| /* CTF dict creation. | 
 |    Copyright (C) 2019-2025 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of libctf. | 
 |  | 
 |    libctf is free software; you can redistribute it and/or modify it under | 
 |    the terms of the GNU General Public License as published by the Free | 
 |    Software Foundation; either version 3, or (at your option) any later | 
 |    version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, but | 
 |    WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
 |    See the GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program; see the file COPYING.  If not see | 
 |    <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include <ctf-impl.h> | 
 | #include <string.h> | 
 | #include <unistd.h> | 
 |  | 
 | #ifndef EOVERFLOW | 
 | #define EOVERFLOW ERANGE | 
 | #endif | 
 |  | 
 | #ifndef roundup | 
 | #define roundup(x, y)  ((((x) + ((y) - 1)) / (y)) * (y)) | 
 | #endif | 
 |  | 
 | /* The initial size of a dynamic type's vlen in members.  Arbitrary: the bigger | 
 |    this is, the less allocation needs to be done for small structure | 
 |    initialization, and the more memory is wasted for small structures during CTF | 
 |    construction.  No effect on generated CTF or ctf_open()ed CTF. */ | 
 | #define INITIAL_VLEN 16 | 
 |  | 
 | /* Make sure the ptrtab has enough space for at least one more type. | 
 |  | 
 |    We start with 4KiB of ptrtab, enough for a thousand types, then grow it 25% | 
 |    at a time.  */ | 
 |  | 
 | static int | 
 | ctf_grow_ptrtab (ctf_dict_t *fp) | 
 | { | 
 |   size_t new_ptrtab_len = fp->ctf_ptrtab_len; | 
 |  | 
 |   /* We allocate one more ptrtab entry than we need, for the initial zero, | 
 |      plus one because the caller will probably allocate a new type. | 
 |  | 
 |      Equally, if the ptrtab is small -- perhaps due to ctf_open of a small | 
 |      dict -- boost it by quite a lot at first, so we don't need to keep | 
 |      realloc()ing.  */ | 
 |  | 
 |   if (fp->ctf_ptrtab == NULL || fp->ctf_ptrtab_len < 1024) | 
 |     new_ptrtab_len = 1024; | 
 |   else if ((fp->ctf_typemax + 2) > fp->ctf_ptrtab_len) | 
 |     new_ptrtab_len = fp->ctf_ptrtab_len * 1.25; | 
 |  | 
 |   if (new_ptrtab_len != fp->ctf_ptrtab_len) | 
 |     { | 
 |       uint32_t *new_ptrtab; | 
 |  | 
 |       if ((new_ptrtab = realloc (fp->ctf_ptrtab, | 
 | 				 new_ptrtab_len * sizeof (uint32_t))) == NULL) | 
 | 	return (ctf_set_errno (fp, ENOMEM)); | 
 |  | 
 |       fp->ctf_ptrtab = new_ptrtab; | 
 |       memset (fp->ctf_ptrtab + fp->ctf_ptrtab_len, 0, | 
 | 	      (new_ptrtab_len - fp->ctf_ptrtab_len) * sizeof (uint32_t)); | 
 |       fp->ctf_ptrtab_len = new_ptrtab_len; | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Make sure a vlen has enough space: expand it otherwise.  Unlike the ptrtab, | 
 |    which grows quite slowly, the vlen grows in big jumps because it is quite | 
 |    expensive to expand: the caller has to scan the old vlen for string refs | 
 |    first and remove them, then re-add them afterwards.  The initial size is | 
 |    more or less arbitrary.  */ | 
 | static int | 
 | ctf_grow_vlen (ctf_dict_t *fp, ctf_dtdef_t *dtd, size_t vlen) | 
 | { | 
 |   unsigned char *old = dtd->dtd_vlen; | 
 |  | 
 |   if (dtd->dtd_vlen_alloc > vlen) | 
 |     return 0; | 
 |  | 
 |   if ((dtd->dtd_vlen = realloc (dtd->dtd_vlen, | 
 | 				dtd->dtd_vlen_alloc * 2)) == NULL) | 
 |     { | 
 |       dtd->dtd_vlen = old; | 
 |       return (ctf_set_errno (fp, ENOMEM)); | 
 |     } | 
 |   memset (dtd->dtd_vlen + dtd->dtd_vlen_alloc, 0, dtd->dtd_vlen_alloc); | 
 |   dtd->dtd_vlen_alloc *= 2; | 
 |   return 0; | 
 | } | 
 |  | 
 | /* To create an empty CTF dict, we just declare a zeroed header and call | 
 |    ctf_bufopen() on it.  If ctf_bufopen succeeds, we mark the new dict r/w and | 
 |    initialize the dynamic members.  We start assigning type IDs at 1 because | 
 |    type ID 0 is used as a sentinel and a not-found indicator.  */ | 
 |  | 
 | ctf_dict_t * | 
 | ctf_create (int *errp) | 
 | { | 
 |   static const ctf_header_t hdr = { .cth_preamble = { CTF_MAGIC, CTF_VERSION, 0 } }; | 
 |  | 
 |   ctf_dynhash_t *structs = NULL, *unions = NULL, *enums = NULL, *names = NULL; | 
 |   ctf_sect_t cts; | 
 |   ctf_dict_t *fp; | 
 |  | 
 |   libctf_init_debug(); | 
 |  | 
 |   structs = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, | 
 | 				NULL, NULL); | 
 |   unions = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, | 
 | 			       NULL, NULL); | 
 |   enums = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, | 
 | 			      NULL, NULL); | 
 |   names = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string, | 
 | 			      NULL, NULL); | 
 |   if (!structs || !unions || !enums || !names) | 
 |     { | 
 |       ctf_set_open_errno (errp, EAGAIN); | 
 |       goto err; | 
 |     } | 
 |  | 
 |   cts.cts_name = _CTF_SECTION; | 
 |   cts.cts_data = &hdr; | 
 |   cts.cts_size = sizeof (hdr); | 
 |   cts.cts_entsize = 1; | 
 |  | 
 |   if ((fp = ctf_bufopen (&cts, NULL, NULL, errp)) == NULL) | 
 |     goto err; | 
 |  | 
 |   /* These hashes will have been initialized with a starting size of zero, | 
 |      which is surely wrong.  Use ones with slightly larger sizes.  */ | 
 |   ctf_dynhash_destroy (fp->ctf_structs); | 
 |   ctf_dynhash_destroy (fp->ctf_unions); | 
 |   ctf_dynhash_destroy (fp->ctf_enums); | 
 |   ctf_dynhash_destroy (fp->ctf_names); | 
 |   fp->ctf_structs = structs; | 
 |   fp->ctf_unions = unions; | 
 |   fp->ctf_enums = enums; | 
 |   fp->ctf_names = names; | 
 |   fp->ctf_dtoldid = 0; | 
 |   fp->ctf_snapshot_lu = 0; | 
 |  | 
 |   /* Make sure the ptrtab starts out at a reasonable size.  */ | 
 |  | 
 |   ctf_set_ctl_hashes (fp); | 
 |   if (ctf_grow_ptrtab (fp) < 0) | 
 |     { | 
 |       ctf_set_open_errno (errp, ctf_errno (fp)); | 
