| /* DWARF 2 debugging format support for GDB. |
| |
| Copyright (C) 1994-2012 Free Software Foundation, Inc. |
| |
| Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology, |
| Inc. with support from Florida State University (under contract |
| with the Ada Joint Program Office), and Silicon Graphics, Inc. |
| Initial contribution by Brent Benson, Harris Computer Systems, Inc., |
| based on Fred Fish's (Cygnus Support) implementation of DWARF 1 |
| support. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* FIXME: Various die-reading functions need to be more careful with |
| reading off the end of the section. |
| E.g., load_partial_dies, read_partial_die. */ |
| |
| #include "defs.h" |
| #include "bfd.h" |
| #include "symtab.h" |
| #include "gdbtypes.h" |
| #include "objfiles.h" |
| #include "dwarf2.h" |
| #include "buildsym.h" |
| #include "demangle.h" |
| #include "gdb-demangle.h" |
| #include "expression.h" |
| #include "filenames.h" /* for DOSish file names */ |
| #include "macrotab.h" |
| #include "language.h" |
| #include "complaints.h" |
| #include "bcache.h" |
| #include "dwarf2expr.h" |
| #include "dwarf2loc.h" |
| #include "cp-support.h" |
| #include "hashtab.h" |
| #include "command.h" |
| #include "gdbcmd.h" |
| #include "block.h" |
| #include "addrmap.h" |
| #include "typeprint.h" |
| #include "jv-lang.h" |
| #include "psympriv.h" |
| #include "exceptions.h" |
| #include "gdb_stat.h" |
| #include "completer.h" |
| #include "vec.h" |
| #include "c-lang.h" |
| #include "go-lang.h" |
| #include "valprint.h" |
| #include "gdbcore.h" /* for gnutarget */ |
| #include <ctype.h> |
| |
| #include <fcntl.h> |
| #include "gdb_string.h" |
| #include "gdb_assert.h" |
| #include <sys/types.h> |
| #ifdef HAVE_ZLIB_H |
| #include <zlib.h> |
| #endif |
| #ifdef HAVE_MMAP |
| #include <sys/mman.h> |
| #ifndef MAP_FAILED |
| #define MAP_FAILED ((void *) -1) |
| #endif |
| #endif |
| |
| typedef struct symbol *symbolp; |
| DEF_VEC_P (symbolp); |
| |
| /* When non-zero, dump DIEs after they are read in. */ |
| static int dwarf2_die_debug = 0; |
| |
| /* When non-zero, cross-check physname against demangler. */ |
| static int check_physname = 0; |
| |
| /* When non-zero, do not reject deprecated .gdb_index sections. */ |
| int use_deprecated_index_sections = 0; |
| |
| static int pagesize; |
| |
| /* When set, the file that we're processing is known to have debugging |
| info for C++ namespaces. GCC 3.3.x did not produce this information, |
| but later versions do. */ |
| |
| static int processing_has_namespace_info; |
| |
| static const struct objfile_data *dwarf2_objfile_data_key; |
| |
| struct dwarf2_section_info |
| { |
| asection *asection; |
| gdb_byte *buffer; |
| bfd_size_type size; |
| /* Not NULL if the section was actually mmapped. */ |
| void *map_addr; |
| /* Page aligned size of mmapped area. */ |
| bfd_size_type map_len; |
| /* True if we have tried to read this section. */ |
| int readin; |
| }; |
| |
| typedef struct dwarf2_section_info dwarf2_section_info_def; |
| DEF_VEC_O (dwarf2_section_info_def); |
| |
| /* All offsets in the index are of this type. It must be |
| architecture-independent. */ |
| typedef uint32_t offset_type; |
| |
| DEF_VEC_I (offset_type); |
| |
| /* A description of the mapped index. The file format is described in |
| a comment by the code that writes the index. */ |
| struct mapped_index |
| { |
| /* Index data format version. */ |
| int version; |
| |
| /* The total length of the buffer. */ |
| off_t total_size; |
| |
| /* A pointer to the address table data. */ |
| const gdb_byte *address_table; |
| |
| /* Size of the address table data in bytes. */ |
| offset_type address_table_size; |
| |
| /* The symbol table, implemented as a hash table. */ |
| const offset_type *symbol_table; |
| |
| /* Size in slots, each slot is 2 offset_types. */ |
| offset_type symbol_table_slots; |
| |
| /* A pointer to the constant pool. */ |
| const char *constant_pool; |
| }; |
| |
| typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr; |
| DEF_VEC_P (dwarf2_per_cu_ptr); |
| |
| /* Collection of data recorded per objfile. |
| This hangs off of dwarf2_objfile_data_key. */ |
| |
| struct dwarf2_per_objfile |
| { |
| struct dwarf2_section_info info; |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info macinfo; |
| struct dwarf2_section_info macro; |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info ranges; |
| struct dwarf2_section_info addr; |
| struct dwarf2_section_info frame; |
| struct dwarf2_section_info eh_frame; |
| struct dwarf2_section_info gdb_index; |
| |
| VEC (dwarf2_section_info_def) *types; |
| |
| /* Back link. */ |
| struct objfile *objfile; |
| |
| /* Table of all the compilation units. This is used to locate |
| the target compilation unit of a particular reference. */ |
| struct dwarf2_per_cu_data **all_comp_units; |
| |
| /* The number of compilation units in ALL_COMP_UNITS. */ |
| int n_comp_units; |
| |
| /* The number of .debug_types-related CUs. */ |
| int n_type_units; |
| |
| /* The .debug_types-related CUs (TUs). */ |
| struct dwarf2_per_cu_data **all_type_units; |
| |
| /* A chain of compilation units that are currently read in, so that |
| they can be freed later. */ |
| struct dwarf2_per_cu_data *read_in_chain; |
| |
| /* A table mapping .debug_types signatures to its signatured_type entry. |
| This is NULL if the .debug_types section hasn't been read in yet. */ |
| htab_t signatured_types; |
| |
| /* A table mapping DW_AT_dwo_name values to struct dwo_file objects. |
| This is NULL if the table hasn't been allocated yet. */ |
| htab_t dwo_files; |
| |
| /* A flag indicating wether this objfile has a section loaded at a |
| VMA of 0. */ |
| int has_section_at_zero; |
| |
| /* True if we are using the mapped index, |
| or we are faking it for OBJF_READNOW's sake. */ |
| unsigned char using_index; |
| |
| /* The mapped index, or NULL if .gdb_index is missing or not being used. */ |
| struct mapped_index *index_table; |
| |
| /* When using index_table, this keeps track of all quick_file_names entries. |
| TUs can share line table entries with CUs or other TUs, and there can be |
| a lot more TUs than unique line tables, so we maintain a separate table |
| of all line table entries to support the sharing. */ |
| htab_t quick_file_names_table; |
| |
| /* Set during partial symbol reading, to prevent queueing of full |
| symbols. */ |
| int reading_partial_symbols; |
| |
| /* Table mapping type DIEs to their struct type *. |
| This is NULL if not allocated yet. |
| The mapping is done via (CU/TU signature + DIE offset) -> type. */ |
| htab_t die_type_hash; |
| |
| /* The CUs we recently read. */ |
| VEC (dwarf2_per_cu_ptr) *just_read_cus; |
| }; |
| |
| static struct dwarf2_per_objfile *dwarf2_per_objfile; |
| |
| /* Default names of the debugging sections. */ |
| |
| /* Note that if the debugging section has been compressed, it might |
| have a name like .zdebug_info. */ |
| |
| static const struct dwarf2_debug_sections dwarf2_elf_names = |
| { |
| { ".debug_info", ".zdebug_info" }, |
| { ".debug_abbrev", ".zdebug_abbrev" }, |
| { ".debug_line", ".zdebug_line" }, |
| { ".debug_loc", ".zdebug_loc" }, |
| { ".debug_macinfo", ".zdebug_macinfo" }, |
| { ".debug_macro", ".zdebug_macro" }, |
| { ".debug_str", ".zdebug_str" }, |
| { ".debug_ranges", ".zdebug_ranges" }, |
| { ".debug_types", ".zdebug_types" }, |
| { ".debug_addr", ".zdebug_addr" }, |
| { ".debug_frame", ".zdebug_frame" }, |
| { ".eh_frame", NULL }, |
| { ".gdb_index", ".zgdb_index" }, |
| 23 |
| }; |
| |
| /* List of DWO sections. */ |
| |
| static const struct dwo_section_names |
| { |
| struct dwarf2_section_names abbrev_dwo; |
| struct dwarf2_section_names info_dwo; |
| struct dwarf2_section_names line_dwo; |
| struct dwarf2_section_names loc_dwo; |
| struct dwarf2_section_names str_dwo; |
| struct dwarf2_section_names str_offsets_dwo; |
| struct dwarf2_section_names types_dwo; |
| } |
| dwo_section_names = |
| { |
| { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" }, |
| { ".debug_info.dwo", ".zdebug_info.dwo" }, |
| { ".debug_line.dwo", ".zdebug_line.dwo" }, |
| { ".debug_loc.dwo", ".zdebug_loc.dwo" }, |
| { ".debug_str.dwo", ".zdebug_str.dwo" }, |
| { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" }, |
| { ".debug_types.dwo", ".zdebug_types.dwo" }, |
| }; |
| |
| /* local data types */ |
| |
| /* We hold several abbreviation tables in memory at the same time. */ |
| #ifndef ABBREV_HASH_SIZE |
| #define ABBREV_HASH_SIZE 121 |
| #endif |
| |
| /* The data in a compilation unit header, after target2host |
| translation, looks like this. */ |
| struct comp_unit_head |
| { |
| unsigned int length; |
| short version; |
| unsigned char addr_size; |
| unsigned char signed_addr_p; |
| sect_offset abbrev_offset; |
| |
| /* Size of file offsets; either 4 or 8. */ |
| unsigned int offset_size; |
| |
| /* Size of the length field; either 4 or 12. */ |
| unsigned int initial_length_size; |
| |
| /* Offset to the first byte of this compilation unit header in the |
| .debug_info section, for resolving relative reference dies. */ |
| sect_offset offset; |
| |
| /* Offset to first die in this cu from the start of the cu. |
| This will be the first byte following the compilation unit header. */ |
| cu_offset first_die_offset; |
| }; |
| |
| /* Type used for delaying computation of method physnames. |
| See comments for compute_delayed_physnames. */ |
| struct delayed_method_info |
| { |
| /* The type to which the method is attached, i.e., its parent class. */ |
| struct type *type; |
| |
| /* The index of the method in the type's function fieldlists. */ |
| int fnfield_index; |
| |
| /* The index of the method in the fieldlist. */ |
| int index; |
| |
| /* The name of the DIE. */ |
| const char *name; |
| |
| /* The DIE associated with this method. */ |
| struct die_info *die; |
| }; |
| |
| typedef struct delayed_method_info delayed_method_info; |
| DEF_VEC_O (delayed_method_info); |
| |
| /* Internal state when decoding a particular compilation unit. */ |
| struct dwarf2_cu |
| { |
| /* The objfile containing this compilation unit. */ |
| struct objfile *objfile; |
| |
| /* The header of the compilation unit. */ |
| struct comp_unit_head header; |
| |
| /* Base address of this compilation unit. */ |
| CORE_ADDR base_address; |
| |
| /* Non-zero if base_address has been set. */ |
| int base_known; |
| |
| /* The language we are debugging. */ |
| enum language language; |
| const struct language_defn *language_defn; |
| |
| const char *producer; |
| |
| /* The generic symbol table building routines have separate lists for |
| file scope symbols and all all other scopes (local scopes). So |
| we need to select the right one to pass to add_symbol_to_list(). |
| We do it by keeping a pointer to the correct list in list_in_scope. |
| |
| FIXME: The original dwarf code just treated the file scope as the |
| first local scope, and all other local scopes as nested local |
| scopes, and worked fine. Check to see if we really need to |
| distinguish these in buildsym.c. */ |
| struct pending **list_in_scope; |
| |
| /* DWARF abbreviation table associated with this compilation unit. */ |
| struct abbrev_info **dwarf2_abbrevs; |
| |
| /* Storage for the abbrev table. */ |
| struct obstack abbrev_obstack; |
| |
| /* Hash table holding all the loaded partial DIEs |
| with partial_die->offset.SECT_OFF as hash. */ |
| htab_t partial_dies; |
| |
| /* Storage for things with the same lifetime as this read-in compilation |
| unit, including partial DIEs. */ |
| struct obstack comp_unit_obstack; |
| |
| /* When multiple dwarf2_cu structures are living in memory, this field |
| chains them all together, so that they can be released efficiently. |
| We will probably also want a generation counter so that most-recently-used |
| compilation units are cached... */ |
| struct dwarf2_per_cu_data *read_in_chain; |
| |
| /* Backchain to our per_cu entry if the tree has been built. */ |
| struct dwarf2_per_cu_data *per_cu; |
| |
| /* How many compilation units ago was this CU last referenced? */ |
| int last_used; |
| |
| /* A hash table of DIE cu_offset for following references with |
| die_info->offset.sect_off as hash. */ |
| htab_t die_hash; |
| |
| /* Full DIEs if read in. */ |
| struct die_info *dies; |
| |
| /* A set of pointers to dwarf2_per_cu_data objects for compilation |
| units referenced by this one. Only set during full symbol processing; |
| partial symbol tables do not have dependencies. */ |
| htab_t dependencies; |
| |
| /* Header data from the line table, during full symbol processing. */ |
| struct line_header *line_header; |
| |
| /* A list of methods which need to have physnames computed |
| after all type information has been read. */ |
| VEC (delayed_method_info) *method_list; |
| |
| /* To be copied to symtab->call_site_htab. */ |
| htab_t call_site_htab; |
| |
| /* Non-NULL if this CU came from a DWO file. */ |
| struct dwo_unit *dwo_unit; |
| |
| /* The DW_AT_addr_base attribute if present, zero otherwise |
| (zero is a valid value though). |
| Note this value comes from the stub CU/TU's DIE. */ |
| ULONGEST addr_base; |
| |
| /* Mark used when releasing cached dies. */ |
| unsigned int mark : 1; |
| |
| /* This CU references .debug_loc. See the symtab->locations_valid field. |
| This test is imperfect as there may exist optimized debug code not using |
| any location list and still facing inlining issues if handled as |
| unoptimized code. For a future better test see GCC PR other/32998. */ |
| unsigned int has_loclist : 1; |
| |
| /* These cache the results of producer_is_gxx_lt_4_6. |
| CHECKED_PRODUCER is set if PRODUCER_IS_GXX_LT_4_6 is valid. This |
| information is cached because profiling CU expansion showed |
| excessive time spent in producer_is_gxx_lt_4_6. */ |
| unsigned int checked_producer : 1; |
| unsigned int producer_is_gxx_lt_4_6 : 1; |
| |
| /* Non-zero if DW_AT_addr_base was found. |
| Used when processing DWO files. */ |
| unsigned int have_addr_base : 1; |
| }; |
| |
| /* Persistent data held for a compilation unit, even when not |
| processing it. We put a pointer to this structure in the |
| read_symtab_private field of the psymtab. */ |
| |
| struct dwarf2_per_cu_data |
| { |
| /* The start offset and length of this compilation unit. 2**29-1 |
| bytes should suffice to store the length of any compilation unit |
| - if it doesn't, GDB will fall over anyway. |
| NOTE: Unlike comp_unit_head.length, this length includes |
| initial_length_size. |
| If the DIE refers to a DWO file, this is always of the original die, |
| not the DWO file. */ |
| sect_offset offset; |
| unsigned int length : 29; |
| |
| /* Flag indicating this compilation unit will be read in before |
| any of the current compilation units are processed. */ |
| unsigned int queued : 1; |
| |
| /* This flag will be set when reading partial DIEs if we need to load |
| absolutely all DIEs for this compilation unit, instead of just the ones |
| we think are interesting. It gets set if we look for a DIE in the |
| hash table and don't find it. */ |
| unsigned int load_all_dies : 1; |
| |
| /* Non-zero if this CU is from .debug_types. */ |
| unsigned int is_debug_types : 1; |
| |
| /* The section this CU/TU lives in. |
| If the DIE refers to a DWO file, this is always the original die, |
| not the DWO file. */ |
| struct dwarf2_section_info *info_or_types_section; |
| |
| /* Set to non-NULL iff this CU is currently loaded. When it gets freed out |
| of the CU cache it gets reset to NULL again. */ |
| struct dwarf2_cu *cu; |
| |
| /* The corresponding objfile. |
| Normally we can get the objfile from dwarf2_per_objfile. |
| However we can enter this file with just a "per_cu" handle. */ |
| struct objfile *objfile; |
| |
| /* When using partial symbol tables, the 'psymtab' field is active. |
| Otherwise the 'quick' field is active. */ |
| union |
| { |
| /* The partial symbol table associated with this compilation unit, |
| or NULL for unread partial units. */ |
| struct partial_symtab *psymtab; |
| |
| /* Data needed by the "quick" functions. */ |
| struct dwarf2_per_cu_quick_data *quick; |
| } v; |
| |
| /* The CUs we import using DW_TAG_imported_unit. This is filled in |
| while reading psymtabs, used to compute the psymtab dependencies, |
| and then cleared. Then it is filled in again while reading full |
| symbols, and only deleted when the objfile is destroyed. */ |
| VEC (dwarf2_per_cu_ptr) *imported_symtabs; |
| }; |
| |
| /* Entry in the signatured_types hash table. */ |
| |
| struct signatured_type |
| { |
| /* The type's signature. */ |
| ULONGEST signature; |
| |
| /* Offset in the TU of the type's DIE, as read from the TU header. |
| If the definition lives in a DWO file, this value is unusable. */ |
| cu_offset type_offset_in_tu; |
| |
| /* Offset in the section of the type's DIE. |
| If the definition lives in a DWO file, this is the offset in the |
| .debug_types.dwo section. |
| The value is zero until the actual value is known. |
| Zero is otherwise not a valid section offset. */ |
| sect_offset type_offset_in_section; |
| |
| /* The CU(/TU) of this type. */ |
| struct dwarf2_per_cu_data per_cu; |
| }; |
| |
| /* These sections are what may appear in a "dwo" file. */ |
| |
| struct dwo_sections |
| { |
| struct dwarf2_section_info abbrev; |
| struct dwarf2_section_info info; |
| struct dwarf2_section_info line; |
| struct dwarf2_section_info loc; |
| struct dwarf2_section_info str; |
| struct dwarf2_section_info str_offsets; |
| VEC (dwarf2_section_info_def) *types; |
| }; |
| |
| /* Common bits of DWO CUs/TUs. */ |
| |
| struct dwo_unit |
| { |
| /* Backlink to the containing struct dwo_file. */ |
| struct dwo_file *dwo_file; |
| |
| /* The "id" that distinguishes this CU/TU. |
| .debug_info calls this "dwo_id", .debug_types calls this "signature". |
| Since signatures came first, we stick with it for consistency. */ |
| ULONGEST signature; |
| |
| /* The section this CU/TU lives in, in the DWO file. */ |
| struct dwarf2_section_info *info_or_types_section; |
| |
| /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */ |
| sect_offset offset; |
| unsigned int length; |
| |
| /* For types, offset in the type's DIE of the type defined by this TU. */ |
| cu_offset type_offset_in_tu; |
| }; |
| |
| /* Data for one DWO file. */ |
| |
| struct dwo_file |
| { |
| /* The DW_AT_GNU_dwo_name attribute. |
| We don't manage space for this, it's an attribute. */ |
| const char *dwo_name; |
| |
| /* The bfd, when the file is open. Otherwise this is NULL. */ |
| bfd *dwo_bfd; |
| |
| /* Section info for this file. */ |
| struct dwo_sections sections; |
| |
| /* Table of CUs in the file. |
| Each element is a struct dwo_unit. */ |
| htab_t cus; |
| |
| /* Table of TUs in the file. |
| Each element is a struct dwo_unit. */ |
| htab_t tus; |
| }; |
| |
| /* Struct used to pass misc. parameters to read_die_and_children, et |
| al. which are used for both .debug_info and .debug_types dies. |
| All parameters here are unchanging for the life of the call. This |
| struct exists to abstract away the constant parameters of die reading. */ |
| |
| struct die_reader_specs |
| { |
| /* die_section->asection->owner. */ |
| bfd* abfd; |
| |
| /* The CU of the DIE we are parsing. */ |
| struct dwarf2_cu *cu; |
| |
| /* Non-NULL if reading a DWO file. */ |
| struct dwo_file *dwo_file; |
| |
| /* The section the die comes from. |
| This is either .debug_info or .debug_types, or the .dwo variants. */ |
| struct dwarf2_section_info *die_section; |
| |
| /* die_section->buffer. */ |
| gdb_byte *buffer; |
| }; |
| |
| /* Type of function passed to init_cutu_and_read_dies, et.al. */ |
| typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data); |
| |
| /* The line number information for a compilation unit (found in the |
| .debug_line section) begins with a "statement program header", |
| which contains the following information. */ |
| struct line_header |
| { |
| unsigned int total_length; |
| unsigned short version; |
| unsigned int header_length; |
| unsigned char minimum_instruction_length; |
| unsigned char maximum_ops_per_instruction; |
| unsigned char default_is_stmt; |
| int line_base; |
| unsigned char line_range; |
| unsigned char opcode_base; |
| |
| /* standard_opcode_lengths[i] is the number of operands for the |
| standard opcode whose value is i. This means that |
| standard_opcode_lengths[0] is unused, and the last meaningful |
| element is standard_opcode_lengths[opcode_base - 1]. */ |
| unsigned char *standard_opcode_lengths; |
| |
| /* The include_directories table. NOTE! These strings are not |
| allocated with xmalloc; instead, they are pointers into |
| debug_line_buffer. If you try to free them, `free' will get |
| indigestion. */ |
| unsigned int num_include_dirs, include_dirs_size; |
| char **include_dirs; |
| |
| /* The file_names table. NOTE! These strings are not allocated |
| with xmalloc; instead, they are pointers into debug_line_buffer. |
| Don't try to free them directly. */ |
| unsigned int num_file_names, file_names_size; |
| struct file_entry |
| { |
| char *name; |
| unsigned int dir_index; |
| unsigned int mod_time; |
| unsigned int length; |
| int included_p; /* Non-zero if referenced by the Line Number Program. */ |
| struct symtab *symtab; /* The associated symbol table, if any. */ |
| } *file_names; |
| |
| /* The start and end of the statement program following this |
| header. These point into dwarf2_per_objfile->line_buffer. */ |
| gdb_byte *statement_program_start, *statement_program_end; |
| }; |
| |
| /* When we construct a partial symbol table entry we only |
| need this much information. */ |
| struct partial_die_info |
| { |
| /* Offset of this DIE. */ |
| sect_offset offset; |
| |
| /* DWARF-2 tag for this DIE. */ |
| ENUM_BITFIELD(dwarf_tag) tag : 16; |
| |
| /* Assorted flags describing the data found in this DIE. */ |
| unsigned int has_children : 1; |
| unsigned int is_external : 1; |
| unsigned int is_declaration : 1; |
| unsigned int has_type : 1; |
| unsigned int has_specification : 1; |
| unsigned int has_pc_info : 1; |
| unsigned int may_be_inlined : 1; |
| |
| /* Flag set if the SCOPE field of this structure has been |
| computed. */ |
| unsigned int scope_set : 1; |
| |
| /* Flag set if the DIE has a byte_size attribute. */ |
| unsigned int has_byte_size : 1; |
| |
| /* Flag set if any of the DIE's children are template arguments. */ |
| unsigned int has_template_arguments : 1; |
| |
| /* Flag set if fixup_partial_die has been called on this die. */ |
| unsigned int fixup_called : 1; |
| |
| /* The name of this DIE. Normally the value of DW_AT_name, but |
| sometimes a default name for unnamed DIEs. */ |
| char *name; |
| |
| /* The linkage name, if present. */ |
| const char *linkage_name; |
| |
| /* The scope to prepend to our children. This is generally |
| allocated on the comp_unit_obstack, so will disappear |
| when this compilation unit leaves the cache. */ |
| char *scope; |
| |
| /* Some data associated with the partial DIE. The tag determines |
| which field is live. */ |
| union |
| { |
| /* The location description associated with this DIE, if any. */ |
| struct dwarf_block *locdesc; |
| /* The offset of an import, for DW_TAG_imported_unit. */ |
| sect_offset offset; |
| } d; |
| |
| /* If HAS_PC_INFO, the PC range associated with this DIE. */ |
| CORE_ADDR lowpc; |
| CORE_ADDR highpc; |
| |
| /* Pointer into the info_buffer (or types_buffer) pointing at the target of |
| DW_AT_sibling, if any. */ |
| /* NOTE: This member isn't strictly necessary, read_partial_die could |
| return DW_AT_sibling values to its caller load_partial_dies. */ |
| gdb_byte *sibling; |
| |
| /* If HAS_SPECIFICATION, the offset of the DIE referred to by |
| DW_AT_specification (or DW_AT_abstract_origin or |
| DW_AT_extension). */ |
| sect_offset spec_offset; |
| |
| /* Pointers to this DIE's parent, first child, and next sibling, |
| if any. */ |
| struct partial_die_info *die_parent, *die_child, *die_sibling; |
| }; |
| |
| /* This data structure holds the information of an abbrev. */ |
| struct abbrev_info |
| { |
| unsigned int number; /* number identifying abbrev */ |
| enum dwarf_tag tag; /* dwarf tag */ |
| unsigned short has_children; /* boolean */ |
| unsigned short num_attrs; /* number of attributes */ |
| struct attr_abbrev *attrs; /* an array of attribute descriptions */ |
| struct abbrev_info *next; /* next in chain */ |
| }; |
| |
| struct attr_abbrev |
| { |
| ENUM_BITFIELD(dwarf_attribute) name : 16; |
| ENUM_BITFIELD(dwarf_form) form : 16; |
| }; |
| |
| /* Attributes have a name and a value. */ |
| struct attribute |
| { |
| ENUM_BITFIELD(dwarf_attribute) name : 16; |
| ENUM_BITFIELD(dwarf_form) form : 15; |
| |
| /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This |
| field should be in u.str (existing only for DW_STRING) but it is kept |
| here for better struct attribute alignment. */ |
| unsigned int string_is_canonical : 1; |
| |
| union |
| { |
| char *str; |
| struct dwarf_block *blk; |
| ULONGEST unsnd; |
| LONGEST snd; |
| CORE_ADDR addr; |
| struct signatured_type *signatured_type; |
| } |
| u; |
| }; |
| |
| /* This data structure holds a complete die structure. */ |
| struct die_info |
| { |
| /* DWARF-2 tag for this DIE. */ |
| ENUM_BITFIELD(dwarf_tag) tag : 16; |
| |
| /* Number of attributes */ |
| unsigned char num_attrs; |
| |
| /* True if we're presently building the full type name for the |
| type derived from this DIE. */ |
| unsigned char building_fullname : 1; |
| |
| /* Abbrev number */ |
| unsigned int abbrev; |
| |
| /* Offset in .debug_info or .debug_types section. */ |
| sect_offset offset; |
| |
| /* The dies in a compilation unit form an n-ary tree. PARENT |
| points to this die's parent; CHILD points to the first child of |
| this node; and all the children of a given node are chained |
| together via their SIBLING fields. */ |
| struct die_info *child; /* Its first child, if any. */ |
| struct die_info *sibling; /* Its next sibling, if any. */ |
| struct die_info *parent; /* Its parent, if any. */ |
| |
| /* An array of attributes, with NUM_ATTRS elements. There may be |
| zero, but it's not common and zero-sized arrays are not |
| sufficiently portable C. */ |
| struct attribute attrs[1]; |
| }; |
| |
| /* Get at parts of an attribute structure. */ |
| |
| #define DW_STRING(attr) ((attr)->u.str) |
| #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical) |
| #define DW_UNSND(attr) ((attr)->u.unsnd) |
| #define DW_BLOCK(attr) ((attr)->u.blk) |
| #define DW_SND(attr) ((attr)->u.snd) |
| #define DW_ADDR(attr) ((attr)->u.addr) |
| #define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type) |
| |
| /* Blocks are a bunch of untyped bytes. */ |
| struct dwarf_block |
| { |
| unsigned int size; |
| |
| /* Valid only if SIZE is not zero. */ |
| gdb_byte *data; |
| }; |
| |
| #ifndef ATTR_ALLOC_CHUNK |
| #define ATTR_ALLOC_CHUNK 4 |
| #endif |
| |
| /* Allocate fields for structs, unions and enums in this size. */ |
| #ifndef DW_FIELD_ALLOC_CHUNK |
| #define DW_FIELD_ALLOC_CHUNK 4 |
| #endif |
| |
| /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte, |
| but this would require a corresponding change in unpack_field_as_long |
| and friends. */ |
| static int bits_per_byte = 8; |
| |
| /* The routines that read and process dies for a C struct or C++ class |
| pass lists of data member fields and lists of member function fields |
| in an instance of a field_info structure, as defined below. */ |
| struct field_info |
| { |
| /* List of data member and baseclasses fields. */ |
| struct nextfield |
| { |
| struct nextfield *next; |
| int accessibility; |
| int virtuality; |
| struct field field; |
| } |
| *fields, *baseclasses; |
| |
| /* Number of fields (including baseclasses). */ |
| int nfields; |
| |
| /* Number of baseclasses. */ |
| int nbaseclasses; |
| |
| /* Set if the accesibility of one of the fields is not public. */ |
| int non_public_fields; |
| |
| /* Member function fields array, entries are allocated in the order they |
| are encountered in the object file. */ |
| struct nextfnfield |
| { |
| struct nextfnfield *next; |
| struct fn_field fnfield; |
| } |
| *fnfields; |
| |
| /* Member function fieldlist array, contains name of possibly overloaded |
| member function, number of overloaded member functions and a pointer |
| to the head of the member function field chain. */ |
| struct fnfieldlist |
| { |
| char *name; |
| int length; |
| struct nextfnfield *head; |
| } |
| *fnfieldlists; |
| |
| /* Number of entries in the fnfieldlists array. */ |
| int nfnfields; |
| |
| /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of |
| a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */ |
| struct typedef_field_list |
| { |
| struct typedef_field field; |
| struct typedef_field_list *next; |
| } |
| *typedef_field_list; |
| unsigned typedef_field_list_count; |
| }; |
| |
| /* One item on the queue of compilation units to read in full symbols |
| for. */ |
| struct dwarf2_queue_item |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| enum language pretend_language; |
| struct dwarf2_queue_item *next; |
| }; |
| |
| /* The current queue. */ |
| static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail; |
| |
| /* Loaded secondary compilation units are kept in memory until they |
| have not been referenced for the processing of this many |
| compilation units. Set this to zero to disable caching. Cache |
| sizes of up to at least twenty will improve startup time for |
| typical inter-CU-reference binaries, at an obvious memory cost. */ |
| static int dwarf2_max_cache_age = 5; |
| static void |
| show_dwarf2_max_cache_age (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, _("The upper bound on the age of cached " |
| "dwarf2 compilation units is %s.\n"), |
| value); |
| } |
| |
| |
| /* Various complaints about symbol reading that don't abort the process. */ |
| |
| static void |
| dwarf2_statement_list_fits_in_line_number_section_complaint (void) |
| { |
| complaint (&symfile_complaints, |
| _("statement list doesn't fit in .debug_line section")); |
| } |
| |
| static void |
| dwarf2_debug_line_missing_file_complaint (void) |
| { |
| complaint (&symfile_complaints, |
| _(".debug_line section has line data without a file")); |
| } |
| |
| static void |
| dwarf2_debug_line_missing_end_sequence_complaint (void) |
| { |
| complaint (&symfile_complaints, |
| _(".debug_line section has line " |
| "program sequence without an end")); |
| } |
| |
| static void |
| dwarf2_complex_location_expr_complaint (void) |
| { |
| complaint (&symfile_complaints, _("location expression too complex")); |
| } |
| |
| static void |
| dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2, |
| int arg3) |
| { |
| complaint (&symfile_complaints, |
| _("const value length mismatch for '%s', got %d, expected %d"), |
| arg1, arg2, arg3); |
| } |
| |
| static void |
| dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section) |
| { |
| complaint (&symfile_complaints, |
| _("macro info runs off end of `%s' section"), |
| section->asection->name); |
| } |
| |
| static void |
| dwarf2_macro_malformed_definition_complaint (const char *arg1) |
| { |
| complaint (&symfile_complaints, |
| _("macro debug info contains a " |
| "malformed macro definition:\n`%s'"), |
| arg1); |
| } |
| |
| static void |
| dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2) |
| { |
| complaint (&symfile_complaints, |
| _("invalid attribute class or form for '%s' in '%s'"), |
| arg1, arg2); |
| } |
| |
| /* local function prototypes */ |
| |
| static void dwarf2_locate_sections (bfd *, asection *, void *); |
| |
| static void dwarf2_create_include_psymtab (char *, struct partial_symtab *, |
| struct objfile *); |
| |
| static void dwarf2_find_base_address (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static void dwarf2_build_psymtabs_hard (struct objfile *); |
| |
| static void scan_partial_symbols (struct partial_die_info *, |
| CORE_ADDR *, CORE_ADDR *, |
| int, struct dwarf2_cu *); |
| |
| static void add_partial_symbol (struct partial_die_info *, |
| struct dwarf2_cu *); |
| |
| static void add_partial_namespace (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int need_pc, struct dwarf2_cu *cu); |
| |
| static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int need_pc, |
| struct dwarf2_cu *cu); |
| |
| static void add_partial_enumeration (struct partial_die_info *enum_pdi, |
| struct dwarf2_cu *cu); |
| |
| static void add_partial_subprogram (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int need_pc, struct dwarf2_cu *cu); |
| |
| static void dwarf2_psymtab_to_symtab (struct partial_symtab *); |
| |
| static void psymtab_to_symtab_1 (struct partial_symtab *); |
| |
| static void dwarf2_read_abbrevs (struct dwarf2_cu *, |
| struct dwarf2_section_info *); |
| |
| static void dwarf2_free_abbrev_table (void *); |
| |
| static unsigned int peek_abbrev_code (bfd *, gdb_byte *); |
| |
| static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *, |
| struct dwarf2_cu *); |
| |
| static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int, |
| struct dwarf2_cu *); |
| |
| static struct partial_die_info *load_partial_dies |
| (const struct die_reader_specs *, gdb_byte *, int); |
| |
| static gdb_byte *read_partial_die (const struct die_reader_specs *, |
| struct partial_die_info *, |
| struct abbrev_info *, |
| unsigned int, |
| gdb_byte *); |
| |
| static struct partial_die_info *find_partial_die (sect_offset, |
| struct dwarf2_cu *); |
| |
| static void fixup_partial_die (struct partial_die_info *, |
| struct dwarf2_cu *); |
| |
| static gdb_byte *read_attribute (const struct die_reader_specs *, |
| struct attribute *, struct attr_abbrev *, |
| gdb_byte *); |
| |
| static unsigned int read_1_byte (bfd *, gdb_byte *); |
| |
| static int read_1_signed_byte (bfd *, gdb_byte *); |
| |
| static unsigned int read_2_bytes (bfd *, gdb_byte *); |
| |
| static unsigned int read_4_bytes (bfd *, gdb_byte *); |
| |
| static ULONGEST read_8_bytes (bfd *, gdb_byte *); |
| |
| static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *, |
| unsigned int *); |
| |
| static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *); |
| |
| static LONGEST read_checked_initial_length_and_offset |
| (bfd *, gdb_byte *, const struct comp_unit_head *, |
| unsigned int *, unsigned int *); |
| |
| static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *, |
| unsigned int *); |
| |
| static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int); |
| |
| static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int); |
| |
| static char *read_direct_string (bfd *, gdb_byte *, unsigned int *); |
| |
| static char *read_indirect_string (bfd *, gdb_byte *, |
| const struct comp_unit_head *, |
| unsigned int *); |
| |
| static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *); |
| |
| static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *); |
| |
| static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *, |
| unsigned int *); |
| |
| static char *read_str_index (const struct die_reader_specs *reader, |
| struct dwarf2_cu *cu, ULONGEST str_index); |
| |
| static gdb_byte *skip_leb128 (bfd *, gdb_byte *); |
| |
| static void set_cu_language (unsigned int, struct dwarf2_cu *); |
| |
| static struct attribute *dwarf2_attr (struct die_info *, unsigned int, |
| struct dwarf2_cu *); |
| |
| static struct attribute *dwarf2_attr_no_follow (struct die_info *, |
| unsigned int, |
| struct dwarf2_cu *); |
| |
| static int dwarf2_flag_true_p (struct die_info *die, unsigned name, |
| struct dwarf2_cu *cu); |
| |
| static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu); |
| |
| static struct die_info *die_specification (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static void free_line_header (struct line_header *lh); |
| |
| static void add_file_name (struct line_header *, char *, unsigned int, |
| unsigned int, unsigned int); |
| |
| static struct line_header *dwarf_decode_line_header (unsigned int offset, |
| struct dwarf2_cu *cu); |
| |
| static void dwarf_decode_lines (struct line_header *, const char *, |
| struct dwarf2_cu *, struct partial_symtab *, |
| int); |
| |
| static void dwarf2_start_subfile (char *, const char *, const char *); |
| |
| static struct symbol *new_symbol (struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static struct symbol *new_symbol_full (struct die_info *, struct type *, |
| struct dwarf2_cu *, struct symbol *); |
| |
| static void dwarf2_const_value (struct attribute *, struct symbol *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_const_value_attr (struct attribute *attr, |
| struct type *type, |
| const char *name, |
| struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, |
| gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton); |
| |
| static struct type *die_type (struct die_info *, struct dwarf2_cu *); |
| |
| static int need_gnat_info (struct dwarf2_cu *); |
| |
| static struct type *die_descriptive_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void set_descriptive_type (struct type *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *die_containing_type (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct type *lookup_die_type (struct die_info *, struct attribute *, |
| struct dwarf2_cu *); |
| |
| static struct type *read_type_die (struct die_info *, struct dwarf2_cu *); |
| |
| static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *); |
| |
| static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *); |
| |
| static char *typename_concat (struct obstack *obs, const char *prefix, |
| const char *suffix, int physname, |
| struct dwarf2_cu *cu); |
| |
| static void read_file_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_func_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *, |
| struct dwarf2_cu *, struct partial_symtab *); |
| |
| static int dwarf2_get_pc_bounds (struct die_info *, |
| CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *, |
| struct partial_symtab *); |
| |
| static void get_scope_pc_bounds (struct die_info *, |
| CORE_ADDR *, CORE_ADDR *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_record_block_ranges (struct die_info *, struct block *, |
| CORE_ADDR, struct dwarf2_cu *); |
| |
| static void dwarf2_add_field (struct field_info *, struct die_info *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fields_to_type (struct field_info *, |
| struct type *, struct dwarf2_cu *); |
| |
| static void dwarf2_add_member_fn (struct field_info *, |
| struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static void dwarf2_attach_fn_fields_to_type (struct field_info *, |
| struct type *, |
| struct dwarf2_cu *); |
| |
| static void process_structure_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_common_block (struct die_info *, struct dwarf2_cu *); |
| |
| static void read_namespace (struct die_info *die, struct dwarf2_cu *); |
| |
| static void read_module (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void read_import_statement (struct die_info *die, struct dwarf2_cu *); |
| |
| static struct type *read_module_type (struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static const char *namespace_name (struct die_info *die, |
| int *is_anonymous, struct dwarf2_cu *); |
| |
| static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *); |
| |
| static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *); |
| |
| static enum dwarf_array_dim_ordering read_array_order (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static struct die_info *read_die_and_children (const struct die_reader_specs *, |
| gdb_byte *info_ptr, |
| gdb_byte **new_info_ptr, |
| struct die_info *parent); |
| |
| static struct die_info *read_die_and_siblings (const struct die_reader_specs *, |
| gdb_byte *info_ptr, |
| gdb_byte **new_info_ptr, |
| struct die_info *parent); |
| |
| static gdb_byte *read_full_die_1 (const struct die_reader_specs *, |
| struct die_info **, gdb_byte *, int *, int); |
| |
| static gdb_byte *read_full_die (const struct die_reader_specs *, |
| struct die_info **, gdb_byte *, int *); |
| |
| static void process_die (struct die_info *, struct dwarf2_cu *); |
| |
| static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *, |
| struct obstack *); |
| |
| static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *); |
| |
| static const char *dwarf2_full_name (char *name, |
| struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| static struct die_info *dwarf2_extension (struct die_info *die, |
| struct dwarf2_cu **); |
| |
| static const char *dwarf_tag_name (unsigned int); |
| |
| static const char *dwarf_attr_name (unsigned int); |
| |
| static const char *dwarf_form_name (unsigned int); |
| |
| static char *dwarf_bool_name (unsigned int); |
| |
| static const char *dwarf_type_encoding_name (unsigned int); |
| |
| static struct die_info *sibling_die (struct die_info *); |
| |
| static void dump_die_shallow (struct ui_file *, int indent, struct die_info *); |
| |
| static void dump_die_for_error (struct die_info *); |
| |
| static void dump_die_1 (struct ui_file *, int level, int max_level, |
| struct die_info *); |
| |
| /*static*/ void dump_die (struct die_info *, int max_level); |
| |
| static void store_in_ref_table (struct die_info *, |
| struct dwarf2_cu *); |
| |
| static int is_ref_attr (struct attribute *); |
| |
| static sect_offset dwarf2_get_ref_die_offset (struct attribute *); |
| |
| static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int); |
| |
| static struct die_info *follow_die_ref_or_sig (struct die_info *, |
| struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_ref (struct die_info *, |
| struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct die_info *follow_die_sig (struct die_info *, |
| struct attribute *, |
| struct dwarf2_cu **); |
| |
| static struct signatured_type *lookup_signatured_type_at_offset |
| (struct objfile *objfile, |
| struct dwarf2_section_info *section, sect_offset offset); |
| |
| static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu); |
| |
| static void read_signatured_type (struct signatured_type *); |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *); |
| |
| static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *); |
| |
| static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int); |
| |
| static void dwarf_decode_macros (struct line_header *, unsigned int, |
| char *, bfd *, struct dwarf2_cu *, |
| struct dwarf2_section_info *, |
| int, const char *); |
| |
| static int attr_form_is_block (struct attribute *); |
| |
| static int attr_form_is_section_offset (struct attribute *); |
| |
| static int attr_form_is_constant (struct attribute *); |
| |
| static void fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| struct attribute *attr); |
| |
| static void dwarf2_symbol_mark_computed (struct attribute *attr, |
| struct symbol *sym, |
| struct dwarf2_cu *cu); |
| |
| static gdb_byte *skip_one_die (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct abbrev_info *abbrev); |
| |
| static void free_stack_comp_unit (void *); |
| |
| static hashval_t partial_die_hash (const void *item); |
| |
| static int partial_die_eq (const void *item_lhs, const void *item_rhs); |
| |
| static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit |
| (sect_offset offset, struct objfile *objfile); |
| |
| static void init_one_comp_unit (struct dwarf2_cu *cu, |
| struct dwarf2_per_cu_data *per_cu); |
| |
| static void prepare_one_comp_unit (struct dwarf2_cu *cu, |
| struct die_info *comp_unit_die, |
| enum language pretend_language); |
| |
| static void free_heap_comp_unit (void *); |
| |
| static void free_cached_comp_units (void *); |
| |
| static void age_cached_comp_units (void); |
| |
| static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *); |
| |
| static struct type *set_die_type (struct die_info *, struct type *, |
| struct dwarf2_cu *); |
| |
| static void create_all_comp_units (struct objfile *); |
| |
| static int create_all_type_units (struct objfile *); |
| |
| static void load_full_comp_unit (struct dwarf2_per_cu_data *, |
| enum language); |
| |
| static void process_full_comp_unit (struct dwarf2_per_cu_data *, |
| enum language); |
| |
| static void dwarf2_add_dependence (struct dwarf2_cu *, |
| struct dwarf2_per_cu_data *); |
| |
| static void dwarf2_mark (struct dwarf2_cu *); |
| |
| static void dwarf2_clear_marks (struct dwarf2_per_cu_data *); |
| |
| static struct type *get_die_type_at_offset (sect_offset, |
| struct dwarf2_per_cu_data *per_cu); |
| |
| static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu); |
| |
| static void dwarf2_release_queue (void *dummy); |
| |
| static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language); |
| |
| static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu, |
| struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language); |
| |
| static void process_queue (void); |
| |
| static void find_file_and_directory (struct die_info *die, |
| struct dwarf2_cu *cu, |
| char **name, char **comp_dir); |
| |
| static char *file_full_name (int file, struct line_header *lh, |
| const char *comp_dir); |
| |
| static gdb_byte *read_and_check_comp_unit_head |
| (struct comp_unit_head *header, |
| struct dwarf2_section_info *section, gdb_byte *info_ptr, |
| int is_debug_types_section); |
| |
| static void init_cutu_and_read_dies |
| (struct dwarf2_per_cu_data *this_cu, int use_existing_cu, int keep, |
| die_reader_func_ftype *die_reader_func, void *data); |
| |
| static void init_cutu_and_read_dies_simple |
| (struct dwarf2_per_cu_data *this_cu, |
| die_reader_func_ftype *die_reader_func, void *data); |
| |
| static htab_t allocate_signatured_type_table (struct objfile *objfile); |
| |
| static void process_psymtab_comp_unit (struct dwarf2_per_cu_data *, int); |
| |
| static htab_t allocate_dwo_unit_table (struct objfile *objfile); |
| |
| static struct dwo_unit *lookup_dwo_comp_unit |
| (struct dwarf2_per_cu_data *, char *, const char *, ULONGEST); |
| |
| static struct dwo_unit *lookup_dwo_type_unit |
| (struct signatured_type *, char *, const char *); |
| |
| static void free_dwo_file_cleanup (void *); |
| |
| static void munmap_section_buffer (struct dwarf2_section_info *); |
| |
| static void process_cu_includes (void); |
| |
| #if WORDS_BIGENDIAN |
| |
| /* Convert VALUE between big- and little-endian. */ |
| static offset_type |
| byte_swap (offset_type value) |
| { |
| offset_type result; |
| |
| result = (value & 0xff) << 24; |
| result |= (value & 0xff00) << 8; |
| result |= (value & 0xff0000) >> 8; |
| result |= (value & 0xff000000) >> 24; |
| return result; |
| } |
| |
| #define MAYBE_SWAP(V) byte_swap (V) |
| |
| #else |
| #define MAYBE_SWAP(V) (V) |
| #endif /* WORDS_BIGENDIAN */ |
| |
| /* The suffix for an index file. */ |
| #define INDEX_SUFFIX ".gdb-index" |
| |
| static const char *dwarf2_physname (char *name, struct die_info *die, |
| struct dwarf2_cu *cu); |
| |
| /* Try to locate the sections we need for DWARF 2 debugging |
| information and return true if we have enough to do something. |
| NAMES points to the dwarf2 section names, or is NULL if the standard |
| ELF names are used. */ |
| |
| int |
| dwarf2_has_info (struct objfile *objfile, |
| const struct dwarf2_debug_sections *names) |
| { |
| dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); |
| if (!dwarf2_per_objfile) |
| { |
| /* Initialize per-objfile state. */ |
| struct dwarf2_per_objfile *data |
| = obstack_alloc (&objfile->objfile_obstack, sizeof (*data)); |
| |
| memset (data, 0, sizeof (*data)); |
| set_objfile_data (objfile, dwarf2_objfile_data_key, data); |
| dwarf2_per_objfile = data; |
| |
| bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, |
| (void *) names); |
| dwarf2_per_objfile->objfile = objfile; |
| } |
| return (dwarf2_per_objfile->info.asection != NULL |
| && dwarf2_per_objfile->abbrev.asection != NULL); |
| } |
| |
| /* When loading sections, we look either for uncompressed section or for |
| compressed section names. */ |
| |
| static int |
| section_is_p (const char *section_name, |
| const struct dwarf2_section_names *names) |
| { |
| if (names->normal != NULL |
| && strcmp (section_name, names->normal) == 0) |
| return 1; |
| if (names->compressed != NULL |
| && strcmp (section_name, names->compressed) == 0) |
| return 1; |
| return 0; |
| } |
| |
| /* This function is mapped across the sections and remembers the |
| offset and size of each of the debugging sections we are interested |
| in. */ |
| |
| static void |
| dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames) |
| { |
| const struct dwarf2_debug_sections *names; |
| |
| if (vnames == NULL) |
| names = &dwarf2_elf_names; |
| else |
| names = (const struct dwarf2_debug_sections *) vnames; |
| |
| if (section_is_p (sectp->name, &names->info)) |
| { |
| dwarf2_per_objfile->info.asection = sectp; |
| dwarf2_per_objfile->info.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->abbrev)) |
| { |
| dwarf2_per_objfile->abbrev.asection = sectp; |
| dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->line)) |
| { |
| dwarf2_per_objfile->line.asection = sectp; |
| dwarf2_per_objfile->line.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->loc)) |
| { |
| dwarf2_per_objfile->loc.asection = sectp; |
| dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macinfo)) |
| { |
| dwarf2_per_objfile->macinfo.asection = sectp; |
| dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->macro)) |
| { |
| dwarf2_per_objfile->macro.asection = sectp; |
| dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str)) |
| { |
| dwarf2_per_objfile->str.asection = sectp; |
| dwarf2_per_objfile->str.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->addr)) |
| { |
| dwarf2_per_objfile->addr.asection = sectp; |
| dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->frame)) |
| { |
| dwarf2_per_objfile->frame.asection = sectp; |
| dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->eh_frame)) |
| { |
| flagword aflag = bfd_get_section_flags (abfd, sectp); |
| |
| if (aflag & SEC_HAS_CONTENTS) |
| { |
| dwarf2_per_objfile->eh_frame.asection = sectp; |
| dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp); |
| } |
| } |
| else if (section_is_p (sectp->name, &names->ranges)) |
| { |
| dwarf2_per_objfile->ranges.asection = sectp; |
| dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->types)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| type_section.asection = sectp; |
| type_section.size = bfd_get_section_size (sectp); |
| |
| VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types, |
| &type_section); |
| } |
| else if (section_is_p (sectp->name, &names->gdb_index)) |
| { |
| dwarf2_per_objfile->gdb_index.asection = sectp; |
| dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp); |
| } |
| |
| if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD) |
| && bfd_section_vma (abfd, sectp) == 0) |
| dwarf2_per_objfile->has_section_at_zero = 1; |
| } |
| |
| /* Decompress a section that was compressed using zlib. Store the |
| decompressed buffer, and its size, in OUTBUF and OUTSIZE. */ |
| |
| static void |
| zlib_decompress_section (struct objfile *objfile, asection *sectp, |
| gdb_byte **outbuf, bfd_size_type *outsize) |
| { |
| bfd *abfd = sectp->owner; |
| #ifndef HAVE_ZLIB_H |
| error (_("Support for zlib-compressed DWARF data (from '%s') " |
| "is disabled in this copy of GDB"), |
| bfd_get_filename (abfd)); |
| #else |
| bfd_size_type compressed_size = bfd_get_section_size (sectp); |
| gdb_byte *compressed_buffer = xmalloc (compressed_size); |
| struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer); |
| bfd_size_type uncompressed_size; |
| gdb_byte *uncompressed_buffer; |
| z_stream strm; |
| int rc; |
| int header_size = 12; |
| |
| if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0 |
| || bfd_bread (compressed_buffer, |
| compressed_size, abfd) != compressed_size) |
| error (_("Dwarf Error: Can't read DWARF data from '%s'"), |
| bfd_get_filename (abfd)); |
| |
| /* Read the zlib header. In this case, it should be "ZLIB" followed |
| by the uncompressed section size, 8 bytes in big-endian order. */ |
| if (compressed_size < header_size |
| || strncmp (compressed_buffer, "ZLIB", 4) != 0) |
| error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"), |
| bfd_get_filename (abfd)); |
| uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8; |
| uncompressed_size += compressed_buffer[11]; |
| |
| /* It is possible the section consists of several compressed |
| buffers concatenated together, so we uncompress in a loop. */ |
| strm.zalloc = NULL; |
| strm.zfree = NULL; |
| strm.opaque = NULL; |
| strm.avail_in = compressed_size - header_size; |
| strm.next_in = (Bytef*) compressed_buffer + header_size; |
| strm.avail_out = uncompressed_size; |
| uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack, |
| uncompressed_size); |
| rc = inflateInit (&strm); |
| while (strm.avail_in > 0) |
| { |
| if (rc != Z_OK) |
| error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"), |
| bfd_get_filename (abfd), rc); |
| strm.next_out = ((Bytef*) uncompressed_buffer |
| + (uncompressed_size - strm.avail_out)); |
| rc = inflate (&strm, Z_FINISH); |
| if (rc != Z_STREAM_END) |
| error (_("Dwarf Error: zlib error uncompressing from '%s': %d"), |
| bfd_get_filename (abfd), rc); |
| rc = inflateReset (&strm); |
| } |
| rc = inflateEnd (&strm); |
| if (rc != Z_OK |
| || strm.avail_out != 0) |
| error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"), |
| bfd_get_filename (abfd), rc); |
| |
| do_cleanups (cleanup); |
| *outbuf = uncompressed_buffer; |
| *outsize = uncompressed_size; |
| #endif |
| } |
| |
| /* A helper function that decides whether a section is empty, |
| or not present. */ |
| |
| static int |
| dwarf2_section_empty_p (struct dwarf2_section_info *info) |
| { |
| return info->asection == NULL || info->size == 0; |
| } |
| |
| /* Read the contents of the section INFO. |
| OBJFILE is the main object file, but not necessarily the file where |
| the section comes from. E.g., for DWO files INFO->asection->owner |
| is the bfd of the DWO file. |
| If the section is compressed, uncompress it before returning. */ |
| |
| static void |
| dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info) |
| { |
| asection *sectp = info->asection; |
| bfd *abfd; |
| gdb_byte *buf, *retbuf; |
| unsigned char header[4]; |
| |
| if (info->readin) |
| return; |
| info->buffer = NULL; |
| info->map_addr = NULL; |
| info->readin = 1; |
| |
| if (dwarf2_section_empty_p (info)) |
| return; |
| |
| /* Note that ABFD may not be from OBJFILE, e.g. a DWO section. */ |
| abfd = sectp->owner; |
| |
| /* Check if the file has a 4-byte header indicating compression. */ |
| if (info->size > sizeof (header) |
| && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0 |
| && bfd_bread (header, sizeof (header), abfd) == sizeof (header)) |
| { |
| /* Upon decompression, update the buffer and its size. */ |
| if (strncmp (header, "ZLIB", sizeof (header)) == 0) |
| { |
| zlib_decompress_section (objfile, sectp, &info->buffer, |
| &info->size); |
| return; |
| } |
| } |
| |
| #ifdef HAVE_MMAP |
| if (pagesize == 0) |
| pagesize = getpagesize (); |
| |
| /* Only try to mmap sections which are large enough: we don't want to |
| waste space due to fragmentation. Also, only try mmap for sections |
| without relocations. */ |
| |
| if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0) |
| { |
| info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ, |
| MAP_PRIVATE, sectp->filepos, |
| &info->map_addr, &info->map_len); |
| |
| if ((caddr_t)info->buffer != MAP_FAILED) |
| { |
| #if HAVE_POSIX_MADVISE |
| posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED); |
| #endif |
| return; |
| } |
| } |
| #endif |
| |
| /* If we get here, we are a normal, not-compressed section. */ |
| info->buffer = buf |
| = obstack_alloc (&objfile->objfile_obstack, info->size); |
| |
| /* When debugging .o files, we may need to apply relocations; see |
| http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html . |
| We never compress sections in .o files, so we only need to |
| try this when the section is not compressed. */ |
| retbuf = symfile_relocate_debug_section (objfile, sectp, buf); |
| if (retbuf != NULL) |
| { |
| info->buffer = retbuf; |
| return; |
| } |
| |
| if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0 |
| || bfd_bread (buf, info->size, abfd) != info->size) |
| error (_("Dwarf Error: Can't read DWARF data from '%s'"), |
| bfd_get_filename (abfd)); |
| } |
| |
| /* A helper function that returns the size of a section in a safe way. |
| If you are positive that the section has been read before using the |
| size, then it is safe to refer to the dwarf2_section_info object's |
| "size" field directly. In other cases, you must call this |
| function, because for compressed sections the size field is not set |
| correctly until the section has been read. */ |
| |
| static bfd_size_type |
| dwarf2_section_size (struct objfile *objfile, |
| struct dwarf2_section_info *info) |
| { |
| if (!info->readin) |
| dwarf2_read_section (objfile, info); |
| return info->size; |
| } |
| |
| /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and |
| SECTION_NAME. */ |
| |
| void |
| dwarf2_get_section_info (struct objfile *objfile, |
| enum dwarf2_section_enum sect, |
| asection **sectp, gdb_byte **bufp, |
| bfd_size_type *sizep) |
| { |
| struct dwarf2_per_objfile *data |
| = objfile_data (objfile, dwarf2_objfile_data_key); |
| struct dwarf2_section_info *info; |
| |
| /* We may see an objfile without any DWARF, in which case we just |
| return nothing. */ |
| if (data == NULL) |
| { |
| *sectp = NULL; |
| *bufp = NULL; |
| *sizep = 0; |
| return; |
| } |
| switch (sect) |
| { |
| case DWARF2_DEBUG_FRAME: |
| info = &data->frame; |
| break; |
| case DWARF2_EH_FRAME: |
| info = &data->eh_frame; |
| break; |
| default: |
| gdb_assert_not_reached ("unexpected section"); |
| } |
| |
| dwarf2_read_section (objfile, info); |
| |
| *sectp = info->asection; |
| *bufp = info->buffer; |
| *sizep = info->size; |
| } |
| |
| |
| /* DWARF quick_symbols_functions support. */ |
| |
| /* TUs can share .debug_line entries, and there can be a lot more TUs than |
| unique line tables, so we maintain a separate table of all .debug_line |
| derived entries to support the sharing. |
| All the quick functions need is the list of file names. We discard the |
| line_header when we're done and don't need to record it here. */ |
| struct quick_file_names |
| { |
| /* The offset in .debug_line of the line table. We hash on this. */ |
| unsigned int offset; |
| |
| /* The number of entries in file_names, real_names. */ |
| unsigned int num_file_names; |
| |
| /* The file names from the line table, after being run through |
| file_full_name. */ |
| const char **file_names; |
| |
| /* The file names from the line table after being run through |
| gdb_realpath. These are computed lazily. */ |
| const char **real_names; |
| }; |
| |
| /* When using the index (and thus not using psymtabs), each CU has an |
| object of this type. This is used to hold information needed by |
| the various "quick" methods. */ |
| struct dwarf2_per_cu_quick_data |
| { |
| /* The file table. This can be NULL if there was no file table |
| or it's currently not read in. |
| NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */ |
| struct quick_file_names *file_names; |
| |
| /* The corresponding symbol table. This is NULL if symbols for this |
| CU have not yet been read. */ |
| struct symtab *symtab; |
| |
| /* A temporary mark bit used when iterating over all CUs in |
| expand_symtabs_matching. */ |
| unsigned int mark : 1; |
| |
| /* True if we've tried to read the file table and found there isn't one. |
| There will be no point in trying to read it again next time. */ |
| unsigned int no_file_data : 1; |
| }; |
| |
| /* Hash function for a quick_file_names. */ |
| |
| static hashval_t |
| hash_file_name_entry (const void *e) |
| { |
| const struct quick_file_names *file_data = e; |
| |
| return file_data->offset; |
| } |
| |
| /* Equality function for a quick_file_names. */ |
| |
| static int |
| eq_file_name_entry (const void *a, const void *b) |
| { |
| const struct quick_file_names *ea = a; |
| const struct quick_file_names *eb = b; |
| |
| return ea->offset == eb->offset; |
| } |
| |
| /* Delete function for a quick_file_names. */ |
| |
| static void |
| delete_file_name_entry (void *e) |
| { |
| struct quick_file_names *file_data = e; |
| int i; |
| |
| for (i = 0; i < file_data->num_file_names; ++i) |
| { |
| xfree ((void*) file_data->file_names[i]); |
| if (file_data->real_names) |
| xfree ((void*) file_data->real_names[i]); |
| } |
| |
| /* The space for the struct itself lives on objfile_obstack, |
| so we don't free it here. */ |
| } |
| |
| /* Create a quick_file_names hash table. */ |
| |
| static htab_t |
| create_quick_file_names_table (unsigned int nr_initial_entries) |
| { |
| return htab_create_alloc (nr_initial_entries, |
| hash_file_name_entry, eq_file_name_entry, |
| delete_file_name_entry, xcalloc, xfree); |
| } |
| |
| /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would |
| have to be created afterwards. You should call age_cached_comp_units after |
| processing PER_CU->CU. dw2_setup must have been already called. */ |
| |
| static void |
| load_cu (struct dwarf2_per_cu_data *per_cu) |
| { |
| if (per_cu->is_debug_types) |
| load_full_type_unit (per_cu); |
| else |
| load_full_comp_unit (per_cu, language_minimal); |
| |
| gdb_assert (per_cu->cu != NULL); |
| |
| dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu); |
| } |
| |
| /* Read in the symbols for PER_CU. */ |
| |
| static void |
| dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct cleanup *back_to; |
| |
| back_to = make_cleanup (dwarf2_release_queue, NULL); |
| |
| if (dwarf2_per_objfile->using_index |
| ? per_cu->v.quick->symtab == NULL |
| : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin)) |
| { |
| queue_comp_unit (per_cu, language_minimal); |
| load_cu (per_cu); |
| } |
| |
| process_queue (); |
| |
| /* Age the cache, releasing compilation units that have not |
| been used recently. */ |
| age_cached_comp_units (); |
| |
| do_cleanups (back_to); |
| } |
| |
| /* Ensure that the symbols for PER_CU have been read in. OBJFILE is |
| the objfile from which this CU came. Returns the resulting symbol |
| table. */ |
| |
| static struct symtab * |
| dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu) |
| { |
| gdb_assert (dwarf2_per_objfile->using_index); |
| if (!per_cu->v.quick->symtab) |
| { |
| struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL); |
| increment_reading_symtab (); |
| dw2_do_instantiate_symtab (per_cu); |
| process_cu_includes (); |
| do_cleanups (back_to); |
| } |
| return per_cu->v.quick->symtab; |
| } |
| |
| /* Return the CU given its index. */ |
| |
| static struct dwarf2_per_cu_data * |
| dw2_get_cu (int index) |
| { |
| if (index >= dwarf2_per_objfile->n_comp_units) |
| { |
| index -= dwarf2_per_objfile->n_comp_units; |
| return dwarf2_per_objfile->all_type_units[index]; |
| } |
| return dwarf2_per_objfile->all_comp_units[index]; |
| } |
| |
| /* A helper function that knows how to read a 64-bit value in a way |
| that doesn't make gdb die. Returns 1 if the conversion went ok, 0 |
| otherwise. */ |
| |
| static int |
| extract_cu_value (const char *bytes, ULONGEST *result) |
| { |
| if (sizeof (ULONGEST) < 8) |
| { |
| int i; |
| |
| /* Ignore the upper 4 bytes if they are all zero. */ |
| for (i = 0; i < 4; ++i) |
| if (bytes[i + 4] != 0) |
| return 0; |
| |
| *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE); |
| } |
| else |
| *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE); |
| return 1; |
| } |
| |
| /* Read the CU list from the mapped index, and use it to create all |
| the CU objects for this objfile. Return 0 if something went wrong, |
| 1 if everything went ok. */ |
| |
| static int |
| create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list, |
| offset_type cu_list_elements) |
| { |
| offset_type i; |
| |
| dwarf2_per_objfile->n_comp_units = cu_list_elements / 2; |
| dwarf2_per_objfile->all_comp_units |
| = obstack_alloc (&objfile->objfile_obstack, |
| dwarf2_per_objfile->n_comp_units |
| * sizeof (struct dwarf2_per_cu_data *)); |
| |
| for (i = 0; i < cu_list_elements; i += 2) |
| { |
| struct dwarf2_per_cu_data *the_cu; |
| ULONGEST offset, length; |
| |
| if (!extract_cu_value (cu_list, &offset) |
| || !extract_cu_value (cu_list + 8, &length)) |
| return 0; |
| cu_list += 2 * 8; |
| |
| the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_data); |
| the_cu->offset.sect_off = offset; |
| the_cu->length = length; |
| the_cu->objfile = objfile; |
| the_cu->info_or_types_section = &dwarf2_per_objfile->info; |
| the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| dwarf2_per_objfile->all_comp_units[i / 2] = the_cu; |
| } |
| |
| return 1; |
| } |
| |
| /* Create the signatured type hash table from the index. */ |
| |
| static int |
| create_signatured_type_table_from_index (struct objfile *objfile, |
| struct dwarf2_section_info *section, |
| const gdb_byte *bytes, |
| offset_type elements) |
| { |
| offset_type i; |
| htab_t sig_types_hash; |
| |
| dwarf2_per_objfile->n_type_units = elements / 3; |
| dwarf2_per_objfile->all_type_units |
