|  | /* Frame unwinder for frames with DWARF Call Frame Information. | 
|  |  | 
|  | Copyright (C) 2003-2022 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Mark Kettenis. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "defs.h" | 
|  | #include "dwarf2/expr.h" | 
|  | #include "dwarf2.h" | 
|  | #include "dwarf2/leb.h" | 
|  | #include "frame.h" | 
|  | #include "frame-base.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "gdbcore.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "symtab.h" | 
|  | #include "objfiles.h" | 
|  | #include "regcache.h" | 
|  | #include "value.h" | 
|  | #include "record.h" | 
|  |  | 
|  | #include "complaints.h" | 
|  | #include "dwarf2/frame.h" | 
|  | #include "dwarf2/read.h" | 
|  | #include "dwarf2/public.h" | 
|  | #include "ax.h" | 
|  | #include "dwarf2/loc.h" | 
|  | #include "dwarf2/frame-tailcall.h" | 
|  | #include "gdbsupport/gdb_binary_search.h" | 
|  | #if GDB_SELF_TEST | 
|  | #include "gdbsupport/selftest.h" | 
|  | #include "selftest-arch.h" | 
|  | #endif | 
|  | #include <unordered_map> | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | struct comp_unit; | 
|  |  | 
|  | /* Call Frame Information (CFI).  */ | 
|  |  | 
|  | /* Common Information Entry (CIE).  */ | 
|  |  | 
|  | struct dwarf2_cie | 
|  | { | 
|  | /* Computation Unit for this CIE.  */ | 
|  | struct comp_unit *unit; | 
|  |  | 
|  | /* Offset into the .debug_frame section where this CIE was found. | 
|  | Used to identify this CIE.  */ | 
|  | ULONGEST cie_pointer; | 
|  |  | 
|  | /* Constant that is factored out of all advance location | 
|  | instructions.  */ | 
|  | ULONGEST code_alignment_factor; | 
|  |  | 
|  | /* Constants that is factored out of all offset instructions.  */ | 
|  | LONGEST data_alignment_factor; | 
|  |  | 
|  | /* Return address column.  */ | 
|  | ULONGEST return_address_register; | 
|  |  | 
|  | /* Instruction sequence to initialize a register set.  */ | 
|  | const gdb_byte *initial_instructions; | 
|  | const gdb_byte *end; | 
|  |  | 
|  | /* Saved augmentation, in case it's needed later.  */ | 
|  | char *augmentation; | 
|  |  | 
|  | /* Encoding of addresses.  */ | 
|  | gdb_byte encoding; | 
|  |  | 
|  | /* Target address size in bytes.  */ | 
|  | int addr_size; | 
|  |  | 
|  | /* Target pointer size in bytes.  */ | 
|  | int ptr_size; | 
|  |  | 
|  | /* True if a 'z' augmentation existed.  */ | 
|  | unsigned char saw_z_augmentation; | 
|  |  | 
|  | /* True if an 'S' augmentation existed.  */ | 
|  | unsigned char signal_frame; | 
|  |  | 
|  | /* The version recorded in the CIE.  */ | 
|  | unsigned char version; | 
|  |  | 
|  | /* The segment size.  */ | 
|  | unsigned char segment_size; | 
|  | }; | 
|  |  | 
|  | /* The CIE table is used to find CIEs during parsing, but then | 
|  | discarded.  It maps from the CIE's offset to the CIE.  */ | 
|  | typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table; | 
|  |  | 
|  | /* Frame Description Entry (FDE).  */ | 
|  |  | 
|  | struct dwarf2_fde | 
|  | { | 
|  | /* CIE for this FDE.  */ | 
|  | struct dwarf2_cie *cie; | 
|  |  | 
|  | /* First location associated with this FDE.  */ | 
|  | CORE_ADDR initial_location; | 
|  |  | 
|  | /* Number of bytes of program instructions described by this FDE.  */ | 
|  | CORE_ADDR address_range; | 
|  |  | 
|  | /* Instruction sequence.  */ | 
|  | const gdb_byte *instructions; | 
|  | const gdb_byte *end; | 
|  |  | 
|  | /* True if this FDE is read from a .eh_frame instead of a .debug_frame | 
|  | section.  */ | 
|  | unsigned char eh_frame_p; | 
|  | }; | 
|  |  | 
|  | typedef std::vector<dwarf2_fde *> dwarf2_fde_table; | 
|  |  | 
|  | /* A minimal decoding of DWARF2 compilation units.  We only decode | 
|  | what's needed to get to the call frame information.  */ | 
|  |  | 
|  | struct comp_unit | 
|  | { | 
|  | comp_unit (struct objfile *objf) | 
|  | : abfd (objf->obfd.get ()) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* Keep the bfd convenient.  */ | 
|  | bfd *abfd; | 
|  |  | 
|  | /* Pointer to the .debug_frame section loaded into memory.  */ | 
|  | const gdb_byte *dwarf_frame_buffer = nullptr; | 
|  |  | 
|  | /* Length of the loaded .debug_frame section.  */ | 
|  | bfd_size_type dwarf_frame_size = 0; | 
|  |  | 
|  | /* Pointer to the .debug_frame section.  */ | 
|  | asection *dwarf_frame_section = nullptr; | 
|  |  | 
|  | /* Base for DW_EH_PE_datarel encodings.  */ | 
|  | bfd_vma dbase = 0; | 
|  |  | 
|  | /* Base for DW_EH_PE_textrel encodings.  */ | 
|  | bfd_vma tbase = 0; | 
|  |  | 
|  | /* The FDE table.  */ | 
|  | dwarf2_fde_table fde_table; | 
|  |  | 
|  | /* Hold data used by this module.  */ | 
|  | auto_obstack obstack; | 
|  | }; | 
|  |  | 
|  | static struct dwarf2_fde *dwarf2_frame_find_fde | 
|  | (CORE_ADDR *pc, dwarf2_per_objfile **out_per_objfile); | 
|  |  | 
|  | static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, | 
|  | int eh_frame_p); | 
|  |  | 
|  | static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, | 
|  | int ptr_len, const gdb_byte *buf, | 
|  | unsigned int *bytes_read_ptr, | 
|  | CORE_ADDR func_base); | 
|  |  | 
|  |  | 
|  | /* See dwarf2/frame.h.  */ | 
|  | bool dwarf2_frame_unwinders_enabled_p = true; | 
|  |  | 
|  | /* Store the length the expression for the CFA in the `cfa_reg' field, | 
|  | which is unused in that case.  */ | 
|  | #define cfa_exp_len cfa_reg | 
|  |  | 
|  | dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie) | 
|  | : pc (pc_), data_align (cie->data_alignment_factor), | 
|  | code_align (cie->code_alignment_factor), | 
|  | retaddr_column (cie->return_address_register) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* Execute the required actions for both the DW_CFA_restore and | 
|  | DW_CFA_restore_extended instructions.  */ | 
|  | static void | 
|  | dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, | 
|  | struct dwarf2_frame_state *fs, int eh_frame_p) | 
|  | { | 
|  | ULONGEST reg; | 
|  |  | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  |  | 
|  | /* Check if this register was explicitly initialized in the | 
|  | CIE initial instructions.  If not, default the rule to | 
|  | UNSPECIFIED.  */ | 
|  | if (reg < fs->initial.reg.size ()) | 
|  | fs->regs.reg[reg] = fs->initial.reg[reg]; | 
|  | else | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; | 
|  |  | 
|  | if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) | 
|  | { | 
|  | int regnum = dwarf_reg_to_regnum (gdbarch, reg); | 
|  |  | 
|  | complaint (_("\ | 
|  | incomplete CFI data; DW_CFA_restore unspecified\n\ | 
|  | register %s (#%d) at %s"), | 
|  | gdbarch_register_name (gdbarch, regnum), regnum, | 
|  | paddress (gdbarch, fs->pc)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size, | 
|  | frame_info_ptr this_frame, CORE_ADDR initial, | 
|  | int initial_in_stack_memory, dwarf2_per_objfile *per_objfile) | 
|  | { | 
|  | dwarf_expr_context ctx (per_objfile, addr_size); | 
|  | scoped_value_mark free_values; | 
|  |  | 
|  | ctx.push_address (initial, initial_in_stack_memory); | 
|  | value *result_val = ctx.evaluate (exp, len, true, nullptr, this_frame); | 
|  |  | 
|  | if (VALUE_LVAL (result_val) == lval_memory) | 
|  | return value_address (result_val); | 
|  | else | 
|  | return value_as_address (result_val); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior | 
|  | PC.  Modify FS state accordingly.  Return current INSN_PTR where the | 
|  | execution has stopped, one can resume it on the next call.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr, | 
|  | const gdb_byte *insn_end, struct gdbarch *gdbarch, | 
|  | CORE_ADDR pc, struct dwarf2_frame_state *fs, | 
|  | CORE_ADDR text_offset) | 
|  | { | 
|  | int eh_frame_p = fde->eh_frame_p; | 
|  | unsigned int bytes_read; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | while (insn_ptr < insn_end && fs->pc <= pc) | 
|  | { | 
|  | gdb_byte insn = *insn_ptr++; | 
|  | uint64_t utmp, reg; | 
|  | int64_t offset; | 
|  |  | 
|  | if ((insn & 0xc0) == DW_CFA_advance_loc) | 
|  | fs->pc += (insn & 0x3f) * fs->code_align; | 
|  | else if ((insn & 0xc0) == DW_CFA_offset) | 
|  | { | 
|  | reg = insn & 0x3f; | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | offset = utmp * fs->data_align; | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = offset; | 
|  | } | 
|  | else if ((insn & 0xc0) == DW_CFA_restore) | 
|  | { | 
|  | reg = insn & 0x3f; | 
|  | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); | 
|  | } | 
|  | else | 
|  | { | 
|  | switch (insn) | 
|  | { | 
|  | case DW_CFA_set_loc: | 
|  | fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, | 
|  | fde->cie->ptr_size, insn_ptr, | 
|  | &bytes_read, fde->initial_location); | 
|  | /* Apply the text offset for relocatable objects.  */ | 
|  | fs->pc += text_offset; | 
|  | insn_ptr += bytes_read; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_advance_loc1: | 
|  | utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); | 
|  | fs->pc += utmp * fs->code_align; | 
|  | insn_ptr++; | 
|  | break; | 
|  | case DW_CFA_advance_loc2: | 
|  | utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); | 
