx] == NULL)) | 
 | 	    { | 
 | 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; | 
 | 	      while (h->root.type == bfd_link_hash_indirect | 
 | 		     || h->root.type == bfd_link_hash_warning) | 
 | 		h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 | 	      /* Arrange for symbol to be output.  */ | 
 | 	      h->indx = -2; | 
 | 	      elf_section_data (osec)->this_hdr.sh_info = -2; | 
 | 	    } | 
 | 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) | 
 | 	    { | 
 | 	      /* We'll use the output section target_index.  */ | 
 | 	      asection *sec = flinfo->sections[symndx]->output_section; | 
 | 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (flinfo->indices[symndx] == -1) | 
 | 		{ | 
 | 		  /* Otherwise output the local symbol now.  */ | 
 | 		  Elf_Internal_Sym sym = isymbuf[symndx]; | 
 | 		  asection *sec = flinfo->sections[symndx]->output_section; | 
 | 		  const char *name; | 
 | 		  long indx; | 
 | 		  int ret; | 
 |  | 
 | 		  name = bfd_elf_string_from_elf_section (input_bfd, | 
 | 							  symtab_hdr->sh_link, | 
 | 							  sym.st_name); | 
 | 		  if (name == NULL) | 
 | 		    return false; | 
 |  | 
 | 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, | 
 | 								    sec); | 
 | 		  if (sym.st_shndx == SHN_BAD) | 
 | 		    return false; | 
 |  | 
 | 		  sym.st_value += o->output_offset; | 
 |  | 
 | 		  indx = bfd_get_symcount (output_bfd); | 
 | 		  ret = elf_link_output_symstrtab (flinfo, name, &sym, o, | 
 | 						   NULL); | 
 | 		  if (ret == 0) | 
 | 		    return false; | 
 | 		  else if (ret == 1) | 
 | 		    flinfo->indices[symndx] = indx; | 
 | 		  else | 
 | 		    abort (); | 
 | 		} | 
 | 	      elf_section_data (osec)->this_hdr.sh_info | 
 | 		= flinfo->indices[symndx]; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if ((o->flags & SEC_HAS_CONTENTS) == 0 | 
 | 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) | 
 | 	continue; | 
 |  | 
 |       if ((o->flags & SEC_LINKER_CREATED) != 0) | 
 | 	{ | 
 | 	  /* Section was created by _bfd_elf_link_create_dynamic_sections | 
 | 	     or somesuch.  */ | 
 | 	  continue; | 
 | 	} | 
 |  | 
 |       /* Get the contents of the section.  They have been cached by a | 
 | 	 relaxation routine.  Note that o is a section in an input | 
 | 	 file, so the contents field will not have been set by any of | 
 | 	 the routines which work on output files.  */ | 
 |       if (elf_section_data (o)->this_hdr.contents != NULL) | 
 | 	{ | 
 | 	  contents = elf_section_data (o)->this_hdr.contents; | 
 | 	  if (bed->caches_rawsize | 
 | 	      && o->rawsize != 0 | 
 | 	      && o->rawsize < o->size) | 
 | 	    { | 
 | 	      memcpy (flinfo->contents, contents, o->rawsize); | 
 | 	      contents = flinfo->contents; | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  contents = flinfo->contents; | 
 | 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if ((o->flags & SEC_RELOC) != 0) | 
 | 	{ | 
 | 	  Elf_Internal_Rela *internal_relocs; | 
 | 	  Elf_Internal_Rela *rel, *relend; | 
 | 	  int action_discarded; | 
 | 	  int ret; | 
 |  | 
 | 	  /* Get the swapped relocs.  */ | 
 | 	  internal_relocs | 
 | 	    = _bfd_elf_link_info_read_relocs (input_bfd, flinfo->info, o, | 
 | 					      flinfo->external_relocs, | 
 | 					      flinfo->internal_relocs, | 
 | 					      false); | 
 | 	  if (internal_relocs == NULL | 
 | 	      && o->reloc_count > 0) | 
 | 	    return false; | 
 |  | 
 | 	  action_discarded = -1; | 
 | 	  if (!elf_section_ignore_discarded_relocs (o)) | 
 | 	    action_discarded = (*bed->action_discarded) (o); | 
 |  | 
 | 	  /* Run through the relocs evaluating complex reloc symbols and | 
 | 	     looking for relocs against symbols from discarded sections | 
 | 	     or section symbols from removed link-once sections. | 
 | 	     Complain about relocs against discarded sections.  Zero | 
 | 	     relocs against removed link-once sections.  */ | 
 |  | 
 | 	  rel = internal_relocs; | 
 | 	  relend = rel + o->reloc_count; | 
 | 	  for ( ; rel < relend; rel++) | 
 | 	    { | 
 | 	      unsigned long r_symndx = rel->r_info >> r_sym_shift; | 
 | 	      unsigned int s_type; | 
 | 	      asection **ps, *sec; | 
 | 	      struct elf_link_hash_entry *h = NULL; | 
 | 	      const char *sym_name; | 
 |  | 
 | 	      if (r_symndx == STN_UNDEF) | 
 | 		continue; | 
 |  | 
 | 	      if (r_symndx >= locsymcount | 
 | 		  || (elf_bad_symtab (input_bfd) | 
 | 		      && flinfo->sections[r_symndx] == NULL)) | 
 | 		{ | 
 | 		  h = sym_hashes[r_symndx - extsymoff]; | 
 |  | 
 | 		  /* Badly formatted input files can contain relocs that | 
 | 		     reference non-existant symbols.  Check here so that | 
 | 		     we do not seg fault.  */ | 
 | 		  if (h == NULL) | 
 | 		    { | 
 | 		      _bfd_error_handler | 
 | 			/* xgettext:c-format */ | 
 | 			(_("error: %pB contains a reloc (%#" PRIx64 ") for section %pA " | 
 | 			   "that references a non-existent global symbol"), | 
 | 			 input_bfd, (uint64_t) rel->r_info, o); | 
 | 		      bfd_set_error (bfd_error_bad_value); | 
 | 		      return false; | 
 | 		    } | 
 |  | 
 | 		  while (h->root.type == bfd_link_hash_indirect | 
 | 			 || h->root.type == bfd_link_hash_warning) | 
 | 		    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 | 		  s_type = h->type; | 
 |  | 
 | 		  /* If a plugin symbol is referenced from a non-IR file, | 
 | 		     mark the symbol as undefined.  Note that the | 
 | 		     linker may attach linker created dynamic sections | 
 | 		     to the plugin bfd.  Symbols defined in linker | 
 | 		     created sections are not plugin symbols.  */ | 
 | 		  if ((h->root.non_ir_ref_regular | 
 | 		       || h->root.non_ir_ref_dynamic) | 
 | 		      && (h->root.type == bfd_link_hash_defined | 
 | 			  || h->root.type == bfd_link_hash_defweak) | 
 | 		      && (h->root.u.def.section->flags | 
 | 			  & SEC_LINKER_CREATED) == 0 | 
 | 		      && h->root.u.def.section->owner != NULL | 
 | 		      && (h->root.u.def.section->owner->flags | 
 | 			  & BFD_PLUGIN) != 0) | 
 | 		    { | 
 | 		      h->root.type = bfd_link_hash_undefined; | 
 | 		      h->root.u.undef.abfd = h->root.u.def.section->owner; | 
 | 		    } | 
 |  | 
 | 		  ps = NULL; | 
 | 		  if (h->root.type == bfd_link_hash_defined | 
 | 		      || h->root.type == bfd_link_hash_defweak) | 
 | 		    ps = &h->root.u.def.section; | 
 |  | 
 | 		  sym_name = h->root.root.string; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  Elf_Internal_Sym *sym = isymbuf + r_symndx; | 
 |  | 
 | 		  s_type = ELF_ST_TYPE (sym->st_info); | 
 | 		  ps = &flinfo->sections[r_symndx]; | 
 | 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, | 
 | 					       sym, *ps); | 
 | 		} | 
 |  | 
 | 	      if ((s_type == STT_RELC || s_type == STT_SRELC) | 
 | 		  && !bfd_link_relocatable (flinfo->info)) | 
 | 		{ | 
 | 		  bfd_vma val; | 
 | 		  bfd_vma dot = (rel->r_offset | 
 | 				 + o->output_offset + o->output_section->vma); | 
 | #ifdef DEBUG | 
 | 		  printf ("Encountered a complex symbol!"); | 
 | 		  printf (" (input_bfd %s, section %s, reloc %ld\n", | 
 | 			  bfd_get_filename (input_bfd), o->name, | 
 | 			  (long) (rel - internal_relocs)); | 
 | 		  printf (" symbol: idx  %8.8lx, name %s\n", | 
 | 			  r_symndx, sym_name); | 
 | 		  printf (" reloc : info %8.8lx, addr %8.8lx\n", | 
 | 			  (unsigned long) rel->r_info, | 
 | 			  (unsigned long) rel->r_offset); | 
 | #endif | 
 | 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, | 
 | 				    isymbuf, locsymcount, s_type == STT_SRELC)) | 
 | 		    return false; | 
 |  | 
 | 		  /* Symbol evaluated OK.  Update to absolute value.  */ | 
 | 		  set_symbol_value (input_bfd, isymbuf, locsymcount, | 
 | 				    r_symndx, val); | 
 | 		  continue; | 
 | 		} | 
 |  | 
 | 	      if (action_discarded != -1 && ps != NULL) | 
 | 		{ | 
 | 		  /* Complain if the definition comes from a | 
 | 		     discarded section.  */ | 
 | 		  if ((sec = *ps) != NULL && discarded_section (sec)) | 
 | 		    { | 
 | 		      BFD_ASSERT (r_symndx != STN_UNDEF); | 
 | 		      if (action_discarded & COMPLAIN) | 
 | 			(*flinfo->info->callbacks->einfo) | 
 | 			  /* xgettext:c-format */ | 
 | 			  (_("%X`%s' referenced in section `%pA' of %pB: " | 
 | 			     "defined in discarded section `%pA' of %pB\n"), | 
 | 			   sym_name, o, input_bfd, sec, sec->owner); | 
 |  | 
 | 		      /* Try to do the best we can to support buggy old | 
 | 			 versions of gcc.  Pretend that the symbol is | 
 | 			 really defined in the kept linkonce section. | 
 | 			 FIXME: This is quite broken.  Modifying the | 
 | 			 symbol here means we will be changing all later | 
 | 			 uses of the symbol, not just in this section.  */ | 
 | 		      if (action_discarded & PRETEND) | 
 | 			{ | 
 | 			  asection *kept; | 
 |  | 
 | 			  kept = _bfd_elf_check_kept_section (sec, | 
 | 							      flinfo->info); | 
 | 			  if (kept != NULL) | 
 | 			    { | 
 | 			      *ps = kept; | 
 | 			      continue; | 
 | 			    } | 
 | 			} | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  /* Relocate the section by invoking a back end routine. | 
 |  | 
 | 	     The back end routine is responsible for adjusting the | 
 | 	     section contents as necessary, and (if using Rela relocs | 
 | 	     and generating a relocatable output file) adjusting the | 
 | 	     reloc addend as necessary. | 
 |  | 
 | 	     The back end routine does not have to worry about setting | 
 | 	     the reloc address or the reloc symbol index. | 
 |  | 
 | 	     The back end routine is given a pointer to the swapped in | 
 | 	     internal symbols, and can access the hash table entries | 
 | 	     for the external symbols via elf_sym_hashes (input_bfd). | 
 |  | 
 | 	     When generating relocatable output, the back end routine | 
 | 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The | 
 | 	     output symbol is going to be a section symbol | 
 | 	     corresponding to the output section, which will require | 
 | 	     the addend to be adjusted.  */ | 
 |  | 
 | 	  ret = (*relocate_section) (output_bfd, flinfo->info, | 
 | 				     input_bfd, o, contents, | 
 | 				     internal_relocs, | 
 | 				     isymbuf, | 
 | 				     flinfo->sections); | 
 | 	  if (!ret) | 
 | 	    return false; | 
 |  | 
 | 	  if (ret == 2 | 
 | 	      || bfd_link_relocatable (flinfo->info) | 
 | 	      || flinfo->info->emitrelocations) | 
 | 	    { | 
 | 	      Elf_Internal_Rela *irela; | 
 | 	      Elf_Internal_Rela *irelaend, *irelamid; | 
 | 	      bfd_vma last_offset; | 
 | 	      struct elf_link_hash_entry **rel_hash; | 
 | 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; | 
 | 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; | 
 | 	      unsigned int next_erel; | 
 | 	      bool rela_normal; | 
 | 	      struct bfd_elf_section_data *esdi, *esdo; | 
 |  | 
 | 	      esdi = elf_section_data (o); | 
 | 	      esdo = elf_section_data (o->output_section); | 
 | 	      rela_normal = false; | 
 |  | 
 | 	      /* Adjust the reloc addresses and symbol indices.  */ | 
 |  | 
 | 	      irela = internal_relocs; | 
 | 	      irelaend = irela + o->reloc_count; | 
 | 	      rel_hash = PTR_ADD (esdo->rel.hashes, esdo->rel.count); | 
 | 	      /* We start processing the REL relocs, if any.  When we reach | 
 | 		 IRELAMID in the loop, we switch to the RELA relocs.  */ | 
 | 	      irelamid = irela; | 
 | 	      if (esdi->rel.hdr != NULL) | 
 | 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) | 
 | 			     * bed->s->int_rels_per_ext_rel); | 
 | 	      rel_hash_list = rel_hash; | 
 | 	      rela_hash_list = NULL; | 
 | 	      last_offset = o->output_offset; | 
 | 	      if (!bfd_link_relocatable (flinfo->info)) | 
 | 		last_offset += o->output_section->vma; | 
 | 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++) | 
 | 		{ | 
 | 		  unsigned long r_symndx; | 
 | 		  asection *sec; | 
 | 		  Elf_Internal_Sym sym; | 
 |  | 
 | 		  if (next_erel == bed->s->int_rels_per_ext_rel) | 
 | 		    { | 
 | 		      rel_hash++; | 
 | 		      next_erel = 0; | 
 | 		    } | 
 |  | 
 | 		  if (irela == irelamid) | 
 | 		    { | 
 | 		      rel_hash = PTR_ADD (esdo->rela.hashes, esdo->rela.count); | 
 | 		      rela_hash_list = rel_hash; | 
 | 		      rela_normal = bed->rela_normal; | 
 | 		    } | 
 |  | 
 | 		  irela->r_offset = _bfd_elf_section_offset (output_bfd, | 
 | 							     flinfo->info, o, | 
 | 							     irela->r_offset); | 
 | 		  if (irela->r_offset >= (bfd_vma) -2) | 
 | 		    { | 
 | 		      /* This is a reloc for a deleted entry or somesuch. | 
 | 			 Turn it into an R_*_NONE reloc, at the same | 
 | 			 offset as the last reloc.  elf_eh_frame.c and | 
 | 			 bfd_elf_discard_info rely on reloc offsets | 
 | 			 being ordered.  */ | 
 | 		      irela->r_offset = last_offset; | 
 | 		      irela->r_info = 0; | 
 | 		      irela->r_addend = 0; | 
 | 		      continue; | 
 | 		    } | 
 |  | 
 | 		  irela->r_offset += o->output_offset; | 
 |  | 
 | 		  /* Relocs in an executable have to be virtual addresses.  */ | 
 | 		  if (!bfd_link_relocatable (flinfo->info)) | 
 | 		    irela->r_offset += o->output_section->vma; | 
 |  | 
 | 		  last_offset = irela->r_offset; | 
 |  | 
 | 		  r_symndx = irela->r_info >> r_sym_shift; | 
 | 		  if (r_symndx == STN_UNDEF) | 
 | 		    continue; | 
 |  | 
 | 		  if (r_symndx >= locsymcount | 
 | 		      || (elf_bad_symtab (input_bfd) | 
 | 			  && flinfo->sections[r_symndx] == NULL)) | 
 | 		    { | 
 | 		      struct elf_link_hash_entry *rh; | 
 | 		      unsigned long indx; | 
 |  | 
 | 		      /* This is a reloc against a global symbol.  We | 
 | 			 have not yet output all the local symbols, so | 
 | 			 we do not know the symbol index of any global | 
 | 			 symbol.  We set the rel_hash entry for this | 
 | 			 reloc to point to the global hash table entry | 
 | 			 for this symbol.  The symbol index is then | 
 | 			 set at the end of bfd_elf_final_link.  */ | 
 | 		      indx = r_symndx - extsymoff; | 
 | 		      rh = elf_sym_hashes (input_bfd)[indx]; | 
 | 		      while (rh->root.type == bfd_link_hash_indirect | 
 | 			     || rh->root.type == bfd_link_hash_warning) | 
 | 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link; | 
 |  | 
 | 		      /* Setting the index to -2 tells | 
 | 			 elf_link_output_extsym that this symbol is | 
 | 			 used by a reloc.  */ | 
 | 		      BFD_ASSERT (rh->indx < 0); | 
 | 		      rh->indx = -2; | 
 | 		      *rel_hash = rh; | 
 |  | 
 | 		      continue; | 
 | 		    } | 
 |  | 
 | 		  /* This is a reloc against a local symbol.  */ | 
 |  | 
 | 		  *rel_hash = NULL; | 
 | 		  sym = isymbuf[r_symndx]; | 
 | 		  sec = flinfo->sections[r_symndx]; | 
 | 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) | 
 | 		    { | 
 | 		      /* I suppose the backend ought to fill in the | 
 | 			 section of any STT_SECTION symbol against a | 
 | 			 processor specific section.  */ | 
 | 		      r_symndx = STN_UNDEF; | 
 | 		      if (bfd_is_abs_section (sec)) | 
 | 			; | 
 | 		      else if (sec == NULL || sec->owner == NULL) | 
 | 			{ | 
 | 			  bfd_set_error (bfd_error_bad_value); | 
 | 			  return false; | 
 | 			} | 
 | 		      else | 
 | 			{ | 
 | 			  asection *osec = sec->output_section; | 
 |  | 
 | 			  /* If we have discarded a section, the output | 
 | 			     section will be the absolute section.  In | 
 | 			     case of discarded SEC_MERGE sections, use | 
 | 			     the kept section.  relocate_section should | 
 | 			     have already handled discarded linkonce | 
 | 			     sections.  */ | 
 | 			  if (bfd_is_abs_section (osec) | 
 | 			      && sec->kept_section != NULL | 
 | 			      && sec->kept_section->output_section != NULL) | 
 | 			    { | 
 | 			      osec = sec->kept_section->output_section; | 
 | 			      irela->r_addend -= osec->vma; | 
 | 			    } | 
 |  | 
 | 			  if (!bfd_is_abs_section (osec)) | 
 | 			    { | 
 | 			      r_symndx = osec->target_index; | 
 | 			      if (r_symndx == STN_UNDEF) | 
 | 				{ | 
 | 				  irela->r_addend += osec->vma; | 
 | 				  osec = _bfd_nearby_section (output_bfd, osec, | 
 | 							      osec->vma); | 
 | 				  irela->r_addend -= osec->vma; | 
 | 				  r_symndx = osec->target_index; | 
 | 				} | 
 | 			    } | 
 | 			} | 
 |  | 
 | 		      /* Adjust the addend according to where the | 
 | 			 section winds up in the output section.  */ | 
 | 		      if (rela_normal) | 
 | 			irela->r_addend += sec->output_offset; | 
 | 		    } | 
 | 		  else | 
 | 		    { | 
 | 		      if (flinfo->indices[r_symndx] == -1) | 
 | 			{ | 
 | 			  unsigned long shlink; | 
 | 			  const char *name; | 
 | 			  asection *osec; | 
 | 			  long indx; | 
 |  | 
 | 			  if (flinfo->info->strip == strip_all) | 
 | 			    { | 
 | 			      /* You can't do ld -r -s.  */ | 
 | 			      bfd_set_error (bfd_error_invalid_operation); | 
 | 			      return false; | 
 | 			    } | 
 |  | 
 | 			  /* This symbol was skipped earlier, but | 
 | 			     since it is needed by a reloc, we | 
 | 			     must output it now.  */ | 
 | 			  shlink = symtab_hdr->sh_link; | 
 | 			  name = (bfd_elf_string_from_elf_section | 
 | 				  (input_bfd, shlink, sym.st_name)); | 
 | 			  if (name == NULL) | 
 | 			    return false; | 
 |  | 
 | 			  osec = sec->output_section; | 
 | 			  sym.st_shndx = | 
 | 			    _bfd_elf_section_from_bfd_section (output_bfd, | 
 | 							       osec); | 
 | 			  if (sym.st_shndx == SHN_BAD) | 
 | 			    return false; | 
 |  | 
 | 			  sym.st_value += sec->output_offset; | 
 | 			  if (!bfd_link_relocatable (flinfo->info)) | 
 | 			    { | 
 | 			      sym.st_value += osec->vma; | 
 | 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS) | 
 | 				{ | 
 | 				  struct elf_link_hash_table *htab | 
 | 				    = elf_hash_table (flinfo->info); | 
 |  | 
 | 				  /* STT_TLS symbols are relative to PT_TLS | 
 | 				     segment base.  */ | 