 |       ctf_dict_close (fp); | 
 |       return NULL; | 
 |     } | 
 |  | 
 |   return fp; | 
 |  | 
 |  err: | 
 |   ctf_dynhash_destroy (structs); | 
 |   ctf_dynhash_destroy (unions); | 
 |   ctf_dynhash_destroy (enums); | 
 |   ctf_dynhash_destroy (names); | 
 |   return NULL; | 
 | } | 
 |  | 
 | /* Compatibility: just update the threshold for ctf_discard.  */ | 
 | int | 
 | ctf_update (ctf_dict_t *fp) | 
 | { | 
 |   fp->ctf_dtoldid = fp->ctf_typemax; | 
 |   return 0; | 
 | } | 
 |  | 
 | ctf_dynhash_t * | 
 | ctf_name_table (ctf_dict_t *fp, int kind) | 
 | { | 
 |   switch (kind) | 
 |     { | 
 |     case CTF_K_STRUCT: | 
 |       return fp->ctf_structs; | 
 |     case CTF_K_UNION: | 
 |       return fp->ctf_unions; | 
 |     case CTF_K_ENUM: | 
 |       return fp->ctf_enums; | 
 |     default: | 
 |       return fp->ctf_names; | 
 |     } | 
 | } | 
 |  | 
 | int | 
 | ctf_dtd_insert (ctf_dict_t *fp, ctf_dtdef_t *dtd, int flag, int kind) | 
 | { | 
 |   const char *name; | 
 |   if (ctf_dynhash_insert (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type, | 
 | 			  dtd) < 0) | 
 |     return ctf_set_errno (fp, ENOMEM); | 
 |  | 
 |   if (flag == CTF_ADD_ROOT && dtd->dtd_data.ctt_name | 
 |       && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL) | 
 |     { | 
 |       if (ctf_dynhash_insert (ctf_name_table (fp, kind), | 
 | 			      (char *) name, (void *) (uintptr_t) | 
 | 			      dtd->dtd_type) < 0) | 
 | 	{ | 
 | 	  ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) | 
 | 			      dtd->dtd_type); | 
 | 	  return ctf_set_errno (fp, ENOMEM); | 
 | 	} | 
 |     } | 
 |   ctf_list_append (&fp->ctf_dtdefs, dtd); | 
 |   return 0; | 
 | } | 
 |  | 
 | void | 
 | ctf_dtd_delete (ctf_dict_t *fp, ctf_dtdef_t *dtd) | 
 | { | 
 |   int kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); | 
 |   size_t vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); | 
 |   int name_kind = kind; | 
 |   const char *name; | 
 |  | 
 |   ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type); | 
 |  | 
 |   switch (kind) | 
 |     { | 
 |     case CTF_K_STRUCT: | 
 |     case CTF_K_UNION: | 
 |       { | 
 | 	ctf_lmember_t *memb = (ctf_lmember_t *) dtd->dtd_vlen; | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < vlen; i++) | 
 | 	  ctf_str_remove_ref (fp, ctf_strraw (fp, memb[i].ctlm_name), | 
 | 			      &memb[i].ctlm_name); | 
 |       } | 
 |       break; | 
 |     case CTF_K_ENUM: | 
 |       { | 
 | 	ctf_enum_t *en = (ctf_enum_t *) dtd->dtd_vlen; | 
 | 	size_t i; | 
 |  | 
 | 	for (i = 0; i < vlen; i++) | 
 | 	  ctf_str_remove_ref (fp, ctf_strraw (fp, en[i].cte_name), | 
 | 			      &en[i].cte_name); | 
 |       } | 
 |       break; | 
 |     case CTF_K_FORWARD: | 
 |       name_kind = dtd->dtd_data.ctt_type; | 
 |       break; | 
 |     } | 
 |   free (dtd->dtd_vlen); | 
 |   dtd->dtd_vlen_alloc = 0; | 
 |  | 
 |   if (dtd->dtd_data.ctt_name | 
 |       && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL) | 
 |     { | 
 |       if (LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info)) | 
 | 	ctf_dynhash_remove (ctf_name_table (fp, name_kind), name); | 
 |       ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name); | 
 |     } | 
 |  | 
 |   ctf_list_delete (&fp->ctf_dtdefs, dtd); | 
 |   free (dtd); | 
 | } | 
 |  | 
 | ctf_dtdef_t * | 
 | ctf_dtd_lookup (const ctf_dict_t *fp, ctf_id_t type) | 
 | { | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)) | 
 |     fp = fp->ctf_parent; | 
 |  | 
 |   return (ctf_dtdef_t *) | 
 |     ctf_dynhash_lookup (fp->ctf_dthash, (void *) (uintptr_t) type); | 
 | } | 
 |  | 
 | ctf_dtdef_t * | 
 | ctf_dynamic_type (const ctf_dict_t *fp, ctf_id_t id) | 
 | { | 
 |   ctf_id_t idx; | 
 |  | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id)) | 
 |     fp = fp->ctf_parent; | 
 |  | 
 |   idx = LCTF_TYPE_TO_INDEX(fp, id); | 
 |  | 
 |   if ((unsigned long) idx <= fp->ctf_typemax) | 
 |     return ctf_dtd_lookup (fp, id); | 
 |   return NULL; | 
 | } | 
 |  | 
 | static int | 
 | ctf_static_type (const ctf_dict_t *fp, ctf_id_t id) | 
 | { | 
 |   ctf_id_t idx; | 
 |  | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, id)) | 
 |     fp = fp->ctf_parent; | 
 |  | 
 |   idx = LCTF_TYPE_TO_INDEX(fp, id); | 
 |  | 
 |   return ((unsigned long) idx <= fp->ctf_stypes); | 
 | } | 
 |  | 
 | int | 
 | ctf_dvd_insert (ctf_dict_t *fp, ctf_dvdef_t *dvd) | 
 | { | 
 |   if (ctf_dynhash_insert (fp->ctf_dvhash, dvd->dvd_name, dvd) < 0) | 
 |     return ctf_set_errno (fp, ENOMEM); | 
 |   ctf_list_append (&fp->ctf_dvdefs, dvd); | 
 |   return 0; | 
 | } | 
 |  | 
 | void | 
 | ctf_dvd_delete (ctf_dict_t *fp, ctf_dvdef_t *dvd) | 
 | { | 
 |   ctf_dynhash_remove (fp->ctf_dvhash, dvd->dvd_name); | 
 |   free (dvd->dvd_name); | 
 |  | 
 |   ctf_list_delete (&fp->ctf_dvdefs, dvd); | 
 |   free (dvd); | 
 | } | 
 |  | 
 | ctf_dvdef_t * | 
 | ctf_dvd_lookup (const ctf_dict_t *fp, const char *name) | 
 | { | 
 |   return (ctf_dvdef_t *) ctf_dynhash_lookup (fp->ctf_dvhash, name); | 
 | } | 
 |  | 
 | /* Discard all of the dynamic type definitions and variable definitions that | 
 |    have been added to the dict since the last call to ctf_update().  We locate | 
 |    such types by scanning the dtd list and deleting elements that have type IDs | 
 |    greater than ctf_dtoldid, which is set by ctf_update(), above, and by | 
 |    scanning the variable list and deleting elements that have update IDs equal | 
 |    to the current value of the last-update snapshot count (indicating that they | 
 |    were added after the most recent call to ctf_update()).  */ | 
 | int | 
 | ctf_discard (ctf_dict_t *fp) | 
 | { | 
 |   ctf_snapshot_id_t last_update = | 
 |     { fp->ctf_dtoldid, | 
 |       fp->ctf_snapshot_lu + 1 }; | 
 |  | 
 |   return (ctf_rollback (fp, last_update)); | 