| = obstack_alloc (&objfile->objfile_obstack, |
| dwarf2_per_objfile->n_type_units |
| * sizeof (struct dwarf2_per_cu_data *)); |
| |
| sig_types_hash = allocate_signatured_type_table (objfile); |
| |
| for (i = 0; i < elements; i += 3) |
| { |
| struct signatured_type *sig_type; |
| ULONGEST offset, type_offset_in_tu, signature; |
| void **slot; |
| |
| if (!extract_cu_value (bytes, &offset) |
| || !extract_cu_value (bytes + 8, &type_offset_in_tu)) |
| return 0; |
| signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE); |
| bytes += 3 * 8; |
| |
| sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| sig_type->signature = signature; |
| sig_type->type_offset_in_tu.cu_off = type_offset_in_tu; |
| sig_type->per_cu.is_debug_types = 1; |
| sig_type->per_cu.info_or_types_section = section; |
| sig_type->per_cu.offset.sect_off = offset; |
| sig_type->per_cu.objfile = objfile; |
| sig_type->per_cu.v.quick |
| = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| |
| slot = htab_find_slot (sig_types_hash, sig_type, INSERT); |
| *slot = sig_type; |
| |
| dwarf2_per_objfile->all_type_units[i / 3] = &sig_type->per_cu; |
| } |
| |
| dwarf2_per_objfile->signatured_types = sig_types_hash; |
| |
| return 1; |
| } |
| |
| /* Read the address map data from the mapped index, and use it to |
| populate the objfile's psymtabs_addrmap. */ |
| |
| static void |
| create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index) |
| { |
| const gdb_byte *iter, *end; |
| struct obstack temp_obstack; |
| struct addrmap *mutable_map; |
| struct cleanup *cleanup; |
| CORE_ADDR baseaddr; |
| |
| obstack_init (&temp_obstack); |
| cleanup = make_cleanup_obstack_free (&temp_obstack); |
| mutable_map = addrmap_create_mutable (&temp_obstack); |
| |
| iter = index->address_table; |
| end = iter + index->address_table_size; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| while (iter < end) |
| { |
| ULONGEST hi, lo, cu_index; |
| lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE); |
| iter += 8; |
| hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE); |
| iter += 8; |
| cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE); |
| iter += 4; |
| |
| addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1, |
| dw2_get_cu (cu_index)); |
| } |
| |
| objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map, |
| &objfile->objfile_obstack); |
| do_cleanups (cleanup); |
| } |
| |
| /* The hash function for strings in the mapped index. This is the same as |
| SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the |
| implementation. This is necessary because the hash function is tied to the |
| format of the mapped index file. The hash values do not have to match with |
| SYMBOL_HASH_NEXT. |
| |
| Use INT_MAX for INDEX_VERSION if you generate the current index format. */ |
| |
| static hashval_t |
| mapped_index_string_hash (int index_version, const void *p) |
| { |
| const unsigned char *str = (const unsigned char *) p; |
| hashval_t r = 0; |
| unsigned char c; |
| |
| while ((c = *str++) != 0) |
| { |
| if (index_version >= 5) |
| c = tolower (c); |
| r = r * 67 + c - 113; |
| } |
| |
| return r; |
| } |
| |
| /* Find a slot in the mapped index INDEX for the object named NAME. |
| If NAME is found, set *VEC_OUT to point to the CU vector in the |
| constant pool and return 1. If NAME cannot be found, return 0. */ |
| |
| static int |
| find_slot_in_mapped_hash (struct mapped_index *index, const char *name, |
| offset_type **vec_out) |
| { |
| struct cleanup *back_to = make_cleanup (null_cleanup, 0); |
| offset_type hash; |
| offset_type slot, step; |
| int (*cmp) (const char *, const char *); |
| |
| if (current_language->la_language == language_cplus |
| || current_language->la_language == language_java |
| || current_language->la_language == language_fortran) |
| { |
| /* NAME is already canonical. Drop any qualifiers as .gdb_index does |
| not contain any. */ |
| const char *paren = strchr (name, '('); |
| |
| if (paren) |
| { |
| char *dup; |
| |
| dup = xmalloc (paren - name + 1); |
| memcpy (dup, name, paren - name); |
| dup[paren - name] = 0; |
| |
| make_cleanup (xfree, dup); |
| name = dup; |
| } |
| } |
| |
| /* Index version 4 did not support case insensitive searches. But the |
| indices for case insensitive languages are built in lowercase, therefore |
| simulate our NAME being searched is also lowercased. */ |
| hash = mapped_index_string_hash ((index->version == 4 |
| && case_sensitivity == case_sensitive_off |
| ? 5 : index->version), |
| name); |
| |
| slot = hash & (index->symbol_table_slots - 1); |
| step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1; |
| cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp); |
| |
| for (;;) |
| { |
| /* Convert a slot number to an offset into the table. */ |
| offset_type i = 2 * slot; |
| const char *str; |
| if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0) |
| { |
| do_cleanups (back_to); |
| return 0; |
| } |
| |
| str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]); |
| if (!cmp (name, str)) |
| { |
| *vec_out = (offset_type *) (index->constant_pool |
| + MAYBE_SWAP (index->symbol_table[i + 1])); |
| do_cleanups (back_to); |
| return 1; |
| } |
| |
| slot = (slot + step) & (index->symbol_table_slots - 1); |
| } |
| } |
| |
| /* Read the index file. If everything went ok, initialize the "quick" |
| elements of all the CUs and return 1. Otherwise, return 0. */ |
| |
| static int |
| dwarf2_read_index (struct objfile *objfile) |
| { |
| char *addr; |
| struct mapped_index *map; |
| offset_type *metadata; |
| const gdb_byte *cu_list; |
| const gdb_byte *types_list = NULL; |
| offset_type version, cu_list_elements; |
| offset_type types_list_elements = 0; |
| int i; |
| |
| if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index)) |
| return 0; |
| |
| /* Older elfutils strip versions could keep the section in the main |
| executable while splitting it for the separate debug info file. */ |
| if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection) |
| & SEC_HAS_CONTENTS) == 0) |
| return 0; |
| |
| dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index); |
| |
| addr = dwarf2_per_objfile->gdb_index.buffer; |
| /* Version check. */ |
| version = MAYBE_SWAP (*(offset_type *) addr); |
| /* Versions earlier than 3 emitted every copy of a psymbol. This |
| causes the index to behave very poorly for certain requests. Version 3 |
| contained incomplete addrmap. So, it seems better to just ignore such |
| indices. */ |
| if (version < 4) |
| { |
| static int warning_printed = 0; |
| if (!warning_printed) |
| { |
| warning (_("Skipping obsolete .gdb_index section in %s."), |
| objfile->name); |
| warning_printed = 1; |
| } |
| return 0; |
| } |
| /* Index version 4 uses a different hash function than index version |
| 5 and later. |
| |
| Versions earlier than 6 did not emit psymbols for inlined |
| functions. Using these files will cause GDB not to be able to |
| set breakpoints on inlined functions by name, so we ignore these |
| indices unless the --use-deprecated-index-sections command line |
| option was supplied. */ |
| if (version < 6 && !use_deprecated_index_sections) |
| { |
| static int warning_printed = 0; |
| if (!warning_printed) |
| { |
| warning (_("Skipping deprecated .gdb_index section in %s, pass " |
| "--use-deprecated-index-sections to use them anyway"), |
| objfile->name); |
| warning_printed = 1; |
| } |
| return 0; |
| } |
| /* Indexes with higher version than the one supported by GDB may be no |
| longer backward compatible. */ |
| if (version > 6) |
| return 0; |
| |
| map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index); |
| map->version = version; |
| map->total_size = dwarf2_per_objfile->gdb_index.size; |
| |
| metadata = (offset_type *) (addr + sizeof (offset_type)); |
| |
| i = 0; |
| cu_list = addr + MAYBE_SWAP (metadata[i]); |
| cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i])) |
| / 8); |
| ++i; |
| |
| types_list = addr + MAYBE_SWAP (metadata[i]); |
| types_list_elements = ((MAYBE_SWAP (metadata[i + 1]) |
| - MAYBE_SWAP (metadata[i])) |
| / 8); |
| ++i; |
| |
| map->address_table = addr + MAYBE_SWAP (metadata[i]); |
| map->address_table_size = (MAYBE_SWAP (metadata[i + 1]) |
| - MAYBE_SWAP (metadata[i])); |
| ++i; |
| |
| map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i])); |
| map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1]) |
| - MAYBE_SWAP (metadata[i])) |
| / (2 * sizeof (offset_type))); |
| ++i; |
| |
| map->constant_pool = addr + MAYBE_SWAP (metadata[i]); |
| |
| /* Don't use the index if it's empty. */ |
| if (map->symbol_table_slots == 0) |
| return 0; |
| |
| if (!create_cus_from_index (objfile, cu_list, cu_list_elements)) |
| return 0; |
| |
| if (types_list_elements) |
| { |
| struct dwarf2_section_info *section; |
| |
| /* We can only handle a single .debug_types when we have an |
| index. */ |
| if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1) |
| return 0; |
| |
| section = VEC_index (dwarf2_section_info_def, |
| dwarf2_per_objfile->types, 0); |
| |
| if (!create_signatured_type_table_from_index (objfile, section, |
| types_list, |
| types_list_elements)) |
| return 0; |
| } |
| |
| create_addrmap_from_index (objfile, map); |
| |
| dwarf2_per_objfile->index_table = map; |
| dwarf2_per_objfile->using_index = 1; |
| dwarf2_per_objfile->quick_file_names_table = |
| create_quick_file_names_table (dwarf2_per_objfile->n_comp_units); |
| |
| return 1; |
| } |
| |
| /* A helper for the "quick" functions which sets the global |
| dwarf2_per_objfile according to OBJFILE. */ |
| |
| static void |
| dw2_setup (struct objfile *objfile) |
| { |
| dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); |
| gdb_assert (dwarf2_per_objfile); |
| } |
| |
| /* die_reader_func for dw2_get_file_names. */ |
| |
| static void |
| dw2_get_file_names_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_per_cu_data *this_cu = cu->per_cu; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct line_header *lh; |
| struct attribute *attr; |
| int i; |
| char *name, *comp_dir; |
| void **slot; |
| struct quick_file_names *qfn; |
| unsigned int line_offset; |
| |
| lh = NULL; |
| slot = NULL; |
| line_offset = 0; |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu); |
| if (attr) |
| { |
| struct quick_file_names find_entry; |
| |
| line_offset = DW_UNSND (attr); |
| |
| /* We may have already read in this line header (TU line header sharing). |
| If we have we're done. */ |
| find_entry.offset = line_offset; |
| slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table, |
| &find_entry, INSERT); |
| if (*slot != NULL) |
| { |
| this_cu->v.quick->file_names = *slot; |
| return; |
| } |
| |
| lh = dwarf_decode_line_header (line_offset, cu); |
| } |
| if (lh == NULL) |
| { |
| this_cu->v.quick->no_file_data = 1; |
| return; |
| } |
| |
| qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn)); |
| qfn->offset = line_offset; |
| gdb_assert (slot != NULL); |
| *slot = qfn; |
| |
| find_file_and_directory (comp_unit_die, cu, &name, &comp_dir); |
| |
| qfn->num_file_names = lh->num_file_names; |
| qfn->file_names = obstack_alloc (&objfile->objfile_obstack, |
| lh->num_file_names * sizeof (char *)); |
| for (i = 0; i < lh->num_file_names; ++i) |
| qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir); |
| qfn->real_names = NULL; |
| |
| free_line_header (lh); |
| |
| this_cu->v.quick->file_names = qfn; |
| } |
| |
| /* A helper for the "quick" functions which attempts to read the line |
| table for THIS_CU. */ |
| |
| static struct quick_file_names * |
| dw2_get_file_names (struct objfile *objfile, |
| struct dwarf2_per_cu_data *this_cu) |
| { |
| if (this_cu->v.quick->file_names != NULL) |
| return this_cu->v.quick->file_names; |
| /* If we know there is no line data, no point in looking again. */ |
| if (this_cu->v.quick->no_file_data) |
| return NULL; |
| |
| /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute |
| in the stub for CUs, there's is no need to lookup the DWO file. |
| However, that's not the case for TUs where DW_AT_stmt_list lives in the |
| DWO file. */ |
| if (this_cu->is_debug_types) |
| init_cutu_and_read_dies (this_cu, 0, 0, dw2_get_file_names_reader, NULL); |
| else |
| init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL); |
| |
| if (this_cu->v.quick->no_file_data) |
| return NULL; |
| return this_cu->v.quick->file_names; |
| } |
| |
| /* A helper for the "quick" functions which computes and caches the |
| real path for a given file name from the line table. */ |
| |
| static const char * |
| dw2_get_real_path (struct objfile *objfile, |
| struct quick_file_names *qfn, int index) |
| { |
| if (qfn->real_names == NULL) |
| qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack, |
| qfn->num_file_names, sizeof (char *)); |
| |
| if (qfn->real_names[index] == NULL) |
| qfn->real_names[index] = gdb_realpath (qfn->file_names[index]); |
| |
| return qfn->real_names[index]; |
| } |
| |
| static struct symtab * |
| dw2_find_last_source_symtab (struct objfile *objfile) |
| { |
| int index; |
| |
| dw2_setup (objfile); |
| index = dwarf2_per_objfile->n_comp_units - 1; |
| return dw2_instantiate_symtab (dw2_get_cu (index)); |
| } |
| |
| /* Traversal function for dw2_forget_cached_source_info. */ |
| |
| static int |
| dw2_free_cached_file_names (void **slot, void *info) |
| { |
| struct quick_file_names *file_data = (struct quick_file_names *) *slot; |
| |
| if (file_data->real_names) |
| { |
| int i; |
| |
| for (i = 0; i < file_data->num_file_names; ++i) |
| { |
| xfree ((void*) file_data->real_names[i]); |
| file_data->real_names[i] = NULL; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static void |
| dw2_forget_cached_source_info (struct objfile *objfile) |
| { |
| dw2_setup (objfile); |
| |
| htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table, |
| dw2_free_cached_file_names, NULL); |
| } |
| |
| /* Helper function for dw2_map_symtabs_matching_filename that expands |
| the symtabs and calls the iterator. */ |
| |
| static int |
| dw2_map_expand_apply (struct objfile *objfile, |
| struct dwarf2_per_cu_data *per_cu, |
| const char *name, |
| const char *full_path, const char *real_path, |
| int (*callback) (struct symtab *, void *), |
| void *data) |
| { |
| struct symtab *last_made = objfile->symtabs; |
| |
| /* Don't visit already-expanded CUs. */ |
| if (per_cu->v.quick->symtab) |
| return 0; |
| |
| /* This may expand more than one symtab, and we want to iterate over |
| all of them. */ |
| dw2_instantiate_symtab (per_cu); |
| |
| return iterate_over_some_symtabs (name, full_path, real_path, callback, data, |
| objfile->symtabs, last_made); |
| } |
| |
| /* Implementation of the map_symtabs_matching_filename method. */ |
| |
| static int |
| dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name, |
| const char *full_path, const char *real_path, |
| int (*callback) (struct symtab *, void *), |
| void *data) |
| { |
| int i; |
| const char *name_basename = lbasename (name); |
| int name_len = strlen (name); |
| int is_abs = IS_ABSOLUTE_PATH (name); |
| |
| dw2_setup (objfile); |
| |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| int j; |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| struct quick_file_names *file_data; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->symtab) |
| continue; |
| |
| file_data = dw2_get_file_names (objfile, per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| for (j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_name = file_data->file_names[j]; |
| |
| if (FILENAME_CMP (name, this_name) == 0 |
| || (!is_abs && compare_filenames_for_search (this_name, |
| name, name_len))) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, |
| name, full_path, real_path, |
| callback, data)) |
| return 1; |
| } |
| |
| /* Before we invoke realpath, which can get expensive when many |
| files are involved, do a quick comparison of the basenames. */ |
| if (! basenames_may_differ |
| && FILENAME_CMP (lbasename (this_name), name_basename) != 0) |
| continue; |
| |
| if (full_path != NULL) |
| { |
| const char *this_real_name = dw2_get_real_path (objfile, |
| file_data, j); |
| |
| if (this_real_name != NULL |
| && (FILENAME_CMP (full_path, this_real_name) == 0 |
| || (!is_abs |
| && compare_filenames_for_search (this_real_name, |
| name, name_len)))) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, |
| name, full_path, real_path, |
| callback, data)) |
| return 1; |
| } |
| } |
| |
| if (real_path != NULL) |
| { |
| const char *this_real_name = dw2_get_real_path (objfile, |
| file_data, j); |
| |
| if (this_real_name != NULL |
| && (FILENAME_CMP (real_path, this_real_name) == 0 |
| || (!is_abs |
| && compare_filenames_for_search (this_real_name, |
| name, name_len)))) |
| { |
| if (dw2_map_expand_apply (objfile, per_cu, |
| name, full_path, real_path, |
| callback, data)) |
| return 1; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct symtab * |
| dw2_lookup_symbol (struct objfile *objfile, int block_index, |
| const char *name, domain_enum domain) |
| { |
| /* We do all the work in the pre_expand_symtabs_matching hook |
| instead. */ |
| return NULL; |
| } |
| |
| /* A helper function that expands all symtabs that hold an object |
| named NAME. */ |
| |
| static void |
| dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name) |
| { |
| dw2_setup (objfile); |
| |
| /* index_table is NULL if OBJF_READNOW. */ |
| if (dwarf2_per_objfile->index_table) |
| { |
| offset_type *vec; |
| |
| if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table, |
| name, &vec)) |
| { |
| offset_type i, len = MAYBE_SWAP (*vec); |
| for (i = 0; i < len; ++i) |
| { |
| offset_type cu_index = MAYBE_SWAP (vec[i + 1]); |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index); |
| |
| dw2_instantiate_symtab (per_cu); |
| } |
| } |
| } |
| } |
| |
| static void |
| dw2_pre_expand_symtabs_matching (struct objfile *objfile, |
| enum block_enum block_kind, const char *name, |
| domain_enum domain) |
| { |
| dw2_do_expand_symtabs_matching (objfile, name); |
| } |
| |
| static void |
| dw2_print_stats (struct objfile *objfile) |
| { |
| int i, count; |
| |
| dw2_setup (objfile); |
| count = 0; |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| |
| if (!per_cu->v.quick->symtab) |
| ++count; |
| } |
| printf_filtered (_(" Number of unread CUs: %d\n"), count); |
| } |
| |
| static void |
| dw2_dump (struct objfile *objfile) |
| { |
| /* Nothing worth printing. */ |
| } |
| |
| static void |
| dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets, |
| struct section_offsets *delta) |
| { |
| /* There's nothing to relocate here. */ |
| } |
| |
| static void |
| dw2_expand_symtabs_for_function (struct objfile *objfile, |
| const char *func_name) |
| { |
| dw2_do_expand_symtabs_matching (objfile, func_name); |
| } |
| |
| static void |
| dw2_expand_all_symtabs (struct objfile *objfile) |
| { |
| int i; |
| |
| dw2_setup (objfile); |
| |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| |
| dw2_instantiate_symtab (per_cu); |
| } |
| } |
| |
| static void |
| dw2_expand_symtabs_with_filename (struct objfile *objfile, |
| const char *filename) |
| { |
| int i; |
| |
| dw2_setup (objfile); |
| |
| /* We don't need to consider type units here. |
| This is only called for examining code, e.g. expand_line_sal. |
| There can be an order of magnitude (or more) more type units |
| than comp units, and we avoid them if we can. */ |
| |
| for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i) |
| { |
| int j; |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| struct quick_file_names *file_data; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->symtab) |
| continue; |
| |
| file_data = dw2_get_file_names (objfile, per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| for (j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_name = file_data->file_names[j]; |
| if (FILENAME_CMP (this_name, filename) == 0) |
| { |
| dw2_instantiate_symtab (per_cu); |
| break; |
| } |
| } |
| } |
| } |
| |
| static const char * |
| dw2_find_symbol_file (struct objfile *objfile, const char *name) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| offset_type *vec; |
| struct quick_file_names *file_data; |
| |
| dw2_setup (objfile); |
| |
| /* index_table is NULL if OBJF_READNOW. */ |
| if (!dwarf2_per_objfile->index_table) |
| { |
| struct symtab *s; |
| |
| ALL_OBJFILE_SYMTABS (objfile, s) |
| if (s->primary) |
| { |
| struct blockvector *bv = BLOCKVECTOR (s); |
| const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); |
| struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN); |
| |
| if (sym) |
| return sym->symtab->filename; |
| } |
| return NULL; |
| } |
| |
| if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table, |
| name, &vec)) |
| return NULL; |
| |
| /* Note that this just looks at the very first one named NAME -- but |
| actually we are looking for a function. find_main_filename |
| should be rewritten so that it doesn't require a custom hook. It |
| could just use the ordinary symbol tables. */ |
| /* vec[0] is the length, which must always be >0. */ |
| per_cu = dw2_get_cu (MAYBE_SWAP (vec[1])); |
| |
| file_data = dw2_get_file_names (objfile, per_cu); |
| if (file_data == NULL |
| || file_data->num_file_names == 0) |
| return NULL; |
| |
| return file_data->file_names[file_data->num_file_names - 1]; |
| } |
| |
| static void |
| dw2_map_matching_symbols (const char * name, domain_enum namespace, |
| struct objfile *objfile, int global, |
| int (*callback) (struct block *, |
| struct symbol *, void *), |
| void *data, symbol_compare_ftype *match, |
| symbol_compare_ftype *ordered_compare) |
| { |
| /* Currently unimplemented; used for Ada. The function can be called if the |
| current language is Ada for a non-Ada objfile using GNU index. As Ada |
| does not look for non-Ada symbols this function should just return. */ |
| } |
| |
| static void |
| dw2_expand_symtabs_matching |
| (struct objfile *objfile, |
| int (*file_matcher) (const char *, void *), |
| int (*name_matcher) (const char *, void *), |
| enum search_domain kind, |
| void *data) |
| { |
| int i; |
| offset_type iter; |
| struct mapped_index *index; |
| |
| dw2_setup (objfile); |
| |
| /* index_table is NULL if OBJF_READNOW. */ |
| if (!dwarf2_per_objfile->index_table) |
| return; |
| index = dwarf2_per_objfile->index_table; |
| |
| if (file_matcher != NULL) |
| { |
| struct cleanup *cleanup; |
| htab_t visited_found, visited_not_found; |
| |
| visited_found = htab_create_alloc (10, |
| htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| cleanup = make_cleanup_htab_delete (visited_found); |
| visited_not_found = htab_create_alloc (10, |
| htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| make_cleanup_htab_delete (visited_not_found); |
| |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| int j; |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| struct quick_file_names *file_data; |
| void **slot; |
| |
| per_cu->v.quick->mark = 0; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->symtab) |
| continue; |
| |
| file_data = dw2_get_file_names (objfile, per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| if (htab_find (visited_not_found, file_data) != NULL) |
| continue; |
| else if (htab_find (visited_found, file_data) != NULL) |
| { |
| per_cu->v.quick->mark = 1; |
| continue; |
| } |
| |
| for (j = 0; j < file_data->num_file_names; ++j) |
| { |
| if (file_matcher (file_data->file_names[j], data)) |
| { |
| per_cu->v.quick->mark = 1; |
| break; |
| } |
| } |
| |
| slot = htab_find_slot (per_cu->v.quick->mark |
| ? visited_found |
| : visited_not_found, |
| file_data, INSERT); |
| *slot = file_data; |
| } |
| |
| do_cleanups (cleanup); |
| } |
| |
| for (iter = 0; iter < index->symbol_table_slots; ++iter) |
| { |
| offset_type idx = 2 * iter; |
| const char *name; |
| offset_type *vec, vec_len, vec_idx; |
| |
| if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0) |
| continue; |
| |
| name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]); |
| |
| if (! (*name_matcher) (name, data)) |
| continue; |
| |
| /* The name was matched, now expand corresponding CUs that were |
| marked. */ |
| vec = (offset_type *) (index->constant_pool |
| + MAYBE_SWAP (index->symbol_table[idx + 1])); |
| vec_len = MAYBE_SWAP (vec[0]); |
| for (vec_idx = 0; vec_idx < vec_len; ++vec_idx) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1])); |
| if (file_matcher == NULL || per_cu->v.quick->mark) |
| dw2_instantiate_symtab (per_cu); |
| } |
| } |
| } |
| |
| /* A helper for dw2_find_pc_sect_symtab which finds the most specific |
| symtab. */ |
| |
| static struct symtab * |
| recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc) |
| { |
| int i; |
| |
| if (BLOCKVECTOR (symtab) != NULL |
| && blockvector_contains_pc (BLOCKVECTOR (symtab), pc)) |
| return symtab; |
| |
| for (i = 0; symtab->includes[i]; ++i) |
| { |
| struct symtab *s; |
| |
| s = recursively_find_pc_sect_symtab (s, pc); |
| if (s != NULL) |
| return s; |
| } |
| |
| return NULL; |
| } |
| |
| static struct symtab * |
| dw2_find_pc_sect_symtab (struct objfile *objfile, |
| struct minimal_symbol *msymbol, |
| CORE_ADDR pc, |
| struct obj_section *section, |
| int warn_if_readin) |
| { |
| struct dwarf2_per_cu_data *data; |
| struct symtab *result; |
| |
| dw2_setup (objfile); |
| |
| if (!objfile->psymtabs_addrmap) |
| return NULL; |
| |
| data = addrmap_find (objfile->psymtabs_addrmap, pc); |
| if (!data) |
| return NULL; |
| |
| if (warn_if_readin && data->v.quick->symtab) |
| warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"), |
| paddress (get_objfile_arch (objfile), pc)); |
| |
| result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc); |
| gdb_assert (result != NULL); |
| return result; |
| } |
| |
| static void |
| dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun, |
| void *data, int need_fullname) |
| { |
| int i; |
| struct cleanup *cleanup; |
| htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| |
| cleanup = make_cleanup_htab_delete (visited); |
| dw2_setup (objfile); |
| |
| /* We can ignore file names coming from already-expanded CUs. */ |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| |
| if (per_cu->v.quick->symtab) |
| { |
| void **slot = htab_find_slot (visited, per_cu->v.quick->file_names, |
| INSERT); |
| |
| *slot = per_cu->v.quick->file_names; |
| } |
| } |
| |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| int j; |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| struct quick_file_names *file_data; |
| void **slot; |
| |
| /* We only need to look at symtabs not already expanded. */ |
| if (per_cu->v.quick->symtab) |
| continue; |
| |
| file_data = dw2_get_file_names (objfile, per_cu); |
| if (file_data == NULL) |
| continue; |
| |
| slot = htab_find_slot (visited, file_data, INSERT); |
| if (*slot) |
| { |
| /* Already visited. */ |
| continue; |
| } |
| *slot = file_data; |
| |
| for (j = 0; j < file_data->num_file_names; ++j) |
| { |
| const char *this_real_name; |
| |
| if (need_fullname) |
| this_real_name = dw2_get_real_path (objfile, file_data, j); |
| else |
| this_real_name = NULL; |
| (*fun) (file_data->file_names[j], this_real_name, data); |
| } |
| } |
| |
| do_cleanups (cleanup); |
| } |
| |
| static int |
| dw2_has_symbols (struct objfile *objfile) |
| { |
| return 1; |
| } |
| |
| const struct quick_symbol_functions dwarf2_gdb_index_functions = |
| { |
| dw2_has_symbols, |
| dw2_find_last_source_symtab, |
| dw2_forget_cached_source_info, |
| dw2_map_symtabs_matching_filename, |
| dw2_lookup_symbol, |
| dw2_pre_expand_symtabs_matching, |
| dw2_print_stats, |
| dw2_dump, |
| dw2_relocate, |
| dw2_expand_symtabs_for_function, |
| dw2_expand_all_symtabs, |
| dw2_expand_symtabs_with_filename, |
| dw2_find_symbol_file, |
| dw2_map_matching_symbols, |
| dw2_expand_symtabs_matching, |
| dw2_find_pc_sect_symtab, |
| dw2_map_symbol_filenames |
| }; |
| |
| /* Initialize for reading DWARF for this objfile. Return 0 if this |
| file will use psymtabs, or 1 if using the GNU index. */ |
| |
| int |
| dwarf2_initialize_objfile (struct objfile *objfile) |
| { |
| /* If we're about to read full symbols, don't bother with the |
| indices. In this case we also don't care if some other debug |
| format is making psymtabs, because they are all about to be |
| expanded anyway. */ |
| if ((objfile->flags & OBJF_READNOW)) |
| { |
| int i; |
| |
| dwarf2_per_objfile->using_index = 1; |
| create_all_comp_units (objfile); |
| create_all_type_units (objfile); |
| dwarf2_per_objfile->quick_file_names_table = |
| create_quick_file_names_table (dwarf2_per_objfile->n_comp_units); |
| |
| for (i = 0; i < (dwarf2_per_objfile->n_comp_units |
| + dwarf2_per_objfile->n_type_units); ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| |
| per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwarf2_per_cu_quick_data); |
| } |
| |
| /* Return 1 so that gdb sees the "quick" functions. However, |
| these functions will be no-ops because we will have expanded |
| all symtabs. */ |
| return 1; |
| } |
| |
| if (dwarf2_read_index (objfile)) |
| return 1; |
| |
| return 0; |
| } |
| |
| |
| |
| /* Build a partial symbol table. */ |
| |
| void |
| dwarf2_build_psymtabs (struct objfile *objfile) |
| { |
| if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0) |
| { |
| init_psymbol_list (objfile, 1024); |
| } |
| |
| dwarf2_build_psymtabs_hard (objfile); |
| } |
| |
| /* Return TRUE if OFFSET is within CU_HEADER. */ |
| |
| static inline int |
| offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset) |
| { |
| sect_offset bottom = { cu_header->offset.sect_off }; |
| sect_offset top = { (cu_header->offset.sect_off + cu_header->length |
| + cu_header->initial_length_size) }; |
| |
| return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off); |
| } |
| |
| /* Read in the comp unit header information from the debug_info at info_ptr. |
| NOTE: This leaves members offset, first_die_offset to be filled in |
| by the caller. */ |
| |
| static gdb_byte * |
| read_comp_unit_head (struct comp_unit_head *cu_header, |
| gdb_byte *info_ptr, bfd *abfd) |
| { |
| int signed_addr; |
| unsigned int bytes_read; |
| |
| cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read); |
| cu_header->initial_length_size = bytes_read; |
| cu_header->offset_size = (bytes_read == 4) ? 4 : 8; |
| info_ptr += bytes_read; |
| cu_header->version = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header, |
| &bytes_read); |
| info_ptr += bytes_read; |
| cu_header->addr_size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| signed_addr = bfd_get_sign_extend_vma (abfd); |
| if (signed_addr < 0) |
| internal_error (__FILE__, __LINE__, |
| _("read_comp_unit_head: dwarf from non elf file")); |
| cu_header->signed_addr_p = signed_addr; |
| |
| return info_ptr; |
| } |
| |
| /* Subroutine of read_and_check_comp_unit_head and |
| read_and_check_type_unit_head to simplify them. |
| Perform various error checking on the header. */ |
| |
| static void |
| error_check_comp_unit_head (struct comp_unit_head *header, |
| struct dwarf2_section_info *section) |
| { |
| bfd *abfd = section->asection->owner; |
| const char *filename = bfd_get_filename (abfd); |
| |
| if (header->version != 2 && header->version != 3 && header->version != 4) |
| error (_("Dwarf Error: wrong version in compilation unit header " |
| "(is %d, should be 2, 3, or 4) [in module %s]"), header->version, |
| filename); |
| |
| if (header->abbrev_offset.sect_off |
| >= dwarf2_section_size (dwarf2_per_objfile->objfile, |
| &dwarf2_per_objfile->abbrev)) |
| error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header " |
| "(offset 0x%lx + 6) [in module %s]"), |
| (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off, |
| filename); |
| |
| /* Cast to unsigned long to use 64-bit arithmetic when possible to |
| avoid potential 32-bit overflow. */ |
| if (((unsigned long) header->offset.sect_off |
| + header->length + header->initial_length_size) |
| > section->size) |
| error (_("Dwarf Error: bad length (0x%lx) in compilation unit header " |
| "(offset 0x%lx + 0) [in module %s]"), |
| (long) header->length, (long) header->offset.sect_off, |
| filename); |
| } |
| |
| /* Read in a CU/TU header and perform some basic error checking. |
| The contents of the header are stored in HEADER. |
| The result is a pointer to the start of the first DIE. */ |
| |
| static gdb_byte * |
| read_and_check_comp_unit_head (struct comp_unit_head *header, |
| struct dwarf2_section_info *section, |
| gdb_byte *info_ptr, |
| int is_debug_types_section) |
| { |
| gdb_byte *beg_of_comp_unit = info_ptr; |
| bfd *abfd = section->asection->owner; |
| |
| header->offset.sect_off = beg_of_comp_unit - section->buffer; |
| |
| info_ptr = read_comp_unit_head (header, info_ptr, abfd); |
| |
| /* If we're reading a type unit, skip over the signature and |
| type_offset fields. */ |
| if (is_debug_types_section) |
| info_ptr += 8 /*signature*/ + header->offset_size; |
| |
| header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit; |
| |
| error_check_comp_unit_head (header, section); |
| |
| return info_ptr; |
| } |
| |
| /* Read in the types comp unit header information from .debug_types entry at |
| types_ptr. The result is a pointer to one past the end of the header. */ |
| |
| static gdb_byte * |
| read_and_check_type_unit_head (struct comp_unit_head *header, |
| struct dwarf2_section_info *section, |
| gdb_byte *info_ptr, |
| ULONGEST *signature, |
| cu_offset *type_offset_in_tu) |
| { |
| gdb_byte *beg_of_comp_unit = info_ptr; |
| bfd *abfd = section->asection->owner; |
| |
| header->offset.sect_off = beg_of_comp_unit - section->buffer; |
| |
| info_ptr = read_comp_unit_head (header, info_ptr, abfd); |
| |
| /* If we're reading a type unit, skip over the signature and |
| type_offset fields. */ |
| if (signature != NULL) |
| *signature = read_8_bytes (abfd, info_ptr); |
| info_ptr += 8; |
| if (type_offset_in_tu != NULL) |
| type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr, |
| header->offset_size); |
| info_ptr += header->offset_size; |
| |
| header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit; |
| |
| error_check_comp_unit_head (header, section); |
| |
| return info_ptr; |
| } |
| |
| /* Allocate a new partial symtab for file named NAME and mark this new |
| partial symtab as being an include of PST. */ |
| |
| static void |
| dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst, |
| struct objfile *objfile) |
| { |
| struct partial_symtab *subpst = allocate_psymtab (name, objfile); |
| |
| subpst->section_offsets = pst->section_offsets; |
| subpst->textlow = 0; |
| subpst->texthigh = 0; |
| |
| subpst->dependencies = (struct partial_symtab **) |
| obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct partial_symtab *)); |
| subpst->dependencies[0] = pst; |
| subpst->number_of_dependencies = 1; |
| |
| subpst->globals_offset = 0; |
| subpst->n_global_syms = 0; |
| subpst->statics_offset = 0; |
| subpst->n_static_syms = 0; |
| subpst->symtab = NULL; |
| subpst->read_symtab = pst->read_symtab; |
| subpst->readin = 0; |
| |
| /* No private part is necessary for include psymtabs. This property |
| can be used to differentiate between such include psymtabs and |
| the regular ones. */ |
| subpst->read_symtab_private = NULL; |
| } |
| |
| /* Read the Line Number Program data and extract the list of files |
| included by the source file represented by PST. Build an include |
| partial symtab for each of these included files. */ |
| |
| static void |
| dwarf2_build_include_psymtabs (struct dwarf2_cu *cu, |
| struct die_info *die, |
| struct partial_symtab *pst) |
| { |
| struct line_header *lh = NULL; |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr) |
| lh = dwarf_decode_line_header (DW_UNSND (attr), cu); |
| if (lh == NULL) |
| return; /* No linetable, so no includes. */ |
| |
| /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */ |
| dwarf_decode_lines (lh, pst->dirname, cu, pst, 1); |
| |
| free_line_header (lh); |
| } |
| |
| static hashval_t |
| hash_signatured_type (const void *item) |
| { |
| const struct signatured_type *sig_type = item; |
| |
| /* This drops the top 32 bits of the signature, but is ok for a hash. */ |
| return sig_type->signature; |
| } |
| |
| static int |
| eq_signatured_type (const void *item_lhs, const void *item_rhs) |
| { |
| const struct signatured_type *lhs = item_lhs; |
| const struct signatured_type *rhs = item_rhs; |
| |
| return lhs->signature == rhs->signature; |
| } |
| |
| /* Allocate a hash table for signatured types. */ |
| |
| static htab_t |
| allocate_signatured_type_table (struct objfile *objfile) |
| { |
| return htab_create_alloc_ex (41, |
| hash_signatured_type, |
| eq_signatured_type, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| /* A helper function to add a signatured type CU to a table. */ |
| |
| static int |
| add_signatured_type_cu_to_table (void **slot, void *datum) |
| { |
| struct signatured_type *sigt = *slot; |
| struct dwarf2_per_cu_data ***datap = datum; |
| |
| **datap = &sigt->per_cu; |
| ++*datap; |
| |
| return 1; |
| } |
| |
| /* Create the hash table of all entries in the .debug_types section. |
| DWO_FILE is a pointer to the DWO file for .debug_types.dwo, NULL otherwise. |
| The result is a pointer to the hash table or NULL if there are |
| no types. */ |
| |
| static htab_t |
| create_debug_types_hash_table (struct dwo_file *dwo_file, |
| VEC (dwarf2_section_info_def) *types) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| htab_t types_htab = NULL; |
| int ix; |
| struct dwarf2_section_info *section; |
| |
| if (VEC_empty (dwarf2_section_info_def, types)) |
| return NULL; |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_section_info_def, types, ix, section); |
| ++ix) |
| { |
| bfd *abfd; |
| gdb_byte *info_ptr, *end_ptr; |
| |
| dwarf2_read_section (objfile, section); |
| info_ptr = section->buffer; |
| |
| if (info_ptr == NULL) |
| continue; |
| |
| /* We can't set abfd until now because the section may be empty or |
| not present, in which case section->asection will be NULL. */ |
| abfd = section->asection->owner; |
| |
| if (types_htab == NULL) |
| { |
| if (dwo_file) |
| types_htab = allocate_dwo_unit_table (objfile); |
| else |
| types_htab = allocate_signatured_type_table (objfile); |
| } |
| |
| if (dwarf2_die_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading signatured types for %s:\n", |
| bfd_get_filename (abfd)); |
| |
| /* We don't use init_cutu_and_read_dies_simple, or some such, here |
| because we don't need to read any dies: the signature is in the |
| header. */ |
| |
| end_ptr = info_ptr + section->size; |
| while (info_ptr < end_ptr) |
| { |
| sect_offset offset; |
| cu_offset type_offset_in_tu; |
| ULONGEST signature; |
| struct signatured_type *sig_type; |
| struct dwo_unit *dwo_tu; |
| void **slot; |
| gdb_byte *ptr = info_ptr; |
| struct comp_unit_head header; |
| unsigned int length; |
| |
| offset.sect_off = ptr - section->buffer; |
| |
| /* We need to read the type's signature in order to build the hash |
| table, but we don't need anything else just yet. */ |
| |
| ptr = read_and_check_type_unit_head (&header, section, ptr, |
| &signature, &type_offset_in_tu); |
| |
| length = header.initial_length_size + header.length; |
| |
| /* Skip dummy type units. */ |
| if (ptr >= info_ptr + length |
| || peek_abbrev_code (abfd, ptr) == 0) |
| { |
| info_ptr += header.initial_length_size + header.length; |
| continue; |
| } |
| |
| if (dwo_file) |
| { |
| sig_type = NULL; |
| dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwo_unit); |
| dwo_tu->dwo_file = dwo_file; |
| dwo_tu->signature = signature; |
| dwo_tu->type_offset_in_tu = type_offset_in_tu; |
| dwo_tu->info_or_types_section = section; |
| dwo_tu->offset = offset; |
| dwo_tu->length = length; |
| } |
| else |
| { |
| /* N.B.: type_offset is not usable if this type uses a DWO file. |
| The real type_offset is in the DWO file. */ |
| dwo_tu = NULL; |
| sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct signatured_type); |
| sig_type->signature = signature; |
| sig_type->type_offset_in_tu = type_offset_in_tu; |
| sig_type->per_cu.objfile = objfile; |
| sig_type->per_cu.is_debug_types = 1; |
| sig_type->per_cu.info_or_types_section = section; |
| sig_type->per_cu.offset = offset; |
| sig_type->per_cu.length = length; |
| } |
| |
| slot = htab_find_slot (types_htab, |
| dwo_file ? (void*) dwo_tu : (void *) sig_type, |
| INSERT); |
| gdb_assert (slot != NULL); |
| if (*slot != NULL) |
| { |
| sect_offset dup_offset; |
| |
| if (dwo_file) |
| { |
| const struct dwo_unit *dup_tu = *slot; |
| |
| dup_offset = dup_tu->offset; |
| } |
| else |
| { |
| const struct signatured_type *dup_tu = *slot; |
| |
| dup_offset = dup_tu->per_cu.offset; |
| } |
| |
| complaint (&symfile_complaints, |
| _("debug type entry at offset 0x%x is duplicate to the " |
| "entry at offset 0x%x, signature 0x%s"), |
| offset.sect_off, dup_offset.sect_off, |
| phex (signature, sizeof (signature))); |
| } |
| *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type; |
| |
| if (dwarf2_die_debug) |
| fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n", |
| offset.sect_off, |
| phex (signature, sizeof (signature))); |
| |
| info_ptr += length; |
| } |
| } |
| |
| return types_htab; |
| } |
| |
| /* Create the hash table of all entries in the .debug_types section, |
| and initialize all_type_units. |
| The result is zero if there is an error (e.g. missing .debug_types section), |
| otherwise non-zero. */ |
| |
| static int |
| create_all_type_units (struct objfile *objfile) |
| { |
| htab_t types_htab; |
| struct dwarf2_per_cu_data **iter; |
| |
| types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types); |
| if (types_htab == NULL) |
| { |
| dwarf2_per_objfile->signatured_types = NULL; |
| return 0; |
| } |
| |
| dwarf2_per_objfile->signatured_types = types_htab; |
| |
| dwarf2_per_objfile->n_type_units = htab_elements (types_htab); |
| dwarf2_per_objfile->all_type_units |
| = obstack_alloc (&objfile->objfile_obstack, |
| dwarf2_per_objfile->n_type_units |
| * sizeof (struct dwarf2_per_cu_data *)); |
| iter = &dwarf2_per_objfile->all_type_units[0]; |
| htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter); |
| gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0] |
| == dwarf2_per_objfile->n_type_units); |
| |
| return 1; |
| } |
| |
| /* Lookup a signature based type for DW_FORM_ref_sig8. |
| Returns NULL if signature SIG is not present in the table. */ |
| |
| static struct signatured_type * |
| lookup_signatured_type (ULONGEST sig) |
| { |
| struct signatured_type find_entry, *entry; |
| |
| if (dwarf2_per_objfile->signatured_types == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("missing `.debug_types' section for DW_FORM_ref_sig8 die")); |
| return NULL; |
| } |
| |
| find_entry.signature = sig; |
| entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry); |
| return entry; |
| } |
| |
| /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */ |
| |
| static void |
| init_cu_die_reader (struct die_reader_specs *reader, |
| struct dwarf2_cu *cu, |
| struct dwarf2_section_info *section, |
| struct dwo_file *dwo_file) |
| { |
| gdb_assert (section->readin && section->buffer != NULL); |
| reader->abfd = section->asection->owner; |
| reader->cu = cu; |
| reader->dwo_file = dwo_file; |
| reader->die_section = section; |
| reader->buffer = section->buffer; |
| } |
| |
| /* Find the base address of the compilation unit for range lists and |
| location lists. It will normally be specified by DW_AT_low_pc. |
| In DWARF-3 draft 4, the base address could be overridden by |
| DW_AT_entry_pc. It's been removed, but GCC still uses this for |
| compilation units with discontinuous ranges. */ |
| |
| static void |
| dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| cu->base_known = 0; |
| cu->base_address = 0; |
| |
| attr = dwarf2_attr (die, DW_AT_entry_pc, cu); |
| if (attr) |
| { |
| cu->base_address = DW_ADDR (attr); |
| cu->base_known = 1; |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr) |
| { |
| cu->base_address = DW_ADDR (attr); |
| cu->base_known = 1; |
| } |
| } |
| } |
| |
| /* Initialize a CU (or TU) and read its DIEs. |
| If the CU defers to a DWO file, read the DWO file as well. |
| |
| If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it. |
| Otherwise, a new CU is allocated with xmalloc. |
| |
| If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to |
| read_in_chain. Otherwise the dwarf2_cu data is freed at the end. |
| |
| WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental |
| linker) then DIE_READER_FUNC will not get called. */ |
| |
| static void |
| init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu, |
| int use_existing_cu, int keep, |
| die_reader_func_ftype *die_reader_func, |
| void *data) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->info_or_types_section; |
| bfd *abfd = section->asection->owner; |
| struct dwarf2_cu *cu; |
| gdb_byte *begin_info_ptr, *info_ptr; |
| struct die_reader_specs reader; |
| struct die_info *comp_unit_die; |
| int has_children; |
| struct attribute *attr; |
| struct cleanup *cleanups, *free_cu_cleanup = NULL; |
| struct signatured_type *sig_type = NULL; |
| |
| if (use_existing_cu) |
| gdb_assert (keep); |
| |
| cleanups = make_cleanup (null_cleanup, NULL); |
| |
| /* This is cheap if the section is already read in. */ |
| dwarf2_read_section (objfile, section); |
| |
| begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off; |
| |
| if (use_existing_cu && this_cu->cu != NULL) |
| { |
| cu = this_cu->cu; |
| info_ptr += cu->header.first_die_offset.cu_off; |
| } |
| else |
| { |
| /* If !use_existing_cu, this_cu->cu must be NULL. */ |
| gdb_assert (this_cu->cu == NULL); |
| |
| cu = xmalloc (sizeof (*cu)); |
| init_one_comp_unit (cu, this_cu); |
| |
| /* If an error occurs while loading, release our storage. */ |
| free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu); |
| |
| if (this_cu->is_debug_types) |
| { |
| ULONGEST signature; |
| |
| info_ptr = read_and_check_type_unit_head (&cu->header, |
| section, info_ptr, |
| &signature, NULL); |
| |
| /* There's no way to get from PER_CU to its containing |
| struct signatured_type. |
| But we have the signature so we can use that. */ |
| sig_type = lookup_signatured_type (signature); |
| /* We've already scanned all the signatured types, |
| this must succeed. */ |
| gdb_assert (sig_type != NULL); |
| gdb_assert (&sig_type->per_cu == this_cu); |
| gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off); |
| |
| /* LENGTH has not been set yet for type units. */ |
| this_cu->length = cu->header.length + cu->header.initial_length_size; |
| |
| /* Establish the type offset that can be used to lookup the type. */ |
| sig_type->type_offset_in_section.sect_off = |
| this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off; |
| } |
| else |
| { |
| info_ptr = read_and_check_comp_unit_head (&cu->header, |
| section, info_ptr, 0); |
| |
| gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off); |
| gdb_assert (this_cu->length |
| == cu->header.length + cu->header.initial_length_size); |
| } |
| } |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + this_cu->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| { |
| do_cleanups (cleanups); |
| return; |
| } |
| |
| /* Read the abbrevs for this compilation unit into a table. */ |
| if (cu->dwarf2_abbrevs == NULL) |
| { |
| dwarf2_read_abbrevs (cu, &dwarf2_per_objfile->abbrev); |
| make_cleanup (dwarf2_free_abbrev_table, cu); |
| } |
| |
| /* Read the top level CU/TU die. */ |
| init_cu_die_reader (&reader, cu, section, NULL); |
| info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children); |
| |
| /* If we have a DWO stub, process it and then read in the DWO file. |
| Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains |
| a DWO CU, that this test will fail. */ |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu); |
| if (attr) |
| { |
| char *dwo_name = DW_STRING (attr); |
| const char *comp_dir; |
| struct dwo_unit *dwo_unit; |
| ULONGEST signature; /* Or dwo_id. */ |
| struct attribute *stmt_list, *low_pc, *high_pc, *ranges; |
| int i,num_extra_attrs; |
| |
| if (has_children) |
| error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name" |
| " has children (offset 0x%x) [in module %s]"), |
| this_cu->offset.sect_off, bfd_get_filename (abfd)); |
| |
| /* These attributes aren't processed until later: |
| DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges. |
| However, the attribute is found in the stub which we won't have later. |
| In order to not impose this complication on the rest of the code, |
| we read them here and copy them to the DWO CU/TU die. */ |
| stmt_list = low_pc = high_pc = ranges = NULL; |
| |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (! this_cu->is_debug_types) |
| stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu); |
| low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu); |
| high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu); |
| ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu); |
| |
| /* There should be a DW_AT_addr_base attribute here (if needed). |
| We need the value before we can process DW_FORM_GNU_addr_index. */ |
| cu->addr_base = 0; |
| cu->have_addr_base = 0; |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu); |
| if (attr) |
| { |
| cu->addr_base = DW_UNSND (attr); |
| cu->have_addr_base = 1; |
| } |
| |
| if (this_cu->is_debug_types) |
| { |
| gdb_assert (sig_type != NULL); |
| signature = sig_type->signature; |
| } |
| else |
| { |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu); |
| if (! attr) |
| error (_("Dwarf Error: missing dwo_id [in module %s]"), |
| dwo_name); |
| signature = DW_UNSND (attr); |
| } |
| |
| /* We may need the comp_dir in order to find the DWO file. */ |
| comp_dir = NULL; |
| attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu); |
| if (attr) |
| comp_dir = DW_STRING (attr); |
| |
| if (this_cu->is_debug_types) |
| dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir); |
| else |
| dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir, |
| signature); |
| |
| if (dwo_unit == NULL) |
| { |
| error (_("Dwarf Error: CU at offset 0x%x references unknown DWO" |
| " with ID %s [in module %s]"), |
| this_cu->offset.sect_off, |
| phex (signature, sizeof (signature)), |
| objfile->name); |
| } |
| |
| /* Set up for reading the DWO CU/TU. */ |
| cu->dwo_unit = dwo_unit; |
| section = dwo_unit->info_or_types_section; |
| begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off; |
| init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file); |
| |
| if (this_cu->is_debug_types) |
| { |
| ULONGEST signature; |
| |
| info_ptr = read_and_check_type_unit_head (&cu->header, |
| section, info_ptr, |
| &signature, NULL); |
| gdb_assert (sig_type->signature == signature); |
| gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off); |
| gdb_assert (dwo_unit->length |
| == cu->header.length + cu->header.initial_length_size); |
| |
| /* Establish the type offset that can be used to lookup the type. |
| For DWO files, we don't know it until now. */ |
| sig_type->type_offset_in_section.sect_off = |
| dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off; |
| } |
| else |
| { |
| info_ptr = read_and_check_comp_unit_head (&cu->header, |
| section, info_ptr, 0); |
| gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off); |
| gdb_assert (dwo_unit->length |
| == cu->header.length + cu->header.initial_length_size); |
| } |
| |
| /* Discard the original CU's abbrev table, and read the DWO's. */ |
| dwarf2_free_abbrev_table (cu); |
| dwarf2_read_abbrevs (cu, &dwo_unit->dwo_file->sections.abbrev); |
| |
| /* Read in the die, but leave space to copy over the attributes |
| from the stub. This has the benefit of simplifying the rest of |
| the code - all the real work is done here. */ |
| num_extra_attrs = ((stmt_list != NULL) |
| + (low_pc != NULL) |
| + (high_pc != NULL) |
| + (ranges != NULL)); |
| info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr, |
| &has_children, num_extra_attrs); |
| |
| /* Copy over the attributes from the stub to the DWO die. */ |
| i = comp_unit_die->num_attrs; |
| if (stmt_list != NULL) |
| comp_unit_die->attrs[i++] = *stmt_list; |
| if (low_pc != NULL) |
| comp_unit_die->attrs[i++] = *low_pc; |
| if (high_pc != NULL) |
| comp_unit_die->attrs[i++] = *high_pc; |
| if (ranges != NULL) |
| comp_unit_die->attrs[i++] = *ranges; |
| comp_unit_die->num_attrs += num_extra_attrs; |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + dwo_unit->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| { |
| do_cleanups (cleanups); |
| return; |
| } |
| } |
| |
| die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data); |
| |
| if (free_cu_cleanup != NULL) |
| { |
| if (keep) |
| { |
| /* We've successfully allocated this compilation unit. Let our |
| caller clean it up when finished with it. */ |
| discard_cleanups (free_cu_cleanup); |
| |
| /* We can only discard free_cu_cleanup and all subsequent cleanups. |
| So we have to manually free the abbrev table. */ |
| dwarf2_free_abbrev_table (cu); |
| |
| /* Link this CU into read_in_chain. */ |
| this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain; |
| dwarf2_per_objfile->read_in_chain = this_cu; |
| } |
| else |
| do_cleanups (free_cu_cleanup); |
| } |
| |
| do_cleanups (cleanups); |
| } |
| |
| /* Read CU/TU THIS_CU in section SECTION, |
| but do not follow DW_AT_GNU_dwo_name if present. |
| DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed to |
| have already done the lookup to find the DWO file). |
| |
| The caller is required to fill in THIS_CU->section, THIS_CU->offset, and |
| THIS_CU->is_debug_types, but nothing else. |
| |
| We fill in THIS_CU->length. |
| |
| WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental |
| linker) then DIE_READER_FUNC will not get called. |
| |
| THIS_CU->cu is always freed when done. |
| This is done in order to not leave THIS_CU->cu in a state where we have |
| to care whether it refers to the "main" CU or the DWO CU. */ |
| |
| static void |
| init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu, |
| struct dwarf2_section_info *abbrev_section, |
| struct dwo_file *dwo_file, |
| die_reader_func_ftype *die_reader_func, |
| void *data) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = this_cu->info_or_types_section; |
| bfd *abfd = section->asection->owner; |
| struct dwarf2_cu cu; |
| gdb_byte *begin_info_ptr, *info_ptr; |
| struct die_reader_specs reader; |
| struct cleanup *cleanups; |
| struct die_info *comp_unit_die; |
| int has_children; |
| |
| gdb_assert (this_cu->cu == NULL); |
| |
| /* This is cheap if the section is already read in. */ |
| dwarf2_read_section (objfile, section); |
| |
| init_one_comp_unit (&cu, this_cu); |
| |
| cleanups = make_cleanup (free_stack_comp_unit, &cu); |
| |
| begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off; |
| info_ptr = read_and_check_comp_unit_head (&cu.header, section, info_ptr, |
| this_cu->is_debug_types); |
| |
| this_cu->length = cu.header.length + cu.header.initial_length_size; |
| |
| /* Skip dummy compilation units. */ |
| if (info_ptr >= begin_info_ptr + this_cu->length |
| || peek_abbrev_code (abfd, info_ptr) == 0) |
| { |
| do_cleanups (cleanups); |
| return; |
| } |
| |
| dwarf2_read_abbrevs (&cu, abbrev_section); |
| make_cleanup (dwarf2_free_abbrev_table, &cu); |
| |
| init_cu_die_reader (&reader, &cu, section, dwo_file); |
| info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children); |
| |
| die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data); |
| |
| do_cleanups (cleanups); |
| } |
| |
| /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and |
| does not lookup the specified DWO file. |
| This cannot be used to read DWO files. |
| |
| THIS_CU->cu is always freed when done. |
| This is done in order to not leave THIS_CU->cu in a state where we have |
| to care whether it refers to the "main" CU or the DWO CU. |
| We can revisit this if the data shows there's a performance issue. */ |
| |
| static void |
| init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu, |
| die_reader_func_ftype *die_reader_func, |
| void *data) |
| { |
| init_cutu_and_read_dies_no_follow (this_cu, |
| &dwarf2_per_objfile->abbrev, |
| NULL, |
| die_reader_func, data); |
| } |
| |
| /* die_reader_func for process_psymtab_comp_unit. */ |
| |
| static void |
| process_psymtab_comp_unit_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = cu->objfile; |
| struct dwarf2_per_cu_data *per_cu = cu->per_cu; |
| struct attribute *attr; |
| CORE_ADDR baseaddr; |
| CORE_ADDR best_lowpc = 0, best_highpc = 0; |
| struct partial_symtab *pst; |
| int has_pc_info; |
| const char *filename; |
| int *want_partial_unit_ptr = data; |
| |
| if (comp_unit_die->tag == DW_TAG_partial_unit |
| && (want_partial_unit_ptr == NULL |
| || !*want_partial_unit_ptr)) |
| return; |
| |
| prepare_one_comp_unit (cu, comp_unit_die, language_minimal); |
| |
| cu->list_in_scope = &file_symbols; |
| |
| /* Allocate a new partial symbol table structure. */ |
| attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu); |
| if (attr == NULL || !DW_STRING (attr)) |
| filename = ""; |
| else |
| filename = DW_STRING (attr); |
| pst = start_psymtab_common (objfile, objfile->section_offsets, |
| filename, |
| /* TEXTLOW and TEXTHIGH are set below. */ |
| 0, |
| objfile->global_psymbols.next, |
| objfile->static_psymbols.next); |
| pst->psymtabs_addrmap_supported = 1; |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu); |
| if (attr != NULL) |
| pst->dirname = DW_STRING (attr); |
| |
| pst->read_symtab_private = per_cu; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| /* Store the function that reads in the rest of the symbol table. */ |
| pst->read_symtab = dwarf2_psymtab_to_symtab; |
| |
| per_cu->v.psymtab = pst; |
| |
| dwarf2_find_base_address (comp_unit_die, cu); |
| |
| /* Possibly set the default values of LOWPC and HIGHPC from |
| `DW_AT_ranges'. */ |
| has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc, |
| &best_highpc, cu, pst); |
| if (has_pc_info == 1 && best_lowpc < best_highpc) |
| /* Store the contiguous range if it is not empty; it can be empty for |
| CUs with no code. */ |
| addrmap_set_empty (objfile->psymtabs_addrmap, |
| best_lowpc + baseaddr, |
| best_highpc + baseaddr - 1, pst); |
| |
| /* Check if comp unit has_children. |
| If so, read the rest of the partial symbols from this comp unit. |
| If not, there's no more debug_info for this comp unit. */ |
| if (has_children) |
| { |
| struct partial_die_info *first_die; |
| CORE_ADDR lowpc, highpc; |
| |
| lowpc = ((CORE_ADDR) -1); |
| highpc = ((CORE_ADDR) 0); |
| |
| first_die = load_partial_dies (reader, info_ptr, 1); |
| |
| scan_partial_symbols (first_die, &lowpc, &highpc, |
| ! has_pc_info, cu); |
| |
| /* If we didn't find a lowpc, set it to highpc to avoid |
| complaints from `maint check'. */ |
| if (lowpc == ((CORE_ADDR) -1)) |
| lowpc = highpc; |
| |
| /* If the compilation unit didn't have an explicit address range, |
| then use the information extracted from its child dies. */ |
| if (! has_pc_info) |
| { |
| best_lowpc = lowpc; |
| best_highpc = highpc; |
| } |
| } |
| pst->textlow = best_lowpc + baseaddr; |
| pst->texthigh = best_highpc + baseaddr; |
| |
| pst->n_global_syms = objfile->global_psymbols.next - |
| (objfile->global_psymbols.list + pst->globals_offset); |
| pst->n_static_syms = objfile->static_psymbols.next - |
| (objfile->static_psymbols.list + pst->statics_offset); |
| sort_pst_symbols (pst); |
| |
| if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs)) |
| { |
| int i; |
| int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs); |
| struct dwarf2_per_cu_data *iter; |
| |
| /* Fill in 'dependencies' here; we fill in 'users' in a |
| post-pass. */ |
| pst->number_of_dependencies = len; |
| pst->dependencies = obstack_alloc (&objfile->objfile_obstack, |
| len * sizeof (struct symtab *)); |
| for (i = 0; |
| VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs, |
| i, iter); |
| ++i) |
| pst->dependencies[i] = iter->v.psymtab; |
| |
| VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs); |
| } |
| |
| if (per_cu->is_debug_types) |
| { |
| /* It's not clear we want to do anything with stmt lists here. |
| Waiting to see what gcc ultimately does. */ |
| } |
| else |
| { |
| /* Get the list of files included in the current compilation unit, |
| and build a psymtab for each of them. */ |
| dwarf2_build_include_psymtabs (cu, comp_unit_die, pst); |
| } |
| } |
| |
| /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. |
| Process compilation unit THIS_CU for a psymtab. */ |
| |
| static void |
| process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| int want_partial_unit) |
| { |
| /* If this compilation unit was already read in, free the |
| cached copy in order to read it in again. This is |
| necessary because we skipped some symbols when we first |
| read in the compilation unit (see load_partial_dies). |
| This problem could be avoided, but the benefit is unclear. */ |
| if (this_cu->cu != NULL) |
| free_one_cached_comp_unit (this_cu); |
| |
| gdb_assert (! this_cu->is_debug_types); |
| init_cutu_and_read_dies (this_cu, 0, 0, process_psymtab_comp_unit_reader, |
| &want_partial_unit); |
| |
| /* Age out any secondary CUs. */ |
| age_cached_comp_units (); |
| } |
| |
| /* Traversal function for htab_traverse_noresize. |
| Process one .debug_types comp-unit. */ |
| |
| static int |
| process_psymtab_type_unit (void **slot, void *info) |
| { |
| struct signatured_type *sig_type = (struct signatured_type *) *slot; |
| struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu; |
| |
| gdb_assert (per_cu->is_debug_types); |
| gdb_assert (info == NULL); |
| |
| /* If this compilation unit was already read in, free the |
| cached copy in order to read it in again. This is |
| necessary because we skipped some symbols when we first |
| read in the compilation unit (see load_partial_dies). |
| This problem could be avoided, but the benefit is unclear. */ |
| if (per_cu->cu != NULL) |
| free_one_cached_comp_unit (per_cu); |
| |
| init_cutu_and_read_dies (per_cu, 0, 0, process_psymtab_comp_unit_reader, |
| NULL); |
| |
| /* Age out any secondary CUs. */ |
| age_cached_comp_units (); |
| |
| return 1; |
| } |
| |
| /* Subroutine of dwarf2_build_psymtabs_hard to simplify it. |
| Build partial symbol tables for the .debug_types comp-units. */ |
| |
| static void |
| build_type_psymtabs (struct objfile *objfile) |
| { |
| if (! create_all_type_units (objfile)) |
| return; |
| |
| htab_traverse_noresize (dwarf2_per_objfile->signatured_types, |
| process_psymtab_type_unit, NULL); |
| } |
| |
| /* A cleanup function that clears objfile's psymtabs_addrmap field. */ |
| |
| static void |
| psymtabs_addrmap_cleanup (void *o) |
| { |
| struct objfile *objfile = o; |
| |
| objfile->psymtabs_addrmap = NULL; |
| } |
| |
| /* Compute the 'user' field for each psymtab in OBJFILE. */ |
| |
| static void |
| set_partial_user (struct objfile *objfile) |
| { |
| int i; |
| |
| for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| struct partial_symtab *pst = per_cu->v.psymtab; |
| int j; |
| |
| for (j = 0; j < pst->number_of_dependencies; ++j) |
| { |
| /* Set the 'user' field only if it is not already set. */ |
| if (pst->dependencies[j]->user == NULL) |
| pst->dependencies[j]->user = pst; |
| } |
| } |
| } |
| |
| /* Build the partial symbol table by doing a quick pass through the |
| .debug_info and .debug_abbrev sections. */ |
| |
| static void |
| dwarf2_build_psymtabs_hard (struct objfile *objfile) |
| { |
| struct cleanup *back_to, *addrmap_cleanup; |
| struct obstack temp_obstack; |
| int i; |
| |
| dwarf2_per_objfile->reading_partial_symbols = 1; |
| |
| dwarf2_read_section (objfile, &dwarf2_per_objfile->info); |
| |
| /* Any cached compilation units will be linked by the per-objfile |
| read_in_chain. Make sure to free them when we're done. */ |
| back_to = make_cleanup (free_cached_comp_units, NULL); |
| |
| build_type_psymtabs (objfile); |
| |
| create_all_comp_units (objfile); |
| |
| /* Create a temporary address map on a temporary obstack. We later |
| copy this to the final obstack. */ |
| obstack_init (&temp_obstack); |
| make_cleanup_obstack_free (&temp_obstack); |
| objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack); |
| addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile); |
| |
| for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i); |
| |
| process_psymtab_comp_unit (per_cu, 0); |
| } |
| |
| set_partial_user (objfile); |
| |
| objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap, |
| &objfile->objfile_obstack); |
| discard_cleanups (addrmap_cleanup); |
| |
| do_cleanups (back_to); |
| } |
| |
| /* die_reader_func for load_partial_comp_unit. */ |
| |
| static void |
| load_partial_comp_unit_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| |
| prepare_one_comp_unit (cu, comp_unit_die, language_minimal); |
| |
| /* Check if comp unit has_children. |
| If so, read the rest of the partial symbols from this comp unit. |
| If not, there's no more debug_info for this comp unit. */ |
| if (has_children) |
| load_partial_dies (reader, info_ptr, 0); |
| } |
| |