 | 				  if (htab->tls_sec != NULL) | 
 | 				    sym.st_value -= htab->tls_sec->vma; | 
 | 				  else | 
 | 				    sym.st_info | 
 | 				      = ELF_ST_INFO (ELF_ST_BIND (sym.st_info), | 
 | 						     STT_NOTYPE); | 
 | 				} | 
 | 			    } | 
 |  | 
 | 			  indx = bfd_get_symcount (output_bfd); | 
 | 			  ret = elf_link_output_symstrtab (flinfo, name, | 
 | 							   &sym, sec, | 
 | 							   NULL); | 
 | 			  if (ret == 0) | 
 | 			    return false; | 
 | 			  else if (ret == 1) | 
 | 			    flinfo->indices[r_symndx] = indx; | 
 | 			  else | 
 | 			    abort (); | 
 | 			} | 
 |  | 
 | 		      r_symndx = flinfo->indices[r_symndx]; | 
 | 		    } | 
 |  | 
 | 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift | 
 | 				   | (irela->r_info & r_type_mask)); | 
 | 		} | 
 |  | 
 | 	      /* Swap out the relocs.  */ | 
 | 	      input_rel_hdr = esdi->rel.hdr; | 
 | 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0) | 
 | 		{ | 
 | 		  if (!bed->elf_backend_emit_relocs (output_bfd, o, | 
 | 						     input_rel_hdr, | 
 | 						     internal_relocs, | 
 | 						     rel_hash_list)) | 
 | 		    return false; | 
 | 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) | 
 | 				      * bed->s->int_rels_per_ext_rel); | 
 | 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); | 
 | 		} | 
 |  | 
 | 	      input_rela_hdr = esdi->rela.hdr; | 
 | 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0) | 
 | 		{ | 
 | 		  if (!bed->elf_backend_emit_relocs (output_bfd, o, | 
 | 						     input_rela_hdr, | 
 | 						     internal_relocs, | 
 | 						     rela_hash_list)) | 
 | 		    return false; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Write out the modified section contents.  */ | 
 |       if (bed->elf_backend_write_section | 
 | 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, | 
 | 						contents)) | 
 | 	{ | 
 | 	  /* Section written out.  */ | 
 | 	} | 
 |       else switch (o->sec_info_type) | 
 | 	{ | 
 | 	case SEC_INFO_TYPE_STABS: | 
 | 	  if (! (_bfd_write_section_stabs | 
 | 		 (output_bfd, | 
 | 		  &elf_hash_table (flinfo->info)->stab_info, | 
 | 		  o, &elf_section_data (o)->sec_info, contents))) | 
 | 	    return false; | 
 | 	  break; | 
 | 	case SEC_INFO_TYPE_MERGE: | 
 | 	  if (! _bfd_write_merged_section (output_bfd, o, | 
 | 					   elf_section_data (o)->sec_info)) | 
 | 	    return false; | 
 | 	  break; | 
 | 	case SEC_INFO_TYPE_EH_FRAME: | 
 | 	  { | 
 | 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, | 
 | 						   o, contents)) | 
 | 	      return false; | 
 | 	  } | 
 | 	  break; | 
 | 	case SEC_INFO_TYPE_EH_FRAME_ENTRY: | 
 | 	  { | 
 | 	    if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, | 
 | 							 flinfo->info, | 
 | 							 o, contents)) | 
 | 	      return false; | 
 | 	  } | 
 | 	  break; | 
 | 	default: | 
 | 	  { | 
 | 	    if (! (o->flags & SEC_EXCLUDE)) | 
 | 	      { | 
 | 		file_ptr offset = (file_ptr) o->output_offset; | 
 | 		bfd_size_type todo = o->size; | 
 |  | 
 | 		offset *= bfd_octets_per_byte (output_bfd, o); | 
 |  | 
 | 		if ((o->flags & SEC_ELF_REVERSE_COPY) | 
 | 		    && o->size > address_size) | 
 | 		  { | 
 | 		    /* Reverse-copy input section to output.  */ | 
 |  | 
 | 		    if ((o->size & (address_size - 1)) != 0 | 
 | 			|| (o->reloc_count != 0 | 
 | 			    && (o->size * bed->s->int_rels_per_ext_rel | 
 | 				!= o->reloc_count * address_size))) | 
 | 		      { | 
 | 			_bfd_error_handler | 
 | 			  /* xgettext:c-format */ | 
 | 			  (_("error: %pB: size of section %pA is not " | 
 | 			     "multiple of address size"), | 
 | 			   input_bfd, o); | 
 | 			bfd_set_error (bfd_error_bad_value); | 
 | 			return false; | 
 | 		      } | 
 |  | 
 | 		    do | 
 | 		      { | 
 | 			todo -= address_size; | 
 | 			if (! bfd_set_section_contents (output_bfd, | 
 | 							o->output_section, | 
 | 							contents + todo, | 
 | 							offset, | 
 | 							address_size)) | 
 | 			  return false; | 
 | 			if (todo == 0) | 
 | 			  break; | 
 | 			offset += address_size; | 
 | 		      } | 
 | 		    while (1); | 
 | 		  } | 
 | 		else if (! bfd_set_section_contents (output_bfd, | 
 | 						     o->output_section, | 
 | 						     contents, | 
 | 						     offset, todo)) | 
 | 		  return false; | 
 | 	      } | 
 | 	  } | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Generate a reloc when linking an ELF file.  This is a reloc | 
 |    requested by the linker, and does not come from any input file.  This | 
 |    is used to build constructor and destructor tables when linking | 
 |    with -Ur.  */ | 
 |  | 
 | static bool | 
 | elf_reloc_link_order (bfd *output_bfd, | 
 | 		      struct bfd_link_info *info, | 
 | 		      asection *output_section, | 
 | 		      struct bfd_link_order *link_order) | 
 | { | 
 |   reloc_howto_type *howto; | 
 |   long indx; | 
 |   bfd_vma offset; | 
 |   bfd_vma addend; | 
 |   struct bfd_elf_section_reloc_data *reldata; | 
 |   struct elf_link_hash_entry **rel_hash_ptr; | 
 |   Elf_Internal_Shdr *rel_hdr; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); | 
 |   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; | 
 |   bfd_byte *erel; | 
 |   unsigned int i; | 
 |   struct bfd_elf_section_data *esdo = elf_section_data (output_section); | 
 |  | 
 |   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); | 
 |   if (howto == NULL) | 
 |     { | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       return false; | 
 |     } | 
 |  | 
 |   addend = link_order->u.reloc.p->addend; | 
 |  | 
 |   if (esdo->rel.hdr) | 
 |     reldata = &esdo->rel; | 
 |   else if (esdo->rela.hdr) | 
 |     reldata = &esdo->rela; | 
 |   else | 
 |     { | 
 |       reldata = NULL; | 
 |       BFD_ASSERT (0); | 
 |     } | 
 |  | 
 |   /* Figure out the symbol index.  */ | 
 |   rel_hash_ptr = reldata->hashes + reldata->count; | 
 |   if (link_order->type == bfd_section_reloc_link_order) | 
 |     { | 
 |       indx = link_order->u.reloc.p->u.section->target_index; | 
 |       BFD_ASSERT (indx != 0); | 
 |       *rel_hash_ptr = NULL; | 
 |     } | 
 |   else | 
 |     { | 
 |       struct elf_link_hash_entry *h; | 
 |  | 
 |       /* Treat a reloc against a defined symbol as though it were | 
 | 	 actually against the section.  */ | 
 |       h = ((struct elf_link_hash_entry *) | 
 | 	   bfd_wrapped_link_hash_lookup (output_bfd, info, | 
 | 					 link_order->u.reloc.p->u.name, | 
 | 					 false, false, true)); | 
 |       if (h != NULL | 
 | 	  && (h->root.type == bfd_link_hash_defined | 
 | 	      || h->root.type == bfd_link_hash_defweak)) | 
 | 	{ | 
 | 	  asection *section; | 
 |  | 
 | 	  section = h->root.u.def.section; | 
 | 	  indx = section->output_section->target_index; | 
 | 	  *rel_hash_ptr = NULL; | 
 | 	  /* It seems that we ought to add the symbol value to the | 
 | 	     addend here, but in practice it has already been added | 
 | 	     because it was passed to constructor_callback.  */ | 
 | 	  addend += section->output_section->vma + section->output_offset; | 
 | 	} | 
 |       else if (h != NULL) | 
 | 	{ | 
 | 	  /* Setting the index to -2 tells elf_link_output_extsym that | 
 | 	     this symbol is used by a reloc.  */ | 
 | 	  h->indx = -2; | 
 | 	  *rel_hash_ptr = h; | 
 | 	  indx = 0; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  (*info->callbacks->unattached_reloc) | 
 | 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); | 
 | 	  indx = 0; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If this is an inplace reloc, we must write the addend into the | 
 |      object file.  */ | 
 |   if (howto->partial_inplace && addend != 0) | 
 |     { | 
 |       bfd_size_type size; | 
 |       bfd_reloc_status_type rstat; | 
 |       bfd_byte *buf; | 
 |       bool ok; | 
 |       const char *sym_name; | 
 |       bfd_size_type octets; | 
 |  | 
 |       size = (bfd_size_type) bfd_get_reloc_size (howto); | 
 |       buf = (bfd_byte *) bfd_zmalloc (size); | 
 |       if (buf == NULL && size != 0) | 
 | 	return false; | 
 |       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); | 
 |       switch (rstat) | 
 | 	{ | 
 | 	case bfd_reloc_ok: | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	case bfd_reloc_outofrange: | 
 | 	  abort (); | 
 |  | 
 | 	case bfd_reloc_overflow: | 
 | 	  if (link_order->type == bfd_section_reloc_link_order) | 
 | 	    sym_name = bfd_section_name (link_order->u.reloc.p->u.section); | 
 | 	  else | 
 | 	    sym_name = link_order->u.reloc.p->u.name; | 
 | 	  (*info->callbacks->reloc_overflow) (info, NULL, sym_name, | 
 | 					      howto->name, addend, NULL, NULL, | 
 | 					      (bfd_vma) 0); | 
 | 	  break; | 
 | 	} | 
 |  | 
 |       octets = link_order->offset * bfd_octets_per_byte (output_bfd, | 
 | 							 output_section); | 
 |       ok = bfd_set_section_contents (output_bfd, output_section, buf, | 
 | 				     octets, size); | 
 |       free (buf); | 
 |       if (! ok) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   /* The address of a reloc is relative to the section in a | 
 |      relocatable file, and is a virtual address in an executable | 
 |      file.  */ | 
 |   offset = link_order->offset; | 
 |   if (! bfd_link_relocatable (info)) | 
 |     offset += output_section->vma; | 
 |  | 
 |   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) | 
 |     { | 
 |       irel[i].r_offset = offset; | 
 |       irel[i].r_info = 0; | 
 |       irel[i].r_addend = 0; | 
 |     } | 
 |   if (bed->s->arch_size == 32) | 
 |     irel[0].r_info = ELF32_R_INFO (indx, howto->type); | 
 |   else | 
 |     irel[0].r_info = ELF64_R_INFO (indx, howto->type); | 
 |  | 
 |   rel_hdr = reldata->hdr; | 
 |   erel = rel_hdr->contents; | 
 |   if (rel_hdr->sh_type == SHT_REL) | 
 |     { | 
 |       erel += reldata->count * bed->s->sizeof_rel; | 
 |       (*bed->s->swap_reloc_out) (output_bfd, irel, erel); | 
 |     } | 
 |   else | 
 |     { | 
 |       irel[0].r_addend = addend; | 
 |       erel += reldata->count * bed->s->sizeof_rela; | 
 |       (*bed->s->swap_reloca_out) (output_bfd, irel, erel); | 
 |     } | 
 |  | 
 |   ++reldata->count; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Generate an import library in INFO->implib_bfd from symbols in ABFD. | 
 |    Returns TRUE upon success, FALSE otherwise.  */ | 
 |  | 
 | static bool | 
 | elf_output_implib (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   bool ret = false; | 
 |   bfd *implib_bfd; | 
 |   const struct elf_backend_data *bed; | 
 |   flagword flags; | 
 |   enum bfd_architecture arch; | 
 |   unsigned int mach; | 
 |   asymbol **sympp = NULL; | 
 |   long symsize; | 
 |   long symcount; | 
 |   long src_count; | 
 |   elf_symbol_type *osymbuf; | 
 |   size_t amt; | 
 |  | 
 |   implib_bfd = info->out_implib_bfd; | 
 |   bed = get_elf_backend_data (abfd); | 
 |  | 
 |   if (!bfd_set_format (implib_bfd, bfd_object)) | 
 |     return false; | 
 |  | 
 |   /* Use flag from executable but make it a relocatable object.  */ | 
 |   flags = bfd_get_file_flags (abfd); | 
 |   flags &= ~HAS_RELOC; | 
 |   if (!bfd_set_start_address (implib_bfd, 0) | 
 |       || !bfd_set_file_flags (implib_bfd, flags & ~EXEC_P)) | 
 |     return false; | 
 |  | 
 |   /* Copy architecture of output file to import library file.  */ | 
 |   arch = bfd_get_arch (abfd); | 
 |   mach = bfd_get_mach (abfd); | 
 |   if (!bfd_set_arch_mach (implib_bfd, arch, mach) | 
 |       && (abfd->target_defaulted | 
 | 	  || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) | 
 |     return false; | 
 |  | 
 |   /* Get symbol table size.  */ | 
 |   symsize = bfd_get_symtab_upper_bound (abfd); | 
 |   if (symsize < 0) | 
 |     return false; | 
 |  | 
 |   /* Read in the symbol table.  */ | 
 |   sympp = (asymbol **) bfd_malloc (symsize); | 
 |   if (sympp == NULL) | 
 |     return false; | 
 |  | 
 |   symcount = bfd_canonicalize_symtab (abfd, sympp); | 
 |   if (symcount < 0) | 
 |     goto free_sym_buf; | 
 |  | 
 |   /* Allow the BFD backend to copy any private header data it | 
 |      understands from the output BFD to the import library BFD.  */ | 
 |   if (! bfd_copy_private_header_data (abfd, implib_bfd)) | 
 |     goto free_sym_buf; | 
 |  | 
 |   /* Filter symbols to appear in the import library.  */ | 
 |   if (bed->elf_backend_filter_implib_symbols) | 
 |     symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, | 
 | 						       symcount); | 
 |   else | 
 |     symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); | 
 |   if (symcount == 0) | 
 |     { | 
 |       bfd_set_error (bfd_error_no_symbols); | 
 |       _bfd_error_handler (_("%pB: no symbol found for import library"), | 
 | 			  implib_bfd); | 
 |       goto free_sym_buf; | 
 |     } | 
 |  | 
 |  | 
 |   /* Make symbols absolute.  */ | 
 |   amt = symcount * sizeof (*osymbuf); | 
 |   osymbuf = (elf_symbol_type *) bfd_alloc (implib_bfd, amt); | 
 |   if (osymbuf == NULL) | 
 |     goto free_sym_buf; | 
 |  | 
 |   for (src_count = 0; src_count < symcount; src_count++) | 
 |     { | 
 |       memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], | 
 | 	      sizeof (*osymbuf)); | 
 |       osymbuf[src_count].symbol.section = bfd_abs_section_ptr; | 
 |       osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; | 
 |       osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; | 
 |       osymbuf[src_count].internal_elf_sym.st_value = | 
 | 	osymbuf[src_count].symbol.value; | 
 |       sympp[src_count] = &osymbuf[src_count].symbol; | 
 |     } | 
 |  | 
 |   bfd_set_symtab (implib_bfd, sympp, symcount); | 
 |  | 
 |   /* Allow the BFD backend to copy any private data it understands | 
 |      from the output BFD to the import library BFD.  This is done last | 
 |      to permit the routine to look at the filtered symbol table.  */ | 
 |   if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) | 
 |     goto free_sym_buf; | 
 |  | 
 |   if (!bfd_close (implib_bfd)) | 
 |     goto free_sym_buf; | 
 |  | 
 |   ret = true; | 
 |  | 
 |  free_sym_buf: | 
 |   free (sympp); | 
 |   return ret; | 
 | } | 
 |  | 
 | static void | 
 | elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) | 
 | { | 
 |   asection *o; | 
 |  | 
 |   if (flinfo->symstrtab != NULL) | 
 |     _bfd_elf_strtab_free (flinfo->symstrtab); | 
 |   free (flinfo->contents); | 
 |   free (flinfo->external_relocs); | 
 |   free (flinfo->internal_relocs); | 
 |   free (flinfo->external_syms); | 
 |   free (flinfo->locsym_shndx); | 
 |   free (flinfo->internal_syms); | 
 |   free (flinfo->indices); | 
 |   free (flinfo->sections); | 
 |   if (flinfo->symshndxbuf != (Elf_External_Sym_Shndx *) -1) | 
 |     free (flinfo->symshndxbuf); | 
 |   for (o = obfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       struct bfd_elf_section_data *esdo = elf_section_data (o); | 
 |       free (esdo->rel.hashes); | 
 |       free (esdo->rela.hashes); | 
 |     } | 
 | } | 
 |  | 
 | /* Do the final step of an ELF link.  */ | 
 |  | 
 | bool | 
 | bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   bool dynamic; | 
 |   bool emit_relocs; | 
 |   bfd *dynobj; | 
 |   struct elf_final_link_info flinfo; | 
 |   asection *o; | 
 |   struct bfd_link_order *p; | 
 |   bfd *sub; | 
 |   bfd_size_type max_contents_size; | 
 |   bfd_size_type max_external_reloc_size; | 
 |   bfd_size_type max_internal_reloc_count; | 
 |   bfd_size_type max_sym_count; | 
 |   bfd_size_type max_sym_shndx_count; | 
 |   Elf_Internal_Sym elfsym; | 
 |   unsigned int i; | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   Elf_Internal_Shdr *symtab_shndx_hdr; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct elf_outext_info eoinfo; | 
 |   bool merged; | 
 |   size_t relativecount; | 
 |   size_t relr_entsize; | 
 |   asection *reldyn = 0; | 
 |   bfd_size_type amt; | 
 |   asection *attr_section = NULL; | 
 |   bfd_vma attr_size = 0; | 
 |   const char *std_attrs_section; | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |   bool sections_removed; | 
 |   bool ret; | 
 |  | 
 |   if (!is_elf_hash_table (&htab->root)) | 
 |     return false; | 
 |  | 
 |   if (bfd_link_pic (info)) | 
 |     abfd->flags |= DYNAMIC; | 
 |  | 
 |   dynamic = htab->dynamic_sections_created; | 
 |   dynobj = htab->dynobj; | 
 |  | 
 |   emit_relocs = (bfd_link_relocatable (info) | 
 | 		 || info->emitrelocations); | 
 |  | 
 |   memset (&flinfo, 0, sizeof (flinfo)); | 
 |   flinfo.info = info; | 
 |   flinfo.output_bfd = abfd; | 
 |   flinfo.symstrtab = _bfd_elf_strtab_init (); | 
 |   if (flinfo.symstrtab == NULL) | 
 |     return false; | 
 |  | 
 |   if (! dynamic) | 
 |     { | 
 |       flinfo.hash_sec = NULL; | 
 |       flinfo.symver_sec = NULL; | 
 |     } | 
 |   else | 
 |     { | 
 |       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); | 
 |       /* Note that dynsym_sec can be NULL (on VMS).  */ | 
 |       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); | 
 |       /* Note that it is OK if symver_sec is NULL.  */ | 
 |     } | 
 |  | 
 |   if (info->unique_symbol | 
 |       && !bfd_hash_table_init (&flinfo.local_hash_table, | 
 | 			       local_hash_newfunc, | 
 | 			       sizeof (struct local_hash_entry))) | 
 |     return false; | 
 |  | 
 |   /* The object attributes have been merged.  Remove the input | 
 |      sections from the link, and set the contents of the output | 
 |      section.  */ | 
 |   sections_removed = false; | 
 |   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       bool remove_section = false; | 
 |  | 
 |       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) | 
 | 	  || strcmp (o->name, ".gnu.attributes") == 0) | 
 | 	{ | 
 | 	  for (p = o->map_head.link_order; p != NULL; p = p->next) | 
 | 	    { | 
 | 	      asection *input_section; | 
 |  | 
 | 	      if (p->type != bfd_indirect_link_order) | 
 | 		continue; | 