 | } | 
 |  | 
 | ctf_snapshot_id_t | 
 | ctf_snapshot (ctf_dict_t *fp) | 
 | { | 
 |   ctf_snapshot_id_t snapid; | 
 |   snapid.dtd_id = fp->ctf_typemax; | 
 |   snapid.snapshot_id = fp->ctf_snapshots++; | 
 |   return snapid; | 
 | } | 
 |  | 
 | /* Like ctf_discard(), only discards everything after a particular ID.  */ | 
 | int | 
 | ctf_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id) | 
 | { | 
 |   ctf_dtdef_t *dtd, *ntd; | 
 |   ctf_dvdef_t *dvd, *nvd; | 
 |  | 
 |   if (id.snapshot_id < fp->ctf_stypes) | 
 |     return (ctf_set_errno (fp, ECTF_RDONLY)); | 
 |  | 
 |   if (fp->ctf_snapshot_lu >= id.snapshot_id) | 
 |     return (ctf_set_errno (fp, ECTF_OVERROLLBACK)); | 
 |  | 
 |   for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd) | 
 |     { | 
 |       int kind; | 
 |       const char *name; | 
 |  | 
 |       ntd = ctf_list_next (dtd); | 
 |  | 
 |       if (LCTF_TYPE_TO_INDEX (fp, dtd->dtd_type) <= id.dtd_id) | 
 | 	continue; | 
 |  | 
 |       kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); | 
 |       if (kind == CTF_K_FORWARD) | 
 | 	kind = dtd->dtd_data.ctt_type; | 
 |  | 
 |       if (dtd->dtd_data.ctt_name | 
 | 	  && (name = ctf_strraw (fp, dtd->dtd_data.ctt_name)) != NULL | 
 | 	  && LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info)) | 
 | 	{ | 
 | 	  ctf_dynhash_remove (ctf_name_table (fp, kind), name); | 
 | 	  ctf_str_remove_ref (fp, name, &dtd->dtd_data.ctt_name); | 
 | 	} | 
 |  | 
 |       ctf_dynhash_remove (fp->ctf_dthash, (void *) (uintptr_t) dtd->dtd_type); | 
 |       ctf_dtd_delete (fp, dtd); | 
 |     } | 
 |  | 
 |   for (dvd = ctf_list_next (&fp->ctf_dvdefs); dvd != NULL; dvd = nvd) | 
 |     { | 
 |       nvd = ctf_list_next (dvd); | 
 |  | 
 |       if (dvd->dvd_snapshots <= id.snapshot_id) | 
 | 	continue; | 
 |  | 
 |       ctf_dvd_delete (fp, dvd); | 
 |     } | 
 |  | 
 |   fp->ctf_typemax = id.dtd_id; | 
 |   fp->ctf_snapshots = id.snapshot_id; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Note: vlen is the amount of space *allocated* for the vlen.  It may well not | 
 |    be the amount of space used (yet): the space used is declared in per-kind | 
 |    fashion in the dtd_data's info word.  */ | 
 | static ctf_id_t | 
 | ctf_add_generic (ctf_dict_t *fp, uint32_t flag, const char *name, int kind, | 
 | 		 size_t vlen, ctf_dtdef_t **rp) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type; | 
 |  | 
 |   if (flag != CTF_ADD_NONROOT && flag != CTF_ADD_ROOT) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) >= CTF_MAX_TYPE) | 
 |     return (ctf_set_typed_errno (fp, ECTF_FULL)); | 
 |  | 
 |   if (LCTF_INDEX_TO_TYPE (fp, fp->ctf_typemax, 1) == (CTF_MAX_PTYPE - 1)) | 
 |     return (ctf_set_typed_errno (fp, ECTF_FULL)); | 
 |  | 
 |   /* Prohibit addition of a root-visible type that is already present | 
 |      in the non-dynamic portion. */ | 
 |  | 
 |   if (flag == CTF_ADD_ROOT && name != NULL && name[0] != '\0') | 
 |     { | 
 |       ctf_id_t existing; | 
 |  | 
 |       if (((existing = ctf_dynhash_lookup_type (ctf_name_table (fp, kind), | 
 | 						name)) > 0) | 
 | 	  && ctf_static_type (fp, existing)) | 
 | 	return (ctf_set_typed_errno (fp, ECTF_RDONLY)); | 
 |     } | 
 |  | 
 |   /* Make sure ptrtab always grows to be big enough for all types.  */ | 
 |   if (ctf_grow_ptrtab (fp) < 0) | 
 |       return CTF_ERR;				/* errno is set for us. */ | 
 |  | 
 |   if ((dtd = calloc (1, sizeof (ctf_dtdef_t))) == NULL) | 
 |     return (ctf_set_typed_errno (fp, EAGAIN)); | 
 |  | 
 |   dtd->dtd_vlen_alloc = vlen; | 
 |   if (vlen > 0) | 
 |     { | 
 |       if ((dtd->dtd_vlen = calloc (1, vlen)) == NULL) | 
 | 	goto oom; | 
 |     } | 
 |   else | 
 |     dtd->dtd_vlen = NULL; | 
 |  | 
 |   type = ++fp->ctf_typemax; | 
 |   type = LCTF_INDEX_TO_TYPE (fp, type, (fp->ctf_flags & LCTF_CHILD)); | 
 |  | 
 |   dtd->dtd_data.ctt_name = ctf_str_add_ref (fp, name, &dtd->dtd_data.ctt_name); | 
 |   dtd->dtd_type = type; | 
 |  | 
 |   if (dtd->dtd_data.ctt_name == 0 && name != NULL && name[0] != '\0') | 
 |     goto oom; | 
 |  | 
 |   if (ctf_dtd_insert (fp, dtd, flag, kind) < 0) | 
 |     goto err;					/* errno is set for us.  */ | 
 |  | 
 |   *rp = dtd; | 
 |   return type; | 
 |  | 
 |  oom: | 
 |   ctf_set_errno (fp, EAGAIN); | 
 |  err: | 
 |   free (dtd->dtd_vlen); | 
 |   free (dtd); | 
 |   return CTF_ERR; | 
 | } | 
 |  | 
 | /* When encoding integer sizes, we want to convert a byte count in the range | 
 |    1-8 to the closest power of 2 (e.g. 3->4, 5->8, etc).  The clp2() function | 
 |    is a clever implementation from "Hacker's Delight" by Henry Warren, Jr.  */ | 
 | static size_t | 
 | clp2 (size_t x) | 
 | { | 
 |   x--; | 
 |  | 
 |   x |= (x >> 1); | 
 |   x |= (x >> 2); | 
 |   x |= (x >> 4); | 
 |   x |= (x >> 8); | 
 |   x |= (x >> 16); | 
 |  | 
 |   return (x + 1); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_encoded (ctf_dict_t *fp, uint32_t flag, | 
 | 		 const char *name, const ctf_encoding_t *ep, uint32_t kind) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type; | 
 |   uint32_t encoding; | 
 |  | 
 |   if (ep == NULL) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (name == NULL || name[0] == '\0') | 
 |     return (ctf_set_typed_errno (fp, ECTF_NONAME)); | 
 |  | 
 |   if (!ctf_assert (fp, kind == CTF_K_INTEGER || kind == CTF_K_FLOAT)) | 
 |     return CTF_ERR;					/* errno is set for us.  */ | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, name, kind, sizeof (uint32_t), | 
 | 			       &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0); | 
 |   dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT) | 
 | 				 / CHAR_BIT); | 
 |   switch (kind) | 
 |     { | 
 |     case CTF_K_INTEGER: | 
 |       encoding = CTF_INT_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits); | 