| /* Load the partial DIEs for a secondary CU into memory. |
| This is also used when rereading a primary CU with load_all_dies. */ |
| |
| static void |
| load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu) |
| { |
| init_cutu_and_read_dies (this_cu, 1, 1, load_partial_comp_unit_reader, NULL); |
| } |
| |
| /* Create a list of all compilation units in OBJFILE. |
| This is only done for -readnow and building partial symtabs. */ |
| |
| static void |
| create_all_comp_units (struct objfile *objfile) |
| { |
| int n_allocated; |
| int n_comp_units; |
| struct dwarf2_per_cu_data **all_comp_units; |
| gdb_byte *info_ptr; |
| |
| dwarf2_read_section (objfile, &dwarf2_per_objfile->info); |
| info_ptr = dwarf2_per_objfile->info.buffer; |
| |
| n_comp_units = 0; |
| n_allocated = 10; |
| all_comp_units = xmalloc (n_allocated |
| * sizeof (struct dwarf2_per_cu_data *)); |
| |
| while (info_ptr < dwarf2_per_objfile->info.buffer |
| + dwarf2_per_objfile->info.size) |
| { |
| unsigned int length, initial_length_size; |
| struct dwarf2_per_cu_data *this_cu; |
| sect_offset offset; |
| |
| offset.sect_off = info_ptr - dwarf2_per_objfile->info.buffer; |
| |
| /* Read just enough information to find out where the next |
| compilation unit is. */ |
| length = read_initial_length (objfile->obfd, info_ptr, |
| &initial_length_size); |
| |
| /* Save the compilation unit for later lookup. */ |
| this_cu = obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct dwarf2_per_cu_data)); |
| memset (this_cu, 0, sizeof (*this_cu)); |
| this_cu->offset = offset; |
| this_cu->length = length + initial_length_size; |
| this_cu->objfile = objfile; |
| this_cu->info_or_types_section = &dwarf2_per_objfile->info; |
| |
| if (n_comp_units == n_allocated) |
| { |
| n_allocated *= 2; |
| all_comp_units = xrealloc (all_comp_units, |
| n_allocated |
| * sizeof (struct dwarf2_per_cu_data *)); |
| } |
| all_comp_units[n_comp_units++] = this_cu; |
| |
| info_ptr = info_ptr + this_cu->length; |
| } |
| |
| dwarf2_per_objfile->all_comp_units |
| = obstack_alloc (&objfile->objfile_obstack, |
| n_comp_units * sizeof (struct dwarf2_per_cu_data *)); |
| memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units, |
| n_comp_units * sizeof (struct dwarf2_per_cu_data *)); |
| xfree (all_comp_units); |
| dwarf2_per_objfile->n_comp_units = n_comp_units; |
| } |
| |
| /* Process all loaded DIEs for compilation unit CU, starting at |
| FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation |
| unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or |
| DW_AT_ranges). If NEED_PC is set, then this function will set |
| *LOWPC and *HIGHPC to the lowest and highest PC values found in CU |
| and record the covered ranges in the addrmap. */ |
| |
| static void |
| scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) |
| { |
| struct partial_die_info *pdi; |
| |
| /* Now, march along the PDI's, descending into ones which have |
| interesting children but skipping the children of the other ones, |
| until we reach the end of the compilation unit. */ |
| |
| pdi = first_die; |
| |
| while (pdi != NULL) |
| { |
| fixup_partial_die (pdi, cu); |
| |
| /* Anonymous namespaces or modules have no name but have interesting |
| children, so we need to look at them. Ditto for anonymous |
| enums. */ |
| |
| if (pdi->name != NULL || pdi->tag == DW_TAG_namespace |
| || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type |
| || pdi->tag == DW_TAG_imported_unit) |
| { |
| switch (pdi->tag) |
| { |
| case DW_TAG_subprogram: |
| add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu); |
| break; |
| case DW_TAG_constant: |
| case DW_TAG_variable: |
| case DW_TAG_typedef: |
| case DW_TAG_union_type: |
| if (!pdi->is_declaration) |
| { |
| add_partial_symbol (pdi, cu); |
| } |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| if (!pdi->is_declaration) |
| { |
| add_partial_symbol (pdi, cu); |
| } |
| break; |
| case DW_TAG_enumeration_type: |
| if (!pdi->is_declaration) |
| add_partial_enumeration (pdi, cu); |
| break; |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| /* File scope base type definitions are added to the partial |
| symbol table. */ |
| add_partial_symbol (pdi, cu); |
| break; |
| case DW_TAG_namespace: |
| add_partial_namespace (pdi, lowpc, highpc, need_pc, cu); |
| break; |
| case DW_TAG_module: |
| add_partial_module (pdi, lowpc, highpc, need_pc, cu); |
| break; |
| case DW_TAG_imported_unit: |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset, |
| cu->objfile); |
| |
| /* Go read the partial unit, if needed. */ |
| if (per_cu->v.psymtab == NULL) |
| process_psymtab_comp_unit (per_cu, 1); |
| |
| VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs, |
| per_cu); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| /* If the die has a sibling, skip to the sibling. */ |
| |
| pdi = pdi->die_sibling; |
| } |
| } |
| |
| /* Functions used to compute the fully scoped name of a partial DIE. |
| |
| Normally, this is simple. For C++, the parent DIE's fully scoped |
| name is concatenated with "::" and the partial DIE's name. For |
| Java, the same thing occurs except that "." is used instead of "::". |
| Enumerators are an exception; they use the scope of their parent |
| enumeration type, i.e. the name of the enumeration type is not |
| prepended to the enumerator. |
| |
| There are two complexities. One is DW_AT_specification; in this |
| case "parent" means the parent of the target of the specification, |
| instead of the direct parent of the DIE. The other is compilers |
| which do not emit DW_TAG_namespace; in this case we try to guess |
| the fully qualified name of structure types from their members' |
| linkage names. This must be done using the DIE's children rather |
| than the children of any DW_AT_specification target. We only need |
| to do this for structures at the top level, i.e. if the target of |
| any DW_AT_specification (if any; otherwise the DIE itself) does not |
| have a parent. */ |
| |
| /* Compute the scope prefix associated with PDI's parent, in |
| compilation unit CU. The result will be allocated on CU's |
| comp_unit_obstack, or a copy of the already allocated PDI->NAME |
| field. NULL is returned if no prefix is necessary. */ |
| static char * |
| partial_die_parent_scope (struct partial_die_info *pdi, |
| struct dwarf2_cu *cu) |
| { |
| char *grandparent_scope; |
| struct partial_die_info *parent, *real_pdi; |
| |
| /* We need to look at our parent DIE; if we have a DW_AT_specification, |
| then this means the parent of the specification DIE. */ |
| |
| real_pdi = pdi; |
| while (real_pdi->has_specification) |
| real_pdi = find_partial_die (real_pdi->spec_offset, cu); |
| |
| parent = real_pdi->die_parent; |
| if (parent == NULL) |
| return NULL; |
| |
| if (parent->scope_set) |
| return parent->scope; |
| |
| fixup_partial_die (parent, cu); |
| |
| grandparent_scope = partial_die_parent_scope (parent, cu); |
| |
| /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus |
| DW_TAG_namespace DIEs with a name of "::" for the global namespace. |
| Work around this problem here. */ |
| if (cu->language == language_cplus |
| && parent->tag == DW_TAG_namespace |
| && strcmp (parent->name, "::") == 0 |
| && grandparent_scope == NULL) |
| { |
| parent->scope = NULL; |
| parent->scope_set = 1; |
| return NULL; |
| } |
| |
| if (pdi->tag == DW_TAG_enumerator) |
| /* Enumerators should not get the name of the enumeration as a prefix. */ |
| parent->scope = grandparent_scope; |
| else if (parent->tag == DW_TAG_namespace |
| || parent->tag == DW_TAG_module |
| || parent->tag == DW_TAG_structure_type |
| || parent->tag == DW_TAG_class_type |
| || parent->tag == DW_TAG_interface_type |
| || parent->tag == DW_TAG_union_type |
| || parent->tag == DW_TAG_enumeration_type) |
| { |
| if (grandparent_scope == NULL) |
| parent->scope = parent->name; |
| else |
| parent->scope = typename_concat (&cu->comp_unit_obstack, |
| grandparent_scope, |
| parent->name, 0, cu); |
| } |
| else |
| { |
| /* FIXME drow/2004-04-01: What should we be doing with |
| function-local names? For partial symbols, we should probably be |
| ignoring them. */ |
| complaint (&symfile_complaints, |
| _("unhandled containing DIE tag %d for DIE at %d"), |
| parent->tag, pdi->offset.sect_off); |
| parent->scope = grandparent_scope; |
| } |
| |
| parent->scope_set = 1; |
| return parent->scope; |
| } |
| |
| /* Return the fully scoped name associated with PDI, from compilation unit |
| CU. The result will be allocated with malloc. */ |
| |
| static char * |
| partial_die_full_name (struct partial_die_info *pdi, |
| struct dwarf2_cu *cu) |
| { |
| char *parent_scope; |
| |
| /* If this is a template instantiation, we can not work out the |
| template arguments from partial DIEs. So, unfortunately, we have |
| to go through the full DIEs. At least any work we do building |
| types here will be reused if full symbols are loaded later. */ |
| if (pdi->has_template_arguments) |
| { |
| fixup_partial_die (pdi, cu); |
| |
| if (pdi->name != NULL && strchr (pdi->name, '<') == NULL) |
| { |
| struct die_info *die; |
| struct attribute attr; |
| struct dwarf2_cu *ref_cu = cu; |
| |
| /* DW_FORM_ref_addr is using section offset. */ |
| attr.name = 0; |
| attr.form = DW_FORM_ref_addr; |
| attr.u.unsnd = pdi->offset.sect_off; |
| die = follow_die_ref (NULL, &attr, &ref_cu); |
| |
| return xstrdup (dwarf2_full_name (NULL, die, ref_cu)); |
| } |
| } |
| |
| parent_scope = partial_die_parent_scope (pdi, cu); |
| if (parent_scope == NULL) |
| return NULL; |
| else |
| return typename_concat (NULL, parent_scope, pdi->name, 0, cu); |
| } |
| |
| static void |
| add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| CORE_ADDR addr = 0; |
| char *actual_name = NULL; |
| CORE_ADDR baseaddr; |
| int built_actual_name = 0; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| actual_name = partial_die_full_name (pdi, cu); |
| if (actual_name) |
| built_actual_name = 1; |
| |
| if (actual_name == NULL) |
| actual_name = pdi->name; |
| |
| switch (pdi->tag) |
| { |
| case DW_TAG_subprogram: |
| if (pdi->is_external || cu->language == language_ada) |
| { |
| /* brobecker/2007-12-26: Normally, only "external" DIEs are part |
| of the global scope. But in Ada, we want to be able to access |
| nested procedures globally. So all Ada subprograms are stored |
| in the global scope. */ |
| /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr, |
| mst_text, objfile); */ |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_BLOCK, |
| &objfile->global_psymbols, |
| 0, pdi->lowpc + baseaddr, |
| cu->language, objfile); |
| } |
| else |
| { |
| /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr, |
| mst_file_text, objfile); */ |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_BLOCK, |
| &objfile->static_psymbols, |
| 0, pdi->lowpc + baseaddr, |
| cu->language, objfile); |
| } |
| break; |
| case DW_TAG_constant: |
| { |
| struct psymbol_allocation_list *list; |
| |
| if (pdi->is_external) |
| list = &objfile->global_psymbols; |
| else |
| list = &objfile->static_psymbols; |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, VAR_DOMAIN, LOC_STATIC, |
| list, 0, 0, cu->language, objfile); |
| } |
| break; |
| case DW_TAG_variable: |
| if (pdi->d.locdesc) |
| addr = decode_locdesc (pdi->d.locdesc, cu); |
| |
| if (pdi->d.locdesc |
| && addr == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* A global or static variable may also have been stripped |
| out by the linker if unused, in which case its address |
| will be nullified; do not add such variables into partial |
| symbol table then. */ |
| } |
| else if (pdi->is_external) |
| { |
| /* Global Variable. |
| Don't enter into the minimal symbol tables as there is |
| a minimal symbol table entry from the ELF symbols already. |
| Enter into partial symbol table if it has a location |
| descriptor or a type. |
| If the location descriptor is missing, new_symbol will create |
| a LOC_UNRESOLVED symbol, the address of the variable will then |
| be determined from the minimal symbol table whenever the variable |
| is referenced. |
| The address for the partial symbol table entry is not |
| used by GDB, but it comes in handy for debugging partial symbol |
| table building. */ |
| |
| if (pdi->d.locdesc || pdi->has_type) |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_STATIC, |
| &objfile->global_psymbols, |
| 0, addr + baseaddr, |
| cu->language, objfile); |
| } |
| else |
| { |
| /* Static Variable. Skip symbols without location descriptors. */ |
| if (pdi->d.locdesc == NULL) |
| { |
| if (built_actual_name) |
| xfree (actual_name); |
| return; |
| } |
| /* prim_record_minimal_symbol (actual_name, addr + baseaddr, |
| mst_file_data, objfile); */ |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_STATIC, |
| &objfile->static_psymbols, |
| 0, addr + baseaddr, |
| cu->language, objfile); |
| } |
| break; |
| case DW_TAG_typedef: |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_TYPEDEF, |
| &objfile->static_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| break; |
| case DW_TAG_namespace: |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_TYPEDEF, |
| &objfile->global_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| /* Skip external references. The DWARF standard says in the section |
| about "Structure, Union, and Class Type Entries": "An incomplete |
| structure, union or class type is represented by a structure, |
| union or class entry that does not have a byte size attribute |
| and that has a DW_AT_declaration attribute." */ |
| if (!pdi->has_byte_size && pdi->is_declaration) |
| { |
| if (built_actual_name) |
| xfree (actual_name); |
| return; |
| } |
| |
| /* NOTE: carlton/2003-10-07: See comment in new_symbol about |
| static vs. global. */ |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| STRUCT_DOMAIN, LOC_TYPEDEF, |
| (cu->language == language_cplus |
| || cu->language == language_java) |
| ? &objfile->global_psymbols |
| : &objfile->static_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| |
| break; |
| case DW_TAG_enumerator: |
| add_psymbol_to_list (actual_name, strlen (actual_name), |
| built_actual_name, |
| VAR_DOMAIN, LOC_CONST, |
| (cu->language == language_cplus |
| || cu->language == language_java) |
| ? &objfile->global_psymbols |
| : &objfile->static_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| break; |
| default: |
| break; |
| } |
| |
| if (built_actual_name) |
| xfree (actual_name); |
| } |
| |
| /* Read a partial die corresponding to a namespace; also, add a symbol |
| corresponding to that namespace to the symbol table. NAMESPACE is |
| the name of the enclosing namespace. */ |
| |
| static void |
| add_partial_namespace (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int need_pc, struct dwarf2_cu *cu) |
| { |
| /* Add a symbol for the namespace. */ |
| |
| add_partial_symbol (pdi, cu); |
| |
| /* Now scan partial symbols in that namespace. */ |
| |
| if (pdi->has_children) |
| scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu); |
| } |
| |
| /* Read a partial die corresponding to a Fortran module. */ |
| |
| static void |
| add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu) |
| { |
| /* Now scan partial symbols in that module. */ |
| |
| if (pdi->has_children) |
| scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu); |
| } |
| |
| /* Read a partial die corresponding to a subprogram and create a partial |
| symbol for that subprogram. When the CU language allows it, this |
| routine also defines a partial symbol for each nested subprogram |
| that this subprogram contains. |
| |
| DIE my also be a lexical block, in which case we simply search |
| recursively for suprograms defined inside that lexical block. |
| Again, this is only performed when the CU language allows this |
| type of definitions. */ |
| |
| static void |
| add_partial_subprogram (struct partial_die_info *pdi, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| int need_pc, struct dwarf2_cu *cu) |
| { |
| if (pdi->tag == DW_TAG_subprogram) |
| { |
| if (pdi->has_pc_info) |
| { |
| if (pdi->lowpc < *lowpc) |
| *lowpc = pdi->lowpc; |
| if (pdi->highpc > *highpc) |
| *highpc = pdi->highpc; |
| if (need_pc) |
| { |
| CORE_ADDR baseaddr; |
| struct objfile *objfile = cu->objfile; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, |
| SECT_OFF_TEXT (objfile)); |
| addrmap_set_empty (objfile->psymtabs_addrmap, |
| pdi->lowpc + baseaddr, |
| pdi->highpc - 1 + baseaddr, |
| cu->per_cu->v.psymtab); |
| } |
| } |
| |
| if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined)) |
| { |
| if (!pdi->is_declaration) |
| /* Ignore subprogram DIEs that do not have a name, they are |
| illegal. Do not emit a complaint at this point, we will |
| do so when we convert this psymtab into a symtab. */ |
| if (pdi->name) |
| add_partial_symbol (pdi, cu); |
| } |
| } |
| |
| if (! pdi->has_children) |
| return; |
| |
| if (cu->language == language_ada) |
| { |
| pdi = pdi->die_child; |
| while (pdi != NULL) |
| { |
| fixup_partial_die (pdi, cu); |
| if (pdi->tag == DW_TAG_subprogram |
| || pdi->tag == DW_TAG_lexical_block) |
| add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu); |
| pdi = pdi->die_sibling; |
| } |
| } |
| } |
| |
| /* Read a partial die corresponding to an enumeration type. */ |
| |
| static void |
| add_partial_enumeration (struct partial_die_info *enum_pdi, |
| struct dwarf2_cu *cu) |
| { |
| struct partial_die_info *pdi; |
| |
| if (enum_pdi->name != NULL) |
| add_partial_symbol (enum_pdi, cu); |
| |
| pdi = enum_pdi->die_child; |
| while (pdi) |
| { |
| if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL) |
| complaint (&symfile_complaints, _("malformed enumerator DIE ignored")); |
| else |
| add_partial_symbol (pdi, cu); |
| pdi = pdi->die_sibling; |
| } |
| } |
| |
| /* Return the initial uleb128 in the die at INFO_PTR. */ |
| |
| static unsigned int |
| peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr) |
| { |
| unsigned int bytes_read; |
| |
| return read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| } |
| |
| /* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU. |
| Return the corresponding abbrev, or NULL if the number is zero (indicating |
| an empty DIE). In either case *BYTES_READ will be set to the length of |
| the initial number. */ |
| |
| static struct abbrev_info * |
| peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read, |
| struct dwarf2_cu *cu) |
| { |
| bfd *abfd = cu->objfile->obfd; |
| unsigned int abbrev_number; |
| struct abbrev_info *abbrev; |
| |
| abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read); |
| |
| if (abbrev_number == 0) |
| return NULL; |
| |
| abbrev = dwarf2_lookup_abbrev (abbrev_number, cu); |
| if (!abbrev) |
| { |
| error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), |
| abbrev_number, bfd_get_filename (abfd)); |
| } |
| |
| return abbrev; |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| Returns a pointer to the end of a series of DIEs, terminated by an empty |
| DIE. Any children of the skipped DIEs will also be skipped. */ |
| |
| static gdb_byte * |
| skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct abbrev_info *abbrev; |
| unsigned int bytes_read; |
| |
| while (1) |
| { |
| abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu); |
| if (abbrev == NULL) |
| return info_ptr + bytes_read; |
| else |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| } |
| } |
| |
| /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER. |
| INFO_PTR should point just after the initial uleb128 of a DIE, and the |
| abbrev corresponding to that skipped uleb128 should be passed in |
| ABBREV. Returns a pointer to this DIE's sibling, skipping any |
| children. */ |
| |
| static gdb_byte * |
| skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr, |
| struct abbrev_info *abbrev) |
| { |
| unsigned int bytes_read; |
| struct attribute attr; |
| bfd *abfd = reader->abfd; |
| struct dwarf2_cu *cu = reader->cu; |
| gdb_byte *buffer = reader->buffer; |
| unsigned int form, i; |
| |
| for (i = 0; i < abbrev->num_attrs; i++) |
| { |
| /* The only abbrev we care about is DW_AT_sibling. */ |
| if (abbrev->attrs[i].name == DW_AT_sibling) |
| { |
| read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr); |
| if (attr.form == DW_FORM_ref_addr) |
| complaint (&symfile_complaints, |
| _("ignoring absolute DW_AT_sibling")); |
| else |
| return buffer + dwarf2_get_ref_die_offset (&attr).sect_off; |
| } |
| |
| /* If it isn't DW_AT_sibling, skip this attribute. */ |
| form = abbrev->attrs[i].form; |
| skip_attribute: |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3 |
| and later it is offset sized. */ |
| if (cu->header.version == 2) |
| info_ptr += cu->header.addr_size; |
| else |
| info_ptr += cu->header.offset_size; |
| break; |
| case DW_FORM_addr: |
| info_ptr += cu->header.addr_size; |
| break; |
| case DW_FORM_data1: |
| case DW_FORM_ref1: |
| case DW_FORM_flag: |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag_present: |
| break; |
| case DW_FORM_data2: |
| case DW_FORM_ref2: |
| info_ptr += 2; |
| break; |
| case DW_FORM_data4: |
| case DW_FORM_ref4: |
| info_ptr += 4; |
| break; |
| case DW_FORM_data8: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_sig8: |
| info_ptr += 8; |
| break; |
| case DW_FORM_string: |
| read_direct_string (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_sec_offset: |
| case DW_FORM_strp: |
| info_ptr += cu->header.offset_size; |
| break; |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_block1: |
| info_ptr += 1 + read_1_byte (abfd, info_ptr); |
| break; |
| case DW_FORM_block2: |
| info_ptr += 2 + read_2_bytes (abfd, info_ptr); |
| break; |
| case DW_FORM_block4: |
| info_ptr += 4 + read_4_bytes (abfd, info_ptr); |
| break; |
| case DW_FORM_sdata: |
| case DW_FORM_udata: |
| case DW_FORM_ref_udata: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_GNU_str_index: |
| info_ptr = skip_leb128 (abfd, info_ptr); |
| break; |
| case DW_FORM_indirect: |
| form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| /* We need to continue parsing from here, so just go back to |
| the top. */ |
| goto skip_attribute; |
| |
| default: |
| error (_("Dwarf Error: Cannot handle %s " |
| "in DWARF reader [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| } |
| |
| if (abbrev->has_children) |
| return skip_children (reader, info_ptr); |
| else |
| return info_ptr; |
| } |
| |
| /* Locate ORIG_PDI's sibling. |
| INFO_PTR should point to the start of the next DIE after ORIG_PDI. */ |
| |
| static gdb_byte * |
| locate_pdi_sibling (const struct die_reader_specs *reader, |
| struct partial_die_info *orig_pdi, |
| gdb_byte *info_ptr) |
| { |
| /* Do we know the sibling already? */ |
| |
| if (orig_pdi->sibling) |
| return orig_pdi->sibling; |
| |
| /* Are there any children to deal with? */ |
| |
| if (!orig_pdi->has_children) |
| return info_ptr; |
| |
| /* Skip the children the long way. */ |
| |
| return skip_children (reader, info_ptr); |
| } |
| |
| /* Expand this partial symbol table into a full symbol table. */ |
| |
| static void |
| dwarf2_psymtab_to_symtab (struct partial_symtab *pst) |
| { |
| if (pst != NULL) |
| { |
| if (pst->readin) |
| { |
| warning (_("bug: psymtab for %s is already read in."), |
| pst->filename); |
| } |
| else |
| { |
| if (info_verbose) |
| { |
| printf_filtered (_("Reading in symbols for %s..."), |
| pst->filename); |
| gdb_flush (gdb_stdout); |
| } |
| |
| /* Restore our global data. */ |
| dwarf2_per_objfile = objfile_data (pst->objfile, |
| dwarf2_objfile_data_key); |
| |
| /* If this psymtab is constructed from a debug-only objfile, the |
| has_section_at_zero flag will not necessarily be correct. We |
| can get the correct value for this flag by looking at the data |
| associated with the (presumably stripped) associated objfile. */ |
| if (pst->objfile->separate_debug_objfile_backlink) |
| { |
| struct dwarf2_per_objfile *dpo_backlink |
| = objfile_data (pst->objfile->separate_debug_objfile_backlink, |
| dwarf2_objfile_data_key); |
| |
| dwarf2_per_objfile->has_section_at_zero |
| = dpo_backlink->has_section_at_zero; |
| } |
| |
| dwarf2_per_objfile->reading_partial_symbols = 0; |
| |
| psymtab_to_symtab_1 (pst); |
| |
| /* Finish up the debug error message. */ |
| if (info_verbose) |
| printf_filtered (_("done.\n")); |
| } |
| } |
| |
| process_cu_includes (); |
| } |
| |
| /* Reading in full CUs. */ |
| |
| /* Add PER_CU to the queue. */ |
| |
| static void |
| queue_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| struct dwarf2_queue_item *item; |
| |
| per_cu->queued = 1; |
| item = xmalloc (sizeof (*item)); |
| item->per_cu = per_cu; |
| item->pretend_language = pretend_language; |
| item->next = NULL; |
| |
| if (dwarf2_queue == NULL) |
| dwarf2_queue = item; |
| else |
| dwarf2_queue_tail->next = item; |
| |
| dwarf2_queue_tail = item; |
| } |
| |
| /* Process the queue. */ |
| |
| static void |
| process_queue (void) |
| { |
| struct dwarf2_queue_item *item, *next_item; |
| |
| /* The queue starts out with one item, but following a DIE reference |
| may load a new CU, adding it to the end of the queue. */ |
| for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item) |
| { |
| if (dwarf2_per_objfile->using_index |
| ? !item->per_cu->v.quick->symtab |
| : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin)) |
| process_full_comp_unit (item->per_cu, item->pretend_language); |
| |
| item->per_cu->queued = 0; |
| next_item = item->next; |
| xfree (item); |
| } |
| |
| dwarf2_queue_tail = NULL; |
| } |
| |
| /* Free all allocated queue entries. This function only releases anything if |
| an error was thrown; if the queue was processed then it would have been |
| freed as we went along. */ |
| |
| static void |
| dwarf2_release_queue (void *dummy) |
| { |
| struct dwarf2_queue_item *item, *last; |
| |
| item = dwarf2_queue; |
| while (item) |
| { |
| /* Anything still marked queued is likely to be in an |
| inconsistent state, so discard it. */ |
| if (item->per_cu->queued) |
| { |
| if (item->per_cu->cu != NULL) |
| free_one_cached_comp_unit (item->per_cu); |
| item->per_cu->queued = 0; |
| } |
| |
| last = item; |
| item = item->next; |
| xfree (last); |
| } |
| |
| dwarf2_queue = dwarf2_queue_tail = NULL; |
| } |
| |
| /* Read in full symbols for PST, and anything it depends on. */ |
| |
| static void |
| psymtab_to_symtab_1 (struct partial_symtab *pst) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| int i; |
| |
| if (pst->readin) |
| return; |
| |
| for (i = 0; i < pst->number_of_dependencies; i++) |
| if (!pst->dependencies[i]->readin |
| && pst->dependencies[i]->user == NULL) |
| { |
| /* Inform about additional files that need to be read in. */ |
| if (info_verbose) |
| { |
| /* FIXME: i18n: Need to make this a single string. */ |
| fputs_filtered (" ", gdb_stdout); |
| wrap_here (""); |
| fputs_filtered ("and ", gdb_stdout); |
| wrap_here (""); |
| printf_filtered ("%s...", pst->dependencies[i]->filename); |
| wrap_here (""); /* Flush output. */ |
| gdb_flush (gdb_stdout); |
| } |
| psymtab_to_symtab_1 (pst->dependencies[i]); |
| } |
| |
| per_cu = pst->read_symtab_private; |
| |
| if (per_cu == NULL) |
| { |
| /* It's an include file, no symbols to read for it. |
| Everything is in the parent symtab. */ |
| pst->readin = 1; |
| return; |
| } |
| |
| dw2_do_instantiate_symtab (per_cu); |
| } |
| |
| /* Trivial hash function for die_info: the hash value of a DIE |
| is its offset in .debug_info for this objfile. */ |
| |
| static hashval_t |
| die_hash (const void *item) |
| { |
| const struct die_info *die = item; |
| |
| return die->offset.sect_off; |
| } |
| |
| /* Trivial comparison function for die_info structures: two DIEs |
| are equal if they have the same offset. */ |
| |
| static int |
| die_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct die_info *die_lhs = item_lhs; |
| const struct die_info *die_rhs = item_rhs; |
| |
| return die_lhs->offset.sect_off == die_rhs->offset.sect_off; |
| } |
| |
| /* die_reader_func for load_full_comp_unit. |
| This is identical to read_signatured_type_reader, |
| but is kept separate for now. */ |
| |
| static void |
| load_full_comp_unit_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| enum language *language_ptr = data; |
| |
| gdb_assert (cu->die_hash == NULL); |
| cu->die_hash = |
| htab_create_alloc_ex (cu->header.length / 12, |
| die_hash, |
| die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| if (has_children) |
| comp_unit_die->child = read_die_and_siblings (reader, info_ptr, |
| &info_ptr, comp_unit_die); |
| cu->dies = comp_unit_die; |
| /* comp_unit_die is not stored in die_hash, no need. */ |
| |
| /* We try not to read any attributes in this function, because not |
| all CUs needed for references have been loaded yet, and symbol |
| table processing isn't initialized. But we have to set the CU language, |
| or we won't be able to build types correctly. |
| Similarly, if we do not read the producer, we can not apply |
| producer-specific interpretation. */ |
| prepare_one_comp_unit (cu, cu->dies, *language_ptr); |
| } |
| |
| /* Load the DIEs associated with PER_CU into memory. */ |
| |
| static void |
| load_full_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| enum language pretend_language) |
| { |
| gdb_assert (! this_cu->is_debug_types); |
| |
| init_cutu_and_read_dies (this_cu, 1, 1, load_full_comp_unit_reader, |
| &pretend_language); |
| } |
| |
| /* Add a DIE to the delayed physname list. */ |
| |
| static void |
| add_to_method_list (struct type *type, int fnfield_index, int index, |
| const char *name, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct delayed_method_info mi; |
| mi.type = type; |
| mi.fnfield_index = fnfield_index; |
| mi.index = index; |
| mi.name = name; |
| mi.die = die; |
| VEC_safe_push (delayed_method_info, cu->method_list, &mi); |
| } |
| |
| /* A cleanup for freeing the delayed method list. */ |
| |
| static void |
| free_delayed_list (void *ptr) |
| { |
| struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr; |
| if (cu->method_list != NULL) |
| { |
| VEC_free (delayed_method_info, cu->method_list); |
| cu->method_list = NULL; |
| } |
| } |
| |
| /* Compute the physnames of any methods on the CU's method list. |
| |
| The computation of method physnames is delayed in order to avoid the |
| (bad) condition that one of the method's formal parameters is of an as yet |
| incomplete type. */ |
| |
| static void |
| compute_delayed_physnames (struct dwarf2_cu *cu) |
| { |
| int i; |
| struct delayed_method_info *mi; |
| for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i) |
| { |
| const char *physname; |
| struct fn_fieldlist *fn_flp |
| = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index); |
| physname = dwarf2_physname ((char *) mi->name, mi->die, cu); |
| fn_flp->fn_fields[mi->index].physname = physname ? physname : ""; |
| } |
| } |
| |
| /* Go objects should be embedded in a DW_TAG_module DIE, |
| and it's not clear if/how imported objects will appear. |
| To keep Go support simple until that's worked out, |
| go back through what we've read and create something usable. |
| We could do this while processing each DIE, and feels kinda cleaner, |
| but that way is more invasive. |
| This is to, for example, allow the user to type "p var" or "b main" |
| without having to specify the package name, and allow lookups |
| of module.object to work in contexts that use the expression |
| parser. */ |
| |
| static void |
| fixup_go_packaging (struct dwarf2_cu *cu) |
| { |
| char *package_name = NULL; |
| struct pending *list; |
| int i; |
| |
| for (list = global_symbols; list != NULL; list = list->next) |
| { |
| for (i = 0; i < list->nsyms; ++i) |
| { |
| struct symbol *sym = list->symbol[i]; |
| |
| if (SYMBOL_LANGUAGE (sym) == language_go |
| && SYMBOL_CLASS (sym) == LOC_BLOCK) |
| { |
| char *this_package_name = go_symbol_package_name (sym); |
| |
| if (this_package_name == NULL) |
| continue; |
| if (package_name == NULL) |
| package_name = this_package_name; |
| else |
| { |
| if (strcmp (package_name, this_package_name) != 0) |
| complaint (&symfile_complaints, |
| _("Symtab %s has objects from two different Go packages: %s and %s"), |
| (sym->symtab && sym->symtab->filename |
| ? sym->symtab->filename |
| : cu->objfile->name), |
| this_package_name, package_name); |
| xfree (this_package_name); |
| } |
| } |
| } |
| } |
| |
| if (package_name != NULL) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *type = init_type (TYPE_CODE_MODULE, 0, 0, |
| package_name, objfile); |
| struct symbol *sym; |
| |
| TYPE_TAG_NAME (type) = TYPE_NAME (type); |
| |
| sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol); |
| SYMBOL_SET_LANGUAGE (sym, language_go); |
| SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile); |
| /* This is not VAR_DOMAIN because we want a way to ensure a lookup of, |
| e.g., "main" finds the "main" module and not C's main(). */ |
| SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
| SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| SYMBOL_TYPE (sym) = type; |
| |
| add_symbol_to_list (sym, &global_symbols); |
| |
| xfree (package_name); |
| } |
| } |
| |
| static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu); |
| |
| /* Return the symtab for PER_CU. This works properly regardless of |
| whether we're using the index or psymtabs. */ |
| |
| static struct symtab * |
| get_symtab (struct dwarf2_per_cu_data *per_cu) |
| { |
| return (dwarf2_per_objfile->using_index |
| ? per_cu->v.quick->symtab |
| : per_cu->v.psymtab->symtab); |
| } |
| |
| /* A helper function for computing the list of all symbol tables |
| included by PER_CU. */ |
| |
| static void |
| recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result, |
| htab_t all_children, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| void **slot; |
| int ix; |
| struct dwarf2_per_cu_data *iter; |
| |
| slot = htab_find_slot (all_children, per_cu, INSERT); |
| if (*slot != NULL) |
| { |
| /* This inclusion and its children have been processed. */ |
| return; |
| } |
| |
| *slot = per_cu; |
| /* Only add a CU if it has a symbol table. */ |
| if (get_symtab (per_cu) != NULL) |
| VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu); |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter); |
| ++ix) |
| recursively_compute_inclusions (result, all_children, iter); |
| } |
| |
| /* Compute the symtab 'includes' fields for the symtab related to |
| PER_CU. */ |
| |
| static void |
| compute_symtab_includes (struct dwarf2_per_cu_data *per_cu) |
| { |
| if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs)) |
| { |
| int ix, len; |
| struct dwarf2_per_cu_data *iter; |
| VEC (dwarf2_per_cu_ptr) *result_children = NULL; |
| htab_t all_children; |
| struct symtab *symtab = get_symtab (per_cu); |
| |
| /* If we don't have a symtab, we can just skip this case. */ |
| if (symtab == NULL) |
| return; |
| |
| all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, |
| ix, iter); |
| ++ix) |
| recursively_compute_inclusions (&result_children, all_children, iter); |
| |
| /* Now we have a transitive closure of all the included CUs, so |
| we can convert it to a list of symtabs. */ |
| len = VEC_length (dwarf2_per_cu_ptr, result_children); |
| symtab->includes |
| = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack, |
| (len + 1) * sizeof (struct symtab *)); |
| for (ix = 0; |
| VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter); |
| ++ix) |
| symtab->includes[ix] = get_symtab (iter); |
| symtab->includes[len] = NULL; |
| |
| VEC_free (dwarf2_per_cu_ptr, result_children); |
| htab_delete (all_children); |
| } |
| } |
| |
| /* Compute the 'includes' field for the symtabs of all the CUs we just |
| read. */ |
| |
| static void |
| process_cu_includes (void) |
| { |
| int ix; |
| struct dwarf2_per_cu_data *iter; |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, |
| ix, iter); |
| ++ix) |
| compute_symtab_includes (iter); |
| |
| VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus); |
| } |
| |
| /* Generate full symbol information for PER_CU, whose DIEs have |
| already been loaded into memory. */ |
| |
| static void |
| process_full_comp_unit (struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| struct dwarf2_cu *cu = per_cu->cu; |
| struct objfile *objfile = per_cu->objfile; |
| CORE_ADDR lowpc, highpc; |
| struct symtab *symtab; |
| struct cleanup *back_to, *delayed_list_cleanup; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| buildsym_init (); |
| back_to = make_cleanup (really_free_pendings, NULL); |
| delayed_list_cleanup = make_cleanup (free_delayed_list, cu); |
| |
| cu->list_in_scope = &file_symbols; |
| |
| cu->language = pretend_language; |
| cu->language_defn = language_def (cu->language); |
| |
| /* Do line number decoding in read_file_scope () */ |
| process_die (cu->dies, cu); |
| |
| /* For now fudge the Go package. */ |
| if (cu->language == language_go) |
| fixup_go_packaging (cu); |
| |
| /* Now that we have processed all the DIEs in the CU, all the types |
| should be complete, and it should now be safe to compute all of the |
| physnames. */ |
| compute_delayed_physnames (cu); |
| do_cleanups (delayed_list_cleanup); |
| |
| /* Some compilers don't define a DW_AT_high_pc attribute for the |
| compilation unit. If the DW_AT_high_pc is missing, synthesize |
| it, by scanning the DIE's below the compilation unit. */ |
| get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu); |
| |
| symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile)); |
| |
| if (symtab != NULL) |
| { |
| int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer); |
| |
| /* Set symtab language to language from DW_AT_language. If the |
| compilation is from a C file generated by language preprocessors, do |
| not set the language if it was already deduced by start_subfile. */ |
| if (!(cu->language == language_c && symtab->language != language_c)) |
| symtab->language = cu->language; |
| |
| /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can |
| produce DW_AT_location with location lists but it can be possibly |
| invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0 |
| there were bugs in prologue debug info, fixed later in GCC-4.5 |
| by "unwind info for epilogues" patch (which is not directly related). |
| |
| For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not |
| needed, it would be wrong due to missing DW_AT_producer there. |
| |
| Still one can confuse GDB by using non-standard GCC compilation |
| options - this waits on GCC PR other/32998 (-frecord-gcc-switches). |
| */ |
| if (cu->has_loclist && gcc_4_minor >= 5) |
| symtab->locations_valid = 1; |
| |
| if (gcc_4_minor >= 5) |
| symtab->epilogue_unwind_valid = 1; |
| |
| symtab->call_site_htab = cu->call_site_htab; |
| } |
| |
| if (dwarf2_per_objfile->using_index) |
| per_cu->v.quick->symtab = symtab; |
| else |
| { |
| struct partial_symtab *pst = per_cu->v.psymtab; |
| pst->symtab = symtab; |
| pst->readin = 1; |
| } |
| |
| /* Push it for inclusion processing later. */ |
| VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu); |
| |
| do_cleanups (back_to); |
| } |
| |
| /* Process an imported unit DIE. */ |
| |
| static void |
| process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (attr != NULL) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| struct symtab *imported_symtab; |
| sect_offset offset; |
| |
| offset = dwarf2_get_ref_die_offset (attr); |
| per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile); |
| |
| /* Queue the unit, if needed. */ |
| if (maybe_queue_comp_unit (cu, per_cu, cu->language)) |
| load_full_comp_unit (per_cu, cu->language); |
| |
| VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs, |
| per_cu); |
| } |
| } |
| |
| /* Process a die and its children. */ |
| |
| static void |
| process_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| switch (die->tag) |
| { |
| case DW_TAG_padding: |
| break; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| read_file_scope (die, cu); |
| break; |
| case DW_TAG_type_unit: |
| read_type_unit_scope (die, cu); |
| break; |
| case DW_TAG_subprogram: |
| case DW_TAG_inlined_subroutine: |
| read_func_scope (die, cu); |
| break; |
| case DW_TAG_lexical_block: |
| case DW_TAG_try_block: |
| case DW_TAG_catch_block: |
| read_lexical_block_scope (die, cu); |
| break; |
| case DW_TAG_GNU_call_site: |
| read_call_site_scope (die, cu); |
| break; |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| process_structure_scope (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| process_enumeration_scope (die, cu); |
| break; |
| |
| /* These dies have a type, but processing them does not create |
| a symbol or recurse to process the children. Therefore we can |
| read them on-demand through read_type_die. */ |
| case DW_TAG_subroutine_type: |
| case DW_TAG_set_type: |
| case DW_TAG_array_type: |
| case DW_TAG_pointer_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_reference_type: |
| case DW_TAG_string_type: |
| break; |
| |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_typedef: |
| /* Add a typedef symbol for the type definition, if it has a |
| DW_AT_name. */ |
| new_symbol (die, read_type_die (die, cu), cu); |
| break; |
| case DW_TAG_common_block: |
| read_common_block (die, cu); |
| break; |
| case DW_TAG_common_inclusion: |
| break; |
| case DW_TAG_namespace: |
| processing_has_namespace_info = 1; |
| read_namespace (die, cu); |
| break; |
| case DW_TAG_module: |
| processing_has_namespace_info = 1; |
| read_module (die, cu); |
| break; |
| case DW_TAG_imported_declaration: |
| case DW_TAG_imported_module: |
| processing_has_namespace_info = 1; |
| if (die->child != NULL && (die->tag == DW_TAG_imported_declaration |
| || cu->language != language_fortran)) |
| complaint (&symfile_complaints, _("Tag '%s' has unexpected children"), |
| dwarf_tag_name (die->tag)); |
| read_import_statement (die, cu); |
| break; |
| |
| case DW_TAG_imported_unit: |
| process_imported_unit_die (die, cu); |
| break; |
| |
| default: |
| new_symbol (die, NULL, cu); |
| break; |
| } |
| } |
| |
| /* A helper function for dwarf2_compute_name which determines whether DIE |
| needs to have the name of the scope prepended to the name listed in the |
| die. */ |
| |
| static int |
| die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_namespace: |
| case DW_TAG_typedef: |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| case DW_TAG_subprogram: |
| case DW_TAG_member: |
| return 1; |
| |
| case DW_TAG_variable: |
| case DW_TAG_constant: |
| /* We only need to prefix "globally" visible variables. These include |
| any variable marked with DW_AT_external or any variable that |
| lives in a namespace. [Variables in anonymous namespaces |
| require prefixing, but they are not DW_AT_external.] */ |
| |
| if (dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| |
| return die_needs_namespace (die_specification (die, &spec_cu), |
| spec_cu); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| if (attr == NULL && die->parent->tag != DW_TAG_namespace |
| && die->parent->tag != DW_TAG_module) |
| return 0; |
| /* A variable in a lexical block of some kind does not need a |
| namespace, even though in C++ such variables may be external |
| and have a mangled name. */ |
| if (die->parent->tag == DW_TAG_lexical_block |
| || die->parent->tag == DW_TAG_try_block |
| || die->parent->tag == DW_TAG_catch_block |
| || die->parent->tag == DW_TAG_subprogram) |
| return 0; |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Retrieve the last character from a mem_file. */ |
| |
| static void |
| do_ui_file_peek_last (void *object, const char *buffer, long length) |
| { |
| char *last_char_p = (char *) object; |
| |
| if (length > 0) |
| *last_char_p = buffer[length - 1]; |
| } |
| |
| /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero, |
| compute the physname for the object, which include a method's: |
| - formal parameters (C++/Java), |
| - receiver type (Go), |
| - return type (Java). |
| |
| The term "physname" is a bit confusing. |
| For C++, for example, it is the demangled name. |
| For Go, for example, it's the mangled name. |
| |
| For Ada, return the DIE's linkage name rather than the fully qualified |
| name. PHYSNAME is ignored.. |
| |
| The result is allocated on the objfile_obstack and canonicalized. */ |
| |
| static const char * |
| dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu, |
| int physname) |
| { |
| struct objfile *objfile = cu->objfile; |
| |
| if (name == NULL) |
| name = dwarf2_name (die, cu); |
| |
| /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise |
| compute it by typename_concat inside GDB. */ |
| if (cu->language == language_ada |
| || (cu->language == language_fortran && physname)) |
| { |
| /* For Ada unit, we prefer the linkage name over the name, as |
| the former contains the exported name, which the user expects |
| to be able to reference. Ideally, we want the user to be able |
| to reference this entity using either natural or linkage name, |
| but we haven't started looking at this enhancement yet. */ |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| if (attr && DW_STRING (attr)) |
| return DW_STRING (attr); |
| } |
| |
| /* These are the only languages we know how to qualify names in. */ |
| if (name != NULL |
| && (cu->language == language_cplus || cu->language == language_java |
| || cu->language == language_fortran)) |
| { |
| if (die_needs_namespace (die, cu)) |
| { |
| long length; |
| const char *prefix; |
| struct ui_file *buf; |
| |
| prefix = determine_prefix (die, cu); |
| buf = mem_fileopen (); |
| if (*prefix != '\0') |
| { |
| char *prefixed_name = typename_concat (NULL, prefix, name, |
| physname, cu); |
| |
| fputs_unfiltered (prefixed_name, buf); |
| xfree (prefixed_name); |
| } |
| else |
| fputs_unfiltered (name, buf); |
| |
| /* Template parameters may be specified in the DIE's DW_AT_name, or |
| as children with DW_TAG_template_type_param or |
| DW_TAG_value_type_param. If the latter, add them to the name |
| here. If the name already has template parameters, then |
| skip this step; some versions of GCC emit both, and |
| it is more efficient to use the pre-computed name. |
| |
| Something to keep in mind about this process: it is very |
| unlikely, or in some cases downright impossible, to produce |
| something that will match the mangled name of a function. |
| If the definition of the function has the same debug info, |
| we should be able to match up with it anyway. But fallbacks |
| using the minimal symbol, for instance to find a method |
| implemented in a stripped copy of libstdc++, will not work. |
| If we do not have debug info for the definition, we will have to |
| match them up some other way. |
| |
| When we do name matching there is a related problem with function |
| templates; two instantiated function templates are allowed to |
| differ only by their return types, which we do not add here. */ |
| |
| if (cu->language == language_cplus && strchr (name, '<') == NULL) |
| { |
| struct attribute *attr; |
| struct die_info *child; |
| int first = 1; |
| |
| die->building_fullname = 1; |
| |
| for (child = die->child; child != NULL; child = child->sibling) |
| { |
| struct type *type; |
| LONGEST value; |
| gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| struct value *v; |
| |
| if (child->tag != DW_TAG_template_type_param |
| && child->tag != DW_TAG_template_value_param) |
| continue; |
| |
| if (first) |
| { |
| fputs_unfiltered ("<", buf); |
| first = 0; |
| } |
| else |
| fputs_unfiltered (", ", buf); |
| |
| attr = dwarf2_attr (child, DW_AT_type, cu); |
| if (attr == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("template parameter missing DW_AT_type")); |
| fputs_unfiltered ("UNKNOWN_TYPE", buf); |
| continue; |
| } |
| type = die_type (child, cu); |
| |
| if (child->tag == DW_TAG_template_type_param) |
| { |
| c_print_type (type, "", buf, -1, 0); |
| continue; |
| } |
| |
| attr = dwarf2_attr (child, DW_AT_const_value, cu); |
| if (attr == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("template parameter missing " |
| "DW_AT_const_value")); |
| fputs_unfiltered ("UNKNOWN_VALUE", buf); |
| continue; |
| } |
| |
| dwarf2_const_value_attr (attr, type, name, |
| &cu->comp_unit_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (TYPE_NOSIGN (type)) |
| /* GDB prints characters as NUMBER 'CHAR'. If that's |
| changed, this can use value_print instead. */ |
| c_printchar (value, type, buf); |
| else |
| { |
| struct value_print_options opts; |
| |
| if (baton != NULL) |
| v = dwarf2_evaluate_loc_desc (type, NULL, |
| baton->data, |
| baton->size, |
| baton->per_cu); |
| else if (bytes != NULL) |
| { |
| v = allocate_value (type); |
| memcpy (value_contents_writeable (v), bytes, |
| TYPE_LENGTH (type)); |
| } |
| else |
| v = value_from_longest (type, value); |
| |
| /* Specify decimal so that we do not depend on |
| the radix. */ |
| get_formatted_print_options (&opts, 'd'); |
| opts.raw = 1; |
| value_print (v, buf, &opts); |
| release_value (v); |
| value_free (v); |
| } |
| } |
| |
| die->building_fullname = 0; |
| |
| if (!first) |
| { |
| /* Close the argument list, with a space if necessary |
| (nested templates). */ |
| char last_char = '\0'; |
| ui_file_put (buf, do_ui_file_peek_last, &last_char); |
| if (last_char == '>') |
| fputs_unfiltered (" >", buf); |
| else |
| fputs_unfiltered (">", buf); |
| } |
| } |
| |
| /* For Java and C++ methods, append formal parameter type |
| information, if PHYSNAME. */ |
| |
| if (physname && die->tag == DW_TAG_subprogram |
| && (cu->language == language_cplus |
| || cu->language == language_java)) |
| { |
| struct type *type = read_type_die (die, cu); |
| |
| c_type_print_args (type, buf, 1, cu->language); |
| |
| if (cu->language == language_java) |
| { |
| /* For java, we must append the return type to method |
| names. */ |
| if (die->tag == DW_TAG_subprogram) |
| java_print_type (TYPE_TARGET_TYPE (type), "", buf, |
| 0, 0); |
| } |
| else if (cu->language == language_cplus) |
| { |
| /* Assume that an artificial first parameter is |
| "this", but do not crash if it is not. RealView |
| marks unnamed (and thus unused) parameters as |
| artificial; there is no way to differentiate |
| the two cases. */ |
| if (TYPE_NFIELDS (type) > 0 |
| && TYPE_FIELD_ARTIFICIAL (type, 0) |
| && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR |
| && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, |
| 0)))) |
| fputs_unfiltered (" const", buf); |
| } |
| } |
| |
| name = ui_file_obsavestring (buf, &objfile->objfile_obstack, |
| &length); |
| ui_file_delete (buf); |
| |
| if (cu->language == language_cplus) |
| { |
| char *cname |
| = dwarf2_canonicalize_name (name, cu, |
| &objfile->objfile_obstack); |
| |
| if (cname != NULL) |
| name = cname; |
| } |
| } |
| } |
| |
| return name; |
| } |
| |
| /* Return the fully qualified name of DIE, based on its DW_AT_name. |
| If scope qualifiers are appropriate they will be added. The result |
| will be allocated on the objfile_obstack, or NULL if the DIE does |
| not have a name. NAME may either be from a previous call to |
| dwarf2_name or NULL. |
| |
| The output string will be canonicalized (if C++/Java). */ |
| |
| static const char * |
| dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return dwarf2_compute_name (name, die, cu, 0); |
| } |
| |
| /* Construct a physname for the given DIE in CU. NAME may either be |
| from a previous call to dwarf2_name or NULL. The result will be |
| allocated on the objfile_objstack or NULL if the DIE does not have a |
| name. |
| |
| The output string will be canonicalized (if C++/Java). */ |
| |
| static const char * |
| dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct attribute *attr; |
| const char *retval, *mangled = NULL, *canon = NULL; |
| struct cleanup *back_to; |
| int need_copy = 1; |
| |
| /* In this case dwarf2_compute_name is just a shortcut not building anything |
| on its own. */ |
| if (!die_needs_namespace (die, cu)) |
| return dwarf2_compute_name (name, die, cu, 1); |
| |
| back_to = make_cleanup (null_cleanup, NULL); |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (!attr) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| /* DW_AT_linkage_name is missing in some cases - depend on what GDB |
| has computed. */ |
| if (attr && DW_STRING (attr)) |
| { |
| char *demangled; |
| |
| mangled = DW_STRING (attr); |
| |
| /* Use DMGL_RET_DROP for C++ template functions to suppress their return |
| type. It is easier for GDB users to search for such functions as |
| `name(params)' than `long name(params)'. In such case the minimal |
| symbol names do not match the full symbol names but for template |
| functions there is never a need to look up their definition from their |
| declaration so the only disadvantage remains the minimal symbol |
| variant `long name(params)' does not have the proper inferior type. |
| */ |
| |
| if (cu->language == language_go) |
| { |
| /* This is a lie, but we already lie to the caller new_symbol_full. |
| new_symbol_full assumes we return the mangled name. |
| This just undoes that lie until things are cleaned up. */ |
| demangled = NULL; |
| } |
| else |
| { |
| demangled = cplus_demangle (mangled, |
| (DMGL_PARAMS | DMGL_ANSI |
| | (cu->language == language_java |
| ? DMGL_JAVA | DMGL_RET_POSTFIX |
| : DMGL_RET_DROP))); |
| } |
| if (demangled) |
| { |
| make_cleanup (xfree, demangled); |
| canon = demangled; |
| } |
| else |
| { |
| canon = mangled; |
| need_copy = 0; |
| } |
| } |
| |
| if (canon == NULL || check_physname) |
| { |
| const char *physname = dwarf2_compute_name (name, die, cu, 1); |
| |
| if (canon != NULL && strcmp (physname, canon) != 0) |
| { |
| /* It may not mean a bug in GDB. The compiler could also |
| compute DW_AT_linkage_name incorrectly. But in such case |
| GDB would need to be bug-to-bug compatible. */ |
| |
| complaint (&symfile_complaints, |
| _("Computed physname <%s> does not match demangled <%s> " |
| "(from linkage <%s>) - DIE at 0x%x [in module %s]"), |
| physname, canon, mangled, die->offset.sect_off, objfile->name); |
| |
| /* Prefer DW_AT_linkage_name (in the CANON form) - when it |
| is available here - over computed PHYSNAME. It is safer |
| against both buggy GDB and buggy compilers. */ |
| |
| retval = canon; |
| } |
| else |
| { |
| retval = physname; |
| need_copy = 0; |
| } |
| } |
| else |
| retval = canon; |
| |
| if (need_copy) |
| retval = obsavestring (retval, strlen (retval), |
| &objfile->objfile_obstack); |
| |
| do_cleanups (back_to); |
| return retval; |
| } |
| |
| /* Read the import statement specified by the given die and record it. */ |
| |
| static void |
| read_import_statement (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct attribute *import_attr; |
| struct die_info *imported_die, *child_die; |
| struct dwarf2_cu *imported_cu; |
| const char *imported_name; |
| const char *imported_name_prefix; |
| const char *canonical_name; |
| const char *import_alias; |
| const char *imported_declaration = NULL; |
| const char *import_prefix; |
| VEC (const_char_ptr) *excludes = NULL; |
| struct cleanup *cleanups; |
| |
| char *temp; |
| |
| import_attr = dwarf2_attr (die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (die->tag)); |
| return; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524 |
| |
| The import in the following code: |
| namespace A |
| { |
| typedef int B; |
| } |
| |
| int main () |
| { |
| using A::B; |
| B b; |
| return b; |
| } |
| |
| ... |
| <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration) |
| <52> DW_AT_decl_file : 1 |
| <53> DW_AT_decl_line : 6 |
| <54> DW_AT_import : <0x75> |
| <2><58>: Abbrev Number: 4 (DW_TAG_typedef) |
| <59> DW_AT_name : B |
| <5b> DW_AT_decl_file : 1 |
| <5c> DW_AT_decl_line : 2 |
| <5d> DW_AT_type : <0x6e> |
| ... |
| <1><75>: Abbrev Number: 7 (DW_TAG_base_type) |
| <76> DW_AT_byte_size : 4 |
| <77> DW_AT_encoding : 5 (signed) |
| |
| imports the wrong die ( 0x75 instead of 0x58 ). |
| This case will be ignored until the gcc bug is fixed. */ |
| return; |
| } |
| |
| /* Figure out the local name after import. */ |
| import_alias = dwarf2_name (die, cu); |
| |
| /* Figure out where the statement is being imported to. */ |
| import_prefix = determine_prefix (die, cu); |
| |
| /* Figure out what the scope of the imported die is and prepend it |
| to the name of the imported die. */ |
| imported_name_prefix = determine_prefix (imported_die, imported_cu); |
| |
| if (imported_die->tag != DW_TAG_namespace |
| && imported_die->tag != DW_TAG_module) |
| { |
| imported_declaration = imported_name; |
| canonical_name = imported_name_prefix; |
| } |
| else if (strlen (imported_name_prefix) > 0) |
| { |
| temp = alloca (strlen (imported_name_prefix) |
| + 2 + strlen (imported_name) + 1); |
| strcpy (temp, imported_name_prefix); |
| strcat (temp, "::"); |
| strcat (temp, imported_name); |
| canonical_name = temp; |
| } |
| else |
| canonical_name = imported_name; |
| |
| cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes); |
| |
| if (die->tag == DW_TAG_imported_module && cu->language == language_fortran) |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| /* DWARF-4: A Fortran use statement with a “rename list” may be |
| represented by an imported module entry with an import attribute |
| referring to the module and owned entries corresponding to those |
| entities that are renamed as part of being imported. */ |
| |
| if (child_die->tag != DW_TAG_imported_declaration) |
| { |
| complaint (&symfile_complaints, |
| _("child DW_TAG_imported_declaration expected " |
| "- DIE at 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| |
| import_attr = dwarf2_attr (child_die, DW_AT_import, cu); |
| if (import_attr == NULL) |
| { |
| complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"), |
| dwarf_tag_name (child_die->tag)); |
| continue; |
| } |
| |
| imported_cu = cu; |
| imported_die = follow_die_ref_or_sig (child_die, import_attr, |
| &imported_cu); |
| imported_name = dwarf2_name (imported_die, imported_cu); |
| if (imported_name == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("child DW_TAG_imported_declaration has unknown " |
| "imported name - DIE at 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| |
| VEC_safe_push (const_char_ptr, excludes, imported_name); |
| |
| process_die (child_die, cu); |
| } |
| |
| cp_add_using_directive (import_prefix, |
| canonical_name, |
| import_alias, |
| imported_declaration, |
| excludes, |
| &objfile->objfile_obstack); |
| |
| do_cleanups (cleanups); |
| } |
| |
| /* Cleanup function for read_file_scope. */ |
| |
| static void |
| free_cu_line_header (void *arg) |
| { |
| struct dwarf2_cu *cu = arg; |
| |
| free_line_header (cu->line_header); |
| cu->line_header = NULL; |
| } |
| |
| static void |
| find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu, |
| char **name, char **comp_dir) |
| { |
| struct attribute *attr; |
| |
| *name = NULL; |
| *comp_dir = NULL; |
| |
| /* Find the filename. Do not use dwarf2_name here, since the filename |
| is not a source language identifier. */ |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr) |
| { |
| *name = DW_STRING (attr); |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_comp_dir, cu); |
| if (attr) |
| *comp_dir = DW_STRING (attr); |
| else if (*name != NULL && IS_ABSOLUTE_PATH (*name)) |
| { |
| *comp_dir = ldirname (*name); |
| if (*comp_dir != NULL) |
| make_cleanup (xfree, *comp_dir); |
| } |
| if (*comp_dir != NULL) |
| { |
| /* Irix 6.2 native cc prepends <machine>.: to the compilation |
| directory, get rid of it. */ |
| char *cp = strchr (*comp_dir, ':'); |
| |
| if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/') |
| *comp_dir = cp + 1; |
| } |
| |
| if (*name == NULL) |
| *name = "<unknown>"; |
| } |
| |
| /* Handle DW_AT_stmt_list for a compilation unit or type unit. |
| DIE is the DW_TAG_compile_unit or DW_TAG_type_unit die for CU. |
| COMP_DIR is the compilation directory. |
| WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */ |
| |
| static void |
| handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu, |
| const char *comp_dir, int want_line_info) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_stmt_list, cu); |
| if (attr) |
| { |
| unsigned int line_offset = DW_UNSND (attr); |
| struct line_header *line_header |
| = dwarf_decode_line_header (line_offset, cu); |
| |
| if (line_header) |
| { |
| cu->line_header = line_header; |
| make_cleanup (free_cu_line_header, cu); |
| dwarf_decode_lines (line_header, comp_dir, cu, NULL, want_line_info); |
| } |
| } |
| } |
| |
| /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */ |
| |
| static void |
| read_file_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct cleanup *back_to = make_cleanup (null_cleanup, 0); |
| CORE_ADDR lowpc = ((CORE_ADDR) -1); |
| CORE_ADDR highpc = ((CORE_ADDR) 0); |
| struct attribute *attr; |
| char *name = NULL; |
| char *comp_dir = NULL; |
| struct die_info *child_die; |
| bfd *abfd = objfile->obfd; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| get_scope_pc_bounds (die, &lowpc, &highpc, cu); |
| |
| /* If we didn't find a lowpc, set it to highpc to avoid complaints |
| from finish_block. */ |
| if (lowpc == ((CORE_ADDR) -1)) |
| lowpc = highpc; |
| lowpc += baseaddr; |
| highpc += baseaddr; |
| |
| find_file_and_directory (die, cu, &name, &comp_dir); |
| |
| prepare_one_comp_unit (cu, die, cu->language); |
| |
| /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not |
| standardised yet. As a workaround for the language detection we fall |
| back to the DW_AT_producer string. */ |
| if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL) |
| cu->language = language_opencl; |
| |
| /* Similar hack for Go. */ |
| if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL) |
| set_cu_language (DW_LANG_Go, cu); |
| |
| /* We assume that we're processing GCC output. */ |
| processing_gcc_compilation = 2; |
| |
| processing_has_namespace_info = 0; |
| |
| start_symtab (name, comp_dir, lowpc); |
| record_debugformat ("DWARF 2"); |
| record_producer (cu->producer); |
| |
| /* Decode line number information if present. We do this before |
| processing child DIEs, so that the line header table is available |
| for DW_AT_decl_file. */ |
| handle_DW_AT_stmt_list (die, cu, comp_dir, 1); |
| |
| /* Process all dies in compilation unit. */ |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| /* Decode macro information, if present. Dwarf 2 macro information |
| refers to information in the line number info statement program |
| header, so we can only read it if we've read the header |
| successfully. */ |
| attr = dwarf2_attr (die, DW_AT_GNU_macros, cu); |
| if (attr && cu->line_header) |
| { |
| if (dwarf2_attr (die, DW_AT_macro_info, cu)) |
| complaint (&symfile_complaints, |
| _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info")); |
| |
| dwarf_decode_macros (cu->line_header, DW_UNSND (attr), |
| comp_dir, abfd, cu, |
| &dwarf2_per_objfile->macro, 1, |
| ".debug_macro"); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_macro_info, cu); |
| if (attr && cu->line_header) |
| { |
| unsigned int macro_offset = DW_UNSND (attr); |
| |
| dwarf_decode_macros (cu->line_header, macro_offset, |
| comp_dir, abfd, cu, |
| &dwarf2_per_objfile->macinfo, 0, |
| ".debug_macinfo"); |
| } |
| } |
| |
| do_cleanups (back_to); |
| } |
| |
| /* Process DW_TAG_type_unit. |
| For TUs we want to skip the first top level sibling if it's not the |
| actual type being defined by this TU. In this case the first top |
| level sibling is there to provide context only. */ |
| |
| static void |
| read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct cleanup *back_to = make_cleanup (null_cleanup, 0); |
| CORE_ADDR lowpc; |
| struct attribute *attr; |
| char *name = NULL; |
| char *comp_dir = NULL; |
| struct die_info *child_die; |
| bfd *abfd = objfile->obfd; |
| |
| /* start_symtab needs a low pc, but we don't really have one. |
| Do what read_file_scope would do in the absence of such info. */ |
| lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| /* Find the filename. Do not use dwarf2_name here, since the filename |
| is not a source language identifier. */ |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr) |
| name = DW_STRING (attr); |
| |
| attr = dwarf2_attr (die, DW_AT_comp_dir, cu); |
| if (attr) |
| comp_dir = DW_STRING (attr); |
| else if (name != NULL && IS_ABSOLUTE_PATH (name)) |
| { |
| comp_dir = ldirname (name); |
| if (comp_dir != NULL) |
| make_cleanup (xfree, comp_dir); |
| } |
| |
| if (name == NULL) |
| name = "<unknown>"; |
| |
| prepare_one_comp_unit (cu, die, language_minimal); |
| |
| /* We assume that we're processing GCC output. */ |
| processing_gcc_compilation = 2; |
| |
| processing_has_namespace_info = 0; |
| |
| start_symtab (name, comp_dir, lowpc); |
| record_debugformat ("DWARF 2"); |
| record_producer (cu->producer); |
| |
| /* Decode line number information if present. We do this before |
| processing child DIEs, so that the line header table is available |
| for DW_AT_decl_file. |
| We don't need the pc/line-number mapping for type units. */ |
| handle_DW_AT_stmt_list (die, cu, comp_dir, 0); |
| |
| /* Process the dies in the type unit. */ |
| if (die->child == NULL) |
| { |
| dump_die_for_error (die); |