 | 	      input_section = p->u.indirect.section; | 
 | 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that | 
 | 		 elf_link_input_bfd ignores this section.  */ | 
 | 	      input_section->flags &= ~SEC_HAS_CONTENTS; | 
 | 	    } | 
 |  | 
 | 	  attr_size = bfd_elf_obj_attr_size (abfd); | 
 | 	  bfd_set_section_size (o, attr_size); | 
 | 	  /* Skip this section later on.  */ | 
 | 	  o->map_head.link_order = NULL; | 
 | 	  if (attr_size) | 
 | 	    attr_section = o; | 
 | 	  else | 
 | 	    remove_section = true; | 
 | 	} | 
 |       else if ((o->flags & SEC_GROUP) != 0 && o->size == 0) | 
 | 	{ | 
 | 	  /* Remove empty group section from linker output.  */ | 
 | 	  remove_section = true; | 
 | 	} | 
 |       if (remove_section) | 
 | 	{ | 
 | 	  o->flags |= SEC_EXCLUDE; | 
 | 	  bfd_section_list_remove (abfd, o); | 
 | 	  abfd->section_count--; | 
 | 	  sections_removed = true; | 
 | 	} | 
 |     } | 
 |   if (sections_removed) | 
 |     _bfd_fix_excluded_sec_syms (abfd, info); | 
 |  | 
 |   /* Count up the number of relocations we will output for each output | 
 |      section, so that we know the sizes of the reloc sections.  We | 
 |      also figure out some maximum sizes.  */ | 
 |   max_contents_size = 0; | 
 |   max_external_reloc_size = 0; | 
 |   max_internal_reloc_count = 0; | 
 |   max_sym_count = 0; | 
 |   max_sym_shndx_count = 0; | 
 |   merged = false; | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       struct bfd_elf_section_data *esdo = elf_section_data (o); | 
 |       o->reloc_count = 0; | 
 |  | 
 |       for (p = o->map_head.link_order; p != NULL; p = p->next) | 
 | 	{ | 
 | 	  unsigned int reloc_count = 0; | 
 | 	  unsigned int additional_reloc_count = 0; | 
 | 	  struct bfd_elf_section_data *esdi = NULL; | 
 |  | 
 | 	  if (p->type == bfd_section_reloc_link_order | 
 | 	      || p->type == bfd_symbol_reloc_link_order) | 
 | 	    reloc_count = 1; | 
 | 	  else if (p->type == bfd_indirect_link_order) | 
 | 	    { | 
 | 	      asection *sec; | 
 |  | 
 | 	      sec = p->u.indirect.section; | 
 |  | 
 | 	      /* Mark all sections which are to be included in the | 
 | 		 link.  This will normally be every section.  We need | 
 | 		 to do this so that we can identify any sections which | 
 | 		 the linker has decided to not include.  */ | 
 | 	      sec->linker_mark = true; | 
 |  | 
 | 	      if (sec->flags & SEC_MERGE) | 
 | 		merged = true; | 
 |  | 
 | 	      if (sec->rawsize > max_contents_size) | 
 | 		max_contents_size = sec->rawsize; | 
 | 	      if (sec->size > max_contents_size) | 
 | 		max_contents_size = sec->size; | 
 |  | 
 | 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour | 
 | 		  && (sec->owner->flags & DYNAMIC) == 0) | 
 | 		{ | 
 | 		  size_t sym_count; | 
 |  | 
 | 		  /* We are interested in just local symbols, not all | 
 | 		     symbols.  */ | 
 | 		  if (elf_bad_symtab (sec->owner)) | 
 | 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size | 
 | 				 / bed->s->sizeof_sym); | 
 | 		  else | 
 | 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; | 
 |  | 
 | 		  if (sym_count > max_sym_count) | 
 | 		    max_sym_count = sym_count; | 
 |  | 
 | 		  if (sym_count > max_sym_shndx_count | 
 | 		      && elf_symtab_shndx_list (sec->owner) != NULL) | 
 | 		    max_sym_shndx_count = sym_count; | 
 |  | 
 | 		  esdi = elf_section_data (sec); | 
 |  | 
 | 		  if (esdi->this_hdr.sh_type == SHT_REL | 
 | 		      || esdi->this_hdr.sh_type == SHT_RELA) | 
 | 		    /* Some backends use reloc_count in relocation sections | 
 | 		       to count particular types of relocs.  Of course, | 
 | 		       reloc sections themselves can't have relocations.  */ | 
 | 		    ; | 
 | 		  else if (emit_relocs) | 
 | 		    { | 
 | 		      reloc_count = sec->reloc_count; | 
 | 		      if (bed->elf_backend_count_additional_relocs) | 
 | 			{ | 
 | 			  int c; | 
 | 			  c = (*bed->elf_backend_count_additional_relocs) (sec); | 
 | 			  additional_reloc_count += c; | 
 | 			} | 
 | 		    } | 
 | 		  else if (bed->elf_backend_count_relocs) | 
 | 		    reloc_count = (*bed->elf_backend_count_relocs) (info, sec); | 
 |  | 
 | 		  if ((sec->flags & SEC_RELOC) != 0) | 
 | 		    { | 
 | 		      size_t ext_size = 0; | 
 |  | 
 | 		      if (esdi->rel.hdr != NULL) | 
 | 			ext_size = esdi->rel.hdr->sh_size; | 
 | 		      if (esdi->rela.hdr != NULL) | 
 | 			ext_size += esdi->rela.hdr->sh_size; | 
 |  | 
 | 		      if (ext_size > max_external_reloc_size) | 
 | 			max_external_reloc_size = ext_size; | 
 | 		      if (sec->reloc_count > max_internal_reloc_count) | 
 | 			max_internal_reloc_count = sec->reloc_count; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  if (reloc_count == 0) | 
 | 	    continue; | 
 |  | 
 | 	  reloc_count += additional_reloc_count; | 
 | 	  o->reloc_count += reloc_count; | 
 |  | 
 | 	  if (p->type == bfd_indirect_link_order && emit_relocs) | 
 | 	    { | 
 | 	      if (esdi->rel.hdr) | 
 | 		{ | 
 | 		  esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); | 
 | 		  esdo->rel.count += additional_reloc_count; | 
 | 		} | 
 | 	      if (esdi->rela.hdr) | 
 | 		{ | 
 | 		  esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); | 
 | 		  esdo->rela.count += additional_reloc_count; | 
 | 		} | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (o->use_rela_p) | 
 | 		esdo->rela.count += reloc_count; | 
 | 	      else | 
 | 		esdo->rel.count += reloc_count; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       if (o->reloc_count > 0) | 
 | 	o->flags |= SEC_RELOC; | 
 |       else | 
 | 	{ | 
 | 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to | 
 | 	     set it (this is probably a bug) and if it is set | 
 | 	     assign_section_numbers will create a reloc section.  */ | 
 | 	  o->flags &=~ SEC_RELOC; | 
 | 	} | 
 |  | 
 |       /* If the SEC_ALLOC flag is not set, force the section VMA to | 
 | 	 zero.  This is done in elf_fake_sections as well, but forcing | 
 | 	 the VMA to 0 here will ensure that relocs against these | 
 | 	 sections are handled correctly.  */ | 
 |       if ((o->flags & SEC_ALLOC) == 0 | 
 | 	  && ! o->user_set_vma) | 
 | 	o->vma = 0; | 
 |     } | 
 |  | 
 |   if (! bfd_link_relocatable (info) && merged) | 
 |     elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); | 
 |  | 
 |   /* Figure out the file positions for everything but the symbol table | 
 |      and the relocs.  We set symcount to force assign_section_numbers | 
 |      to create a symbol table.  */ | 
 |   abfd->symcount = info->strip != strip_all || emit_relocs; | 
 |   BFD_ASSERT (! abfd->output_has_begun); | 
 |   if (! _bfd_elf_compute_section_file_positions (abfd, info)) | 
 |     goto error_return; | 
 |  | 
 |   /* Set sizes, and assign file positions for reloc sections.  */ | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       struct bfd_elf_section_data *esdo = elf_section_data (o); | 
 |       if ((o->flags & SEC_RELOC) != 0) | 
 | 	{ | 
 | 	  if (esdo->rel.hdr | 
 | 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) | 
 | 	    goto error_return; | 
 |  | 
 | 	  if (esdo->rela.hdr | 
 | 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) | 
 | 	    goto error_return; | 
 | 	} | 
 |  | 
 |       /* _bfd_elf_compute_section_file_positions makes temporary use | 
 | 	 of target_index.  Reset it.  */ | 
 |       o->target_index = 0; | 
 |  | 
 |       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them | 
 | 	 to count upwards while actually outputting the relocations.  */ | 
 |       esdo->rel.count = 0; | 
 |       esdo->rela.count = 0; | 
 |  | 
 |       if ((esdo->this_hdr.sh_offset == (file_ptr) -1) | 
 | 	  && !bfd_section_is_ctf (o)) | 
 | 	{ | 
 | 	  /* Cache the section contents so that they can be compressed | 
 | 	     later.  Use bfd_malloc since it will be freed by | 
 | 	     bfd_compress_section_contents.  */ | 
 | 	  unsigned char *contents = esdo->this_hdr.contents; | 
 | 	  if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL) | 
 | 	    abort (); | 
 | 	  contents | 
 | 	    = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); | 
 | 	  if (contents == NULL) | 
 | 	    goto error_return; | 
 | 	  esdo->this_hdr.contents = contents; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We have now assigned file positions for all the sections except .symtab, | 
 |      .strtab, and non-loaded reloc and compressed debugging sections.  We start | 
 |      the .symtab section at the current file position, and write directly to it. | 
 |      We build the .strtab section in memory.  */ | 
 |   abfd->symcount = 0; | 
 |   symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   /* sh_name is set in prep_headers.  */ | 
 |   symtab_hdr->sh_type = SHT_SYMTAB; | 
 |   /* sh_flags, sh_addr and sh_size all start off zero.  */ | 
 |   symtab_hdr->sh_entsize = bed->s->sizeof_sym; | 
 |   /* sh_link is set in assign_section_numbers.  */ | 
 |   /* sh_info is set below.  */ | 
 |   /* sh_offset is set just below.  */ | 
 |   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; | 
 |  | 
 |   if (max_sym_count < 20) | 
 |     max_sym_count = 20; | 
 |   htab->strtabsize = max_sym_count; | 
 |   amt = max_sym_count * sizeof (struct elf_sym_strtab); | 
 |   htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); | 
 |   if (htab->strtab == NULL) | 
 |     goto error_return; | 
 |   /* The real buffer will be allocated in elf_link_swap_symbols_out.  */ | 
 |   flinfo.symshndxbuf | 
 |     = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) | 
 |        ? (Elf_External_Sym_Shndx *) -1 : NULL); | 
 |  | 
 |   if (info->strip != strip_all || emit_relocs) | 
 |     { | 
 |       file_ptr off = elf_next_file_pos (abfd); | 
 |  | 
 |       _bfd_elf_assign_file_position_for_section (symtab_hdr, off, true); | 
 |  | 
 |       /* Note that at this point elf_next_file_pos (abfd) is | 
 | 	 incorrect.  We do not yet know the size of the .symtab section. | 
 | 	 We correct next_file_pos below, after we do know the size.  */ | 
 |  | 
 |       /* Start writing out the symbol table.  The first symbol is always a | 
 | 	 dummy symbol.  */ | 
 |       elfsym.st_value = 0; | 
 |       elfsym.st_size = 0; | 
 |       elfsym.st_info = 0; | 
 |       elfsym.st_other = 0; | 
 |       elfsym.st_shndx = SHN_UNDEF; | 
 |       elfsym.st_target_internal = 0; | 
 |       if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, | 
 | 				     bfd_und_section_ptr, NULL) != 1) | 
 | 	goto error_return; | 
 |  | 
 |       /* Output a symbol for each section if asked or they are used for | 
 | 	 relocs.  These symbols usually have no names.  We store the | 
 | 	 index of each one in the index field of the section, so that | 
 | 	 we can find it again when outputting relocs.  */ | 
 |  | 
 |       if (bfd_keep_unused_section_symbols (abfd) || emit_relocs) | 
 | 	{ | 
 | 	  bool name_local_sections | 
 | 	    = (bed->elf_backend_name_local_section_symbols | 
 | 	       && bed->elf_backend_name_local_section_symbols (abfd)); | 
 | 	  const char *name = NULL; | 
 |  | 
 | 	  elfsym.st_size = 0; | 
 | 	  elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | 
 | 	  elfsym.st_other = 0; | 
 | 	  elfsym.st_value = 0; | 
 | 	  elfsym.st_target_internal = 0; | 
 | 	  for (i = 1; i < elf_numsections (abfd); i++) | 
 | 	    { | 
 | 	      o = bfd_section_from_elf_index (abfd, i); | 
 | 	      if (o != NULL) | 
 | 		{ | 
 | 		  o->target_index = bfd_get_symcount (abfd); | 
 | 		  elfsym.st_shndx = i; | 
 | 		  if (!bfd_link_relocatable (info)) | 
 | 		    elfsym.st_value = o->vma; | 
 | 		  if (name_local_sections) | 
 | 		    name = o->name; | 
 | 		  if (elf_link_output_symstrtab (&flinfo, name, &elfsym, o, | 
 | 						 NULL) != 1) | 
 | 		    goto error_return; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* On some targets like Irix 5 the symbol split between local and global | 
 |      ones recorded in the sh_info field needs to be done between section | 
 |      and all other symbols.  */ | 
 |   if (bed->elf_backend_elfsym_local_is_section | 
 |       && bed->elf_backend_elfsym_local_is_section (abfd)) | 
 |     symtab_hdr->sh_info = bfd_get_symcount (abfd); | 
 |  | 
 |   /* Allocate some memory to hold information read in from the input | 
 |      files.  */ | 
 |   if (max_contents_size != 0) | 
 |     { | 
 |       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); | 
 |       if (flinfo.contents == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (max_external_reloc_size != 0) | 
 |     { | 
 |       flinfo.external_relocs = bfd_malloc (max_external_reloc_size); | 
 |       if (flinfo.external_relocs == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (max_internal_reloc_count != 0) | 
 |     { | 
 |       amt = max_internal_reloc_count * sizeof (Elf_Internal_Rela); | 
 |       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); | 
 |       if (flinfo.internal_relocs == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (max_sym_count != 0) | 
 |     { | 
 |       amt = max_sym_count * bed->s->sizeof_sym; | 
 |       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); | 
 |       if (flinfo.external_syms == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       amt = max_sym_count * sizeof (Elf_Internal_Sym); | 
 |       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); | 
 |       if (flinfo.internal_syms == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       amt = max_sym_count * sizeof (long); | 
 |       flinfo.indices = (long int *) bfd_malloc (amt); | 
 |       if (flinfo.indices == NULL) | 
 | 	goto error_return; | 
 |  | 
 |       amt = max_sym_count * sizeof (asection *); | 
 |       flinfo.sections = (asection **) bfd_malloc (amt); | 
 |       if (flinfo.sections == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (max_sym_shndx_count != 0) | 
 |     { | 
 |       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); | 
 |       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); | 
 |       if (flinfo.locsym_shndx == NULL) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (htab->tls_sec) | 
 |     { | 
 |       bfd_vma base, end = 0;  /* Both bytes.  */ | 
 |       asection *sec; | 
 |  | 
 |       for (sec = htab->tls_sec; | 
 | 	   sec && (sec->flags & SEC_THREAD_LOCAL); | 
 | 	   sec = sec->next) | 
 | 	{ | 
 | 	  bfd_size_type size = sec->size; | 
 | 	  unsigned int opb = bfd_octets_per_byte (abfd, sec); | 
 |  | 
 | 	  if (size == 0 | 
 | 	      && (sec->flags & SEC_HAS_CONTENTS) == 0) | 
 | 	    { | 
 | 	      struct bfd_link_order *ord = sec->map_tail.link_order; | 
 |  | 
 | 	      if (ord != NULL) | 
 | 		size = ord->offset * opb + ord->size; | 
 | 	    } | 
 | 	  end = sec->vma + size / opb; | 
 | 	} | 
 |       base = htab->tls_sec->vma; | 
 |       /* Only align end of TLS section if static TLS doesn't have special | 
 | 	 alignment requirements.  */ | 
 |       if (bed->static_tls_alignment == 1) | 
 | 	end = align_power (end, htab->tls_sec->alignment_power); | 
 |       htab->tls_size = end - base; | 
 |     } | 
 |  | 
 |   if (!_bfd_elf_fixup_eh_frame_hdr (info)) | 
 |     return false; | 
 |  | 
 |   /* Finish relative relocations here after regular symbol processing | 
 |      is finished if DT_RELR is enabled.  */ | 
 |   if (info->enable_dt_relr | 
 |       && bed->finish_relative_relocs | 
 |       && !bed->finish_relative_relocs (info)) | 
 |     info->callbacks->einfo | 
 |       (_("%F%P: %pB: failed to finish relative relocations\n"), abfd); | 
 |  | 
 |   /* Since ELF permits relocations to be against local symbols, we | 
 |      must have the local symbols available when we do the relocations. | 
 |      Since we would rather only read the local symbols once, and we | 
 |      would rather not keep them in memory, we handle all the | 
 |      relocations for a single input file at the same time. | 
 |  | 
 |      Unfortunately, there is no way to know the total number of local | 
 |      symbols until we have seen all of them, and the local symbol | 
 |      indices precede the global symbol indices.  This means that when | 
 |      we are generating relocatable output, and we see a reloc against | 
 |      a global symbol, we can not know the symbol index until we have | 
 |      finished examining all the local symbols to see which ones we are | 
 |      going to output.  To deal with this, we keep the relocations in | 
 |      memory, and don't output them until the end of the link.  This is | 
 |      an unfortunate waste of memory, but I don't see a good way around | 
 |      it.  Fortunately, it only happens when performing a relocatable | 
 |      link, which is not the common case.  FIXME: If keep_memory is set | 
 |      we could write the relocs out and then read them again; I don't | 
 |      know how bad the memory loss will be.  */ | 
 |  | 
 |   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
 |     sub->output_has_begun = false; | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       for (p = o->map_head.link_order; p != NULL; p = p->next) | 
 | 	{ | 
 | 	  if (p->type == bfd_indirect_link_order | 
 | 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) | 
 | 		  == bfd_target_elf_flavour) | 
 | 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) | 
 | 	    { | 
 | 	      if (! sub->output_has_begun) | 
 | 		{ | 
 | 		  if (! elf_link_input_bfd (&flinfo, sub)) | 
 | 		    goto error_return; | 
 | 		  sub->output_has_begun = true; | 
 | 		} | 
 | 	    } | 
 | 	  else if (p->type == bfd_section_reloc_link_order | 
 | 		   || p->type == bfd_symbol_reloc_link_order) | 
 | 	    { | 
 | 	      if (! elf_reloc_link_order (abfd, info, o, p)) | 
 | 		goto error_return; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (! _bfd_default_link_order (abfd, info, o, p)) | 
 | 		{ | 
 | 		  if (p->type == bfd_indirect_link_order | 