|  | fs->pc += utmp * fs->code_align; | 
|  | insn_ptr += 2; | 
|  | break; | 
|  | case DW_CFA_advance_loc4: | 
|  | utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); | 
|  | fs->pc += utmp * fs->code_align; | 
|  | insn_ptr += 4; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_offset_extended: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | offset = utmp * fs->data_align; | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = offset; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_restore_extended: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); | 
|  | break; | 
|  |  | 
|  | case DW_CFA_undefined: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_same_value: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_register: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; | 
|  | fs->regs.reg[reg].loc.reg = utmp; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_remember_state: | 
|  | { | 
|  | struct dwarf2_frame_state_reg_info *new_rs; | 
|  |  | 
|  | new_rs = new dwarf2_frame_state_reg_info (fs->regs); | 
|  | fs->regs.prev = new_rs; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DW_CFA_restore_state: | 
|  | { | 
|  | struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; | 
|  |  | 
|  | if (old_rs == NULL) | 
|  | { | 
|  | complaint (_("\ | 
|  | bad CFI data; mismatched DW_CFA_restore_state at %s"), | 
|  | paddress (gdbarch, fs->pc)); | 
|  | } | 
|  | else | 
|  | fs->regs = std::move (*old_rs); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.cfa_reg = reg; | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  |  | 
|  | if (fs->armcc_cfa_offsets_sf) | 
|  | utmp *= fs->data_align; | 
|  |  | 
|  | fs->regs.cfa_offset = utmp; | 
|  | fs->regs.cfa_how = CFA_REG_OFFSET; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa_register: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, | 
|  | eh_frame_p); | 
|  | fs->regs.cfa_how = CFA_REG_OFFSET; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa_offset: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  |  | 
|  | if (fs->armcc_cfa_offsets_sf) | 
|  | utmp *= fs->data_align; | 
|  |  | 
|  | fs->regs.cfa_offset = utmp; | 
|  | /* cfa_how deliberately not set.  */ | 
|  | break; | 
|  |  | 
|  | case DW_CFA_nop: | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa_expression: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | fs->regs.cfa_exp_len = utmp; | 
|  | fs->regs.cfa_exp = insn_ptr; | 
|  | fs->regs.cfa_how = CFA_EXP; | 
|  | insn_ptr += fs->regs.cfa_exp_len; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_expression: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | fs->regs.reg[reg].loc.exp.start = insn_ptr; | 
|  | fs->regs.reg[reg].loc.exp.len = utmp; | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; | 
|  | insn_ptr += utmp; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_offset_extended_sf: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); | 
|  | offset *= fs->data_align; | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = offset; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_val_offset: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | offset = utmp * fs->data_align; | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = offset; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_val_offset_sf: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); | 
|  | offset *= fs->data_align; | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = offset; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_val_expression: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | fs->regs.reg[reg].loc.exp.start = insn_ptr; | 
|  | fs->regs.reg[reg].loc.exp.len = utmp; | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | 
|  | insn_ptr += utmp; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa_sf: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg, | 
|  | eh_frame_p); | 
|  | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); | 
|  | fs->regs.cfa_offset = offset * fs->data_align; | 
|  | fs->regs.cfa_how = CFA_REG_OFFSET; | 
|  | break; | 
|  |  | 
|  | case DW_CFA_def_cfa_offset_sf: | 
|  | insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset); | 
|  | fs->regs.cfa_offset = offset * fs->data_align; | 
|  | /* cfa_how deliberately not set.  */ | 
|  | break; | 
|  |  | 
|  | case DW_CFA_GNU_args_size: | 
|  | /* Ignored.  */ | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | break; | 
|  |  | 
|  | case DW_CFA_GNU_negative_offset_extended: | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, ®); | 
|  | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); | 
|  | insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp); | 
|  | offset = utmp * fs->data_align; | 
|  | fs->regs.alloc_regs (reg + 1); | 
|  | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | 
|  | fs->regs.reg[reg].loc.offset = -offset; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user) | 
|  | { | 
|  | /* Handle vendor-specific CFI for different architectures.  */ | 
|  | if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs)) | 
|  | error (_("Call Frame Instruction op %d in vendor extension " | 
|  | "space is not handled on this architecture."), | 
|  | insn); | 
|  | } | 
|  | else | 
|  | internal_error (_("Unknown CFI encountered.")); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fs->initial.reg.empty ()) | 
|  | { | 
|  | /* Don't allow remember/restore between CIE and FDE programs.  */ | 
|  | delete fs->regs.prev; | 
|  | fs->regs.prev = NULL; | 
|  | } | 
|  |  | 
|  | return insn_ptr; | 
|  | } | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  |  | 
|  | namespace selftests { | 
|  |  | 
|  | /* Unit test to function execute_cfa_program.  */ | 
|  |  | 
|  | static void | 
|  | execute_cfa_program_test (struct gdbarch *gdbarch) | 
|  | { | 
|  | struct dwarf2_fde fde; | 
|  | struct dwarf2_cie cie; | 
|  |  | 
|  | memset (&fde, 0, sizeof fde); | 
|  | memset (&cie, 0, sizeof cie); | 
|  |  | 
|  | cie.data_alignment_factor = -4; | 
|  | cie.code_alignment_factor = 2; | 
|  | fde.cie = &cie; | 
|  |  | 
|  | dwarf2_frame_state fs (0, fde.cie); | 
|  |  | 
|  | gdb_byte insns[] = | 
|  | { | 
|  | DW_CFA_def_cfa, 1, 4,  /* DW_CFA_def_cfa: r1 ofs 4 */ | 
|  | DW_CFA_offset | 0x2, 1,  /* DW_CFA_offset: r2 at cfa-4 */ | 
|  | DW_CFA_remember_state, | 
|  | DW_CFA_restore_state, | 
|  | }; | 
|  |  | 
|  | const gdb_byte *insn_end = insns + sizeof (insns); | 
|  | const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch, | 
|  | 0, &fs, 0); | 
|  |  | 
|  | SELF_CHECK (out == insn_end); | 
|  | SELF_CHECK (fs.pc == 0); | 
|  |  | 
|  | /* The instructions above only use r1 and r2, but the register numbers | 
|  | used are adjusted by dwarf2_frame_adjust_regnum.  */ | 
|  | auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p); | 
|  | auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p); | 
|  |  | 
|  | SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1)); | 
|  |  | 
|  | SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET); | 
|  | SELF_CHECK (fs.regs.reg[r2].loc.offset == -4); | 
|  |  | 
|  | for (auto i = 0; i < fs.regs.reg.size (); i++) | 
|  | if (i != r2) | 
|  | SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED); | 
|  |  | 
|  | SELF_CHECK (fs.regs.cfa_reg == 1); | 
|  | SELF_CHECK (fs.regs.cfa_offset == 4); | 
|  | SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET); | 
|  | SELF_CHECK (fs.regs.cfa_exp == NULL); | 
|  | SELF_CHECK (fs.regs.prev == NULL); | 
|  | } | 
|  |  | 
|  | } // namespace selftests | 
|  | #endif /* GDB_SELF_TEST */ | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Architecture-specific operations.  */ | 
|  |  | 
|  | static void dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, | 
|  | int regnum, | 
|  | struct dwarf2_frame_state_reg *reg, | 
|  | frame_info_ptr this_frame); | 
|  |  | 
|  | struct dwarf2_frame_ops | 
|  | { | 
|  | /* Pre-initialize the register state REG for register REGNUM.  */ | 
|  | void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, | 
|  | frame_info_ptr) | 
|  | = dwarf2_frame_default_init_reg; | 
|  |  | 
|  | /* Check whether the THIS_FRAME is a signal trampoline.  */ | 
|  | int (*signal_frame_p) (struct gdbarch *, frame_info_ptr) = nullptr; | 
|  |  | 
|  | /* Convert .eh_frame register number to DWARF register number, or | 
|  | adjust .debug_frame register number.  */ | 
|  | int (*adjust_regnum) (struct gdbarch *, int, int) = nullptr; | 
|  | }; | 
|  |  | 
|  | /* Per-architecture data key.  */ | 
|  | static const registry<gdbarch>::key<dwarf2_frame_ops> dwarf2_frame_data; | 
|  |  | 
|  | /* Get or initialize the frame ops.  */ | 
|  | static dwarf2_frame_ops * | 
|  | get_frame_ops (struct gdbarch *gdbarch) | 
|  | { | 
|  | dwarf2_frame_ops *result = dwarf2_frame_data.get (gdbarch); | 
|  | if (result == nullptr) | 
|  | result = dwarf2_frame_data.emplace (gdbarch); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* Default architecture-specific register state initialization | 
|  | function.  */ | 
|  |  | 
|  | static void | 
|  | dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, | 