 |       break; | 
 |     case CTF_K_FLOAT: | 
 |       encoding = CTF_FP_DATA (ep->cte_format, ep->cte_offset, ep->cte_bits); | 
 |       break; | 
 |     default: | 
 |       /* ctf_assert is opaque with -fno-inline.  This dead code avoids | 
 | 	 a warning about "encoding" being used uninitialized.  */ | 
 |       return CTF_ERR; | 
 |     } | 
 |   memcpy (dtd->dtd_vlen, &encoding, sizeof (encoding)); | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_reftype (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, uint32_t kind) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type; | 
 |   ctf_dict_t *tmp = fp; | 
 |   int child = fp->ctf_flags & LCTF_CHILD; | 
 |  | 
 |   if (ref == CTF_ERR || ref > CTF_MAX_TYPE) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, NULL, kind, 0, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, flag, 0); | 
 |   dtd->dtd_data.ctt_type = (uint32_t) ref; | 
 |  | 
 |   if (kind != CTF_K_POINTER) | 
 |     return type; | 
 |  | 
 |   /* If we are adding a pointer, update the ptrtab, pointing at this type from | 
 |      the type it points to.  Note that ctf_typemax is at this point one higher | 
 |      than we want to check against, because it's just been incremented for the | 
 |      addition of this type.  The pptrtab is lazily-updated as needed, so is not | 
 |      touched here.  */ | 
 |  | 
 |   uint32_t type_idx = LCTF_TYPE_TO_INDEX (fp, type); | 
 |   uint32_t ref_idx = LCTF_TYPE_TO_INDEX (fp, ref); | 
 |  | 
 |   if (LCTF_TYPE_ISCHILD (fp, ref) == child | 
 |       && ref_idx < fp->ctf_typemax) | 
 |     fp->ctf_ptrtab[ref_idx] = type_idx; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_slice (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref, | 
 | 	       const ctf_encoding_t *ep) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_slice_t slice; | 
 |   ctf_id_t resolved_ref = ref; | 
 |   ctf_id_t type; | 
 |   int kind; | 
 |   const ctf_type_t *tp; | 
 |   ctf_dict_t *tmp = fp; | 
 |  | 
 |   if (ep == NULL) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if ((ep->cte_bits > 255) || (ep->cte_offset > 255)) | 
 |     return (ctf_set_typed_errno (fp, ECTF_SLICEOVERFLOW)); | 
 |  | 
 |   if (ref == CTF_ERR || ref > CTF_MAX_TYPE) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (ref != 0 && ((tp = ctf_lookup_by_id (&tmp, ref)) == NULL)) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   /* Make sure we ultimately point to an integral type.  We also allow slices to | 
 |      point to the unimplemented type, for now, because the compiler can emit | 
 |      such slices, though they're not very much use.  */ | 
 |  | 
 |   resolved_ref = ctf_type_resolve_unsliced (fp, ref); | 
 |   kind = ctf_type_kind_unsliced (fp, resolved_ref); | 
 |  | 
 |   if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && | 
 |       (kind != CTF_K_ENUM) | 
 |       && (ref != 0)) | 
 |     return (ctf_set_typed_errno (fp, ECTF_NOTINTFP)); | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_SLICE, | 
 | 			       sizeof (ctf_slice_t), &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   memset (&slice, 0, sizeof (ctf_slice_t)); | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_SLICE, flag, 0); | 
 |   dtd->dtd_data.ctt_size = clp2 (P2ROUNDUP (ep->cte_bits, CHAR_BIT) | 
 | 				 / CHAR_BIT); | 
 |   slice.cts_type = (uint32_t) ref; | 
 |   slice.cts_bits = ep->cte_bits; | 
 |   slice.cts_offset = ep->cte_offset; | 
 |   memcpy (dtd->dtd_vlen, &slice, sizeof (ctf_slice_t)); | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_integer (ctf_dict_t *fp, uint32_t flag, | 
 | 		 const char *name, const ctf_encoding_t *ep) | 
 | { | 
 |   return (ctf_add_encoded (fp, flag, name, ep, CTF_K_INTEGER)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_float (ctf_dict_t *fp, uint32_t flag, | 
 | 	       const char *name, const ctf_encoding_t *ep) | 
 | { | 
 |   return (ctf_add_encoded (fp, flag, name, ep, CTF_K_FLOAT)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_pointer (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) | 
 | { | 
 |   return (ctf_add_reftype (fp, flag, ref, CTF_K_POINTER)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_array (ctf_dict_t *fp, uint32_t flag, const ctf_arinfo_t *arp) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_array_t cta; | 
 |   ctf_id_t type; | 
 |   ctf_dict_t *tmp = fp; | 
 |  | 
 |   if (arp == NULL) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (arp->ctr_contents != 0 | 
 |       && ctf_lookup_by_id (&tmp, arp->ctr_contents) == NULL) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   tmp = fp; | 
 |   if (ctf_lookup_by_id (&tmp, arp->ctr_index) == NULL) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   if (ctf_type_kind (fp, arp->ctr_index) == CTF_K_FORWARD) | 
 |     { | 
 |       ctf_err_warn (fp, 1, ECTF_INCOMPLETE, | 
 | 		    _("ctf_add_array: index type %lx is incomplete"), | 
 | 		    arp->ctr_contents); | 
 |       return (ctf_set_typed_errno (fp, ECTF_INCOMPLETE)); | 
 |     } | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_ARRAY, | 
 | 			       sizeof (ctf_array_t), &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   memset (&cta, 0, sizeof (ctf_array_t)); | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ARRAY, flag, 0); | 
 |   dtd->dtd_data.ctt_size = 0; | 
 |   cta.cta_contents = (uint32_t) arp->ctr_contents; | 
 |   cta.cta_index = (uint32_t) arp->ctr_index; | 
 |   cta.cta_nelems = arp->ctr_nelems; | 
 |   memcpy (dtd->dtd_vlen, &cta, sizeof (ctf_array_t)); | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | int | 
 | ctf_set_array (ctf_dict_t *fp, ctf_id_t type, const ctf_arinfo_t *arp) | 
 | { | 
 |   ctf_dict_t *ofp = fp; | 
 |   ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type); | 
 |   ctf_array_t *vlen; | 