 | 		      && (bfd_get_flavour (sub) | 
 | 			  == bfd_target_elf_flavour) | 
 | 		      && (elf_elfheader (sub)->e_ident[EI_CLASS] | 
 | 			  != bed->s->elfclass)) | 
 | 		    { | 
 | 		      const char *iclass, *oclass; | 
 |  | 
 | 		      switch (bed->s->elfclass) | 
 | 			{ | 
 | 			case ELFCLASS64: oclass = "ELFCLASS64"; break; | 
 | 			case ELFCLASS32: oclass = "ELFCLASS32"; break; | 
 | 			case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; | 
 | 			default: abort (); | 
 | 			} | 
 |  | 
 | 		      switch (elf_elfheader (sub)->e_ident[EI_CLASS]) | 
 | 			{ | 
 | 			case ELFCLASS64: iclass = "ELFCLASS64"; break; | 
 | 			case ELFCLASS32: iclass = "ELFCLASS32"; break; | 
 | 			case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; | 
 | 			default: abort (); | 
 | 			} | 
 |  | 
 | 		      bfd_set_error (bfd_error_wrong_format); | 
 | 		      _bfd_error_handler | 
 | 			/* xgettext:c-format */ | 
 | 			(_("%pB: file class %s incompatible with %s"), | 
 | 			 sub, iclass, oclass); | 
 | 		    } | 
 |  | 
 | 		  goto error_return; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Free symbol buffer if needed.  */ | 
 |   if (!info->reduce_memory_overheads) | 
 |     { | 
 |       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
 | 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour) | 
 | 	  { | 
 | 	    free (elf_tdata (sub)->symbuf); | 
 | 	    elf_tdata (sub)->symbuf = NULL; | 
 | 	  } | 
 |     } | 
 |  | 
 |   ret = true; | 
 |  | 
 |   /* Output any global symbols that got converted to local in a | 
 |      version script or due to symbol visibility.  We do this in a | 
 |      separate step since ELF requires all local symbols to appear | 
 |      prior to any global symbols.  FIXME: We should only do this if | 
 |      some global symbols were, in fact, converted to become local. | 
 |      FIXME: Will this work correctly with the Irix 5 linker?  */ | 
 |   eoinfo.failed = false; | 
 |   eoinfo.flinfo = &flinfo; | 
 |   eoinfo.localsyms = true; | 
 |   eoinfo.file_sym_done = false; | 
 |   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); | 
 |   if (eoinfo.failed) | 
 |     { | 
 |       ret = false; | 
 |       goto return_local_hash_table; | 
 |     } | 
 |  | 
 |   /* If backend needs to output some local symbols not present in the hash | 
 |      table, do it now.  */ | 
 |   if (bed->elf_backend_output_arch_local_syms | 
 |       && (info->strip != strip_all || emit_relocs)) | 
 |     { | 
 |       if (! ((*bed->elf_backend_output_arch_local_syms) | 
 | 	     (abfd, info, &flinfo, elf_link_output_symstrtab))) | 
 | 	{ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* That wrote out all the local symbols.  Finish up the symbol table | 
 |      with the global symbols. Even if we want to strip everything we | 
 |      can, we still need to deal with those global symbols that got | 
 |      converted to local in a version script.  */ | 
 |  | 
 |   /* The sh_info field records the index of the first non local symbol.  */ | 
 |   if (!symtab_hdr->sh_info) | 
 |     symtab_hdr->sh_info = bfd_get_symcount (abfd); | 
 |  | 
 |   if (dynamic | 
 |       && htab->dynsym != NULL | 
 |       && htab->dynsym->output_section != bfd_abs_section_ptr) | 
 |     { | 
 |       Elf_Internal_Sym sym; | 
 |       bfd_byte *dynsym = htab->dynsym->contents; | 
 |  | 
 |       o = htab->dynsym->output_section; | 
 |       elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; | 
 |  | 
 |       /* Write out the section symbols for the output sections.  */ | 
 |       if (bfd_link_pic (info) | 
 | 	  || htab->is_relocatable_executable) | 
 | 	{ | 
 | 	  asection *s; | 
 |  | 
 | 	  sym.st_size = 0; | 
 | 	  sym.st_name = 0; | 
 | 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); | 
 | 	  sym.st_other = 0; | 
 | 	  sym.st_target_internal = 0; | 
 |  | 
 | 	  for (s = abfd->sections; s != NULL; s = s->next) | 
 | 	    { | 
 | 	      int indx; | 
 | 	      bfd_byte *dest; | 
 | 	      long dynindx; | 
 |  | 
 | 	      dynindx = elf_section_data (s)->dynindx; | 
 | 	      if (dynindx <= 0) | 
 | 		continue; | 
 | 	      indx = elf_section_data (s)->this_idx; | 
 | 	      BFD_ASSERT (indx > 0); | 
 | 	      sym.st_shndx = indx; | 
 | 	      if (! check_dynsym (abfd, &sym)) | 
 | 		{ | 
 | 		  ret = false; | 
 | 		  goto return_local_hash_table; | 
 | 		} | 
 | 	      sym.st_value = s->vma; | 
 | 	      dest = dynsym + dynindx * bed->s->sizeof_sym; | 
 |  | 
 | 	      /* Inform the linker of the addition of this symbol.  */ | 
 |  | 
 | 	      if (info->callbacks->ctf_new_dynsym) | 
 | 		info->callbacks->ctf_new_dynsym (dynindx, &sym); | 
 |  | 
 | 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* Write out the local dynsyms.  */ | 
 |       if (htab->dynlocal) | 
 | 	{ | 
 | 	  struct elf_link_local_dynamic_entry *e; | 
 | 	  for (e = htab->dynlocal; e ; e = e->next) | 
 | 	    { | 
 | 	      asection *s; | 
 | 	      bfd_byte *dest; | 
 |  | 
 | 	      /* Copy the internal symbol and turn off visibility. | 
 | 		 Note that we saved a word of storage and overwrote | 
 | 		 the original st_name with the dynstr_index.  */ | 
 | 	      sym = e->isym; | 
 | 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1); | 
 | 	      sym.st_shndx = SHN_UNDEF; | 
 |  | 
 | 	      s = bfd_section_from_elf_index (e->input_bfd, | 
 | 					      e->isym.st_shndx); | 
 | 	      if (s != NULL | 
 | 		  && s->output_section != NULL | 
 | 		  && elf_section_data (s->output_section) != NULL) | 
 | 		{ | 
 | 		  sym.st_shndx = | 
 | 		    elf_section_data (s->output_section)->this_idx; | 
 | 		  if (! check_dynsym (abfd, &sym)) | 
 | 		    { | 
 | 		      ret = false; | 
 | 		      goto return_local_hash_table; | 
 | 		    } | 
 | 		  sym.st_value = (s->output_section->vma | 
 | 				  + s->output_offset | 
 | 				  + e->isym.st_value); | 
 | 		} | 
 |  | 
 | 	      /* Inform the linker of the addition of this symbol.  */ | 
 |  | 
 | 	      if (info->callbacks->ctf_new_dynsym) | 
 | 		info->callbacks->ctf_new_dynsym (e->dynindx, &sym); | 
 |  | 
 | 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym; | 
 | 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We get the global symbols from the hash table.  */ | 
 |   eoinfo.failed = false; | 
 |   eoinfo.localsyms = false; | 
 |   eoinfo.flinfo = &flinfo; | 
 |   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); | 
 |   if (eoinfo.failed) | 
 |     { | 
 |       ret = false; | 
 |       goto return_local_hash_table; | 
 |     } | 
 |  | 
 |   /* If backend needs to output some symbols not present in the hash | 
 |      table, do it now.  */ | 
 |   if (bed->elf_backend_output_arch_syms | 
 |       && (info->strip != strip_all || emit_relocs)) | 
 |     { | 
 |       if (! ((*bed->elf_backend_output_arch_syms) | 
 | 	     (abfd, info, &flinfo, elf_link_output_symstrtab))) | 
 | 	{ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Finalize the .strtab section.  */ | 
 |   _bfd_elf_strtab_finalize (flinfo.symstrtab); | 
 |  | 
 |   /* Swap out the .strtab section. */ | 
 |   if (!elf_link_swap_symbols_out (&flinfo)) | 
 |     { | 
 |       ret = false; | 
 |       goto return_local_hash_table; | 
 |     } | 
 |  | 
 |   /* Now we know the size of the symtab section.  */ | 
 |   if (bfd_get_symcount (abfd) > 0) | 
 |     { | 
 |       /* Finish up and write out the symbol string table (.strtab) | 
 | 	 section.  */ | 
 |       Elf_Internal_Shdr *symstrtab_hdr = NULL; | 
 |       file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; | 
 |  | 
 |       if (elf_symtab_shndx_list (abfd)) | 
 | 	{ | 
 | 	  symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; | 
 |  | 
 | 	  if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) | 
 | 	    { | 
 | 	      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; | 
 | 	      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); | 
 | 	      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); | 
 | 	      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); | 
 | 	      symtab_shndx_hdr->sh_size = amt; | 
 |  | 
 | 	      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, | 
 | 							       off, true); | 
 |  | 
 | 	      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 | 
 | 		  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) | 
 | 		{ | 
 | 		  ret = false; | 
 | 		  goto return_local_hash_table; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; | 
 |       /* sh_name was set in prep_headers.  */ | 
 |       symstrtab_hdr->sh_type = SHT_STRTAB; | 
 |       symstrtab_hdr->sh_flags = bed->elf_strtab_flags; | 
 |       symstrtab_hdr->sh_addr = 0; | 
 |       symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); | 
 |       symstrtab_hdr->sh_entsize = 0; | 
 |       symstrtab_hdr->sh_link = 0; | 
 |       symstrtab_hdr->sh_info = 0; | 
 |       /* sh_offset is set just below.  */ | 
 |       symstrtab_hdr->sh_addralign = 1; | 
 |  | 
 |       off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, | 
 | 						       off, true); | 
 |       elf_next_file_pos (abfd) = off; | 
 |  | 
 |       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 | 
 | 	  || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) | 
 | 	{ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |     } | 
 |  | 
 |   if (info->out_implib_bfd && !elf_output_implib (abfd, info)) | 
 |     { | 
 |       _bfd_error_handler (_("%pB: failed to generate import library"), | 
 | 			  info->out_implib_bfd); | 
 |       ret = false; | 
 |       goto return_local_hash_table; | 
 |     } | 
 |  | 
 |   /* Adjust the relocs to have the correct symbol indices.  */ | 
 |   for (o = abfd->sections; o != NULL; o = o->next) | 
 |     { | 
 |       struct bfd_elf_section_data *esdo = elf_section_data (o); | 
 |       bool sort; | 
 |  | 
 |       if ((o->flags & SEC_RELOC) == 0) | 
 | 	continue; | 
 |  | 
 |       sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); | 
 |       if (esdo->rel.hdr != NULL | 
 | 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort, info)) | 
 | 	{ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |       if (esdo->rela.hdr != NULL | 
 | 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort, info)) | 
 | 	{ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |  | 
 |       /* Set the reloc_count field to 0 to prevent write_relocs from | 
 | 	 trying to swap the relocs out itself.  */ | 
 |       o->reloc_count = 0; | 
 |     } | 
 |  | 
 |   relativecount = 0; | 
 |   if (dynamic && info->combreloc && dynobj != NULL) | 
 |     relativecount = elf_link_sort_relocs (abfd, info, &reldyn); | 
 |  | 
 |   relr_entsize = 0; | 
 |   if (htab->srelrdyn != NULL | 
 |       && htab->srelrdyn->output_section != NULL | 
 |       && htab->srelrdyn->size != 0) | 
 |     { | 
 |       asection *s = htab->srelrdyn->output_section; | 
 |       relr_entsize = elf_section_data (s)->this_hdr.sh_entsize; | 
 |       if (relr_entsize == 0) | 
 | 	{ | 
 | 	  relr_entsize = bed->s->arch_size / 8; | 
 | 	  elf_section_data (s)->this_hdr.sh_entsize = relr_entsize; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we are linking against a dynamic object, or generating a | 
 |      shared library, finish up the dynamic linking information.  */ | 
 |   if (dynamic) | 
 |     { | 
 |       bfd_byte *dyncon, *dynconend; | 
 |  | 
 |       /* Fix up .dynamic entries.  */ | 
 |       o = bfd_get_linker_section (dynobj, ".dynamic"); | 
 |       BFD_ASSERT (o != NULL); | 
 |  | 
 |       dyncon = o->contents; | 
 |       dynconend = PTR_ADD (o->contents, o->size); | 
 |       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | 
 | 	{ | 
 | 	  Elf_Internal_Dyn dyn; | 
 | 	  const char *name; | 
 | 	  unsigned int type; | 
 | 	  bfd_size_type sh_size; | 
 | 	  bfd_vma sh_addr; | 
 |  | 
 | 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | 
 |  | 
 | 	  switch (dyn.d_tag) | 
 | 	    { | 
 | 	    default: | 
 | 	      continue; | 
 | 	    case DT_NULL: | 
 | 	      if (relativecount != 0) | 
 | 		{ | 
 | 		  switch (elf_section_data (reldyn)->this_hdr.sh_type) | 
 | 		    { | 
 | 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; | 
 | 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; | 
 | 		    } | 
 | 		  if (dyn.d_tag != DT_NULL | 
 | 		      && dynconend - dyncon >= bed->s->sizeof_dyn) | 
 | 		    { | 
 | 		      dyn.d_un.d_val = relativecount; | 
 | 		      relativecount = 0; | 
 | 		      break; | 
 | 		    } | 
 | 		  relativecount = 0; | 
 | 		} | 
 | 	      if (relr_entsize != 0) | 
 | 		{ | 
 | 		  if (dynconend - dyncon >= 3 * bed->s->sizeof_dyn) | 
 | 		    { | 
 | 		      asection *s = htab->srelrdyn; | 
 | 		      dyn.d_tag = DT_RELR; | 
 | 		      dyn.d_un.d_ptr | 
 | 			= s->output_section->vma + s->output_offset; | 
 | 		      bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | 
 | 		      dyncon += bed->s->sizeof_dyn; | 
 |  | 
 | 		      dyn.d_tag = DT_RELRSZ; | 
 | 		      dyn.d_un.d_val = s->size; | 
 | 		      bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | 
 | 		      dyncon += bed->s->sizeof_dyn; | 
 |  | 
 | 		      dyn.d_tag = DT_RELRENT; | 
 | 		      dyn.d_un.d_val = relr_entsize; | 
 | 		      relr_entsize = 0; | 
 | 		      break; | 
 | 		    } | 
 | 		  relr_entsize = 0; | 
 | 		} | 
 | 	      continue; | 
 |  | 
 | 	    case DT_INIT: | 
 | 	      name = info->init_function; | 
 | 	      goto get_sym; | 
 | 	    case DT_FINI: | 
 | 	      name = info->fini_function; | 
 | 	    get_sym: | 
 | 	      { | 
 | 		struct elf_link_hash_entry *h; | 
 |  | 
 | 		h = elf_link_hash_lookup (htab, name, false, false, true); | 
 | 		if (h != NULL | 
 | 		    && (h->root.type == bfd_link_hash_defined | 
 | 			|| h->root.type == bfd_link_hash_defweak)) | 
 | 		  { | 
 | 		    dyn.d_un.d_ptr = h->root.u.def.value; | 
 | 		    o = h->root.u.def.section; | 
 | 		    if (o->output_section != NULL) | 
 | 		      dyn.d_un.d_ptr += (o->output_section->vma | 
 | 					 + o->output_offset); | 
 | 		    else | 
 | 		      { | 
 | 			/* The symbol is imported from another shared | 
 | 			   library and does not apply to this one.  */ | 
 | 			dyn.d_un.d_ptr = 0; | 
 | 		      } | 
 | 		    break; | 
 | 		  } | 
 | 	      } | 
 | 	      continue; | 
 |  | 
 | 	    case DT_PREINIT_ARRAYSZ: | 
 | 	      name = ".preinit_array"; | 
 | 	      goto get_out_size; | 
 | 	    case DT_INIT_ARRAYSZ: | 
 | 	      name = ".init_array"; | 
 | 	      goto get_out_size; | 
 | 	    case DT_FINI_ARRAYSZ: | 
 | 	      name = ".fini_array"; | 
 | 	    get_out_size: | 
 | 	      o = bfd_get_section_by_name (abfd, name); | 
 | 	      if (o == NULL) | 
 | 		{ | 
 | 		  _bfd_error_handler | 
 | 		    (_("could not find section %s"), name); | 
 | 		  goto error_return; | 
 | 		} | 
 | 	      if (o->size == 0) | 
 | 		_bfd_error_handler | 
 | 		  (_("warning: %s section has zero size"), name); | 
 | 	      dyn.d_un.d_val = o->size; | 
 | 	      break; | 
 |  | 
 | 	    case DT_PREINIT_ARRAY: | 
 | 	      name = ".preinit_array"; | 
 | 	      goto get_out_vma; | 
 | 	    case DT_INIT_ARRAY: | 
 | 	      name = ".init_array"; | 
 | 	      goto get_out_vma; | 
 | 	    case DT_FINI_ARRAY: | 
 | 	      name = ".fini_array"; | 
 | 	    get_out_vma: | 
 | 	      o = bfd_get_section_by_name (abfd, name); | 
 | 	      goto do_vma; | 
 |  | 
 | 	    case DT_HASH: | 
 | 	      name = ".hash"; | 
 | 	      goto get_vma; | 
 | 	    case DT_GNU_HASH: | 
 | 	      name = ".gnu.hash"; | 
 | 	      goto get_vma; | 
 | 	    case DT_STRTAB: | 
 | 	      name = ".dynstr"; | 
 | 	      goto get_vma; | 
 | 	    case DT_SYMTAB: | 
 | 	      name = ".dynsym"; | 
 | 	      goto get_vma; | 
 | 	    case DT_VERDEF: | 
 | 	      name = ".gnu.version_d"; | 
 | 	      goto get_vma; | 
 | 	    case DT_VERNEED: | 
 | 	      name = ".gnu.version_r"; | 
 | 	      goto get_vma; | 
 | 	    case DT_VERSYM: | 
 | 	      name = ".gnu.version"; | 
 | 	    get_vma: | 
 | 	      o = bfd_get_linker_section (dynobj, name); | 
 | 	    do_vma: | 
 | 	      if (o == NULL || bfd_is_abs_section (o->output_section)) | 
 | 		{ | 
 | 		  _bfd_error_handler | 
 | 		    (_("could not find section %s"), name); | 
 | 		  goto error_return; | 
 | 		} | 
 | 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) | 
 | 		{ | 
 | 		  _bfd_error_handler | 
 | 		    (_("warning: section '%s' is being made into a note"), name); | 
 | 		  bfd_set_error (bfd_error_nonrepresentable_section); | 
 | 		  goto error_return; | 
 | 		} | 
 | 	      dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; | 
 | 	      break; | 
 |  | 
 | 	    case DT_REL: | 
 | 	    case DT_RELA: | 
 | 	    case DT_RELSZ: | 
 | 	    case DT_RELASZ: | 
 | 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) | 
 | 		type = SHT_REL; | 
 | 	      else | 
 | 		type = SHT_RELA; | 
 | 	      sh_size = 0; | 
 | 	      sh_addr = 0; | 
 | 	      for (i = 1; i < elf_numsections (abfd); i++) | 
 | 		{ | 
 | 		  Elf_Internal_Shdr *hdr; | 
 |  | 
 | 		  hdr = elf_elfsections (abfd)[i]; | 
 | 		  if (hdr->sh_type == type | 
 | 		      && (hdr->sh_flags & SHF_ALLOC) != 0) | 
 | 		    { | 
 | 		      sh_size += hdr->sh_size; | 
 | 		      if (sh_addr == 0 | 
 | 			  || sh_addr > hdr->sh_addr) | 
 | 			sh_addr = hdr->sh_addr; | 
 | 		    } | 
 | 		} | 
 |  | 
 | 	      if (bed->dtrel_excludes_plt && htab->srelplt != NULL) | 
 | 		{ | 
 | 		  unsigned int opb = bfd_octets_per_byte (abfd, o); | 
 |  | 
 | 		  /* Don't count procedure linkage table relocs in the | 
 | 		     overall reloc count.  */ | 
 | 		  sh_size -= htab->srelplt->size; | 
 | 		  if (sh_size == 0) | 
 | 		    /* If the size is zero, make the address zero too. | 
 | 		       This is to avoid a glibc bug.  If the backend | 
 | 		       emits DT_RELA/DT_RELASZ even when DT_RELASZ is | 