| error (_("Dwarf Error: Missing children for type unit [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| |
| child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| do_cleanups (back_to); |
| } |
| |
| /* DWO files. */ |
| |
| static hashval_t |
| hash_dwo_file (const void *item) |
| { |
| const struct dwo_file *dwo_file = item; |
| |
| return htab_hash_string (dwo_file->dwo_name); |
| } |
| |
| static int |
| eq_dwo_file (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwo_file *lhs = item_lhs; |
| const struct dwo_file *rhs = item_rhs; |
| |
| return strcmp (lhs->dwo_name, rhs->dwo_name) == 0; |
| } |
| |
| /* Allocate a hash table for DWO files. */ |
| |
| static htab_t |
| allocate_dwo_file_hash_table (void) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| return htab_create_alloc_ex (41, |
| hash_dwo_file, |
| eq_dwo_file, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| static hashval_t |
| hash_dwo_unit (const void *item) |
| { |
| const struct dwo_unit *dwo_unit = item; |
| |
| /* This drops the top 32 bits of the id, but is ok for a hash. */ |
| return dwo_unit->signature; |
| } |
| |
| static int |
| eq_dwo_unit (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwo_unit *lhs = item_lhs; |
| const struct dwo_unit *rhs = item_rhs; |
| |
| /* The signature is assumed to be unique within the DWO file. |
| So while object file CU dwo_id's always have the value zero, |
| that's OK, assuming each object file DWO file has only one CU, |
| and that's the rule for now. */ |
| return lhs->signature == rhs->signature; |
| } |
| |
| /* Allocate a hash table for DWO CUs,TUs. |
| There is one of these tables for each of CUs,TUs for each DWO file. */ |
| |
| static htab_t |
| allocate_dwo_unit_table (struct objfile *objfile) |
| { |
| /* Start out with a pretty small number. |
| Generally DWO files contain only one CU and maybe some TUs. */ |
| return htab_create_alloc_ex (3, |
| hash_dwo_unit, |
| eq_dwo_unit, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| /* This function is mapped across the sections and remembers the offset and |
| size of each of the DWO debugging sections we are interested in. */ |
| |
| static void |
| dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_file_ptr) |
| { |
| struct dwo_file *dwo_file = dwo_file_ptr; |
| const struct dwo_section_names *names = &dwo_section_names; |
| |
| if (section_is_p (sectp->name, &names->abbrev_dwo)) |
| { |
| dwo_file->sections.abbrev.asection = sectp; |
| dwo_file->sections.abbrev.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->info_dwo)) |
| { |
| dwo_file->sections.info.asection = sectp; |
| dwo_file->sections.info.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->line_dwo)) |
| { |
| dwo_file->sections.line.asection = sectp; |
| dwo_file->sections.line.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->loc_dwo)) |
| { |
| dwo_file->sections.loc.asection = sectp; |
| dwo_file->sections.loc.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_dwo)) |
| { |
| dwo_file->sections.str.asection = sectp; |
| dwo_file->sections.str.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->str_offsets_dwo)) |
| { |
| dwo_file->sections.str_offsets.asection = sectp; |
| dwo_file->sections.str_offsets.size = bfd_get_section_size (sectp); |
| } |
| else if (section_is_p (sectp->name, &names->types_dwo)) |
| { |
| struct dwarf2_section_info type_section; |
| |
| memset (&type_section, 0, sizeof (type_section)); |
| type_section.asection = sectp; |
| type_section.size = bfd_get_section_size (sectp); |
| VEC_safe_push (dwarf2_section_info_def, dwo_file->sections.types, |
| &type_section); |
| } |
| } |
| |
| /* Structure used to pass data to create_debug_info_hash_table_reader. */ |
| |
| struct create_dwo_info_table_data |
| { |
| struct dwo_file *dwo_file; |
| htab_t cu_htab; |
| }; |
| |
| /* die_reader_func for create_debug_info_hash_table. */ |
| |
| static void |
| create_debug_info_hash_table_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *datap) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| sect_offset offset = cu->per_cu->offset; |
| struct dwarf2_section_info *section = cu->per_cu->info_or_types_section; |
| struct create_dwo_info_table_data *data = datap; |
| struct dwo_file *dwo_file = data->dwo_file; |
| htab_t cu_htab = data->cu_htab; |
| void **slot; |
| struct attribute *attr; |
| struct dwo_unit *dwo_unit; |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu); |
| if (attr == NULL) |
| { |
| error (_("Dwarf Error: debug entry at offset 0x%x is missing" |
| " its dwo_id [in module %s]"), |
| offset.sect_off, dwo_file->dwo_name); |
| return; |
| } |
| |
| dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit); |
| dwo_unit->dwo_file = dwo_file; |
| dwo_unit->signature = DW_UNSND (attr); |
| dwo_unit->info_or_types_section = section; |
| dwo_unit->offset = offset; |
| dwo_unit->length = cu->per_cu->length; |
| |
| slot = htab_find_slot (cu_htab, dwo_unit, INSERT); |
| gdb_assert (slot != NULL); |
| if (*slot != NULL) |
| { |
| const struct dwo_unit *dup_dwo_unit = *slot; |
| |
| complaint (&symfile_complaints, |
| _("debug entry at offset 0x%x is duplicate to the entry at" |
| " offset 0x%x, dwo_id 0x%s [in module %s]"), |
| offset.sect_off, dup_dwo_unit->offset.sect_off, |
| phex (dwo_unit->signature, sizeof (dwo_unit->signature)), |
| dwo_file->dwo_name); |
| } |
| else |
| *slot = dwo_unit; |
| |
| if (dwarf2_die_debug) |
| fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n", |
| offset.sect_off, |
| phex (dwo_unit->signature, |
| sizeof (dwo_unit->signature))); |
| } |
| |
| /* Create a hash table to map DWO IDs to their CU entry in .debug_info.dwo. */ |
| |
| static htab_t |
| create_debug_info_hash_table (struct dwo_file *dwo_file) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = &dwo_file->sections.info; |
| bfd *abfd; |
| htab_t cu_htab; |
| gdb_byte *info_ptr, *end_ptr; |
| struct create_dwo_info_table_data create_dwo_info_table_data; |
| |
| dwarf2_read_section (objfile, section); |
| info_ptr = section->buffer; |
| |
| if (info_ptr == NULL) |
| return NULL; |
| |
| /* We can't set abfd until now because the section may be empty or |
| not present, in which case section->asection will be NULL. */ |
| abfd = section->asection->owner; |
| |
| if (dwarf2_die_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n", |
| bfd_get_filename (abfd)); |
| |
| cu_htab = allocate_dwo_unit_table (objfile); |
| |
| create_dwo_info_table_data.dwo_file = dwo_file; |
| create_dwo_info_table_data.cu_htab = cu_htab; |
| |
| end_ptr = info_ptr + section->size; |
| while (info_ptr < end_ptr) |
| { |
| struct dwarf2_per_cu_data per_cu; |
| |
| memset (&per_cu, 0, sizeof (per_cu)); |
| per_cu.objfile = objfile; |
| per_cu.is_debug_types = 0; |
| per_cu.offset.sect_off = info_ptr - section->buffer; |
| per_cu.info_or_types_section = section; |
| |
| init_cutu_and_read_dies_no_follow (&per_cu, |
| &dwo_file->sections.abbrev, |
| dwo_file, |
| create_debug_info_hash_table_reader, |
| &create_dwo_info_table_data); |
| |
| info_ptr += per_cu.length; |
| } |
| |
| return cu_htab; |
| } |
| |
| /* Subroutine of open_dwo_file to simplify it. |
| Open the file specified by FILE_NAME and hand it off to BFD for |
| preliminary analysis. Return a newly initialized bfd *, which |
| includes a canonicalized copy of FILE_NAME. |
| In case of trouble, return NULL. |
| NOTE: This function is derived from symfile_bfd_open. */ |
| |
| static bfd * |
| try_open_dwo_file (const char *file_name) |
| { |
| bfd *sym_bfd; |
| int desc; |
| char *absolute_name; |
| |
| desc = openp (debug_file_directory, OPF_TRY_CWD_FIRST, file_name, |
| O_RDONLY | O_BINARY, &absolute_name); |
| if (desc < 0) |
| return NULL; |
| |
| sym_bfd = bfd_fopen (absolute_name, gnutarget, FOPEN_RB, desc); |
| if (!sym_bfd) |
| { |
| close (desc); |
| xfree (absolute_name); |
| return NULL; |
| } |
| bfd_set_cacheable (sym_bfd, 1); |
| |
| if (!bfd_check_format (sym_bfd, bfd_object)) |
| { |
| bfd_close (sym_bfd); /* This also closes desc. */ |
| xfree (absolute_name); |
| return NULL; |
| } |
| |
| /* bfd_usrdata exists for applications and libbfd must not touch it. */ |
| gdb_assert (bfd_usrdata (sym_bfd) == NULL); |
| |
| return sym_bfd; |
| } |
| |
| /* Try to open DWO file DWO_NAME. |
| COMP_DIR is the DW_AT_comp_dir attribute. |
| The result is the bfd handle of the file. |
| If there is a problem finding or opening the file, return NULL. |
| Upon success, the canonicalized path of the file is stored in the bfd, |
| same as symfile_bfd_open. */ |
| |
| static bfd * |
| open_dwo_file (const char *dwo_name, const char *comp_dir) |
| { |
| bfd *abfd; |
| |
| if (IS_ABSOLUTE_PATH (dwo_name)) |
| return try_open_dwo_file (dwo_name); |
| |
| /* Before trying the search path, try DWO_NAME in COMP_DIR. */ |
| |
| if (comp_dir != NULL) |
| { |
| char *path_to_try = concat (comp_dir, SLASH_STRING, dwo_name, NULL); |
| |
| /* NOTE: If comp_dir is a relative path, this will also try the |
| search path, which seems useful. */ |
| abfd = try_open_dwo_file (path_to_try); |
| xfree (path_to_try); |
| if (abfd != NULL) |
| return abfd; |
| } |
| |
| /* That didn't work, try debug-file-directory, which, despite its name, |
| is a list of paths. */ |
| |
| if (*debug_file_directory == '\0') |
| return NULL; |
| |
| return try_open_dwo_file (dwo_name); |
| } |
| |
| /* Initialize the use of the DWO file specified by DWO_NAME. */ |
| |
| static struct dwo_file * |
| init_dwo_file (const char *dwo_name, const char *comp_dir) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwo_file *dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct dwo_file); |
| bfd *abfd; |
| struct cleanup *cleanups; |
| |
| if (dwarf2_die_debug) |
| fprintf_unfiltered (gdb_stdlog, "Reading DWO file %s:\n", dwo_name); |
| |
| abfd = open_dwo_file (dwo_name, comp_dir); |
| if (abfd == NULL) |
| return NULL; |
| dwo_file->dwo_name = dwo_name; |
| dwo_file->dwo_bfd = abfd; |
| |
| cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file); |
| |
| bfd_map_over_sections (abfd, dwarf2_locate_dwo_sections, dwo_file); |
| |
| dwo_file->cus = create_debug_info_hash_table (dwo_file); |
| |
| dwo_file->tus = create_debug_types_hash_table (dwo_file, |
| dwo_file->sections.types); |
| |
| discard_cleanups (cleanups); |
| |
| return dwo_file; |
| } |
| |
| /* Lookup DWO file DWO_NAME. */ |
| |
| static struct dwo_file * |
| lookup_dwo_file (char *dwo_name, const char *comp_dir) |
| { |
| struct dwo_file *dwo_file; |
| struct dwo_file find_entry; |
| void **slot; |
| |
| if (dwarf2_per_objfile->dwo_files == NULL) |
| dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table (); |
| |
| /* Have we already seen this DWO file? */ |
| find_entry.dwo_name = dwo_name; |
| slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT); |
| |
| /* If not, read it in and build a table of the DWOs it contains. */ |
| if (*slot == NULL) |
| *slot = init_dwo_file (dwo_name, comp_dir); |
| |
| /* NOTE: This will be NULL if unable to open the file. */ |
| dwo_file = *slot; |
| |
| return dwo_file; |
| } |
| |
| /* Lookup the DWO CU referenced from THIS_CU in DWO file DWO_NAME. |
| If non-NULL, comp_dir is the DW_AT_comp_dir attribute. |
| SIGNATURE is the "dwo_id" of the CU (for consistency we use the same |
| nomenclature as TUs). |
| The result is the DWO CU or NULL if we didn't find it |
| (dwo_id mismatch or couldn't find the DWO file). */ |
| |
| static struct dwo_unit * |
| lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu, |
| char *dwo_name, const char *comp_dir, |
| ULONGEST signature) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwo_file *dwo_file; |
| |
| dwo_file = lookup_dwo_file (dwo_name, comp_dir); |
| if (dwo_file == NULL) |
| return NULL; |
| |
| /* Look up the DWO using its signature(dwo_id). */ |
| |
| if (dwo_file->cus != NULL) |
| { |
| struct dwo_unit find_dwo_cu, *dwo_cu; |
| |
| find_dwo_cu.signature = signature; |
| dwo_cu = htab_find (dwo_file->cus, &find_dwo_cu); |
| |
| if (dwo_cu != NULL) |
| return dwo_cu; |
| } |
| |
| /* We didn't find it. This must mean a dwo_id mismatch. */ |
| |
| complaint (&symfile_complaints, |
| _("Could not find DWO CU referenced by CU at offset 0x%x" |
| " [in module %s]"), |
| this_cu->offset.sect_off, objfile->name); |
| return NULL; |
| } |
| |
| /* Lookup the DWO TU referenced from THIS_TU in DWO file DWO_NAME. |
| If non-NULL, comp_dir is the DW_AT_comp_dir attribute. |
| The result is the DWO CU or NULL if we didn't find it |
| (dwo_id mismatch or couldn't find the DWO file). */ |
| |
| static struct dwo_unit * |
| lookup_dwo_type_unit (struct signatured_type *this_tu, |
| char *dwo_name, const char *comp_dir) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwo_file *dwo_file; |
| |
| dwo_file = lookup_dwo_file (dwo_name, comp_dir); |
| if (dwo_file == NULL) |
| return NULL; |
| |
| /* Look up the DWO using its signature(dwo_id). */ |
| |
| if (dwo_file->tus != NULL) |
| { |
| struct dwo_unit find_dwo_tu, *dwo_tu; |
| |
| find_dwo_tu.signature = this_tu->signature; |
| dwo_tu = htab_find (dwo_file->tus, &find_dwo_tu); |
| |
| if (dwo_tu != NULL) |
| return dwo_tu; |
| } |
| |
| /* We didn't find it. This must mean a dwo_id mismatch. */ |
| |
| complaint (&symfile_complaints, |
| _("Could not find DWO TU referenced by TU at offset 0x%x" |
| " [in module %s]"), |
| this_tu->per_cu.offset.sect_off, objfile->name); |
| return NULL; |
| } |
| |
| /* Free all resources associated with DWO_FILE. |
| Close the DWO file and munmap the sections. |
| All memory should be on the objfile obstack. */ |
| |
| static void |
| free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile) |
| { |
| int ix; |
| struct dwarf2_section_info *section; |
| |
| gdb_assert (dwo_file->dwo_bfd != objfile->obfd); |
| bfd_close (dwo_file->dwo_bfd); |
| |
| munmap_section_buffer (&dwo_file->sections.abbrev); |
| munmap_section_buffer (&dwo_file->sections.info); |
| munmap_section_buffer (&dwo_file->sections.line); |
| munmap_section_buffer (&dwo_file->sections.loc); |
| munmap_section_buffer (&dwo_file->sections.str); |
| munmap_section_buffer (&dwo_file->sections.str_offsets); |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_section_info_def, dwo_file->sections.types, |
| ix, section); |
| ++ix) |
| munmap_section_buffer (section); |
| |
| VEC_free (dwarf2_section_info_def, dwo_file->sections.types); |
| } |
| |
| /* Wrapper for free_dwo_file for use in cleanups. */ |
| |
| static void |
| free_dwo_file_cleanup (void *arg) |
| { |
| struct dwo_file *dwo_file = (struct dwo_file *) arg; |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| |
| free_dwo_file (dwo_file, objfile); |
| } |
| |
| /* Traversal function for free_dwo_files. */ |
| |
| static int |
| free_dwo_file_from_slot (void **slot, void *info) |
| { |
| struct dwo_file *dwo_file = (struct dwo_file *) *slot; |
| struct objfile *objfile = (struct objfile *) info; |
| |
| free_dwo_file (dwo_file, objfile); |
| |
| return 1; |
| } |
| |
| /* Free all resources associated with DWO_FILES. */ |
| |
| static void |
| free_dwo_files (htab_t dwo_files, struct objfile *objfile) |
| { |
| htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile); |
| } |
| |
| /* Read in various DIEs. */ |
| |
| /* qsort helper for inherit_abstract_dies. */ |
| |
| static int |
| unsigned_int_compar (const void *ap, const void *bp) |
| { |
| unsigned int a = *(unsigned int *) ap; |
| unsigned int b = *(unsigned int *) bp; |
| |
| return (a > b) - (b > a); |
| } |
| |
| /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes). |
| Inherit only the children of the DW_AT_abstract_origin DIE not being |
| already referenced by DW_AT_abstract_origin from the children of the |
| current DIE. */ |
| |
| static void |
| inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| unsigned die_children_count; |
| /* CU offsets which were referenced by children of the current DIE. */ |
| sect_offset *offsets; |
| sect_offset *offsets_end, *offsetp; |
| /* Parent of DIE - referenced by DW_AT_abstract_origin. */ |
| struct die_info *origin_die; |
| /* Iterator of the ORIGIN_DIE children. */ |
| struct die_info *origin_child_die; |
| struct cleanup *cleanups; |
| struct attribute *attr; |
| struct dwarf2_cu *origin_cu; |
| struct pending **origin_previous_list_in_scope; |
| |
| attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| if (!attr) |
| return; |
| |
| /* Note that following die references may follow to a die in a |
| different cu. */ |
| |
| origin_cu = cu; |
| origin_die = follow_die_ref (die, attr, &origin_cu); |
| |
| /* We're inheriting ORIGIN's children into the scope we'd put DIE's |
| symbols in. */ |
| origin_previous_list_in_scope = origin_cu->list_in_scope; |
| origin_cu->list_in_scope = cu->list_in_scope; |
| |
| if (die->tag != origin_die->tag |
| && !(die->tag == DW_TAG_inlined_subroutine |
| && origin_die->tag == DW_TAG_subprogram)) |
| complaint (&symfile_complaints, |
| _("DIE 0x%x and its abstract origin 0x%x have different tags"), |
| die->offset.sect_off, origin_die->offset.sect_off); |
| |
| child_die = die->child; |
| die_children_count = 0; |
| while (child_die && child_die->tag) |
| { |
| child_die = sibling_die (child_die); |
| die_children_count++; |
| } |
| offsets = xmalloc (sizeof (*offsets) * die_children_count); |
| cleanups = make_cleanup (xfree, offsets); |
| |
| offsets_end = offsets; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| /* For each CHILD_DIE, find the corresponding child of |
| ORIGIN_DIE. If there is more than one layer of |
| DW_AT_abstract_origin, follow them all; there shouldn't be, |
| but GCC versions at least through 4.4 generate this (GCC PR |
| 40573). */ |
| struct die_info *child_origin_die = child_die; |
| struct dwarf2_cu *child_origin_cu = cu; |
| |
| while (1) |
| { |
| attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin, |
| child_origin_cu); |
| if (attr == NULL) |
| break; |
| child_origin_die = follow_die_ref (child_origin_die, attr, |
| &child_origin_cu); |
| } |
| |
| /* According to DWARF3 3.3.8.2 #3 new entries without their abstract |
| counterpart may exist. */ |
| if (child_origin_die != child_die) |
| { |
| if (child_die->tag != child_origin_die->tag |
| && !(child_die->tag == DW_TAG_inlined_subroutine |
| && child_origin_die->tag == DW_TAG_subprogram)) |
| complaint (&symfile_complaints, |
| _("Child DIE 0x%x and its abstract origin 0x%x have " |
| "different tags"), child_die->offset.sect_off, |
| child_origin_die->offset.sect_off); |
| if (child_origin_die->parent != origin_die) |
| complaint (&symfile_complaints, |
| _("Child DIE 0x%x and its abstract origin 0x%x have " |
| "different parents"), child_die->offset.sect_off, |
| child_origin_die->offset.sect_off); |
| else |
| *offsets_end++ = child_origin_die->offset; |
| } |
| child_die = sibling_die (child_die); |
| } |
| qsort (offsets, offsets_end - offsets, sizeof (*offsets), |
| unsigned_int_compar); |
| for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++) |
| if (offsetp[-1].sect_off == offsetp->sect_off) |
| complaint (&symfile_complaints, |
| _("Multiple children of DIE 0x%x refer " |
| "to DIE 0x%x as their abstract origin"), |
| die->offset.sect_off, offsetp->sect_off); |
| |
| offsetp = offsets; |
| origin_child_die = origin_die->child; |
| while (origin_child_die && origin_child_die->tag) |
| { |
| /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */ |
| while (offsetp < offsets_end |
| && offsetp->sect_off < origin_child_die->offset.sect_off) |
| offsetp++; |
| if (offsetp >= offsets_end |
| || offsetp->sect_off > origin_child_die->offset.sect_off) |
| { |
| /* Found that ORIGIN_CHILD_DIE is really not referenced. */ |
| process_die (origin_child_die, origin_cu); |
| } |
| origin_child_die = sibling_die (origin_child_die); |
| } |
| origin_cu->list_in_scope = origin_previous_list_in_scope; |
| |
| do_cleanups (cleanups); |
| } |
| |
| static void |
| read_func_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct context_stack *new; |
| CORE_ADDR lowpc; |
| CORE_ADDR highpc; |
| struct die_info *child_die; |
| struct attribute *attr, *call_line, *call_file; |
| char *name; |
| CORE_ADDR baseaddr; |
| struct block *block; |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| VEC (symbolp) *template_args = NULL; |
| struct template_symbol *templ_func = NULL; |
| |
| if (inlined_func) |
| { |
| /* If we do not have call site information, we can't show the |
| caller of this inlined function. That's too confusing, so |
| only use the scope for local variables. */ |
| call_line = dwarf2_attr (die, DW_AT_call_line, cu); |
| call_file = dwarf2_attr (die, DW_AT_call_file, cu); |
| if (call_line == NULL || call_file == NULL) |
| { |
| read_lexical_block_scope (die, cu); |
| return; |
| } |
| } |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| name = dwarf2_name (die, cu); |
| |
| /* Ignore functions with missing or empty names. These are actually |
| illegal according to the DWARF standard. */ |
| if (name == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("missing name for subprogram DIE at %d"), |
| die->offset.sect_off); |
| return; |
| } |
| |
| /* Ignore functions with missing or invalid low and high pc attributes. */ |
| if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)) |
| { |
| attr = dwarf2_attr (die, DW_AT_external, cu); |
| if (!attr || !DW_UNSND (attr)) |
| complaint (&symfile_complaints, |
| _("cannot get low and high bounds " |
| "for subprogram DIE at %d"), |
| die->offset.sect_off); |
| return; |
| } |
| |
| lowpc += baseaddr; |
| highpc += baseaddr; |
| |
| /* If we have any template arguments, then we must allocate a |
| different sort of symbol. */ |
| for (child_die = die->child; child_die; child_die = sibling_die (child_die)) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack, |
| struct template_symbol); |
| templ_func->base.is_cplus_template_function = 1; |
| break; |
| } |
| } |
| |
| new = push_context (0, lowpc); |
| new->name = new_symbol_full (die, read_type_die (die, cu), cu, |
| (struct symbol *) templ_func); |
| |
| /* If there is a location expression for DW_AT_frame_base, record |
| it. */ |
| attr = dwarf2_attr (die, DW_AT_frame_base, cu); |
| if (attr) |
| /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location |
| expression is being recorded directly in the function's symbol |
| and not in a separate frame-base object. I guess this hack is |
| to avoid adding some sort of frame-base adjunct/annex to the |
| function's symbol :-(. The problem with doing this is that it |
| results in a function symbol with a location expression that |
| has nothing to do with the location of the function, ouch! The |
| relationship should be: a function's symbol has-a frame base; a |
| frame-base has-a location expression. */ |
| dwarf2_symbol_mark_computed (attr, new->name, cu); |
| |
| cu->list_in_scope = &local_symbols; |
| |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| VEC_safe_push (symbolp, template_args, arg); |
| } |
| else |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| inherit_abstract_dies (die, cu); |
| |
| /* If we have a DW_AT_specification, we might need to import using |
| directives from the context of the specification DIE. See the |
| comment in determine_prefix. */ |
| if (cu->language == language_cplus |
| && dwarf2_attr (die, DW_AT_specification, cu)) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| struct die_info *spec_die = die_specification (die, &spec_cu); |
| |
| while (spec_die) |
| { |
| child_die = spec_die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_imported_module) |
| process_die (child_die, spec_cu); |
| child_die = sibling_die (child_die); |
| } |
| |
| /* In some cases, GCC generates specification DIEs that |
| themselves contain DW_AT_specification attributes. */ |
| spec_die = die_specification (spec_die, &spec_cu); |
| } |
| } |
| |
| new = pop_context (); |
| /* Make a block for the local symbols within. */ |
| block = finish_block (new->name, &local_symbols, new->old_blocks, |
| lowpc, highpc, objfile); |
| |
| /* For C++, set the block's scope. */ |
| if (cu->language == language_cplus || cu->language == language_fortran) |
| cp_set_block_scope (new->name, block, &objfile->objfile_obstack, |
| determine_prefix (die, cu), |
| processing_has_namespace_info); |
| |
| /* If we have address ranges, record them. */ |
| dwarf2_record_block_ranges (die, block, baseaddr, cu); |
| |
| /* Attach template arguments to function. */ |
| if (! VEC_empty (symbolp, template_args)) |
| { |
| gdb_assert (templ_func != NULL); |
| |
| templ_func->n_template_arguments = VEC_length (symbolp, template_args); |
| templ_func->template_arguments |
| = obstack_alloc (&objfile->objfile_obstack, |
| (templ_func->n_template_arguments |
| * sizeof (struct symbol *))); |
| memcpy (templ_func->template_arguments, |
| VEC_address (symbolp, template_args), |
| (templ_func->n_template_arguments * sizeof (struct symbol *))); |
| VEC_free (symbolp, template_args); |
| } |
| |
| /* In C++, we can have functions nested inside functions (e.g., when |
| a function declares a class that has methods). This means that |
| when we finish processing a function scope, we may need to go |
| back to building a containing block's symbol lists. */ |
| local_symbols = new->locals; |
| param_symbols = new->params; |
| using_directives = new->using_directives; |
| |
| /* If we've finished processing a top-level function, subsequent |
| symbols go in the file symbol list. */ |
| if (outermost_context_p ()) |
| cu->list_in_scope = &file_symbols; |
| } |
| |
| /* Process all the DIES contained within a lexical block scope. Start |
| a new scope, process the dies, and then close the scope. */ |
| |
| static void |
| read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct context_stack *new; |
| CORE_ADDR lowpc, highpc; |
| struct die_info *child_die; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| /* Ignore blocks with missing or invalid low and high pc attributes. */ |
| /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges |
| as multiple lexical blocks? Handling children in a sane way would |
| be nasty. Might be easier to properly extend generic blocks to |
| describe ranges. */ |
| if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)) |
| return; |
| lowpc += baseaddr; |
| highpc += baseaddr; |
| |
| push_context (0, lowpc); |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| new = pop_context (); |
| |
| if (local_symbols != NULL || using_directives != NULL) |
| { |
| struct block *block |
| = finish_block (0, &local_symbols, new->old_blocks, new->start_addr, |
| highpc, objfile); |
| |
| /* Note that recording ranges after traversing children, as we |
| do here, means that recording a parent's ranges entails |
| walking across all its children's ranges as they appear in |
| the address map, which is quadratic behavior. |
| |
| It would be nicer to record the parent's ranges before |
| traversing its children, simply overriding whatever you find |
| there. But since we don't even decide whether to create a |
| block until after we've traversed its children, that's hard |
| to do. */ |
| dwarf2_record_block_ranges (die, block, baseaddr, cu); |
| } |
| local_symbols = new->locals; |
| using_directives = new->using_directives; |
| } |
| |
| /* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */ |
| |
| static void |
| read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| CORE_ADDR pc, baseaddr; |
| struct attribute *attr; |
| struct call_site *call_site, call_site_local; |
| void **slot; |
| int nparams; |
| struct die_info *child_die; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (!attr) |
| { |
| complaint (&symfile_complaints, |
| _("missing DW_AT_low_pc for DW_TAG_GNU_call_site " |
| "DIE 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| return; |
| } |
| pc = DW_ADDR (attr) + baseaddr; |
| |
| if (cu->call_site_htab == NULL) |
| cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq, |
| NULL, &objfile->objfile_obstack, |
| hashtab_obstack_allocate, NULL); |
| call_site_local.pc = pc; |
| slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT); |
| if (*slot != NULL) |
| { |
| complaint (&symfile_complaints, |
| _("Duplicate PC %s for DW_TAG_GNU_call_site " |
| "DIE 0x%x [in module %s]"), |
| paddress (gdbarch, pc), die->offset.sect_off, objfile->name); |
| return; |
| } |
| |
| /* Count parameters at the caller. */ |
| |
| nparams = 0; |
| for (child_die = die->child; child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| if (child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| complaint (&symfile_complaints, |
| _("Tag %d is not DW_TAG_GNU_call_site_parameter in " |
| "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"), |
| child_die->tag, child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| |
| nparams++; |
| } |
| |
| call_site = obstack_alloc (&objfile->objfile_obstack, |
| (sizeof (*call_site) |
| + (sizeof (*call_site->parameter) |
| * (nparams - 1)))); |
| *slot = call_site; |
| memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter)); |
| call_site->pc = pc; |
| |
| if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu)) |
| { |
| struct die_info *func_die; |
| |
| /* Skip also over DW_TAG_inlined_subroutine. */ |
| for (func_die = die->parent; |
| func_die && func_die->tag != DW_TAG_subprogram |
| && func_die->tag != DW_TAG_subroutine_type; |
| func_die = func_die->parent); |
| |
| /* DW_AT_GNU_all_call_sites is a superset |
| of DW_AT_GNU_all_tail_call_sites. */ |
| if (func_die |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu) |
| && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu)) |
| { |
| /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is |
| not complete. But keep CALL_SITE for look ups via call_site_htab, |
| both the initial caller containing the real return address PC and |
| the final callee containing the current PC of a chain of tail |
| calls do not need to have the tail call list complete. But any |
| function candidate for a virtual tail call frame searched via |
| TYPE_TAIL_CALL_LIST must have the tail call list complete to be |
| determined unambiguously. */ |
| } |
| else |
| { |
| struct type *func_type = NULL; |
| |
| if (func_die) |
| func_type = get_die_type (func_die, cu); |
| if (func_type != NULL) |
| { |
| gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC); |
| |
| /* Enlist this call site to the function. */ |
| call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type); |
| TYPE_TAIL_CALL_LIST (func_type) = call_site; |
| } |
| else |
| complaint (&symfile_complaints, |
| _("Cannot find function owning DW_TAG_GNU_call_site " |
| "DIE 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_abstract_origin, cu); |
| SET_FIELD_DWARF_BLOCK (call_site->target, NULL); |
| if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)) |
| /* Keep NULL DWARF_BLOCK. */; |
| else if (attr_form_is_block (attr)) |
| { |
| struct dwarf2_locexpr_baton *dlbaton; |
| |
| dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton)); |
| dlbaton->data = DW_BLOCK (attr)->data; |
| dlbaton->size = DW_BLOCK (attr)->size; |
| dlbaton->per_cu = cu->per_cu; |
| |
| SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton); |
| } |
| else if (is_ref_attr (attr)) |
| { |
| struct dwarf2_cu *target_cu = cu; |
| struct die_info *target_die; |
| |
| target_die = follow_die_ref_or_sig (die, attr, &target_cu); |
| gdb_assert (target_cu->objfile == objfile); |
| if (die_is_declaration (target_die, target_cu)) |
| { |
| const char *target_physname; |
| |
| target_physname = dwarf2_physname (NULL, target_die, target_cu); |
| if (target_physname == NULL) |
| complaint (&symfile_complaints, |
| _("DW_AT_GNU_call_site_target target DIE has invalid " |
| "physname, for referencing DIE 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| else |
| SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname); |
| } |
| else |
| { |
| CORE_ADDR lowpc; |
| |
| /* DW_AT_entry_pc should be preferred. */ |
| if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)) |
| complaint (&symfile_complaints, |
| _("DW_AT_GNU_call_site_target target DIE has invalid " |
| "low pc, for referencing DIE 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| else |
| SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr); |
| } |
| } |
| else |
| complaint (&symfile_complaints, |
| _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither " |
| "block nor reference, for DIE 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| |
| call_site->per_cu = cu->per_cu; |
| |
| for (child_die = die->child; |
| child_die && child_die->tag; |
| child_die = sibling_die (child_die)) |
| { |
| struct call_site_parameter *parameter; |
| |
| if (child_die->tag != DW_TAG_GNU_call_site_parameter) |
| { |
| /* Already printed the complaint above. */ |
| continue; |
| } |
| |
| gdb_assert (call_site->parameter_count < nparams); |
| parameter = &call_site->parameter[call_site->parameter_count]; |
| |
| /* DW_AT_location specifies the register number. Value of the data |
| assumed for the register is contained in DW_AT_GNU_call_site_value. */ |
| |
| attr = dwarf2_attr (child_die, DW_AT_location, cu); |
| if (!attr || !attr_form_is_block (attr)) |
| { |
| complaint (&symfile_complaints, |
| _("No DW_FORM_block* DW_AT_location for " |
| "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| parameter->dwarf_reg = dwarf_block_to_dwarf_reg (DW_BLOCK (attr)->data, |
| &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size]); |
| if (parameter->dwarf_reg == -1 |
| && !dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (attr)->data, |
| &DW_BLOCK (attr)->data[DW_BLOCK (attr)->size], |
| ¶meter->fb_offset)) |
| { |
| complaint (&symfile_complaints, |
| _("Only single DW_OP_reg or DW_OP_fbreg is supported " |
| "for DW_FORM_block* DW_AT_location for " |
| "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu); |
| if (!attr_form_is_block (attr)) |
| { |
| complaint (&symfile_complaints, |
| _("No DW_FORM_block* DW_AT_GNU_call_site_value for " |
| "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| continue; |
| } |
| parameter->value = DW_BLOCK (attr)->data; |
| parameter->value_size = DW_BLOCK (attr)->size; |
| |
| /* Parameters are not pre-cleared by memset above. */ |
| parameter->data_value = NULL; |
| parameter->data_value_size = 0; |
| call_site->parameter_count++; |
| |
| attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu); |
| if (attr) |
| { |
| if (!attr_form_is_block (attr)) |
| complaint (&symfile_complaints, |
| _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for " |
| "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"), |
| child_die->offset.sect_off, objfile->name); |
| else |
| { |
| parameter->data_value = DW_BLOCK (attr)->data; |
| parameter->data_value_size = DW_BLOCK (attr)->size; |
| } |
| } |
| } |
| } |
| |
| /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET. |
| Return 1 if the attributes are present and valid, otherwise, return 0. |
| If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */ |
| |
| static int |
| dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return, |
| CORE_ADDR *high_return, struct dwarf2_cu *cu, |
| struct partial_symtab *ranges_pst) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| bfd *obfd = objfile->obfd; |
| unsigned int addr_size = cu_header->addr_size; |
| CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); |
| /* Base address selection entry. */ |
| CORE_ADDR base; |
| int found_base; |
| unsigned int dummy; |
| gdb_byte *buffer; |
| CORE_ADDR marker; |
| int low_set; |
| CORE_ADDR low = 0; |
| CORE_ADDR high = 0; |
| CORE_ADDR baseaddr; |
| |
| found_base = cu->base_known; |
| base = cu->base_address; |
| |
| dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges); |
| if (offset >= dwarf2_per_objfile->ranges.size) |
| { |
| complaint (&symfile_complaints, |
| _("Offset %d out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return 0; |
| } |
| buffer = dwarf2_per_objfile->ranges.buffer + offset; |
| |
| /* Read in the largest possible address. */ |
| marker = read_address (obfd, buffer, cu, &dummy); |
| if ((marker & mask) == mask) |
| { |
| /* If we found the largest possible address, then |
| read the base address. */ |
| base = read_address (obfd, buffer + addr_size, cu, &dummy); |
| buffer += 2 * addr_size; |
| offset += 2 * addr_size; |
| found_base = 1; |
| } |
| |
| low_set = 0; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| while (1) |
| { |
| CORE_ADDR range_beginning, range_end; |
| |
| range_beginning = read_address (obfd, buffer, cu, &dummy); |
| buffer += addr_size; |
| range_end = read_address (obfd, buffer, cu, &dummy); |
| buffer += addr_size; |
| offset += 2 * addr_size; |
| |
| /* An end of list marker is a pair of zero addresses. */ |
| if (range_beginning == 0 && range_end == 0) |
| /* Found the end of list entry. */ |
| break; |
| |
| /* Each base address selection entry is a pair of 2 values. |
| The first is the largest possible address, the second is |
| the base address. Check for a base address here. */ |
| if ((range_beginning & mask) == mask) |
| { |
| /* If we found the largest possible address, then |
| read the base address. */ |
| base = read_address (obfd, buffer + addr_size, cu, &dummy); |
| found_base = 1; |
| continue; |
| } |
| |
| if (!found_base) |
| { |
| /* We have no valid base address for the ranges |
| data. */ |
| complaint (&symfile_complaints, |
| _("Invalid .debug_ranges data (no base address)")); |
| return 0; |
| } |
| |
| if (range_beginning > range_end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (&symfile_complaints, |
| _("Invalid .debug_ranges data (inverted range)")); |
| return 0; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (range_beginning == range_end) |
| continue; |
| |
| range_beginning += base; |
| range_end += base; |
| |
| if (ranges_pst != NULL) |
| addrmap_set_empty (objfile->psymtabs_addrmap, |
| range_beginning + baseaddr, |
| range_end - 1 + baseaddr, |
| ranges_pst); |
| |
| /* FIXME: This is recording everything as a low-high |
| segment of consecutive addresses. We should have a |
| data structure for discontiguous block ranges |
| instead. */ |
| if (! low_set) |
| { |
| low = range_beginning; |
| high = range_end; |
| low_set = 1; |
| } |
| else |
| { |
| if (range_beginning < low) |
| low = range_beginning; |
| if (range_end > high) |
| high = range_end; |
| } |
| } |
| |
| if (! low_set) |
| /* If the first entry is an end-of-list marker, the range |
| describes an empty scope, i.e. no instructions. */ |
| return 0; |
| |
| if (low_return) |
| *low_return = low; |
| if (high_return) |
| *high_return = high; |
| return 1; |
| } |
| |
| /* Get low and high pc attributes from a die. Return 1 if the attributes |
| are present and valid, otherwise, return 0. Return -1 if the range is |
| discontinuous, i.e. derived from DW_AT_ranges information. */ |
| |
| static int |
| dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc, |
| CORE_ADDR *highpc, struct dwarf2_cu *cu, |
| struct partial_symtab *pst) |
| { |
| struct attribute *attr; |
| struct attribute *attr_high; |
| CORE_ADDR low = 0; |
| CORE_ADDR high = 0; |
| int ret = 0; |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr) |
| { |
| low = DW_ADDR (attr); |
| if (attr_high->form == DW_FORM_addr |
| || attr_high->form == DW_FORM_GNU_addr_index) |
| high = DW_ADDR (attr_high); |
| else |
| high = low + DW_UNSND (attr_high); |
| } |
| else |
| /* Found high w/o low attribute. */ |
| return 0; |
| |
| /* Found consecutive range of addresses. */ |
| ret = 1; |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr != NULL) |
| { |
| /* Value of the DW_AT_ranges attribute is the offset in the |
| .debug_ranges section. */ |
| if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst)) |
| return 0; |
| /* Found discontinuous range of addresses. */ |
| ret = -1; |
| } |
| } |
| |
| /* read_partial_die has also the strict LOW < HIGH requirement. */ |
| if (high <= low) |
| return 0; |
| |
| /* When using the GNU linker, .gnu.linkonce. sections are used to |
| eliminate duplicate copies of functions and vtables and such. |
| The linker will arbitrarily choose one and discard the others. |
| The AT_*_pc values for such functions refer to local labels in |
| these sections. If the section from that file was discarded, the |
| labels are not in the output, so the relocs get a value of 0. |
| If this is a discarded function, mark the pc bounds as invalid, |
| so that GDB will ignore it. */ |
| if (low == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| return 0; |
| |
| *lowpc = low; |
| if (highpc) |
| *highpc = high; |
| return ret; |
| } |
| |
| /* Assuming that DIE represents a subprogram DIE or a lexical block, get |
| its low and high PC addresses. Do nothing if these addresses could not |
| be determined. Otherwise, set LOWPC to the low address if it is smaller, |
| and HIGHPC to the high address if greater than HIGHPC. */ |
| |
| static void |
| dwarf2_get_subprogram_pc_bounds (struct die_info *die, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| struct dwarf2_cu *cu) |
| { |
| CORE_ADDR low, high; |
| struct die_info *child = die->child; |
| |
| if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL)) |
| { |
| *lowpc = min (*lowpc, low); |
| *highpc = max (*highpc, high); |
| } |
| |
| /* If the language does not allow nested subprograms (either inside |
| subprograms or lexical blocks), we're done. */ |
| if (cu->language != language_ada) |
| return; |
| |
| /* Check all the children of the given DIE. If it contains nested |
| subprograms, then check their pc bounds. Likewise, we need to |
| check lexical blocks as well, as they may also contain subprogram |
| definitions. */ |
| while (child && child->tag) |
| { |
| if (child->tag == DW_TAG_subprogram |
| || child->tag == DW_TAG_lexical_block) |
| dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu); |
| child = sibling_die (child); |
| } |
| } |
| |
| /* Get the low and high pc's represented by the scope DIE, and store |
| them in *LOWPC and *HIGHPC. If the correct values can't be |
| determined, set *LOWPC to -1 and *HIGHPC to 0. */ |
| |
| static void |
| get_scope_pc_bounds (struct die_info *die, |
| CORE_ADDR *lowpc, CORE_ADDR *highpc, |
| struct dwarf2_cu *cu) |
| { |
| CORE_ADDR best_low = (CORE_ADDR) -1; |
| CORE_ADDR best_high = (CORE_ADDR) 0; |
| CORE_ADDR current_low, current_high; |
| |
| if (dwarf2_get_pc_bounds (die, ¤t_low, ¤t_high, cu, NULL)) |
| { |
| best_low = current_low; |
| best_high = current_high; |
| } |
| else |
| { |
| struct die_info *child = die->child; |
| |
| while (child && child->tag) |
| { |
| switch (child->tag) { |
| case DW_TAG_subprogram: |
| dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu); |
| break; |
| case DW_TAG_namespace: |
| case DW_TAG_module: |
| /* FIXME: carlton/2004-01-16: Should we do this for |
| DW_TAG_class_type/DW_TAG_structure_type, too? I think |
| that current GCC's always emit the DIEs corresponding |
| to definitions of methods of classes as children of a |
| DW_TAG_compile_unit or DW_TAG_namespace (as opposed to |
| the DIEs giving the declarations, which could be |
| anywhere). But I don't see any reason why the |
| standards says that they have to be there. */ |
| get_scope_pc_bounds (child, ¤t_low, ¤t_high, cu); |
| |
| if (current_low != ((CORE_ADDR) -1)) |
| { |
| best_low = min (best_low, current_low); |
| best_high = max (best_high, current_high); |
| } |
| break; |
| default: |
| /* Ignore. */ |
| break; |
| } |
| |
| child = sibling_die (child); |
| } |
| } |
| |
| *lowpc = best_low; |
| *highpc = best_high; |
| } |
| |
| /* Record the address ranges for BLOCK, offset by BASEADDR, as given |
| in DIE. */ |
| |
| static void |
| dwarf2_record_block_ranges (struct die_info *die, struct block *block, |
| CORE_ADDR baseaddr, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct attribute *attr; |
| struct attribute *attr_high; |
| |
| attr_high = dwarf2_attr (die, DW_AT_high_pc, cu); |
| if (attr_high) |
| { |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr) |
| { |
| CORE_ADDR low = DW_ADDR (attr); |
| CORE_ADDR high; |
| if (attr_high->form == DW_FORM_addr |
| || attr_high->form == DW_FORM_GNU_addr_index) |
| high = DW_ADDR (attr_high); |
| else |
| high = low + DW_UNSND (attr_high); |
| |
| record_block_range (block, baseaddr + low, baseaddr + high - 1); |
| } |
| } |
| |
| attr = dwarf2_attr (die, DW_AT_ranges, cu); |
| if (attr) |
| { |
| bfd *obfd = objfile->obfd; |
| |
| /* The value of the DW_AT_ranges attribute is the offset of the |
| address range list in the .debug_ranges section. */ |
| unsigned long offset = DW_UNSND (attr); |
| gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset; |
| |
| /* For some target architectures, but not others, the |
| read_address function sign-extends the addresses it returns. |
| To recognize base address selection entries, we need a |
| mask. */ |
| unsigned int addr_size = cu->header.addr_size; |
| CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1)); |
| |
| /* The base address, to which the next pair is relative. Note |
| that this 'base' is a DWARF concept: most entries in a range |
| list are relative, to reduce the number of relocs against the |
| debugging information. This is separate from this function's |
| 'baseaddr' argument, which GDB uses to relocate debugging |
| information from a shared library based on the address at |
| which the library was loaded. */ |
| CORE_ADDR base = cu->base_address; |
| int base_known = cu->base_known; |
| |
| gdb_assert (dwarf2_per_objfile->ranges.readin); |
| if (offset >= dwarf2_per_objfile->ranges.size) |
| { |
| complaint (&symfile_complaints, |
| _("Offset %lu out of bounds for DW_AT_ranges attribute"), |
| offset); |
| return; |
| } |
| |
| for (;;) |
| { |
| unsigned int bytes_read; |
| CORE_ADDR start, end; |
| |
| start = read_address (obfd, buffer, cu, &bytes_read); |
| buffer += bytes_read; |
| end = read_address (obfd, buffer, cu, &bytes_read); |
| buffer += bytes_read; |
| |
| /* Did we find the end of the range list? */ |
| if (start == 0 && end == 0) |
| break; |
| |
| /* Did we find a base address selection entry? */ |
| else if ((start & base_select_mask) == base_select_mask) |
| { |
| base = end; |
| base_known = 1; |
| } |
| |
| /* We found an ordinary address range. */ |
| else |
| { |
| if (!base_known) |
| { |
| complaint (&symfile_complaints, |
| _("Invalid .debug_ranges data " |
| "(no base address)")); |
| return; |
| } |
| |
| if (start > end) |
| { |
| /* Inverted range entries are invalid. */ |
| complaint (&symfile_complaints, |
| _("Invalid .debug_ranges data " |
| "(inverted range)")); |
| return; |
| } |
| |
| /* Empty range entries have no effect. */ |
| if (start == end) |
| continue; |
| |
| record_block_range (block, |
| baseaddr + base + start, |
| baseaddr + base + end - 1); |
| } |
| } |
| } |
| } |
| |
| /* Check for GCC PR debug/45124 fix which is not present in any G++ version up |
| to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed |
| during 4.6.0 experimental. */ |
| |
| static int |
| producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu) |
| { |
| const char *cs; |
| int major, minor, release; |
| int result = 0; |
| |
| if (cu->producer == NULL) |
| { |
| /* For unknown compilers expect their behavior is DWARF version |
| compliant. |
| |
| GCC started to support .debug_types sections by -gdwarf-4 since |
| gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer |
| for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4 |
| combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility |
| interpreted incorrectly by GDB now - GCC PR debug/48229. */ |
| |
| return 0; |
| } |
| |
| if (cu->checked_producer) |
| return cu->producer_is_gxx_lt_4_6; |
| |
| /* Skip any identifier after "GNU " - such as "C++" or "Java". */ |
| |
| if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0) |
| { |
| /* For non-GCC compilers expect their behavior is DWARF version |
| compliant. */ |
| } |
| else |
| { |
| cs = &cu->producer[strlen ("GNU ")]; |
| while (*cs && !isdigit (*cs)) |
| cs++; |
| if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3) |
| { |
| /* Not recognized as GCC. */ |
| } |
| else |
| result = major < 4 || (major == 4 && minor < 6); |
| } |
| |
| cu->checked_producer = 1; |
| cu->producer_is_gxx_lt_4_6 = result; |
| |
| return result; |
| } |
| |
| /* Return the default accessibility type if it is not overriden by |
| DW_AT_accessibility. */ |
| |
| static enum dwarf_access_attribute |
| dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu)) |
| { |
| /* The default DWARF 2 accessibility for members is public, the default |
| accessibility for inheritance is private. */ |
| |
| if (die->tag != DW_TAG_inheritance) |
| return DW_ACCESS_public; |
| else |
| return DW_ACCESS_private; |
| } |
| else |
| { |
| /* DWARF 3+ defines the default accessibility a different way. The same |
| rules apply now for DW_TAG_inheritance as for the members and it only |
| depends on the container kind. */ |
| |
| if (die->parent->tag == DW_TAG_class_type) |
| return DW_ACCESS_private; |
| else |
| return DW_ACCESS_public; |
| } |
| } |
| |
| /* Look for DW_AT_data_member_location. Set *OFFSET to the byte |
| offset. If the attribute was not found return 0, otherwise return |
| 1. If it was found but could not properly be handled, set *OFFSET |
| to 0. */ |
| |
| static int |
| handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu, |
| LONGEST *offset) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_data_member_location, cu); |
| if (attr != NULL) |
| { |
| *offset = 0; |
| |
| /* Note that we do not check for a section offset first here. |
| This is because DW_AT_data_member_location is new in DWARF 4, |
| so if we see it, we can assume that a constant form is really |
| a constant and not a section offset. */ |
| if (attr_form_is_constant (attr)) |
| *offset = dwarf2_get_attr_constant_value (attr, 0); |
| else if (attr_form_is_section_offset (attr)) |
| dwarf2_complex_location_expr_complaint (); |
| else if (attr_form_is_block (attr)) |
| *offset = decode_locdesc (DW_BLOCK (attr), cu); |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Add an aggregate field to the field list. */ |
| |
| static void |
| dwarf2_add_field (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct nextfield *new_field; |
| struct attribute *attr; |
| struct field *fp; |
| char *fieldname = ""; |
| |
| /* Allocate a new field list entry and link it in. */ |
| new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield)); |
| make_cleanup (xfree, new_field); |
| memset (new_field, 0, sizeof (struct nextfield)); |
| |
| if (die->tag == DW_TAG_inheritance) |
| { |
| new_field->next = fip->baseclasses; |
| fip->baseclasses = new_field; |
| } |
| else |
| { |
| new_field->next = fip->fields; |
| fip->fields = new_field; |
| } |
| fip->nfields++; |
| |
| attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr) |
| new_field->accessibility = DW_UNSND (attr); |
| else |
| new_field->accessibility = dwarf2_default_access_attribute (die, cu); |
| if (new_field->accessibility != DW_ACCESS_public) |
| fip->non_public_fields = 1; |
| |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr) |
| new_field->virtuality = DW_UNSND (attr); |
| else |
| new_field->virtuality = DW_VIRTUALITY_none; |
| |
| fp = &new_field->field; |
| |
| if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu)) |
| { |
| LONGEST offset; |
| |
| /* Data member other than a C++ static data member. */ |
| |
| /* Get type of field. */ |
| fp->type = die_type (die, cu); |
| |
| SET_FIELD_BITPOS (*fp, 0); |
| |
| /* Get bit size of field (zero if none). */ |
| attr = dwarf2_attr (die, DW_AT_bit_size, cu); |
| if (attr) |
| { |
| FIELD_BITSIZE (*fp) = DW_UNSND (attr); |
| } |
| else |
| { |
| FIELD_BITSIZE (*fp) = 0; |
| } |
| |
| /* Get bit offset of field. */ |
| if (handle_data_member_location (die, cu, &offset)) |
| SET_FIELD_BITPOS (*fp, offset * bits_per_byte); |
| attr = dwarf2_attr (die, DW_AT_bit_offset, cu); |
| if (attr) |
| { |
| if (gdbarch_bits_big_endian (gdbarch)) |
| { |
| /* For big endian bits, the DW_AT_bit_offset gives the |
| additional bit offset from the MSB of the containing |
| anonymous object to the MSB of the field. We don't |
| have to do anything special since we don't need to |
| know the size of the anonymous object. */ |
| SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr)); |
| } |
| else |
| { |
| /* For little endian bits, compute the bit offset to the |
| MSB of the anonymous object, subtract off the number of |
| bits from the MSB of the field to the MSB of the |
| object, and then subtract off the number of bits of |
| the field itself. The result is the bit offset of |
| the LSB of the field. */ |
| int anonymous_size; |
| int bit_offset = DW_UNSND (attr); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| /* The size of the anonymous object containing |
| the bit field is explicit, so use the |
| indicated size (in bytes). */ |
| anonymous_size = DW_UNSND (attr); |
| } |
| else |
| { |
| /* The size of the anonymous object containing |
| the bit field must be inferred from the type |
| attribute of the data member containing the |
| bit field. */ |
| anonymous_size = TYPE_LENGTH (fp->type); |
| } |
| SET_FIELD_BITPOS (*fp, |
| (FIELD_BITPOS (*fp) |
| + anonymous_size * bits_per_byte |
| - bit_offset - FIELD_BITSIZE (*fp))); |
| } |
| } |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| fieldname = ""; |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| fp->name = fieldname; |
| |
| /* Change accessibility for artificial fields (e.g. virtual table |
| pointer or virtual base class pointer) to private. */ |
| if (dwarf2_attr (die, DW_AT_artificial, cu)) |
| { |
| FIELD_ARTIFICIAL (*fp) = 1; |
| new_field->accessibility = DW_ACCESS_private; |
| fip->non_public_fields = 1; |
| } |
| } |
| else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable) |
| { |
| /* C++ static member. */ |
| |
| /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that |
| is a declaration, but all versions of G++ as of this writing |
| (so through at least 3.2.1) incorrectly generate |
| DW_TAG_variable tags. */ |
| |
| const char *physname; |
| |
| /* Get name of field. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr |
| /* Only create a symbol if this is an external value. |
| new_symbol checks this and puts the value in the global symbol |
| table, which we want. If it is not external, new_symbol |
| will try to put the value in cu->list_in_scope which is wrong. */ |
| && dwarf2_flag_true_p (die, DW_AT_external, cu)) |
| { |
| /* A static const member, not much different than an enum as far as |
| we're concerned, except that we can support more types. */ |
| new_symbol (die, NULL, cu); |
| } |
| |
| /* Get physical name. */ |
| physname = dwarf2_physname (fieldname, die, cu); |
| |
| /* The name is already allocated along with this objfile, so we don't |
| need to duplicate it for the type. */ |
| SET_FIELD_PHYSNAME (*fp, physname ? physname : ""); |
| FIELD_TYPE (*fp) = die_type (die, cu); |
| FIELD_NAME (*fp) = fieldname; |
| } |
| else if (die->tag == DW_TAG_inheritance) |
| { |
| LONGEST offset; |
| |
| /* C++ base class field. */ |
| if (handle_data_member_location (die, cu, &offset)) |
| SET_FIELD_BITPOS (*fp, offset * bits_per_byte); |
| FIELD_BITSIZE (*fp) = 0; |
| FIELD_TYPE (*fp) = die_type (die, cu); |
| FIELD_NAME (*fp) = type_name_no_tag (fp->type); |
| fip->nbaseclasses++; |
| } |
| } |
| |
| /* Add a typedef defined in the scope of the FIP's class. */ |
| |
| static void |
| dwarf2_add_typedef (struct field_info *fip, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct typedef_field_list *new_field; |
| struct attribute *attr; |
| struct typedef_field *fp; |
| char *fieldname = ""; |
| |
| /* Allocate a new field list entry and link it in. */ |
| new_field = xzalloc (sizeof (*new_field)); |
| make_cleanup (xfree, new_field); |
| |
| gdb_assert (die->tag == DW_TAG_typedef); |
| |
| fp = &new_field->field; |
| |
| /* Get name of field. */ |
| fp->name = dwarf2_name (die, cu); |
| if (fp->name == NULL) |
| return; |
| |
| fp->type = read_type_die (die, cu); |
| |
| new_field->next = fip->typedef_field_list; |
| fip->typedef_field_list = new_field; |
| fip->typedef_field_list_count++; |
| } |
| |
| /* Create the vector of fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| int nfields = fip->nfields; |
| |
| /* Record the field count, allocate space for the array of fields, |
| and create blank accessibility bitfields if necessary. */ |
| TYPE_NFIELDS (type) = nfields; |
| TYPE_FIELDS (type) = (struct field *) |
| TYPE_ALLOC (type, sizeof (struct field) * nfields); |
| memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields); |
| |
| if (fip->non_public_fields && cu->language != language_ada) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| |
| TYPE_FIELD_PRIVATE_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields); |
| |
| TYPE_FIELD_PROTECTED_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields); |
| |
| TYPE_FIELD_IGNORE_BITS (type) = |
| (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields)); |
| B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields); |
| } |
| |
| /* If the type has baseclasses, allocate and clear a bit vector for |
| TYPE_FIELD_VIRTUAL_BITS. */ |
| if (fip->nbaseclasses && cu->language != language_ada) |
| { |
| int num_bytes = B_BYTES (fip->nbaseclasses); |
| unsigned char *pointer; |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| pointer = TYPE_ALLOC (type, num_bytes); |
| TYPE_FIELD_VIRTUAL_BITS (type) = pointer; |
| B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses); |
| TYPE_N_BASECLASSES (type) = fip->nbaseclasses; |
| } |
| |
| /* Copy the saved-up fields into the field vector. Start from the head of |
| the list, adding to the tail of the field array, so that they end up in |
| the same order in the array in which they were added to the list. */ |
| while (nfields-- > 0) |
| { |
| struct nextfield *fieldp; |
| |
| if (fip->fields) |
| { |
| fieldp = fip->fields; |
| fip->fields = fieldp->next; |
| } |
| else |
| { |
| fieldp = fip->baseclasses; |
| fip->baseclasses = fieldp->next; |
| } |
| |
| TYPE_FIELD (type, nfields) = fieldp->field; |
| switch (fieldp->accessibility) |
| { |
| case DW_ACCESS_private: |
| if (cu->language != language_ada) |
| SET_TYPE_FIELD_PRIVATE (type, nfields); |
| break; |
| |
| case DW_ACCESS_protected: |
| if (cu->language != language_ada) |
| SET_TYPE_FIELD_PROTECTED (type, nfields); |
| break; |
| |
| case DW_ACCESS_public: |
| break; |
| |
| default: |
| /* Unknown accessibility. Complain and treat it as public. */ |
| { |
| complaint (&symfile_complaints, _("unsupported accessibility %d"), |
| fieldp->accessibility); |
| } |
| break; |
| } |
| if (nfields < fip->nbaseclasses) |
| { |
| switch (fieldp->virtuality) |
| { |
| case DW_VIRTUALITY_virtual: |
| case DW_VIRTUALITY_pure_virtual: |
| if (cu->language == language_ada) |
| error (_("unexpected virtuality in component of Ada type")); |
| SET_TYPE_FIELD_VIRTUAL (type, nfields); |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Add a member function to the proper fieldlist. */ |
| |
| static void |
| dwarf2_add_member_fn (struct field_info *fip, struct die_info *die, |
| struct type *type, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct attribute *attr; |
| struct fnfieldlist *flp; |
| int i; |
| struct fn_field *fnp; |
| char *fieldname; |
| struct nextfnfield *new_fnfield; |
| struct type *this_type; |
| enum dwarf_access_attribute accessibility; |
| |
| if (cu->language == language_ada) |
| error (_("unexpected member function in Ada type")); |
| |
| /* Get name of member function. */ |
| fieldname = dwarf2_name (die, cu); |
| if (fieldname == NULL) |
| return; |
| |
| /* Look up member function name in fieldlist. */ |
| for (i = 0; i < fip->nfnfields; i++) |
| { |
| if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0) |
| break; |
| } |
| |
| /* Create new list element if necessary. */ |
| if (i < fip->nfnfields) |
| flp = &fip->fnfieldlists[i]; |
| else |
| { |
| if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0) |
| { |
| fip->fnfieldlists = (struct fnfieldlist *) |
| xrealloc (fip->fnfieldlists, |
| (fip->nfnfields + DW_FIELD_ALLOC_CHUNK) |
| * sizeof (struct fnfieldlist)); |
| if (fip->nfnfields == 0) |
| make_cleanup (free_current_contents, &fip->fnfieldlists); |
| } |
| flp = &fip->fnfieldlists[fip->nfnfields]; |
| flp->name = fieldname; |
| flp->length = 0; |
| flp->head = NULL; |
| i = fip->nfnfields++; |
| } |
| |
| /* Create a new member function field and chain it to the field list |
| entry. */ |
| new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield)); |
| make_cleanup (xfree, new_fnfield); |
| memset (new_fnfield, 0, sizeof (struct nextfnfield)); |
| new_fnfield->next = flp->head; |
| flp->head = new_fnfield; |
| flp->length++; |
| |
| /* Fill in the member function field info. */ |
| fnp = &new_fnfield->fnfield; |
| |
| /* Delay processing of the physname until later. */ |
| if (cu->language == language_cplus || cu->language == language_java) |
| { |
| add_to_method_list (type, i, flp->length - 1, fieldname, |
| die, cu); |
| } |
| else |
| { |
| const char *physname = dwarf2_physname (fieldname, die, cu); |
| fnp->physname = physname ? physname : ""; |
| } |
| |
| fnp->type = alloc_type (objfile); |
| this_type = read_type_die (die, cu); |
| if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC) |
| { |
| int nparams = TYPE_NFIELDS (this_type); |
| |
| /* TYPE is the domain of this method, and THIS_TYPE is the type |
| of the method itself (TYPE_CODE_METHOD). */ |
| smash_to_method_type (fnp->type, type, |
| TYPE_TARGET_TYPE (this_type), |
| TYPE_FIELDS (this_type), |
| TYPE_NFIELDS (this_type), |
| TYPE_VARARGS (this_type)); |
| |
| /* Handle static member functions. |
| Dwarf2 has no clean way to discern C++ static and non-static |
| member functions. G++ helps GDB by marking the first |
| parameter for non-static member functions (which is the this |
| pointer) as artificial. We obtain this information from |
| read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */ |
| if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0) |
| fnp->voffset = VOFFSET_STATIC; |
| } |
| else |
| complaint (&symfile_complaints, _("member function type missing for '%s'"), |
| dwarf2_full_name (fieldname, die, cu)); |
| |
| /* Get fcontext from DW_AT_containing_type if present. */ |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| fnp->fcontext = die_containing_type (die, cu); |
| |
| /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and |
| is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */ |
| |
| /* Get accessibility. */ |
| attr = dwarf2_attr (die, DW_AT_accessibility, cu); |
| if (attr) |
| accessibility = DW_UNSND (attr); |
| else |
| accessibility = dwarf2_default_access_attribute (die, cu); |
| switch (accessibility) |
| { |
| case DW_ACCESS_private: |
| fnp->is_private = 1; |
| break; |
| case DW_ACCESS_protected: |
| fnp->is_protected = 1; |
| break; |
| } |
| |
| /* Check for artificial methods. */ |
| attr = dwarf2_attr (die, DW_AT_artificial, cu); |
| if (attr && DW_UNSND (attr) != 0) |
| fnp->is_artificial = 1; |
| |
| /* Get index in virtual function table if it is a virtual member |
| function. For older versions of GCC, this is an offset in the |
| appropriate virtual table, as specified by DW_AT_containing_type. |
| For everyone else, it is an expression to be evaluated relative |
| to the object address. */ |
| |
| attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu); |
| if (attr) |
| { |
| if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0) |
| { |
| if (DW_BLOCK (attr)->data[0] == DW_OP_constu) |
| { |
| /* Old-style GCC. */ |
| fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2; |
| } |
| else if (DW_BLOCK (attr)->data[0] == DW_OP_deref |
| || (DW_BLOCK (attr)->size > 1 |
| && DW_BLOCK (attr)->data[0] == DW_OP_deref_size |
| && DW_BLOCK (attr)->data[1] == cu->header.addr_size)) |
| { |
| struct dwarf_block blk; |
| int offset; |
| |
| offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref |
| ? 1 : 2); |
| blk.size = DW_BLOCK (attr)->size - offset; |
| blk.data = DW_BLOCK (attr)->data + offset; |
| fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu); |
| if ((fnp->voffset % cu->header.addr_size) != 0) |
| dwarf2_complex_location_expr_complaint (); |
| else |
| fnp->voffset /= cu->header.addr_size; |
| fnp->voffset += 2; |
| } |
| else |
| dwarf2_complex_location_expr_complaint (); |
| |
| if (!fnp->fcontext) |
| fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0)); |
| } |
| else if (attr_form_is_section_offset (attr)) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location", |
| fieldname); |
| } |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_virtuality, cu); |
| if (attr && DW_UNSND (attr)) |
| { |
| /* GCC does this, as of 2008-08-25; PR debug/37237. */ |
| complaint (&symfile_complaints, |
| _("Member function \"%s\" (offset %d) is virtual " |
| "but the vtable offset is not specified"), |
| fieldname, die->offset.sect_off); |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_CPLUS_DYNAMIC (type) = 1; |
| } |
| } |
| } |
| |
| /* Create the vector of member function fields, and attach it to the type. */ |
| |
| static void |
| dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type, |
| struct dwarf2_cu *cu) |
| { |
| struct fnfieldlist *flp; |
| int i; |
| |
| if (cu->language == language_ada) |
| error (_("unexpected member functions in Ada type")); |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *) |
| TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields); |
| |
| for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++) |
| { |
| struct nextfnfield *nfp = flp->head; |
| struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i); |
| int k; |
| |
| TYPE_FN_FIELDLIST_NAME (type, i) = flp->name; |
| TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length; |
| fn_flp->fn_fields = (struct fn_field *) |
| TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length); |
| for (k = flp->length; (k--, nfp); nfp = nfp->next) |
| fn_flp->fn_fields[k] = nfp->fnfield; |
| } |
| |
| TYPE_NFN_FIELDS (type) = fip->nfnfields; |
| } |
| |
| /* Returns non-zero if NAME is the name of a vtable member in CU's |
| language, zero otherwise. */ |
| static int |
| is_vtable_name (const char *name, struct dwarf2_cu *cu) |
| { |
| static const char vptr[] = "_vptr"; |
| static const char vtable[] = "vtable"; |
| |
| /* Look for the C++ and Java forms of the vtable. */ |
| if ((cu->language == language_java |
| && strncmp (name, vtable, sizeof (vtable) - 1) == 0) |
| || (strncmp (name, vptr, sizeof (vptr) - 1) == 0 |
| && is_cplus_marker (name[sizeof (vptr) - 1]))) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* GCC outputs unnamed structures that are really pointers to member |
| functions, with the ABI-specified layout. If TYPE describes |
| such a structure, smash it into a member function type. |
| |
| GCC shouldn't do this; it should just output pointer to member DIEs. |
| This is GCC PR debug/28767. */ |
| |
| static void |
| quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile) |
| { |
| struct type *pfn_type, *domain_type, *new_type; |
| |
| /* Check for a structure with no name and two children. */ |
| if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2) |
| return; |
| |
| /* Check for __pfn and __delta members. */ |
| if (TYPE_FIELD_NAME (type, 0) == NULL |
| || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0 |
| || TYPE_FIELD_NAME (type, 1) == NULL |
| || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0) |
| return; |
| |
| /* Find the type of the method. */ |
| pfn_type = TYPE_FIELD_TYPE (type, 0); |
| if (pfn_type == NULL |
| || TYPE_CODE (pfn_type) != TYPE_CODE_PTR |
| || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC) |
| return; |
| |
| /* Look for the "this" argument. */ |
| pfn_type = TYPE_TARGET_TYPE (pfn_type); |
| if (TYPE_NFIELDS (pfn_type) == 0 |
| /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */ |
| || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR) |
| return; |
| |
| domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0)); |
| new_type = alloc_type (objfile); |
| smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type), |
| TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type), |
| TYPE_VARARGS (pfn_type)); |
| smash_to_methodptr_type (type, new_type); |
| } |
| |
| /* Called when we find the DIE that starts a structure or union scope |
| (definition) to create a type for the structure or union. Fill in |
| the type's name and general properties; the members will not be |
| processed until process_structure_type. |
| |
| NOTE: we need to call these functions regardless of whether or not the |
| DIE has a DW_AT_name attribute, since it might be an anonymous |
| structure or union. This gets the type entered into our set of |
| user defined types. |
| |
| However, if the structure is incomplete (an opaque struct/union) |
| then suppress creating a symbol table entry for it since gdb only |
| wants to find the one with the complete definition. Note that if |
| it is complete, we just call new_symbol, which does it's own |
| checking about whether the struct/union is anonymous or not (and |
| suppresses creating a symbol table entry itself). */ |
| |
| static struct type * |
| read_structure_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *type; |
| struct attribute *attr; |
| char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu); |
| if (attr) |
| { |
| struct dwarf2_cu *type_cu = cu; |
| struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu); |
| |
| /* We could just recurse on read_structure_type, but we need to call |
| get_die_type to ensure only one type for this DIE is created. |
| This is important, for example, because for c++ classes we need |
| TYPE_NAME set which is only done by new_symbol. Blech. */ |
| type = read_type_die (type_die, type_cu); |
| |
| /* TYPE_CU may not be the same as CU. |
| Ensure TYPE is recorded in CU's type_hash table. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = alloc_type (objfile); |
| INIT_CPLUS_SPECIFIC (type); |
| |
| name = dwarf2_name (die, cu); |
| if (name != NULL) |
| { |
| if (cu->language == language_cplus |
| || cu->language == language_java) |
| { |
| char *full_name = (char *) dwarf2_full_name (name, die, cu); |
| |
| /* dwarf2_full_name might have already finished building the DIE's |
| type. If so, there is no need to continue. */ |
| if (get_die_type (die, cu) != NULL) |
| return get_die_type (die, cu); |
| |
| TYPE_TAG_NAME (type) = full_name; |
| if (die->tag == DW_TAG_structure_type |
| || die->tag == DW_TAG_class_type) |
| TYPE_NAME (type) = TYPE_TAG_NAME (type); |
| } |
| else |
| { |
| /* The name is already allocated along with this objfile, so |
| we don't need to duplicate it for the type. */ |
| TYPE_TAG_NAME (type) = (char *) name; |
| if (die->tag == DW_TAG_class_type) |
| TYPE_NAME (type) = TYPE_TAG_NAME (type); |
| } |
| } |
| |
| if (die->tag == DW_TAG_structure_type) |
| { |
| TYPE_CODE (type) = TYPE_CODE_STRUCT; |
| } |
| else if (die->tag == DW_TAG_union_type) |
| { |
| TYPE_CODE (type) = TYPE_CODE_UNION; |
| } |
| else |
| { |
| TYPE_CODE (type) = TYPE_CODE_CLASS; |
| } |
| |
| if (cu->language == language_cplus && die->tag == DW_TAG_class_type) |
| TYPE_DECLARED_CLASS (type) = 1; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| } |
| else |
| { |
| TYPE_LENGTH (type) = 0; |
| } |
| |
| TYPE_STUB_SUPPORTED (type) = 1; |
| if (die_is_declaration (die, cu)) |
| TYPE_STUB (type) = 1; |
| else if (attr == NULL && die->child == NULL |
| && producer_is_realview (cu->producer)) |
| /* RealView does not output the required DW_AT_declaration |
| on incomplete types. */ |
| TYPE_STUB (type) = 1; |
| |
| /* We need to add the type field to the die immediately so we don't |
| infinitely recurse when dealing with pointers to the structure |
| type within the structure itself. */ |
| set_die_type (die, type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| return type; |
| } |
| |
| /* Finish creating a structure or union type, including filling in |
| its members and creating a symbol for it. */ |
| |
| static void |
| process_structure_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct die_info *child_die = die->child; |
| struct type *type; |
| |
| type = get_die_type (die, cu); |
| if (type == NULL) |
| type = read_structure_type (die, cu); |
| |
| if (die->child != NULL && ! die_is_declaration (die, cu)) |
| { |
| struct field_info fi; |
| struct die_info *child_die; |
| VEC (symbolp) *template_args = NULL; |
| struct cleanup *back_to = make_cleanup (null_cleanup, 0); |
| |
| memset (&fi, 0, sizeof (struct field_info)); |
| |
| child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable) |
| { |
| /* NOTE: carlton/2002-11-05: A C++ static data member |
| should be a DW_TAG_member that is a declaration, but |
| all versions of G++ as of this writing (so through at |
| least 3.2.1) incorrectly generate DW_TAG_variable |
| tags for them instead. */ |
| dwarf2_add_field (&fi, child_die, cu); |
| } |
| else if (child_die->tag == DW_TAG_subprogram) |
| { |
| /* C++ member function. */ |
| dwarf2_add_member_fn (&fi, child_die, type, cu); |
| } |
| else if (child_die->tag == DW_TAG_inheritance) |
| { |
| /* C++ base class field. */ |
| dwarf2_add_field (&fi, child_die, cu); |
| } |
| else if (child_die->tag == DW_TAG_typedef) |
| dwarf2_add_typedef (&fi, child_die, cu); |
| else if (child_die->tag == DW_TAG_template_type_param |
| || child_die->tag == DW_TAG_template_value_param) |
| { |
| struct symbol *arg = new_symbol (child_die, NULL, cu); |
| |
| if (arg != NULL) |
| VEC_safe_push (symbolp, template_args, arg); |
| } |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Attach template arguments to type. */ |
| if (! VEC_empty (symbolp, template_args)) |
| { |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_N_TEMPLATE_ARGUMENTS (type) |
| = VEC_length (symbolp, template_args); |
| TYPE_TEMPLATE_ARGUMENTS (type) |
| = obstack_alloc (&objfile->objfile_obstack, |
| (TYPE_N_TEMPLATE_ARGUMENTS (type) |
| * sizeof (struct symbol *))); |
| memcpy (TYPE_TEMPLATE_ARGUMENTS (type), |
| VEC_address (symbolp, template_args), |
| (TYPE_N_TEMPLATE_ARGUMENTS (type) |
| * sizeof (struct symbol *))); |
| VEC_free (symbolp, template_args); |
| } |
| |
| /* Attach fields and member functions to the type. */ |
| if (fi.nfields) |
| dwarf2_attach_fields_to_type (&fi, type, cu); |
| if (fi.nfnfields) |
| { |
| dwarf2_attach_fn_fields_to_type (&fi, type, cu); |
| |
| /* Get the type which refers to the base class (possibly this |
| class itself) which contains the vtable pointer for the current |
| class from the DW_AT_containing_type attribute. This use of |
| DW_AT_containing_type is a GNU extension. */ |
| |
| if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL) |
| { |
| struct type *t = die_containing_type (die, cu); |
| |
| TYPE_VPTR_BASETYPE (type) = t; |
| if (type == t) |
| { |
| int i; |
| |
| /* Our own class provides vtbl ptr. */ |
| for (i = TYPE_NFIELDS (t) - 1; |
| i >= TYPE_N_BASECLASSES (t); |
| --i) |
| { |
| const char *fieldname = TYPE_FIELD_NAME (t, i); |
| |
| if (is_vtable_name (fieldname, cu)) |
| { |
| TYPE_VPTR_FIELDNO (type) = i; |
| break; |
| } |
| } |
| |
| /* Complain if virtual function table field not found. */ |
| if (i < TYPE_N_BASECLASSES (t)) |
| complaint (&symfile_complaints, |
| _("virtual function table pointer " |
| "not found when defining class '%s'"), |
| TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : |
| ""); |
| } |
| else |
| { |
| TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t); |
| } |
| } |
| else if (cu->producer |
| && strncmp (cu->producer, |
| "IBM(R) XL C/C++ Advanced Edition", 32) == 0) |
| { |
| /* The IBM XLC compiler does not provide direct indication |
| of the containing type, but the vtable pointer is |
| always named __vfp. */ |
| |
| int i; |
| |
| for (i = TYPE_NFIELDS (type) - 1; |
| i >= TYPE_N_BASECLASSES (type); |
| --i) |
| { |
| if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0) |
| { |
| TYPE_VPTR_FIELDNO (type) = i; |
| TYPE_VPTR_BASETYPE (type) = type; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Copy fi.typedef_field_list linked list elements content into the |
| allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */ |
| if (fi.typedef_field_list) |
| { |
| int i = fi.typedef_field_list_count; |
| |
| ALLOCATE_CPLUS_STRUCT_TYPE (type); |
| TYPE_TYPEDEF_FIELD_ARRAY (type) |
| = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i); |
| TYPE_TYPEDEF_FIELD_COUNT (type) = i; |
| |
| /* Reverse the list order to keep the debug info elements order. */ |
| while (--i >= 0) |
| { |
| struct typedef_field *dest, *src; |
| |
| dest = &TYPE_TYPEDEF_FIELD (type, i); |
| src = &fi.typedef_field_list->field; |
| fi.typedef_field_list = fi.typedef_field_list->next; |
| *dest = *src; |
| } |
| } |
| |
| do_cleanups (back_to); |
| |
| if (HAVE_CPLUS_STRUCT (type)) |
| TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java; |
| } |
| |
| quirk_gcc_member_function_pointer (type, objfile); |
| |
| /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its |
| snapshots) has been known to create a die giving a declaration |
| for a class that has, as a child, a die giving a definition for a |
| nested class. So we have to process our children even if the |
| current die is a declaration. Normally, of course, a declaration |
| won't have any children at all. */ |
| |
| while (child_die != NULL && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_member |
| || child_die->tag == DW_TAG_variable |
| || child_die->tag == DW_TAG_inheritance |
| || child_die->tag == DW_TAG_template_value_param |
| || child_die->tag == DW_TAG_template_type_param) |
| { |
| /* Do nothing. */ |
| } |
| else |
| process_die (child_die, cu); |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Do not consider external references. According to the DWARF standard, |
| these DIEs are identified by the fact that they have no byte_size |
| attribute, and a declaration attribute. */ |
| if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL |
| || !die_is_declaration (die, cu)) |
| new_symbol (die, type, cu); |
| } |
| |
| /* Given a DW_AT_enumeration_type die, set its type. We do not |
| complete the type's fields yet, or create any symbols. */ |
| |
| static struct type * |
| read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *type; |
| struct attribute *attr; |
| const char *name; |
| |
| /* If the definition of this type lives in .debug_types, read that type. |
| Don't follow DW_AT_specification though, that will take us back up |
| the chain and we want to go down. */ |
| attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu); |
| if (attr) |
| { |
| struct dwarf2_cu *type_cu = cu; |
| struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu); |
| |
| type = read_type_die (type_die, type_cu); |
| |
| /* TYPE_CU may not be the same as CU. |
| Ensure TYPE is recorded in CU's type_hash table. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| type = alloc_type (objfile); |
| |
| TYPE_CODE (type) = TYPE_CODE_ENUM; |
| name = dwarf2_full_name (NULL, die, cu); |
| if (name != NULL) |
| TYPE_TAG_NAME (type) = (char *) name; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| } |
| else |
| { |
| TYPE_LENGTH (type) = 0; |
| } |
| |
| /* The enumeration DIE can be incomplete. In Ada, any type can be |
| declared as private in the package spec, and then defined only |
| inside the package body. Such types are known as Taft Amendment |
| Types. When another package uses such a type, an incomplete DIE |
| may be generated by the compiler. */ |
| if (die_is_declaration (die, cu)) |
| TYPE_STUB (type) = 1; |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Given a pointer to a die which begins an enumeration, process all |
| the dies that define the members of the enumeration, and create the |
| symbol for the enumeration type. |
| |
| NOTE: We reverse the order of the element list. */ |
| |
| static void |
| process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type == NULL) |
| this_type = read_enumeration_type (die, cu); |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die; |
| struct symbol *sym; |
| struct field *fields = NULL; |
| int num_fields = 0; |
| int unsigned_enum = 1; |
| char *name; |
| int flag_enum = 1; |
| ULONGEST mask = 0; |
| |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag != DW_TAG_enumerator) |
| { |
| process_die (child_die, cu); |
| } |
| else |
| { |
| name = dwarf2_name (child_die, cu); |
| if (name) |
| { |
| sym = new_symbol (child_die, this_type, cu); |
| if (SYMBOL_VALUE (sym) < 0) |
| { |
| unsigned_enum = 0; |
| flag_enum = 0; |
| } |
| else if ((mask & SYMBOL_VALUE (sym)) != 0) |
| flag_enum = 0; |
| else |
| mask |= SYMBOL_VALUE (sym); |
| |
| if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0) |
| { |
| fields = (struct field *) |
| xrealloc (fields, |
| (num_fields + DW_FIELD_ALLOC_CHUNK) |
| * sizeof (struct field)); |
| } |
| |
| FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym); |
| FIELD_TYPE (fields[num_fields]) = NULL; |
| SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym)); |
| FIELD_BITSIZE (fields[num_fields]) = 0; |
| |
| num_fields++; |
| } |
| } |
| |
| child_die = sibling_die (child_die); |
| } |
| |
| if (num_fields) |
| { |
| TYPE_NFIELDS (this_type) = num_fields; |
| TYPE_FIELDS (this_type) = (struct field *) |
| TYPE_ALLOC (this_type, sizeof (struct field) * num_fields); |
| memcpy (TYPE_FIELDS (this_type), fields, |
| sizeof (struct field) * num_fields); |
| xfree (fields); |
| } |
| if (unsigned_enum) |
| TYPE_UNSIGNED (this_type) = 1; |
| if (flag_enum) |
| TYPE_FLAG_ENUM (this_type) = 1; |
| } |
| |
| /* If we are reading an enum from a .debug_types unit, and the enum |
| is a declaration, and the enum is not the signatured type in the |
| unit, then we do not want to add a symbol for it. Adding a |
| symbol would in some cases obscure the true definition of the |
| enum, giving users an incomplete type when the definition is |
| actually available. Note that we do not want to do this for all |
| enums which are just declarations, because C++0x allows forward |
| enum declarations. */ |
| if (cu->per_cu->is_debug_types |
| && die_is_declaration (die, cu)) |
| { |
| struct signatured_type *sig_type; |
| |
| sig_type |
| = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile, |
| cu->per_cu->info_or_types_section, |
| cu->per_cu->offset); |
| gdb_assert (sig_type->type_offset_in_section.sect_off != 0); |
| if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off) |
| return; |
| } |
| |
| new_symbol (die, this_type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_array_type DIE and put it in |
| the DIE's type field. For now, this only handles one dimensional |
| arrays. */ |
| |
| static struct type * |
| read_array_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct die_info *child_die; |
| struct type *type; |
| struct type *element_type, *range_type, *index_type; |
| struct type **range_types = NULL; |
| struct attribute *attr; |
| int ndim = 0; |
| struct cleanup *back_to; |
| char *name; |
| |
| element_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| /* Irix 6.2 native cc creates array types without children for |
| arrays with unspecified length. */ |
| if (die->child == NULL) |
| { |
| index_type = objfile_type (objfile)->builtin_int; |
| range_type = create_range_type (NULL, index_type, 0, -1); |
| type = create_array_type (NULL, element_type, range_type); |
| return set_die_type (die, type, cu); |
| } |
| |
| back_to = make_cleanup (null_cleanup, NULL); |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_subrange_type) |
| { |
| struct type *child_type = read_type_die (child_die, cu); |
| |
| if (child_type != NULL) |
| { |
| /* The range type was succesfully read. Save it for the |
| array type creation. */ |
| if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0) |
| { |
| range_types = (struct type **) |
| xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK) |
| * sizeof (struct type *)); |
| if (ndim == 0) |
| make_cleanup (free_current_contents, &range_types); |
| } |
| range_types[ndim++] = child_type; |
| } |
| } |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Dwarf2 dimensions are output from left to right, create the |
| necessary array types in backwards order. */ |
| |
| type = element_type; |
| |
| if (read_array_order (die, cu) == DW_ORD_col_major) |
| { |
| int i = 0; |
| |
| while (i < ndim) |
| type = create_array_type (NULL, type, range_types[i++]); |
| } |
| else |
| { |
| while (ndim-- > 0) |
| type = create_array_type (NULL, type, range_types[ndim]); |
| } |
| |
| /* Understand Dwarf2 support for vector types (like they occur on |
| the PowerPC w/ AltiVec). Gcc just adds another attribute to the |
| array type. This is not part of the Dwarf2/3 standard yet, but a |
| custom vendor extension. The main difference between a regular |
| array and the vector variant is that vectors are passed by value |
| to functions. */ |
| attr = dwarf2_attr (die, DW_AT_GNU_vector, cu); |
| if (attr) |
| make_vector_type (type); |
| |
| /* The DIE may have DW_AT_byte_size set. For example an OpenCL |
| implementation may choose to implement triple vectors using this |
| attribute. */ |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| if (DW_UNSND (attr) >= TYPE_LENGTH (type)) |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| else |
| complaint (&symfile_complaints, |
| _("DW_AT_byte_size for array type smaller " |
| "than the total size of elements")); |
| } |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| TYPE_NAME (type) = name; |
| |
| /* Install the type in the die. */ |
| set_die_type (die, type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (type, die, cu); |
| |
| do_cleanups (back_to); |
| |
| return type; |
| } |
| |
| static enum dwarf_array_dim_ordering |
| read_array_order (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_ordering, cu); |
| |
| if (attr) return DW_SND (attr); |
| |
| /* GNU F77 is a special case, as at 08/2004 array type info is the |
| opposite order to the dwarf2 specification, but data is still |
| laid out as per normal fortran. |
| |
| FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need |
| version checking. */ |
| |
| if (cu->language == language_fortran |
| && cu->producer && strstr (cu->producer, "GNU F77")) |
| { |
| return DW_ORD_row_major; |
| } |
| |
| switch (cu->language_defn->la_array_ordering) |
| { |
| case array_column_major: |
| return DW_ORD_col_major; |
| case array_row_major: |
| default: |
| return DW_ORD_row_major; |
| }; |
| } |
| |
| /* Extract all information from a DW_TAG_set_type DIE and put it in |
| the DIE's type field. */ |
| |
| static struct type * |
| read_set_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *domain_type, *set_type; |
| struct attribute *attr; |
| |
| domain_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| set_type = get_die_type (die, cu); |
| if (set_type) |
| return set_type; |
| |
| set_type = create_set_type (NULL, domain_type); |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| TYPE_LENGTH (set_type) = DW_UNSND (attr); |
| |
| return set_die_type (die, set_type, cu); |
| } |
| |
| /* First cut: install each common block member as a global variable. */ |
| |
| static void |
| read_common_block (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die; |
| struct attribute *attr; |
| struct symbol *sym; |
| CORE_ADDR base = (CORE_ADDR) 0; |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr) |
| { |
| /* Support the .debug_loc offsets. */ |
| if (attr_form_is_block (attr)) |
| { |
| base = decode_locdesc (DW_BLOCK (attr), cu); |
| } |
| else if (attr_form_is_section_offset (attr)) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "common block member"); |
| } |
| } |
| if (die->child != NULL) |
| { |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| LONGEST offset; |
| |
| sym = new_symbol (child_die, NULL, cu); |
| if (sym != NULL |
| && handle_data_member_location (child_die, cu, &offset)) |
| { |
| SYMBOL_VALUE_ADDRESS (sym) = base + offset; |
| add_symbol_to_list (sym, &global_symbols); |
| } |
| child_die = sibling_die (child_die); |
| } |
| } |
| } |
| |
| /* Create a type for a C++ namespace. */ |
| |
| static struct type * |
| read_namespace_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| const char *previous_prefix, *name; |
| int is_anonymous; |
| struct type *type; |
| |
| /* For extensions, reuse the type of the original namespace. */ |
| if (dwarf2_attr (die, DW_AT_extension, cu) != NULL) |
| { |
| struct die_info *ext_die; |
| struct dwarf2_cu *ext_cu = cu; |
| |
| ext_die = dwarf2_extension (die, &ext_cu); |
| type = read_type_die (ext_die, ext_cu); |
| |
| /* EXT_CU may not be the same as CU. |
| Ensure TYPE is recorded in CU's type_hash table. */ |
| return set_die_type (die, type, cu); |
| } |
| |
| name = namespace_name (die, &is_anonymous, cu); |
| |
| /* Now build the name of the current namespace. */ |
| |
| previous_prefix = determine_prefix (die, cu); |
| if (previous_prefix[0] != '\0') |
| name = typename_concat (&objfile->objfile_obstack, |
| previous_prefix, name, 0, cu); |
| |
| /* Create the type. */ |
| type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL, |
| objfile); |
| TYPE_NAME (type) = (char *) name; |
| TYPE_TAG_NAME (type) = TYPE_NAME (type); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a C++ namespace. */ |
| |
| static void |
| read_namespace (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| int is_anonymous; |
| |
| /* Add a symbol associated to this if we haven't seen the namespace |
| before. Also, add a using directive if it's an anonymous |
| namespace. */ |
| |
| if (dwarf2_attr (die, DW_AT_extension, cu) == NULL) |
| { |
| struct type *type; |
| |
| type = read_type_die (die, cu); |
| new_symbol (die, type, cu); |
| |
| namespace_name (die, &is_anonymous, cu); |
| if (is_anonymous) |
| { |
| const char *previous_prefix = determine_prefix (die, cu); |
| |
| cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL, |
| NULL, NULL, &objfile->objfile_obstack); |
| } |
| } |
| |
| if (die->child != NULL) |
| { |
| struct die_info *child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| } |
| |
| /* Read a Fortran module as type. This DIE can be only a declaration used for |
| imported module. Still we need that type as local Fortran "use ... only" |
| declaration imports depend on the created type in determine_prefix. */ |
| |
| static struct type * |
| read_module_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| char *module_name; |
| struct type *type; |
| |
| module_name = dwarf2_name (die, cu); |
| if (!module_name) |
| complaint (&symfile_complaints, |
| _("DW_TAG_module has no name, offset 0x%x"), |
| die->offset.sect_off); |
| type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile); |
| |
| /* determine_prefix uses TYPE_TAG_NAME. */ |
| TYPE_TAG_NAME (type) = TYPE_NAME (type); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a Fortran module. */ |
| |
| static void |
| read_module (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *child_die = die->child; |
| |
| while (child_die && child_die->tag) |
| { |
| process_die (child_die, cu); |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| /* Return the name of the namespace represented by DIE. Set |
| *IS_ANONYMOUS to tell whether or not the namespace is an anonymous |
| namespace. */ |
| |
| static const char * |
| namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu) |
| { |
| struct die_info *current_die; |
| const char *name = NULL; |
| |
| /* Loop through the extensions until we find a name. */ |
| |
| for (current_die = die; |
| current_die != NULL; |
| current_die = dwarf2_extension (die, &cu)) |
| { |
| name = dwarf2_name (current_die, cu); |
| if (name != NULL) |
| break; |
| } |
| |
| /* Is it an anonymous namespace? */ |
| |
| *is_anonymous = (name == NULL); |
| if (*is_anonymous) |
| name = CP_ANONYMOUS_NAMESPACE_STR; |
| |
| return name; |
| } |
| |
| /* Extract all information from a DW_TAG_pointer_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (cu->objfile); |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type; |
| struct attribute *attr_byte_size; |
| struct attribute *attr_address_class; |
| int byte_size, addr_class; |
| struct type *target_type; |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_pointer_type (target_type); |
| |
| attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr_byte_size) |
| byte_size = DW_UNSND (attr_byte_size); |
| else |
| byte_size = cu_header->addr_size; |
| |
| attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu); |
| if (attr_address_class) |
| addr_class = DW_UNSND (attr_address_class); |
| else |
| addr_class = DW_ADDR_none; |
| |
| /* If the pointer size or address class is different than the |
| default, create a type variant marked as such and set the |
| length accordingly. */ |
| if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none) |
| { |
| if (gdbarch_address_class_type_flags_p (gdbarch)) |
| { |
| int type_flags; |
| |
| type_flags = gdbarch_address_class_type_flags |
| (gdbarch, byte_size, addr_class); |
| gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL) |
| == 0); |
| type = make_type_with_address_space (type, type_flags); |
| } |
| else if (TYPE_LENGTH (type) != byte_size) |
| { |
| complaint (&symfile_complaints, |
| _("invalid pointer size %d"), byte_size); |
| } |
| else |
| { |
| /* Should we also complain about unhandled address classes? */ |
| } |
| } |
| |
| TYPE_LENGTH (type) = byte_size; |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| struct type *to_type; |
| struct type *domain; |
| |
| to_type = die_type (die, cu); |
| domain = die_containing_type (die, cu); |
| |
| /* The calls above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD) |
| type = lookup_methodptr_type (to_type); |
| else |
| type = lookup_memberptr_type (to_type, domain); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_reference_type DIE and add to |
| the user defined type vector. */ |
| |
| static struct type * |
| read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct comp_unit_head *cu_header = &cu->header; |
| struct type *type, *target_type; |
| struct attribute *attr; |
| |
| target_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| type = get_die_type (die, cu); |
| if (type) |
| return type; |
| |
| type = lookup_reference_type (target_type); |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| TYPE_LENGTH (type) = DW_UNSND (attr); |
| } |
| else |
| { |
| TYPE_LENGTH (type) = cu_header->addr_size; |
| } |
| return set_die_type (die, type, cu); |
| } |
| |
| static struct type * |
| read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| /* In case the const qualifier is applied to an array type, the element type |
| is so qualified, not the array type (section 6.7.3 of C99). */ |
| if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY) |
| { |
| struct type *el_type, *inner_array; |
| |
| base_type = copy_type (base_type); |
| inner_array = base_type; |
| |
| while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY) |
| { |
| TYPE_TARGET_TYPE (inner_array) = |
| copy_type (TYPE_TARGET_TYPE (inner_array)); |
| inner_array = TYPE_TARGET_TYPE (inner_array); |
| } |
| |
| el_type = TYPE_TARGET_TYPE (inner_array); |
| TYPE_TARGET_TYPE (inner_array) = |
| make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL); |
| |
| return set_die_type (die, base_type, cu); |
| } |
| |
| cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| static struct type * |
| read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type, *cv_type; |
| |
| base_type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| cv_type = get_die_type (die, cu); |
| if (cv_type) |
| return cv_type; |
| |
| cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0); |
| return set_die_type (die, cv_type, cu); |
| } |
| |
| /* Extract all information from a DW_TAG_string_type DIE and add to |
| the user defined type vector. It isn't really a user defined type, |
| but it behaves like one, with other DIE's using an AT_user_def_type |
| attribute to reference it. */ |
| |
| static struct type * |
| read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| struct type *type, *range_type, *index_type, *char_type; |
| struct attribute *attr; |
| unsigned int length; |
| |
| attr = dwarf2_attr (die, DW_AT_string_length, cu); |
| if (attr) |
| { |
| length = DW_UNSND (attr); |
| } |
| else |
| { |
| /* Check for the DW_AT_byte_size attribute. */ |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| length = DW_UNSND (attr); |
| } |
| else |
| { |
| length = 1; |
| } |
| } |
| |
| index_type = objfile_type (objfile)->builtin_int; |
| range_type = create_range_type (NULL, index_type, 1, length); |
| char_type = language_string_char_type (cu->language_defn, gdbarch); |
| type = create_string_type (NULL, char_type, range_type); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Handle DIES due to C code like: |
| |
| struct foo |
| { |
| int (*funcp)(int a, long l); |
| int b; |
| }; |
| |
| ('funcp' generates a DW_TAG_subroutine_type DIE). */ |
| |
| static struct type * |
| read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *type; /* Type that this function returns. */ |
| struct type *ftype; /* Function that returns above type. */ |
| struct attribute *attr; |
| |
| type = die_type (die, cu); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| ftype = get_die_type (die, cu); |
| if (ftype) |
| return ftype; |
| |
| ftype = lookup_function_type (type); |
| |
| /* All functions in C++, Pascal and Java have prototypes. */ |
| attr = dwarf2_attr (die, DW_AT_prototyped, cu); |
| if ((attr && (DW_UNSND (attr) != 0)) |
| || cu->language == language_cplus |
| || cu->language == language_java |
| || cu->language == language_pascal) |
| TYPE_PROTOTYPED (ftype) = 1; |
| else if (producer_is_realview (cu->producer)) |
| /* RealView does not emit DW_AT_prototyped. We can not |
| distinguish prototyped and unprototyped functions; default to |
| prototyped, since that is more common in modern code (and |
| RealView warns about unprototyped functions). */ |
| TYPE_PROTOTYPED (ftype) = 1; |
| |
| /* Store the calling convention in the type if it's available in |
| the subroutine die. Otherwise set the calling convention to |
| the default value DW_CC_normal. */ |
| attr = dwarf2_attr (die, DW_AT_calling_convention, cu); |
| if (attr) |
| TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr); |
| else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL")) |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL; |
| else |
| TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal; |
| |
| /* We need to add the subroutine type to the die immediately so |
| we don't infinitely recurse when dealing with parameters |
| declared as the same subroutine type. */ |
| set_die_type (die, ftype, cu); |
| |
| if (die->child != NULL) |
| { |
| struct type *void_type = objfile_type (objfile)->builtin_void; |
| struct die_info *child_die; |
| int nparams, iparams; |
| |
| /* Count the number of parameters. |
| FIXME: GDB currently ignores vararg functions, but knows about |
| vararg member functions. */ |
| nparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| nparams++; |
| else if (child_die->tag == DW_TAG_unspecified_parameters) |
| TYPE_VARARGS (ftype) = 1; |
| child_die = sibling_die (child_die); |
| } |
| |
| /* Allocate storage for parameters and fill them in. */ |
| TYPE_NFIELDS (ftype) = nparams; |
| TYPE_FIELDS (ftype) = (struct field *) |
| TYPE_ZALLOC (ftype, nparams * sizeof (struct field)); |
| |
| /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it |
| even if we error out during the parameters reading below. */ |
| for (iparams = 0; iparams < nparams; iparams++) |
| TYPE_FIELD_TYPE (ftype, iparams) = void_type; |
| |
| iparams = 0; |
| child_die = die->child; |
| while (child_die && child_die->tag) |
| { |
| if (child_die->tag == DW_TAG_formal_parameter) |
| { |
| struct type *arg_type; |
| |
| /* DWARF version 2 has no clean way to discern C++ |
| static and non-static member functions. G++ helps |
| GDB by marking the first parameter for non-static |
| member functions (which is the this pointer) as |
| artificial. We pass this information to |
| dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. |
| |
| DWARF version 3 added DW_AT_object_pointer, which GCC |
| 4.5 does not yet generate. */ |
| attr = dwarf2_attr (child_die, DW_AT_artificial, cu); |
| if (attr) |
| TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr); |
| else |
| { |
| TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0; |
| |
| /* GCC/43521: In java, the formal parameter |
| "this" is sometimes not marked with DW_AT_artificial. */ |
| if (cu->language == language_java) |
| { |
| const char *name = dwarf2_name (child_die, cu); |
| |
| if (name && !strcmp (name, "this")) |
| TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1; |
| } |
| } |
| arg_type = die_type (child_die, cu); |
| |
| /* RealView does not mark THIS as const, which the testsuite |
| expects. GCC marks THIS as const in method definitions, |
| but not in the class specifications (GCC PR 43053). */ |
| if (cu->language == language_cplus && !TYPE_CONST (arg_type) |
| && TYPE_FIELD_ARTIFICIAL (ftype, iparams)) |
| { |
| int is_this = 0; |
| struct dwarf2_cu *arg_cu = cu; |
| const char *name = dwarf2_name (child_die, cu); |
| |
| attr = dwarf2_attr (die, DW_AT_object_pointer, cu); |
| if (attr) |
| { |
| /* If the compiler emits this, use it. */ |
| if (follow_die_ref (die, attr, &arg_cu) == child_die) |
| is_this = 1; |
| } |
| else if (name && strcmp (name, "this") == 0) |
| /* Function definitions will have the argument names. */ |
| is_this = 1; |
| else if (name == NULL && iparams == 0) |
| /* Declarations may not have the names, so like |
| elsewhere in GDB, assume an artificial first |
| argument is "this". */ |
| is_this = 1; |
| |
| if (is_this) |
| arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type), |
| arg_type, 0); |
| } |
| |
| TYPE_FIELD_TYPE (ftype, iparams) = arg_type; |
| iparams++; |
| } |
| child_die = sibling_die (child_die); |
| } |
| } |
| |
| return ftype; |
| } |
| |
| static struct type * |
| read_typedef (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| const char *name = NULL; |
| struct type *this_type, *target_type; |
| |
| name = dwarf2_full_name (NULL, die, cu); |
| this_type = init_type (TYPE_CODE_TYPEDEF, 0, |
| TYPE_FLAG_TARGET_STUB, NULL, objfile); |
| TYPE_NAME (this_type) = (char *) name; |
| set_die_type (die, this_type, cu); |
| target_type = die_type (die, cu); |
| if (target_type != this_type) |
| TYPE_TARGET_TYPE (this_type) = target_type; |
| else |
| { |
| /* Self-referential typedefs are, it seems, not allowed by the DWARF |
| spec and cause infinite loops in GDB. */ |
| complaint (&symfile_complaints, |
| _("Self-referential DW_TAG_typedef " |
| "- DIE at 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| TYPE_TARGET_TYPE (this_type) = NULL; |
| } |
| return this_type; |
| } |
| |
| /* Find a representation of a given base type and install |
| it in the TYPE field of the die. */ |
| |
| static struct type * |
| read_base_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *type; |
| struct attribute *attr; |
| int encoding = 0, size = 0; |
| char *name; |
| enum type_code code = TYPE_CODE_INT; |
| int type_flags = 0; |
| struct type *target_type = NULL; |
| |
| attr = dwarf2_attr (die, DW_AT_encoding, cu); |
| if (attr) |
| { |
| encoding = DW_UNSND (attr); |
| } |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| { |
| size = DW_UNSND (attr); |
| } |
| name = dwarf2_name (die, cu); |
| if (!name) |
| { |
| complaint (&symfile_complaints, |
| _("DW_AT_name missing from DW_TAG_base_type")); |
| } |
| |
| switch (encoding) |
| { |
| case DW_ATE_address: |
| /* Turn DW_ATE_address into a void * pointer. */ |
| code = TYPE_CODE_PTR; |
| type_flags |= TYPE_FLAG_UNSIGNED; |
| target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile); |
| break; |
| case DW_ATE_boolean: |
| code = TYPE_CODE_BOOL; |
| type_flags |= TYPE_FLAG_UNSIGNED; |
| break; |
| case DW_ATE_complex_float: |
| code = TYPE_CODE_COMPLEX; |
| target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile); |
| break; |
| case DW_ATE_decimal_float: |
| code = TYPE_CODE_DECFLOAT; |
| break; |
| case DW_ATE_float: |
| code = TYPE_CODE_FLT; |
| break; |
| case DW_ATE_signed: |
| break; |
| case DW_ATE_unsigned: |
| type_flags |= TYPE_FLAG_UNSIGNED; |
| if (cu->language == language_fortran |
| && name |
| && strncmp (name, "character(", sizeof ("character(") - 1) == 0) |
| code = TYPE_CODE_CHAR; |
| break; |
| case DW_ATE_signed_char: |
| if (cu->language == language_ada || cu->language == language_m2 |
| || cu->language == language_pascal |
| || cu->language == language_fortran) |
| code = TYPE_CODE_CHAR; |
| break; |
| case DW_ATE_unsigned_char: |
| if (cu->language == language_ada || cu->language == language_m2 |
| || cu->language == language_pascal |
| || cu->language == language_fortran) |
| code = TYPE_CODE_CHAR; |
| type_flags |= TYPE_FLAG_UNSIGNED; |
| break; |
| case DW_ATE_UTF: |
| /* We just treat this as an integer and then recognize the |
| type by name elsewhere. */ |
| break; |
| |
| default: |
| complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"), |
| dwarf_type_encoding_name (encoding)); |
| break; |
| } |
| |
| type = init_type (code, size, type_flags, NULL, objfile); |
| TYPE_NAME (type) = name; |
| TYPE_TARGET_TYPE (type) = target_type; |
| |
| if (name && strcmp (name, "char") == 0) |
| TYPE_NOSIGN (type) = 1; |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read the given DW_AT_subrange DIE. */ |
| |
| static struct type * |
| read_subrange_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *base_type; |
| struct type *range_type; |
| struct attribute *attr; |
| LONGEST low, high; |
| int low_default_is_valid; |
| char *name; |
| LONGEST negative_mask; |
| |
| base_type = die_type (die, cu); |
| /* Preserve BASE_TYPE's original type, just set its LENGTH. */ |
| check_typedef (base_type); |
| |
| /* The die_type call above may have already set the type for this DIE. */ |
| range_type = get_die_type (die, cu); |
| if (range_type) |
| return range_type; |
| |
| /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow |
| omitting DW_AT_lower_bound. */ |
| switch (cu->language) |
| { |
| case language_c: |
| case language_cplus: |
| low = 0; |
| low_default_is_valid = 1; |
| break; |
| case language_fortran: |
| low = 1; |
| low_default_is_valid = 1; |
| break; |
| case language_d: |
| case language_java: |
| case language_objc: |
| low = 0; |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| case language_ada: |
| case language_m2: |
| case language_pascal: |
| low = 1; |
| low_default_is_valid = (cu->header.version >= 4); |
| break; |
| default: |
| low = 0; |
| low_default_is_valid = 0; |
| break; |
| } |
| |
| /* FIXME: For variable sized arrays either of these could be |
| a variable rather than a constant value. We'll allow it, |
| but we don't know how to handle it. */ |
| attr = dwarf2_attr (die, DW_AT_lower_bound, cu); |
| if (attr) |
| low = dwarf2_get_attr_constant_value (attr, low); |
| else if (!low_default_is_valid) |
| complaint (&symfile_complaints, _("Missing DW_AT_lower_bound " |
| "- DIE at 0x%x [in module %s]"), |
| die->offset.sect_off, cu->objfile->name); |
| |
| attr = dwarf2_attr (die, DW_AT_upper_bound, cu); |
| if (attr) |
| { |
| if (attr_form_is_block (attr) || is_ref_attr (attr)) |
| { |
| /* GCC encodes arrays with unspecified or dynamic length |
| with a DW_FORM_block1 attribute or a reference attribute. |
| FIXME: GDB does not yet know how to handle dynamic |
| arrays properly, treat them as arrays with unspecified |
| length for now. |
| |
| FIXME: jimb/2003-09-22: GDB does not really know |
| how to handle arrays of unspecified length |
| either; we just represent them as zero-length |
| arrays. Choose an appropriate upper bound given |
| the lower bound we've computed above. */ |
| high = low - 1; |
| } |
| else |
| high = dwarf2_get_attr_constant_value (attr, 1); |
| } |
| else |
| { |
| attr = dwarf2_attr (die, DW_AT_count, cu); |
| if (attr) |
| { |
| int count = dwarf2_get_attr_constant_value (attr, 1); |
| high = low + count - 1; |
| } |
| else |
| { |
| /* Unspecified array length. */ |
| high = low - 1; |
| } |
| } |
| |
| /* Dwarf-2 specifications explicitly allows to create subrange types |
| without specifying a base type. |
| In that case, the base type must be set to the type of |
| the lower bound, upper bound or count, in that order, if any of these |
| three attributes references an object that has a type. |
| If no base type is found, the Dwarf-2 specifications say that |
| a signed integer type of size equal to the size of an address should |
| be used. |
| For the following C code: `extern char gdb_int [];' |
| GCC produces an empty range DIE. |
| FIXME: muller/2010-05-28: Possible references to object for low bound, |
| high bound or count are not yet handled by this code. */ |
| if (TYPE_CODE (base_type) == TYPE_CODE_VOID) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| int addr_size = gdbarch_addr_bit (gdbarch) /8; |
| struct type *int_type = objfile_type (objfile)->builtin_int; |
| |
| /* Test "int", "long int", and "long long int" objfile types, |
| and select the first one having a size above or equal to the |
| architecture address size. */ |
| if (int_type && TYPE_LENGTH (int_type) >= addr_size) |
| base_type = int_type; |
| else |
| { |
| int_type = objfile_type (objfile)->builtin_long; |
| if (int_type && TYPE_LENGTH (int_type) >= addr_size) |
| base_type = int_type; |
| else |
| { |
| int_type = objfile_type (objfile)->builtin_long_long; |
| if (int_type && TYPE_LENGTH (int_type) >= addr_size) |
| base_type = int_type; |
| } |
| } |
| } |
| |
| negative_mask = |
| (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1); |
| if (!TYPE_UNSIGNED (base_type) && (low & negative_mask)) |
| low |= negative_mask; |
| if (!TYPE_UNSIGNED (base_type) && (high & negative_mask)) |
| high |= negative_mask; |
| |
| range_type = create_range_type (NULL, base_type, low, high); |
| |
| /* Mark arrays with dynamic length at least as an array of unspecified |
| length. GDB could check the boundary but before it gets implemented at |
| least allow accessing the array elements. */ |
| if (attr && attr_form_is_block (attr)) |
| TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1; |
| |
| /* Ada expects an empty array on no boundary attributes. */ |
| if (attr == NULL && cu->language != language_ada) |
| TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1; |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| TYPE_NAME (range_type) = name; |
| |
| attr = dwarf2_attr (die, DW_AT_byte_size, cu); |
| if (attr) |
| TYPE_LENGTH (range_type) = DW_UNSND (attr); |
| |
| set_die_type (die, range_type, cu); |
| |
| /* set_die_type should be already done. */ |
| set_descriptive_type (range_type, die, cu); |
| |
| return range_type; |
| } |
| |
| static struct type * |
| read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *type; |
| |
| /* For now, we only support the C meaning of an unspecified type: void. */ |
| |
| type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile); |
| TYPE_NAME (type) = dwarf2_name (die, cu); |
| |
| return set_die_type (die, type, cu); |
| } |
| |
| /* Read a single die and all its descendents. Set the die's sibling |
| field to NULL; set other fields in the die correctly, and set all |
| of the descendents' fields correctly. Set *NEW_INFO_PTR to the |
| location of the info_ptr after reading all of those dies. PARENT |
| is the parent of the die in question. */ |
| |
| static struct die_info * |
| read_die_and_children (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| gdb_byte **new_info_ptr, |
| struct die_info *parent) |
| { |
| struct die_info *die; |
| gdb_byte *cur_ptr; |
| int has_children; |
| |
| cur_ptr = read_full_die (reader, &die, info_ptr, &has_children); |
| if (die == NULL) |
| { |
| *new_info_ptr = cur_ptr; |
| return NULL; |
| } |
| store_in_ref_table (die, reader->cu); |
| |
| if (has_children) |
| die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die); |
| else |
| { |
| die->child = NULL; |
| *new_info_ptr = cur_ptr; |
| } |
| |
| die->sibling = NULL; |
| die->parent = parent; |
| return die; |
| } |
| |
| /* Read a die, all of its descendents, and all of its siblings; set |
| all of the fields of all of the dies correctly. Arguments are as |
| in read_die_and_children. */ |
| |
| static struct die_info * |
| read_die_and_siblings (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| gdb_byte **new_info_ptr, |
| struct die_info *parent) |
| { |
| struct die_info *first_die, *last_sibling; |
| gdb_byte *cur_ptr; |
| |
| cur_ptr = info_ptr; |
| first_die = last_sibling = NULL; |
| |
| while (1) |
| { |
| struct die_info *die |
| = read_die_and_children (reader, cur_ptr, &cur_ptr, parent); |
| |
| if (die == NULL) |
| { |
| *new_info_ptr = cur_ptr; |
| return first_die; |
| } |
| |
| if (!first_die) |
| first_die = die; |
| else |
| last_sibling->sibling = die; |
| |
| last_sibling = die; |
| } |
| } |
| |
| /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS |
| attributes. |
| The caller is responsible for filling in the extra attributes |
| and updating (*DIEP)->num_attrs. |
| Set DIEP to point to a newly allocated die with its information, |
| except for its child, sibling, and parent fields. |
| Set HAS_CHILDREN to tell whether the die has children or not. */ |
| |
| static gdb_byte * |
| read_full_die_1 (const struct die_reader_specs *reader, |
| struct die_info **diep, gdb_byte *info_ptr, |
| int *has_children, int num_extra_attrs) |
| { |
| unsigned int abbrev_number, bytes_read, i; |
| sect_offset offset; |
| struct abbrev_info *abbrev; |
| struct die_info *die; |
| struct dwarf2_cu *cu = reader->cu; |
| bfd *abfd = reader->abfd; |
| |
| offset.sect_off = info_ptr - reader->buffer; |
| abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| if (!abbrev_number) |
| { |
| *diep = NULL; |
| *has_children = 0; |
| return info_ptr; |
| } |
| |
| abbrev = dwarf2_lookup_abbrev (abbrev_number, cu); |
| if (!abbrev) |
| error (_("Dwarf Error: could not find abbrev number %d [in module %s]"), |
| abbrev_number, |
| bfd_get_filename (abfd)); |
| |
| die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs); |
| die->offset = offset; |
| die->tag = abbrev->tag; |
| die->abbrev = abbrev_number; |
| |
| /* Make the result usable. |
| The caller needs to update num_attrs after adding the extra |
| attributes. */ |
| die->num_attrs = abbrev->num_attrs; |
| |
| for (i = 0; i < abbrev->num_attrs; ++i) |
| info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i], |
| info_ptr); |
| |
| *diep = die; |
| *has_children = abbrev->has_children; |
| return info_ptr; |
| } |
| |
| /* Read a die and all its attributes. |
| Set DIEP to point to a newly allocated die with its information, |
| except for its child, sibling, and parent fields. |
| Set HAS_CHILDREN to tell whether the die has children or not. */ |
| |
| static gdb_byte * |
| read_full_die (const struct die_reader_specs *reader, |
| struct die_info **diep, gdb_byte *info_ptr, |
| int *has_children) |
| { |
| return read_full_die_1 (reader, diep, info_ptr, has_children, 0); |
| } |
| |
| /* In DWARF version 2, the description of the debugging information is |
| stored in a separate .debug_abbrev section. Before we read any |
| dies from a section we read in all abbreviations and install them |
| in a hash table. This function also sets flags in CU describing |
| the data found in the abbrev table. */ |
| |
| static void |
| dwarf2_read_abbrevs (struct dwarf2_cu *cu, |
| struct dwarf2_section_info *abbrev_section) |
| |
| { |
| bfd *abfd = abbrev_section->asection->owner; |
| struct comp_unit_head *cu_header = &cu->header; |
| gdb_byte *abbrev_ptr; |
| struct abbrev_info *cur_abbrev; |
| unsigned int abbrev_number, bytes_read, abbrev_name; |
| unsigned int abbrev_form, hash_number; |
| struct attr_abbrev *cur_attrs; |
| unsigned int allocated_attrs; |
| |
| /* Initialize dwarf2 abbrevs. */ |
| obstack_init (&cu->abbrev_obstack); |
| cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack, |
| (ABBREV_HASH_SIZE |
| * sizeof (struct abbrev_info *))); |
| memset (cu->dwarf2_abbrevs, 0, |
| ABBREV_HASH_SIZE * sizeof (struct abbrev_info *)); |
| |
| dwarf2_read_section (cu->objfile, abbrev_section); |
| abbrev_ptr = abbrev_section->buffer + cu_header->abbrev_offset.sect_off; |
| abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| |
| allocated_attrs = ATTR_ALLOC_CHUNK; |
| cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev)); |
| |
| /* Loop until we reach an abbrev number of 0. */ |
| while (abbrev_number) |
| { |
| cur_abbrev = dwarf_alloc_abbrev (cu); |
| |
| /* read in abbrev header */ |
| cur_abbrev->number = abbrev_number; |
| cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr); |
| abbrev_ptr += 1; |
| |
| /* now read in declarations */ |
| abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| while (abbrev_name) |
| { |
| if (cur_abbrev->num_attrs == allocated_attrs) |
| { |
| allocated_attrs += ATTR_ALLOC_CHUNK; |
| cur_attrs |
| = xrealloc (cur_attrs, (allocated_attrs |
| * sizeof (struct attr_abbrev))); |
| } |
| |
| cur_attrs[cur_abbrev->num_attrs].name = abbrev_name; |
| cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form; |
| abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| } |
| |
| cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack, |
| (cur_abbrev->num_attrs |
| * sizeof (struct attr_abbrev))); |
| memcpy (cur_abbrev->attrs, cur_attrs, |
| cur_abbrev->num_attrs * sizeof (struct attr_abbrev)); |
| |
| hash_number = abbrev_number % ABBREV_HASH_SIZE; |
| cur_abbrev->next = cu->dwarf2_abbrevs[hash_number]; |
| cu->dwarf2_abbrevs[hash_number] = cur_abbrev; |
| |
| /* Get next abbreviation. |
| Under Irix6 the abbreviations for a compilation unit are not |
| always properly terminated with an abbrev number of 0. |
| Exit loop if we encounter an abbreviation which we have |
| already read (which means we are about to read the abbreviations |
| for the next compile unit) or if the end of the abbreviation |
| table is reached. */ |
| if ((unsigned int) (abbrev_ptr - abbrev_section->buffer) |
| >= abbrev_section->size) |
| break; |
| abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read); |
| abbrev_ptr += bytes_read; |
| if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL) |
| break; |
| } |
| |
| xfree (cur_attrs); |
| } |
| |
| /* Release the memory used by the abbrev table for a compilation unit. */ |
| |
| static void |
| dwarf2_free_abbrev_table (void *ptr_to_cu) |
| { |
| struct dwarf2_cu *cu = ptr_to_cu; |
| |
| obstack_free (&cu->abbrev_obstack, NULL); |
| cu->dwarf2_abbrevs = NULL; |
| } |
| |
| /* Lookup an abbrev_info structure in the abbrev hash table. */ |
| |
| static struct abbrev_info * |
| dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu) |
| { |
| unsigned int hash_number; |
| struct abbrev_info *abbrev; |
| |
| hash_number = number % ABBREV_HASH_SIZE; |
| abbrev = cu->dwarf2_abbrevs[hash_number]; |
| |
| while (abbrev) |
| { |
| if (abbrev->number == number) |
| return abbrev; |
| else |
| abbrev = abbrev->next; |
| } |
| return NULL; |
| } |
| |
| /* Returns nonzero if TAG represents a type that we might generate a partial |
| symbol for. */ |
| |
| static int |
| is_type_tag_for_partial (int tag) |
| { |
| switch (tag) |
| { |
| #if 0 |
| /* Some types that would be reasonable to generate partial symbols for, |
| that we don't at present. */ |
| case DW_TAG_array_type: |
| case DW_TAG_file_type: |
| case DW_TAG_ptr_to_member_type: |
| case DW_TAG_set_type: |
| case DW_TAG_string_type: |
| case DW_TAG_subroutine_type: |
| #endif |
| case DW_TAG_base_type: |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_enumeration_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_subrange_type: |
| case DW_TAG_typedef: |
| case DW_TAG_union_type: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Load all DIEs that are interesting for partial symbols into memory. */ |
| |
| static struct partial_die_info * |
| load_partial_dies (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, int building_psymtab) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = cu->objfile; |
| struct partial_die_info *part_die; |
| struct partial_die_info *parent_die, *last_die, *first_die = NULL; |
| struct abbrev_info *abbrev; |
| unsigned int bytes_read; |
| unsigned int load_all = 0; |
| int nesting_level = 1; |
| |
| parent_die = NULL; |
| last_die = NULL; |
| |
| gdb_assert (cu->per_cu != NULL); |
| if (cu->per_cu->load_all_dies) |
| load_all = 1; |
| |
| cu->partial_dies |
| = htab_create_alloc_ex (cu->header.length / 12, |
| partial_die_hash, |
| partial_die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| part_die = obstack_alloc (&cu->comp_unit_obstack, |
| sizeof (struct partial_die_info)); |
| |
| while (1) |
| { |
| abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu); |
| |
| /* A NULL abbrev means the end of a series of children. */ |
| if (abbrev == NULL) |
| { |
| if (--nesting_level == 0) |
| { |
| /* PART_DIE was probably the last thing allocated on the |
| comp_unit_obstack, so we could call obstack_free |
| here. We don't do that because the waste is small, |
| and will be cleaned up when we're done with this |
| compilation unit. This way, we're also more robust |
| against other users of the comp_unit_obstack. */ |
| return first_die; |
| } |
| info_ptr += bytes_read; |
| last_die = parent_die; |
| parent_die = parent_die->die_parent; |
| continue; |
| } |
| |
| /* Check for template arguments. We never save these; if |
| they're seen, we just mark the parent, and go on our way. */ |
| if (parent_die != NULL |
| && cu->language == language_cplus |
| && (abbrev->tag == DW_TAG_template_type_param |
| || abbrev->tag == DW_TAG_template_value_param)) |
| { |
| parent_die->has_template_arguments = 1; |
| |
| if (!load_all) |
| { |
| /* We don't need a partial DIE for the template argument. */ |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| } |
| |
| /* We only recurse into c++ subprograms looking for template arguments. |
| Skip their other children. */ |
| if (!load_all |
| && cu->language == language_cplus |
| && parent_die != NULL |
| && parent_die->tag == DW_TAG_subprogram) |
| { |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| |
| /* Check whether this DIE is interesting enough to save. Normally |
| we would not be interested in members here, but there may be |
| later variables referencing them via DW_AT_specification (for |
| static members). */ |
| if (!load_all |
| && !is_type_tag_for_partial (abbrev->tag) |
| && abbrev->tag != DW_TAG_constant |
| && abbrev->tag != DW_TAG_enumerator |
| && abbrev->tag != DW_TAG_subprogram |
| && abbrev->tag != DW_TAG_lexical_block |
| && abbrev->tag != DW_TAG_variable |
| && abbrev->tag != DW_TAG_namespace |
| && abbrev->tag != DW_TAG_module |
| && abbrev->tag != DW_TAG_member |
| && abbrev->tag != DW_TAG_imported_unit) |
| { |
| /* Otherwise we skip to the next sibling, if any. */ |
| info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev); |
| continue; |
| } |
| |
| info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read, |
| info_ptr); |
| |
| /* This two-pass algorithm for processing partial symbols has a |
| high cost in cache pressure. Thus, handle some simple cases |
| here which cover the majority of C partial symbols. DIEs |
| which neither have specification tags in them, nor could have |
| specification tags elsewhere pointing at them, can simply be |
| processed and discarded. |
| |
| This segment is also optional; scan_partial_symbols and |
| add_partial_symbol will handle these DIEs if we chain |
| them in normally. When compilers which do not emit large |
| quantities of duplicate debug information are more common, |
| this code can probably be removed. */ |
| |
| /* Any complete simple types at the top level (pretty much all |
| of them, for a language without namespaces), can be processed |
| directly. */ |
| if (parent_die == NULL |
| && part_die->has_specification == 0 |
| && part_die->is_declaration == 0 |
| && ((part_die->tag == DW_TAG_typedef && !part_die->has_children) |
| || part_die->tag == DW_TAG_base_type |
| || part_die->tag == DW_TAG_subrange_type)) |
| { |
| if (building_psymtab && part_die->name != NULL) |
| add_psymbol_to_list (part_die->name, strlen (part_die->name), 0, |
| VAR_DOMAIN, LOC_TYPEDEF, |
| &objfile->static_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| info_ptr = locate_pdi_sibling (reader, part_die, info_ptr); |
| continue; |
| } |
| |
| /* The exception for DW_TAG_typedef with has_children above is |
| a workaround of GCC PR debug/47510. In the case of this complaint |
| type_name_no_tag_or_error will error on such types later. |
| |
| GDB skipped children of DW_TAG_typedef by the shortcut above and then |
| it could not find the child DIEs referenced later, this is checked |
| above. In correct DWARF DW_TAG_typedef should have no children. */ |
| |
| if (part_die->tag == DW_TAG_typedef && part_die->has_children) |
| complaint (&symfile_complaints, |
| _("DW_TAG_typedef has childen - GCC PR debug/47510 bug " |
| "- DIE at 0x%x [in module %s]"), |
| part_die->offset.sect_off, objfile->name); |
| |
| /* If we're at the second level, and we're an enumerator, and |
| our parent has no specification (meaning possibly lives in a |
| namespace elsewhere), then we can add the partial symbol now |
| instead of queueing it. */ |
| if (part_die->tag == DW_TAG_enumerator |
| && parent_die != NULL |
| && parent_die->die_parent == NULL |
| && parent_die->tag == DW_TAG_enumeration_type |
| && parent_die->has_specification == 0) |
| { |
| if (part_die->name == NULL) |
| complaint (&symfile_complaints, |
| _("malformed enumerator DIE ignored")); |
| else if (building_psymtab) |
| add_psymbol_to_list (part_die->name, strlen (part_die->name), 0, |
| VAR_DOMAIN, LOC_CONST, |
| (cu->language == language_cplus |
| || cu->language == language_java) |
| ? &objfile->global_psymbols |
| : &objfile->static_psymbols, |
| 0, (CORE_ADDR) 0, cu->language, objfile); |
| |
| info_ptr = locate_pdi_sibling (reader, part_die, info_ptr); |
| continue; |
| } |
| |
| /* We'll save this DIE so link it in. */ |
| part_die->die_parent = parent_die; |
| part_die->die_sibling = NULL; |
| part_die->die_child = NULL; |
| |
| if (last_die && last_die == parent_die) |
| last_die->die_child = part_die; |
| else if (last_die) |
| last_die->die_sibling = part_die; |
| |
| last_die = part_die; |
| |
| if (first_die == NULL) |
| first_die = part_die; |
| |
| /* Maybe add the DIE to the hash table. Not all DIEs that we |
| find interesting need to be in the hash table, because we |
| also have the parent/sibling/child chains; only those that we |
| might refer to by offset later during partial symbol reading. |
| |
| For now this means things that might have be the target of a |
| DW_AT_specification, DW_AT_abstract_origin, or |
| DW_AT_extension. DW_AT_extension will refer only to |
| namespaces; DW_AT_abstract_origin refers to functions (and |
| many things under the function DIE, but we do not recurse |
| into function DIEs during partial symbol reading) and |
| possibly variables as well; DW_AT_specification refers to |
| declarations. Declarations ought to have the DW_AT_declaration |
| flag. It happens that GCC forgets to put it in sometimes, but |
| only for functions, not for types. |
| |
| Adding more things than necessary to the hash table is harmless |
| except for the performance cost. Adding too few will result in |
| wasted time in find_partial_die, when we reread the compilation |
| unit with load_all_dies set. */ |
| |
| if (load_all |
| || abbrev->tag == DW_TAG_constant |
| || abbrev->tag == DW_TAG_subprogram |
| || abbrev->tag == DW_TAG_variable |
| || abbrev->tag == DW_TAG_namespace |
| || part_die->is_declaration) |
| { |
| void **slot; |
| |
| slot = htab_find_slot_with_hash (cu->partial_dies, part_die, |
| part_die->offset.sect_off, INSERT); |
| *slot = part_die; |
| } |
| |
| part_die = obstack_alloc (&cu->comp_unit_obstack, |
| sizeof (struct partial_die_info)); |
| |
| /* For some DIEs we want to follow their children (if any). For C |
| we have no reason to follow the children of structures; for other |
| languages we have to, so that we can get at method physnames |
| to infer fully qualified class names, for DW_AT_specification, |
| and for C++ template arguments. For C++, we also look one level |
| inside functions to find template arguments (if the name of the |
| function does not already contain the template arguments). |
| |
| For Ada, we need to scan the children of subprograms and lexical |
| blocks as well because Ada allows the definition of nested |
| entities that could be interesting for the debugger, such as |
| nested subprograms for instance. */ |
| if (last_die->has_children |
| && (load_all |
| || last_die->tag == DW_TAG_namespace |
| || last_die->tag == DW_TAG_module |
| || last_die->tag == DW_TAG_enumeration_type |
| || (cu->language == language_cplus |
| && last_die->tag == DW_TAG_subprogram |
| && (last_die->name == NULL |
| || strchr (last_die->name, '<') == NULL)) |
| || (cu->language != language_c |
| && (last_die->tag == DW_TAG_class_type |
| || last_die->tag == DW_TAG_interface_type |
| || last_die->tag == DW_TAG_structure_type |
| || last_die->tag == DW_TAG_union_type)) |
| || (cu->language == language_ada |
| && (last_die->tag == DW_TAG_subprogram |
| || last_die->tag == DW_TAG_lexical_block)))) |
| { |
| nesting_level++; |
| parent_die = last_die; |
| continue; |
| } |
| |
| /* Otherwise we skip to the next sibling, if any. */ |
| info_ptr = locate_pdi_sibling (reader, last_die, info_ptr); |
| |
| /* Back to the top, do it again. */ |
| } |
| } |
| |
| /* Read a minimal amount of information into the minimal die structure. */ |
| |
| static gdb_byte * |
| read_partial_die (const struct die_reader_specs *reader, |
| struct partial_die_info *part_die, |
| struct abbrev_info *abbrev, unsigned int abbrev_len, |
| gdb_byte *info_ptr) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct objfile *objfile = cu->objfile; |
| gdb_byte *buffer = reader->buffer; |
| unsigned int i; |