 |  | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, type)) | 
 |     fp = fp->ctf_parent; | 
 |  | 
 |   /* You can only call ctf_set_array on a type you have added, not a | 
 |      type that was read in via ctf_open().  */ | 
 |   if (type < fp->ctf_stypes) | 
 |     return (ctf_set_errno (ofp, ECTF_RDONLY)); | 
 |  | 
 |   if (dtd == NULL | 
 |       || LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info) != CTF_K_ARRAY) | 
 |     return (ctf_set_errno (ofp, ECTF_BADID)); | 
 |  | 
 |   vlen = (ctf_array_t *) dtd->dtd_vlen; | 
 |   vlen->cta_contents = (uint32_t) arp->ctr_contents; | 
 |   vlen->cta_index = (uint32_t) arp->ctr_index; | 
 |   vlen->cta_nelems = arp->ctr_nelems; | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_function (ctf_dict_t *fp, uint32_t flag, | 
 | 		  const ctf_funcinfo_t *ctc, const ctf_id_t *argv) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type; | 
 |   uint32_t vlen; | 
 |   uint32_t *vdat; | 
 |   ctf_dict_t *tmp = fp; | 
 |   size_t initial_vlen; | 
 |   size_t i; | 
 |  | 
 |   if (ctc == NULL || (ctc->ctc_flags & ~CTF_FUNC_VARARG) != 0 | 
 |       || (ctc->ctc_argc != 0 && argv == NULL)) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   vlen = ctc->ctc_argc; | 
 |   if (ctc->ctc_flags & CTF_FUNC_VARARG) | 
 |     vlen++;	       /* Add trailing zero to indicate varargs (see below).  */ | 
 |  | 
 |   if (ctc->ctc_return != 0 | 
 |       && ctf_lookup_by_id (&tmp, ctc->ctc_return) == NULL) | 
 |     return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |   if (vlen > CTF_MAX_VLEN) | 
 |     return (ctf_set_typed_errno (fp, EOVERFLOW)); | 
 |  | 
 |   /* One word extra allocated for padding for 4-byte alignment if need be. | 
 |      Not reflected in vlen: we don't want to copy anything into it, and | 
 |      it's in addition to (e.g.) the trailing 0 indicating varargs.  */ | 
 |  | 
 |   initial_vlen = (sizeof (uint32_t) * (vlen + (vlen & 1))); | 
 |   if ((type = ctf_add_generic (fp, flag, NULL, CTF_K_FUNCTION, | 
 | 			       initial_vlen, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |   vdat = (uint32_t *) dtd->dtd_vlen; | 
 |  | 
 |   for (i = 0; i < ctc->ctc_argc; i++) | 
 |     { | 
 |       tmp = fp; | 
 |       if (argv[i] != 0 && ctf_lookup_by_id (&tmp, argv[i]) == NULL) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |       vdat[i] = (uint32_t) argv[i]; | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FUNCTION, flag, vlen); | 
 |   dtd->dtd_data.ctt_type = (uint32_t) ctc->ctc_return; | 
 |  | 
 |   if (ctc->ctc_flags & CTF_FUNC_VARARG) | 
 |     vdat[vlen - 1] = 0;		   /* Add trailing zero to indicate varargs.  */ | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_struct_sized (ctf_dict_t *fp, uint32_t flag, const char *name, | 
 | 		      size_t size) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type = 0; | 
 |   size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN; | 
 |  | 
 |   /* Promote root-visible forwards to structs.  */ | 
 |   if (name != NULL && flag == CTF_ADD_ROOT) | 
 |     type = ctf_lookup_by_rawname (fp, CTF_K_STRUCT, name); | 
 |  | 
 |   /* Prohibit promotion if this type was ctf_open()ed.  */ | 
 |   if (type > 0 && type < fp->ctf_stypes) | 
 |     return (ctf_set_errno (fp, ECTF_RDONLY)); | 
 |  | 
 |   if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) | 
 |     dtd = ctf_dtd_lookup (fp, type); | 
 |   else if ((type = ctf_add_generic (fp, flag, name, CTF_K_STRUCT, | 
 | 				    initial_vlen, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   /* Forwards won't have any vlen yet.  */ | 
 |   if (dtd->dtd_vlen_alloc == 0) | 
 |     { | 
 |       if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) | 
 | 	return (ctf_set_typed_errno (fp, ENOMEM)); | 
 |       dtd->dtd_vlen_alloc = initial_vlen; | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_STRUCT, flag, 0); | 
 |   dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; | 
 |   dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size); | 
 |   dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size); | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_struct (ctf_dict_t *fp, uint32_t flag, const char *name) | 
 | { | 
 |   return (ctf_add_struct_sized (fp, flag, name, 0)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_union_sized (ctf_dict_t *fp, uint32_t flag, const char *name, | 
 | 		     size_t size) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type = 0; | 
 |   size_t initial_vlen = sizeof (ctf_lmember_t) * INITIAL_VLEN; | 
 |  | 
 |   /* Promote root-visible forwards to unions.  */ | 
 |   if (name != NULL && flag == CTF_ADD_ROOT) | 
 |     type = ctf_lookup_by_rawname (fp, CTF_K_UNION, name); | 
 |  | 
 |   /* Prohibit promotion if this type was ctf_open()ed.  */ | 
 |   if (type > 0 && type < fp->ctf_stypes) | 
 |     return (ctf_set_errno (fp, ECTF_RDONLY)); | 
 |  | 
 |   if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) | 
 |     dtd = ctf_dtd_lookup (fp, type); | 
 |   else if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNION, | 
 | 				    initial_vlen, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   /* Forwards won't have any vlen yet.  */ | 
 |   if (dtd->dtd_vlen_alloc == 0) | 
 |     { | 
 |       if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) | 
 | 	return (ctf_set_typed_errno (fp, ENOMEM)); | 
 |       dtd->dtd_vlen_alloc = initial_vlen; | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNION, flag, 0); | 
 |   dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; | 
 |   dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (size); | 
 |   dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (size); | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_union (ctf_dict_t *fp, uint32_t flag, const char *name) | 
 | { | 