 | 		       zero, then we'll put DT_RELA at the end of | 
 | 		       DT_JMPREL.  glibc will interpret the end of | 
 | 		       DT_RELA matching the end of DT_JMPREL as the | 
 | 		       case where DT_RELA includes DT_JMPREL, and for | 
 | 		       LD_BIND_NOW will decide that processing DT_RELA | 
 | 		       will process the PLT relocs too.  Net result: | 
 | 		       No PLT relocs applied.  */ | 
 | 		    sh_addr = 0; | 
 |  | 
 | 		  /* If .rela.plt is the first .rela section, exclude | 
 | 		     it from DT_RELA.  */ | 
 | 		  else if (sh_addr == (htab->srelplt->output_section->vma | 
 | 				       + htab->srelplt->output_offset) * opb) | 
 | 		    sh_addr += htab->srelplt->size; | 
 | 		} | 
 |  | 
 | 	      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) | 
 | 		dyn.d_un.d_val = sh_size; | 
 | 	      else | 
 | 		dyn.d_un.d_ptr = sh_addr; | 
 | 	      break; | 
 | 	    } | 
 | 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* If we have created any dynamic sections, then output them.  */ | 
 |   if (dynobj != NULL) | 
 |     { | 
 |       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) | 
 | 	goto error_return; | 
 |  | 
 |       /* Check for DT_TEXTREL (late, in case the backend removes it).  */ | 
 |       if (bfd_link_textrel_check (info) | 
 | 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL | 
 | 	  && o->size != 0) | 
 | 	{ | 
 | 	  bfd_byte *dyncon, *dynconend; | 
 |  | 
 | 	  dyncon = o->contents; | 
 | 	  dynconend = o->contents + o->size; | 
 | 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) | 
 | 	    { | 
 | 	      Elf_Internal_Dyn dyn; | 
 |  | 
 | 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn); | 
 |  | 
 | 	      if (dyn.d_tag == DT_TEXTREL) | 
 | 		{ | 
 | 		  if (info->textrel_check == textrel_check_error) | 
 | 		    info->callbacks->einfo | 
 | 		      (_("%P%X: read-only segment has dynamic relocations\n")); | 
 | 		  else if (bfd_link_dll (info)) | 
 | 		    info->callbacks->einfo | 
 | 		      (_("%P: warning: creating DT_TEXTREL in a shared object\n")); | 
 | 		  else if (bfd_link_pde (info)) | 
 | 		    info->callbacks->einfo | 
 | 		      (_("%P: warning: creating DT_TEXTREL in a PDE\n")); | 
 | 		  else | 
 | 		    info->callbacks->einfo | 
 | 		      (_("%P: warning: creating DT_TEXTREL in a PIE\n")); | 
 | 		  break; | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |  | 
 |       for (o = dynobj->sections; o != NULL; o = o->next) | 
 | 	{ | 
 | 	  if ((o->flags & SEC_HAS_CONTENTS) == 0 | 
 | 	      || o->size == 0 | 
 | 	      || o->output_section == bfd_abs_section_ptr) | 
 | 	    continue; | 
 | 	  if ((o->flags & SEC_LINKER_CREATED) == 0) | 
 | 	    { | 
 | 	      /* At this point, we are only interested in sections | 
 | 		 created by _bfd_elf_link_create_dynamic_sections.  */ | 
 | 	      continue; | 
 | 	    } | 
 | 	  if (htab->stab_info.stabstr == o) | 
 | 	    continue; | 
 | 	  if (htab->eh_info.hdr_sec == o) | 
 | 	    continue; | 
 | 	  if (strcmp (o->name, ".dynstr") != 0) | 
 | 	    { | 
 | 	      bfd_size_type octets = ((file_ptr) o->output_offset | 
 | 				      * bfd_octets_per_byte (abfd, o)); | 
 | 	      if (!bfd_set_section_contents (abfd, o->output_section, | 
 | 					     o->contents, octets, o->size)) | 
 | 		goto error_return; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* The contents of the .dynstr section are actually in a | 
 | 		 stringtab.  */ | 
 | 	      file_ptr off; | 
 |  | 
 | 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset; | 
 | 	      if (bfd_seek (abfd, off, SEEK_SET) != 0 | 
 | 		  || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) | 
 | 		goto error_return; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (!info->resolve_section_groups) | 
 |     { | 
 |       bool failed = false; | 
 |  | 
 |       BFD_ASSERT (bfd_link_relocatable (info)); | 
 |       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); | 
 |       if (failed) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   /* If we have optimized stabs strings, output them.  */ | 
 |   if (htab->stab_info.stabstr != NULL) | 
 |     { | 
 |       if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) | 
 | 	goto error_return; | 
 |     } | 
 |  | 
 |   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) | 
 |     goto error_return; | 
 |  | 
 |   if (info->callbacks->emit_ctf) | 
 |       info->callbacks->emit_ctf (); | 
 |  | 
 |   elf_final_link_free (abfd, &flinfo); | 
 |  | 
 |   if (attr_section) | 
 |     { | 
 |       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); | 
 |       if (contents == NULL) | 
 | 	{ | 
 | 	  /* Bail out and fail.  */ | 
 | 	  ret = false; | 
 | 	  goto return_local_hash_table; | 
 | 	} | 
 |       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); | 
 |       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); | 
 |       free (contents); | 
 |     } | 
 |  | 
 |  return_local_hash_table: | 
 |   if (info->unique_symbol) | 
 |     bfd_hash_table_free (&flinfo.local_hash_table); | 
 |   return ret; | 
 |  | 
 |  error_return: | 
 |   elf_final_link_free (abfd, &flinfo); | 
 |   ret = false; | 
 |   goto return_local_hash_table; | 
 | } | 
 |  | 
 | /* Initialize COOKIE for input bfd ABFD.  */ | 
 |  | 
 | static bool | 
 | init_reloc_cookie (struct elf_reloc_cookie *cookie, | 
 | 		   struct bfd_link_info *info, bfd *abfd) | 
 | { | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |   const struct elf_backend_data *bed; | 
 |  | 
 |   bed = get_elf_backend_data (abfd); | 
 |   symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |  | 
 |   cookie->abfd = abfd; | 
 |   cookie->sym_hashes = elf_sym_hashes (abfd); | 
 |   cookie->bad_symtab = elf_bad_symtab (abfd); | 
 |   if (cookie->bad_symtab) | 
 |     { | 
 |       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | 
 |       cookie->extsymoff = 0; | 
 |     } | 
 |   else | 
 |     { | 
 |       cookie->locsymcount = symtab_hdr->sh_info; | 
 |       cookie->extsymoff = symtab_hdr->sh_info; | 
 |     } | 
 |  | 
 |   if (bed->s->arch_size == 32) | 
 |     cookie->r_sym_shift = 8; | 
 |   else | 
 |     cookie->r_sym_shift = 32; | 
 |  | 
 |   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; | 
 |   if (cookie->locsyms == NULL && cookie->locsymcount != 0) | 
 |     { | 
 |       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, | 
 | 					      cookie->locsymcount, 0, | 
 | 					      NULL, NULL, NULL); | 
 |       if (cookie->locsyms == NULL) | 
 | 	{ | 
 | 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); | 
 | 	  return false; | 
 | 	} | 
 |       if (_bfd_link_keep_memory (info) ) | 
 | 	{ | 
 | 	  symtab_hdr->contents = (bfd_byte *) cookie->locsyms; | 
 | 	  info->cache_size += (cookie->locsymcount | 
 | 			       * sizeof (Elf_External_Sym_Shndx)); | 
 | 	} | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Free the memory allocated by init_reloc_cookie, if appropriate.  */ | 
 |  | 
 | static void | 
 | fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) | 
 | { | 
 |   Elf_Internal_Shdr *symtab_hdr; | 
 |  | 
 |   symtab_hdr = &elf_tdata (abfd)->symtab_hdr; | 
 |   if (symtab_hdr->contents != (unsigned char *) cookie->locsyms) | 
 |     free (cookie->locsyms); | 
 | } | 
 |  | 
 | /* Initialize the relocation information in COOKIE for input section SEC | 
 |    of input bfd ABFD.  */ | 
 |  | 
 | static bool | 
 | init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | 
 | 			struct bfd_link_info *info, bfd *abfd, | 
 | 			asection *sec) | 
 | { | 
 |   if (sec->reloc_count == 0) | 
 |     { | 
 |       cookie->rels = NULL; | 
 |       cookie->relend = NULL; | 
 |     } | 
 |   else | 
 |     { | 
 |       cookie->rels = _bfd_elf_link_info_read_relocs (abfd, info, sec, | 
 | 						     NULL, NULL, | 
 | 						     _bfd_link_keep_memory (info)); | 
 |       if (cookie->rels == NULL) | 
 | 	return false; | 
 |       cookie->rel = cookie->rels; | 
 |       cookie->relend = cookie->rels + sec->reloc_count; | 
 |     } | 
 |   cookie->rel = cookie->rels; | 
 |   return true; | 
 | } | 
 |  | 
 | /* Free the memory allocated by init_reloc_cookie_rels, | 
 |    if appropriate.  */ | 
 |  | 
 | static void | 
 | fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, | 
 | 			asection *sec) | 
 | { | 
 |   if (elf_section_data (sec)->relocs != cookie->rels) | 
 |     free (cookie->rels); | 
 | } | 
 |  | 
 | /* Initialize the whole of COOKIE for input section SEC.  */ | 
 |  | 
 | static bool | 
 | init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | 
 | 			       struct bfd_link_info *info, | 
 | 			       asection *sec) | 
 | { | 
 |   if (!init_reloc_cookie (cookie, info, sec->owner)) | 
 |     goto error1; | 
 |   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) | 
 |     goto error2; | 
 |   return true; | 
 |  | 
 |  error2: | 
 |   fini_reloc_cookie (cookie, sec->owner); | 
 |  error1: | 
 |   return false; | 
 | } | 
 |  | 
 | /* Free the memory allocated by init_reloc_cookie_for_section, | 
 |    if appropriate.  */ | 
 |  | 
 | static void | 
 | fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, | 
 | 			       asection *sec) | 
 | { | 
 |   fini_reloc_cookie_rels (cookie, sec); | 
 |   fini_reloc_cookie (cookie, sec->owner); | 
 | } | 
 |  | 
 | /* Garbage collect unused sections.  */ | 
 |  | 
 | /* Default gc_mark_hook.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_gc_mark_hook (asection *sec, | 
 | 		       struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
 | 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | 
 | 		       struct elf_link_hash_entry *h, | 
 | 		       Elf_Internal_Sym *sym) | 
 | { | 
 |   if (h != NULL) | 
 |     { | 
 |       switch (h->root.type) | 
 | 	{ | 
 | 	case bfd_link_hash_defined: | 
 | 	case bfd_link_hash_defweak: | 
 | 	  return h->root.u.def.section; | 
 |  | 
 | 	case bfd_link_hash_common: | 
 | 	  return h->root.u.c.p->section; | 
 |  | 
 | 	default: | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |   else | 
 |     return bfd_section_from_elf_index (sec->owner, sym->st_shndx); | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Return the debug definition section.  */ | 
 |  | 
 | static asection * | 
 | elf_gc_mark_debug_section (asection *sec ATTRIBUTE_UNUSED, | 
 | 			   struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
 | 			   Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, | 
 | 			   struct elf_link_hash_entry *h, | 
 | 			   Elf_Internal_Sym *sym) | 
 | { | 
 |   if (h != NULL) | 
 |     { | 
 |       /* Return the global debug definition section.  */ | 
 |       if ((h->root.type == bfd_link_hash_defined | 
 | 	   || h->root.type == bfd_link_hash_defweak) | 
 | 	  && (h->root.u.def.section->flags & SEC_DEBUGGING) != 0) | 
 | 	return h->root.u.def.section; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Return the local debug definition section.  */ | 
 |       asection *isec = bfd_section_from_elf_index (sec->owner, | 
 | 						   sym->st_shndx); | 
 |       if ((isec->flags & SEC_DEBUGGING) != 0) | 
 | 	return isec; | 
 |     } | 
 |  | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* COOKIE->rel describes a relocation against section SEC, which is | 
 |    a section we've decided to keep.  Return the section that contains | 
 |    the relocation symbol, or NULL if no section contains it.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, | 
 | 		       elf_gc_mark_hook_fn gc_mark_hook, | 
 | 		       struct elf_reloc_cookie *cookie, | 
 | 		       bool *start_stop) | 
 | { | 
 |   unsigned long r_symndx; | 
 |   struct elf_link_hash_entry *h, *hw; | 
 |  | 
 |   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; | 
 |   if (r_symndx == STN_UNDEF) | 
 |     return NULL; | 
 |  | 
 |   if (r_symndx >= cookie->locsymcount | 
 |       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) | 
 |     { | 
 |       bool was_marked; | 
 |  | 
 |       h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; | 
 |       if (h == NULL) | 
 | 	{ | 
 | 	  info->callbacks->einfo (_("%F%P: corrupt input: %pB\n"), | 
 | 				  sec->owner); | 
 | 	  return NULL; | 
 | 	} | 
 |       while (h->root.type == bfd_link_hash_indirect | 
 | 	     || h->root.type == bfd_link_hash_warning) | 
 | 	h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 |       was_marked = h->mark; | 
 |       h->mark = 1; | 
 |       /* Keep all aliases of the symbol too.  If an object symbol | 
 | 	 needs to be copied into .dynbss then all of its aliases | 
 | 	 should be present as dynamic symbols, not just the one used | 
 | 	 on the copy relocation.  */ | 
 |       hw = h; | 
 |       while (hw->is_weakalias) | 
 | 	{ | 
 | 	  hw = hw->u.alias; | 
 | 	  hw->mark = 1; | 
 | 	} | 
 |  | 
 |       if (!was_marked && h->start_stop && !h->root.ldscript_def) | 
 | 	{ | 
 | 	  if (info->start_stop_gc) | 
 | 	    return NULL; | 
 |  | 
 | 	  /* To work around a glibc bug, mark XXX input sections | 
 | 	     when there is a reference to __start_XXX or __stop_XXX | 
 | 	     symbols.  */ | 
 | 	  else if (start_stop != NULL) | 
 | 	    { | 
 | 	      asection *s = h->u2.start_stop_section; | 
 | 	      *start_stop = true; | 
 | 	      return s; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); | 
 |     } | 
 |  | 
 |   return (*gc_mark_hook) (sec, info, cookie->rel, NULL, | 
 | 			  &cookie->locsyms[r_symndx]); | 
 | } | 
 |  | 
 | /* COOKIE->rel describes a relocation against section SEC, which is | 
 |    a section we've decided to keep.  Mark the section that contains | 
 |    the relocation symbol.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, | 
 | 			asection *sec, | 
 | 			elf_gc_mark_hook_fn gc_mark_hook, | 
 | 			struct elf_reloc_cookie *cookie) | 
 | { | 
 |   asection *rsec; | 
 |   bool start_stop = false; | 
 |  | 
 |   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); | 
 |   while (rsec != NULL) | 
 |     { | 
 |       if (!rsec->gc_mark) | 
 | 	{ | 
 | 	  if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour | 
 | 	      || (rsec->owner->flags & DYNAMIC) != 0) | 
 | 	    rsec->gc_mark = 1; | 
 | 	  else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) | 
 | 	    return false; | 
 | 	} | 
 |       if (!start_stop) | 
 | 	break; | 
 |       rsec = bfd_get_next_section_by_name (rsec->owner, rsec); | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* The mark phase of garbage collection.  For a given section, mark | 
 |    it and any sections in this section's group, and all the sections | 
 |    which define symbols to which it refers.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_gc_mark (struct bfd_link_info *info, | 
 | 		  asection *sec, | 
 | 		  elf_gc_mark_hook_fn gc_mark_hook) | 
 | { | 
 |   bool ret; | 
 |   asection *group_sec, *eh_frame; | 
 |  | 
 |   sec->gc_mark = 1; | 
 |  | 
 |   /* Mark all the sections in the group.  */ | 
 |   group_sec = elf_section_data (sec)->next_in_group; | 
 |   if (group_sec && !group_sec->gc_mark) | 
 |     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) | 
 |       return false; | 
 |  | 
 |   /* Look through the section relocs.  */ | 
 |   ret = true; | 
 |   eh_frame = elf_eh_frame_section (sec->owner); | 
 |   if ((sec->flags & SEC_RELOC) != 0 | 
 |       && sec->reloc_count > 0 | 
 |       && sec != eh_frame) | 
 |     { | 
 |       struct elf_reloc_cookie cookie; | 
 |  | 
 |       if (!init_reloc_cookie_for_section (&cookie, info, sec)) | 
 | 	ret = false; | 
 |       else | 
 | 	{ | 
 | 	  for (; cookie.rel < cookie.relend; cookie.rel++) | 
 | 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) | 
 | 	      { | 
 | 		ret = false; | 
 | 		break; | 
 | 	      } | 
 | 	  fini_reloc_cookie_for_section (&cookie, sec); | 
 | 	} | 
 |     } | 
 |  | 
 |   if (ret && eh_frame && elf_fde_list (sec)) | 
 |     { | 
 |       struct elf_reloc_cookie cookie; | 
 |  | 
 |       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) | 
 | 	ret = false; | 
 |       else | 
 | 	{ | 
 | 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, | 
 | 				      gc_mark_hook, &cookie)) | 
 | 	    ret = false; | 
 | 	  fini_reloc_cookie_for_section (&cookie, eh_frame); | 
 | 	} | 
 |     } | 
 |  | 
 |   eh_frame = elf_section_eh_frame_entry (sec); | 
 |   if (ret && eh_frame && !eh_frame->gc_mark) | 
 |     if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) | 
 |       ret = false; | 
 |  | 
 |   return ret; | 
 | } | 
 |  | 
 | /* Scan and mark sections in a special or debug section group.  */ | 
 |  | 
 | static void | 
 | _bfd_elf_gc_mark_debug_special_section_group (asection *grp) | 
 | { | 
 |   /* Point to first section of section group.  */ | 
 |   asection *ssec; | 
 |   /* Used to iterate the section group.  */ | 
 |   asection *msec; | 
 |  | 
 |   bool is_special_grp = true; | 
 |   bool is_debug_grp = true; | 
 |  | 
 |   /* First scan to see if group contains any section other than debug | 
 |      and special section.  */ | 
 |   ssec = msec = elf_next_in_group (grp); | 
 |   do | 
 |     { | 
 |       if ((msec->flags & SEC_DEBUGGING) == 0) | 
 | 	is_debug_grp = false; | 
 |  | 
 |       if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) | 
 | 	is_special_grp = false; | 
 |  | 
 |       msec = elf_next_in_group (msec); | 
 |     } | 
 |   while (msec != ssec); | 
 |  | 
 |   /* If this is a pure debug section group or pure special section group, | 
 |      keep all sections in this group.  */ | 
 |   if (is_debug_grp || is_special_grp) | 
 |     { | 
 |       do | 
 | 	{ | 
 | 	  msec->gc_mark = 1; | 
 | 	  msec = elf_next_in_group (msec); | 
 | 	} | 
 |       while (msec != ssec); | 
 |     } | 
 | } | 
 |  | 
 | /* Keep debug and special sections.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, | 
 | 				 elf_gc_mark_hook_fn mark_hook) | 
 | { | 
 |   bfd *ibfd; | 
 |  | 