| struct attribute attr; |
| int has_low_pc_attr = 0; |
| int has_high_pc_attr = 0; |
| int high_pc_relative = 0; |
| |
| memset (part_die, 0, sizeof (struct partial_die_info)); |
| |
| part_die->offset.sect_off = info_ptr - buffer; |
| |
| info_ptr += abbrev_len; |
| |
| if (abbrev == NULL) |
| return info_ptr; |
| |
| part_die->tag = abbrev->tag; |
| part_die->has_children = abbrev->has_children; |
| |
| for (i = 0; i < abbrev->num_attrs; ++i) |
| { |
| info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr); |
| |
| /* Store the data if it is of an attribute we want to keep in a |
| partial symbol table. */ |
| switch (attr.name) |
| { |
| case DW_AT_name: |
| switch (part_die->tag) |
| { |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| case DW_TAG_type_unit: |
| /* Compilation units have a DW_AT_name that is a filename, not |
| a source language identifier. */ |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| /* These tags always have simple identifiers already; no need |
| to canonicalize them. */ |
| part_die->name = DW_STRING (&attr); |
| break; |
| default: |
| part_die->name |
| = dwarf2_canonicalize_name (DW_STRING (&attr), cu, |
| &objfile->objfile_obstack); |
| break; |
| } |
| break; |
| case DW_AT_linkage_name: |
| case DW_AT_MIPS_linkage_name: |
| /* Note that both forms of linkage name might appear. We |
| assume they will be the same, and we only store the last |
| one we see. */ |
| if (cu->language == language_ada) |
| part_die->name = DW_STRING (&attr); |
| part_die->linkage_name = DW_STRING (&attr); |
| break; |
| case DW_AT_low_pc: |
| has_low_pc_attr = 1; |
| part_die->lowpc = DW_ADDR (&attr); |
| break; |
| case DW_AT_high_pc: |
| has_high_pc_attr = 1; |
| if (attr.form == DW_FORM_addr |
| || attr.form == DW_FORM_GNU_addr_index) |
| part_die->highpc = DW_ADDR (&attr); |
| else |
| { |
| high_pc_relative = 1; |
| part_die->highpc = DW_UNSND (&attr); |
| } |
| break; |
| case DW_AT_location: |
| /* Support the .debug_loc offsets. */ |
| if (attr_form_is_block (&attr)) |
| { |
| part_die->d.locdesc = DW_BLOCK (&attr); |
| } |
| else if (attr_form_is_section_offset (&attr)) |
| { |
| dwarf2_complex_location_expr_complaint (); |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("DW_AT_location", |
| "partial symbol information"); |
| } |
| break; |
| case DW_AT_external: |
| part_die->is_external = DW_UNSND (&attr); |
| break; |
| case DW_AT_declaration: |
| part_die->is_declaration = DW_UNSND (&attr); |
| break; |
| case DW_AT_type: |
| part_die->has_type = 1; |
| break; |
| case DW_AT_abstract_origin: |
| case DW_AT_specification: |
| case DW_AT_extension: |
| part_die->has_specification = 1; |
| part_die->spec_offset = dwarf2_get_ref_die_offset (&attr); |
| break; |
| case DW_AT_sibling: |
| /* Ignore absolute siblings, they might point outside of |
| the current compile unit. */ |
| if (attr.form == DW_FORM_ref_addr) |
| complaint (&symfile_complaints, |
| _("ignoring absolute DW_AT_sibling")); |
| else |
| part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off; |
| break; |
| case DW_AT_byte_size: |
| part_die->has_byte_size = 1; |
| break; |
| case DW_AT_calling_convention: |
| /* DWARF doesn't provide a way to identify a program's source-level |
| entry point. DW_AT_calling_convention attributes are only meant |
| to describe functions' calling conventions. |
| |
| However, because it's a necessary piece of information in |
| Fortran, and because DW_CC_program is the only piece of debugging |
| information whose definition refers to a 'main program' at all, |
| several compilers have begun marking Fortran main programs with |
| DW_CC_program --- even when those functions use the standard |
| calling conventions. |
| |
| So until DWARF specifies a way to provide this information and |
| compilers pick up the new representation, we'll support this |
| practice. */ |
| if (DW_UNSND (&attr) == DW_CC_program |
| && cu->language == language_fortran) |
| { |
| set_main_name (part_die->name); |
| |
| /* As this DIE has a static linkage the name would be difficult |
| to look up later. */ |
| language_of_main = language_fortran; |
| } |
| break; |
| case DW_AT_inline: |
| if (DW_UNSND (&attr) == DW_INL_inlined |
| || DW_UNSND (&attr) == DW_INL_declared_inlined) |
| part_die->may_be_inlined = 1; |
| break; |
| |
| case DW_AT_import: |
| if (part_die->tag == DW_TAG_imported_unit) |
| part_die->d.offset = dwarf2_get_ref_die_offset (&attr); |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (high_pc_relative) |
| part_die->highpc += part_die->lowpc; |
| |
| if (has_low_pc_attr && has_high_pc_attr) |
| { |
| /* When using the GNU linker, .gnu.linkonce. sections are used to |
| eliminate duplicate copies of functions and vtables and such. |
| The linker will arbitrarily choose one and discard the others. |
| The AT_*_pc values for such functions refer to local labels in |
| these sections. If the section from that file was discarded, the |
| labels are not in the output, so the relocs get a value of 0. |
| If this is a discarded function, mark the pc bounds as invalid, |
| so that GDB will ignore it. */ |
| if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| complaint (&symfile_complaints, |
| _("DW_AT_low_pc %s is zero " |
| "for DIE at 0x%x [in module %s]"), |
| paddress (gdbarch, part_die->lowpc), |
| part_die->offset.sect_off, objfile->name); |
| } |
| /* dwarf2_get_pc_bounds has also the strict low < high requirement. */ |
| else if (part_die->lowpc >= part_die->highpc) |
| { |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| |
| complaint (&symfile_complaints, |
| _("DW_AT_low_pc %s is not < DW_AT_high_pc %s " |
| "for DIE at 0x%x [in module %s]"), |
| paddress (gdbarch, part_die->lowpc), |
| paddress (gdbarch, part_die->highpc), |
| part_die->offset.sect_off, objfile->name); |
| } |
| else |
| part_die->has_pc_info = 1; |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Find a cached partial DIE at OFFSET in CU. */ |
| |
| static struct partial_die_info * |
| find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu) |
| { |
| struct partial_die_info *lookup_die = NULL; |
| struct partial_die_info part_die; |
| |
| part_die.offset = offset; |
| lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, |
| offset.sect_off); |
| |
| return lookup_die; |
| } |
| |
| /* Find a partial DIE at OFFSET, which may or may not be in CU, |
| except in the case of .debug_types DIEs which do not reference |
| outside their CU (they do however referencing other types via |
| DW_FORM_ref_sig8). */ |
| |
| static struct partial_die_info * |
| find_partial_die (sect_offset offset, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct dwarf2_per_cu_data *per_cu = NULL; |
| struct partial_die_info *pd = NULL; |
| |
| if (offset_in_cu_p (&cu->header, offset)) |
| { |
| pd = find_partial_die_in_comp_unit (offset, cu); |
| if (pd != NULL) |
| return pd; |
| /* We missed recording what we needed. |
| Load all dies and try again. */ |
| per_cu = cu->per_cu; |
| } |
| else |
| { |
| /* TUs don't reference other CUs/TUs (except via type signatures). */ |
| if (cu->per_cu->is_debug_types) |
| { |
| error (_("Dwarf Error: Type Unit at offset 0x%lx contains" |
| " external reference to offset 0x%lx [in module %s].\n"), |
| (long) cu->header.offset.sect_off, (long) offset.sect_off, |
| bfd_get_filename (objfile->obfd)); |
| } |
| per_cu = dwarf2_find_containing_comp_unit (offset, objfile); |
| |
| if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL) |
| load_partial_comp_unit (per_cu); |
| |
| per_cu->cu->last_used = 0; |
| pd = find_partial_die_in_comp_unit (offset, per_cu->cu); |
| } |
| |
| /* If we didn't find it, and not all dies have been loaded, |
| load them all and try again. */ |
| |
| if (pd == NULL && per_cu->load_all_dies == 0) |
| { |
| per_cu->load_all_dies = 1; |
| |
| /* This is nasty. When we reread the DIEs, somewhere up the call chain |
| THIS_CU->cu may already be in use. So we can't just free it and |
| replace its DIEs with the ones we read in. Instead, we leave those |
| DIEs alone (which can still be in use, e.g. in scan_partial_symbols), |
| and clobber THIS_CU->cu->partial_dies with the hash table for the new |
| set. */ |
| load_partial_comp_unit (per_cu); |
| |
| pd = find_partial_die_in_comp_unit (offset, per_cu->cu); |
| } |
| |
| if (pd == NULL) |
| internal_error (__FILE__, __LINE__, |
| _("could not find partial DIE 0x%x " |
| "in cache [from module %s]\n"), |
| offset.sect_off, bfd_get_filename (objfile->obfd)); |
| return pd; |
| } |
| |
| /* See if we can figure out if the class lives in a namespace. We do |
| this by looking for a member function; its demangled name will |
| contain namespace info, if there is any. */ |
| |
| static void |
| guess_partial_die_structure_name (struct partial_die_info *struct_pdi, |
| struct dwarf2_cu *cu) |
| { |
| /* NOTE: carlton/2003-10-07: Getting the info this way changes |
| what template types look like, because the demangler |
| frequently doesn't give the same name as the debug info. We |
| could fix this by only using the demangled name to get the |
| prefix (but see comment in read_structure_type). */ |
| |
| struct partial_die_info *real_pdi; |
| struct partial_die_info *child_pdi; |
| |
| /* If this DIE (this DIE's specification, if any) has a parent, then |
| we should not do this. We'll prepend the parent's fully qualified |
| name when we create the partial symbol. */ |
| |
| real_pdi = struct_pdi; |
| while (real_pdi->has_specification) |
| real_pdi = find_partial_die (real_pdi->spec_offset, cu); |
| |
| if (real_pdi->die_parent != NULL) |
| return; |
| |
| for (child_pdi = struct_pdi->die_child; |
| child_pdi != NULL; |
| child_pdi = child_pdi->die_sibling) |
| { |
| if (child_pdi->tag == DW_TAG_subprogram |
| && child_pdi->linkage_name != NULL) |
| { |
| char *actual_class_name |
| = language_class_name_from_physname (cu->language_defn, |
| child_pdi->linkage_name); |
| if (actual_class_name != NULL) |
| { |
| struct_pdi->name |
| = obsavestring (actual_class_name, |
| strlen (actual_class_name), |
| &cu->objfile->objfile_obstack); |
| xfree (actual_class_name); |
| } |
| break; |
| } |
| } |
| } |
| |
| /* Adjust PART_DIE before generating a symbol for it. This function |
| may set the is_external flag or change the DIE's name. */ |
| |
| static void |
| fixup_partial_die (struct partial_die_info *part_die, |
| struct dwarf2_cu *cu) |
| { |
| /* Once we've fixed up a die, there's no point in doing so again. |
| This also avoids a memory leak if we were to call |
| guess_partial_die_structure_name multiple times. */ |
| if (part_die->fixup_called) |
| return; |
| |
| /* If we found a reference attribute and the DIE has no name, try |
| to find a name in the referred to DIE. */ |
| |
| if (part_die->name == NULL && part_die->has_specification) |
| { |
| struct partial_die_info *spec_die; |
| |
| spec_die = find_partial_die (part_die->spec_offset, cu); |
| |
| fixup_partial_die (spec_die, cu); |
| |
| if (spec_die->name) |
| { |
| part_die->name = spec_die->name; |
| |
| /* Copy DW_AT_external attribute if it is set. */ |
| if (spec_die->is_external) |
| part_die->is_external = spec_die->is_external; |
| } |
| } |
| |
| /* Set default names for some unnamed DIEs. */ |
| |
| if (part_die->name == NULL && part_die->tag == DW_TAG_namespace) |
| part_die->name = CP_ANONYMOUS_NAMESPACE_STR; |
| |
| /* If there is no parent die to provide a namespace, and there are |
| children, see if we can determine the namespace from their linkage |
| name. */ |
| if (cu->language == language_cplus |
| && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types) |
| && part_die->die_parent == NULL |
| && part_die->has_children |
| && (part_die->tag == DW_TAG_class_type |
| || part_die->tag == DW_TAG_structure_type |
| || part_die->tag == DW_TAG_union_type)) |
| guess_partial_die_structure_name (part_die, cu); |
| |
| /* GCC might emit a nameless struct or union that has a linkage |
| name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| if (part_die->name == NULL |
| && (part_die->tag == DW_TAG_class_type |
| || part_die->tag == DW_TAG_interface_type |
| || part_die->tag == DW_TAG_structure_type |
| || part_die->tag == DW_TAG_union_type) |
| && part_die->linkage_name != NULL) |
| { |
| char *demangled; |
| |
| demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES); |
| if (demangled) |
| { |
| const char *base; |
| |
| /* Strip any leading namespaces/classes, keep only the base name. |
| DW_AT_name for named DIEs does not contain the prefixes. */ |
| base = strrchr (demangled, ':'); |
| if (base && base > demangled && base[-1] == ':') |
| base++; |
| else |
| base = demangled; |
| |
| part_die->name = obsavestring (base, strlen (base), |
| &cu->objfile->objfile_obstack); |
| xfree (demangled); |
| } |
| } |
| |
| part_die->fixup_called = 1; |
| } |
| |
| /* Read an attribute value described by an attribute form. */ |
| |
| static gdb_byte * |
| read_attribute_value (const struct die_reader_specs *reader, |
| struct attribute *attr, unsigned form, |
| gdb_byte *info_ptr) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| bfd *abfd = reader->abfd; |
| struct comp_unit_head *cu_header = &cu->header; |
| unsigned int bytes_read; |
| struct dwarf_block *blk; |
| |
| attr->form = form; |
| switch (form) |
| { |
| case DW_FORM_ref_addr: |
| if (cu->header.version == 2) |
| DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read); |
| else |
| DW_UNSND (attr) = read_offset (abfd, info_ptr, |
| &cu->header, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_addr: |
| DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_block2: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_block4: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_4_bytes (abfd, info_ptr); |
| info_ptr += 4; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_data2: |
| DW_UNSND (attr) = read_2_bytes (abfd, info_ptr); |
| info_ptr += 2; |
| break; |
| case DW_FORM_data4: |
| DW_UNSND (attr) = read_4_bytes (abfd, info_ptr); |
| info_ptr += 4; |
| break; |
| case DW_FORM_data8: |
| DW_UNSND (attr) = read_8_bytes (abfd, info_ptr); |
| info_ptr += 8; |
| break; |
| case DW_FORM_sec_offset: |
| DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_string: |
| DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_strp: |
| DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header, |
| &bytes_read); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_exprloc: |
| case DW_FORM_block: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_block1: |
| blk = dwarf_alloc_block (cu); |
| blk->size = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| blk->data = read_n_bytes (abfd, info_ptr, blk->size); |
| info_ptr += blk->size; |
| DW_BLOCK (attr) = blk; |
| break; |
| case DW_FORM_data1: |
| DW_UNSND (attr) = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag: |
| DW_UNSND (attr) = read_1_byte (abfd, info_ptr); |
| info_ptr += 1; |
| break; |
| case DW_FORM_flag_present: |
| DW_UNSND (attr) = 1; |
| break; |
| case DW_FORM_sdata: |
| DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_udata: |
| DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_ref1: |
| DW_UNSND (attr) = (cu->header.offset.sect_off |
| + read_1_byte (abfd, info_ptr)); |
| info_ptr += 1; |
| break; |
| case DW_FORM_ref2: |
| DW_UNSND (attr) = (cu->header.offset.sect_off |
| + read_2_bytes (abfd, info_ptr)); |
| info_ptr += 2; |
| break; |
| case DW_FORM_ref4: |
| DW_UNSND (attr) = (cu->header.offset.sect_off |
| + read_4_bytes (abfd, info_ptr)); |
| info_ptr += 4; |
| break; |
| case DW_FORM_ref8: |
| DW_UNSND (attr) = (cu->header.offset.sect_off |
| + read_8_bytes (abfd, info_ptr)); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_sig8: |
| /* Convert the signature to something we can record in DW_UNSND |
| for later lookup. |
| NOTE: This is NULL if the type wasn't found. */ |
| DW_SIGNATURED_TYPE (attr) = |
| lookup_signatured_type (read_8_bytes (abfd, info_ptr)); |
| info_ptr += 8; |
| break; |
| case DW_FORM_ref_udata: |
| DW_UNSND (attr) = (cu->header.offset.sect_off |
| + read_unsigned_leb128 (abfd, info_ptr, &bytes_read)); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_indirect: |
| form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| info_ptr = read_attribute_value (reader, attr, form, info_ptr); |
| break; |
| case DW_FORM_GNU_addr_index: |
| if (reader->dwo_file == NULL) |
| { |
| /* For now flag a hard error. |
| Later we can turn this into a complaint. */ |
| error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read); |
| info_ptr += bytes_read; |
| break; |
| case DW_FORM_GNU_str_index: |
| if (reader->dwo_file == NULL) |
| { |
| /* For now flag a hard error. |
| Later we can turn this into a complaint if warranted. */ |
| error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| { |
| ULONGEST str_index = |
| read_unsigned_leb128 (abfd, info_ptr, &bytes_read); |
| |
| DW_STRING (attr) = read_str_index (reader, cu, str_index); |
| DW_STRING_IS_CANONICAL (attr) = 0; |
| info_ptr += bytes_read; |
| } |
| break; |
| default: |
| error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"), |
| dwarf_form_name (form), |
| bfd_get_filename (abfd)); |
| } |
| |
| /* We have seen instances where the compiler tried to emit a byte |
| size attribute of -1 which ended up being encoded as an unsigned |
| 0xffffffff. Although 0xffffffff is technically a valid size value, |
| an object of this size seems pretty unlikely so we can relatively |
| safely treat these cases as if the size attribute was invalid and |
| treat them as zero by default. */ |
| if (attr->name == DW_AT_byte_size |
| && form == DW_FORM_data4 |
| && DW_UNSND (attr) >= 0xffffffff) |
| { |
| complaint |
| (&symfile_complaints, |
| _("Suspicious DW_AT_byte_size value treated as zero instead of %s"), |
| hex_string (DW_UNSND (attr))); |
| DW_UNSND (attr) = 0; |
| } |
| |
| return info_ptr; |
| } |
| |
| /* Read an attribute described by an abbreviated attribute. */ |
| |
| static gdb_byte * |
| read_attribute (const struct die_reader_specs *reader, |
| struct attribute *attr, struct attr_abbrev *abbrev, |
| gdb_byte *info_ptr) |
| { |
| attr->name = abbrev->name; |
| return read_attribute_value (reader, attr, abbrev->form, info_ptr); |
| } |
| |
| /* Read dwarf information from a buffer. */ |
| |
| static unsigned int |
| read_1_byte (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_8 (abfd, buf); |
| } |
| |
| static int |
| read_1_signed_byte (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_signed_8 (abfd, buf); |
| } |
| |
| static unsigned int |
| read_2_bytes (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_16 (abfd, buf); |
| } |
| |
| static int |
| read_2_signed_bytes (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_signed_16 (abfd, buf); |
| } |
| |
| static unsigned int |
| read_4_bytes (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_32 (abfd, buf); |
| } |
| |
| static int |
| read_4_signed_bytes (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_signed_32 (abfd, buf); |
| } |
| |
| static ULONGEST |
| read_8_bytes (bfd *abfd, gdb_byte *buf) |
| { |
| return bfd_get_64 (abfd, buf); |
| } |
| |
| static CORE_ADDR |
| read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu, |
| unsigned int *bytes_read) |
| { |
| struct comp_unit_head *cu_header = &cu->header; |
| CORE_ADDR retval = 0; |
| |
| if (cu_header->signed_addr_p) |
| { |
| switch (cu_header->addr_size) |
| { |
| case 2: |
| retval = bfd_get_signed_16 (abfd, buf); |
| break; |
| case 4: |
| retval = bfd_get_signed_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_signed_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_address: bad switch, signed [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| } |
| else |
| { |
| switch (cu_header->addr_size) |
| { |
| case 2: |
| retval = bfd_get_16 (abfd, buf); |
| break; |
| case 4: |
| retval = bfd_get_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_address: bad switch, " |
| "unsigned [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| } |
| |
| *bytes_read = cu_header->addr_size; |
| return retval; |
| } |
| |
| /* Read the initial length from a section. The (draft) DWARF 3 |
| specification allows the initial length to take up either 4 bytes |
| or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8 |
| bytes describe the length and all offsets will be 8 bytes in length |
| instead of 4. |
| |
| An older, non-standard 64-bit format is also handled by this |
| function. The older format in question stores the initial length |
| as an 8-byte quantity without an escape value. Lengths greater |
| than 2^32 aren't very common which means that the initial 4 bytes |
| is almost always zero. Since a length value of zero doesn't make |
| sense for the 32-bit format, this initial zero can be considered to |
| be an escape value which indicates the presence of the older 64-bit |
| format. As written, the code can't detect (old format) lengths |
| greater than 4GB. If it becomes necessary to handle lengths |
| somewhat larger than 4GB, we could allow other small values (such |
| as the non-sensical values of 1, 2, and 3) to also be used as |
| escape values indicating the presence of the old format. |
| |
| The value returned via bytes_read should be used to increment the |
| relevant pointer after calling read_initial_length(). |
| |
| [ Note: read_initial_length() and read_offset() are based on the |
| document entitled "DWARF Debugging Information Format", revision |
| 3, draft 8, dated November 19, 2001. This document was obtained |
| from: |
| |
| http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf |
| |
| This document is only a draft and is subject to change. (So beware.) |
| |
| Details regarding the older, non-standard 64-bit format were |
| determined empirically by examining 64-bit ELF files produced by |
| the SGI toolchain on an IRIX 6.5 machine. |
| |
| - Kevin, July 16, 2002 |
| ] */ |
| |
| static LONGEST |
| read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read) |
| { |
| LONGEST length = bfd_get_32 (abfd, buf); |
| |
| if (length == 0xffffffff) |
| { |
| length = bfd_get_64 (abfd, buf + 4); |
| *bytes_read = 12; |
| } |
| else if (length == 0) |
| { |
| /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */ |
| length = bfd_get_64 (abfd, buf); |
| *bytes_read = 8; |
| } |
| else |
| { |
| *bytes_read = 4; |
| } |
| |
| return length; |
| } |
| |
| /* Cover function for read_initial_length. |
| Returns the length of the object at BUF, and stores the size of the |
| initial length in *BYTES_READ and stores the size that offsets will be in |
| *OFFSET_SIZE. |
| If the initial length size is not equivalent to that specified in |
| CU_HEADER then issue a complaint. |
| This is useful when reading non-comp-unit headers. */ |
| |
| static LONGEST |
| read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read, |
| unsigned int *offset_size) |
| { |
| LONGEST length = read_initial_length (abfd, buf, bytes_read); |
| |
| gdb_assert (cu_header->initial_length_size == 4 |
| || cu_header->initial_length_size == 8 |
| || cu_header->initial_length_size == 12); |
| |
| if (cu_header->initial_length_size != *bytes_read) |
| complaint (&symfile_complaints, |
| _("intermixed 32-bit and 64-bit DWARF sections")); |
| |
| *offset_size = (*bytes_read == 4) ? 4 : 8; |
| return length; |
| } |
| |
| /* Read an offset from the data stream. The size of the offset is |
| given by cu_header->offset_size. */ |
| |
| static LONGEST |
| read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read) |
| { |
| LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size); |
| |
| *bytes_read = cu_header->offset_size; |
| return offset; |
| } |
| |
| /* Read an offset from the data stream. */ |
| |
| static LONGEST |
| read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size) |
| { |
| LONGEST retval = 0; |
| |
| switch (offset_size) |
| { |
| case 4: |
| retval = bfd_get_32 (abfd, buf); |
| break; |
| case 8: |
| retval = bfd_get_64 (abfd, buf); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, |
| _("read_offset_1: bad switch [in module %s]"), |
| bfd_get_filename (abfd)); |
| } |
| |
| return retval; |
| } |
| |
| static gdb_byte * |
| read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size) |
| { |
| /* If the size of a host char is 8 bits, we can return a pointer |
| to the buffer, otherwise we have to copy the data to a buffer |
| allocated on the temporary obstack. */ |
| gdb_assert (HOST_CHAR_BIT == 8); |
| return buf; |
| } |
| |
| static char * |
| read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
| { |
| /* If the size of a host char is 8 bits, we can return a pointer |
| to the string, otherwise we have to copy the string to a buffer |
| allocated on the temporary obstack. */ |
| gdb_assert (HOST_CHAR_BIT == 8); |
| if (*buf == '\0') |
| { |
| *bytes_read_ptr = 1; |
| return NULL; |
| } |
| *bytes_read_ptr = strlen ((char *) buf) + 1; |
| return (char *) buf; |
| } |
| |
| static char * |
| read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset) |
| { |
| dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str); |
| if (dwarf2_per_objfile->str.buffer == NULL) |
| error (_("DW_FORM_strp used without .debug_str section [in module %s]"), |
| bfd_get_filename (abfd)); |
| if (str_offset >= dwarf2_per_objfile->str.size) |
| error (_("DW_FORM_strp pointing outside of " |
| ".debug_str section [in module %s]"), |
| bfd_get_filename (abfd)); |
| gdb_assert (HOST_CHAR_BIT == 8); |
| if (dwarf2_per_objfile->str.buffer[str_offset] == '\0') |
| return NULL; |
| return (char *) (dwarf2_per_objfile->str.buffer + str_offset); |
| } |
| |
| static char * |
| read_indirect_string (bfd *abfd, gdb_byte *buf, |
| const struct comp_unit_head *cu_header, |
| unsigned int *bytes_read_ptr) |
| { |
| LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr); |
| |
| return read_indirect_string_at_offset (abfd, str_offset); |
| } |
| |
| static ULONGEST |
| read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
| { |
| ULONGEST result; |
| unsigned int num_read; |
| int i, shift; |
| unsigned char byte; |
| |
| result = 0; |
| shift = 0; |
| num_read = 0; |
| i = 0; |
| while (1) |
| { |
| byte = bfd_get_8 (abfd, buf); |
| buf++; |
| num_read++; |
| result |= ((ULONGEST) (byte & 127) << shift); |
| if ((byte & 128) == 0) |
| { |
| break; |
| } |
| shift += 7; |
| } |
| *bytes_read_ptr = num_read; |
| return result; |
| } |
| |
| static LONGEST |
| read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
| { |
| LONGEST result; |
| int i, shift, num_read; |
| unsigned char byte; |
| |
| result = 0; |
| shift = 0; |
| num_read = 0; |
| i = 0; |
| while (1) |
| { |
| byte = bfd_get_8 (abfd, buf); |
| buf++; |
| num_read++; |
| result |= ((LONGEST) (byte & 127) << shift); |
| shift += 7; |
| if ((byte & 128) == 0) |
| { |
| break; |
| } |
| } |
| if ((shift < 8 * sizeof (result)) && (byte & 0x40)) |
| result |= -(((LONGEST) 1) << shift); |
| *bytes_read_ptr = num_read; |
| return result; |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. |
| ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero. |
| ADDR_SIZE is the size of addresses from the CU header. */ |
| |
| static CORE_ADDR |
| read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| bfd *abfd = objfile->obfd; |
| const gdb_byte *info_ptr; |
| |
| dwarf2_read_section (objfile, &dwarf2_per_objfile->addr); |
| if (dwarf2_per_objfile->addr.buffer == NULL) |
| error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"), |
| objfile->name); |
| if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size) |
| error (_("DW_FORM_addr_index pointing outside of " |
| ".debug_addr section [in module %s]"), |
| objfile->name); |
| info_ptr = (dwarf2_per_objfile->addr.buffer |
| + addr_base + addr_index * addr_size); |
| if (addr_size == 4) |
| return bfd_get_32 (abfd, info_ptr); |
| else |
| return bfd_get_64 (abfd, info_ptr); |
| } |
| |
| /* Given index ADDR_INDEX in .debug_addr, fetch the value. */ |
| |
| static CORE_ADDR |
| read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index) |
| { |
| return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size); |
| } |
| |
| /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */ |
| |
| static CORE_ADDR |
| read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr, |
| unsigned int *bytes_read) |
| { |
| bfd *abfd = cu->objfile->obfd; |
| unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read); |
| |
| return read_addr_index (cu, addr_index); |
| } |
| |
| /* Data structure to pass results from dwarf2_read_addr_index_reader |
| back to dwarf2_read_addr_index. */ |
| |
| struct dwarf2_read_addr_index_data |
| { |
| ULONGEST addr_base; |
| int addr_size; |
| }; |
| |
| /* die_reader_func for dwarf2_read_addr_index. */ |
| |
| static void |
| dwarf2_read_addr_index_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| struct dwarf2_read_addr_index_data *aidata = |
| (struct dwarf2_read_addr_index_data *) data; |
| |
| aidata->addr_base = cu->addr_base; |
| aidata->addr_size = cu->header.addr_size; |
| } |
| |
| /* Given an index in .debug_addr, fetch the value. |
| NOTE: This can be called during dwarf expression evaluation, |
| long after the debug information has been read, and thus per_cu->cu |
| may no longer exist. */ |
| |
| CORE_ADDR |
| dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu, |
| unsigned int addr_index) |
| { |
| struct objfile *objfile = per_cu->objfile; |
| struct dwarf2_cu *cu = per_cu->cu; |
| ULONGEST addr_base; |
| int addr_size; |
| |
| /* This is intended to be called from outside this file. */ |
| dw2_setup (objfile); |
| |
| /* We need addr_base and addr_size. |
| If we don't have PER_CU->cu, we have to get it. |
| Nasty, but the alternative is storing the needed info in PER_CU, |
| which at this point doesn't seem justified: it's not clear how frequently |
| it would get used and it would increase the size of every PER_CU. |
| Entry points like dwarf2_per_cu_addr_size do a similar thing |
| so we're not in uncharted territory here. |
| Alas we need to be a bit more complicated as addr_base is contained |
| in the DIE. |
| |
| We don't need to read the entire CU(/TU). |
| We just need the header and top level die. |
| IWBN to use the aging mechanism to let us lazily later discard the CU. |
| See however init_cutu_and_read_dies_simple. */ |
| |
| if (cu != NULL) |
| { |
| addr_base = cu->addr_base; |
| addr_size = cu->header.addr_size; |
| } |
| else |
| { |
| struct dwarf2_read_addr_index_data aidata; |
| |
| init_cutu_and_read_dies_simple (per_cu, dwarf2_read_addr_index_reader, |
| &aidata); |
| addr_base = aidata.addr_base; |
| addr_size = aidata.addr_size; |
| } |
| |
| return read_addr_index_1 (addr_index, addr_base, addr_size); |
| } |
| |
| /* Given a DW_AT_str_index, fetch the string. */ |
| |
| static char * |
| read_str_index (const struct die_reader_specs *reader, |
| struct dwarf2_cu *cu, ULONGEST str_index) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| const char *dwo_name = objfile->name; |
| bfd *abfd = objfile->obfd; |
| struct dwo_sections *sections = &reader->dwo_file->sections; |
| gdb_byte *info_ptr; |
| ULONGEST str_offset; |
| |
| dwarf2_read_section (objfile, §ions->str); |
| dwarf2_read_section (objfile, §ions->str_offsets); |
| if (sections->str.buffer == NULL) |
| error (_("DW_FORM_str_index used without .debug_str.dwo section" |
| " in CU at offset 0x%lx [in module %s]"), |
| (long) cu->header.offset.sect_off, dwo_name); |
| if (sections->str_offsets.buffer == NULL) |
| error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section" |
| " in CU at offset 0x%lx [in module %s]"), |
| (long) cu->header.offset.sect_off, dwo_name); |
| if (str_index * cu->header.offset_size >= sections->str_offsets.size) |
| error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo" |
| " section in CU at offset 0x%lx [in module %s]"), |
| (long) cu->header.offset.sect_off, dwo_name); |
| info_ptr = (sections->str_offsets.buffer |
| + str_index * cu->header.offset_size); |
| if (cu->header.offset_size == 4) |
| str_offset = bfd_get_32 (abfd, info_ptr); |
| else |
| str_offset = bfd_get_64 (abfd, info_ptr); |
| if (str_offset >= sections->str.size) |
| error (_("Offset from DW_FORM_str_index pointing outside of" |
| " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"), |
| (long) cu->header.offset.sect_off, dwo_name); |
| return (char *) (sections->str.buffer + str_offset); |
| } |
| |
| /* Return a pointer to just past the end of an LEB128 number in BUF. */ |
| |
| static gdb_byte * |
| skip_leb128 (bfd *abfd, gdb_byte *buf) |
| { |
| int byte; |
| |
| while (1) |
| { |
| byte = bfd_get_8 (abfd, buf); |
| buf++; |
| if ((byte & 128) == 0) |
| return buf; |
| } |
| } |
| |
| /* Return the length of an LEB128 number in BUF. */ |
| |
| static int |
| leb128_size (const gdb_byte *buf) |
| { |
| const gdb_byte *begin = buf; |
| gdb_byte byte; |
| |
| while (1) |
| { |
| byte = *buf++; |
| if ((byte & 128) == 0) |
| return buf - begin; |
| } |
| } |
| |
| static void |
| set_cu_language (unsigned int lang, struct dwarf2_cu *cu) |
| { |
| switch (lang) |
| { |
| case DW_LANG_C89: |
| case DW_LANG_C99: |
| case DW_LANG_C: |
| cu->language = language_c; |
| break; |
| case DW_LANG_C_plus_plus: |
| cu->language = language_cplus; |
| break; |
| case DW_LANG_D: |
| cu->language = language_d; |
| break; |
| case DW_LANG_Fortran77: |
| case DW_LANG_Fortran90: |
| case DW_LANG_Fortran95: |
| cu->language = language_fortran; |
| break; |
| case DW_LANG_Go: |
| cu->language = language_go; |
| break; |
| case DW_LANG_Mips_Assembler: |
| cu->language = language_asm; |
| break; |
| case DW_LANG_Java: |
| cu->language = language_java; |
| break; |
| case DW_LANG_Ada83: |
| case DW_LANG_Ada95: |
| cu->language = language_ada; |
| break; |
| case DW_LANG_Modula2: |
| cu->language = language_m2; |
| break; |
| case DW_LANG_Pascal83: |
| cu->language = language_pascal; |
| break; |
| case DW_LANG_ObjC: |
| cu->language = language_objc; |
| break; |
| case DW_LANG_Cobol74: |
| case DW_LANG_Cobol85: |
| default: |
| cu->language = language_minimal; |
| break; |
| } |
| cu->language_defn = language_def (cu->language); |
| } |
| |
| /* Return the named attribute or NULL if not there. */ |
| |
| static struct attribute * |
| dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu) |
| { |
| for (;;) |
| { |
| unsigned int i; |
| struct attribute *spec = NULL; |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| { |
| if (die->attrs[i].name == name) |
| return &die->attrs[i]; |
| if (die->attrs[i].name == DW_AT_specification |
| || die->attrs[i].name == DW_AT_abstract_origin) |
| spec = &die->attrs[i]; |
| } |
| |
| if (!spec) |
| break; |
| |
| die = follow_die_ref (die, spec, &cu); |
| } |
| |
| return NULL; |
| } |
| |
| /* Return the named attribute or NULL if not there, |
| but do not follow DW_AT_specification, etc. |
| This is for use in contexts where we're reading .debug_types dies. |
| Following DW_AT_specification, DW_AT_abstract_origin will take us |
| back up the chain, and we want to go down. */ |
| |
| static struct attribute * |
| dwarf2_attr_no_follow (struct die_info *die, unsigned int name, |
| struct dwarf2_cu *cu) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| if (die->attrs[i].name == name) |
| return &die->attrs[i]; |
| |
| return NULL; |
| } |
| |
| /* Return non-zero iff the attribute NAME is defined for the given DIE, |
| and holds a non-zero value. This function should only be used for |
| DW_FORM_flag or DW_FORM_flag_present attributes. */ |
| |
| static int |
| dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr = dwarf2_attr (die, name, cu); |
| |
| return (attr && DW_UNSND (attr)); |
| } |
| |
| static int |
| die_is_declaration (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| /* A DIE is a declaration if it has a DW_AT_declaration attribute |
| which value is non-zero. However, we have to be careful with |
| DIEs having a DW_AT_specification attribute, because dwarf2_attr() |
| (via dwarf2_flag_true_p) follows this attribute. So we may |
| end up accidently finding a declaration attribute that belongs |
| to a different DIE referenced by the specification attribute, |
| even though the given DIE does not have a declaration attribute. */ |
| return (dwarf2_flag_true_p (die, DW_AT_declaration, cu) |
| && dwarf2_attr (die, DW_AT_specification, cu) == NULL); |
| } |
| |
| /* Return the die giving the specification for DIE, if there is |
| one. *SPEC_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. If there is no |
| specification, but there is an abstract origin, that is |
| returned. */ |
| |
| static struct die_info * |
| die_specification (struct die_info *die, struct dwarf2_cu **spec_cu) |
| { |
| struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, |
| *spec_cu); |
| |
| if (spec_attr == NULL) |
| spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu); |
| |
| if (spec_attr == NULL) |
| return NULL; |
| else |
| return follow_die_ref (die, spec_attr, spec_cu); |
| } |
| |
| /* Free the line_header structure *LH, and any arrays and strings it |
| refers to. |
| NOTE: This is also used as a "cleanup" function. */ |
| |
| static void |
| free_line_header (struct line_header *lh) |
| { |
| if (lh->standard_opcode_lengths) |
| xfree (lh->standard_opcode_lengths); |
| |
| /* Remember that all the lh->file_names[i].name pointers are |
| pointers into debug_line_buffer, and don't need to be freed. */ |
| if (lh->file_names) |
| xfree (lh->file_names); |
| |
| /* Similarly for the include directory names. */ |
| if (lh->include_dirs) |
| xfree (lh->include_dirs); |
| |
| xfree (lh); |
| } |
| |
| /* Add an entry to LH's include directory table. */ |
| |
| static void |
| add_include_dir (struct line_header *lh, char *include_dir) |
| { |
| /* Grow the array if necessary. */ |
| if (lh->include_dirs_size == 0) |
| { |
| lh->include_dirs_size = 1; /* for testing */ |
| lh->include_dirs = xmalloc (lh->include_dirs_size |
| * sizeof (*lh->include_dirs)); |
| } |
| else if (lh->num_include_dirs >= lh->include_dirs_size) |
| { |
| lh->include_dirs_size *= 2; |
| lh->include_dirs = xrealloc (lh->include_dirs, |
| (lh->include_dirs_size |
| * sizeof (*lh->include_dirs))); |
| } |
| |
| lh->include_dirs[lh->num_include_dirs++] = include_dir; |
| } |
| |
| /* Add an entry to LH's file name table. */ |
| |
| static void |
| add_file_name (struct line_header *lh, |
| char *name, |
| unsigned int dir_index, |
| unsigned int mod_time, |
| unsigned int length) |
| { |
| struct file_entry *fe; |
| |
| /* Grow the array if necessary. */ |
| if (lh->file_names_size == 0) |
| { |
| lh->file_names_size = 1; /* for testing */ |
| lh->file_names = xmalloc (lh->file_names_size |
| * sizeof (*lh->file_names)); |
| } |
| else if (lh->num_file_names >= lh->file_names_size) |
| { |
| lh->file_names_size *= 2; |
| lh->file_names = xrealloc (lh->file_names, |
| (lh->file_names_size |
| * sizeof (*lh->file_names))); |
| } |
| |
| fe = &lh->file_names[lh->num_file_names++]; |
| fe->name = name; |
| fe->dir_index = dir_index; |
| fe->mod_time = mod_time; |
| fe->length = length; |
| fe->included_p = 0; |
| fe->symtab = NULL; |
| } |
| |
| /* Read the statement program header starting at OFFSET in |
| .debug_line, or .debug_line.dwo. Return a pointer |
| to a struct line_header, allocated using xmalloc. |
| |
| NOTE: the strings in the include directory and file name tables of |
| the returned object point into the dwarf line section buffer, |
| and must not be freed. */ |
| |
| static struct line_header * |
| dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu) |
| { |
| struct cleanup *back_to; |
| struct line_header *lh; |
| gdb_byte *line_ptr; |
| unsigned int bytes_read, offset_size; |
| int i; |
| char *cur_dir, *cur_file; |
| struct dwarf2_section_info *section; |
| bfd *abfd; |
| |
| /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the |
| DWO file. */ |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| section = &cu->dwo_unit->dwo_file->sections.line; |
| else |
| section = &dwarf2_per_objfile->line; |
| |
| dwarf2_read_section (dwarf2_per_objfile->objfile, section); |
| if (section->buffer == NULL) |
| { |
| if (cu->dwo_unit && cu->per_cu->is_debug_types) |
| complaint (&symfile_complaints, _("missing .debug_line.dwo section")); |
| else |
| complaint (&symfile_complaints, _("missing .debug_line section")); |
| return 0; |
| } |
| |
| /* We can't do this until we know the section is non-empty. |
| Only then do we know we have such a section. */ |
| abfd = section->asection->owner; |
| |
| /* Make sure that at least there's room for the total_length field. |
| That could be 12 bytes long, but we're just going to fudge that. */ |
| if (offset + 4 >= section->size) |
| { |
| dwarf2_statement_list_fits_in_line_number_section_complaint (); |
| return 0; |
| } |
| |
| lh = xmalloc (sizeof (*lh)); |
| memset (lh, 0, sizeof (*lh)); |
| back_to = make_cleanup ((make_cleanup_ftype *) free_line_header, |
| (void *) lh); |
| |
| line_ptr = section->buffer + offset; |
| |
| /* Read in the header. */ |
| lh->total_length = |
| read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header, |
| &bytes_read, &offset_size); |
| line_ptr += bytes_read; |
| if (line_ptr + lh->total_length > (section->buffer + section->size)) |
| { |
| dwarf2_statement_list_fits_in_line_number_section_complaint (); |
| return 0; |
| } |
| lh->statement_program_end = line_ptr + lh->total_length; |
| lh->version = read_2_bytes (abfd, line_ptr); |
| line_ptr += 2; |
| lh->header_length = read_offset_1 (abfd, line_ptr, offset_size); |
| line_ptr += offset_size; |
| lh->minimum_instruction_length = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| if (lh->version >= 4) |
| { |
| lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| } |
| else |
| lh->maximum_ops_per_instruction = 1; |
| |
| if (lh->maximum_ops_per_instruction == 0) |
| { |
| lh->maximum_ops_per_instruction = 1; |
| complaint (&symfile_complaints, |
| _("invalid maximum_ops_per_instruction " |
| "in `.debug_line' section")); |
| } |
| |
| lh->default_is_stmt = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->line_base = read_1_signed_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->line_range = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->opcode_base = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| lh->standard_opcode_lengths |
| = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0])); |
| |
| lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */ |
| for (i = 1; i < lh->opcode_base; ++i) |
| { |
| lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| } |
| |
| /* Read directory table. */ |
| while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL) |
| { |
| line_ptr += bytes_read; |
| add_include_dir (lh, cur_dir); |
| } |
| line_ptr += bytes_read; |
| |
| /* Read file name table. */ |
| while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL) |
| { |
| unsigned int dir_index, mod_time, length; |
| |
| line_ptr += bytes_read; |
| dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| |
| add_file_name (lh, cur_file, dir_index, mod_time, length); |
| } |
| line_ptr += bytes_read; |
| lh->statement_program_start = line_ptr; |
| |
| if (line_ptr > (section->buffer + section->size)) |
| complaint (&symfile_complaints, |
| _("line number info header doesn't " |
| "fit in `.debug_line' section")); |
| |
| discard_cleanups (back_to); |
| return lh; |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Return the file name of the psymtab for included file FILE_INDEX |
| in line header LH of PST. |
| COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown. |
| If space for the result is malloc'd, it will be freed by a cleanup. |
| Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */ |
| |
| static char * |
| psymtab_include_file_name (const struct line_header *lh, int file_index, |
| const struct partial_symtab *pst, |
| const char *comp_dir) |
| { |
| const struct file_entry fe = lh->file_names [file_index]; |
| char *include_name = fe.name; |
| char *include_name_to_compare = include_name; |
| char *dir_name = NULL; |
| const char *pst_filename; |
| char *copied_name = NULL; |
| int file_is_pst; |
| |
| if (fe.dir_index) |
| dir_name = lh->include_dirs[fe.dir_index - 1]; |
| |
| if (!IS_ABSOLUTE_PATH (include_name) |
| && (dir_name != NULL || comp_dir != NULL)) |
| { |
| /* Avoid creating a duplicate psymtab for PST. |
| We do this by comparing INCLUDE_NAME and PST_FILENAME. |
| Before we do the comparison, however, we need to account |
| for DIR_NAME and COMP_DIR. |
| First prepend dir_name (if non-NULL). If we still don't |
| have an absolute path prepend comp_dir (if non-NULL). |
| However, the directory we record in the include-file's |
| psymtab does not contain COMP_DIR (to match the |
| corresponding symtab(s)). |
| |
| Example: |
| |
| bash$ cd /tmp |
| bash$ gcc -g ./hello.c |
| include_name = "hello.c" |
| dir_name = "." |
| DW_AT_comp_dir = comp_dir = "/tmp" |
| DW_AT_name = "./hello.c" */ |
| |
| if (dir_name != NULL) |
| { |
| include_name = concat (dir_name, SLASH_STRING, |
| include_name, (char *)NULL); |
| include_name_to_compare = include_name; |
| make_cleanup (xfree, include_name); |
| } |
| if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL) |
| { |
| include_name_to_compare = concat (comp_dir, SLASH_STRING, |
| include_name, (char *)NULL); |
| } |
| } |
| |
| pst_filename = pst->filename; |
| if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL) |
| { |
| copied_name = concat (pst->dirname, SLASH_STRING, |
| pst_filename, (char *)NULL); |
| pst_filename = copied_name; |
| } |
| |
| file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0; |
| |
| if (include_name_to_compare != include_name) |
| xfree (include_name_to_compare); |
| if (copied_name != NULL) |
| xfree (copied_name); |
| |
| if (file_is_pst) |
| return NULL; |
| return include_name; |
| } |
| |
| /* Ignore this record_line request. */ |
| |
| static void |
| noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc) |
| { |
| return; |
| } |
| |
| /* Subroutine of dwarf_decode_lines to simplify it. |
| Process the line number information in LH. */ |
| |
| static void |
| dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir, |
| struct dwarf2_cu *cu, struct partial_symtab *pst) |
| { |
| gdb_byte *line_ptr, *extended_end; |
| gdb_byte *line_end; |
| unsigned int bytes_read, extended_len; |
| unsigned char op_code, extended_op, adj_opcode; |
| CORE_ADDR baseaddr; |
| struct objfile *objfile = cu->objfile; |
| bfd *abfd = objfile->obfd; |
| struct gdbarch *gdbarch = get_objfile_arch (objfile); |
| const int decode_for_pst_p = (pst != NULL); |
| struct subfile *last_subfile = NULL; |
| void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc) |
| = record_line; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| line_ptr = lh->statement_program_start; |
| line_end = lh->statement_program_end; |
| |
| /* Read the statement sequences until there's nothing left. */ |
| while (line_ptr < line_end) |
| { |
| /* state machine registers */ |
| CORE_ADDR address = 0; |
| unsigned int file = 1; |
| unsigned int line = 1; |
| unsigned int column = 0; |
| int is_stmt = lh->default_is_stmt; |
| int basic_block = 0; |
| int end_sequence = 0; |
| CORE_ADDR addr; |
| unsigned char op_index = 0; |
| |
| if (!decode_for_pst_p && lh->num_file_names >= file) |
| { |
| /* Start a subfile for the current file of the state machine. */ |
| /* lh->include_dirs and lh->file_names are 0-based, but the |
| directory and file name numbers in the statement program |
| are 1-based. */ |
| struct file_entry *fe = &lh->file_names[file - 1]; |
| char *dir = NULL; |
| |
| if (fe->dir_index) |
| dir = lh->include_dirs[fe->dir_index - 1]; |
| |
| dwarf2_start_subfile (fe->name, dir, comp_dir); |
| } |
| |
| /* Decode the table. */ |
| while (!end_sequence) |
| { |
| op_code = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| if (line_ptr > line_end) |
| { |
| dwarf2_debug_line_missing_end_sequence_complaint (); |
| break; |
| } |
| |
| if (op_code >= lh->opcode_base) |
| { |
| /* Special operand. */ |
| adj_opcode = op_code - lh->opcode_base; |
| address += (((op_index + (adj_opcode / lh->line_range)) |
| / lh->maximum_ops_per_instruction) |
| * lh->minimum_instruction_length); |
| op_index = ((op_index + (adj_opcode / lh->line_range)) |
| % lh->maximum_ops_per_instruction); |
| line += lh->line_base + (adj_opcode % lh->line_range); |
| if (lh->num_file_names < file || file == 0) |
| dwarf2_debug_line_missing_file_complaint (); |
| /* For now we ignore lines not starting on an |
| instruction boundary. */ |
| else if (op_index == 0) |
| { |
| lh->file_names[file - 1].included_p = 1; |
| if (!decode_for_pst_p && is_stmt) |
| { |
| if (last_subfile != current_subfile) |
| { |
| addr = gdbarch_addr_bits_remove (gdbarch, address); |
| if (last_subfile) |
| (*p_record_line) (last_subfile, 0, addr); |
| last_subfile = current_subfile; |
| } |
| /* Append row to matrix using current values. */ |
| addr = gdbarch_addr_bits_remove (gdbarch, address); |
| (*p_record_line) (current_subfile, line, addr); |
| } |
| } |
| basic_block = 0; |
| } |
| else switch (op_code) |
| { |
| case DW_LNS_extended_op: |
| extended_len = read_unsigned_leb128 (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| extended_end = line_ptr + extended_len; |
| extended_op = read_1_byte (abfd, line_ptr); |
| line_ptr += 1; |
| switch (extended_op) |
| { |
| case DW_LNE_end_sequence: |
| p_record_line = record_line; |
| end_sequence = 1; |
| break; |
| case DW_LNE_set_address: |
| address = read_address (abfd, line_ptr, cu, &bytes_read); |
| |
| if (address == 0 && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* This line table is for a function which has been |
| GCd by the linker. Ignore it. PR gdb/12528 */ |
| |
| long line_offset |
| = line_ptr - dwarf2_per_objfile->line.buffer; |
| |
| complaint (&symfile_complaints, |
| _(".debug_line address at offset 0x%lx is 0 " |
| "[in module %s]"), |
| line_offset, objfile->name); |
| p_record_line = noop_record_line; |
| } |
| |
| op_index = 0; |
| line_ptr += bytes_read; |
| address += baseaddr; |
| break; |
| case DW_LNE_define_file: |
| { |
| char *cur_file; |
| unsigned int dir_index, mod_time, length; |
| |
| cur_file = read_direct_string (abfd, line_ptr, |
| &bytes_read); |
| line_ptr += bytes_read; |
| dir_index = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| mod_time = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| length = |
| read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| add_file_name (lh, cur_file, dir_index, mod_time, length); |
| } |
| break; |
| case DW_LNE_set_discriminator: |
| /* The discriminator is not interesting to the debugger; |
| just ignore it. */ |
| line_ptr = extended_end; |
| break; |
| default: |
| complaint (&symfile_complaints, |
| _("mangled .debug_line section")); |
| return; |
| } |
| /* Make sure that we parsed the extended op correctly. If e.g. |
| we expected a different address size than the producer used, |
| we may have read the wrong number of bytes. */ |
| if (line_ptr != extended_end) |
| { |
| complaint (&symfile_complaints, |
| _("mangled .debug_line section")); |
| return; |
| } |
| break; |
| case DW_LNS_copy: |
| if (lh->num_file_names < file || file == 0) |
| dwarf2_debug_line_missing_file_complaint (); |
| else |
| { |
| lh->file_names[file - 1].included_p = 1; |
| if (!decode_for_pst_p && is_stmt) |
| { |
| if (last_subfile != current_subfile) |
| { |
| addr = gdbarch_addr_bits_remove (gdbarch, address); |
| if (last_subfile) |
| (*p_record_line) (last_subfile, 0, addr); |
| last_subfile = current_subfile; |
| } |
| addr = gdbarch_addr_bits_remove (gdbarch, address); |
| (*p_record_line) (current_subfile, line, addr); |
| } |
| } |
| basic_block = 0; |
| break; |
| case DW_LNS_advance_pc: |
| { |
| CORE_ADDR adjust |
| = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| |
| address += (((op_index + adjust) |
| / lh->maximum_ops_per_instruction) |
| * lh->minimum_instruction_length); |
| op_index = ((op_index + adjust) |
| % lh->maximum_ops_per_instruction); |
| line_ptr += bytes_read; |
| } |
| break; |
| case DW_LNS_advance_line: |
| line += read_signed_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| break; |
| case DW_LNS_set_file: |
| { |
| /* The arrays lh->include_dirs and lh->file_names are |
| 0-based, but the directory and file name numbers in |
| the statement program are 1-based. */ |
| struct file_entry *fe; |
| char *dir = NULL; |
| |
| file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| if (lh->num_file_names < file || file == 0) |
| dwarf2_debug_line_missing_file_complaint (); |
| else |
| { |
| fe = &lh->file_names[file - 1]; |
| if (fe->dir_index) |
| dir = lh->include_dirs[fe->dir_index - 1]; |
| if (!decode_for_pst_p) |
| { |
| last_subfile = current_subfile; |
| dwarf2_start_subfile (fe->name, dir, comp_dir); |
| } |
| } |
| } |
| break; |
| case DW_LNS_set_column: |
| column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| break; |
| case DW_LNS_negate_stmt: |
| is_stmt = (!is_stmt); |
| break; |
| case DW_LNS_set_basic_block: |
| basic_block = 1; |
| break; |
| /* Add to the address register of the state machine the |
| address increment value corresponding to special opcode |
| 255. I.e., this value is scaled by the minimum |
| instruction length since special opcode 255 would have |
| scaled the increment. */ |
| case DW_LNS_const_add_pc: |
| { |
| CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range; |
| |
| address += (((op_index + adjust) |
| / lh->maximum_ops_per_instruction) |
| * lh->minimum_instruction_length); |
| op_index = ((op_index + adjust) |
| % lh->maximum_ops_per_instruction); |
| } |
| break; |
| case DW_LNS_fixed_advance_pc: |
| address += read_2_bytes (abfd, line_ptr); |
| op_index = 0; |
| line_ptr += 2; |
| break; |
| default: |
| { |
| /* Unknown standard opcode, ignore it. */ |
| int i; |
| |
| for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++) |
| { |
| (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read); |
| line_ptr += bytes_read; |
| } |
| } |
| } |
| } |
| if (lh->num_file_names < file || file == 0) |
| dwarf2_debug_line_missing_file_complaint (); |
| else |
| { |
| lh->file_names[file - 1].included_p = 1; |
| if (!decode_for_pst_p) |
| { |
| addr = gdbarch_addr_bits_remove (gdbarch, address); |
| (*p_record_line) (current_subfile, 0, addr); |
| } |
| } |
| } |
| } |
| |
| /* Decode the Line Number Program (LNP) for the given line_header |
| structure and CU. The actual information extracted and the type |
| of structures created from the LNP depends on the value of PST. |
| |
| 1. If PST is NULL, then this procedure uses the data from the program |
| to create all necessary symbol tables, and their linetables. |
| |
| 2. If PST is not NULL, this procedure reads the program to determine |
| the list of files included by the unit represented by PST, and |
| builds all the associated partial symbol tables. |
| |
| COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown. |
| It is used for relative paths in the line table. |
| NOTE: When processing partial symtabs (pst != NULL), |
| comp_dir == pst->dirname. |
| |
| NOTE: It is important that psymtabs have the same file name (via strcmp) |
| as the corresponding symtab. Since COMP_DIR is not used in the name of the |
| symtab we don't use it in the name of the psymtabs we create. |
| E.g. expand_line_sal requires this when finding psymtabs to expand. |
| A good testcase for this is mb-inline.exp. */ |
| |
| static void |
| dwarf_decode_lines (struct line_header *lh, const char *comp_dir, |
| struct dwarf2_cu *cu, struct partial_symtab *pst, |
| int want_line_info) |
| { |
| struct objfile *objfile = cu->objfile; |
| const int decode_for_pst_p = (pst != NULL); |
| struct subfile *first_subfile = current_subfile; |
| |
| if (want_line_info) |
| dwarf_decode_lines_1 (lh, comp_dir, cu, pst); |
| |
| if (decode_for_pst_p) |
| { |
| int file_index; |
| |
| /* Now that we're done scanning the Line Header Program, we can |
| create the psymtab of each included file. */ |
| for (file_index = 0; file_index < lh->num_file_names; file_index++) |
| if (lh->file_names[file_index].included_p == 1) |
| { |
| char *include_name = |
| psymtab_include_file_name (lh, file_index, pst, comp_dir); |
| if (include_name != NULL) |
| dwarf2_create_include_psymtab (include_name, pst, objfile); |
| } |
| } |
| else |
| { |
| /* Make sure a symtab is created for every file, even files |
| which contain only variables (i.e. no code with associated |
| line numbers). */ |
| int i; |
| |
| for (i = 0; i < lh->num_file_names; i++) |
| { |
| char *dir = NULL; |
| struct file_entry *fe; |
| |
| fe = &lh->file_names[i]; |
| if (fe->dir_index) |
| dir = lh->include_dirs[fe->dir_index - 1]; |
| dwarf2_start_subfile (fe->name, dir, comp_dir); |
| |
| /* Skip the main file; we don't need it, and it must be |
| allocated last, so that it will show up before the |
| non-primary symtabs in the objfile's symtab list. */ |
| if (current_subfile == first_subfile) |
| continue; |
| |
| if (current_subfile->symtab == NULL) |
| current_subfile->symtab = allocate_symtab (current_subfile->name, |
| objfile); |
| fe->symtab = current_subfile->symtab; |
| } |
| } |
| } |
| |
| /* Start a subfile for DWARF. FILENAME is the name of the file and |
| DIRNAME the name of the source directory which contains FILENAME |
| or NULL if not known. COMP_DIR is the compilation directory for the |
| linetable's compilation unit or NULL if not known. |
| This routine tries to keep line numbers from identical absolute and |
| relative file names in a common subfile. |
| |
| Using the `list' example from the GDB testsuite, which resides in |
| /srcdir and compiling it with Irix6.2 cc in /compdir using a filename |
| of /srcdir/list0.c yields the following debugging information for list0.c: |
| |
| DW_AT_name: /srcdir/list0.c |
| DW_AT_comp_dir: /compdir |
| files.files[0].name: list0.h |
| files.files[0].dir: /srcdir |
| files.files[1].name: list0.c |
| files.files[1].dir: /srcdir |
| |
| The line number information for list0.c has to end up in a single |
| subfile, so that `break /srcdir/list0.c:1' works as expected. |
| start_subfile will ensure that this happens provided that we pass the |
| concatenation of files.files[1].dir and files.files[1].name as the |
| subfile's name. */ |
| |
| static void |
| dwarf2_start_subfile (char *filename, const char *dirname, |
| const char *comp_dir) |
| { |
| char *fullname; |
| |
| /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir). |
| `start_symtab' will always pass the contents of DW_AT_comp_dir as |
| second argument to start_subfile. To be consistent, we do the |
| same here. In order not to lose the line information directory, |
| we concatenate it to the filename when it makes sense. |
| Note that the Dwarf3 standard says (speaking of filenames in line |
| information): ``The directory index is ignored for file names |
| that represent full path names''. Thus ignoring dirname in the |
| `else' branch below isn't an issue. */ |
| |
| if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL) |
| fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL); |
| else |
| fullname = filename; |
| |
| start_subfile (fullname, comp_dir); |
| |
| if (fullname != filename) |
| xfree (fullname); |
| } |
| |
| static void |
| var_decode_location (struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| |
| /* NOTE drow/2003-01-30: There used to be a comment and some special |
| code here to turn a symbol with DW_AT_external and a |
| SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was |
| necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux |
| with some versions of binutils) where shared libraries could have |
| relocations against symbols in their debug information - the |
| minimal symbol would have the right address, but the debug info |
| would not. It's no longer necessary, because we will explicitly |
| apply relocations when we read in the debug information now. */ |
| |
| /* A DW_AT_location attribute with no contents indicates that a |
| variable has been optimized away. */ |
| if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0) |
| { |
| SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; |
| return; |
| } |
| |
| /* Handle one degenerate form of location expression specially, to |
| preserve GDB's previous behavior when section offsets are |
| specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index |
| then mark this symbol as LOC_STATIC. */ |
| |
| if (attr_form_is_block (attr) |
| && ((DW_BLOCK (attr)->data[0] == DW_OP_addr |
| && DW_BLOCK (attr)->size == 1 + cu_header->addr_size) |
| || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index |
| && (DW_BLOCK (attr)->size |
| == 1 + leb128_size (&DW_BLOCK (attr)->data[1]))))) |
| { |
| unsigned int dummy; |
| |
| if (DW_BLOCK (attr)->data[0] == DW_OP_addr) |
| SYMBOL_VALUE_ADDRESS (sym) = |
| read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy); |
| else |
| SYMBOL_VALUE_ADDRESS (sym) = |
| read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy); |
| SYMBOL_CLASS (sym) = LOC_STATIC; |
| fixup_symbol_section (sym, objfile); |
| SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets, |
| SYMBOL_SECTION (sym)); |
| return; |
| } |
| |
| /* NOTE drow/2002-01-30: It might be worthwhile to have a static |
| expression evaluator, and use LOC_COMPUTED only when necessary |
| (i.e. when the value of a register or memory location is |
| referenced, or a thread-local block, etc.). Then again, it might |
| not be worthwhile. I'm assuming that it isn't unless performance |
| or memory numbers show me otherwise. */ |
| |
| dwarf2_symbol_mark_computed (attr, sym, cu); |
| SYMBOL_CLASS (sym) = LOC_COMPUTED; |
| |
| if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs) |
| cu->has_loclist = 1; |
| } |
| |
| /* Given a pointer to a DWARF information entry, figure out if we need |
| to make a symbol table entry for it, and if so, create a new entry |
| and return a pointer to it. |
| If TYPE is NULL, determine symbol type from the die, otherwise |
| used the passed type. |
| If SPACE is not NULL, use it to hold the new symbol. If it is |
| NULL, allocate a new symbol on the objfile's obstack. */ |
| |
| static struct symbol * |
| new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu, |
| struct symbol *space) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct symbol *sym = NULL; |
| char *name; |
| struct attribute *attr = NULL; |
| struct attribute *attr2 = NULL; |
| CORE_ADDR baseaddr; |
| struct pending **list_to_add = NULL; |
| |
| int inlined_func = (die->tag == DW_TAG_inlined_subroutine); |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| name = dwarf2_name (die, cu); |
| if (name) |
| { |
| const char *linkagename; |
| int suppress_add = 0; |
| |
| if (space) |
| sym = space; |
| else |
| sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol); |
| OBJSTAT (objfile, n_syms++); |
| |
| /* Cache this symbol's name and the name's demangled form (if any). */ |
| SYMBOL_SET_LANGUAGE (sym, cu->language); |
| linkagename = dwarf2_physname (name, die, cu); |
| SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile); |
| |
| /* Fortran does not have mangling standard and the mangling does differ |
| between gfortran, iFort etc. */ |
| if (cu->language == language_fortran |
| && symbol_get_demangled_name (&(sym->ginfo)) == NULL) |
| symbol_set_demangled_name (&(sym->ginfo), |
| (char *) dwarf2_full_name (name, die, cu), |
| NULL); |
| |
| /* Default assumptions. |
| Use the passed type or decode it from the die. */ |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT; |
| if (type != NULL) |
| SYMBOL_TYPE (sym) = type; |
| else |
| SYMBOL_TYPE (sym) = die_type (die, cu); |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_line : DW_AT_decl_line, |
| cu); |
| if (attr) |
| { |
| SYMBOL_LINE (sym) = DW_UNSND (attr); |
| } |
| |
| attr = dwarf2_attr (die, |
| inlined_func ? DW_AT_call_file : DW_AT_decl_file, |
| cu); |
| if (attr) |
| { |
| int file_index = DW_UNSND (attr); |
| |
| if (cu->line_header == NULL |
| || file_index > cu->line_header->num_file_names) |
| complaint (&symfile_complaints, |
| _("file index out of range")); |
| else if (file_index > 0) |
| { |
| struct file_entry *fe; |
| |
| fe = &cu->line_header->file_names[file_index - 1]; |
| SYMBOL_SYMTAB (sym) = fe->symtab; |
| } |
| } |
| |
| switch (die->tag) |
| { |
| case DW_TAG_label: |
| attr = dwarf2_attr (die, DW_AT_low_pc, cu); |
| if (attr) |
| { |
| SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr; |
| } |
| SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr; |
| SYMBOL_DOMAIN (sym) = LABEL_DOMAIN; |
| SYMBOL_CLASS (sym) = LOC_LABEL; |
| add_symbol_to_list (sym, cu->list_in_scope); |
| break; |
| case DW_TAG_subprogram: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| SYMBOL_CLASS (sym) = LOC_BLOCK; |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if ((attr2 && (DW_UNSND (attr2) != 0)) |
| || cu->language == language_ada) |
| { |
| /* Subprograms marked external are stored as a global symbol. |
| Ada subprograms, whether marked external or not, are always |
| stored as a global symbol, because we want to be able to |