 |   return (ctf_add_union_sized (fp, flag, name, 0)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_enum (ctf_dict_t *fp, uint32_t flag, const char *name) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type = 0; | 
 |   size_t initial_vlen = sizeof (ctf_enum_t) * INITIAL_VLEN; | 
 |  | 
 |   /* Promote root-visible forwards to enums.  */ | 
 |   if (name != NULL && flag == CTF_ADD_ROOT) | 
 |     type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name); | 
 |  | 
 |   /* Prohibit promotion if this type was ctf_open()ed.  */ | 
 |   if (type > 0 && type < fp->ctf_stypes) | 
 |     return (ctf_set_errno (fp, ECTF_RDONLY)); | 
 |  | 
 |   if (type != 0 && ctf_type_kind (fp, type) == CTF_K_FORWARD) | 
 |     dtd = ctf_dtd_lookup (fp, type); | 
 |   else if ((type = ctf_add_generic (fp, flag, name, CTF_K_ENUM, | 
 | 				    initial_vlen, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   /* Forwards won't have any vlen yet.  */ | 
 |   if (dtd->dtd_vlen_alloc == 0) | 
 |     { | 
 |       if ((dtd->dtd_vlen = calloc (1, initial_vlen)) == NULL) | 
 | 	return (ctf_set_typed_errno (fp, ENOMEM)); | 
 |       dtd->dtd_vlen_alloc = initial_vlen; | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_ENUM, flag, 0); | 
 |   dtd->dtd_data.ctt_size = fp->ctf_dmodel->ctd_int; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_enum_encoded (ctf_dict_t *fp, uint32_t flag, const char *name, | 
 | 		      const ctf_encoding_t *ep) | 
 | { | 
 |   ctf_id_t type = 0; | 
 |  | 
 |   /* First, create the enum if need be, using most of the same machinery as | 
 |      ctf_add_enum(), to ensure that we do not allow things past that are not | 
 |      enums or forwards to them.  (This includes other slices: you cannot slice a | 
 |      slice, which would be a useless thing to do anyway.)  */ | 
 |  | 
 |   if (name != NULL) | 
 |     type = ctf_lookup_by_rawname (fp, CTF_K_ENUM, name); | 
 |  | 
 |   if (type != 0) | 
 |     { | 
 |       if ((ctf_type_kind (fp, type) != CTF_K_FORWARD) && | 
 | 	  (ctf_type_kind_unsliced (fp, type) != CTF_K_ENUM)) | 
 | 	return (ctf_set_typed_errno (fp, ECTF_NOTINTFP)); | 
 |     } | 
 |   else if ((type = ctf_add_enum (fp, flag, name)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   /* Now attach a suitable slice to it.  */ | 
 |  | 
 |   return ctf_add_slice (fp, flag, type, ep); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_forward (ctf_dict_t *fp, uint32_t flag, const char *name, | 
 | 		 uint32_t kind) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type = 0; | 
 |  | 
 |   if (!ctf_forwardable_kind (kind)) | 
 |     return (ctf_set_typed_errno (fp, ECTF_NOTSUE)); | 
 |  | 
 |   if (name == NULL || name[0] == '\0') | 
 |     return (ctf_set_typed_errno (fp, ECTF_NONAME)); | 
 |  | 
 |   /* If the type is already defined or exists as a forward tag, just return | 
 |      the ctf_id_t of the existing definition.  Since this changes nothing, | 
 |      it's safe to do even on the read-only portion of the dict.  */ | 
 |  | 
 |   type = ctf_lookup_by_rawname (fp, kind, name); | 
 |  | 
 |   if (type) | 
 |     return type; | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, name, kind, 0, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_FORWARD, flag, 0); | 
 |   dtd->dtd_data.ctt_type = kind; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_unknown (ctf_dict_t *fp, uint32_t flag, const char *name) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type = 0; | 
 |  | 
 |   /* If a type is already defined with this name, error (if not CTF_K_UNKNOWN) | 
 |      or just return it.  */ | 
 |  | 
 |   if (name != NULL && name[0] != '\0' && flag == CTF_ADD_ROOT | 
 |       && (type = ctf_lookup_by_rawname (fp, CTF_K_UNKNOWN, name))) | 
 |     { | 
 |       if (ctf_type_kind (fp, type) == CTF_K_UNKNOWN) | 
 | 	return type; | 
 |       else | 
 | 	{ | 
 | 	  ctf_err_warn (fp, 1, ECTF_CONFLICT, | 
 | 			_("ctf_add_unknown: cannot add unknown type " | 
 | 			  "named %s: type of this name already defined"), | 
 | 			name ? name : _("(unnamed type)")); | 
 | 	  return (ctf_set_typed_errno (fp, ECTF_CONFLICT)); | 
 | 	} | 
 |     } | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, name, CTF_K_UNKNOWN, 0, &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_UNKNOWN, flag, 0); | 
 |   dtd->dtd_data.ctt_type = 0; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_typedef (ctf_dict_t *fp, uint32_t flag, const char *name, | 
 | 		 ctf_id_t ref) | 
 | { | 
 |   ctf_dtdef_t *dtd; | 
 |   ctf_id_t type; | 
 |   ctf_dict_t *tmp = fp; | 
 |  | 
 |   if (ref == CTF_ERR || ref > CTF_MAX_TYPE) | 
 |     return (ctf_set_typed_errno (fp, EINVAL)); | 
 |  | 
 |   if (name == NULL || name[0] == '\0') | 
 |     return (ctf_set_typed_errno (fp, ECTF_NONAME)); | 
 |  | 
 |   if (ref != 0 && ctf_lookup_by_id (&tmp, ref) == NULL) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   if ((type = ctf_add_generic (fp, flag, name, CTF_K_TYPEDEF, 0, | 
 | 			       &dtd)) == CTF_ERR) | 
 |     return CTF_ERR;		/* errno is set for us.  */ | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (CTF_K_TYPEDEF, flag, 0); | 
 |   dtd->dtd_data.ctt_type = (uint32_t) ref; | 
 |  | 
 |   return type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_volatile (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) | 
 | { | 
 |   return (ctf_add_reftype (fp, flag, ref, CTF_K_VOLATILE)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_const (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) | 
 | { | 
 |   return (ctf_add_reftype (fp, flag, ref, CTF_K_CONST)); | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_restrict (ctf_dict_t *fp, uint32_t flag, ctf_id_t ref) | 
 | { | 
 |   return (ctf_add_reftype (fp, flag, ref, CTF_K_RESTRICT)); | 
 | } | 
 |  | 
 | int | 
 | ctf_add_enumerator (ctf_dict_t *fp, ctf_id_t enid, const char *name, | 
 | 		    int value) | 