 |   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
 |     { | 
 |       asection *isec; | 
 |       bool some_kept; | 
 |       bool debug_frag_seen; | 
 |       bool has_kept_debug_info; | 
 |  | 
 |       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | 
 | 	continue; | 
 |       isec = ibfd->sections; | 
 |       if (isec == NULL || isec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       /* Ensure all linker created sections are kept, | 
 | 	 see if any other section is already marked, | 
 | 	 and note if we have any fragmented debug sections.  */ | 
 |       debug_frag_seen = some_kept = has_kept_debug_info = false; | 
 |       for (isec = ibfd->sections; isec != NULL; isec = isec->next) | 
 | 	{ | 
 | 	  if ((isec->flags & SEC_LINKER_CREATED) != 0) | 
 | 	    isec->gc_mark = 1; | 
 | 	  else if (isec->gc_mark | 
 | 		   && (isec->flags & SEC_ALLOC) != 0 | 
 | 		   && elf_section_type (isec) != SHT_NOTE) | 
 | 	    some_kept = true; | 
 | 	  else | 
 | 	    { | 
 | 	      /* Since all sections, except for backend specific ones, | 
 | 		 have been garbage collected, call mark_hook on this | 
 | 		 section if any of its linked-to sections is marked.  */ | 
 | 	      asection *linked_to_sec; | 
 | 	      for (linked_to_sec = elf_linked_to_section (isec); | 
 | 		   linked_to_sec != NULL && !linked_to_sec->linker_mark; | 
 | 		   linked_to_sec = elf_linked_to_section (linked_to_sec)) | 
 | 		{ | 
 | 		  if (linked_to_sec->gc_mark) | 
 | 		    { | 
 | 		      if (!_bfd_elf_gc_mark (info, isec, mark_hook)) | 
 | 			return false; | 
 | 		      break; | 
 | 		    } | 
 | 		  linked_to_sec->linker_mark = 1; | 
 | 		} | 
 | 	      for (linked_to_sec = elf_linked_to_section (isec); | 
 | 		   linked_to_sec != NULL && linked_to_sec->linker_mark; | 
 | 		   linked_to_sec = elf_linked_to_section (linked_to_sec)) | 
 | 		linked_to_sec->linker_mark = 0; | 
 | 	    } | 
 |  | 
 | 	  if (!debug_frag_seen | 
 | 	      && (isec->flags & SEC_DEBUGGING) | 
 | 	      && startswith (isec->name, ".debug_line.")) | 
 | 	    debug_frag_seen = true; | 
 | 	  else if (strcmp (bfd_section_name (isec), | 
 | 			   "__patchable_function_entries") == 0 | 
 | 		   && elf_linked_to_section (isec) == NULL) | 
 | 	      info->callbacks->einfo (_("%F%P: %pB(%pA): error: " | 
 | 					"need linked-to section " | 
 | 					"for --gc-sections\n"), | 
 | 				      isec->owner, isec); | 
 | 	} | 
 |  | 
 |       /* If no non-note alloc section in this file will be kept, then | 
 | 	 we can toss out the debug and special sections.  */ | 
 |       if (!some_kept) | 
 | 	continue; | 
 |  | 
 |       /* Keep debug and special sections like .comment when they are | 
 | 	 not part of a group.  Also keep section groups that contain | 
 | 	 just debug sections or special sections.  NB: Sections with | 
 | 	 linked-to section has been handled above.  */ | 
 |       for (isec = ibfd->sections; isec != NULL; isec = isec->next) | 
 | 	{ | 
 | 	  if ((isec->flags & SEC_GROUP) != 0) | 
 | 	    _bfd_elf_gc_mark_debug_special_section_group (isec); | 
 | 	  else if (((isec->flags & SEC_DEBUGGING) != 0 | 
 | 		    || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) | 
 | 		   && elf_next_in_group (isec) == NULL | 
 | 		   && elf_linked_to_section (isec) == NULL) | 
 | 	    isec->gc_mark = 1; | 
 | 	  if (isec->gc_mark && (isec->flags & SEC_DEBUGGING) != 0) | 
 | 	    has_kept_debug_info = true; | 
 | 	} | 
 |  | 
 |       /* Look for CODE sections which are going to be discarded, | 
 | 	 and find and discard any fragmented debug sections which | 
 | 	 are associated with that code section.  */ | 
 |       if (debug_frag_seen) | 
 | 	for (isec = ibfd->sections; isec != NULL; isec = isec->next) | 
 | 	  if ((isec->flags & SEC_CODE) != 0 | 
 | 	      && isec->gc_mark == 0) | 
 | 	    { | 
 | 	      unsigned int ilen; | 
 | 	      asection *dsec; | 
 |  | 
 | 	      ilen = strlen (isec->name); | 
 |  | 
 | 	      /* Association is determined by the name of the debug | 
 | 		 section containing the name of the code section as | 
 | 		 a suffix.  For example .debug_line.text.foo is a | 
 | 		 debug section associated with .text.foo.  */ | 
 | 	      for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) | 
 | 		{ | 
 | 		  unsigned int dlen; | 
 |  | 
 | 		  if (dsec->gc_mark == 0 | 
 | 		      || (dsec->flags & SEC_DEBUGGING) == 0) | 
 | 		    continue; | 
 |  | 
 | 		  dlen = strlen (dsec->name); | 
 |  | 
 | 		  if (dlen > ilen | 
 | 		      && strncmp (dsec->name + (dlen - ilen), | 
 | 				  isec->name, ilen) == 0) | 
 | 		    dsec->gc_mark = 0; | 
 | 		} | 
 | 	  } | 
 |  | 
 |       /* Mark debug sections referenced by kept debug sections.  */ | 
 |       if (has_kept_debug_info) | 
 | 	for (isec = ibfd->sections; isec != NULL; isec = isec->next) | 
 | 	  if (isec->gc_mark | 
 | 	      && (isec->flags & SEC_DEBUGGING) != 0) | 
 | 	    if (!_bfd_elf_gc_mark (info, isec, | 
 | 				   elf_gc_mark_debug_section)) | 
 | 	      return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | static bool | 
 | elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   bfd *sub; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |  | 
 |   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
 |     { | 
 |       asection *o; | 
 |  | 
 |       if (bfd_get_flavour (sub) != bfd_target_elf_flavour | 
 | 	  || elf_object_id (sub) != elf_hash_table_id (elf_hash_table (info)) | 
 | 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) | 
 | 	continue; | 
 |       o = sub->sections; | 
 |       if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       for (o = sub->sections; o != NULL; o = o->next) | 
 | 	{ | 
 | 	  /* When any section in a section group is kept, we keep all | 
 | 	     sections in the section group.  If the first member of | 
 | 	     the section group is excluded, we will also exclude the | 
 | 	     group section.  */ | 
 | 	  if (o->flags & SEC_GROUP) | 
 | 	    { | 
 | 	      asection *first = elf_next_in_group (o); | 
 | 	      o->gc_mark = first->gc_mark; | 
 | 	    } | 
 |  | 
 | 	  if (o->gc_mark) | 
 | 	    continue; | 
 |  | 
 | 	  /* Skip sweeping sections already excluded.  */ | 
 | 	  if (o->flags & SEC_EXCLUDE) | 
 | 	    continue; | 
 |  | 
 | 	  /* Since this is early in the link process, it is simple | 
 | 	     to remove a section from the output.  */ | 
 | 	  o->flags |= SEC_EXCLUDE; | 
 |  | 
 | 	  if (info->print_gc_sections && o->size != 0) | 
 | 	    /* xgettext:c-format */ | 
 | 	    _bfd_error_handler (_("removing unused section '%pA' in file '%pB'"), | 
 | 				o, sub); | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Propagate collected vtable information.  This is called through | 
 |    elf_link_hash_traverse.  */ | 
 |  | 
 | static bool | 
 | elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) | 
 | { | 
 |   /* Those that are not vtables.  */ | 
 |   if (h->start_stop | 
 |       || h->u2.vtable == NULL | 
 |       || h->u2.vtable->parent == NULL) | 
 |     return true; | 
 |  | 
 |   /* Those vtables that do not have parents, we cannot merge.  */ | 
 |   if (h->u2.vtable->parent == (struct elf_link_hash_entry *) -1) | 
 |     return true; | 
 |  | 
 |   /* If we've already been done, exit.  */ | 
 |   if (h->u2.vtable->used && h->u2.vtable->used[-1]) | 
 |     return true; | 
 |  | 
 |   /* Make sure the parent's table is up to date.  */ | 
 |   elf_gc_propagate_vtable_entries_used (h->u2.vtable->parent, okp); | 
 |  | 
 |   if (h->u2.vtable->used == NULL) | 
 |     { | 
 |       /* None of this table's entries were referenced.  Re-use the | 
 | 	 parent's table.  */ | 
 |       h->u2.vtable->used = h->u2.vtable->parent->u2.vtable->used; | 
 |       h->u2.vtable->size = h->u2.vtable->parent->u2.vtable->size; | 
 |     } | 
 |   else | 
 |     { | 
 |       size_t n; | 
 |       bool *cu, *pu; | 
 |  | 
 |       /* Or the parent's entries into ours.  */ | 
 |       cu = h->u2.vtable->used; | 
 |       cu[-1] = true; | 
 |       pu = h->u2.vtable->parent->u2.vtable->used; | 
 |       if (pu != NULL) | 
 | 	{ | 
 | 	  const struct elf_backend_data *bed; | 
 | 	  unsigned int log_file_align; | 
 |  | 
 | 	  bed = get_elf_backend_data (h->root.u.def.section->owner); | 
 | 	  log_file_align = bed->s->log_file_align; | 
 | 	  n = h->u2.vtable->parent->u2.vtable->size >> log_file_align; | 
 | 	  while (n--) | 
 | 	    { | 
 | 	      if (*pu) | 
 | 		*cu = true; | 
 | 	      pu++; | 
 | 	      cu++; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | struct link_info_ok | 
 | { | 
 |   struct bfd_link_info *info; | 
 |   bool ok; | 
 | }; | 
 |  | 
 | static bool | 
 | elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, | 
 | 				    void *ptr) | 
 | { | 
 |   asection *sec; | 
 |   bfd_vma hstart, hend; | 
 |   Elf_Internal_Rela *relstart, *relend, *rel; | 
 |   const struct elf_backend_data *bed; | 
 |   unsigned int log_file_align; | 
 |   struct link_info_ok *info = (struct link_info_ok *) ptr; | 
 |  | 
 |   /* Take care of both those symbols that do not describe vtables as | 
 |      well as those that are not loaded.  */ | 
 |   if (h->start_stop | 
 |       || h->u2.vtable == NULL | 
 |       || h->u2.vtable->parent == NULL) | 
 |     return true; | 
 |  | 
 |   BFD_ASSERT (h->root.type == bfd_link_hash_defined | 
 | 	      || h->root.type == bfd_link_hash_defweak); | 
 |  | 
 |   sec = h->root.u.def.section; | 
 |   hstart = h->root.u.def.value; | 
 |   hend = hstart + h->size; | 
 |  | 
 |   relstart = _bfd_elf_link_info_read_relocs (sec->owner, info->info, | 
 | 					     sec, NULL, NULL, true); | 
 |   if (!relstart) | 
 |     return info->ok = false; | 
 |   bed = get_elf_backend_data (sec->owner); | 
 |   log_file_align = bed->s->log_file_align; | 
 |  | 
 |   relend = relstart + sec->reloc_count; | 
 |  | 
 |   for (rel = relstart; rel < relend; ++rel) | 
 |     if (rel->r_offset >= hstart && rel->r_offset < hend) | 
 |       { | 
 | 	/* If the entry is in use, do nothing.  */ | 
 | 	if (h->u2.vtable->used | 
 | 	    && (rel->r_offset - hstart) < h->u2.vtable->size) | 
 | 	  { | 
 | 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; | 
 | 	    if (h->u2.vtable->used[entry]) | 
 | 	      continue; | 
 | 	  } | 
 | 	/* Otherwise, kill it.  */ | 
 | 	rel->r_offset = rel->r_info = rel->r_addend = 0; | 
 |       } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Mark sections containing dynamically referenced symbols.  When | 
 |    building shared libraries, we must assume that any visible symbol is | 
 |    referenced.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) | 
 | { | 
 |   struct bfd_link_info *info = (struct bfd_link_info *) inf; | 
 |   struct bfd_elf_dynamic_list *d = info->dynamic_list; | 
 |  | 
 |   if ((h->root.type == bfd_link_hash_defined | 
 |        || h->root.type == bfd_link_hash_defweak) | 
 |       && (!h->start_stop | 
 | 	  || h->root.ldscript_def | 
 | 	  || !info->start_stop_gc) | 
 |       && ((h->ref_dynamic && !h->forced_local) | 
 | 	  || ((h->def_regular || ELF_COMMON_DEF_P (h)) | 
 | 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL | 
 | 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN | 
 | 	      && (!bfd_link_executable (info) | 
 | 		  || info->gc_keep_exported | 
 | 		  || info->export_dynamic | 
 | 		  || (h->dynamic | 
 | 		      && d != NULL | 
 | 		      && (*d->match) (&d->head, NULL, h->root.root.string))) | 
 | 	      && (h->versioned >= versioned | 
 | 		  || !bfd_hide_sym_by_version (info->version_info, | 
 | 					       h->root.root.string))))) | 
 |     h->root.u.def.section->flags |= SEC_KEEP; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Keep all sections containing symbols undefined on the command-line, | 
 |    and the section containing the entry symbol.  */ | 
 |  | 
 | void | 
 | _bfd_elf_gc_keep (struct bfd_link_info *info) | 
 | { | 
 |   struct bfd_sym_chain *sym; | 
 |  | 
 |   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) | 
 |     { | 
 |       struct elf_link_hash_entry *h; | 
 |  | 
 |       h = elf_link_hash_lookup (elf_hash_table (info), sym->name, | 
 | 				false, false, false); | 
 |  | 
 |       if (h != NULL | 
 | 	  && (h->root.type == bfd_link_hash_defined | 
 | 	      || h->root.type == bfd_link_hash_defweak) | 
 | 	  && !bfd_is_const_section (h->root.u.def.section)) | 
 | 	h->root.u.def.section->flags |= SEC_KEEP; | 
 |     } | 
 | } | 
 |  | 
 | bool | 
 | bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, | 
 | 				struct bfd_link_info *info) | 
 | { | 
 |   bfd *ibfd = info->input_bfds; | 
 |  | 
 |   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) | 
 |     { | 
 |       asection *sec; | 
 |       struct elf_reloc_cookie cookie; | 
 |  | 
 |       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) | 
 | 	continue; | 
 |       sec = ibfd->sections; | 
 |       if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       if (!init_reloc_cookie (&cookie, info, ibfd)) | 
 | 	return false; | 
 |  | 
 |       for (sec = ibfd->sections; sec; sec = sec->next) | 
 | 	{ | 
 | 	  if (startswith (bfd_section_name (sec), ".eh_frame_entry") | 
 | 	      && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) | 
 | 	    { | 
 | 	      _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); | 
 | 	      fini_reloc_cookie_rels (&cookie, sec); | 
 | 	    } | 
 | 	} | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Do mark and sweep of unused sections.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   bool ok = true; | 
 |   bfd *sub; | 
 |   elf_gc_mark_hook_fn gc_mark_hook; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   struct elf_link_hash_table *htab; | 
 |   struct link_info_ok info_ok; | 
 |  | 
 |   if (!bed->can_gc_sections | 
 |       || !is_elf_hash_table (info->hash)) | 
 |     { | 
 |       _bfd_error_handler(_("warning: gc-sections option ignored")); | 
 |       return true; | 
 |     } | 
 |  | 
 |   bed->gc_keep (info); | 
 |   htab = elf_hash_table (info); | 
 |  | 
 |   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section | 
 |      at the .eh_frame section if we can mark the FDEs individually.  */ | 
 |   for (sub = info->input_bfds; | 
 |        info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; | 
 |        sub = sub->link.next) | 
 |     { | 
 |       asection *sec; | 
 |       struct elf_reloc_cookie cookie; | 
 |  | 
 |       sec = sub->sections; | 
 |       if (sec == NULL || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |       sec = bfd_get_section_by_name (sub, ".eh_frame"); | 
 |       while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) | 
 | 	{ | 
 | 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); | 
 | 	  if (elf_section_data (sec)->sec_info | 
 | 	      && (sec->flags & SEC_LINKER_CREATED) == 0) | 
 | 	    elf_eh_frame_section (sub) = sec; | 
 | 	  fini_reloc_cookie_for_section (&cookie, sec); | 
 | 	  sec = bfd_get_next_section_by_name (NULL, sec); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Apply transitive closure to the vtable entry usage info.  */ | 
 |   elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); | 
 |   if (!ok) | 
 |     return false; | 
 |  | 
 |   /* Kill the vtable relocations that were not used.  */ | 
 |   info_ok.info = info; | 
 |   info_ok.ok = true; | 
 |   elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &info_ok); | 
 |   if (!info_ok.ok) | 
 |     return false; | 
 |  | 
 |   /* Mark dynamically referenced symbols.  */ | 
 |   if (htab->dynamic_sections_created || info->gc_keep_exported) | 
 |     elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); | 
 |  | 
 |   /* Grovel through relocs to find out who stays ...  */ | 
 |   gc_mark_hook = bed->gc_mark_hook; | 
 |   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) | 
 |     { | 
 |       asection *o; | 
 |  | 
 |       if (bfd_get_flavour (sub) != bfd_target_elf_flavour | 
 | 	  || elf_object_id (sub) != elf_hash_table_id (htab) | 
 | 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) | 
 | 	continue; | 
 |  | 
 |       o = sub->sections; | 
 |       if (o == NULL || o->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). | 
 | 	 Also treat note sections as a root, if the section is not part | 
 | 	 of a group.  We must keep all PREINIT_ARRAY, INIT_ARRAY as | 
 | 	 well as FINI_ARRAY sections for ld -r.  */ | 
 |       for (o = sub->sections; o != NULL; o = o->next) | 
 | 	if (!o->gc_mark | 
 | 	    && (o->flags & SEC_EXCLUDE) == 0 | 
 | 	    && ((o->flags & SEC_KEEP) != 0 | 
 | 		|| (bfd_link_relocatable (info) | 
 | 		    && ((elf_section_data (o)->this_hdr.sh_type | 
 | 			 == SHT_PREINIT_ARRAY) | 
 | 			|| (elf_section_data (o)->this_hdr.sh_type | 
 | 			    == SHT_INIT_ARRAY) | 
 | 			|| (elf_section_data (o)->this_hdr.sh_type | 
 | 			    == SHT_FINI_ARRAY))) | 
 | 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE | 
 | 		    && elf_next_in_group (o) == NULL | 
 | 		    && elf_linked_to_section (o) == NULL) | 
 | 		|| ((elf_tdata (sub)->has_gnu_osabi & elf_gnu_osabi_retain) | 
 | 		    && (elf_section_flags (o) & SHF_GNU_RETAIN)))) | 
 | 	  { | 
 | 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) | 
 | 	      return false; | 
 | 	  } | 
 |     } | 
 |  | 
 |   /* Allow the backend to mark additional target specific sections.  */ | 
 |   bed->gc_mark_extra_sections (info, gc_mark_hook); | 
 |  | 
 |   /* ... and mark SEC_EXCLUDE for those that go.  */ | 
 |   return elf_gc_sweep (abfd, info); | 
 | } | 
 |  | 
 | /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_record_vtinherit (bfd *abfd, | 
 | 			     asection *sec, | 
 | 			     struct elf_link_hash_entry *h, | 
 | 			     bfd_vma offset) | 
 | { | 
 |   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; | 
 |   struct elf_link_hash_entry **search, *child; | 