|  | struct dwarf2_frame_state_reg *reg, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | /* If we have a register that acts as a program counter, mark it as | 
|  | a destination for the return address.  If we have a register that | 
|  | serves as the stack pointer, arrange for it to be filled with the | 
|  | call frame address (CFA).  The other registers are marked as | 
|  | unspecified. | 
|  |  | 
|  | We copy the return address to the program counter, since many | 
|  | parts in GDB assume that it is possible to get the return address | 
|  | by unwinding the program counter register.  However, on ISA's | 
|  | with a dedicated return address register, the CFI usually only | 
|  | contains information to unwind that return address register. | 
|  |  | 
|  | The reason we're treating the stack pointer special here is | 
|  | because in many cases GCC doesn't emit CFI for the stack pointer | 
|  | and implicitly assumes that it is equal to the CFA.  This makes | 
|  | some sense since the DWARF specification (version 3, draft 8, | 
|  | p. 102) says that: | 
|  |  | 
|  | "Typically, the CFA is defined to be the value of the stack | 
|  | pointer at the call site in the previous frame (which may be | 
|  | different from its value on entry to the current frame)." | 
|  |  | 
|  | However, this isn't true for all platforms supported by GCC | 
|  | (e.g. IBM S/390 and zSeries).  Those architectures should provide | 
|  | their own architecture-specific initialization function.  */ | 
|  |  | 
|  | if (regnum == gdbarch_pc_regnum (gdbarch)) | 
|  | reg->how = DWARF2_FRAME_REG_RA; | 
|  | else if (regnum == gdbarch_sp_regnum (gdbarch)) | 
|  | reg->how = DWARF2_FRAME_REG_CFA; | 
|  | } | 
|  |  | 
|  | /* Set the architecture-specific register state initialization | 
|  | function for GDBARCH to INIT_REG.  */ | 
|  |  | 
|  | void | 
|  | dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, | 
|  | void (*init_reg) (struct gdbarch *, int, | 
|  | struct dwarf2_frame_state_reg *, | 
|  | frame_info_ptr)) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | ops->init_reg = init_reg; | 
|  | } | 
|  |  | 
|  | /* Pre-initialize the register state REG for register REGNUM.  */ | 
|  |  | 
|  | static void | 
|  | dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | 
|  | struct dwarf2_frame_state_reg *reg, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | ops->init_reg (gdbarch, regnum, reg, this_frame); | 
|  | } | 
|  |  | 
|  | /* Set the architecture-specific signal trampoline recognition | 
|  | function for GDBARCH to SIGNAL_FRAME_P.  */ | 
|  |  | 
|  | void | 
|  | dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, | 
|  | int (*signal_frame_p) (struct gdbarch *, | 
|  | frame_info_ptr)) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | ops->signal_frame_p = signal_frame_p; | 
|  | } | 
|  |  | 
|  | /* Query the architecture-specific signal frame recognizer for | 
|  | THIS_FRAME.  */ | 
|  |  | 
|  | static int | 
|  | dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, | 
|  | frame_info_ptr this_frame) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | if (ops->signal_frame_p == NULL) | 
|  | return 0; | 
|  | return ops->signal_frame_p (gdbarch, this_frame); | 
|  | } | 
|  |  | 
|  | /* Set the architecture-specific adjustment of .eh_frame and .debug_frame | 
|  | register numbers.  */ | 
|  |  | 
|  | void | 
|  | dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, | 
|  | int (*adjust_regnum) (struct gdbarch *, | 
|  | int, int)) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | ops->adjust_regnum = adjust_regnum; | 
|  | } | 
|  |  | 
|  | /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame | 
|  | register.  */ | 
|  |  | 
|  | static int | 
|  | dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, | 
|  | int regnum, int eh_frame_p) | 
|  | { | 
|  | struct dwarf2_frame_ops *ops = get_frame_ops (gdbarch); | 
|  |  | 
|  | if (ops->adjust_regnum == NULL) | 
|  | return regnum; | 
|  | return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); | 
|  | } | 
|  |  | 
|  | static void | 
|  | dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, | 
|  | struct dwarf2_fde *fde) | 
|  | { | 
|  | struct compunit_symtab *cust; | 
|  |  | 
|  | cust = find_pc_compunit_symtab (fs->pc); | 
|  | if (cust == NULL) | 
|  | return; | 
|  |  | 
|  | if (producer_is_realview (cust->producer ())) | 
|  | { | 
|  | if (fde->cie->version == 1) | 
|  | fs->armcc_cfa_offsets_sf = 1; | 
|  |  | 
|  | if (fde->cie->version == 1) | 
|  | fs->armcc_cfa_offsets_reversed = 1; | 
|  |  | 
|  | /* The reversed offset problem is present in some compilers | 
|  | using DWARF3, but it was eventually fixed.  Check the ARM | 
|  | defined augmentations, which are in the format "armcc" followed | 
|  | by a list of one-character options.  The "+" option means | 
|  | this problem is fixed (no quirk needed).  If the armcc | 
|  | augmentation is missing, the quirk is needed.  */ | 
|  | if (fde->cie->version == 3 | 
|  | && (!startswith (fde->cie->augmentation, "armcc") | 
|  | || strchr (fde->cie->augmentation + 5, '+') == NULL)) | 
|  | fs->armcc_cfa_offsets_reversed = 1; | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* See dwarf2/frame.h.  */ | 
|  |  | 
|  | int | 
|  | dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc, | 
|  | struct dwarf2_per_cu_data *data, | 
|  | int *regnum_out, LONGEST *offset_out, | 
|  | CORE_ADDR *text_offset_out, | 
|  | const gdb_byte **cfa_start_out, | 
|  | const gdb_byte **cfa_end_out) | 
|  | { | 
|  | struct dwarf2_fde *fde; | 
|  | dwarf2_per_objfile *per_objfile; | 
|  | CORE_ADDR pc1 = pc; | 
|  |  | 
|  | /* Find the correct FDE.  */ | 
|  | fde = dwarf2_frame_find_fde (&pc1, &per_objfile); | 
|  | if (fde == NULL) | 
|  | error (_("Could not compute CFA; needed to translate this expression")); | 
|  |  | 
|  | gdb_assert (per_objfile != nullptr); | 
|  |  | 
|  | dwarf2_frame_state fs (pc1, fde->cie); | 
|  |  | 
|  | /* Check for "quirks" - known bugs in producers.  */ | 
|  | dwarf2_frame_find_quirks (&fs, fde); | 
|  |  | 
|  | /* First decode all the insns in the CIE.  */ | 
|  | execute_cfa_program (fde, fde->cie->initial_instructions, | 
|  | fde->cie->end, gdbarch, pc, &fs, | 
|  | per_objfile->objfile->text_section_offset ()); | 
|  |  | 
|  | /* Save the initialized register set.  */ | 
|  | fs.initial = fs.regs; | 
|  |  | 
|  | /* Then decode the insns in the FDE up to our target PC.  */ | 
|  | execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs, | 
|  | per_objfile->objfile->text_section_offset ()); | 
|  |  | 
|  | /* Calculate the CFA.  */ | 
|  | switch (fs.regs.cfa_how) | 
|  | { | 
|  | case CFA_REG_OFFSET: | 
|  | { | 
|  | int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg); | 
|  |  | 
|  | *regnum_out = regnum; | 
|  | if (fs.armcc_cfa_offsets_reversed) | 
|  | *offset_out = -fs.regs.cfa_offset; | 
|  | else | 
|  | *offset_out = fs.regs.cfa_offset; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | case CFA_EXP: | 
|  | *text_offset_out = per_objfile->objfile->text_section_offset (); | 
|  | *cfa_start_out = fs.regs.cfa_exp; | 
|  | *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len; | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | internal_error (_("Unknown CFA rule.")); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | struct dwarf2_frame_cache | 
|  | { | 
|  | /* DWARF Call Frame Address.  */ | 
|  | CORE_ADDR cfa; | 
|  |  | 
|  | /* Set if the return address column was marked as unavailable | 
|  | (required non-collected memory or registers to compute).  */ | 
|  | int unavailable_retaddr; | 
|  |  | 
|  | /* Set if the return address column was marked as undefined.  */ | 
|  | int undefined_retaddr; | 
|  |  | 
|  | /* Saved registers, indexed by GDB register number, not by DWARF | 
|  | register number.  */ | 
|  | struct dwarf2_frame_state_reg *reg; | 
|  |  | 
|  | /* Return address register.  */ | 
|  | struct dwarf2_frame_state_reg retaddr_reg; | 
|  |  | 
|  | /* Target address size in bytes.  */ | 
|  | int addr_size; | 
|  |  | 
|  | /* The dwarf2_per_objfile from which this frame description came.  */ | 
|  | dwarf2_per_objfile *per_objfile; | 
|  |  | 
|  | /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME | 
|  | sequence.  If NULL then it is a normal case with no TAILCALL_FRAME | 
|  | involved.  Non-bottom frames of a virtual tail call frames chain use | 
|  | dwarf2_tailcall_frame_unwind unwinder so this field does not apply for | 
|  | them.  */ | 
|  | void *tailcall_cache; | 
|  | }; | 
|  |  | 
|  | static struct dwarf2_frame_cache * | 
|  | dwarf2_frame_cache (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | const int num_regs = gdbarch_num_cooked_regs (gdbarch); | 
|  | struct dwarf2_frame_cache *cache; | 
|  | struct dwarf2_fde *fde; | 
|  | CORE_ADDR entry_pc; | 
|  | const gdb_byte *instr; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct dwarf2_frame_cache *) *this_cache; | 
|  |  | 
|  | /* Allocate a new cache.  */ | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); | 
|  | cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); | 