| access them globally. For instance, we want to be able |
| to break on a nested subprogram without having to |
| specify the context. */ |
| list_to_add = &global_symbols; |
| } |
| else |
| { |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| case DW_TAG_inlined_subroutine: |
| /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by |
| finish_block. */ |
| SYMBOL_CLASS (sym) = LOC_BLOCK; |
| SYMBOL_INLINED (sym) = 1; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_template_value_param: |
| suppress_add = 1; |
| /* Fall through. */ |
| case DW_TAG_constant: |
| case DW_TAG_variable: |
| case DW_TAG_member: |
| /* Compilation with minimal debug info may result in |
| variables with missing type entries. Change the |
| misleading `void' type to something sensible. */ |
| if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID) |
| SYMBOL_TYPE (sym) |
| = objfile_type (objfile)->nodebug_data_symbol; |
| |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| /* In the case of DW_TAG_member, we should only be called for |
| static const members. */ |
| if (die->tag == DW_TAG_member) |
| { |
| /* dwarf2_add_field uses die_is_declaration, |
| so we do the same. */ |
| gdb_assert (die_is_declaration (die, cu)); |
| gdb_assert (attr); |
| } |
| if (attr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if (!suppress_add) |
| { |
| if (attr2 && (DW_UNSND (attr2) != 0)) |
| list_to_add = &global_symbols; |
| else |
| list_to_add = cu->list_in_scope; |
| } |
| break; |
| } |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr) |
| { |
| var_decode_location (attr, sym, cu); |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if (SYMBOL_CLASS (sym) == LOC_STATIC |
| && SYMBOL_VALUE_ADDRESS (sym) == 0 |
| && !dwarf2_per_objfile->has_section_at_zero) |
| { |
| /* When a static variable is eliminated by the linker, |
| the corresponding debug information is not stripped |
| out, but the variable address is set to null; |
| do not add such variables into symbol table. */ |
| } |
| else if (attr2 && (DW_UNSND (attr2) != 0)) |
| { |
| /* Workaround gfortran PR debug/40040 - it uses |
| DW_AT_location for variables in -fPIC libraries which may |
| get overriden by other libraries/executable and get |
| a different address. Resolve it by the minimal symbol |
| which may come from inferior's executable using copy |
| relocation. Make this workaround only for gfortran as for |
| other compilers GDB cannot guess the minimal symbol |
| Fortran mangling kind. */ |
| if (cu->language == language_fortran && die->parent |
| && die->parent->tag == DW_TAG_module |
| && cu->producer |
| && strncmp (cu->producer, "GNU Fortran ", 12) == 0) |
| SYMBOL_CLASS (sym) = LOC_UNRESOLVED; |
| |
| /* A variable with DW_AT_external is never static, |
| but it may be block-scoped. */ |
| list_to_add = (cu->list_in_scope == &file_symbols |
| ? &global_symbols : cu->list_in_scope); |
| } |
| else |
| list_to_add = cu->list_in_scope; |
| } |
| else |
| { |
| /* We do not know the address of this symbol. |
| If it is an external symbol and we have type information |
| for it, enter the symbol as a LOC_UNRESOLVED symbol. |
| The address of the variable will then be determined from |
| the minimal symbol table whenever the variable is |
| referenced. */ |
| attr2 = dwarf2_attr (die, DW_AT_external, cu); |
| if (attr2 && (DW_UNSND (attr2) != 0) |
| && dwarf2_attr (die, DW_AT_type, cu) != NULL) |
| { |
| /* A variable with DW_AT_external is never static, but it |
| may be block-scoped. */ |
| list_to_add = (cu->list_in_scope == &file_symbols |
| ? &global_symbols : cu->list_in_scope); |
| |
| SYMBOL_CLASS (sym) = LOC_UNRESOLVED; |
| } |
| else if (!die_is_declaration (die, cu)) |
| { |
| /* Use the default LOC_OPTIMIZED_OUT class. */ |
| gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT); |
| if (!suppress_add) |
| list_to_add = cu->list_in_scope; |
| } |
| } |
| break; |
| case DW_TAG_formal_parameter: |
| /* If we are inside a function, mark this as an argument. If |
| not, we might be looking at an argument to an inlined function |
| when we do not have enough information to show inlined frames; |
| pretend it's a local variable in that case so that the user can |
| still see it. */ |
| if (context_stack_depth > 0 |
| && context_stack[context_stack_depth - 1].name != NULL) |
| SYMBOL_IS_ARGUMENT (sym) = 1; |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (attr) |
| { |
| var_decode_location (attr, sym, cu); |
| } |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_unspecified_parameters: |
| /* From varargs functions; gdb doesn't seem to have any |
| interest in this information, so just ignore it for now. |
| (FIXME?) */ |
| break; |
| case DW_TAG_template_type_param: |
| suppress_add = 1; |
| /* Fall through. */ |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_set_type: |
| case DW_TAG_enumeration_type: |
| SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN; |
| |
| { |
| /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't |
| really ever be static objects: otherwise, if you try |
| to, say, break of a class's method and you're in a file |
| which doesn't mention that class, it won't work unless |
| the check for all static symbols in lookup_symbol_aux |
| saves you. See the OtherFileClass tests in |
| gdb.c++/namespace.exp. */ |
| |
| if (!suppress_add) |
| { |
| list_to_add = (cu->list_in_scope == &file_symbols |
| && (cu->language == language_cplus |
| || cu->language == language_java) |
| ? &global_symbols : cu->list_in_scope); |
| |
| /* The semantics of C++ state that "struct foo { |
| ... }" also defines a typedef for "foo". A Java |
| class declaration also defines a typedef for the |
| class. */ |
| if (cu->language == language_cplus |
| || cu->language == language_java |
| || cu->language == language_ada) |
| { |
| /* The symbol's name is already allocated along |
| with this objfile, so we don't need to |
| duplicate it for the type. */ |
| if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0) |
| TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym); |
| } |
| } |
| } |
| break; |
| case DW_TAG_typedef: |
| SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_base_type: |
| case DW_TAG_subrange_type: |
| SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| SYMBOL_DOMAIN (sym) = VAR_DOMAIN; |
| list_to_add = cu->list_in_scope; |
| break; |
| case DW_TAG_enumerator: |
| attr = dwarf2_attr (die, DW_AT_const_value, cu); |
| if (attr) |
| { |
| dwarf2_const_value (attr, sym, cu); |
| } |
| { |
| /* NOTE: carlton/2003-11-10: See comment above in the |
| DW_TAG_class_type, etc. block. */ |
| |
| list_to_add = (cu->list_in_scope == &file_symbols |
| && (cu->language == language_cplus |
| || cu->language == language_java) |
| ? &global_symbols : cu->list_in_scope); |
| } |
| break; |
| case DW_TAG_namespace: |
| SYMBOL_CLASS (sym) = LOC_TYPEDEF; |
| list_to_add = &global_symbols; |
| break; |
| default: |
| /* Not a tag we recognize. Hopefully we aren't processing |
| trash data, but since we must specifically ignore things |
| we don't recognize, there is nothing else we should do at |
| this point. */ |
| complaint (&symfile_complaints, _("unsupported tag: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| if (suppress_add) |
| { |
| sym->hash_next = objfile->template_symbols; |
| objfile->template_symbols = sym; |
| list_to_add = NULL; |
| } |
| |
| if (list_to_add != NULL) |
| add_symbol_to_list (sym, list_to_add); |
| |
| /* For the benefit of old versions of GCC, check for anonymous |
| namespaces based on the demangled name. */ |
| if (!processing_has_namespace_info |
| && cu->language == language_cplus) |
| cp_scan_for_anonymous_namespaces (sym, objfile); |
| } |
| return (sym); |
| } |
| |
| /* A wrapper for new_symbol_full that always allocates a new symbol. */ |
| |
| static struct symbol * |
| new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu) |
| { |
| return new_symbol_full (die, type, cu, NULL); |
| } |
| |
| /* Given an attr with a DW_FORM_dataN value in host byte order, |
| zero-extend it as appropriate for the symbol's type. The DWARF |
| standard (v4) is not entirely clear about the meaning of using |
| DW_FORM_dataN for a constant with a signed type, where the type is |
| wider than the data. The conclusion of a discussion on the DWARF |
| list was that this is unspecified. We choose to always zero-extend |
| because that is the interpretation long in use by GCC. */ |
| |
| static gdb_byte * |
| dwarf2_const_value_data (struct attribute *attr, struct type *type, |
| const char *name, struct obstack *obstack, |
| struct dwarf2_cu *cu, LONGEST *value, int bits) |
| { |
| struct objfile *objfile = cu->objfile; |
| enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE; |
| LONGEST l = DW_UNSND (attr); |
| |
| if (bits < sizeof (*value) * 8) |
| { |
| l &= ((LONGEST) 1 << bits) - 1; |
| *value = l; |
| } |
| else if (bits == sizeof (*value) * 8) |
| *value = l; |
| else |
| { |
| gdb_byte *bytes = obstack_alloc (obstack, bits / 8); |
| store_unsigned_integer (bytes, bits / 8, byte_order, l); |
| return bytes; |
| } |
| |
| return NULL; |
| } |
| |
| /* Read a constant value from an attribute. Either set *VALUE, or if |
| the value does not fit in *VALUE, set *BYTES - either already |
| allocated on the objfile obstack, or newly allocated on OBSTACK, |
| or, set *BATON, if we translated the constant to a location |
| expression. */ |
| |
| static void |
| dwarf2_const_value_attr (struct attribute *attr, struct type *type, |
| const char *name, struct obstack *obstack, |
| struct dwarf2_cu *cu, |
| LONGEST *value, gdb_byte **bytes, |
| struct dwarf2_locexpr_baton **baton) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| struct dwarf_block *blk; |
| enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ? |
| BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE); |
| |
| *value = 0; |
| *bytes = NULL; |
| *baton = NULL; |
| |
| switch (attr->form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_GNU_addr_index: |
| { |
| gdb_byte *data; |
| |
| if (TYPE_LENGTH (type) != cu_header->addr_size) |
| dwarf2_const_value_length_mismatch_complaint (name, |
| cu_header->addr_size, |
| TYPE_LENGTH (type)); |
| /* Symbols of this form are reasonably rare, so we just |
| piggyback on the existing location code rather than writing |
| a new implementation of symbol_computed_ops. */ |
| *baton = obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct dwarf2_locexpr_baton)); |
| (*baton)->per_cu = cu->per_cu; |
| gdb_assert ((*baton)->per_cu); |
| |
| (*baton)->size = 2 + cu_header->addr_size; |
| data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size); |
| (*baton)->data = data; |
| |
| data[0] = DW_OP_addr; |
| store_unsigned_integer (&data[1], cu_header->addr_size, |
| byte_order, DW_ADDR (attr)); |
| data[cu_header->addr_size + 1] = DW_OP_stack_value; |
| } |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_GNU_str_index: |
| /* DW_STRING is already allocated on the objfile obstack, point |
| directly to it. */ |
| *bytes = (gdb_byte *) DW_STRING (attr); |
| break; |
| case DW_FORM_block1: |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_exprloc: |
| blk = DW_BLOCK (attr); |
| if (TYPE_LENGTH (type) != blk->size) |
| dwarf2_const_value_length_mismatch_complaint (name, blk->size, |
| TYPE_LENGTH (type)); |
| *bytes = blk->data; |
| break; |
| |
| /* The DW_AT_const_value attributes are supposed to carry the |
| symbol's value "represented as it would be on the target |
| architecture." By the time we get here, it's already been |
| converted to host endianness, so we just need to sign- or |
| zero-extend it as appropriate. */ |
| case DW_FORM_data1: |
| *bytes = dwarf2_const_value_data (attr, type, name, |
| obstack, cu, value, 8); |
| break; |
| case DW_FORM_data2: |
| *bytes = dwarf2_const_value_data (attr, type, name, |
| obstack, cu, value, 16); |
| break; |
| case DW_FORM_data4: |
| *bytes = dwarf2_const_value_data (attr, type, name, |
| obstack, cu, value, 32); |
| break; |
| case DW_FORM_data8: |
| *bytes = dwarf2_const_value_data (attr, type, name, |
| obstack, cu, value, 64); |
| break; |
| |
| case DW_FORM_sdata: |
| *value = DW_SND (attr); |
| break; |
| |
| case DW_FORM_udata: |
| *value = DW_UNSND (attr); |
| break; |
| |
| default: |
| complaint (&symfile_complaints, |
| _("unsupported const value attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| *value = 0; |
| break; |
| } |
| } |
| |
| |
| /* Copy constant value from an attribute to a symbol. */ |
| |
| static void |
| dwarf2_const_value (struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct comp_unit_head *cu_header = &cu->header; |
| LONGEST value; |
| gdb_byte *bytes; |
| struct dwarf2_locexpr_baton *baton; |
| |
| dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym), |
| SYMBOL_PRINT_NAME (sym), |
| &objfile->objfile_obstack, cu, |
| &value, &bytes, &baton); |
| |
| if (baton != NULL) |
| { |
| SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs; |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| SYMBOL_CLASS (sym) = LOC_COMPUTED; |
| } |
| else if (bytes != NULL) |
| { |
| SYMBOL_VALUE_BYTES (sym) = bytes; |
| SYMBOL_CLASS (sym) = LOC_CONST_BYTES; |
| } |
| else |
| { |
| SYMBOL_VALUE (sym) = value; |
| SYMBOL_CLASS (sym) = LOC_CONST; |
| } |
| } |
| |
| /* Return the type of the die in question using its DW_AT_type attribute. */ |
| |
| static struct type * |
| die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_type, cu); |
| if (!type_attr) |
| { |
| /* A missing DW_AT_type represents a void type. */ |
| return objfile_type (cu->objfile)->builtin_void; |
| } |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* True iff CU's producer generates GNAT Ada auxiliary information |
| that allows to find parallel types through that information instead |
| of having to do expensive parallel lookups by type name. */ |
| |
| static int |
| need_gnat_info (struct dwarf2_cu *cu) |
| { |
| /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version |
| of GNAT produces this auxiliary information, without any indication |
| that it is produced. Part of enhancing the FSF version of GNAT |
| to produce that information will be to put in place an indicator |
| that we can use in order to determine whether the descriptive type |
| info is available or not. One suggestion that has been made is |
| to use a new attribute, attached to the CU die. For now, assume |
| that the descriptive type info is not available. */ |
| return 0; |
| } |
| |
| /* Return the auxiliary type of the die in question using its |
| DW_AT_GNAT_descriptive_type attribute. Returns NULL if the |
| attribute is not present. */ |
| |
| static struct type * |
| die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu); |
| if (!type_attr) |
| return NULL; |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* If DIE has a descriptive_type attribute, then set the TYPE's |
| descriptive type accordingly. */ |
| |
| static void |
| set_descriptive_type (struct type *type, struct die_info *die, |
| struct dwarf2_cu *cu) |
| { |
| struct type *descriptive_type = die_descriptive_type (die, cu); |
| |
| if (descriptive_type) |
| { |
| ALLOCATE_GNAT_AUX_TYPE (type); |
| TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type; |
| } |
| } |
| |
| /* Return the containing type of the die in question using its |
| DW_AT_containing_type attribute. */ |
| |
| static struct type * |
| die_containing_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *type_attr; |
| |
| type_attr = dwarf2_attr (die, DW_AT_containing_type, cu); |
| if (!type_attr) |
| error (_("Dwarf Error: Problem turning containing type into gdb type " |
| "[in module %s]"), cu->objfile->name); |
| |
| return lookup_die_type (die, type_attr, cu); |
| } |
| |
| /* Look up the type of DIE in CU using its type attribute ATTR. |
| If there is no type substitute an error marker. */ |
| |
| static struct type * |
| lookup_die_type (struct die_info *die, struct attribute *attr, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| struct type *this_type; |
| |
| /* First see if we have it cached. */ |
| |
| if (is_ref_attr (attr)) |
| { |
| sect_offset offset = dwarf2_get_ref_die_offset (attr); |
| |
| this_type = get_die_type_at_offset (offset, cu->per_cu); |
| } |
| else if (attr->form == DW_FORM_ref_sig8) |
| { |
| struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr); |
| |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE " |
| "at 0x%x [in module %s]"), |
| die->offset.sect_off, objfile->name); |
| |
| gdb_assert (sig_type->per_cu.is_debug_types); |
| /* If we haven't filled in type_offset_in_section yet, then we |
| haven't read the type in yet. */ |
| this_type = NULL; |
| if (sig_type->type_offset_in_section.sect_off != 0) |
| { |
| this_type = |
| get_die_type_at_offset (sig_type->type_offset_in_section, |
| &sig_type->per_cu); |
| } |
| } |
| else |
| { |
| dump_die_for_error (die); |
| error (_("Dwarf Error: Bad type attribute %s [in module %s]"), |
| dwarf_attr_name (attr->name), objfile->name); |
| } |
| |
| /* If not cached we need to read it in. */ |
| |
| if (this_type == NULL) |
| { |
| struct die_info *type_die; |
| struct dwarf2_cu *type_cu = cu; |
| |
| type_die = follow_die_ref_or_sig (die, attr, &type_cu); |
| /* If we found the type now, it's probably because the type came |
| from an inter-CU reference and the type's CU got expanded before |
| ours. */ |
| this_type = get_die_type (type_die, type_cu); |
| if (this_type == NULL) |
| this_type = read_type_die_1 (type_die, type_cu); |
| } |
| |
| /* If we still don't have a type use an error marker. */ |
| |
| if (this_type == NULL) |
| { |
| char *message, *saved; |
| |
| /* read_type_die already issued a complaint. */ |
| message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"), |
| objfile->name, |
| cu->header.offset.sect_off, |
| die->offset.sect_off); |
| saved = obstack_copy0 (&objfile->objfile_obstack, |
| message, strlen (message)); |
| xfree (message); |
| |
| this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile); |
| } |
| |
| return this_type; |
| } |
| |
| /* Return the type in DIE, CU. |
| Returns NULL for invalid types. |
| |
| This first does a lookup in the appropriate type_hash table, |
| and only reads the die in if necessary. |
| |
| NOTE: This can be called when reading in partial or full symbols. */ |
| |
| static struct type * |
| read_type_die (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type; |
| |
| this_type = get_die_type (die, cu); |
| if (this_type) |
| return this_type; |
| |
| return read_type_die_1 (die, cu); |
| } |
| |
| /* Read the type in DIE, CU. |
| Returns NULL for invalid types. */ |
| |
| static struct type * |
| read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct type *this_type = NULL; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| this_type = read_structure_type (die, cu); |
| break; |
| case DW_TAG_enumeration_type: |
| this_type = read_enumeration_type (die, cu); |
| break; |
| case DW_TAG_subprogram: |
| case DW_TAG_subroutine_type: |
| case DW_TAG_inlined_subroutine: |
| this_type = read_subroutine_type (die, cu); |
| break; |
| case DW_TAG_array_type: |
| this_type = read_array_type (die, cu); |
| break; |
| case DW_TAG_set_type: |
| this_type = read_set_type (die, cu); |
| break; |
| case DW_TAG_pointer_type: |
| this_type = read_tag_pointer_type (die, cu); |
| break; |
| case DW_TAG_ptr_to_member_type: |
| this_type = read_tag_ptr_to_member_type (die, cu); |
| break; |
| case DW_TAG_reference_type: |
| this_type = read_tag_reference_type (die, cu); |
| break; |
| case DW_TAG_const_type: |
| this_type = read_tag_const_type (die, cu); |
| break; |
| case DW_TAG_volatile_type: |
| this_type = read_tag_volatile_type (die, cu); |
| break; |
| case DW_TAG_string_type: |
| this_type = read_tag_string_type (die, cu); |
| break; |
| case DW_TAG_typedef: |
| this_type = read_typedef (die, cu); |
| break; |
| case DW_TAG_subrange_type: |
| this_type = read_subrange_type (die, cu); |
| break; |
| case DW_TAG_base_type: |
| this_type = read_base_type (die, cu); |
| break; |
| case DW_TAG_unspecified_type: |
| this_type = read_unspecified_type (die, cu); |
| break; |
| case DW_TAG_namespace: |
| this_type = read_namespace_type (die, cu); |
| break; |
| case DW_TAG_module: |
| this_type = read_module_type (die, cu); |
| break; |
| default: |
| complaint (&symfile_complaints, |
| _("unexpected tag in read_type_die: '%s'"), |
| dwarf_tag_name (die->tag)); |
| break; |
| } |
| |
| return this_type; |
| } |
| |
| /* See if we can figure out if the class lives in a namespace. We do |
| this by looking for a member function; its demangled name will |
| contain namespace info, if there is any. |
| Return the computed name or NULL. |
| Space for the result is allocated on the objfile's obstack. |
| This is the full-die version of guess_partial_die_structure_name. |
| In this case we know DIE has no useful parent. */ |
| |
| static char * |
| guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct die_info *child; |
| |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die != NULL) |
| { |
| die = spec_die; |
| cu = spec_cu; |
| } |
| |
| for (child = die->child; |
| child != NULL; |
| child = child->sibling) |
| { |
| if (child->tag == DW_TAG_subprogram) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (child, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu); |
| if (attr != NULL) |
| { |
| char *actual_name |
| = language_class_name_from_physname (cu->language_defn, |
| DW_STRING (attr)); |
| char *name = NULL; |
| |
| if (actual_name != NULL) |
| { |
| char *die_name = dwarf2_name (die, cu); |
| |
| if (die_name != NULL |
| && strcmp (die_name, actual_name) != 0) |
| { |
| /* Strip off the class name from the full name. |
| We want the prefix. */ |
| int die_name_len = strlen (die_name); |
| int actual_name_len = strlen (actual_name); |
| |
| /* Test for '::' as a sanity check. */ |
| if (actual_name_len > die_name_len + 2 |
| && actual_name[actual_name_len |
| - die_name_len - 1] == ':') |
| name = |
| obsavestring (actual_name, |
| actual_name_len - die_name_len - 2, |
| &cu->objfile->objfile_obstack); |
| } |
| } |
| xfree (actual_name); |
| return name; |
| } |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* GCC might emit a nameless typedef that has a linkage name. Determine the |
| prefix part in such case. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| |
| static char * |
| anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| char *base; |
| |
| if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type) |
| return NULL; |
| |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if (attr != NULL && DW_STRING (attr) != NULL) |
| return NULL; |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| if (attr == NULL || DW_STRING (attr) == NULL) |
| return NULL; |
| |
| /* dwarf2_name had to be already called. */ |
| gdb_assert (DW_STRING_IS_CANONICAL (attr)); |
| |
| /* Strip the base name, keep any leading namespaces/classes. */ |
| base = strrchr (DW_STRING (attr), ':'); |
| if (base == NULL || base == DW_STRING (attr) || base[-1] != ':') |
| return ""; |
| |
| return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr), |
| &cu->objfile->objfile_obstack); |
| } |
| |
| /* Return the name of the namespace/class that DIE is defined within, |
| or "" if we can't tell. The caller should not xfree the result. |
| |
| For example, if we're within the method foo() in the following |
| code: |
| |
| namespace N { |
| class C { |
| void foo () { |
| } |
| }; |
| } |
| |
| then determine_prefix on foo's die will return "N::C". */ |
| |
| static const char * |
| determine_prefix (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct die_info *parent, *spec_die; |
| struct dwarf2_cu *spec_cu; |
| struct type *parent_type; |
| char *retval; |
| |
| if (cu->language != language_cplus && cu->language != language_java |
| && cu->language != language_fortran) |
| return ""; |
| |
| retval = anonymous_struct_prefix (die, cu); |
| if (retval) |
| return retval; |
| |
| /* We have to be careful in the presence of DW_AT_specification. |
| For example, with GCC 3.4, given the code |
| |
| namespace N { |
| void foo() { |
| // Definition of N::foo. |
| } |
| } |
| |
| then we'll have a tree of DIEs like this: |
| |
| 1: DW_TAG_compile_unit |
| 2: DW_TAG_namespace // N |
| 3: DW_TAG_subprogram // declaration of N::foo |
| 4: DW_TAG_subprogram // definition of N::foo |
| DW_AT_specification // refers to die #3 |
| |
| Thus, when processing die #4, we have to pretend that we're in |
| the context of its DW_AT_specification, namely the contex of die |
| #3. */ |
| spec_cu = cu; |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die == NULL) |
| parent = die->parent; |
| else |
| { |
| parent = spec_die->parent; |
| cu = spec_cu; |
| } |
| |
| if (parent == NULL) |
| return ""; |
| else if (parent->building_fullname) |
| { |
| const char *name; |
| const char *parent_name; |
| |
| /* It has been seen on RealView 2.2 built binaries, |
| DW_TAG_template_type_param types actually _defined_ as |
| children of the parent class: |
| |
| enum E {}; |
| template class <class Enum> Class{}; |
| Class<enum E> class_e; |
| |
| 1: DW_TAG_class_type (Class) |
| 2: DW_TAG_enumeration_type (E) |
| 3: DW_TAG_enumerator (enum1:0) |
| 3: DW_TAG_enumerator (enum2:1) |
| ... |
| 2: DW_TAG_template_type_param |
| DW_AT_type DW_FORM_ref_udata (E) |
| |
| Besides being broken debug info, it can put GDB into an |
| infinite loop. Consider: |
| |
| When we're building the full name for Class<E>, we'll start |
| at Class, and go look over its template type parameters, |
| finding E. We'll then try to build the full name of E, and |
| reach here. We're now trying to build the full name of E, |
| and look over the parent DIE for containing scope. In the |
| broken case, if we followed the parent DIE of E, we'd again |
| find Class, and once again go look at its template type |
| arguments, etc., etc. Simply don't consider such parent die |
| as source-level parent of this die (it can't be, the language |
| doesn't allow it), and break the loop here. */ |
| name = dwarf2_name (die, cu); |
| parent_name = dwarf2_name (parent, cu); |
| complaint (&symfile_complaints, |
| _("template param type '%s' defined within parent '%s'"), |
| name ? name : "<unknown>", |
| parent_name ? parent_name : "<unknown>"); |
| return ""; |
| } |
| else |
| switch (parent->tag) |
| { |
| case DW_TAG_namespace: |
| parent_type = read_type_die (parent, cu); |
| /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus |
| DW_TAG_namespace DIEs with a name of "::" for the global namespace. |
| Work around this problem here. */ |
| if (cu->language == language_cplus |
| && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0) |
| return ""; |
| /* We give a name to even anonymous namespaces. */ |
| return TYPE_TAG_NAME (parent_type); |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| case DW_TAG_module: |
| parent_type = read_type_die (parent, cu); |
| if (TYPE_TAG_NAME (parent_type) != NULL) |
| return TYPE_TAG_NAME (parent_type); |
| else |
| /* An anonymous structure is only allowed non-static data |
| members; no typedefs, no member functions, et cetera. |
| So it does not need a prefix. */ |
| return ""; |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */ |
| if (cu->language == language_cplus |
| && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types) |
| && die->child != NULL |
| && (die->tag == DW_TAG_class_type |
| || die->tag == DW_TAG_structure_type |
| || die->tag == DW_TAG_union_type)) |
| { |
| char *name = guess_full_die_structure_name (die, cu); |
| if (name != NULL) |
| return name; |
| } |
| return ""; |
| default: |
| return determine_prefix (parent, cu); |
| } |
| } |
| |
| /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX |
| with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then |
| simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform |
| an obconcat, otherwise allocate storage for the result. The CU argument is |
| used to determine the language and hence, the appropriate separator. */ |
| |
| #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */ |
| |
| static char * |
| typename_concat (struct obstack *obs, const char *prefix, const char *suffix, |
| int physname, struct dwarf2_cu *cu) |
| { |
| const char *lead = ""; |
| const char *sep; |
| |
| if (suffix == NULL || suffix[0] == '\0' |
| || prefix == NULL || prefix[0] == '\0') |
| sep = ""; |
| else if (cu->language == language_java) |
| sep = "."; |
| else if (cu->language == language_fortran && physname) |
| { |
| /* This is gfortran specific mangling. Normally DW_AT_linkage_name or |
| DW_AT_MIPS_linkage_name is preferred and used instead. */ |
| |
| lead = "__"; |
| sep = "_MOD_"; |
| } |
| else |
| sep = "::"; |
| |
| if (prefix == NULL) |
| prefix = ""; |
| if (suffix == NULL) |
| suffix = ""; |
| |
| if (obs == NULL) |
| { |
| char *retval |
| = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1); |
| |
| strcpy (retval, lead); |
| strcat (retval, prefix); |
| strcat (retval, sep); |
| strcat (retval, suffix); |
| return retval; |
| } |
| else |
| { |
| /* We have an obstack. */ |
| return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL); |
| } |
| } |
| |
| /* Return sibling of die, NULL if no sibling. */ |
| |
| static struct die_info * |
| sibling_die (struct die_info *die) |
| { |
| return die->sibling; |
| } |
| |
| /* Get name of a die, return NULL if not found. */ |
| |
| static char * |
| dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu, |
| struct obstack *obstack) |
| { |
| if (name && cu->language == language_cplus) |
| { |
| char *canon_name = cp_canonicalize_string (name); |
| |
| if (canon_name != NULL) |
| { |
| if (strcmp (canon_name, name) != 0) |
| name = obsavestring (canon_name, strlen (canon_name), |
| obstack); |
| xfree (canon_name); |
| } |
| } |
| |
| return name; |
| } |
| |
| /* Get name of a die, return NULL if not found. */ |
| |
| static char * |
| dwarf2_name (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_name, cu); |
| if ((!attr || !DW_STRING (attr)) |
| && die->tag != DW_TAG_class_type |
| && die->tag != DW_TAG_interface_type |
| && die->tag != DW_TAG_structure_type |
| && die->tag != DW_TAG_union_type) |
| return NULL; |
| |
| switch (die->tag) |
| { |
| case DW_TAG_compile_unit: |
| case DW_TAG_partial_unit: |
| /* Compilation units have a DW_AT_name that is a filename, not |
| a source language identifier. */ |
| case DW_TAG_enumeration_type: |
| case DW_TAG_enumerator: |
| /* These tags always have simple identifiers already; no need |
| to canonicalize them. */ |
| return DW_STRING (attr); |
| |
| case DW_TAG_subprogram: |
| /* Java constructors will all be named "<init>", so return |
| the class name when we see this special case. */ |
| if (cu->language == language_java |
| && DW_STRING (attr) != NULL |
| && strcmp (DW_STRING (attr), "<init>") == 0) |
| { |
| struct dwarf2_cu *spec_cu = cu; |
| struct die_info *spec_die; |
| |
| /* GCJ will output '<init>' for Java constructor names. |
| For this special case, return the name of the parent class. */ |
| |
| /* GCJ may output suprogram DIEs with AT_specification set. |
| If so, use the name of the specified DIE. */ |
| spec_die = die_specification (die, &spec_cu); |
| if (spec_die != NULL) |
| return dwarf2_name (spec_die, spec_cu); |
| |
| do |
| { |
| die = die->parent; |
| if (die->tag == DW_TAG_class_type) |
| return dwarf2_name (die, cu); |
| } |
| while (die->tag != DW_TAG_compile_unit |
| && die->tag != DW_TAG_partial_unit); |
| } |
| break; |
| |
| case DW_TAG_class_type: |
| case DW_TAG_interface_type: |
| case DW_TAG_structure_type: |
| case DW_TAG_union_type: |
| /* Some GCC versions emit spurious DW_AT_name attributes for unnamed |
| structures or unions. These were of the form "._%d" in GCC 4.1, |
| or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3 |
| and GCC 4.4. We work around this problem by ignoring these. */ |
| if (attr && DW_STRING (attr) |
| && (strncmp (DW_STRING (attr), "._", 2) == 0 |
| || strncmp (DW_STRING (attr), "<anonymous", 10) == 0)) |
| return NULL; |
| |
| /* GCC might emit a nameless typedef that has a linkage name. See |
| http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */ |
| if (!attr || DW_STRING (attr) == NULL) |
| { |
| char *demangled = NULL; |
| |
| attr = dwarf2_attr (die, DW_AT_linkage_name, cu); |
| if (attr == NULL) |
| attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu); |
| |
| if (attr == NULL || DW_STRING (attr) == NULL) |
| return NULL; |
| |
| /* Avoid demangling DW_STRING (attr) the second time on a second |
| call for the same DIE. */ |
| if (!DW_STRING_IS_CANONICAL (attr)) |
| demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES); |
| |
| if (demangled) |
| { |
| char *base; |
| |
| /* FIXME: we already did this for the partial symbol... */ |
| DW_STRING (attr) = obsavestring (demangled, strlen (demangled), |
| &cu->objfile->objfile_obstack); |
| DW_STRING_IS_CANONICAL (attr) = 1; |
| xfree (demangled); |
| |
| /* Strip any leading namespaces/classes, keep only the base name. |
| DW_AT_name for named DIEs does not contain the prefixes. */ |
| base = strrchr (DW_STRING (attr), ':'); |
| if (base && base > DW_STRING (attr) && base[-1] == ':') |
| return &base[1]; |
| else |
| return DW_STRING (attr); |
| } |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (!DW_STRING_IS_CANONICAL (attr)) |
| { |
| DW_STRING (attr) |
| = dwarf2_canonicalize_name (DW_STRING (attr), cu, |
| &cu->objfile->objfile_obstack); |
| DW_STRING_IS_CANONICAL (attr) = 1; |
| } |
| return DW_STRING (attr); |
| } |
| |
| /* Return the die that this die in an extension of, or NULL if there |
| is none. *EXT_CU is the CU containing DIE on input, and the CU |
| containing the return value on output. */ |
| |
| static struct die_info * |
| dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu) |
| { |
| struct attribute *attr; |
| |
| attr = dwarf2_attr (die, DW_AT_extension, *ext_cu); |
| if (attr == NULL) |
| return NULL; |
| |
| return follow_die_ref (die, attr, ext_cu); |
| } |
| |
| /* Convert a DIE tag into its string name. */ |
| |
| static const char * |
| dwarf_tag_name (unsigned tag) |
| { |
| const char *name = get_DW_TAG_name (tag); |
| |
| if (name == NULL) |
| return "DW_TAG_<unknown>"; |
| |
| return name; |
| } |
| |
| /* Convert a DWARF attribute code into its string name. */ |
| |
| static const char * |
| dwarf_attr_name (unsigned attr) |
| { |
| const char *name; |
| |
| #ifdef MIPS /* collides with DW_AT_HP_block_index */ |
| if (attr == DW_AT_MIPS_fde) |
| return "DW_AT_MIPS_fde"; |
| #else |
| if (attr == DW_AT_HP_block_index) |
| return "DW_AT_HP_block_index"; |
| #endif |
| |
| name = get_DW_AT_name (attr); |
| |
| if (name == NULL) |
| return "DW_AT_<unknown>"; |
| |
| return name; |
| } |
| |
| /* Convert a DWARF value form code into its string name. */ |
| |
| static const char * |
| dwarf_form_name (unsigned form) |
| { |
| const char *name = get_DW_FORM_name (form); |
| |
| if (name == NULL) |
| return "DW_FORM_<unknown>"; |
| |
| return name; |
| } |
| |
| static char * |
| dwarf_bool_name (unsigned mybool) |
| { |
| if (mybool) |
| return "TRUE"; |
| else |
| return "FALSE"; |
| } |
| |
| /* Convert a DWARF type code into its string name. */ |
| |
| static const char * |
| dwarf_type_encoding_name (unsigned enc) |
| { |
| const char *name = get_DW_ATE_name (enc); |
| |
| if (name == NULL) |
| return "DW_ATE_<unknown>"; |
| |
| return name; |
| } |
| |
| static void |
| dump_die_shallow (struct ui_file *f, int indent, struct die_info *die) |
| { |
| unsigned int i; |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n", |
| dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off); |
| |
| if (die->parent != NULL) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " parent at offset: 0x%x\n", |
| die->parent->offset.sect_off); |
| } |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " has children: %s\n", |
| dwarf_bool_name (die->child != NULL)); |
| |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " attributes:\n"); |
| |
| for (i = 0; i < die->num_attrs; ++i) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " %s (%s) ", |
| dwarf_attr_name (die->attrs[i].name), |
| dwarf_form_name (die->attrs[i].form)); |
| |
| switch (die->attrs[i].form) |
| { |
| case DW_FORM_addr: |
| case DW_FORM_GNU_addr_index: |
| fprintf_unfiltered (f, "address: "); |
| fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f); |
| break; |
| case DW_FORM_block2: |
| case DW_FORM_block4: |
| case DW_FORM_block: |
| case DW_FORM_block1: |
| fprintf_unfiltered (f, "block: size %d", |
| DW_BLOCK (&die->attrs[i])->size); |
| break; |
| case DW_FORM_exprloc: |
| fprintf_unfiltered (f, "expression: size %u", |
| DW_BLOCK (&die->attrs[i])->size); |
| break; |
| case DW_FORM_ref_addr: |
| fprintf_unfiltered (f, "ref address: "); |
| fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f); |
| break; |
| case DW_FORM_ref1: |
| case DW_FORM_ref2: |
| case DW_FORM_ref4: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_udata: |
| fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)", |
| (long) (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_data1: |
| case DW_FORM_data2: |
| case DW_FORM_data4: |
| case DW_FORM_data8: |
| case DW_FORM_udata: |
| case DW_FORM_sdata: |
| fprintf_unfiltered (f, "constant: %s", |
| pulongest (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_sec_offset: |
| fprintf_unfiltered (f, "section offset: %s", |
| pulongest (DW_UNSND (&die->attrs[i]))); |
| break; |
| case DW_FORM_ref_sig8: |
| if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL) |
| fprintf_unfiltered (f, "signatured type, offset: 0x%x", |
| DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off); |
| else |
| fprintf_unfiltered (f, "signatured type, offset: unknown"); |
| break; |
| case DW_FORM_string: |
| case DW_FORM_strp: |
| case DW_FORM_GNU_str_index: |
| fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)", |
| DW_STRING (&die->attrs[i]) |
| ? DW_STRING (&die->attrs[i]) : "", |
| DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not"); |
| break; |
| case DW_FORM_flag: |
| if (DW_UNSND (&die->attrs[i])) |
| fprintf_unfiltered (f, "flag: TRUE"); |
| else |
| fprintf_unfiltered (f, "flag: FALSE"); |
| break; |
| case DW_FORM_flag_present: |
| fprintf_unfiltered (f, "flag: TRUE"); |
| break; |
| case DW_FORM_indirect: |
| /* The reader will have reduced the indirect form to |
| the "base form" so this form should not occur. */ |
| fprintf_unfiltered (f, |
| "unexpected attribute form: DW_FORM_indirect"); |
| break; |
| default: |
| fprintf_unfiltered (f, "unsupported attribute form: %d.", |
| die->attrs[i].form); |
| break; |
| } |
| fprintf_unfiltered (f, "\n"); |
| } |
| } |
| |
| static void |
| dump_die_for_error (struct die_info *die) |
| { |
| dump_die_shallow (gdb_stderr, 0, die); |
| } |
| |
| static void |
| dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die) |
| { |
| int indent = level * 4; |
| |
| gdb_assert (die != NULL); |
| |
| if (level >= max_level) |
| return; |
| |
| dump_die_shallow (f, indent, die); |
| |
| if (die->child != NULL) |
| { |
| print_spaces (indent, f); |
| fprintf_unfiltered (f, " Children:"); |
| if (level + 1 < max_level) |
| { |
| fprintf_unfiltered (f, "\n"); |
| dump_die_1 (f, level + 1, max_level, die->child); |
| } |
| else |
| { |
| fprintf_unfiltered (f, |
| " [not printed, max nesting level reached]\n"); |
| } |
| } |
| |
| if (die->sibling != NULL && level > 0) |
| { |
| dump_die_1 (f, level, max_level, die->sibling); |
| } |
| } |
| |
| /* This is called from the pdie macro in gdbinit.in. |
| It's not static so gcc will keep a copy callable from gdb. */ |
| |
| void |
| dump_die (struct die_info *die, int max_level) |
| { |
| dump_die_1 (gdb_stdlog, 0, max_level, die); |
| } |
| |
| static void |
| store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| void **slot; |
| |
| slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off, |
| INSERT); |
| |
| *slot = die; |
| } |
| |
| /* DW_ADDR is always stored already as sect_offset; despite for the forms |
| besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */ |
| |
| static int |
| is_ref_attr (struct attribute *attr) |
| { |
| switch (attr->form) |
| { |
| case DW_FORM_ref_addr: |
| case DW_FORM_ref1: |
| case DW_FORM_ref2: |
| case DW_FORM_ref4: |
| case DW_FORM_ref8: |
| case DW_FORM_ref_udata: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the |
| required kind. */ |
| |
| static sect_offset |
| dwarf2_get_ref_die_offset (struct attribute *attr) |
| { |
| sect_offset retval = { DW_UNSND (attr) }; |
| |
| if (is_ref_attr (attr)) |
| return retval; |
| |
| retval.sect_off = 0; |
| complaint (&symfile_complaints, |
| _("unsupported die ref attribute form: '%s'"), |
| dwarf_form_name (attr->form)); |
| return retval; |
| } |
| |
| /* Return the constant value held by ATTR. Return DEFAULT_VALUE if |
| * the value held by the attribute is not constant. */ |
| |
| static LONGEST |
| dwarf2_get_attr_constant_value (struct attribute *attr, int default_value) |
| { |
| if (attr->form == DW_FORM_sdata) |
| return DW_SND (attr); |
| else if (attr->form == DW_FORM_udata |
| || attr->form == DW_FORM_data1 |
| || attr->form == DW_FORM_data2 |
| || attr->form == DW_FORM_data4 |
| || attr->form == DW_FORM_data8) |
| return DW_UNSND (attr); |
| else |
| { |
| complaint (&symfile_complaints, |
| _("Attribute value is not a constant (%s)"), |
| dwarf_form_name (attr->form)); |
| return default_value; |
| } |
| } |
| |
| /* THIS_CU has a reference to PER_CU. If necessary, load the new compilation |
| unit and add it to our queue. |
| The result is non-zero if PER_CU was queued, otherwise the result is zero |
| meaning either PER_CU is already queued or it is already loaded. */ |
| |
| static int |
| maybe_queue_comp_unit (struct dwarf2_cu *this_cu, |
| struct dwarf2_per_cu_data *per_cu, |
| enum language pretend_language) |
| { |
| /* We may arrive here during partial symbol reading, if we need full |
| DIEs to process an unusual case (e.g. template arguments). Do |
| not queue PER_CU, just tell our caller to load its DIEs. */ |
| if (dwarf2_per_objfile->reading_partial_symbols) |
| { |
| if (per_cu->cu == NULL || per_cu->cu->dies == NULL) |
| return 1; |
| return 0; |
| } |
| |
| /* Mark the dependence relation so that we don't flush PER_CU |
| too early. */ |
| dwarf2_add_dependence (this_cu, per_cu); |
| |
| /* If it's already on the queue, we have nothing to do. */ |
| if (per_cu->queued) |
| return 0; |
| |
| /* If the compilation unit is already loaded, just mark it as |
| used. */ |
| if (per_cu->cu != NULL) |
| { |
| per_cu->cu->last_used = 0; |
| return 0; |
| } |
| |
| /* Add it to the queue. */ |
| queue_comp_unit (per_cu, pretend_language); |
| |
| return 1; |
| } |
| |
| /* Follow reference or signature attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct die_info *die; |
| |
| if (is_ref_attr (attr)) |
| die = follow_die_ref (src_die, attr, ref_cu); |
| else if (attr->form == DW_FORM_ref_sig8) |
| die = follow_die_sig (src_die, attr, ref_cu); |
| else |
| { |
| dump_die_for_error (src_die); |
| error (_("Dwarf Error: Expected reference attribute [in module %s]"), |
| (*ref_cu)->objfile->name); |
| } |
| |
| return die; |
| } |
| |
| /* Follow reference OFFSET. |
| On entry *REF_CU is the CU of the source die referencing OFFSET. |
| On exit *REF_CU is the CU of the result. |
| Returns NULL if OFFSET is invalid. */ |
| |
| static struct die_info * |
| follow_die_offset (sect_offset offset, struct dwarf2_cu **ref_cu) |
| { |
| struct die_info temp_die; |
| struct dwarf2_cu *target_cu, *cu = *ref_cu; |
| |
| gdb_assert (cu->per_cu != NULL); |
| |
| target_cu = cu; |
| |
| if (cu->per_cu->is_debug_types) |
| { |
| /* .debug_types CUs cannot reference anything outside their CU. |
| If they need to, they have to reference a signatured type via |
| DW_FORM_ref_sig8. */ |
| if (! offset_in_cu_p (&cu->header, offset)) |
| return NULL; |
| } |
| else if (! offset_in_cu_p (&cu->header, offset)) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile); |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| if (maybe_queue_comp_unit (cu, per_cu, cu->language)) |
| load_full_comp_unit (per_cu, cu->language); |
| |
| target_cu = per_cu->cu; |
| } |
| else if (cu->dies == NULL) |
| { |
| /* We're loading full DIEs during partial symbol reading. */ |
| gdb_assert (dwarf2_per_objfile->reading_partial_symbols); |
| load_full_comp_unit (cu->per_cu, language_minimal); |
| } |
| |
| *ref_cu = target_cu; |
| temp_die.offset = offset; |
| return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off); |
| } |
| |
| /* Follow reference attribute ATTR of SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_ref (struct die_info *src_die, struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| sect_offset offset = dwarf2_get_ref_die_offset (attr); |
| struct dwarf2_cu *cu = *ref_cu; |
| struct die_info *die; |
| |
| die = follow_die_offset (offset, ref_cu); |
| if (!die) |
| error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE " |
| "at 0x%x [in module %s]"), |
| offset.sect_off, src_die->offset.sect_off, cu->objfile->name); |
| |
| return die; |
| } |
| |
| /* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU. |
| Returned value is intended for DW_OP_call*. Returned |
| dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */ |
| |
| struct dwarf2_locexpr_baton |
| dwarf2_fetch_die_location_block (cu_offset offset_in_cu, |
| struct dwarf2_per_cu_data *per_cu, |
| CORE_ADDR (*get_frame_pc) (void *baton), |
| void *baton) |
| { |
| sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off }; |
| struct dwarf2_cu *cu; |
| struct die_info *die; |
| struct attribute *attr; |
| struct dwarf2_locexpr_baton retval; |
| |
| dw2_setup (per_cu->objfile); |
| |
| if (per_cu->cu == NULL) |
| load_cu (per_cu); |
| cu = per_cu->cu; |
| |
| die = follow_die_offset (offset, &cu); |
| if (!die) |
| error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"), |
| offset.sect_off, per_cu->objfile->name); |
| |
| attr = dwarf2_attr (die, DW_AT_location, cu); |
| if (!attr) |
| { |
| /* DWARF: "If there is no such attribute, then there is no effect.". |
| DATA is ignored if SIZE is 0. */ |
| |
| retval.data = NULL; |
| retval.size = 0; |
| } |
| else if (attr_form_is_section_offset (attr)) |
| { |
| struct dwarf2_loclist_baton loclist_baton; |
| CORE_ADDR pc = (*get_frame_pc) (baton); |
| size_t size; |
| |
| fill_in_loclist_baton (cu, &loclist_baton, attr); |
| |
| retval.data = dwarf2_find_location_expression (&loclist_baton, |
| &size, pc); |
| retval.size = size; |
| } |
| else |
| { |
| if (!attr_form_is_block (attr)) |
| error (_("Dwarf Error: DIE at 0x%x referenced in module %s " |
| "is neither DW_FORM_block* nor DW_FORM_exprloc"), |
| offset.sect_off, per_cu->objfile->name); |
| |
| retval.data = DW_BLOCK (attr)->data; |
| retval.size = DW_BLOCK (attr)->size; |
| } |
| retval.per_cu = cu->per_cu; |
| |
| age_cached_comp_units (); |
| |
| return retval; |
| } |
| |
| /* Return the type of the DIE at DIE_OFFSET in the CU named by |
| PER_CU. */ |
| |
| struct type * |
| dwarf2_get_die_type (cu_offset die_offset, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| sect_offset die_offset_sect; |
| |
| dw2_setup (per_cu->objfile); |
| |
| die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off; |
| return get_die_type_at_offset (die_offset_sect, per_cu); |
| } |
| |
| /* Follow the signature attribute ATTR in SRC_DIE. |
| On entry *REF_CU is the CU of SRC_DIE. |
| On exit *REF_CU is the CU of the result. */ |
| |
| static struct die_info * |
| follow_die_sig (struct die_info *src_die, struct attribute *attr, |
| struct dwarf2_cu **ref_cu) |
| { |
| struct objfile *objfile = (*ref_cu)->objfile; |
| struct die_info temp_die; |
| struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr); |
| struct dwarf2_cu *sig_cu; |
| struct die_info *die; |
| |
| /* sig_type will be NULL if the signatured type is missing from |
| the debug info. */ |
| if (sig_type == NULL) |
| error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE " |
| "at 0x%x [in module %s]"), |
| src_die->offset.sect_off, objfile->name); |
| |
| /* If necessary, add it to the queue and load its DIEs. */ |
| |
| if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal)) |
| read_signatured_type (sig_type); |
| |
| gdb_assert (sig_type->per_cu.cu != NULL); |
| |
| sig_cu = sig_type->per_cu.cu; |
| gdb_assert (sig_type->type_offset_in_section.sect_off != 0); |
| temp_die.offset = sig_type->type_offset_in_section; |
| die = htab_find_with_hash (sig_cu->die_hash, &temp_die, |
| temp_die.offset.sect_off); |
| if (die) |
| { |
| *ref_cu = sig_cu; |
| return die; |
| } |
| |
| error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced " |
| "from DIE at 0x%x [in module %s]"), |
| temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name); |
| } |
| |
| /* Given an offset of a signatured type, return its signatured_type. */ |
| |
| static struct signatured_type * |
| lookup_signatured_type_at_offset (struct objfile *objfile, |
| struct dwarf2_section_info *section, |
| sect_offset offset) |
| { |
| gdb_byte *info_ptr = section->buffer + offset.sect_off; |
| unsigned int length, initial_length_size; |
| unsigned int sig_offset; |
| struct signatured_type find_entry, *sig_type; |
| |
| length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size); |
| sig_offset = (initial_length_size |
| + 2 /*version*/ |
| + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/ |
| + 1 /*address_size*/); |
| find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset); |
| sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry); |
| |
| /* This is only used to lookup previously recorded types. |
| If we didn't find it, it's our bug. */ |
| gdb_assert (sig_type != NULL); |
| gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off); |
| |
| return sig_type; |
| } |
| |
| /* Load the DIEs associated with type unit PER_CU into memory. */ |
| |
| static void |
| load_full_type_unit (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile = per_cu->objfile; |
| struct dwarf2_section_info *sect = per_cu->info_or_types_section; |
| sect_offset offset = per_cu->offset; |
| struct signatured_type *sig_type; |
| |
| dwarf2_read_section (objfile, sect); |
| |
| /* We have the section offset, but we need the signature to do the |
| hash table lookup. */ |
| /* FIXME: This is sorta unnecessary, read_signatured_type only uses |
| the signature to assert we found the right one. |
| Ok, but it's a lot of work. We should simplify things so any needed |
| assert doesn't require all this clumsiness. */ |
| sig_type = lookup_signatured_type_at_offset (objfile, sect, offset); |
| |
| gdb_assert (&sig_type->per_cu == per_cu); |
| gdb_assert (sig_type->per_cu.cu == NULL); |
| |
| read_signatured_type (sig_type); |
| |
| gdb_assert (sig_type->per_cu.cu != NULL); |
| } |
| |
| /* die_reader_func for read_signatured_type. |
| This is identical to load_full_comp_unit_reader, |
| but is kept separate for now. */ |
| |
| static void |
| read_signatured_type_reader (const struct die_reader_specs *reader, |
| gdb_byte *info_ptr, |
| struct die_info *comp_unit_die, |
| int has_children, |
| void *data) |
| { |
| struct dwarf2_cu *cu = reader->cu; |
| |
| gdb_assert (cu->die_hash == NULL); |
| cu->die_hash = |
| htab_create_alloc_ex (cu->header.length / 12, |
| die_hash, |
| die_eq, |
| NULL, |
| &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| if (has_children) |
| comp_unit_die->child = read_die_and_siblings (reader, info_ptr, |
| &info_ptr, comp_unit_die); |
| cu->dies = comp_unit_die; |
| /* comp_unit_die is not stored in die_hash, no need. */ |
| |
| /* We try not to read any attributes in this function, because not |
| all CUs needed for references have been loaded yet, and symbol |
| table processing isn't initialized. But we have to set the CU language, |
| or we won't be able to build types correctly. |
| Similarly, if we do not read the producer, we can not apply |
| producer-specific interpretation. */ |
| prepare_one_comp_unit (cu, cu->dies, language_minimal); |
| } |
| |
| /* Read in a signatured type and build its CU and DIEs. |
| If the type is a stub for the real type in a DWO file, |
| read in the real type from the DWO file as well. */ |
| |
| static void |
| read_signatured_type (struct signatured_type *sig_type) |
| { |
| struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu; |
| |
| gdb_assert (per_cu->is_debug_types); |
| gdb_assert (per_cu->cu == NULL); |
| |
| init_cutu_and_read_dies (per_cu, 0, 1, read_signatured_type_reader, NULL); |
| } |
| |
| /* Decode simple location descriptions. |
| Given a pointer to a dwarf block that defines a location, compute |
| the location and return the value. |
| |
| NOTE drow/2003-11-18: This function is called in two situations |
| now: for the address of static or global variables (partial symbols |
| only) and for offsets into structures which are expected to be |
| (more or less) constant. The partial symbol case should go away, |
| and only the constant case should remain. That will let this |
| function complain more accurately. A few special modes are allowed |
| without complaint for global variables (for instance, global |
| register values and thread-local values). |
| |
| A location description containing no operations indicates that the |
| object is optimized out. The return value is 0 for that case. |
| FIXME drow/2003-11-16: No callers check for this case any more; soon all |
| callers will only want a very basic result and this can become a |
| complaint. |
| |
| Note that stack[0] is unused except as a default error return. */ |
| |
| static CORE_ADDR |
| decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = cu->objfile; |
| int i; |
| int size = blk->size; |
| gdb_byte *data = blk->data; |
| CORE_ADDR stack[64]; |
| int stacki; |
| unsigned int bytes_read, unsnd; |
| gdb_byte op; |
| |
| i = 0; |
| stacki = 0; |
| stack[stacki] = 0; |
| stack[++stacki] = 0; |
| |
| while (i < size) |
| { |
| op = data[i++]; |
| switch (op) |
| { |
| case DW_OP_lit0: |
| case DW_OP_lit1: |
| case DW_OP_lit2: |
| case DW_OP_lit3: |
| case DW_OP_lit4: |
| case DW_OP_lit5: |
| case DW_OP_lit6: |
| case DW_OP_lit7: |
| case DW_OP_lit8: |
| case DW_OP_lit9: |
| case DW_OP_lit10: |
| case DW_OP_lit11: |
| case DW_OP_lit12: |
| case DW_OP_lit13: |
| case DW_OP_lit14: |
| case DW_OP_lit15: |
| case DW_OP_lit16: |
| case DW_OP_lit17: |
| case DW_OP_lit18: |
| case DW_OP_lit19: |
| case DW_OP_lit20: |
| case DW_OP_lit21: |
| case DW_OP_lit22: |
| case DW_OP_lit23: |
| case DW_OP_lit24: |
| case DW_OP_lit25: |
| case DW_OP_lit26: |
| case DW_OP_lit27: |
| case DW_OP_lit28: |
| case DW_OP_lit29: |
| case DW_OP_lit30: |
| case DW_OP_lit31: |
| stack[++stacki] = op - DW_OP_lit0; |
| break; |
| |
| case DW_OP_reg0: |
| case DW_OP_reg1: |
| case DW_OP_reg2: |
| case DW_OP_reg3: |
| case DW_OP_reg4: |
| case DW_OP_reg5: |
| case DW_OP_reg6: |
| case DW_OP_reg7: |
| case DW_OP_reg8: |
| case DW_OP_reg9: |
| case DW_OP_reg10: |
| case DW_OP_reg11: |
| case DW_OP_reg12: |
| case DW_OP_reg13: |
| case DW_OP_reg14: |
| case DW_OP_reg15: |
| case DW_OP_reg16: |
| case DW_OP_reg17: |
| case DW_OP_reg18: |
| case DW_OP_reg19: |
| case DW_OP_reg20: |
| case DW_OP_reg21: |
| case DW_OP_reg22: |
| case DW_OP_reg23: |
| case DW_OP_reg24: |
| case DW_OP_reg25: |
| case DW_OP_reg26: |
| case DW_OP_reg27: |
| case DW_OP_reg28: |
| case DW_OP_reg29: |
| case DW_OP_reg30: |
| case DW_OP_reg31: |
| stack[++stacki] = op - DW_OP_reg0; |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_regx: |
| unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read); |
| i += bytes_read; |
| stack[++stacki] = unsnd; |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_addr: |
| stack[++stacki] = read_address (objfile->obfd, &data[i], |
| cu, &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_const1u: |
| stack[++stacki] = read_1_byte (objfile->obfd, &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const1s: |
| stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]); |
| i += 1; |
| break; |
| |
| case DW_OP_const2u: |
| stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const2s: |
| stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]); |
| i += 2; |
| break; |
| |
| case DW_OP_const4u: |
| stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const4s: |
| stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]); |
| i += 4; |
| break; |
| |
| case DW_OP_const8u: |
| stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]); |
| i += 8; |
| break; |
| |
| case DW_OP_constu: |
| stack[++stacki] = read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_consts: |
| stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_dup: |
| stack[stacki + 1] = stack[stacki]; |
| stacki++; |
| break; |
| |
| case DW_OP_plus: |
| stack[stacki - 1] += stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_plus_uconst: |
| stack[stacki] += read_unsigned_leb128 (NULL, (data + i), |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| case DW_OP_minus: |
| stack[stacki - 1] -= stack[stacki]; |
| stacki--; |
| break; |
| |
| case DW_OP_deref: |
| /* If we're not the last op, then we definitely can't encode |
| this using GDB's address_class enum. This is valid for partial |
| global symbols, although the variable's address will be bogus |
| in the psymtab. */ |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| break; |
| |
| case DW_OP_GNU_push_tls_address: |
| /* The top of the stack has the offset from the beginning |
| of the thread control block at which the variable is located. */ |
| /* Nothing should follow this operator, so the top of stack would |
| be returned. */ |
| /* This is valid for partial global symbols, but the variable's |
| address will be bogus in the psymtab. Make it always at least |
| non-zero to not look as a variable garbage collected by linker |
| which have DW_OP_addr 0. */ |
| if (i < size) |
| dwarf2_complex_location_expr_complaint (); |
| stack[stacki]++; |
| break; |
| |
| case DW_OP_GNU_uninit: |
| break; |
| |
| case DW_OP_GNU_addr_index: |
| stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i], |
| &bytes_read); |
| i += bytes_read; |
| break; |
| |
| default: |
| { |
| const char *name = get_DW_OP_name (op); |
| |
| if (name) |
| complaint (&symfile_complaints, _("unsupported stack op: '%s'"), |
| name); |
| else |
| complaint (&symfile_complaints, _("unsupported stack op: '%02x'"), |
| op); |
| } |
| |
| return (stack[stacki]); |
| } |
| |
| /* Enforce maximum stack depth of SIZE-1 to avoid writing |
| outside of the allocated space. Also enforce minimum>0. */ |
| if (stacki >= ARRAY_SIZE (stack) - 1) |
| { |
| complaint (&symfile_complaints, |
| _("location description stack overflow")); |
| return 0; |
| } |
| |
| if (stacki <= 0) |
| { |
| complaint (&symfile_complaints, |
| _("location description stack underflow")); |
| return 0; |
| } |
| } |
| return (stack[stacki]); |
| } |
| |
| /* memory allocation interface */ |
| |
| static struct dwarf_block * |
| dwarf_alloc_block (struct dwarf2_cu *cu) |
| { |
| struct dwarf_block *blk; |
| |
| blk = (struct dwarf_block *) |
| obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block)); |
| return (blk); |
| } |
| |
| static struct abbrev_info * |
| dwarf_alloc_abbrev (struct dwarf2_cu *cu) |
| { |
| struct abbrev_info *abbrev; |
| |
| abbrev = (struct abbrev_info *) |
| obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info)); |
| memset (abbrev, 0, sizeof (struct abbrev_info)); |
| return (abbrev); |
| } |
| |
| static struct die_info * |
| dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs) |
| { |
| struct die_info *die; |
| size_t size = sizeof (struct die_info); |
| |
| if (num_attrs > 1) |
| size += (num_attrs - 1) * sizeof (struct attribute); |
| |
| die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size); |
| memset (die, 0, sizeof (struct die_info)); |
| return (die); |
| } |
| |
| |
| /* Macro support. */ |
| |
| /* Return the full name of file number I in *LH's file name table. |
| Use COMP_DIR as the name of the current directory of the |
| compilation. The result is allocated using xmalloc; the caller is |
| responsible for freeing it. */ |
| static char * |
| file_full_name (int file, struct line_header *lh, const char *comp_dir) |
| { |
| /* Is the file number a valid index into the line header's file name |
| table? Remember that file numbers start with one, not zero. */ |
| if (1 <= file && file <= lh->num_file_names) |
| { |
| struct file_entry *fe = &lh->file_names[file - 1]; |
| |
| if (IS_ABSOLUTE_PATH (fe->name)) |
| return xstrdup (fe->name); |
| else |
| { |
| const char *dir; |
| int dir_len; |
| char *full_name; |
| |
| if (fe->dir_index) |
| dir = lh->include_dirs[fe->dir_index - 1]; |
| else |
| dir = comp_dir; |
| |
| if (dir) |
| { |
| dir_len = strlen (dir); |
| full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1); |
| strcpy (full_name, dir); |
| full_name[dir_len] = '/'; |
| strcpy (full_name + dir_len + 1, fe->name); |
| return full_name; |
| } |
| else |
| return xstrdup (fe->name); |
| } |
| } |
| else |
| { |
| /* The compiler produced a bogus file number. We can at least |
| record the macro definitions made in the file, even if we |
| won't be able to find the file by name. */ |
| char fake_name[80]; |
| |
| sprintf (fake_name, "<bad macro file number %d>", file); |
| |
| complaint (&symfile_complaints, |
| _("bad file number in macro information (%d)"), |
| file); |
| |
| return xstrdup (fake_name); |
| } |
| } |
| |
| |
| static struct macro_source_file * |
| macro_start_file (int file, int line, |
| struct macro_source_file *current_file, |
| const char *comp_dir, |
| struct line_header *lh, struct objfile *objfile) |
| { |
| /* The full name of this source file. */ |
| char *full_name = file_full_name (file, lh, comp_dir); |
| |
| /* We don't create a macro table for this compilation unit |
| at all until we actually get a filename. */ |
| if (! pending_macros) |
| pending_macros = new_macro_table (&objfile->objfile_obstack, |
| objfile->macro_cache); |
| |
| if (! current_file) |
| { |
| /* If we have no current file, then this must be the start_file |
| directive for the compilation unit's main source file. */ |
| current_file = macro_set_main (pending_macros, full_name); |
| macro_define_special (pending_macros); |
| } |
| else |
| current_file = macro_include (current_file, line, full_name); |
| |
| xfree (full_name); |
| |
| return current_file; |
| } |
| |
| |
| /* Copy the LEN characters at BUF to a xmalloc'ed block of memory, |
| followed by a null byte. */ |
| static char * |
| copy_string (const char *buf, int len) |
| { |
| char *s = xmalloc (len + 1); |
| |
| memcpy (s, buf, len); |
| s[len] = '\0'; |
| return s; |
| } |
| |
| |
| static const char * |
| consume_improper_spaces (const char *p, const char *body) |
| { |
| if (*p == ' ') |
| { |
| complaint (&symfile_complaints, |
| _("macro definition contains spaces " |
| "in formal argument list:\n`%s'"), |
| body); |
| |
| while (*p == ' ') |
| p++; |
| } |
| |
| return p; |
| } |
| |
| |
| static void |
| parse_macro_definition (struct macro_source_file *file, int line, |
| const char *body) |
| { |
| const char *p; |
| |
| /* The body string takes one of two forms. For object-like macro |
| definitions, it should be: |
| |
| <macro name> " " <definition> |
| |
| For function-like macro definitions, it should be: |
| |
| <macro name> "() " <definition> |
| or |
| <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition> |
| |
| Spaces may appear only where explicitly indicated, and in the |
| <definition>. |
| |
| The Dwarf 2 spec says that an object-like macro's name is always |
| followed by a space, but versions of GCC around March 2002 omit |
| the space when the macro's definition is the empty string. |
| |
| The Dwarf 2 spec says that there should be no spaces between the |
| formal arguments in a function-like macro's formal argument list, |
| but versions of GCC around March 2002 include spaces after the |
| commas. */ |
| |
| |
| /* Find the extent of the macro name. The macro name is terminated |
| by either a space or null character (for an object-like macro) or |
| an opening paren (for a function-like macro). */ |
| for (p = body; *p; p++) |
| if (*p == ' ' || *p == '(') |
| break; |
| |
| if (*p == ' ' || *p == '\0') |
| { |
| /* It's an object-like macro. */ |
| int name_len = p - body; |
| char *name = copy_string (body, name_len); |
| const char *replacement; |
| |
| if (*p == ' ') |
| replacement = body + name_len + 1; |
| else |
| { |
| dwarf2_macro_malformed_definition_complaint (body); |
| replacement = body + name_len; |
| } |
| |
| macro_define_object (file, line, name, replacement); |
| |
| xfree (name); |
| } |
| else if (*p == '(') |
| { |
| /* It's a function-like macro. */ |
| char *name = copy_string (body, p - body); |
| int argc = 0; |
| int argv_size = 1; |
| char **argv = xmalloc (argv_size * sizeof (*argv)); |
| |
| p++; |
| |
| p = consume_improper_spaces (p, body); |
| |
| /* Parse the formal argument list. */ |
| while (*p && *p != ')') |
| { |
| /* Find the extent of the current argument name. */ |
| const char *arg_start = p; |