 |   size_t extsymcount; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |  | 
 |   /* The sh_info field of the symtab header tells us where the | 
 |      external symbols start.  We don't care about the local symbols at | 
 |      this point.  */ | 
 |   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; | 
 |   if (!elf_bad_symtab (abfd)) | 
 |     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; | 
 |  | 
 |   sym_hashes = elf_sym_hashes (abfd); | 
 |   sym_hashes_end = PTR_ADD (sym_hashes, extsymcount); | 
 |  | 
 |   /* Hunt down the child symbol, which is in this section at the same | 
 |      offset as the relocation.  */ | 
 |   for (search = sym_hashes; search != sym_hashes_end; ++search) | 
 |     { | 
 |       if ((child = *search) != NULL | 
 | 	  && (child->root.type == bfd_link_hash_defined | 
 | 	      || child->root.type == bfd_link_hash_defweak) | 
 | 	  && child->root.u.def.section == sec | 
 | 	  && child->root.u.def.value == offset) | 
 | 	goto win; | 
 |     } | 
 |  | 
 |   /* xgettext:c-format */ | 
 |   _bfd_error_handler (_("%pB: %pA+%#" PRIx64 ": no symbol found for INHERIT"), | 
 | 		      abfd, sec, (uint64_t) offset); | 
 |   bfd_set_error (bfd_error_invalid_operation); | 
 |   return false; | 
 |  | 
 |  win: | 
 |   if (!child->u2.vtable) | 
 |     { | 
 |       child->u2.vtable = ((struct elf_link_virtual_table_entry *) | 
 | 			  bfd_zalloc (abfd, sizeof (*child->u2.vtable))); | 
 |       if (!child->u2.vtable) | 
 | 	return false; | 
 |     } | 
 |   if (!h) | 
 |     { | 
 |       /* This *should* only be the absolute section.  It could potentially | 
 | 	 be that someone has defined a non-global vtable though, which | 
 | 	 would be bad.  It isn't worth paging in the local symbols to be | 
 | 	 sure though; that case should simply be handled by the assembler.  */ | 
 |  | 
 |       child->u2.vtable->parent = (struct elf_link_hash_entry *) -1; | 
 |     } | 
 |   else | 
 |     child->u2.vtable->parent = h; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Called from check_relocs to record the existence of a VTENTRY reloc.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_record_vtentry (bfd *abfd, asection *sec, | 
 | 			   struct elf_link_hash_entry *h, | 
 | 			   bfd_vma addend) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   unsigned int log_file_align = bed->s->log_file_align; | 
 |  | 
 |   if (!h) | 
 |     { | 
 |       /* xgettext:c-format */ | 
 |       _bfd_error_handler (_("%pB: section '%pA': corrupt VTENTRY entry"), | 
 | 			  abfd, sec); | 
 |       bfd_set_error (bfd_error_bad_value); | 
 |       return false; | 
 |     } | 
 |  | 
 |   if (!h->u2.vtable) | 
 |     { | 
 |       h->u2.vtable = ((struct elf_link_virtual_table_entry *) | 
 | 		      bfd_zalloc (abfd, sizeof (*h->u2.vtable))); | 
 |       if (!h->u2.vtable) | 
 | 	return false; | 
 |     } | 
 |  | 
 |   if (addend >= h->u2.vtable->size) | 
 |     { | 
 |       size_t size, bytes, file_align; | 
 |       bool *ptr = h->u2.vtable->used; | 
 |  | 
 |       /* While the symbol is undefined, we have to be prepared to handle | 
 | 	 a zero size.  */ | 
 |       file_align = 1 << log_file_align; | 
 |       if (h->root.type == bfd_link_hash_undefined) | 
 | 	size = addend + file_align; | 
 |       else | 
 | 	{ | 
 | 	  size = h->size; | 
 | 	  if (addend >= size) | 
 | 	    { | 
 | 	      /* Oops!  We've got a reference past the defined end of | 
 | 		 the table.  This is probably a bug -- shall we warn?  */ | 
 | 	      size = addend + file_align; | 
 | 	    } | 
 | 	} | 
 |       size = (size + file_align - 1) & -file_align; | 
 |  | 
 |       /* Allocate one extra entry for use as a "done" flag for the | 
 | 	 consolidation pass.  */ | 
 |       bytes = ((size >> log_file_align) + 1) * sizeof (bool); | 
 |  | 
 |       if (ptr) | 
 | 	{ | 
 | 	  ptr = (bool *) bfd_realloc (ptr - 1, bytes); | 
 |  | 
 | 	  if (ptr != NULL) | 
 | 	    { | 
 | 	      size_t oldbytes; | 
 |  | 
 | 	      oldbytes = (((h->u2.vtable->size >> log_file_align) + 1) | 
 | 			  * sizeof (bool)); | 
 | 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	ptr = (bool *) bfd_zmalloc (bytes); | 
 |  | 
 |       if (ptr == NULL) | 
 | 	return false; | 
 |  | 
 |       /* And arrange for that done flag to be at index -1.  */ | 
 |       h->u2.vtable->used = ptr + 1; | 
 |       h->u2.vtable->size = size; | 
 |     } | 
 |  | 
 |   h->u2.vtable->used[addend >> log_file_align] = true; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* Map an ELF section header flag to its corresponding string.  */ | 
 | typedef struct | 
 | { | 
 |   char *flag_name; | 
 |   flagword flag_value; | 
 | } elf_flags_to_name_table; | 
 |  | 
 | static const elf_flags_to_name_table elf_flags_to_names [] = | 
 | { | 
 |   { "SHF_WRITE", SHF_WRITE }, | 
 |   { "SHF_ALLOC", SHF_ALLOC }, | 
 |   { "SHF_EXECINSTR", SHF_EXECINSTR }, | 
 |   { "SHF_MERGE", SHF_MERGE }, | 
 |   { "SHF_STRINGS", SHF_STRINGS }, | 
 |   { "SHF_INFO_LINK", SHF_INFO_LINK}, | 
 |   { "SHF_LINK_ORDER", SHF_LINK_ORDER}, | 
 |   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, | 
 |   { "SHF_GROUP", SHF_GROUP }, | 
 |   { "SHF_TLS", SHF_TLS }, | 
 |   { "SHF_MASKOS", SHF_MASKOS }, | 
 |   { "SHF_EXCLUDE", SHF_EXCLUDE }, | 
 | }; | 
 |  | 
 | /* Returns TRUE if the section is to be included, otherwise FALSE.  */ | 
 | bool | 
 | bfd_elf_lookup_section_flags (struct bfd_link_info *info, | 
 | 			      struct flag_info *flaginfo, | 
 | 			      asection *section) | 
 | { | 
 |   const bfd_vma sh_flags = elf_section_flags (section); | 
 |  | 
 |   if (!flaginfo->flags_initialized) | 
 |     { | 
 |       bfd *obfd = info->output_bfd; | 
 |       const struct elf_backend_data *bed = get_elf_backend_data (obfd); | 
 |       struct flag_info_list *tf = flaginfo->flag_list; | 
 |       int with_hex = 0; | 
 |       int without_hex = 0; | 
 |  | 
 |       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) | 
 | 	{ | 
 | 	  unsigned i; | 
 | 	  flagword (*lookup) (char *); | 
 |  | 
 | 	  lookup = bed->elf_backend_lookup_section_flags_hook; | 
 | 	  if (lookup != NULL) | 
 | 	    { | 
 | 	      flagword hexval = (*lookup) ((char *) tf->name); | 
 |  | 
 | 	      if (hexval != 0) | 
 | 		{ | 
 | 		  if (tf->with == with_flags) | 
 | 		    with_hex |= hexval; | 
 | 		  else if (tf->with == without_flags) | 
 | 		    without_hex |= hexval; | 
 | 		  tf->valid = true; | 
 | 		  continue; | 
 | 		} | 
 | 	    } | 
 | 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) | 
 | 	    { | 
 | 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) | 
 | 		{ | 
 | 		  if (tf->with == with_flags) | 
 | 		    with_hex |= elf_flags_to_names[i].flag_value; | 
 | 		  else if (tf->with == without_flags) | 
 | 		    without_hex |= elf_flags_to_names[i].flag_value; | 
 | 		  tf->valid = true; | 
 | 		  break; | 
 | 		} | 
 | 	    } | 
 | 	  if (!tf->valid) | 
 | 	    { | 
 | 	      info->callbacks->einfo | 
 | 		(_("unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); | 
 | 	      return false; | 
 | 	    } | 
 | 	} | 
 |       flaginfo->flags_initialized = true; | 
 |       flaginfo->only_with_flags |= with_hex; | 
 |       flaginfo->not_with_flags |= without_hex; | 
 |     } | 
 |  | 
 |   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) | 
 |     return false; | 
 |  | 
 |   if ((flaginfo->not_with_flags & sh_flags) != 0) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | struct alloc_got_off_arg { | 
 |   bfd_vma gotoff; | 
 |   struct bfd_link_info *info; | 
 | }; | 
 |  | 
 | /* We need a special top-level link routine to convert got reference counts | 
 |    to real got offsets.  */ | 
 |  | 
 | static bool | 
 | elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) | 
 | { | 
 |   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; | 
 |   bfd *obfd = gofarg->info->output_bfd; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (obfd); | 
 |  | 
 |   if (h->got.refcount > 0) | 
 |     { | 
 |       h->got.offset = gofarg->gotoff; | 
 |       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); | 
 |     } | 
 |   else | 
 |     h->got.offset = (bfd_vma) -1; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /* And an accompanying bit to work out final got entry offsets once | 
 |    we're done.  Should be called from final_link.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, | 
 | 					struct bfd_link_info *info) | 
 | { | 
 |   bfd *i; | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   bfd_vma gotoff; | 
 |   struct alloc_got_off_arg gofarg; | 
 |  | 
 |   BFD_ASSERT (abfd == info->output_bfd); | 
 |  | 
 |   if (! is_elf_hash_table (info->hash)) | 
 |     return false; | 
 |  | 
 |   /* The GOT offset is relative to the .got section, but the GOT header is | 
 |      put into the .got.plt section, if the backend uses it.  */ | 
 |   if (bed->want_got_plt) | 
 |     gotoff = 0; | 
 |   else | 
 |     gotoff = bed->got_header_size; | 
 |  | 
 |   /* Do the local .got entries first.  */ | 
 |   for (i = info->input_bfds; i; i = i->link.next) | 
 |     { | 
 |       bfd_signed_vma *local_got; | 
 |       size_t j, locsymcount; | 
 |       Elf_Internal_Shdr *symtab_hdr; | 
 |  | 
 |       if (bfd_get_flavour (i) != bfd_target_elf_flavour) | 
 | 	continue; | 
 |  | 
 |       local_got = elf_local_got_refcounts (i); | 
 |       if (!local_got) | 
 | 	continue; | 
 |  | 
 |       symtab_hdr = &elf_tdata (i)->symtab_hdr; | 
 |       if (elf_bad_symtab (i)) | 
 | 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; | 
 |       else | 
 | 	locsymcount = symtab_hdr->sh_info; | 
 |  | 
 |       for (j = 0; j < locsymcount; ++j) | 
 | 	{ | 
 | 	  if (local_got[j] > 0) | 
 | 	    { | 
 | 	      local_got[j] = gotoff; | 
 | 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j); | 
 | 	    } | 
 | 	  else | 
 | 	    local_got[j] = (bfd_vma) -1; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Then the global .got entries.  .plt refcounts are handled by | 
 |      adjust_dynamic_symbol  */ | 
 |   gofarg.gotoff = gotoff; | 
 |   gofarg.info = info; | 
 |   elf_link_hash_traverse (elf_hash_table (info), | 
 | 			  elf_gc_allocate_got_offsets, | 
 | 			  &gofarg); | 
 |   return true; | 
 | } | 
 |  | 
 | /* Many folk need no more in the way of final link than this, once | 
 |    got entry reference counting is enabled.  */ | 
 |  | 
 | bool | 
 | bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) | 
 | { | 
 |   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) | 
 |     return false; | 
 |  | 
 |   /* Invoke the regular ELF backend linker to do all the work.  */ | 
 |   return bfd_elf_final_link (abfd, info); | 
 | } | 
 |  | 
 | bool | 
 | bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) | 
 | { | 
 |   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; | 
 |  | 
 |   if (rcookie->bad_symtab) | 
 |     rcookie->rel = rcookie->rels; | 
 |  | 
 |   for (; rcookie->rel < rcookie->relend; rcookie->rel++) | 
 |     { | 
 |       unsigned long r_symndx; | 
 |  | 
 |       if (! rcookie->bad_symtab) | 
 | 	if (rcookie->rel->r_offset > offset) | 
 | 	  return false; | 
 |       if (rcookie->rel->r_offset != offset) | 
 | 	continue; | 
 |  | 
 |       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; | 
 |       if (r_symndx == STN_UNDEF) | 
 | 	return true; | 
 |  | 
 |       if (r_symndx >= rcookie->locsymcount | 
 | 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) | 
 | 	{ | 
 | 	  struct elf_link_hash_entry *h; | 
 |  | 
 | 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; | 
 |  | 
 | 	  while (h->root.type == bfd_link_hash_indirect | 
 | 		 || h->root.type == bfd_link_hash_warning) | 
 | 	    h = (struct elf_link_hash_entry *) h->root.u.i.link; | 
 |  | 
 | 	  if ((h->root.type == bfd_link_hash_defined | 
 | 	       || h->root.type == bfd_link_hash_defweak) | 
 | 	      && (h->root.u.def.section->owner != rcookie->abfd | 
 | 		  || h->root.u.def.section->kept_section != NULL | 
 | 		  || discarded_section (h->root.u.def.section))) | 
 | 	    return true; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* It's not a relocation against a global symbol, | 
 | 	     but it could be a relocation against a local | 
 | 	     symbol for a discarded section.  */ | 
 | 	  asection *isec; | 
 | 	  Elf_Internal_Sym *isym; | 
 |  | 
 | 	  /* Need to: get the symbol; get the section.  */ | 
 | 	  isym = &rcookie->locsyms[r_symndx]; | 
 | 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); | 
 | 	  if (isec != NULL | 
 | 	      && (isec->kept_section != NULL | 
 | 		  || discarded_section (isec))) | 
 | 	    return true; | 
 | 	} | 
 |       return false; | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | /* Discard unneeded references to discarded sections. | 
 |    Returns -1 on error, 1 if any section's size was changed, 0 if | 
 |    nothing changed.  This function assumes that the relocations are in | 
 |    sorted order, which is true for all known assemblers.  */ | 
 |  | 
 | int | 
 | bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) | 
 | { | 
 |   struct elf_reloc_cookie cookie; | 
 |   asection *o; | 
 |   bfd *abfd; | 
 |   int changed = 0; | 
 |  | 
 |   if (info->traditional_format | 
 |       || !is_elf_hash_table (info->hash)) | 
 |     return 0; | 
 |  | 
 |   o = bfd_get_section_by_name (output_bfd, ".stab"); | 
 |   if (o != NULL) | 
 |     { | 
 |       asection *i; | 
 |  | 
 |       for (i = o->map_head.s; i != NULL; i = i->map_head.s) | 
 | 	{ | 
 | 	  if (i->size == 0 | 
 | 	      || i->reloc_count == 0 | 
 | 	      || i->sec_info_type != SEC_INFO_TYPE_STABS) | 
 | 	    continue; | 
 |  | 
 | 	  abfd = i->owner; | 
 | 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | 
 | 	    continue; | 
 |  | 
 | 	  if (!init_reloc_cookie_for_section (&cookie, info, i)) | 
 | 	    return -1; | 
 |  | 
 | 	  if (_bfd_discard_section_stabs (abfd, i, | 
 | 					  elf_section_data (i)->sec_info, | 
 | 					  bfd_elf_reloc_symbol_deleted_p, | 
 | 					  &cookie)) | 
 | 	    changed = 1; | 
 |  | 
 | 	  fini_reloc_cookie_for_section (&cookie, i); | 
 | 	} | 
 |     } | 
 |  | 
 |   o = NULL; | 
 |   if (info->eh_frame_hdr_type != COMPACT_EH_HDR) | 
 |     o = bfd_get_section_by_name (output_bfd, ".eh_frame"); | 
 |   if (o != NULL) | 
 |     { | 
 |       asection *i; | 
 |       int eh_changed = 0; | 
 |       unsigned int eh_alignment;  /* Octets.  */ | 
 |  | 
 |       for (i = o->map_head.s; i != NULL; i = i->map_head.s) | 
 | 	{ | 
 | 	  if (i->size == 0) | 
 | 	    continue; | 
 |  | 
 | 	  abfd = i->owner; | 
 | 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | 
 | 	    continue; | 
 |  | 
 | 	  if (!init_reloc_cookie_for_section (&cookie, info, i)) | 
 | 	    return -1; | 
 |  | 
 | 	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); | 
 | 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i, | 
 | 						 bfd_elf_reloc_symbol_deleted_p, | 
 | 						 &cookie)) | 
 | 	    { | 
 | 	      eh_changed = 1; | 
 | 	      if (i->size != i->rawsize) | 
 | 		changed = 1; | 
 | 	    } | 
 |  | 
 | 	  fini_reloc_cookie_for_section (&cookie, i); | 
 | 	} | 
 |  | 
 |       eh_alignment = ((1 << o->alignment_power) | 
 | 		      * bfd_octets_per_byte (output_bfd, o)); | 
 |       /* Skip over zero terminator, and prevent empty sections from | 
 | 	 adding alignment padding at the end.  */ | 
 |       for (i = o->map_tail.s; i != NULL; i = i->map_tail.s) | 
 | 	if (i->size == 0) | 
 | 	  i->flags |= SEC_EXCLUDE; | 
 | 	else if (i->size > 4) | 
 | 	  break; | 
 |       /* The last non-empty eh_frame section doesn't need padding.  */ | 
 |       if (i != NULL) | 
 | 	i = i->map_tail.s; | 
 |       /* Any prior sections must pad the last FDE out to the output | 
 | 	 section alignment.  Otherwise we might have zero padding | 
 | 	 between sections, which would be seen as a terminator.  */ | 
 |       for (; i != NULL; i = i->map_tail.s) | 
 | 	if (i->size == 4) | 
 | 	  /* All but the last zero terminator should have been removed.  */ | 
 | 	  BFD_FAIL (); | 
 | 	else | 
 | 	  { | 
 | 	    bfd_size_type size | 
 | 	      = (i->size + eh_alignment - 1) & -eh_alignment; | 
 | 	    if (i->size != size) | 
 | 	      { | 
 | 		i->size = size; | 
 | 		changed = 1; | 
 | 		eh_changed = 1; | 
 | 	      } | 
 | 	  } | 
 |       if (eh_changed) | 
 | 	elf_link_hash_traverse (elf_hash_table (info), | 
 | 				_bfd_elf_adjust_eh_frame_global_symbol, NULL); | 
 |     } | 
 |  | 
 |   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) | 
 |     { | 
 |       const struct elf_backend_data *bed; | 
 |       asection *s; | 
 |  | 
 |       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) | 
 | 	continue; | 
 |       s = abfd->sections; | 
 |       if (s == NULL || s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) | 
 | 	continue; | 
 |  | 
 |       bed = get_elf_backend_data (abfd); | 
 |  | 
 |       if (bed->elf_backend_discard_info != NULL) | 
 | 	{ | 
 | 	  if (!init_reloc_cookie (&cookie, info, abfd)) | 
 | 	    return -1; | 
 |  | 
 | 	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) | 
 | 	    changed = 1; | 
 |  | 
 | 	  fini_reloc_cookie (&cookie, abfd); | 
 | 	} | 
 |     } | 
 |  | 
 |   if (info->eh_frame_hdr_type == COMPACT_EH_HDR) | 
 |     _bfd_elf_end_eh_frame_parsing (info); | 
 |  | 
 |   if (info->eh_frame_hdr_type | 
 |       && !bfd_link_relocatable (info) | 
 |       && _bfd_elf_discard_section_eh_frame_hdr (info)) | 
 |     changed = 1; | 
 |  | 
 |   return changed; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_section_already_linked (bfd *abfd, | 
 | 				 asection *sec, | 
 | 				 struct bfd_link_info *info) | 
 | { | 
 |   flagword flags; | 
 |   const char *name, *key; | 
 |   struct bfd_section_already_linked *l; | 
 |   struct bfd_section_already_linked_hash_entry *already_linked_list; | 