|  | *this_cache = cache; | 
|  |  | 
|  | /* Unwind the PC. | 
|  |  | 
|  | Note that if the next frame is never supposed to return (i.e. a call | 
|  | to abort), the compiler might optimize away the instruction at | 
|  | its return address.  As a result the return address will | 
|  | point at some random instruction, and the CFI for that | 
|  | instruction is probably worthless to us.  GCC's unwinder solves | 
|  | this problem by substracting 1 from the return address to get an | 
|  | address in the middle of a presumed call instruction (or the | 
|  | instruction in the associated delay slot).  This should only be | 
|  | done for "normal" frames and not for resume-type frames (signal | 
|  | handlers, sentinel frames, dummy frames).  The function | 
|  | get_frame_address_in_block does just this.  It's not clear how | 
|  | reliable the method is though; there is the potential for the | 
|  | register state pre-call being different to that on return.  */ | 
|  | CORE_ADDR pc1 = get_frame_address_in_block (this_frame); | 
|  |  | 
|  | /* Find the correct FDE.  */ | 
|  | fde = dwarf2_frame_find_fde (&pc1, &cache->per_objfile); | 
|  | gdb_assert (fde != NULL); | 
|  | gdb_assert (cache->per_objfile != nullptr); | 
|  |  | 
|  | /* Allocate and initialize the frame state.  */ | 
|  | struct dwarf2_frame_state fs (pc1, fde->cie); | 
|  |  | 
|  | cache->addr_size = fde->cie->addr_size; | 
|  |  | 
|  | /* Check for "quirks" - known bugs in producers.  */ | 
|  | dwarf2_frame_find_quirks (&fs, fde); | 
|  |  | 
|  | /* First decode all the insns in the CIE.  */ | 
|  | execute_cfa_program (fde, fde->cie->initial_instructions, | 
|  | fde->cie->end, gdbarch, | 
|  | get_frame_address_in_block (this_frame), &fs, | 
|  | cache->per_objfile->objfile->text_section_offset ()); | 
|  |  | 
|  | /* Save the initialized register set.  */ | 
|  | fs.initial = fs.regs; | 
|  |  | 
|  | /* Fetching the entry pc for THIS_FRAME won't necessarily result | 
|  | in an address that's within the range of FDE locations.  This | 
|  | is due to the possibility of the function occupying non-contiguous | 
|  | ranges.  */ | 
|  | LONGEST entry_cfa_sp_offset; | 
|  | int entry_cfa_sp_offset_p = 0; | 
|  | if (get_frame_func_if_available (this_frame, &entry_pc) | 
|  | && fde->initial_location <= entry_pc | 
|  | && entry_pc < fde->initial_location + fde->address_range) | 
|  | { | 
|  | /* Decode the insns in the FDE up to the entry PC.  */ | 
|  | instr = execute_cfa_program | 
|  | (fde, fde->instructions, fde->end, gdbarch, entry_pc, &fs, | 
|  | cache->per_objfile->objfile->text_section_offset ()); | 
|  |  | 
|  | if (fs.regs.cfa_how == CFA_REG_OFFSET | 
|  | && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg) | 
|  | == gdbarch_sp_regnum (gdbarch))) | 
|  | { | 
|  | entry_cfa_sp_offset = fs.regs.cfa_offset; | 
|  | entry_cfa_sp_offset_p = 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | instr = fde->instructions; | 
|  |  | 
|  | /* Then decode the insns in the FDE up to our target PC.  */ | 
|  | execute_cfa_program (fde, instr, fde->end, gdbarch, | 
|  | get_frame_address_in_block (this_frame), &fs, | 
|  | cache->per_objfile->objfile->text_section_offset ()); | 
|  |  | 
|  | try | 
|  | { | 
|  | /* Calculate the CFA.  */ | 
|  | switch (fs.regs.cfa_how) | 
|  | { | 
|  | case CFA_REG_OFFSET: | 
|  | cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg); | 
|  | if (fs.armcc_cfa_offsets_reversed) | 
|  | cache->cfa -= fs.regs.cfa_offset; | 
|  | else | 
|  | cache->cfa += fs.regs.cfa_offset; | 
|  | break; | 
|  |  | 
|  | case CFA_EXP: | 
|  | cache->cfa = | 
|  | execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len, | 
|  | cache->addr_size, this_frame, 0, 0, | 
|  | cache->per_objfile); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | internal_error (_("Unknown CFA rule.")); | 
|  | } | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | if (ex.error == NOT_AVAILABLE_ERROR) | 
|  | { | 
|  | cache->unavailable_retaddr = 1; | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | throw; | 
|  | } | 
|  |  | 
|  | /* Initialize the register state.  */ | 
|  | { | 
|  | int regnum; | 
|  |  | 
|  | for (regnum = 0; regnum < num_regs; regnum++) | 
|  | dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); | 
|  | } | 
|  |  | 
|  | /* Go through the DWARF2 CFI generated table and save its register | 
|  | location information in the cache.  Note that we don't skip the | 
|  | return address column; it's perfectly all right for it to | 
|  | correspond to a real register.  */ | 
|  | { | 
|  | int column;		/* CFI speak for "register number".  */ | 
|  |  | 
|  | for (column = 0; column < fs.regs.reg.size (); column++) | 
|  | { | 
|  | /* Use the GDB register number as the destination index.  */ | 
|  | int regnum = dwarf_reg_to_regnum (gdbarch, column); | 
|  |  | 
|  | /* Protect against a target returning a bad register.  */ | 
|  | if (regnum < 0 || regnum >= num_regs) | 
|  | continue; | 
|  |  | 
|  | /* NOTE: cagney/2003-09-05: CFI should specify the disposition | 
|  | of all debug info registers.  If it doesn't, complain (but | 
|  | not too loudly).  It turns out that GCC assumes that an | 
|  | unspecified register implies "same value" when CFI (draft | 
|  | 7) specifies nothing at all.  Such a register could equally | 
|  | be interpreted as "undefined".  Also note that this check | 
|  | isn't sufficient; it only checks that all registers in the | 
|  | range [0 .. max column] are specified, and won't detect | 
|  | problems when a debug info register falls outside of the | 
|  | table.  We need a way of iterating through all the valid | 
|  | DWARF2 register numbers.  */ | 
|  | if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) | 
|  | { | 
|  | if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) | 
|  | complaint (_("\ | 
|  | incomplete CFI data; unspecified registers (e.g., %s) at %s"), | 
|  | gdbarch_register_name (gdbarch, regnum), | 
|  | paddress (gdbarch, fs.pc)); | 
|  | } | 
|  | else | 
|  | cache->reg[regnum] = fs.regs.reg[column]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information | 
|  | we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules.  */ | 
|  | { | 
|  | int regnum; | 
|  |  | 
|  | for (regnum = 0; regnum < num_regs; regnum++) | 
|  | { | 
|  | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA | 
|  | || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) | 
|  | { | 
|  | const std::vector<struct dwarf2_frame_state_reg> ®s | 
|  | = fs.regs.reg; | 
|  | ULONGEST retaddr_column = fs.retaddr_column; | 
|  |  | 
|  | /* It seems rather bizarre to specify an "empty" column as | 
|  | the return adress column.  However, this is exactly | 
|  | what GCC does on some targets.  It turns out that GCC | 
|  | assumes that the return address can be found in the | 
|  | register corresponding to the return address column. | 
|  | Incidentally, that's how we should treat a return | 
|  | address column specifying "same value" too.  */ | 
|  | if (fs.retaddr_column < fs.regs.reg.size () | 
|  | && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED | 
|  | && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE) | 
|  | { | 
|  | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) | 
|  | cache->reg[regnum] = regs[retaddr_column]; | 
|  | else | 
|  | cache->retaddr_reg = regs[retaddr_column]; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) | 
|  | { | 
|  | cache->reg[regnum].loc.reg = fs.retaddr_column; | 
|  | cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; | 
|  | } | 
|  | else | 
|  | { | 
|  | cache->retaddr_reg.loc.reg = fs.retaddr_column; | 
|  | cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fs.retaddr_column < fs.regs.reg.size () | 
|  | && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) | 
|  | cache->undefined_retaddr = 1; | 
|  |  | 
|  | dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache, | 
|  | (entry_cfa_sp_offset_p | 
|  | ? &entry_cfa_sp_offset : NULL)); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | dwarf2_frame_unwind_stop_reason (frame_info_ptr this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct dwarf2_frame_cache *cache | 
|  | = dwarf2_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (cache->unavailable_retaddr) | 
|  | return UNWIND_UNAVAILABLE; | 
|  |  | 
|  | if (cache->undefined_retaddr) | 
|  | return UNWIND_OUTERMOST; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | static void | 
|  | dwarf2_frame_this_id (frame_info_ptr this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct dwarf2_frame_cache *cache = | 
|  | dwarf2_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (cache->unavailable_retaddr) | 
|  | (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame)); | 
|  | else if (cache->undefined_retaddr) | 
|  | return; | 
|  | else | 
|  | (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | dwarf2_frame_prev_register (frame_info_ptr this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct dwarf2_frame_cache *cache = | 
|  | dwarf2_frame_cache (this_frame, this_cache); | 
|  | CORE_ADDR addr; | 
|  | int realnum; | 
|  |  | 