 | { | 
 |   ctf_dict_t *ofp = fp; | 
 |   ctf_dtdef_t *dtd; | 
 |   unsigned char *old_vlen; | 
 |   ctf_enum_t *en; | 
 |  | 
 |   uint32_t kind, vlen, root; | 
 |  | 
 |   if (name == NULL) | 
 |     return (ctf_set_errno (fp, EINVAL)); | 
 |  | 
 |   if ((enid = ctf_type_resolve_unsliced (fp, enid)) == CTF_ERR) | 
 |       return -1;				/* errno is set for us.  */ | 
 |  | 
 |   dtd = ctf_dtd_lookup (fp, enid); | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, enid)) | 
 |     fp = fp->ctf_parent; | 
 |  | 
 |   if (enid < fp->ctf_stypes) | 
 |     return (ctf_set_errno (ofp, ECTF_RDONLY)); | 
 |  | 
 |   if (dtd == NULL) | 
 |     return (ctf_set_errno (ofp, ECTF_BADID)); | 
 |  | 
 |   kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); | 
 |   root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info); | 
 |   vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); | 
 |  | 
 |   /* Enumeration constant names are only added, and only checked for duplicates, | 
 |      if the enum they are part of is a root-visible type.  */ | 
 |  | 
 |   if (root && ctf_dynhash_lookup (fp->ctf_names, name)) | 
 |     { | 
 |       if (fp->ctf_flags & LCTF_STRICT_NO_DUP_ENUMERATORS) | 
 | 	return (ctf_set_errno (ofp, ECTF_DUPLICATE)); | 
 |  | 
 |       if (ctf_track_enumerator (fp, enid, name) < 0) | 
 | 	return (ctf_set_errno (ofp, ctf_errno (fp))); | 
 |     } | 
 |  | 
 |   if (kind != CTF_K_ENUM) | 
 |     return (ctf_set_errno (ofp, ECTF_NOTENUM)); | 
 |  | 
 |   if (vlen == CTF_MAX_VLEN) | 
 |     return (ctf_set_errno (ofp, ECTF_DTFULL)); | 
 |  | 
 |   old_vlen = dtd->dtd_vlen; | 
 |  | 
 |   if (ctf_grow_vlen (fp, dtd, sizeof (ctf_enum_t) * (vlen + 1)) < 0) | 
 |     return -1;					/* errno is set for us.  */ | 
 |  | 
 |   en = (ctf_enum_t *) dtd->dtd_vlen; | 
 |  | 
 |   /* Remove refs in the old vlen region and reapply them.  */ | 
 |  | 
 |   ctf_str_move_refs (fp, old_vlen, sizeof (ctf_enum_t) * vlen, dtd->dtd_vlen); | 
 |  | 
 |   /* Check for constant duplication within any given enum: only needed for | 
 |      non-root-visible types, since the duplicate detection above does the job | 
 |      for root-visible types just fine.  */ | 
 |  | 
 |   if (root == CTF_ADD_NONROOT && (fp->ctf_flags & LCTF_STRICT_NO_DUP_ENUMERATORS)) | 
 |     { | 
 |       size_t i; | 
 |  | 
 |       for (i = 0; i < vlen; i++) | 
 | 	if (strcmp (ctf_strptr (fp, en[i].cte_name), name) == 0) | 
 | 	  return (ctf_set_errno (ofp, ECTF_DUPLICATE)); | 
 |     } | 
 |  | 
 |   en[vlen].cte_name = ctf_str_add_movable_ref (fp, name, &en[vlen].cte_name); | 
 |   en[vlen].cte_value = value; | 
 |  | 
 |   if (en[vlen].cte_name == 0 && name != NULL && name[0] != '\0') | 
 |     return (ctf_set_errno (ofp, ctf_errno (fp))); | 
 |  | 
 |   /* Put the newly-added enumerator name into the name table if this type is | 
 |      root-visible.  */ | 
 |  | 
 |   if (root == CTF_ADD_ROOT) | 
 |     { | 
 |       if (ctf_dynhash_insert (fp->ctf_names, | 
 | 			      (char *) ctf_strptr (fp, en[vlen].cte_name), | 
 | 			      (void *) (uintptr_t) enid) < 0) | 
 | 	return ctf_set_errno (fp, ENOMEM); | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int | 
 | ctf_add_member_offset (ctf_dict_t *fp, ctf_id_t souid, const char *name, | 
 | 		       ctf_id_t type, unsigned long bit_offset) | 
 | { | 
 |   ctf_dict_t *ofp = fp; | 
 |   ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, souid); | 
 |  | 
 |   ssize_t msize, malign, ssize; | 
 |   uint32_t kind, vlen, root; | 
 |   size_t i; | 
 |   int is_incomplete = 0; | 
 |   unsigned char *old_vlen; | 
 |   ctf_lmember_t *memb; | 
 |  | 
 |   if ((fp->ctf_flags & LCTF_CHILD) && LCTF_TYPE_ISPARENT (fp, souid)) | 
 |     { | 
 |       /* Adding a child type to a parent, even via the child, is prohibited. | 
 | 	 Otherwise, climb to the parent and do all work there.  */ | 
 |  | 
 |       if (LCTF_TYPE_ISCHILD (fp, type)) | 
 | 	return (ctf_set_errno (ofp, ECTF_BADID)); | 
 |  | 
 |       fp = fp->ctf_parent; | 
 |     } | 
 |  | 
 |   if (souid < fp->ctf_stypes) | 
 |     return (ctf_set_errno (ofp, ECTF_RDONLY)); | 
 |  | 
 |   if (dtd == NULL) | 
 |     return (ctf_set_errno (ofp, ECTF_BADID)); | 
 |  | 
 |   if (name != NULL && name[0] == '\0') | 
 |     name = NULL; | 
 |  | 
 |   kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); | 
 |   root = LCTF_INFO_ISROOT (fp, dtd->dtd_data.ctt_info); | 
 |   vlen = LCTF_INFO_VLEN (fp, dtd->dtd_data.ctt_info); | 
 |  | 
 |   if (kind != CTF_K_STRUCT && kind != CTF_K_UNION) | 
 |     return (ctf_set_errno (ofp, ECTF_NOTSOU)); | 
 |  | 
 |   if (vlen == CTF_MAX_VLEN) | 
 |     return (ctf_set_errno (ofp, ECTF_DTFULL)); | 
 |  | 
 |   old_vlen = dtd->dtd_vlen; | 
 |   if (ctf_grow_vlen (fp, dtd, sizeof (ctf_lmember_t) * (vlen + 1)) < 0) | 
 |     return (ctf_set_errno (ofp, ctf_errno (fp))); | 
 |   memb = (ctf_lmember_t *) dtd->dtd_vlen; | 
 |  | 
 |   /* Remove pending refs in the old vlen region and reapply them.  */ | 
 |  | 
 |   ctf_str_move_refs (fp, old_vlen, sizeof (ctf_lmember_t) * vlen, dtd->dtd_vlen); | 
 |  | 
 |   if (name != NULL) | 
 |     { | 
 |       for (i = 0; i < vlen; i++) | 
 | 	if (strcmp (ctf_strptr (fp, memb[i].ctlm_name), name) == 0) | 
 | 	  return (ctf_set_errno (ofp, ECTF_DUPLICATE)); | 
 |     } | 
 |  | 
 |   if ((msize = ctf_type_size (fp, type)) < 0 || | 
 |       (malign = ctf_type_align (fp, type)) < 0) | 
 |     { | 
 |       /* The unimplemented type, and any type that resolves to it, has no size | 
 | 	 and no alignment: it can correspond to any number of compiler-inserted | 
 | 	 types.  We allow incomplete types through since they are routinely | 
 | 	 added to the ends of structures, and can even be added elsewhere in | 
 | 	 structures by the deduplicator.  They are assumed to be zero-size with | 