| |
| while (*p && *p != ',' && *p != ')' && *p != ' ') |
| p++; |
| |
| if (! *p || p == arg_start) |
| dwarf2_macro_malformed_definition_complaint (body); |
| else |
| { |
| /* Make sure argv has room for the new argument. */ |
| if (argc >= argv_size) |
| { |
| argv_size *= 2; |
| argv = xrealloc (argv, argv_size * sizeof (*argv)); |
| } |
| |
| argv[argc++] = copy_string (arg_start, p - arg_start); |
| } |
| |
| p = consume_improper_spaces (p, body); |
| |
| /* Consume the comma, if present. */ |
| if (*p == ',') |
| { |
| p++; |
| |
| p = consume_improper_spaces (p, body); |
| } |
| } |
| |
| if (*p == ')') |
| { |
| p++; |
| |
| if (*p == ' ') |
| /* Perfectly formed definition, no complaints. */ |
| macro_define_function (file, line, name, |
| argc, (const char **) argv, |
| p + 1); |
| else if (*p == '\0') |
| { |
| /* Complain, but do define it. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| macro_define_function (file, line, name, |
| argc, (const char **) argv, |
| p); |
| } |
| else |
| /* Just complain. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| } |
| else |
| /* Just complain. */ |
| dwarf2_macro_malformed_definition_complaint (body); |
| |
| xfree (name); |
| { |
| int i; |
| |
| for (i = 0; i < argc; i++) |
| xfree (argv[i]); |
| } |
| xfree (argv); |
| } |
| else |
| dwarf2_macro_malformed_definition_complaint (body); |
| } |
| |
| /* Skip some bytes from BYTES according to the form given in FORM. |
| Returns the new pointer. */ |
| |
| static gdb_byte * |
| skip_form_bytes (bfd *abfd, gdb_byte *bytes, |
| enum dwarf_form form, |
| unsigned int offset_size, |
| struct dwarf2_section_info *section) |
| { |
| unsigned int bytes_read; |
| |
| switch (form) |
| { |
| case DW_FORM_data1: |
| case DW_FORM_flag: |
| ++bytes; |
| break; |
| |
| case DW_FORM_data2: |
| bytes += 2; |
| break; |
| |
| case DW_FORM_data4: |
| bytes += 4; |
| break; |
| |
| case DW_FORM_data8: |
| bytes += 8; |
| break; |
| |
| case DW_FORM_string: |
| read_direct_string (abfd, bytes, &bytes_read); |
| bytes += bytes_read; |
| break; |
| |
| case DW_FORM_sec_offset: |
| case DW_FORM_strp: |
| bytes += offset_size; |
| break; |
| |
| case DW_FORM_block: |
| bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read); |
| bytes += bytes_read; |
| break; |
| |
| case DW_FORM_block1: |
| bytes += 1 + read_1_byte (abfd, bytes); |
| break; |
| case DW_FORM_block2: |
| bytes += 2 + read_2_bytes (abfd, bytes); |
| break; |
| case DW_FORM_block4: |
| bytes += 4 + read_4_bytes (abfd, bytes); |
| break; |
| |
| case DW_FORM_sdata: |
| case DW_FORM_udata: |
| case DW_FORM_GNU_addr_index: |
| case DW_FORM_GNU_str_index: |
| bytes = skip_leb128 (abfd, bytes); |
| break; |
| |
| default: |
| { |
| complain: |
| complaint (&symfile_complaints, |
| _("invalid form 0x%x in `%s'"), |
| form, |
| section->asection->name); |
| return NULL; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| /* A helper for dwarf_decode_macros that handles skipping an unknown |
| opcode. Returns an updated pointer to the macro data buffer; or, |
| on error, issues a complaint and returns NULL. */ |
| |
| static gdb_byte * |
| skip_unknown_opcode (unsigned int opcode, |
| gdb_byte **opcode_definitions, |
| gdb_byte *mac_ptr, |
| bfd *abfd, |
| unsigned int offset_size, |
| struct dwarf2_section_info *section) |
| { |
| unsigned int bytes_read, i; |
| unsigned long arg; |
| gdb_byte *defn; |
| |
| if (opcode_definitions[opcode] == NULL) |
| { |
| complaint (&symfile_complaints, |
| _("unrecognized DW_MACFINO opcode 0x%x"), |
| opcode); |
| return NULL; |
| } |
| |
| defn = opcode_definitions[opcode]; |
| arg = read_unsigned_leb128 (abfd, defn, &bytes_read); |
| defn += bytes_read; |
| |
| for (i = 0; i < arg; ++i) |
| { |
| mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section); |
| if (mac_ptr == NULL) |
| { |
| /* skip_form_bytes already issued the complaint. */ |
| return NULL; |
| } |
| } |
| |
| return mac_ptr; |
| } |
| |
| /* A helper function which parses the header of a macro section. |
| If the macro section is the extended (for now called "GNU") type, |
| then this updates *OFFSET_SIZE. Returns a pointer to just after |
| the header, or issues a complaint and returns NULL on error. */ |
| |
| static gdb_byte * |
| dwarf_parse_macro_header (gdb_byte **opcode_definitions, |
| bfd *abfd, |
| gdb_byte *mac_ptr, |
| unsigned int *offset_size, |
| int section_is_gnu) |
| { |
| memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *)); |
| |
| if (section_is_gnu) |
| { |
| unsigned int version, flags; |
| |
| version = read_2_bytes (abfd, mac_ptr); |
| if (version != 4) |
| { |
| complaint (&symfile_complaints, |
| _("unrecognized version `%d' in .debug_macro section"), |
| version); |
| return NULL; |
| } |
| mac_ptr += 2; |
| |
| flags = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| *offset_size = (flags & 1) ? 8 : 4; |
| |
| if ((flags & 2) != 0) |
| /* We don't need the line table offset. */ |
| mac_ptr += *offset_size; |
| |
| /* Vendor opcode descriptions. */ |
| if ((flags & 4) != 0) |
| { |
| unsigned int i, count; |
| |
| count = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| for (i = 0; i < count; ++i) |
| { |
| unsigned int opcode, bytes_read; |
| unsigned long arg; |
| |
| opcode = read_1_byte (abfd, mac_ptr); |
| ++mac_ptr; |
| opcode_definitions[opcode] = mac_ptr; |
| arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| mac_ptr += arg; |
| } |
| } |
| } |
| |
| return mac_ptr; |
| } |
| |
| /* A helper for dwarf_decode_macros that handles the GNU extensions, |
| including DW_MACRO_GNU_transparent_include. */ |
| |
| static void |
| dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end, |
| struct macro_source_file *current_file, |
| struct line_header *lh, char *comp_dir, |
| struct dwarf2_section_info *section, |
| int section_is_gnu, |
| unsigned int offset_size, |
| struct objfile *objfile, |
| htab_t include_hash) |
| { |
| enum dwarf_macro_record_type macinfo_type; |
| int at_commandline; |
| gdb_byte *opcode_definitions[256]; |
| |
| mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr, |
| &offset_size, section_is_gnu); |
| if (mac_ptr == NULL) |
| { |
| /* We already issued a complaint. */ |
| return; |
| } |
| |
| /* Determines if GDB is still before first DW_MACINFO_start_file. If true |
| GDB is still reading the definitions from command line. First |
| DW_MACINFO_start_file will need to be ignored as it was already executed |
| to create CURRENT_FILE for the main source holding also the command line |
| definitions. On first met DW_MACINFO_start_file this flag is reset to |
| normally execute all the remaining DW_MACINFO_start_file macinfos. */ |
| |
| at_commandline = 1; |
| |
| do |
| { |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| dwarf2_macros_too_long_complaint (section); |
| break; |
| } |
| |
| macinfo_type = read_1_byte (abfd, mac_ptr); |
| mac_ptr++; |
| |
| /* Note that we rely on the fact that the corresponding GNU and |
| DWARF constants are the same. */ |
| switch (macinfo_type) |
| { |
| /* A zero macinfo type indicates the end of the macro |
| information. */ |
| case 0: |
| break; |
| |
| case DW_MACRO_GNU_define: |
| case DW_MACRO_GNU_undef: |
| case DW_MACRO_GNU_define_indirect: |
| case DW_MACRO_GNU_undef_indirect: |
| { |
| unsigned int bytes_read; |
| int line; |
| char *body; |
| int is_define; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| if (macinfo_type == DW_MACRO_GNU_define |
| || macinfo_type == DW_MACRO_GNU_undef) |
| { |
| body = read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| else |
| { |
| LONGEST str_offset; |
| |
| str_offset = read_offset_1 (abfd, mac_ptr, offset_size); |
| mac_ptr += offset_size; |
| |
| body = read_indirect_string_at_offset (abfd, str_offset); |
| } |
| |
| is_define = (macinfo_type == DW_MACRO_GNU_define |
| || macinfo_type == DW_MACRO_GNU_define_indirect); |
| if (! current_file) |
| { |
| /* DWARF violation as no main source is present. */ |
| complaint (&symfile_complaints, |
| _("debug info with no main source gives macro %s " |
| "on line %d: %s"), |
| is_define ? _("definition") : _("undefinition"), |
| line, body); |
| break; |
| } |
| if ((line == 0 && !at_commandline) |
| || (line != 0 && at_commandline)) |
| complaint (&symfile_complaints, |
| _("debug info gives %s macro %s with %s line %d: %s"), |
| at_commandline ? _("command-line") : _("in-file"), |
| is_define ? _("definition") : _("undefinition"), |
| line == 0 ? _("zero") : _("non-zero"), line, body); |
| |
| if (is_define) |
| parse_macro_definition (current_file, line, body); |
| else |
| { |
| gdb_assert (macinfo_type == DW_MACRO_GNU_undef |
| || macinfo_type == DW_MACRO_GNU_undef_indirect); |
| macro_undef (current_file, line, body); |
| } |
| } |
| break; |
| |
| case DW_MACRO_GNU_start_file: |
| { |
| unsigned int bytes_read; |
| int line, file; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| if ((line == 0 && !at_commandline) |
| || (line != 0 && at_commandline)) |
| complaint (&symfile_complaints, |
| _("debug info gives source %d included " |
| "from %s at %s line %d"), |
| file, at_commandline ? _("command-line") : _("file"), |
| line == 0 ? _("zero") : _("non-zero"), line); |
| |
| if (at_commandline) |
| { |
| /* This DW_MACRO_GNU_start_file was executed in the |
| pass one. */ |
| at_commandline = 0; |
| } |
| else |
| current_file = macro_start_file (file, line, |
| current_file, comp_dir, |
| lh, objfile); |
| } |
| break; |
| |
| case DW_MACRO_GNU_end_file: |
| if (! current_file) |
| complaint (&symfile_complaints, |
| _("macro debug info has an unmatched " |
| "`close_file' directive")); |
| else |
| { |
| current_file = current_file->included_by; |
| if (! current_file) |
| { |
| enum dwarf_macro_record_type next_type; |
| |
| /* GCC circa March 2002 doesn't produce the zero |
| type byte marking the end of the compilation |
| unit. Complain if it's not there, but exit no |
| matter what. */ |
| |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| dwarf2_macros_too_long_complaint (section); |
| return; |
| } |
| |
| /* We don't increment mac_ptr here, so this is just |
| a look-ahead. */ |
| next_type = read_1_byte (abfd, mac_ptr); |
| if (next_type != 0) |
| complaint (&symfile_complaints, |
| _("no terminating 0-type entry for " |
| "macros in `.debug_macinfo' section")); |
| |
| return; |
| } |
| } |
| break; |
| |
| case DW_MACRO_GNU_transparent_include: |
| { |
| LONGEST offset; |
| void **slot; |
| |
| offset = read_offset_1 (abfd, mac_ptr, offset_size); |
| mac_ptr += offset_size; |
| |
| slot = htab_find_slot (include_hash, mac_ptr, INSERT); |
| if (*slot != NULL) |
| { |
| /* This has actually happened; see |
| http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */ |
| complaint (&symfile_complaints, |
| _("recursive DW_MACRO_GNU_transparent_include in " |
| ".debug_macro section")); |
| } |
| else |
| { |
| *slot = mac_ptr; |
| |
| dwarf_decode_macro_bytes (abfd, |
| section->buffer + offset, |
| mac_end, current_file, |
| lh, comp_dir, |
| section, section_is_gnu, |
| offset_size, objfile, include_hash); |
| |
| htab_remove_elt (include_hash, mac_ptr); |
| } |
| } |
| break; |
| |
| case DW_MACINFO_vendor_ext: |
| if (!section_is_gnu) |
| { |
| unsigned int bytes_read; |
| int constant; |
| |
| constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| /* We don't recognize any vendor extensions. */ |
| break; |
| } |
| /* FALLTHROUGH */ |
| |
| default: |
| mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions, |
| mac_ptr, abfd, offset_size, |
| section); |
| if (mac_ptr == NULL) |
| return; |
| break; |
| } |
| } while (macinfo_type != 0); |
| } |
| |
| static void |
| dwarf_decode_macros (struct line_header *lh, unsigned int offset, |
| char *comp_dir, bfd *abfd, |
| struct dwarf2_cu *cu, |
| struct dwarf2_section_info *section, |
| int section_is_gnu, const char *section_name) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| gdb_byte *mac_ptr, *mac_end; |
| struct macro_source_file *current_file = 0; |
| enum dwarf_macro_record_type macinfo_type; |
| unsigned int offset_size = cu->header.offset_size; |
| gdb_byte *opcode_definitions[256]; |
| struct cleanup *cleanup; |
| htab_t include_hash; |
| void **slot; |
| |
| dwarf2_read_section (objfile, section); |
| if (section->buffer == NULL) |
| { |
| complaint (&symfile_complaints, _("missing %s section"), section_name); |
| return; |
| } |
| |
| /* First pass: Find the name of the base filename. |
| This filename is needed in order to process all macros whose definition |
| (or undefinition) comes from the command line. These macros are defined |
| before the first DW_MACINFO_start_file entry, and yet still need to be |
| associated to the base file. |
| |
| To determine the base file name, we scan the macro definitions until we |
| reach the first DW_MACINFO_start_file entry. We then initialize |
| CURRENT_FILE accordingly so that any macro definition found before the |
| first DW_MACINFO_start_file can still be associated to the base file. */ |
| |
| mac_ptr = section->buffer + offset; |
| mac_end = section->buffer + section->size; |
| |
| mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr, |
| &offset_size, section_is_gnu); |
| if (mac_ptr == NULL) |
| { |
| /* We already issued a complaint. */ |
| return; |
| } |
| |
| do |
| { |
| /* Do we at least have room for a macinfo type byte? */ |
| if (mac_ptr >= mac_end) |
| { |
| /* Complaint is printed during the second pass as GDB will probably |
| stop the first pass earlier upon finding |
| DW_MACINFO_start_file. */ |
| break; |
| } |
| |
| macinfo_type = read_1_byte (abfd, mac_ptr); |
| mac_ptr++; |
| |
| /* Note that we rely on the fact that the corresponding GNU and |
| DWARF constants are the same. */ |
| switch (macinfo_type) |
| { |
| /* A zero macinfo type indicates the end of the macro |
| information. */ |
| case 0: |
| break; |
| |
| case DW_MACRO_GNU_define: |
| case DW_MACRO_GNU_undef: |
| /* Only skip the data by MAC_PTR. */ |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| break; |
| |
| case DW_MACRO_GNU_start_file: |
| { |
| unsigned int bytes_read; |
| int line, file; |
| |
| line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| |
| current_file = macro_start_file (file, line, current_file, |
| comp_dir, lh, objfile); |
| } |
| break; |
| |
| case DW_MACRO_GNU_end_file: |
| /* No data to skip by MAC_PTR. */ |
| break; |
| |
| case DW_MACRO_GNU_define_indirect: |
| case DW_MACRO_GNU_undef_indirect: |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| mac_ptr += offset_size; |
| } |
| break; |
| |
| case DW_MACRO_GNU_transparent_include: |
| /* Note that, according to the spec, a transparent include |
| chain cannot call DW_MACRO_GNU_start_file. So, we can just |
| skip this opcode. */ |
| mac_ptr += offset_size; |
| break; |
| |
| case DW_MACINFO_vendor_ext: |
| /* Only skip the data by MAC_PTR. */ |
| if (!section_is_gnu) |
| { |
| unsigned int bytes_read; |
| |
| read_unsigned_leb128 (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| read_direct_string (abfd, mac_ptr, &bytes_read); |
| mac_ptr += bytes_read; |
| } |
| /* FALLTHROUGH */ |
| |
| default: |
| mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions, |
| mac_ptr, abfd, offset_size, |
| section); |
| if (mac_ptr == NULL) |
| return; |
| break; |
| } |
| } while (macinfo_type != 0 && current_file == NULL); |
| |
| /* Second pass: Process all entries. |
| |
| Use the AT_COMMAND_LINE flag to determine whether we are still processing |
| command-line macro definitions/undefinitions. This flag is unset when we |
| reach the first DW_MACINFO_start_file entry. */ |
| |
| include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| cleanup = make_cleanup_htab_delete (include_hash); |
| mac_ptr = section->buffer + offset; |
| slot = htab_find_slot (include_hash, mac_ptr, INSERT); |
| *slot = mac_ptr; |
| dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end, |
| current_file, lh, comp_dir, section, section_is_gnu, |
| offset_size, objfile, include_hash); |
| do_cleanups (cleanup); |
| } |
| |
| /* Check if the attribute's form is a DW_FORM_block* |
| if so return true else false. */ |
| |
| static int |
| attr_form_is_block (struct attribute *attr) |
| { |
| return (attr == NULL ? 0 : |
| attr->form == DW_FORM_block1 |
| || attr->form == DW_FORM_block2 |
| || attr->form == DW_FORM_block4 |
| || attr->form == DW_FORM_block |
| || attr->form == DW_FORM_exprloc); |
| } |
| |
| /* Return non-zero if ATTR's value is a section offset --- classes |
| lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise. |
| You may use DW_UNSND (attr) to retrieve such offsets. |
| |
| Section 7.5.4, "Attribute Encodings", explains that no attribute |
| may have a value that belongs to more than one of these classes; it |
| would be ambiguous if we did, because we use the same forms for all |
| of them. */ |
| |
| static int |
| attr_form_is_section_offset (struct attribute *attr) |
| { |
| return (attr->form == DW_FORM_data4 |
| || attr->form == DW_FORM_data8 |
| || attr->form == DW_FORM_sec_offset); |
| } |
| |
| /* Return non-zero if ATTR's value falls in the 'constant' class, or |
| zero otherwise. When this function returns true, you can apply |
| dwarf2_get_attr_constant_value to it. |
| |
| However, note that for some attributes you must check |
| attr_form_is_section_offset before using this test. DW_FORM_data4 |
| and DW_FORM_data8 are members of both the constant class, and of |
| the classes that contain offsets into other debug sections |
| (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says |
| that, if an attribute's can be either a constant or one of the |
| section offset classes, DW_FORM_data4 and DW_FORM_data8 should be |
| taken as section offsets, not constants. */ |
| |
| static int |
| attr_form_is_constant (struct attribute *attr) |
| { |
| switch (attr->form) |
| { |
| case DW_FORM_sdata: |
| case DW_FORM_udata: |
| case DW_FORM_data1: |
| case DW_FORM_data2: |
| case DW_FORM_data4: |
| case DW_FORM_data8: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the .debug_loc section to use for CU. |
| For DWO files use .debug_loc.dwo. */ |
| |
| static struct dwarf2_section_info * |
| cu_debug_loc_section (struct dwarf2_cu *cu) |
| { |
| if (cu->dwo_unit) |
| return &cu->dwo_unit->dwo_file->sections.loc; |
| return &dwarf2_per_objfile->loc; |
| } |
| |
| /* A helper function that fills in a dwarf2_loclist_baton. */ |
| |
| static void |
| fill_in_loclist_baton (struct dwarf2_cu *cu, |
| struct dwarf2_loclist_baton *baton, |
| struct attribute *attr) |
| { |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| dwarf2_read_section (dwarf2_per_objfile->objfile, section); |
| |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| /* We don't know how long the location list is, but make sure we |
| don't run off the edge of the section. */ |
| baton->size = section->size - DW_UNSND (attr); |
| baton->data = section->buffer + DW_UNSND (attr); |
| baton->base_address = cu->base_address; |
| } |
| |
| static void |
| dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym, |
| struct dwarf2_cu *cu) |
| { |
| struct objfile *objfile = dwarf2_per_objfile->objfile; |
| struct dwarf2_section_info *section = cu_debug_loc_section (cu); |
| |
| if (attr_form_is_section_offset (attr) |
| /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside |
| the section. If so, fall through to the complaint in the |
| other branch. */ |
| && DW_UNSND (attr) < dwarf2_section_size (objfile, section)) |
| { |
| struct dwarf2_loclist_baton *baton; |
| |
| baton = obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct dwarf2_loclist_baton)); |
| |
| fill_in_loclist_baton (cu, baton, attr); |
| |
| if (cu->base_known == 0) |
| complaint (&symfile_complaints, |
| _("Location list used without " |
| "specifying the CU base address.")); |
| |
| SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs; |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| else |
| { |
| struct dwarf2_locexpr_baton *baton; |
| |
| baton = obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct dwarf2_locexpr_baton)); |
| baton->per_cu = cu->per_cu; |
| gdb_assert (baton->per_cu); |
| |
| if (attr_form_is_block (attr)) |
| { |
| /* Note that we're just copying the block's data pointer |
| here, not the actual data. We're still pointing into the |
| info_buffer for SYM's objfile; right now we never release |
| that buffer, but when we do clean up properly this may |
| need to change. */ |
| baton->size = DW_BLOCK (attr)->size; |
| baton->data = DW_BLOCK (attr)->data; |
| } |
| else |
| { |
| dwarf2_invalid_attrib_class_complaint ("location description", |
| SYMBOL_NATURAL_NAME (sym)); |
| baton->size = 0; |
| } |
| |
| SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs; |
| SYMBOL_LOCATION_BATON (sym) = baton; |
| } |
| } |
| |
| /* Return the OBJFILE associated with the compilation unit CU. If CU |
| came from a separate debuginfo file, then the master objfile is |
| returned. */ |
| |
| struct objfile * |
| dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile = per_cu->objfile; |
| |
| /* Return the master objfile, so that we can report and look up the |
| correct file containing this variable. */ |
| if (objfile->separate_debug_objfile_backlink) |
| objfile = objfile->separate_debug_objfile_backlink; |
| |
| return objfile; |
| } |
| |
| /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU |
| (CU_HEADERP is unused in such case) or prepare a temporary copy at |
| CU_HEADERP first. */ |
| |
| static const struct comp_unit_head * |
| per_cu_header_read_in (struct comp_unit_head *cu_headerp, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile; |
| struct dwarf2_per_objfile *per_objfile; |
| gdb_byte *info_ptr; |
| |
| if (per_cu->cu) |
| return &per_cu->cu->header; |
| |
| objfile = per_cu->objfile; |
| per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); |
| info_ptr = per_objfile->info.buffer + per_cu->offset.sect_off; |
| |
| memset (cu_headerp, 0, sizeof (*cu_headerp)); |
| read_comp_unit_head (cu_headerp, info_ptr, objfile->obfd); |
| |
| return cu_headerp; |
| } |
| |
| /* Return the address size given in the compilation unit header for CU. */ |
| |
| int |
| dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| return cu_headerp->addr_size; |
| } |
| |
| /* Return the offset size given in the compilation unit header for CU. */ |
| |
| int |
| dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| return cu_headerp->offset_size; |
| } |
| |
| /* See its dwarf2loc.h declaration. */ |
| |
| int |
| dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct comp_unit_head cu_header_local; |
| const struct comp_unit_head *cu_headerp; |
| |
| cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu); |
| |
| if (cu_headerp->version == 2) |
| return cu_headerp->addr_size; |
| else |
| return cu_headerp->offset_size; |
| } |
| |
| /* Return the text offset of the CU. The returned offset comes from |
| this CU's objfile. If this objfile came from a separate debuginfo |
| file, then the offset may be different from the corresponding |
| offset in the parent objfile. */ |
| |
| CORE_ADDR |
| dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu) |
| { |
| struct objfile *objfile = per_cu->objfile; |
| |
| return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| } |
| |
| /* Locate the .debug_info compilation unit from CU's objfile which contains |
| the DIE at OFFSET. Raises an error on failure. */ |
| |
| static struct dwarf2_per_cu_data * |
| dwarf2_find_containing_comp_unit (sect_offset offset, |
| struct objfile *objfile) |
| { |
| struct dwarf2_per_cu_data *this_cu; |
| int low, high; |
| |
| low = 0; |
| high = dwarf2_per_objfile->n_comp_units - 1; |
| while (high > low) |
| { |
| int mid = low + (high - low) / 2; |
| |
| if (dwarf2_per_objfile->all_comp_units[mid]->offset.sect_off |
| >= offset.sect_off) |
| high = mid; |
| else |
| low = mid + 1; |
| } |
| gdb_assert (low == high); |
| if (dwarf2_per_objfile->all_comp_units[low]->offset.sect_off |
| > offset.sect_off) |
| { |
| if (low == 0) |
| error (_("Dwarf Error: could not find partial DIE containing " |
| "offset 0x%lx [in module %s]"), |
| (long) offset.sect_off, bfd_get_filename (objfile->obfd)); |
| |
| gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off |
| <= offset.sect_off); |
| return dwarf2_per_objfile->all_comp_units[low-1]; |
| } |
| else |
| { |
| this_cu = dwarf2_per_objfile->all_comp_units[low]; |
| if (low == dwarf2_per_objfile->n_comp_units - 1 |
| && offset.sect_off >= this_cu->offset.sect_off + this_cu->length) |
| error (_("invalid dwarf2 offset %u"), offset.sect_off); |
| gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length); |
| return this_cu; |
| } |
| } |
| |
| /* Initialize dwarf2_cu CU, owned by PER_CU. */ |
| |
| static void |
| init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu) |
| { |
| memset (cu, 0, sizeof (*cu)); |
| per_cu->cu = cu; |
| cu->per_cu = per_cu; |
| cu->objfile = per_cu->objfile; |
| obstack_init (&cu->comp_unit_obstack); |
| } |
| |
| /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */ |
| |
| static void |
| prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die, |
| enum language pretend_language) |
| { |
| struct attribute *attr; |
| |
| /* Set the language we're debugging. */ |
| attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu); |
| if (attr) |
| set_cu_language (DW_UNSND (attr), cu); |
| else |
| { |
| cu->language = pretend_language; |
| cu->language_defn = language_def (cu->language); |
| } |
| |
| attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu); |
| if (attr) |
| cu->producer = DW_STRING (attr); |
| } |
| |
| /* Release one cached compilation unit, CU. We unlink it from the tree |
| of compilation units, but we don't remove it from the read_in_chain; |
| the caller is responsible for that. |
| NOTE: DATA is a void * because this function is also used as a |
| cleanup routine. */ |
| |
| static void |
| free_heap_comp_unit (void *data) |
| { |
| struct dwarf2_cu *cu = data; |
| |
| gdb_assert (cu->per_cu != NULL); |
| cu->per_cu->cu = NULL; |
| cu->per_cu = NULL; |
| |
| obstack_free (&cu->comp_unit_obstack, NULL); |
| |
| xfree (cu); |
| } |
| |
| /* This cleanup function is passed the address of a dwarf2_cu on the stack |
| when we're finished with it. We can't free the pointer itself, but be |
| sure to unlink it from the cache. Also release any associated storage. */ |
| |
| static void |
| free_stack_comp_unit (void *data) |
| { |
| struct dwarf2_cu *cu = data; |
| |
| gdb_assert (cu->per_cu != NULL); |
| cu->per_cu->cu = NULL; |
| cu->per_cu = NULL; |
| |
| obstack_free (&cu->comp_unit_obstack, NULL); |
| cu->partial_dies = NULL; |
| } |
| |
| /* Free all cached compilation units. */ |
| |
| static void |
| free_cached_comp_units (void *data) |
| { |
| struct dwarf2_per_cu_data *per_cu, **last_chain; |
| |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| last_chain = &dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| struct dwarf2_per_cu_data *next_cu; |
| |
| next_cu = per_cu->cu->read_in_chain; |
| |
| free_heap_comp_unit (per_cu->cu); |
| *last_chain = next_cu; |
| |
| per_cu = next_cu; |
| } |
| } |
| |
| /* Increase the age counter on each cached compilation unit, and free |
| any that are too old. */ |
| |
| static void |
| age_cached_comp_units (void) |
| { |
| struct dwarf2_per_cu_data *per_cu, **last_chain; |
| |
| dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain); |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| per_cu->cu->last_used ++; |
| if (per_cu->cu->last_used <= dwarf2_max_cache_age) |
| dwarf2_mark (per_cu->cu); |
| per_cu = per_cu->cu->read_in_chain; |
| } |
| |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| last_chain = &dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| struct dwarf2_per_cu_data *next_cu; |
| |
| next_cu = per_cu->cu->read_in_chain; |
| |
| if (!per_cu->cu->mark) |
| { |
| free_heap_comp_unit (per_cu->cu); |
| *last_chain = next_cu; |
| } |
| else |
| last_chain = &per_cu->cu->read_in_chain; |
| |
| per_cu = next_cu; |
| } |
| } |
| |
| /* Remove a single compilation unit from the cache. */ |
| |
| static void |
| free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu) |
| { |
| struct dwarf2_per_cu_data *per_cu, **last_chain; |
| |
| per_cu = dwarf2_per_objfile->read_in_chain; |
| last_chain = &dwarf2_per_objfile->read_in_chain; |
| while (per_cu != NULL) |
| { |
| struct dwarf2_per_cu_data *next_cu; |
| |
| next_cu = per_cu->cu->read_in_chain; |
| |
| if (per_cu == target_per_cu) |
| { |
| free_heap_comp_unit (per_cu->cu); |
| per_cu->cu = NULL; |
| *last_chain = next_cu; |
| break; |
| } |
| else |
| last_chain = &per_cu->cu->read_in_chain; |
| |
| per_cu = next_cu; |
| } |
| } |
| |
| /* Release all extra memory associated with OBJFILE. */ |
| |
| void |
| dwarf2_free_objfile (struct objfile *objfile) |
| { |
| dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); |
| |
| if (dwarf2_per_objfile == NULL) |
| return; |
| |
| /* Cached DIE trees use xmalloc and the comp_unit_obstack. */ |
| free_cached_comp_units (NULL); |
| |
| if (dwarf2_per_objfile->quick_file_names_table) |
| htab_delete (dwarf2_per_objfile->quick_file_names_table); |
| |
| /* Everything else should be on the objfile obstack. */ |
| } |
| |
| /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer. |
| We store these in a hash table separate from the DIEs, and preserve them |
| when the DIEs are flushed out of cache. |
| |
| The CU "per_cu" pointer is needed because offset alone is not enough to |
| uniquely identify the type. A file may have multiple .debug_types sections, |
| or the type may come from a DWO file. We have to use something in |
| dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup |
| routine, get_die_type_at_offset, from outside this file, and thus won't |
| necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life |
| of the objfile. */ |
| |
| struct dwarf2_per_cu_offset_and_type |
| { |
| const struct dwarf2_per_cu_data *per_cu; |
| sect_offset offset; |
| struct type *type; |
| }; |
| |
| /* Hash function for a dwarf2_per_cu_offset_and_type. */ |
| |
| static hashval_t |
| per_cu_offset_and_type_hash (const void *item) |
| { |
| const struct dwarf2_per_cu_offset_and_type *ofs = item; |
| |
| return (uintptr_t) ofs->per_cu + ofs->offset.sect_off; |
| } |
| |
| /* Equality function for a dwarf2_per_cu_offset_and_type. */ |
| |
| static int |
| per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs; |
| const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs; |
| |
| return (ofs_lhs->per_cu == ofs_rhs->per_cu |
| && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off); |
| } |
| |
| /* Set the type associated with DIE to TYPE. Save it in CU's hash |
| table if necessary. For convenience, return TYPE. |
| |
| The DIEs reading must have careful ordering to: |
| * Not cause infite loops trying to read in DIEs as a prerequisite for |
| reading current DIE. |
| * Not trying to dereference contents of still incompletely read in types |
| while reading in other DIEs. |
| * Enable referencing still incompletely read in types just by a pointer to |
| the type without accessing its fields. |
| |
| Therefore caller should follow these rules: |
| * Try to fetch any prerequisite types we may need to build this DIE type |
| before building the type and calling set_die_type. |
| * After building type call set_die_type for current DIE as soon as |
| possible before fetching more types to complete the current type. |
| * Make the type as complete as possible before fetching more types. */ |
| |
| static struct type * |
| set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu) |
| { |
| struct dwarf2_per_cu_offset_and_type **slot, ofs; |
| struct objfile *objfile = cu->objfile; |
| |
| /* For Ada types, make sure that the gnat-specific data is always |
| initialized (if not already set). There are a few types where |
| we should not be doing so, because the type-specific area is |
| already used to hold some other piece of info (eg: TYPE_CODE_FLT |
| where the type-specific area is used to store the floatformat). |
| But this is not a problem, because the gnat-specific information |
| is actually not needed for these types. */ |
| if (need_gnat_info (cu) |
| && TYPE_CODE (type) != TYPE_CODE_FUNC |
| && TYPE_CODE (type) != TYPE_CODE_FLT |
| && !HAVE_GNAT_AUX_INFO (type)) |
| INIT_GNAT_SPECIFIC (type); |
| |
| if (dwarf2_per_objfile->die_type_hash == NULL) |
| { |
| dwarf2_per_objfile->die_type_hash = |
| htab_create_alloc_ex (127, |
| per_cu_offset_and_type_hash, |
| per_cu_offset_and_type_eq, |
| NULL, |
| &objfile->objfile_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| } |
| |
| ofs.per_cu = cu->per_cu; |
| ofs.offset = die->offset; |
| ofs.type = type; |
| slot = (struct dwarf2_per_cu_offset_and_type **) |
| htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT); |
| if (*slot) |
| complaint (&symfile_complaints, |
| _("A problem internal to GDB: DIE 0x%x has type already set"), |
| die->offset.sect_off); |
| *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot)); |
| **slot = ofs; |
| return type; |
| } |
| |
| /* Look up the type for the die at OFFSET in the appropriate type_hash |
| table, or return NULL if the die does not have a saved type. */ |
| |
| static struct type * |
| get_die_type_at_offset (sect_offset offset, |
| struct dwarf2_per_cu_data *per_cu) |
| { |
| struct dwarf2_per_cu_offset_and_type *slot, ofs; |
| |
| if (dwarf2_per_objfile->die_type_hash == NULL) |
| return NULL; |
| |
| ofs.per_cu = per_cu; |
| ofs.offset = offset; |
| slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs); |
| if (slot) |
| return slot->type; |
| else |
| return NULL; |
| } |
| |
| /* Look up the type for DIE in the appropriate type_hash table, |
| or return NULL if DIE does not have a saved type. */ |
| |
| static struct type * |
| get_die_type (struct die_info *die, struct dwarf2_cu *cu) |
| { |
| return get_die_type_at_offset (die->offset, cu->per_cu); |
| } |
| |
| /* Add a dependence relationship from CU to REF_PER_CU. */ |
| |
| static void |
| dwarf2_add_dependence (struct dwarf2_cu *cu, |
| struct dwarf2_per_cu_data *ref_per_cu) |
| { |
| void **slot; |
| |
| if (cu->dependencies == NULL) |
| cu->dependencies |
| = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer, |
| NULL, &cu->comp_unit_obstack, |
| hashtab_obstack_allocate, |
| dummy_obstack_deallocate); |
| |
| slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT); |
| if (*slot == NULL) |
| *slot = ref_per_cu; |
| } |
| |
| /* Subroutine of dwarf2_mark to pass to htab_traverse. |
| Set the mark field in every compilation unit in the |
| cache that we must keep because we are keeping CU. */ |
| |
| static int |
| dwarf2_mark_helper (void **slot, void *data) |
| { |
| struct dwarf2_per_cu_data *per_cu; |
| |
| per_cu = (struct dwarf2_per_cu_data *) *slot; |
| |
| /* cu->dependencies references may not yet have been ever read if QUIT aborts |
| reading of the chain. As such dependencies remain valid it is not much |
| useful to track and undo them during QUIT cleanups. */ |
| if (per_cu->cu == NULL) |
| return 1; |
| |
| if (per_cu->cu->mark) |
| return 1; |
| per_cu->cu->mark = 1; |
| |
| if (per_cu->cu->dependencies != NULL) |
| htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL); |
| |
| return 1; |
| } |
| |
| /* Set the mark field in CU and in every other compilation unit in the |
| cache that we must keep because we are keeping CU. */ |
| |
| static void |
| dwarf2_mark (struct dwarf2_cu *cu) |
| { |
| if (cu->mark) |
| return; |
| cu->mark = 1; |
| if (cu->dependencies != NULL) |
| htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL); |
| } |
| |
| static void |
| dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu) |
| { |
| while (per_cu) |
| { |
| per_cu->cu->mark = 0; |
| per_cu = per_cu->cu->read_in_chain; |
| } |
| } |
| |
| /* Trivial hash function for partial_die_info: the hash value of a DIE |
| is its offset in .debug_info for this objfile. */ |
| |
| static hashval_t |
| partial_die_hash (const void *item) |
| { |
| const struct partial_die_info *part_die = item; |
| |
| return part_die->offset.sect_off; |
| } |
| |
| /* Trivial comparison function for partial_die_info structures: two DIEs |
| are equal if they have the same offset. */ |
| |
| static int |
| partial_die_eq (const void *item_lhs, const void *item_rhs) |
| { |
| const struct partial_die_info *part_die_lhs = item_lhs; |
| const struct partial_die_info *part_die_rhs = item_rhs; |
| |
| return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off; |
| } |
| |
| static struct cmd_list_element *set_dwarf2_cmdlist; |
| static struct cmd_list_element *show_dwarf2_cmdlist; |
| |
| static void |
| set_dwarf2_cmd (char *args, int from_tty) |
| { |
| help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout); |
| } |
| |
| static void |
| show_dwarf2_cmd (char *args, int from_tty) |
| { |
| cmd_show_list (show_dwarf2_cmdlist, from_tty, ""); |
| } |
| |
| /* If section described by INFO was mmapped, munmap it now. */ |
| |
| static void |
| munmap_section_buffer (struct dwarf2_section_info *info) |
| { |
| if (info->map_addr != NULL) |
| { |
| #ifdef HAVE_MMAP |
| int res; |
| |
| res = munmap (info->map_addr, info->map_len); |
| gdb_assert (res == 0); |
| #else |
| /* Without HAVE_MMAP, we should never be here to begin with. */ |
| gdb_assert_not_reached ("no mmap support"); |
| #endif |
| } |
| } |
| |
| /* munmap debug sections for OBJFILE, if necessary. */ |
| |
| static void |
| dwarf2_per_objfile_free (struct objfile *objfile, void *d) |
| { |
| struct dwarf2_per_objfile *data = d; |
| int ix; |
| struct dwarf2_section_info *section; |
| |
| /* This is sorted according to the order they're defined in to make it easier |
| to keep in sync. */ |
| munmap_section_buffer (&data->info); |
| munmap_section_buffer (&data->abbrev); |
| munmap_section_buffer (&data->line); |
| munmap_section_buffer (&data->loc); |
| munmap_section_buffer (&data->macinfo); |
| munmap_section_buffer (&data->macro); |
| munmap_section_buffer (&data->str); |
| munmap_section_buffer (&data->ranges); |
| munmap_section_buffer (&data->addr); |
| munmap_section_buffer (&data->frame); |
| munmap_section_buffer (&data->eh_frame); |
| munmap_section_buffer (&data->gdb_index); |
| |
| for (ix = 0; |
| VEC_iterate (dwarf2_section_info_def, data->types, ix, section); |
| ++ix) |
| munmap_section_buffer (section); |
| |
| for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix) |
| VEC_free (dwarf2_per_cu_ptr, |
| dwarf2_per_objfile->all_comp_units[ix]->imported_symtabs); |
| |
| VEC_free (dwarf2_section_info_def, data->types); |
| |
| if (data->dwo_files) |
| free_dwo_files (data->dwo_files, objfile); |
| } |
| |
| |
| /* The "save gdb-index" command. */ |
| |
| /* The contents of the hash table we create when building the string |
| table. */ |
| struct strtab_entry |
| { |
| offset_type offset; |
| const char *str; |
| }; |
| |
| /* Hash function for a strtab_entry. |
| |
| Function is used only during write_hash_table so no index format backward |
| compatibility is needed. */ |
| |
| static hashval_t |
| hash_strtab_entry (const void *e) |
| { |
| const struct strtab_entry *entry = e; |
| return mapped_index_string_hash (INT_MAX, entry->str); |
| } |
| |
| /* Equality function for a strtab_entry. */ |
| |
| static int |
| eq_strtab_entry (const void *a, const void *b) |
| { |
| const struct strtab_entry *ea = a; |
| const struct strtab_entry *eb = b; |
| return !strcmp (ea->str, eb->str); |
| } |
| |
| /* Create a strtab_entry hash table. */ |
| |
| static htab_t |
| create_strtab (void) |
| { |
| return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry, |
| xfree, xcalloc, xfree); |
| } |
| |
| /* Add a string to the constant pool. Return the string's offset in |
| host order. */ |
| |
| static offset_type |
| add_string (htab_t table, struct obstack *cpool, const char *str) |
| { |
| void **slot; |
| struct strtab_entry entry; |
| struct strtab_entry *result; |
| |
| entry.str = str; |
| slot = htab_find_slot (table, &entry, INSERT); |
| if (*slot) |
| result = *slot; |
| else |
| { |
| result = XNEW (struct strtab_entry); |
| result->offset = obstack_object_size (cpool); |
| result->str = str; |
| obstack_grow_str0 (cpool, str); |
| *slot = result; |
| } |
| return result->offset; |
| } |
| |
| /* An entry in the symbol table. */ |
| struct symtab_index_entry |
| { |
| /* The name of the symbol. */ |
| const char *name; |
| /* The offset of the name in the constant pool. */ |
| offset_type index_offset; |
| /* A sorted vector of the indices of all the CUs that hold an object |
| of this name. */ |
| VEC (offset_type) *cu_indices; |
| }; |
| |
| /* The symbol table. This is a power-of-2-sized hash table. */ |
| struct mapped_symtab |
| { |
| offset_type n_elements; |
| offset_type size; |
| struct symtab_index_entry **data; |
| }; |
| |
| /* Hash function for a symtab_index_entry. */ |
| |
| static hashval_t |
| hash_symtab_entry (const void *e) |
| { |
| const struct symtab_index_entry *entry = e; |
| return iterative_hash (VEC_address (offset_type, entry->cu_indices), |
| sizeof (offset_type) * VEC_length (offset_type, |
| entry->cu_indices), |
| 0); |
| } |
| |
| /* Equality function for a symtab_index_entry. */ |
| |
| static int |
| eq_symtab_entry (const void *a, const void *b) |
| { |
| const struct symtab_index_entry *ea = a; |
| const struct symtab_index_entry *eb = b; |
| int len = VEC_length (offset_type, ea->cu_indices); |
| if (len != VEC_length (offset_type, eb->cu_indices)) |
| return 0; |
| return !memcmp (VEC_address (offset_type, ea->cu_indices), |
| VEC_address (offset_type, eb->cu_indices), |
| sizeof (offset_type) * len); |
| } |
| |
| /* Destroy a symtab_index_entry. */ |
| |
| static void |
| delete_symtab_entry (void *p) |
| { |
| struct symtab_index_entry *entry = p; |
| VEC_free (offset_type, entry->cu_indices); |
| xfree (entry); |
| } |
| |
| /* Create a hash table holding symtab_index_entry objects. */ |
| |
| static htab_t |
| create_symbol_hash_table (void) |
| { |
| return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry, |
| delete_symtab_entry, xcalloc, xfree); |
| } |
| |
| /* Create a new mapped symtab object. */ |
| |
| static struct mapped_symtab * |
| create_mapped_symtab (void) |
| { |
| struct mapped_symtab *symtab = XNEW (struct mapped_symtab); |
| symtab->n_elements = 0; |
| symtab->size = 1024; |
| symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size); |
| return symtab; |
| } |
| |
| /* Destroy a mapped_symtab. */ |
| |
| static void |
| cleanup_mapped_symtab (void *p) |
| { |
| struct mapped_symtab *symtab = p; |
| /* The contents of the array are freed when the other hash table is |
| destroyed. */ |
| xfree (symtab->data); |
| xfree (symtab); |
| } |
| |
| /* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to |
| the slot. |
| |
| Function is used only during write_hash_table so no index format backward |
| compatibility is needed. */ |
| |
| static struct symtab_index_entry ** |
| find_slot (struct mapped_symtab *symtab, const char *name) |
| { |
| offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name); |
| |
| index = hash & (symtab->size - 1); |
| step = ((hash * 17) & (symtab->size - 1)) | 1; |
| |
| for (;;) |
| { |
| if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name)) |
| return &symtab->data[index]; |
| index = (index + step) & (symtab->size - 1); |
| } |
| } |
| |
| /* Expand SYMTAB's hash table. */ |
| |
| static void |
| hash_expand (struct mapped_symtab *symtab) |
| { |
| offset_type old_size = symtab->size; |
| offset_type i; |
| struct symtab_index_entry **old_entries = symtab->data; |
| |
| symtab->size *= 2; |
| symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size); |
| |
| for (i = 0; i < old_size; ++i) |
| { |
| if (old_entries[i]) |
| { |
| struct symtab_index_entry **slot = find_slot (symtab, |
| old_entries[i]->name); |
| *slot = old_entries[i]; |
| } |
| } |
| |
| xfree (old_entries); |
| } |
| |
| /* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX |
| is the index of the CU in which the symbol appears. */ |
| |
| static void |
| add_index_entry (struct mapped_symtab *symtab, const char *name, |
| offset_type cu_index) |
| { |
| struct symtab_index_entry **slot; |
| |
| ++symtab->n_elements; |
| if (4 * symtab->n_elements / 3 >= symtab->size) |
| hash_expand (symtab); |
| |
| slot = find_slot (symtab, name); |
| if (!*slot) |
| { |
| *slot = XNEW (struct symtab_index_entry); |
| (*slot)->name = name; |
| (*slot)->cu_indices = NULL; |
| } |
| /* Don't push an index twice. Due to how we add entries we only |
| have to check the last one. */ |
| if (VEC_empty (offset_type, (*slot)->cu_indices) |
| || VEC_last (offset_type, (*slot)->cu_indices) != cu_index) |
| VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index); |
| } |
| |
| /* Add a vector of indices to the constant pool. */ |
| |
| static offset_type |
| add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool, |
| struct symtab_index_entry *entry) |
| { |
| void **slot; |
| |
| slot = htab_find_slot (symbol_hash_table, entry, INSERT); |
| if (!*slot) |
| { |
| offset_type len = VEC_length (offset_type, entry->cu_indices); |
| offset_type val = MAYBE_SWAP (len); |
| offset_type iter; |
| int i; |
| |
| *slot = entry; |
| entry->index_offset = obstack_object_size (cpool); |
| |
| obstack_grow (cpool, &val, sizeof (val)); |
| for (i = 0; |
| VEC_iterate (offset_type, entry->cu_indices, i, iter); |
| ++i) |
| { |
| val = MAYBE_SWAP (iter); |
| obstack_grow (cpool, &val, sizeof (val)); |
| } |
| } |
| else |
| { |
| struct symtab_index_entry *old_entry = *slot; |
| entry->index_offset = old_entry->index_offset; |
| entry = old_entry; |
| } |
| return entry->index_offset; |
| } |
| |
| /* Write the mapped hash table SYMTAB to the obstack OUTPUT, with |
| constant pool entries going into the obstack CPOOL. */ |
| |
| static void |
| write_hash_table (struct mapped_symtab *symtab, |
| struct obstack *output, struct obstack *cpool) |
| { |
| offset_type i; |
| htab_t symbol_hash_table; |
| htab_t str_table; |
| |
| symbol_hash_table = create_symbol_hash_table (); |
| str_table = create_strtab (); |
| |
| /* We add all the index vectors to the constant pool first, to |
| ensure alignment is ok. */ |
| for (i = 0; i < symtab->size; ++i) |
| { |
| if (symtab->data[i]) |
| add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]); |
| } |
| |
| /* Now write out the hash table. */ |
| for (i = 0; i < symtab->size; ++i) |
| { |
| offset_type str_off, vec_off; |
| |
| if (symtab->data[i]) |
| { |
| str_off = add_string (str_table, cpool, symtab->data[i]->name); |
| vec_off = symtab->data[i]->index_offset; |
| } |
| else |
| { |
| /* While 0 is a valid constant pool index, it is not valid |
| to have 0 for both offsets. */ |
| str_off = 0; |
| vec_off = 0; |
| } |
| |
| str_off = MAYBE_SWAP (str_off); |
| vec_off = MAYBE_SWAP (vec_off); |
| |
| obstack_grow (output, &str_off, sizeof (str_off)); |
| obstack_grow (output, &vec_off, sizeof (vec_off)); |
| } |
| |
| htab_delete (str_table); |
| htab_delete (symbol_hash_table); |
| } |
| |
| /* Struct to map psymtab to CU index in the index file. */ |
| struct psymtab_cu_index_map |
| { |
| struct partial_symtab *psymtab; |
| unsigned int cu_index; |
| }; |
| |
| static hashval_t |
| hash_psymtab_cu_index (const void *item) |
| { |
| const struct psymtab_cu_index_map *map = item; |
| |
| return htab_hash_pointer (map->psymtab); |
| } |
| |
| static int |
| eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs) |
| { |
| const struct psymtab_cu_index_map *lhs = item_lhs; |
| const struct psymtab_cu_index_map *rhs = item_rhs; |
| |
| return lhs->psymtab == rhs->psymtab; |
| } |
| |
| /* Helper struct for building the address table. */ |
| struct addrmap_index_data |
| { |
| struct objfile *objfile; |
| struct obstack *addr_obstack; |
| htab_t cu_index_htab; |
| |
| /* Non-zero if the previous_* fields are valid. |
| We can't write an entry until we see the next entry (since it is only then |
| that we know the end of the entry). */ |
| int previous_valid; |
| /* Index of the CU in the table of all CUs in the index file. */ |
| unsigned int previous_cu_index; |
| /* Start address of the CU. */ |
| CORE_ADDR previous_cu_start; |
| }; |
| |
| /* Write an address entry to OBSTACK. */ |
| |
| static void |
| add_address_entry (struct objfile *objfile, struct obstack *obstack, |
| CORE_ADDR start, CORE_ADDR end, unsigned int cu_index) |
| { |
| offset_type cu_index_to_write; |
| char addr[8]; |
| CORE_ADDR baseaddr; |
| |
| baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); |
| |
| store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr); |
| obstack_grow (obstack, addr, 8); |
| store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr); |
| obstack_grow (obstack, addr, 8); |
| cu_index_to_write = MAYBE_SWAP (cu_index); |
| obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type)); |
| } |
| |
| /* Worker function for traversing an addrmap to build the address table. */ |
| |
| static int |
| add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj) |
| { |
| struct addrmap_index_data *data = datap; |
| struct partial_symtab *pst = obj; |
| |
| if (data->previous_valid) |
| add_address_entry (data->objfile, data->addr_obstack, |
| data->previous_cu_start, start_addr, |
| data->previous_cu_index); |
| |
| data->previous_cu_start = start_addr; |
| if (pst != NULL) |
| { |
| struct psymtab_cu_index_map find_map, *map; |
| find_map.psymtab = pst; |
| map = htab_find (data->cu_index_htab, &find_map); |
| gdb_assert (map != NULL); |
| data->previous_cu_index = map->cu_index; |
| data->previous_valid = 1; |
| } |
| else |
| data->previous_valid = 0; |
| |
| return 0; |
| } |
| |
| /* Write OBJFILE's address map to OBSTACK. |
| CU_INDEX_HTAB is used to map addrmap entries to their CU indices |
| in the index file. */ |
| |
| static void |
| write_address_map (struct objfile *objfile, struct obstack *obstack, |
| htab_t cu_index_htab) |
| { |
| struct addrmap_index_data addrmap_index_data; |
| |
| /* When writing the address table, we have to cope with the fact that |
| the addrmap iterator only provides the start of a region; we have to |
| wait until the next invocation to get the start of the next region. */ |
| |
| addrmap_index_data.objfile = objfile; |
| addrmap_index_data.addr_obstack = obstack; |
| addrmap_index_data.cu_index_htab = cu_index_htab; |
| addrmap_index_data.previous_valid = 0; |
| |
| addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker, |
| &addrmap_index_data); |
| |
| /* It's highly unlikely the last entry (end address = 0xff...ff) |
| is valid, but we should still handle it. |
| The end address is recorded as the start of the next region, but that |
| doesn't work here. To cope we pass 0xff...ff, this is a rare situation |
| anyway. */ |
| if (addrmap_index_data.previous_valid) |
| add_address_entry (objfile, obstack, |
| addrmap_index_data.previous_cu_start, (CORE_ADDR) -1, |
| addrmap_index_data.previous_cu_index); |
| } |
| |
| /* Add a list of partial symbols to SYMTAB. */ |
| |
| static void |
| write_psymbols (struct mapped_symtab *symtab, |
| htab_t psyms_seen, |
| struct partial_symbol **psymp, |
| int count, |
| offset_type cu_index, |
| int is_static) |
| { |
| for (; count-- > 0; ++psymp) |
| { |
| void **slot, *lookup; |
| |
| if (SYMBOL_LANGUAGE (*psymp) == language_ada) |
| error (_("Ada is not currently supported by the index")); |
| |
| /* We only want to add a given psymbol once. However, we also |
| want to account for whether it is global or static. So, we |
| may add it twice, using slightly different values. */ |
| if (is_static) |
| { |
| uintptr_t val = 1 | (uintptr_t) *psymp; |
| |
| lookup = (void *) val; |
| } |
| else |
| lookup = *psymp; |
| |
| /* Only add a given psymbol once. */ |
| slot = htab_find_slot (psyms_seen, lookup, INSERT); |
| if (!*slot) |
| { |
| *slot = lookup; |
| add_index_entry (symtab, SYMBOL_SEARCH_NAME (*psymp), cu_index); |
| } |
| } |
| } |
| |
| /* Write the contents of an ("unfinished") obstack to FILE. Throw an |
| exception if there is an error. */ |
| |
| static void |
| write_obstack (FILE *file, struct obstack *obstack) |
| { |
| if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack), |
| file) |
| != obstack_object_size (obstack)) |
| error (_("couldn't data write to file")); |
| } |
| |
| /* Unlink a file if the argument is not NULL. */ |
| |
| static void |
| unlink_if_set (void *p) |
| { |
| char **filename = p; |
| if (*filename) |
| unlink (*filename); |
| } |
| |
| /* A helper struct used when iterating over debug_types. */ |
| struct signatured_type_index_data |
| { |
| struct objfile *objfile; |
| struct mapped_symtab *symtab; |
| struct obstack *types_list; |
| htab_t psyms_seen; |
| int cu_index; |
| }; |
| |
| /* A helper function that writes a single signatured_type to an |
| obstack. */ |
| |
| static int |
| write_one_signatured_type (void **slot, void *d) |
| { |
| struct signatured_type_index_data *info = d; |
| struct signatured_type *entry = (struct signatured_type *) *slot; |
| struct dwarf2_per_cu_data *per_cu = &entry->per_cu; |
| struct partial_symtab *psymtab = per_cu->v.psymtab; |
| gdb_byte val[8]; |
| |
| write_psymbols (info->symtab, |
| info->psyms_seen, |
| info->objfile->global_psymbols.list |
| + psymtab->globals_offset, |
| psymtab->n_global_syms, info->cu_index, |
| 0); |
| write_psymbols (info->symtab, |
| info->psyms_seen, |
| info->objfile->static_psymbols.list |
| + psymtab->statics_offset, |
| psymtab->n_static_syms, info->cu_index, |
| 1); |
| |
| store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, |
| entry->per_cu.offset.sect_off); |
| obstack_grow (info->types_list, val, 8); |
| store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, |
| entry->type_offset_in_tu.cu_off); |
| obstack_grow (info->types_list, val, 8); |
| store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature); |
| obstack_grow (info->types_list, val, 8); |
| |
| ++info->cu_index; |
| |
| return 1; |
| } |
| |
| /* Recurse into all "included" dependencies and write their symbols as |
| if they appeared in this psymtab. */ |
| |
| static void |
| recursively_write_psymbols (struct objfile *objfile, |
| struct partial_symtab *psymtab, |
| struct mapped_symtab *symtab, |
| htab_t psyms_seen, |
| offset_type cu_index) |
| { |
| int i; |
| |
| for (i = 0; i < psymtab->number_of_dependencies; ++i) |
| if (psymtab->dependencies[i]->user != NULL) |
| recursively_write_psymbols (objfile, psymtab->dependencies[i], |
| symtab, psyms_seen, cu_index); |
| |
| write_psymbols (symtab, |
| psyms_seen, |
| objfile->global_psymbols.list + psymtab->globals_offset, |
| psymtab->n_global_syms, cu_index, |
| 0); |
| write_psymbols (symtab, |
| psyms_seen, |
| objfile->static_psymbols.list + psymtab->statics_offset, |
| psymtab->n_static_syms, cu_index, |
| 1); |
| } |
| |
| /* Create an index file for OBJFILE in the directory DIR. */ |
| |
| static void |
| write_psymtabs_to_index (struct objfile *objfile, const char *dir) |
| { |
| struct cleanup *cleanup; |
| char *filename, *cleanup_filename; |
| struct obstack contents, addr_obstack, constant_pool, symtab_obstack; |
| struct obstack cu_list, types_cu_list; |
| int i; |
| FILE *out_file; |
| struct mapped_symtab *symtab; |
| offset_type val, size_of_contents, total_len; |
| struct stat st; |
| htab_t psyms_seen; |
| htab_t cu_index_htab; |
| struct psymtab_cu_index_map *psymtab_cu_index_map; |
| |
| if (!objfile->psymtabs || !objfile->psymtabs_addrmap) |
| return; |
| |
| if (dwarf2_per_objfile->using_index) |
| error (_("Cannot use an index to create the index")); |
| |
| if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1) |
| error (_("Cannot make an index when the file has multiple .debug_types sections")); |
| |
| if (stat (objfile->name, &st) < 0) |
| perror_with_name (objfile->name); |
| |
| filename = concat (dir, SLASH_STRING, lbasename (objfile->name), |
| INDEX_SUFFIX, (char *) NULL); |
| cleanup = make_cleanup (xfree, filename); |
| |
| out_file = fopen (filename, "wb"); |
| if (!out_file) |
| error (_("Can't open `%s' for writing"), filename); |
| |
| cleanup_filename = filename; |
| make_cleanup (unlink_if_set, &cleanup_filename); |
| |
| symtab = create_mapped_symtab (); |
| make_cleanup (cleanup_mapped_symtab, symtab); |
| |
| obstack_init (&addr_obstack); |
| make_cleanup_obstack_free (&addr_obstack); |
| |
| obstack_init (&cu_list); |
| make_cleanup_obstack_free (&cu_list); |
| |
| obstack_init (&types_cu_list); |
| make_cleanup_obstack_free (&types_cu_list); |
| |
| psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer, |
| NULL, xcalloc, xfree); |
| make_cleanup_htab_delete (psyms_seen); |
| |
| /* While we're scanning CU's create a table that maps a psymtab pointer |
| (which is what addrmap records) to its index (which is what is recorded |
| in the index file). This will later be needed to write the address |
| table. */ |
| cu_index_htab = htab_create_alloc (100, |
| hash_psymtab_cu_index, |
| eq_psymtab_cu_index, |
| NULL, xcalloc, xfree); |
| make_cleanup_htab_delete (cu_index_htab); |
| psymtab_cu_index_map = (struct psymtab_cu_index_map *) |
| xmalloc (sizeof (struct psymtab_cu_index_map) |
| * dwarf2_per_objfile->n_comp_units); |
| make_cleanup (xfree, psymtab_cu_index_map); |
| |
| /* The CU list is already sorted, so we don't need to do additional |
| work here. Also, the debug_types entries do not appear in |
| all_comp_units, but only in their own hash table. */ |
| for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i) |
| { |
| struct dwarf2_per_cu_data *per_cu |
| = dwarf2_per_objfile->all_comp_units[i]; |
| struct partial_symtab *psymtab = per_cu->v.psymtab; |
| gdb_byte val[8]; |
| struct psymtab_cu_index_map *map; |
| void **slot; |
| |
| if (psymtab->user == NULL) |
| recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i); |
| |
| map = &psymtab_cu_index_map[i]; |
| map->psymtab = psymtab; |
| map->cu_index = i; |
| slot = htab_find_slot (cu_index_htab, map, INSERT); |
| gdb_assert (slot != NULL); |
| gdb_assert (*slot == NULL); |
| *slot = map; |
| |
| store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, |
| per_cu->offset.sect_off); |
| obstack_grow (&cu_list, val, 8); |
| store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length); |
| obstack_grow (&cu_list, val, 8); |
| } |
| |
| /* Dump the address map. */ |
| write_address_map (objfile, &addr_obstack, cu_index_htab); |
| |
| /* Write out the .debug_type entries, if any. */ |
| if (dwarf2_per_objfile->signatured_types) |
| { |
| struct signatured_type_index_data sig_data; |
| |
| sig_data.objfile = objfile; |
| sig_data.symtab = symtab; |
| sig_data.types_list = &types_cu_list; |
| sig_data.psyms_seen = psyms_seen; |
| sig_data.cu_index = dwarf2_per_objfile->n_comp_units; |
| htab_traverse_noresize (dwarf2_per_objfile->signatured_types, |
| write_one_signatured_type, &sig_data); |
| } |
| |
| obstack_init (&constant_pool); |
| make_cleanup_obstack_free (&constant_pool); |
| obstack_init (&symtab_obstack); |
| make_cleanup_obstack_free (&symtab_obstack); |
| write_hash_table (symtab, &symtab_obstack, &constant_pool); |
| |
| obstack_init (&contents); |
| make_cleanup_obstack_free (&contents); |
| size_of_contents = 6 * sizeof (offset_type); |
| total_len = size_of_contents; |
| |
| /* The version number. */ |
| val = MAYBE_SWAP (6); |
| obstack_grow (&contents, &val, sizeof (val)); |
| |
| /* The offset of the CU list from the start of the file. */ |
| val = MAYBE_SWAP (total_len); |
| obstack_grow (&contents, &val, sizeof (val)); |
| total_len += obstack_object_size (&cu_list); |
| |
| /* The offset of the types CU list from the start of the file. */ |
| val = MAYBE_SWAP (total_len); |
| obstack_grow (&contents, &val, sizeof (val)); |
| total_len += obstack_object_size (&types_cu_list); |
| |
| /* The offset of the address table from the start of the file. */ |
| val = MAYBE_SWAP (total_len); |
| obstack_grow (&contents, &val, sizeof (val)); |
| total_len += obstack_object_size (&addr_obstack); |
| |
| /* The offset of the symbol table from the start of the file. */ |
| val = MAYBE_SWAP (total_len); |
| obstack_grow (&contents, &val, sizeof (val)); |
| total_len += obstack_object_size (&symtab_obstack); |
| |
| /* The offset of the constant pool from the start of the file. */ |
| val = MAYBE_SWAP (total_len); |
| obstack_grow (&contents, &val, sizeof (val)); |
| total_len += obstack_object_size (&constant_pool); |
| |
| gdb_assert (obstack_object_size (&contents) == size_of_contents); |
| |
| write_obstack (out_file, &contents); |
| write_obstack (out_file, &cu_list); |
| write_obstack (out_file, &types_cu_list); |
| write_obstack (out_file, &addr_obstack); |
| write_obstack (out_file, &symtab_obstack); |
| write_obstack (out_file, &constant_pool); |
| |
| fclose (out_file); |
| |
| /* We want to keep the file, so we set cleanup_filename to NULL |
| here. See unlink_if_set. */ |
| cleanup_filename = NULL; |
| |
| do_cleanups (cleanup); |
| } |
| |
| /* Implementation of the `save gdb-index' command. |
| |
| Note that the file format used by this command is documented in the |
| GDB manual. Any changes here must be documented there. */ |
| |
| static void |
| save_gdb_index_command (char *arg, int from_tty) |
| { |
| struct objfile *objfile; |
| |
| if (!arg || !*arg) |
| error (_("usage: save gdb-index DIRECTORY")); |
| |
| ALL_OBJFILES (objfile) |
| { |
| struct stat st; |
| |
| /* If the objfile does not correspond to an actual file, skip it. */ |
| if (stat (objfile->name, &st) < 0) |
| continue; |
| |
| dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key); |
| if (dwarf2_per_objfile) |
| { |
| volatile struct gdb_exception except; |
| |
| TRY_CATCH (except, RETURN_MASK_ERROR) |
| { |
| write_psymtabs_to_index (objfile, arg); |
| } |
| if (except.reason < 0) |
| exception_fprintf (gdb_stderr, except, |
| _("Error while writing index for `%s': "), |
| objfile->name); |
| } |
| } |
| } |
| |
| |
| |
| int dwarf2_always_disassemble; |
| |
| static void |
| show_dwarf2_always_disassemble (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Whether to always disassemble " |
| "DWARF expressions is %s.\n"), |
| value); |
| } |
| |
| static void |
| show_check_physname (struct ui_file *file, int from_tty, |
| struct cmd_list_element *c, const char *value) |
| { |
| fprintf_filtered (file, |
| _("Whether to check \"physname\" is %s.\n"), |
| value); |
| } |
| |
| void _initialize_dwarf2_read (void); |
| |
| void |
| _initialize_dwarf2_read (void) |
| { |
| struct cmd_list_element *c; |
| |
| dwarf2_objfile_data_key |
| = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free); |
| |
| add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\ |
| Set DWARF 2 specific variables.\n\ |
| Configure DWARF 2 variables such as the cache size"), |
| &set_dwarf2_cmdlist, "maintenance set dwarf2 ", |
| 0/*allow-unknown*/, &maintenance_set_cmdlist); |
| |
| add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\ |
| Show DWARF 2 specific variables\n\ |
| Show DWARF 2 variables such as the cache size"), |
| &show_dwarf2_cmdlist, "maintenance show dwarf2 ", |
| 0/*allow-unknown*/, &maintenance_show_cmdlist); |
| |
| add_setshow_zinteger_cmd ("max-cache-age", class_obscure, |
| &dwarf2_max_cache_age, _("\ |
| Set the upper bound on the age of cached dwarf2 compilation units."), _("\ |
| Show the upper bound on the age of cached dwarf2 compilation units."), _("\ |
| A higher limit means that cached compilation units will be stored\n\ |
| in memory longer, and more total memory will be used. Zero disables\n\ |
| caching, which can slow down startup."), |
| NULL, |
| show_dwarf2_max_cache_age, |
| &set_dwarf2_cmdlist, |
| &show_dwarf2_cmdlist); |
| |
| add_setshow_boolean_cmd ("always-disassemble", class_obscure, |
| &dwarf2_always_disassemble, _("\ |
| Set whether `info address' always disassembles DWARF expressions."), _("\ |
| Show whether `info address' always disassembles DWARF expressions."), _("\ |
| When enabled, DWARF expressions are always printed in an assembly-like\n\ |
| syntax. When disabled, expressions will be printed in a more\n\ |
| conversational style, when possible."), |
| NULL, |
| show_dwarf2_always_disassemble, |
| &set_dwarf2_cmdlist, |
| &show_dwarf2_cmdlist); |
| |
| add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\ |
| Set debugging of the dwarf2 DIE reader."), _("\ |
| Show debugging of the dwarf2 DIE reader."), _("\ |
| When enabled (non-zero), DIEs are dumped after they are read in.\n\ |
| The value is the maximum depth to print."), |
| NULL, |
| NULL, |
| &setdebuglist, &showdebuglist); |
| |
| add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\ |
| Set cross-checking of \"physname\" code against demangler."), _("\ |
| Show cross-checking of \"physname\" code against demangler."), _("\ |
| When enabled, GDB's internal \"physname\" code is checked against\n\ |
| the demangler."), |
| NULL, show_check_physname, |
| &setdebuglist, &showdebuglist); |
| |
| c = add_cmd ("gdb-index", class_files, save_gdb_index_command, |
| _("\ |
| Save a gdb-index file.\n\ |
| Usage: save gdb-index DIRECTORY"), |
| &save_cmdlist); |
| set_cmd_completer (c, filename_completer); |
| } |