|  | /* Non-bottom frames of a virtual tail call frames chain use | 
|  | dwarf2_tailcall_frame_unwind unwinder so this code does not apply for | 
|  | them.  If dwarf2_tailcall_prev_register_first does not have specific value | 
|  | unwind the register, tail call frames are assumed to have the register set | 
|  | of the top caller.  */ | 
|  | if (cache->tailcall_cache) | 
|  | { | 
|  | struct value *val; | 
|  |  | 
|  | val = dwarf2_tailcall_prev_register_first (this_frame, | 
|  | &cache->tailcall_cache, | 
|  | regnum); | 
|  | if (val) | 
|  | return val; | 
|  | } | 
|  |  | 
|  | switch (cache->reg[regnum].how) | 
|  | { | 
|  | case DWARF2_FRAME_REG_UNDEFINED: | 
|  | /* If CFI explicitly specified that the value isn't defined, | 
|  | mark it as optimized away; the value isn't available.  */ | 
|  | return frame_unwind_got_optimized (this_frame, regnum); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAVED_OFFSET: | 
|  | addr = cache->cfa + cache->reg[regnum].loc.offset; | 
|  | return frame_unwind_got_memory (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAVED_REG: | 
|  | realnum = dwarf_reg_to_regnum_or_error | 
|  | (gdbarch, cache->reg[regnum].loc.reg); | 
|  | return frame_unwind_got_register (this_frame, regnum, realnum); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAVED_EXP: | 
|  | addr = execute_stack_op (cache->reg[regnum].loc.exp.start, | 
|  | cache->reg[regnum].loc.exp.len, | 
|  | cache->addr_size, | 
|  | this_frame, cache->cfa, 1, | 
|  | cache->per_objfile); | 
|  | return frame_unwind_got_memory (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: | 
|  | addr = cache->cfa + cache->reg[regnum].loc.offset; | 
|  | return frame_unwind_got_constant (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAVED_VAL_EXP: | 
|  | addr = execute_stack_op (cache->reg[regnum].loc.exp.start, | 
|  | cache->reg[regnum].loc.exp.len, | 
|  | cache->addr_size, | 
|  | this_frame, cache->cfa, 1, | 
|  | cache->per_objfile); | 
|  | return frame_unwind_got_constant (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_UNSPECIFIED: | 
|  | /* GCC, in its infinite wisdom decided to not provide unwind | 
|  | information for registers that are "same value".  Since | 
|  | DWARF2 (3 draft 7) doesn't define such behavior, said | 
|  | registers are actually undefined (which is different to CFI | 
|  | "undefined").  Code above issues a complaint about this. | 
|  | Here just fudge the books, assume GCC, and that the value is | 
|  | more inner on the stack.  */ | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  |  | 
|  | case DWARF2_FRAME_REG_SAME_VALUE: | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  |  | 
|  | case DWARF2_FRAME_REG_CFA: | 
|  | return frame_unwind_got_address (this_frame, regnum, cache->cfa); | 
|  |  | 
|  | case DWARF2_FRAME_REG_CFA_OFFSET: | 
|  | addr = cache->cfa + cache->reg[regnum].loc.offset; | 
|  | return frame_unwind_got_address (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_RA_OFFSET: | 
|  | addr = cache->reg[regnum].loc.offset; | 
|  | regnum = dwarf_reg_to_regnum_or_error | 
|  | (gdbarch, cache->retaddr_reg.loc.reg); | 
|  | addr += get_frame_register_unsigned (this_frame, regnum); | 
|  | return frame_unwind_got_address (this_frame, regnum, addr); | 
|  |  | 
|  | case DWARF2_FRAME_REG_FN: | 
|  | return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); | 
|  |  | 
|  | default: | 
|  | internal_error (_("Unknown register rule.")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail | 
|  | call frames chain.  */ | 
|  |  | 
|  | static void | 
|  | dwarf2_frame_dealloc_cache (frame_info *self, void *this_cache) | 
|  | { | 
|  | struct dwarf2_frame_cache *cache | 
|  | = dwarf2_frame_cache (frame_info_ptr (self), &this_cache); | 
|  |  | 
|  | if (cache->tailcall_cache) | 
|  | dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache); | 
|  | } | 
|  |  | 
|  | static int | 
|  | dwarf2_frame_sniffer (const struct frame_unwind *self, | 
|  | frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | if (!dwarf2_frame_unwinders_enabled_p) | 
|  | return 0; | 
|  |  | 
|  | /* Grab an address that is guaranteed to reside somewhere within the | 
|  | function.  get_frame_pc(), with a no-return next function, can | 
|  | end up returning something past the end of this function's body. | 
|  | If the frame we're sniffing for is a signal frame whose start | 
|  | address is placed on the stack by the OS, its FDE must | 
|  | extend one byte before its start address or we could potentially | 
|  | select the FDE of the previous function.  */ | 
|  | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | 
|  | struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL); | 
|  |  | 
|  | if (!fde) | 
|  | return 0; | 
|  |  | 
|  | /* On some targets, signal trampolines may have unwind information. | 
|  | We need to recognize them so that we set the frame type | 
|  | correctly.  */ | 
|  |  | 
|  | if (fde->cie->signal_frame | 
|  | || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), | 
|  | this_frame)) | 
|  | return self->type == SIGTRAMP_FRAME; | 
|  |  | 
|  | if (self->type != NORMAL_FRAME) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind dwarf2_frame_unwind = | 
|  | { | 
|  | "dwarf2", | 
|  | NORMAL_FRAME, | 
|  | dwarf2_frame_unwind_stop_reason, | 
|  | dwarf2_frame_this_id, | 
|  | dwarf2_frame_prev_register, | 
|  | NULL, | 
|  | dwarf2_frame_sniffer, | 
|  | dwarf2_frame_dealloc_cache | 
|  | }; | 
|  |  | 
|  | static const struct frame_unwind dwarf2_signal_frame_unwind = | 
|  | { | 
|  | "dwarf2 signal", | 
|  | SIGTRAMP_FRAME, | 
|  | dwarf2_frame_unwind_stop_reason, | 
|  | dwarf2_frame_this_id, | 
|  | dwarf2_frame_prev_register, | 
|  | NULL, | 
|  | dwarf2_frame_sniffer, | 
|  |  | 
|  | /* TAILCALL_CACHE can never be in such frame to need dealloc_cache.  */ | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | /* Append the DWARF-2 frame unwinders to GDBARCH's list.  */ | 
|  |  | 
|  | void | 
|  | dwarf2_append_unwinders (struct gdbarch *gdbarch) | 
|  | { | 
|  | frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* There is no explicitly defined relationship between the CFA and the | 
|  | location of frame's local variables and arguments/parameters. | 
|  | Therefore, frame base methods on this page should probably only be | 
|  | used as a last resort, just to avoid printing total garbage as a | 
|  | response to the "info frame" command.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | dwarf2_frame_base_address (frame_info_ptr this_frame, void **this_cache) | 
|  | { | 
|  | struct dwarf2_frame_cache *cache = | 
|  | dwarf2_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return cache->cfa; | 
|  | } | 
|  |  | 
|  | static const struct frame_base dwarf2_frame_base = | 
|  | { | 
|  | &dwarf2_frame_unwind, | 
|  | dwarf2_frame_base_address, | 
|  | dwarf2_frame_base_address, | 
|  | dwarf2_frame_base_address | 
|  | }; | 
|  |  | 
|  | const struct frame_base * | 
|  | dwarf2_frame_base_sniffer (frame_info_ptr this_frame) | 
|  | { | 
|  | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | 
|  |  | 
|  | if (dwarf2_frame_find_fde (&block_addr, NULL)) | 
|  | return &dwarf2_frame_base; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from | 
|  | the DWARF unwinder.  This is used to implement | 
|  | DW_OP_call_frame_cfa.  */ | 
|  |  | 
|  | CORE_ADDR | 
|  | dwarf2_frame_cfa (frame_info_ptr this_frame) | 
|  | { | 
|  | if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind) | 
|  | || frame_unwinder_is (this_frame, &record_btrace_frame_unwind)) | 
|  | throw_error (NOT_AVAILABLE_ERROR, | 
|  | _("cfa not available for record btrace target")); | 
|  |  | 
|  | while (get_frame_type (this_frame) == INLINE_FRAME) | 
|  | this_frame = get_prev_frame (this_frame); | 
|  | if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE) | 
|  | throw_error (NOT_AVAILABLE_ERROR, | 
|  | _("can't compute CFA for this frame: " | 
|  | "required registers or memory are unavailable")); | 
|  |  | 
|  | if (get_frame_id (this_frame).stack_status != FID_STACK_VALID) | 
|  | throw_error (NOT_AVAILABLE_ERROR, | 
|  | _("can't compute CFA for this frame: " | 
|  | "frame base not available")); | 
|  |  | 
|  | return get_frame_base (this_frame); | 
|  | } | 
|  |  | 
|  | /* We store the frame data on the BFD.  This is only done if it is | 
|  | independent of the address space and so can be shared.  */ | 
|  | static const registry<bfd>::key<comp_unit> dwarf2_frame_bfd_data; | 
|  |  | 
|  | /* If any BFD sections require relocations (note; really should be if | 
|  | any debug info requires relocations), then we store the frame data | 
|  | on the objfile instead, and do not share it.  */ | 
|  | static const registry<objfile>::key<comp_unit> dwarf2_frame_objfile_data; | 
|  |  | 
|  |  | 
|  | /* Pointer encoding helper functions.  */ | 
|  |  | 
|  | /* GCC supports exception handling based on DWARF2 CFI.  However, for | 
|  | technical reasons, it encodes addresses in its FDE's in a different | 
|  | way.  Several "pointer encodings" are supported.  The encoding | 