 |  | 
 |   if (sec->output_section == bfd_abs_section_ptr) | 
 |     return false; | 
 |  | 
 |   flags = sec->flags; | 
 |  | 
 |   /* Return if it isn't a linkonce section.  A comdat group section | 
 |      also has SEC_LINK_ONCE set.  */ | 
 |   if ((flags & SEC_LINK_ONCE) == 0) | 
 |     return false; | 
 |  | 
 |   /* Don't put group member sections on our list of already linked | 
 |      sections.  They are handled as a group via their group section.  */ | 
 |   if (elf_sec_group (sec) != NULL) | 
 |     return false; | 
 |  | 
 |   /* For a SHT_GROUP section, use the group signature as the key.  */ | 
 |   name = sec->name; | 
 |   if ((flags & SEC_GROUP) != 0 | 
 |       && elf_next_in_group (sec) != NULL | 
 |       && elf_group_name (elf_next_in_group (sec)) != NULL) | 
 |     key = elf_group_name (elf_next_in_group (sec)); | 
 |   else | 
 |     { | 
 |       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */ | 
 |       if (startswith (name, ".gnu.linkonce.") | 
 | 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) | 
 | 	key++; | 
 |       else | 
 | 	/* Must be a user linkonce section that doesn't follow gcc's | 
 | 	   naming convention.  In this case we won't be matching | 
 | 	   single member groups.  */ | 
 | 	key = name; | 
 |     } | 
 |  | 
 |   already_linked_list = bfd_section_already_linked_table_lookup (key); | 
 |  | 
 |   for (l = already_linked_list->entry; l != NULL; l = l->next) | 
 |     { | 
 |       /* We may have 2 different types of sections on the list: group | 
 | 	 sections with a signature of <key> (<key> is some string), | 
 | 	 and linkonce sections named .gnu.linkonce.<type>.<key>. | 
 | 	 Match like sections.  LTO plugin sections are an exception. | 
 | 	 They are always named .gnu.linkonce.t.<key> and match either | 
 | 	 type of section.  */ | 
 |       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) | 
 | 	   && ((flags & SEC_GROUP) != 0 | 
 | 	       || strcmp (name, l->sec->name) == 0)) | 
 | 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0 | 
 | 	  || (sec->owner->flags & BFD_PLUGIN) != 0) | 
 | 	{ | 
 | 	  /* The section has already been linked.  See if we should | 
 | 	     issue a warning.  */ | 
 | 	  if (!_bfd_handle_already_linked (sec, l, info)) | 
 | 	    return false; | 
 |  | 
 | 	  if (flags & SEC_GROUP) | 
 | 	    { | 
 | 	      asection *first = elf_next_in_group (sec); | 
 | 	      asection *s = first; | 
 |  | 
 | 	      while (s != NULL) | 
 | 		{ | 
 | 		  s->output_section = bfd_abs_section_ptr; | 
 | 		  /* Record which group discards it.  */ | 
 | 		  s->kept_section = l->sec; | 
 | 		  s = elf_next_in_group (s); | 
 | 		  /* These lists are circular.  */ | 
 | 		  if (s == first) | 
 | 		    break; | 
 | 		} | 
 | 	    } | 
 |  | 
 | 	  return true; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* A single member comdat group section may be discarded by a | 
 |      linkonce section and vice versa.  */ | 
 |   if ((flags & SEC_GROUP) != 0) | 
 |     { | 
 |       asection *first = elf_next_in_group (sec); | 
 |  | 
 |       if (first != NULL && elf_next_in_group (first) == first) | 
 | 	/* Check this single member group against linkonce sections.  */ | 
 | 	for (l = already_linked_list->entry; l != NULL; l = l->next) | 
 | 	  if ((l->sec->flags & SEC_GROUP) == 0 | 
 | 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info)) | 
 | 	    { | 
 | 	      first->output_section = bfd_abs_section_ptr; | 
 | 	      first->kept_section = l->sec; | 
 | 	      sec->output_section = bfd_abs_section_ptr; | 
 | 	      break; | 
 | 	    } | 
 |     } | 
 |   else | 
 |     /* Check this linkonce section against single member groups.  */ | 
 |     for (l = already_linked_list->entry; l != NULL; l = l->next) | 
 |       if (l->sec->flags & SEC_GROUP) | 
 | 	{ | 
 | 	  asection *first = elf_next_in_group (l->sec); | 
 |  | 
 | 	  if (first != NULL | 
 | 	      && elf_next_in_group (first) == first | 
 | 	      && bfd_elf_match_symbols_in_sections (first, sec, info)) | 
 | 	    { | 
 | 	      sec->output_section = bfd_abs_section_ptr; | 
 | 	      sec->kept_section = first; | 
 | 	      break; | 
 | 	    } | 
 | 	} | 
 |  | 
 |   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' | 
 |      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 | 
 |      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' | 
 |      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its | 
 |      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded | 
 |      but its `.gnu.linkonce.t.F' is discarded means we chose one-only | 
 |      `.gnu.linkonce.t.F' section from a different bfd not requiring any | 
 |      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded. | 
 |      The reverse order cannot happen as there is never a bfd with only the | 
 |      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not | 
 |      matter as here were are looking only for cross-bfd sections.  */ | 
 |  | 
 |   if ((flags & SEC_GROUP) == 0 && startswith (name, ".gnu.linkonce.r.")) | 
 |     for (l = already_linked_list->entry; l != NULL; l = l->next) | 
 |       if ((l->sec->flags & SEC_GROUP) == 0 | 
 | 	  && startswith (l->sec->name, ".gnu.linkonce.t.")) | 
 | 	{ | 
 | 	  if (abfd != l->sec->owner) | 
 | 	    sec->output_section = bfd_abs_section_ptr; | 
 | 	  break; | 
 | 	} | 
 |  | 
 |   /* This is the first section with this name.  Record it.  */ | 
 |   if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) | 
 |     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); | 
 |   return sec->output_section == bfd_abs_section_ptr; | 
 | } | 
 |  | 
 | bool | 
 | _bfd_elf_common_definition (Elf_Internal_Sym *sym) | 
 | { | 
 |   return sym->st_shndx == SHN_COMMON; | 
 | } | 
 |  | 
 | unsigned int | 
 | _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) | 
 | { | 
 |   return SHN_COMMON; | 
 | } | 
 |  | 
 | asection * | 
 | _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) | 
 | { | 
 |   return bfd_com_section_ptr; | 
 | } | 
 |  | 
 | bfd_vma | 
 | _bfd_elf_default_got_elt_size (bfd *abfd, | 
 | 			       struct bfd_link_info *info ATTRIBUTE_UNUSED, | 
 | 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, | 
 | 			       bfd *ibfd ATTRIBUTE_UNUSED, | 
 | 			       unsigned long symndx ATTRIBUTE_UNUSED) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   return bed->s->arch_size / 8; | 
 | } | 
 |  | 
 | /* Routines to support the creation of dynamic relocs.  */ | 
 |  | 
 | /* Returns the name of the dynamic reloc section associated with SEC.  */ | 
 |  | 
 | static const char * | 
 | get_dynamic_reloc_section_name (bfd *       abfd, | 
 | 				asection *  sec, | 
 | 				bool is_rela) | 
 | { | 
 |   char *name; | 
 |   const char *old_name = bfd_section_name (sec); | 
 |   const char *prefix = is_rela ? ".rela" : ".rel"; | 
 |  | 
 |   if (old_name == NULL) | 
 |     return NULL; | 
 |  | 
 |   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); | 
 |   sprintf (name, "%s%s", prefix, old_name); | 
 |  | 
 |   return name; | 
 | } | 
 |  | 
 | /* Returns the dynamic reloc section associated with SEC. | 
 |    If necessary compute the name of the dynamic reloc section based | 
 |    on SEC's name (looked up in ABFD's string table) and the setting | 
 |    of IS_RELA.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_get_dynamic_reloc_section (bfd *abfd, | 
 | 				    asection *sec, | 
 | 				    bool is_rela) | 
 | { | 
 |   asection *reloc_sec = elf_section_data (sec)->sreloc; | 
 |  | 
 |   if (reloc_sec == NULL) | 
 |     { | 
 |       const char *name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | 
 |  | 
 |       if (name != NULL) | 
 | 	{ | 
 | 	  reloc_sec = bfd_get_linker_section (abfd, name); | 
 |  | 
 | 	  if (reloc_sec != NULL) | 
 | 	    elf_section_data (sec)->sreloc = reloc_sec; | 
 | 	} | 
 |     } | 
 |  | 
 |   return reloc_sec; | 
 | } | 
 |  | 
 | /* Returns the dynamic reloc section associated with SEC.  If the | 
 |    section does not exist it is created and attached to the DYNOBJ | 
 |    bfd and stored in the SRELOC field of SEC's elf_section_data | 
 |    structure. | 
 |  | 
 |    ALIGNMENT is the alignment for the newly created section and | 
 |    IS_RELA defines whether the name should be .rela.<SEC's name> | 
 |    or .rel.<SEC's name>.  The section name is looked up in the | 
 |    string table associated with ABFD.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_make_dynamic_reloc_section (asection *sec, | 
 | 				     bfd *dynobj, | 
 | 				     unsigned int alignment, | 
 | 				     bfd *abfd, | 
 | 				     bool is_rela) | 
 | { | 
 |   asection * reloc_sec = elf_section_data (sec)->sreloc; | 
 |  | 
 |   if (reloc_sec == NULL) | 
 |     { | 
 |       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); | 
 |  | 
 |       if (name == NULL) | 
 | 	return NULL; | 
 |  | 
 |       reloc_sec = bfd_get_linker_section (dynobj, name); | 
 |  | 
 |       if (reloc_sec == NULL) | 
 | 	{ | 
 | 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY | 
 | 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED); | 
 | 	  if ((sec->flags & SEC_ALLOC) != 0) | 
 | 	    flags |= SEC_ALLOC | SEC_LOAD; | 
 |  | 
 | 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); | 
 | 	  if (reloc_sec != NULL) | 
 | 	    { | 
 | 	      /* _bfd_elf_get_sec_type_attr chooses a section type by | 
 | 		 name.  Override as it may be wrong, eg. for a user | 
 | 		 section named "auto" we'll get ".relauto" which is | 
 | 		 seen to be a .rela section.  */ | 
 | 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; | 
 | 	      if (!bfd_set_section_alignment (reloc_sec, alignment)) | 
 | 		reloc_sec = NULL; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       elf_section_data (sec)->sreloc = reloc_sec; | 
 |     } | 
 |  | 
 |   return reloc_sec; | 
 | } | 
 |  | 
 | /* Copy the ELF symbol type and other attributes for a linker script | 
 |    assignment from HSRC to HDEST.  Generally this should be treated as | 
 |    if we found a strong non-dynamic definition for HDEST (except that | 
 |    ld ignores multiple definition errors).  */ | 
 | void | 
 | _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, | 
 | 				     struct bfd_link_hash_entry *hdest, | 
 | 				     struct bfd_link_hash_entry *hsrc) | 
 | { | 
 |   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; | 
 |   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; | 
 |   Elf_Internal_Sym isym; | 
 |  | 
 |   ehdest->type = ehsrc->type; | 
 |   ehdest->target_internal = ehsrc->target_internal; | 
 |  | 
 |   isym.st_other = ehsrc->other; | 
 |   elf_merge_st_other (abfd, ehdest, isym.st_other, NULL, true, false); | 
 | } | 
 |  | 
 | /* Append a RELA relocation REL to section S in BFD.  */ | 
 |  | 
 | void | 
 | elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); | 
 |   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); | 
 |   bed->s->swap_reloca_out (abfd, rel, loc); | 
 | } | 
 |  | 
 | /* Append a REL relocation REL to section S in BFD.  */ | 
 |  | 
 | void | 
 | elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) | 
 | { | 
 |   const struct elf_backend_data *bed = get_elf_backend_data (abfd); | 
 |   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); | 
 |   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); | 
 |   bed->s->swap_reloc_out (abfd, rel, loc); | 
 | } | 
 |  | 
 | /* Define __start, __stop, .startof. or .sizeof. symbol.  */ | 
 |  | 
 | struct bfd_link_hash_entry * | 
 | bfd_elf_define_start_stop (struct bfd_link_info *info, | 
 | 			   const char *symbol, asection *sec) | 
 | { | 
 |   struct elf_link_hash_entry *h; | 
 |  | 
 |   h = elf_link_hash_lookup (elf_hash_table (info), symbol, | 
 | 			    false, false, true); | 
 |   /* NB: Common symbols will be turned into definition later.  */ | 
 |   if (h != NULL | 
 |       && !h->root.ldscript_def | 
 |       && (h->root.type == bfd_link_hash_undefined | 
 | 	  || h->root.type == bfd_link_hash_undefweak | 
 | 	  || ((h->ref_regular || h->def_dynamic) | 
 | 	      && !h->def_regular | 
 | 	      && h->root.type != bfd_link_hash_common))) | 
 |     { | 
 |       bool was_dynamic = h->ref_dynamic || h->def_dynamic; | 
 |       h->verinfo.verdef = NULL; | 
 |       h->root.type = bfd_link_hash_defined; | 
 |       h->root.u.def.section = sec; | 
 |       h->root.u.def.value = 0; | 
 |       h->def_regular = 1; | 
 |       h->def_dynamic = 0; | 
 |       h->start_stop = 1; | 
 |       h->u2.start_stop_section = sec; | 
 |       if (symbol[0] == '.') | 
 | 	{ | 
 | 	  /* .startof. and .sizeof. symbols are local.  */ | 
 | 	  const struct elf_backend_data *bed; | 
 | 	  bed = get_elf_backend_data (info->output_bfd); | 
 | 	  (*bed->elf_backend_hide_symbol) (info, h, true); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) | 
 | 	    h->other = ((h->other & ~ELF_ST_VISIBILITY (-1)) | 
 | 			| info->start_stop_visibility); | 
 | 	  if (was_dynamic) | 
 | 	    bfd_elf_link_record_dynamic_symbol (info, h); | 
 | 	} | 
 |       return &h->root; | 
 |     } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Find dynamic relocs for H that apply to read-only sections.  */ | 
 |  | 
 | asection * | 
 | _bfd_elf_readonly_dynrelocs (struct elf_link_hash_entry *h) | 
 | { | 
 |   struct elf_dyn_relocs *p; | 
 |  | 
 |   for (p = h->dyn_relocs; p != NULL; p = p->next) | 
 |     { | 
 |       asection *s = p->sec->output_section; | 
 |  | 
 |       if (s != NULL && (s->flags & SEC_READONLY) != 0) | 
 | 	return p->sec; | 
 |     } | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Set DF_TEXTREL if we find any dynamic relocs that apply to | 
 |    read-only sections.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_maybe_set_textrel (struct elf_link_hash_entry *h, void *inf) | 
 | { | 
 |   asection *sec; | 
 |  | 
 |   if (h->root.type == bfd_link_hash_indirect) | 
 |     return true; | 
 |  | 
 |   sec = _bfd_elf_readonly_dynrelocs (h); | 
 |   if (sec != NULL) | 
 |     { | 
 |       struct bfd_link_info *info = (struct bfd_link_info *) inf; | 
 |  | 
 |       info->flags |= DF_TEXTREL; | 
 |       /* xgettext:c-format */ | 
 |       info->callbacks->minfo (_("%pB: dynamic relocation against `%pT' " | 
 | 				"in read-only section `%pA'\n"), | 
 | 			      sec->owner, h->root.root.string, sec); | 
 |  | 
 |       if (bfd_link_textrel_check (info)) | 
 | 	/* xgettext:c-format */ | 
 | 	info->callbacks->einfo (_("%P: %pB: warning: relocation against `%s' " | 
 | 				  "in read-only section `%pA'\n"), | 
 | 				sec->owner, h->root.root.string, sec); | 
 |  | 
 |       /* Not an error, just cut short the traversal.  */ | 
 |       return false; | 
 |     } | 
 |   return true; | 
 | } | 
 |  | 
 | /* Add dynamic tags.  */ | 
 |  | 
 | bool | 
 | _bfd_elf_add_dynamic_tags (bfd *output_bfd, struct bfd_link_info *info, | 
 | 			   bool need_dynamic_reloc) | 
 | { | 
 |   struct elf_link_hash_table *htab = elf_hash_table (info); | 
 |  | 
 |   if (htab->dynamic_sections_created) | 
 |     { | 
 |       /* Add some entries to the .dynamic section.  We fill in the | 
 | 	 values later, in finish_dynamic_sections, but we must add | 
 | 	 the entries now so that we get the correct size for the | 
 | 	 .dynamic section.  The DT_DEBUG entry is filled in by the | 
 | 	 dynamic linker and used by the debugger.  */ | 
 | #define add_dynamic_entry(TAG, VAL) \ | 
 |   _bfd_elf_add_dynamic_entry (info, TAG, VAL) | 
 |  | 
 |       const struct elf_backend_data *bed | 
 | 	= get_elf_backend_data (output_bfd); | 
 |  | 
 |       if (bfd_link_executable (info)) | 
 | 	{ | 
 | 	  if (!add_dynamic_entry (DT_DEBUG, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (htab->dt_pltgot_required || htab->splt->size != 0) | 
 | 	{ | 
 | 	  /* DT_PLTGOT is used by prelink even if there is no PLT | 
 | 	     relocation.  */ | 
 | 	  if (!add_dynamic_entry (DT_PLTGOT, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (htab->dt_jmprel_required || htab->srelplt->size != 0) | 
 | 	{ | 
 | 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0) | 
 | 	      || !add_dynamic_entry (DT_PLTREL, | 
 | 				     (bed->rela_plts_and_copies_p | 
 | 				      ? DT_RELA : DT_REL)) | 
 | 	      || !add_dynamic_entry (DT_JMPREL, 0)) | 
 | 	    return false; | 
 | 	} | 
 |  | 
 |       if (htab->tlsdesc_plt | 
 | 	  && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) | 
 | 	      || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) | 
 | 	return false; | 
 |  | 
 |       if (need_dynamic_reloc) | 
 | 	{ | 
 | 	  if (bed->rela_plts_and_copies_p) | 
 | 	    { | 
 | 	      if (!add_dynamic_entry (DT_RELA, 0) | 
 | 		  || !add_dynamic_entry (DT_RELASZ, 0) | 
 | 		  || !add_dynamic_entry (DT_RELAENT, | 
 | 					 bed->s->sizeof_rela)) | 
 | 		return false; | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      if (!add_dynamic_entry (DT_REL, 0) | 
 | 		  || !add_dynamic_entry (DT_RELSZ, 0) | 
 | 		  || !add_dynamic_entry (DT_RELENT, | 
 | 					 bed->s->sizeof_rel)) | 
 | 		return false; | 
 | 	    } | 
 |  | 
 | 	  /* If any dynamic relocs apply to a read-only section, | 
 | 	     then we need a DT_TEXTREL entry.  */ | 
 | 	  if ((info->flags & DF_TEXTREL) == 0) | 
 | 	    elf_link_hash_traverse (htab, _bfd_elf_maybe_set_textrel, | 
 | 				    info); | 
 |  | 
 | 	  if ((info->flags & DF_TEXTREL) != 0) | 
 | 	    { | 
 | 	      if (htab->ifunc_resolvers) | 
 | 		info->callbacks->einfo | 
 | 		  (_("%P: warning: GNU indirect functions with DT_TEXTREL " | 
 | 		     "may result in a segfault at runtime; recompile with %s\n"), | 
 | 		   bfd_link_dll (info) ? "-fPIC" : "-fPIE"); | 
 |  | 
 | 	      if (!add_dynamic_entry (DT_TEXTREL, 0)) | 
 | 		return false; | 
 | 	    } | 
 | 	} | 
 |     } | 
 | #undef add_dynamic_entry | 
 |  | 
 |   return true; | 
 | } |