|  | that's used for a particular FDE is determined by the 'R' | 
|  | augmentation in the associated CIE.  The argument of this | 
|  | augmentation is a single byte. | 
|  |  | 
|  | The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a | 
|  | LEB128.  This is encoded in bits 0, 1 and 2.  Bit 3 encodes whether | 
|  | the address is signed or unsigned.  Bits 4, 5 and 6 encode how the | 
|  | address should be interpreted (absolute, relative to the current | 
|  | position in the FDE, ...).  Bit 7, indicates that the address | 
|  | should be dereferenced.  */ | 
|  |  | 
|  | static gdb_byte | 
|  | encoding_for_size (unsigned int size) | 
|  | { | 
|  | switch (size) | 
|  | { | 
|  | case 2: | 
|  | return DW_EH_PE_udata2; | 
|  | case 4: | 
|  | return DW_EH_PE_udata4; | 
|  | case 8: | 
|  | return DW_EH_PE_udata8; | 
|  | default: | 
|  | internal_error (_("Unsupported address size")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | read_encoded_value (struct comp_unit *unit, gdb_byte encoding, | 
|  | int ptr_len, const gdb_byte *buf, | 
|  | unsigned int *bytes_read_ptr, | 
|  | CORE_ADDR func_base) | 
|  | { | 
|  | ptrdiff_t offset; | 
|  | CORE_ADDR base; | 
|  |  | 
|  | /* GCC currently doesn't generate DW_EH_PE_indirect encodings for | 
|  | FDE's.  */ | 
|  | if (encoding & DW_EH_PE_indirect) | 
|  | internal_error (_("Unsupported encoding: DW_EH_PE_indirect")); | 
|  |  | 
|  | *bytes_read_ptr = 0; | 
|  |  | 
|  | switch (encoding & 0x70) | 
|  | { | 
|  | case DW_EH_PE_absptr: | 
|  | base = 0; | 
|  | break; | 
|  | case DW_EH_PE_pcrel: | 
|  | base = bfd_section_vma (unit->dwarf_frame_section); | 
|  | base += (buf - unit->dwarf_frame_buffer); | 
|  | break; | 
|  | case DW_EH_PE_datarel: | 
|  | base = unit->dbase; | 
|  | break; | 
|  | case DW_EH_PE_textrel: | 
|  | base = unit->tbase; | 
|  | break; | 
|  | case DW_EH_PE_funcrel: | 
|  | base = func_base; | 
|  | break; | 
|  | case DW_EH_PE_aligned: | 
|  | base = 0; | 
|  | offset = buf - unit->dwarf_frame_buffer; | 
|  | if ((offset % ptr_len) != 0) | 
|  | { | 
|  | *bytes_read_ptr = ptr_len - (offset % ptr_len); | 
|  | buf += *bytes_read_ptr; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | internal_error (_("Invalid or unsupported encoding")); | 
|  | } | 
|  |  | 
|  | if ((encoding & 0x07) == 0x00) | 
|  | { | 
|  | encoding |= encoding_for_size (ptr_len); | 
|  | if (bfd_get_sign_extend_vma (unit->abfd)) | 
|  | encoding |= DW_EH_PE_signed; | 
|  | } | 
|  |  | 
|  | switch (encoding & 0x0f) | 
|  | { | 
|  | case DW_EH_PE_uleb128: | 
|  | { | 
|  | uint64_t value; | 
|  | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; | 
|  |  | 
|  | *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf; | 
|  | return base + value; | 
|  | } | 
|  | case DW_EH_PE_udata2: | 
|  | *bytes_read_ptr += 2; | 
|  | return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); | 
|  | case DW_EH_PE_udata4: | 
|  | *bytes_read_ptr += 4; | 
|  | return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); | 
|  | case DW_EH_PE_udata8: | 
|  | *bytes_read_ptr += 8; | 
|  | return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); | 
|  | case DW_EH_PE_sleb128: | 
|  | { | 
|  | int64_t value; | 
|  | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; | 
|  |  | 
|  | *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf; | 
|  | return base + value; | 
|  | } | 
|  | case DW_EH_PE_sdata2: | 
|  | *bytes_read_ptr += 2; | 
|  | return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); | 
|  | case DW_EH_PE_sdata4: | 
|  | *bytes_read_ptr += 4; | 
|  | return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); | 
|  | case DW_EH_PE_sdata8: | 
|  | *bytes_read_ptr += 8; | 
|  | return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); | 
|  | default: | 
|  | internal_error (_("Invalid or unsupported encoding")); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Find CIE with the given CIE_POINTER in CIE_TABLE.  */ | 
|  | static struct dwarf2_cie * | 
|  | find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer) | 
|  | { | 
|  | auto iter = cie_table.find (cie_pointer); | 
|  | if (iter != cie_table.end ()) | 
|  | return iter->second; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc) | 
|  | { | 
|  | if (fde->initial_location + fde->address_range <= seek_pc) | 
|  | return -1; | 
|  | if (fde->initial_location <= seek_pc) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Find an existing comp_unit for an objfile, if any.  */ | 
|  |  | 
|  | static comp_unit * | 
|  | find_comp_unit (struct objfile *objfile) | 
|  | { | 
|  | bfd *abfd = objfile->obfd.get (); | 
|  | if (gdb_bfd_requires_relocations (abfd)) | 
|  | return dwarf2_frame_objfile_data.get (objfile); | 
|  |  | 
|  | return dwarf2_frame_bfd_data.get (abfd); | 
|  | } | 
|  |  | 
|  | /* Store the comp_unit on OBJFILE, or the corresponding BFD, as | 
|  | appropriate.  */ | 
|  |  | 
|  | static void | 
|  | set_comp_unit (struct objfile *objfile, struct comp_unit *unit) | 
|  | { | 
|  | bfd *abfd = objfile->obfd.get (); | 
|  | if (gdb_bfd_requires_relocations (abfd)) | 
|  | return dwarf2_frame_objfile_data.set (objfile, unit); | 
|  |  | 
|  | return dwarf2_frame_bfd_data.set (abfd, unit); | 
|  | } | 
|  |  | 
|  | /* Find the FDE for *PC.  Return a pointer to the FDE, and store the | 
|  | initial location associated with it into *PC.  */ | 
|  |  | 
|  | static struct dwarf2_fde * | 
|  | dwarf2_frame_find_fde (CORE_ADDR *pc, dwarf2_per_objfile **out_per_objfile) | 
|  | { | 
|  | for (objfile *objfile : current_program_space->objfiles ()) | 
|  | { | 
|  | CORE_ADDR offset; | 
|  | CORE_ADDR seek_pc; | 
|  |  | 
|  | if (objfile->obfd == nullptr) | 
|  | continue; | 
|  |  | 
|  | comp_unit *unit = find_comp_unit (objfile); | 
|  | if (unit == NULL) | 
|  | { | 
|  | dwarf2_build_frame_info (objfile); | 
|  | unit = find_comp_unit (objfile); | 
|  | } | 
|  | gdb_assert (unit != NULL); | 
|  |  | 
|  | dwarf2_fde_table *fde_table = &unit->fde_table; | 
|  | if (fde_table->empty ()) | 
|  | continue; | 
|  |  | 
|  | gdb_assert (!objfile->section_offsets.empty ()); | 
|  | offset = objfile->text_section_offset (); | 
|  |  | 
|  | gdb_assert (!fde_table->empty ()); | 
|  | if (*pc < offset + (*fde_table)[0]->initial_location) | 
|  | continue; | 
|  |  | 
|  | seek_pc = *pc - offset; | 
|  | auto it = gdb::binary_search (fde_table->begin (), fde_table->end (), | 
|  | seek_pc, bsearch_fde_cmp); | 
|  | if (it != fde_table->end ()) | 
|  | { | 
|  | *pc = (*it)->initial_location + offset; | 
|  | if (out_per_objfile != nullptr) | 
|  | *out_per_objfile = get_dwarf2_per_objfile (objfile); | 
|  |  | 
|  | return *it; | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Add FDE to FDE_TABLE.  */ | 
|  | static void | 
|  | add_fde (dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) | 
|  | { | 
|  | if (fde->address_range == 0) | 
|  | /* Discard useless FDEs.  */ | 
|  | return; | 
|  |  | 
|  | fde_table->push_back (fde); | 
|  | } | 
|  |  | 
|  | #define DW64_CIE_ID 0xffffffffffffffffULL | 
|  |  | 
|  | /* Defines the type of eh_frames that are expected to be decoded: CIE, FDE | 
|  | or any of them.  */ | 
|  |  | 
|  | enum eh_frame_type | 
|  | { | 
|  | EH_CIE_TYPE_ID = 1 << 0, | 
|  | EH_FDE_TYPE_ID = 1 << 1, | 
|  | EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID | 
|  | }; | 
|  |  | 
|  | static const gdb_byte *decode_frame_entry (struct gdbarch *gdbarch, | 
|  | struct comp_unit *unit, | 
|  | const gdb_byte *start, | 
|  | int eh_frame_p, | 
|  | dwarf2_cie_table &cie_table, | 
|  | dwarf2_fde_table *fde_table, | 
|  | enum eh_frame_type entry_type); | 
|  |  | 
|  | /* Decode the next CIE or FDE, entry_type specifies the expected type. | 
|  | Return NULL if invalid input, otherwise the next byte to be processed.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | decode_frame_entry_1 (struct gdbarch *gdbarch, | 
|  | struct comp_unit *unit, const gdb_byte *start, | 
|  | int eh_frame_p, | 
|  | dwarf2_cie_table &cie_table, | 
|  | dwarf2_fde_table *fde_table, | 
|  | enum eh_frame_type entry_type) | 
|  | { | 
|  | const gdb_byte *buf, *end; | 
|  | ULONGEST length; | 
|  | unsigned int bytes_read; | 
|  | int dwarf64_p; | 
|  | ULONGEST cie_id; | 
|  | ULONGEST cie_pointer; | 
|  | int64_t sleb128; | 
|  | uint64_t uleb128; | 
|  |  | 
|  | buf = start; | 
|  | length = read_initial_length (unit->abfd, buf, &bytes_read, false); | 
|  | buf += bytes_read; | 
|  | end = buf + (size_t) length; | 
|  |  | 
|  | if (length == 0) | 
|  | return end; | 
|  |  | 
|  | /* Are we still within the section?  */ | 
|  | if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) | 
|  | return NULL; | 
|  |  | 
|  | /* Distinguish between 32 and 64-bit encoded frame info.  */ | 
|  | dwarf64_p = (bytes_read == 12); | 
|  |  | 
|  | /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs.  */ | 
|  | if (eh_frame_p) | 
|  | cie_id = 0; | 
|  | else if (dwarf64_p) | 
|  | cie_id = DW64_CIE_ID; | 
|  | else | 
|  | cie_id = DW_CIE_ID; | 
|  |  | 
|  | if (dwarf64_p) | 
|  | { | 
|  | cie_pointer = read_8_bytes (unit->abfd, buf); | 
|  | buf += 8; | 
|  | } | 
|  | else | 
|  | { | 
|  | cie_pointer = read_4_bytes (unit->abfd, buf); | 
|  | buf += 4; | 
|  | } | 
|  |  | 
|  | if (cie_pointer == cie_id) | 
|  | { | 
|  | /* This is a CIE.  */ | 
|  | struct dwarf2_cie *cie; | 
|  | char *augmentation; | 
|  | unsigned int cie_version; | 
|  |  | 
|  | /* Check that a CIE was expected.  */ | 
|  | if ((entry_type & EH_CIE_TYPE_ID) == 0) | 
|  | error (_("Found a CIE when not expecting it.")); | 
|  |  | 
|  | /* Record the offset into the .debug_frame section of this CIE.  */ | 
|  | cie_pointer = start - unit->dwarf_frame_buffer; | 
|  |  | 
|  | /* Check whether we've already read it.  */ | 
|  | if (find_cie (cie_table, cie_pointer)) | 
|  | return end; | 
|  |  | 
|  | cie = XOBNEW (&unit->obstack, struct dwarf2_cie); | 
|  | cie->initial_instructions = NULL; | 
|  | cie->cie_pointer = cie_pointer; | 
|  |  | 
|  | /* The encoding for FDE's in a normal .debug_frame section | 
|  | depends on the target address size.  */ | 
|  | cie->encoding = DW_EH_PE_absptr; | 
|  |  | 
|  | /* We'll determine the final value later, but we need to | 
|  | initialize it conservatively.  */ | 
|  | cie->signal_frame = 0; | 
|  |  | 
|  | /* Check version number.  */ | 
|  | cie_version = read_1_byte (unit->abfd, buf); | 
|  | if (cie_version != 1 && cie_version != 3 && cie_version != 4) | 
|  | return NULL; | 
|  | cie->version = cie_version; | 
|  | buf += 1; | 
|  |  | 
|  | /* Interpret the interesting bits of the augmentation.  */ | 
|  | cie->augmentation = augmentation = (char *) buf; | 
|  | buf += (strlen (augmentation) + 1); | 
|  |  | 
|  | /* Ignore armcc augmentations.  We only use them for quirks, | 
|  | and that doesn't happen until later.  */ | 
|  | if (startswith (augmentation, "armcc")) | 
|  | augmentation += strlen (augmentation); | 
|  |  | 
|  | /* The GCC 2.x "eh" augmentation has a pointer immediately | 
|  | following the augmentation string, so it must be handled | 
|  | first.  */ | 
|  | if (augmentation[0] == 'e' && augmentation[1] == 'h') | 
|  | { | 
|  | /* Skip.  */ | 
|  | buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | augmentation += 2; | 
|  | } | 
|  |  | 
|  | if (cie->version >= 4) | 
|  | { | 
|  | /* FIXME: check that this is the same as from the CU header.  */ | 
|  | cie->addr_size = read_1_byte (unit->abfd, buf); | 
|  | ++buf; | 
|  | cie->segment_size = read_1_byte (unit->abfd, buf); | 
|  | ++buf; | 
|  | } | 
|  | else | 
|  | { | 
|  | cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch); | 
|  | cie->segment_size = 0; | 
|  | } | 
|  | /* Address values in .eh_frame sections are defined to have the | 
|  | target's pointer size.  Watchout: This breaks frame info for | 
|  | targets with pointer size < address size, unless a .debug_frame | 
|  | section exists as well.  */ | 
|  | if (eh_frame_p) | 
|  | cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | 
|  | else | 
|  | cie->ptr_size = cie->addr_size; | 
|  |  | 
|  | buf = gdb_read_uleb128 (buf, end, &uleb128); | 
|  | if (buf == NULL) | 
|  | return NULL; | 
|  | cie->code_alignment_factor = uleb128; | 
|  |  | 
|  | buf = gdb_read_sleb128 (buf, end, &sleb128); | 
|  | if (buf == NULL) | 
|  | return NULL; | 
|  | cie->data_alignment_factor = sleb128; | 
|  |  | 
|  | if (cie_version == 1) | 
|  | { | 
|  | cie->return_address_register = read_1_byte (unit->abfd, buf); | 
|  | ++buf; | 
|  | } | 
|  | else | 
|  | { | 
|  | buf = gdb_read_uleb128 (buf, end, &uleb128); | 
|  | if (buf == NULL) | 
|  | return NULL; | 
|  | cie->return_address_register = uleb128; | 
|  | } | 
|  |  | 
|  | cie->return_address_register | 
|  | = dwarf2_frame_adjust_regnum (gdbarch, | 
|  | cie->return_address_register, | 
|  | eh_frame_p); | 
|  |  | 
|  | cie->saw_z_augmentation = (*augmentation == 'z'); | 
|  | if (cie->saw_z_augmentation) | 
|  | { | 
|  | uint64_t uleb_length; | 
|  |  | 
|  | buf = gdb_read_uleb128 (buf, end, &uleb_length); | 
|  | if (buf == NULL) | 
|  | return NULL; | 
|  | cie->initial_instructions = buf + uleb_length; | 
|  | augmentation++; | 
|  | } | 
|  |  | 
|  | while (*augmentation) | 
|  | { | 
|  | /* "L" indicates a byte showing how the LSDA pointer is encoded.  */ | 
|  | if (*augmentation == 'L') | 
|  | { | 
|  | /* Skip.  */ | 
|  | buf++; | 
|  | augmentation++; | 
|  | } | 
|  |  | 
|  | /* "R" indicates a byte indicating how FDE addresses are encoded.  */ | 
|  | else if (*augmentation == 'R') | 
|  | { | 
|  | cie->encoding = *buf++; | 
|  | augmentation++; | 
|  | } | 
|  |  | 
|  | /* "P" indicates a personality routine in the CIE augmentation.  */ | 
|  | else if (*augmentation == 'P') | 
|  | { | 
|  | /* Skip.  Avoid indirection since we throw away the result.  */ | 
|  | gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; | 
|  | read_encoded_value (unit, encoding, cie->ptr_size, | 
|  | buf, &bytes_read, 0); | 
|  | buf += bytes_read; | 
|  | augmentation++; | 
|  | } | 
|  |  | 
|  | /* "S" indicates a signal frame, such that the return | 
|  | address must not be decremented to locate the call frame | 
|  | info for the previous frame; it might even be the first | 
|  | instruction of a function, so decrementing it would take | 
|  | us to a different function.  */ | 
|  | else if (*augmentation == 'S') | 
|  | { | 
|  | cie->signal_frame = 1; | 
|  | augmentation++; | 
|  | } | 
|  |  | 
|  | /* Otherwise we have an unknown augmentation.  Assume that either | 
|  | there is no augmentation data, or we saw a 'z' prefix.  */ | 
|  | else | 
|  | { | 
|  | if (cie->initial_instructions) | 
|  | buf = cie->initial_instructions; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | cie->initial_instructions = buf; | 
|  | cie->end = end; | 
|  | cie->unit = unit; | 
|  |  | 
|  | cie_table[cie->cie_pointer] = cie; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* This is a FDE.  */ | 
|  | struct dwarf2_fde *fde; | 
|  | CORE_ADDR addr; | 
|  |  | 
|  | /* Check that an FDE was expected.  */ | 
|  | if ((entry_type & EH_FDE_TYPE_ID) == 0) | 
|  | error (_("Found an FDE when not expecting it.")); | 
|  |  | 
|  | /* In an .eh_frame section, the CIE pointer is the delta between the | 
|  | address within the FDE where the CIE pointer is stored and the | 
|  | address of the CIE.  Convert it to an offset into the .eh_frame | 
|  | section.  */ | 
|  | if (eh_frame_p) | 
|  | { | 
|  | cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; | 
|  | cie_pointer -= (dwarf64_p ? 8 : 4); | 
|  | } | 
|  |  | 
|  | /* In either case, validate the result is still within the section.  */ | 
|  | if (cie_pointer >= unit->dwarf_frame_size) | 
|  | return NULL; | 
|  |  | 
|  | fde = XOBNEW (&unit->obstack, struct dwarf2_fde); | 
|  | fde->cie = find_cie (cie_table, cie_pointer); | 
|  | if (fde->cie == NULL) | 
|  | { | 
|  | decode_frame_entry (gdbarch, unit, | 
|  | unit->dwarf_frame_buffer + cie_pointer, | 
|  | eh_frame_p, cie_table, fde_table, | 
|  | EH_CIE_TYPE_ID); | 
|  | fde->cie = find_cie (cie_table, cie_pointer); | 
|  | } | 
|  |  | 
|  | gdb_assert (fde->cie != NULL); | 
|  |  | 
|  | addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size, | 
|  | buf, &bytes_read, 0); | 
|  | fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr); | 
|  | buf += bytes_read; | 
|  |  | 
|  | fde->address_range = | 
|  | read_encoded_value (unit, fde->cie->encoding & 0x0f, | 
|  | fde->cie->ptr_size, buf, &bytes_read, 0); | 
|  | addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range); | 
|  | fde->address_range = addr - fde->initial_location; | 
|  | buf += bytes_read; | 
|  |  | 
|  | /* A 'z' augmentation in the CIE implies the presence of an | 
|  | augmentation field in the FDE as well.  The only thing known | 
|  | to be in here at present is the LSDA entry for EH.  So we | 
|  | can skip the whole thing.  */ | 
|  | if (fde->cie->saw_z_augmentation) | 
|  | { | 
|  | uint64_t uleb_length; | 
|  |  | 
|  | buf = gdb_read_uleb128 (buf, end, &uleb_length); | 
|  | if (buf == NULL) | 
|  | return NULL; | 
|  | buf += uleb_length; | 
|  | if (buf > end) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | fde->instructions = buf; | 
|  | fde->end = end; | 
|  |  | 
|  | fde->eh_frame_p = eh_frame_p; | 
|  |  | 
|  | add_fde (fde_table, fde); | 
|  | } | 
|  |  | 
|  | return end; | 
|  | } | 
|  |  | 
|  | /* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we | 
|  | expect an FDE or a CIE.  */ | 
|  |  | 
|  | static const gdb_byte * | 
|  | decode_frame_entry (struct gdbarch *gdbarch, | 
|  | struct comp_unit *unit, const gdb_byte *start, | 
|  | int eh_frame_p, | 
|  | dwarf2_cie_table &cie_table, | 
|  | dwarf2_fde_table *fde_table, | 
|  | enum eh_frame_type entry_type) | 
|  | { | 
|  | enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; | 
|  | const gdb_byte *ret; | 
|  | ptrdiff_t start_offset; | 
|  |  | 
|  | while (1) | 
|  | { | 
|  | ret = decode_frame_entry_1 (gdbarch, unit, start, eh_frame_p, | 
|  | cie_table, fde_table, entry_type); | 
|  | if (ret != NULL) | 
|  | break; | 
|  |  | 
|  | /* We have corrupt input data of some form.  */ | 
|  |  | 
|  | /* ??? Try, weakly, to work around compiler/assembler/linker bugs | 
|  | and mismatches wrt padding and alignment of debug sections.  */ | 
|  | /* Note that there is no requirement in the standard for any | 
|  | alignment at all in the frame unwind sections.  Testing for | 
|  | alignment before trying to interpret data would be incorrect. | 
|  |  | 
|  | However, GCC traditionally arranged for frame sections to be | 
|  | sized such that the FDE length and CIE fields happen to be | 
|  | aligned (in theory, for performance).  This, unfortunately, | 
|  | was done with .align directives, which had the side effect of | 
|  | forcing the section to be aligned by the linker. | 
|  |  | 
|  | This becomes a problem when you have some other producer that | 
|  | creates frame sections that are not as strictly aligned.  That | 
|  | produces a hole in the frame info that gets filled by the | 
|  | linker with zeros. | 
|  |  | 
|  | The GCC behaviour is arguably a bug, but it's effectively now | 
|  | part of the ABI, so we're now stuck with it, at least at the | 
|  | object file level.  A smart linker may decide, in the process | 
|  | of compressing duplicate CIE information, that it can rewrite | 
|  | the entire output section without this extra padding.  */ | 
|  |  | 
|  | start_offset = start - unit->dwarf_frame_buffer; | 
|  | if (workaround < ALIGN4 && (start_offset & 3) != 0) | 
|  | { | 
|  | start += 4 - (start_offset & 3); | 
|  | workaround = ALIGN4; | 
|  | continue; | 
|  | } | 
|  | if (workaround < ALIGN8 && (start_offset & 7) != 0) | 
|  | { | 
|  | start += 8 - (start_offset & 7); | 
|  | workaround = ALIGN8; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Nothing left to try.  Arrange to return as if we've consumed | 
|  | the entire input section.  Hopefully we'll get valid info from | 
|  | the other of .debug_frame/.eh_frame.  */ | 
|  | workaround = FAIL; | 
|  | ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (workaround) | 
|  | { | 
|  | case NONE: | 
|  | break; | 
|  |  | 
|  | case ALIGN4: | 
|  | complaint (_("\ | 
|  | Corrupt data in %s:%s; align 4 workaround apparently succeeded"), | 
|  | bfd_get_filename (unit->dwarf_frame_section->owner), | 
|  | bfd_section_name (unit->dwarf_frame_section)); | 
|  | break; | 
|  |  | 
|  | case ALIGN8: | 
|  | complaint (_("\ | 
|  | Corrupt data in %s:%s; align 8 workaround apparently succeeded"), | 
|  | bfd_get_filename (unit->dwarf_frame_section->owner), | 
|  | bfd_section_name (unit->dwarf_frame_section)); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | complaint (_("Corrupt data in %s:%s"), | 
|  | bfd_get_filename (unit->dwarf_frame_section->owner), | 
|  | bfd_section_name (unit->dwarf_frame_section)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb) | 
|  | { | 
|  | if (aa->initial_location == bb->initial_location) | 
|  | { | 
|  | if (aa->address_range != bb->address_range | 
|  | && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) | 
|  | /* Linker bug, e.g. gold/10400. | 
|  | Work around it by keeping stable sort order.  */ | 
|  | return aa < bb; | 
|  | else | 
|  | /* Put eh_frame entries after debug_frame ones.  */ | 
|  | return aa->eh_frame_p < bb->eh_frame_p; | 
|  | } | 
|  |  | 
|  | return aa->initial_location < bb->initial_location; | 
|  | } | 
|  |  | 
|  | void | 
|  | dwarf2_build_frame_info (struct objfile *objfile) | 
|  | { | 
|  | const gdb_byte *frame_ptr; | 
|  | dwarf2_cie_table cie_table; | 
|  | dwarf2_fde_table fde_table; | 
|  |  | 
|  | struct gdbarch *gdbarch = objfile->arch (); | 
|  |  | 
|  | /* Build a minimal decoding of the DWARF2 compilation unit.  */ | 
|  | std::unique_ptr<comp_unit> unit (new comp_unit (objfile)); | 
|  |  | 
|  | if (objfile->separate_debug_objfile_backlink == NULL) | 
|  | { | 
|  | /* Do not read .eh_frame from separate file as they must be also | 
|  | present in the main file.  */ | 
|  | dwarf2_get_section_info (objfile, DWARF2_EH_FRAME, | 
|  | &unit->dwarf_frame_section, | 
|  | &unit->dwarf_frame_buffer, | 
|  | &unit->dwarf_frame_size); | 
|  | if (unit->dwarf_frame_size) | 
|  | { | 
|  | asection *got, *txt; | 
|  |  | 
|  | /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base | 
|  | that is used for the i386/amd64 target, which currently is | 
|  | the only target in GCC that supports/uses the | 
|  | DW_EH_PE_datarel encoding.  */ | 
|  | got = bfd_get_section_by_name (unit->abfd, ".got"); | 
|  | if (got) | 
|  | unit->dbase = got->vma; | 
|  |  | 
|  | /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 | 
|  | so far.  */ | 
|  | txt = bfd_get_section_by_name (unit->abfd, ".text"); | 
|  | if (txt) | 
|  | unit->tbase = txt->vma; | 
|  |  | 
|  | try | 
|  | { | 
|  | frame_ptr = unit->dwarf_frame_buffer; | 
|  | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | 
|  | frame_ptr = decode_frame_entry (gdbarch, unit.get (), | 
|  | frame_ptr, 1, | 
|  | cie_table, &fde_table, | 
|  | EH_CIE_OR_FDE_TYPE_ID); | 
|  | } | 
|  |  | 
|  | catch (const gdb_exception_error &e) | 
|  | { | 
|  | warning (_("skipping .eh_frame info of %s: %s"), | 
|  | objfile_name (objfile), e.what ()); | 
|  |  | 
|  | fde_table.clear (); | 
|  | /* The cie_table is discarded below.  */ | 
|  | } | 
|  |  | 
|  | cie_table.clear (); | 
|  | } | 
|  | } | 
|  |  | 
|  | dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME, | 
|  | &unit->dwarf_frame_section, | 
|  | &unit->dwarf_frame_buffer, | 
|  | &unit->dwarf_frame_size); | 
|  | if (unit->dwarf_frame_size) | 
|  | { | 
|  | size_t num_old_fde_entries = fde_table.size (); | 
|  |  | 
|  | try | 
|  | { | 
|  | frame_ptr = unit->dwarf_frame_buffer; | 
|  | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | 
|  | frame_ptr = decode_frame_entry (gdbarch, unit.get (), frame_ptr, 0, | 
|  | cie_table, &fde_table, | 
|  | EH_CIE_OR_FDE_TYPE_ID); | 
|  | } | 
|  | catch (const gdb_exception_error &e) | 
|  | { | 
|  | warning (_("skipping .debug_frame info of %s: %s"), | 
|  | objfile_name (objfile), e.what ()); | 
|  |  | 
|  | fde_table.resize (num_old_fde_entries); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct dwarf2_fde *fde_prev = NULL; | 
|  | struct dwarf2_fde *first_non_zero_fde = NULL; | 
|  |  | 
|  | /* Prepare FDE table for lookups.  */ | 
|  | std::sort (fde_table.begin (), fde_table.end (), fde_is_less_than); | 
|  |  | 
|  | /* Check for leftovers from --gc-sections.  The GNU linker sets | 
|  | the relevant symbols to zero, but doesn't zero the FDE *end* | 
|  | ranges because there's no relocation there.  It's (offset, | 
|  | length), not (start, end).  On targets where address zero is | 
|  | just another valid address this can be a problem, since the | 
|  | FDEs appear to be non-empty in the output --- we could pick | 
|  | out the wrong FDE.  To work around this, when overlaps are | 
|  | detected, we prefer FDEs that do not start at zero. | 
|  |  | 
|  | Start by finding the first FDE with non-zero start.  Below | 
|  | we'll discard all FDEs that start at zero and overlap this | 
|  | one.  */ | 
|  | for (struct dwarf2_fde *fde : fde_table) | 
|  | { | 
|  | if (fde->initial_location != 0) | 
|  | { | 
|  | first_non_zero_fde = fde; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Since we'll be doing bsearch, squeeze out identical (except | 
|  | for eh_frame_p) fde entries so bsearch result is predictable. | 
|  | Also discard leftovers from --gc-sections.  */ | 
|  | for (struct dwarf2_fde *fde : fde_table) | 
|  | { | 
|  | if (fde->initial_location == 0 | 
|  | && first_non_zero_fde != NULL | 
|  | && (first_non_zero_fde->initial_location | 
|  | < fde->initial_location + fde->address_range)) | 
|  | continue; | 
|  |  | 
|  | if (fde_prev != NULL | 
|  | && fde_prev->initial_location == fde->initial_location) | 
|  | continue; | 
|  |  | 
|  | unit->fde_table.push_back (fde); | 
|  | fde_prev = fde; | 
|  | } | 
|  | unit->fde_table.shrink_to_fit (); | 
|  |  | 
|  | set_comp_unit (objfile, unit.release ()); | 
|  | } | 
|  |  | 
|  | /* Handle 'maintenance show dwarf unwinders'.  */ | 
|  |  | 
|  | static void | 
|  | show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty, | 
|  | struct cmd_list_element *c, | 
|  | const char *value) | 
|  | { | 
|  | gdb_printf (file, | 
|  | _("The DWARF stack unwinders are currently %s.\n"), | 
|  | value); | 
|  | } | 
|  |  | 
|  | void _initialize_dwarf2_frame (); | 
|  | void | 
|  | _initialize_dwarf2_frame () | 
|  | { | 
|  | add_setshow_boolean_cmd ("unwinders", class_obscure, | 
|  | &dwarf2_frame_unwinders_enabled_p , _("\ | 
|  | Set whether the DWARF stack frame unwinders are used."), _("\ | 
|  | Show whether the DWARF stack frame unwinders are used."), _("\ | 
|  | When enabled the DWARF stack frame unwinders can be used for architectures\n\ | 
|  | that support the DWARF unwinders.  Enabling the DWARF unwinders for an\n\ | 
|  | architecture that doesn't support them will have no effect."), | 
|  | NULL, | 
|  | show_dwarf_unwinders_enabled_p, | 
|  | &set_dwarf_cmdlist, | 
|  | &show_dwarf_cmdlist); | 
|  |  | 
|  | #if GDB_SELF_TEST | 
|  | selftests::register_test_foreach_arch ("execute_cfa_program", | 
|  | selftests::execute_cfa_program_test); | 
|  | #endif | 
|  | } |