 | 	 no alignment: this is often wrong, but problems can be avoided in this | 
 | 	 case by explicitly specifying the size of the structure via the _sized | 
 | 	 functions.  The deduplicator always does this.  */ | 
 |  | 
 |       msize = 0; | 
 |       malign = 0; | 
 |       if (ctf_errno (fp) == ECTF_NONREPRESENTABLE) | 
 | 	ctf_set_errno (fp, 0); | 
 |       else if (ctf_errno (fp) == ECTF_INCOMPLETE) | 
 | 	is_incomplete = 1; | 
 |       else | 
 | 	return -1;		/* errno is set for us.  */ | 
 |     } | 
 |  | 
 |   memb[vlen].ctlm_name = ctf_str_add_movable_ref (fp, name, &memb[vlen].ctlm_name); | 
 |   memb[vlen].ctlm_type = type; | 
 |   if (memb[vlen].ctlm_name == 0 && name != NULL && name[0] != '\0') | 
 |     return -1;			/* errno is set for us.  */ | 
 |  | 
 |   if (kind == CTF_K_STRUCT && vlen != 0) | 
 |     { | 
 |       if (bit_offset == (unsigned long) - 1) | 
 | 	{ | 
 | 	  /* Natural alignment.  */ | 
 |  | 
 | 	  ctf_id_t ltype = ctf_type_resolve (fp, memb[vlen - 1].ctlm_type); | 
 | 	  size_t off = CTF_LMEM_OFFSET(&memb[vlen - 1]); | 
 |  | 
 | 	  ctf_encoding_t linfo; | 
 | 	  ssize_t lsize; | 
 |  | 
 | 	  /* Propagate any error from ctf_type_resolve.  If the last member was | 
 | 	     of unimplemented type, this may be -ECTF_NONREPRESENTABLE: we | 
 | 	     cannot insert right after such a member without explicit offset | 
 | 	     specification, because its alignment and size is not known.  */ | 
 | 	  if (ltype == CTF_ERR) | 
 | 	    return -1;	/* errno is set for us.  */ | 
 |  | 
 | 	  if (is_incomplete) | 
 | 	    { | 
 | 	      ctf_err_warn (ofp, 1, ECTF_INCOMPLETE, | 
 | 			    _("ctf_add_member_offset: cannot add member %s of " | 
 | 			      "incomplete type %lx to struct %lx without " | 
 | 			      "specifying explicit offset\n"), | 
 | 			    name ? name : _("(unnamed member)"), type, souid); | 
 | 	      return (ctf_set_errno (ofp, ECTF_INCOMPLETE)); | 
 | 	    } | 
 |  | 
 | 	  if (ctf_type_encoding (fp, ltype, &linfo) == 0) | 
 | 	    off += linfo.cte_bits; | 
 | 	  else if ((lsize = ctf_type_size (fp, ltype)) > 0) | 
 | 	    off += lsize * CHAR_BIT; | 
 | 	  else if (lsize == -1 && ctf_errno (fp) == ECTF_INCOMPLETE) | 
 | 	    { | 
 | 	      const char *lname = ctf_strraw (fp, memb[vlen - 1].ctlm_name); | 
 |  | 
 | 	      ctf_err_warn (ofp, 1, ECTF_INCOMPLETE, | 
 | 			    _("ctf_add_member_offset: cannot add member %s of " | 
 | 			      "type %lx to struct %lx without specifying " | 
 | 			      "explicit offset after member %s of type %lx, " | 
 | 			      "which is an incomplete type\n"), | 
 | 			    name ? name : _("(unnamed member)"), type, souid, | 
 | 			    lname ? lname : _("(unnamed member)"), ltype); | 
 | 	      return (ctf_set_errno (ofp, ECTF_INCOMPLETE)); | 
 | 	    } | 
 |  | 
 | 	  /* Round up the offset of the end of the last member to | 
 | 	     the next byte boundary, convert 'off' to bytes, and | 
 | 	     then round it up again to the next multiple of the | 
 | 	     alignment required by the new member.  Finally, | 
 | 	     convert back to bits and store the result in | 
 | 	     dmd_offset.  Technically we could do more efficient | 
 | 	     packing if the new member is a bit-field, but we're | 
 | 	     the "compiler" and ANSI says we can do as we choose.  */ | 
 |  | 
 | 	  off = roundup (off, CHAR_BIT) / CHAR_BIT; | 
 | 	  off = roundup (off, MAX (malign, 1)); | 
 | 	  memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (off * CHAR_BIT); | 
 | 	  memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (off * CHAR_BIT); | 
 | 	  ssize = off + msize; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  /* Specified offset in bits.  */ | 
 |  | 
 | 	  memb[vlen].ctlm_offsethi = CTF_OFFSET_TO_LMEMHI (bit_offset); | 
 | 	  memb[vlen].ctlm_offsetlo = CTF_OFFSET_TO_LMEMLO (bit_offset); | 
 | 	  ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL); | 
 | 	  ssize = MAX (ssize, ((signed) bit_offset / CHAR_BIT) + msize); | 
 | 	} | 
 |     } | 
 |   else | 
 |     { | 
 |       memb[vlen].ctlm_offsethi = 0; | 
 |       memb[vlen].ctlm_offsetlo = 0; | 
 |       ssize = ctf_get_ctt_size (fp, &dtd->dtd_data, NULL, NULL); | 
 |       ssize = MAX (ssize, msize); | 
 |     } | 
 |  | 
 |   dtd->dtd_data.ctt_size = CTF_LSIZE_SENT; | 
 |   dtd->dtd_data.ctt_lsizehi = CTF_SIZE_TO_LSIZE_HI (ssize); | 
 |   dtd->dtd_data.ctt_lsizelo = CTF_SIZE_TO_LSIZE_LO (ssize); | 
 |   dtd->dtd_data.ctt_info = CTF_TYPE_INFO (kind, root, vlen + 1); | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int | 
 | ctf_add_member_encoded (ctf_dict_t *fp, ctf_id_t souid, const char *name, | 
 | 			ctf_id_t type, unsigned long bit_offset, | 
 | 			const ctf_encoding_t encoding) | 
 | { | 
 |   ctf_dtdef_t *dtd = ctf_dtd_lookup (fp, type); | 
 |   int kind; | 
 |   int otype = type; | 
 |  | 
 |   if (dtd == NULL) | 
 |     return (ctf_set_errno (fp, ECTF_BADID)); | 
 |  | 
 |   kind = LCTF_INFO_KIND (fp, dtd->dtd_data.ctt_info); | 
 |  | 
 |   if ((kind != CTF_K_INTEGER) && (kind != CTF_K_FLOAT) && (kind != CTF_K_ENUM)) | 
 |     return (ctf_set_errno (fp, ECTF_NOTINTFP)); | 
 |  | 
 |   if ((type = ctf_add_slice (fp, CTF_ADD_NONROOT, otype, &encoding)) == CTF_ERR) | 
 |     return -1;			/* errno is set for us.  */ | 
 |  | 
 |   return ctf_add_member_offset (fp, souid, name, type, bit_offset); | 
 | } | 
 |  | 
 | int | 
 | ctf_add_member (ctf_dict_t *fp, ctf_id_t souid, const char *name, | 
 | 		ctf_id_t type) | 
 | { | 
 |   return ctf_add_member_offset (fp, souid, name, type, (unsigned long) - 1); | 
 | } | 
 |  | 
 | /* Add a variable regardless of whether or not it is already present. | 
 |  | 
 |    Internal use only.  */ | 
 | int | 
 | ctf_add_variable_forced (ctf_dict_t *fp, const char *name, ctf_id_t ref) | 
 | { | 
 |   ctf_dvdef_t *dvd; | 
 |   ctf_dict_t *tmp = fp; | 
 |  | 
 |   if (ctf_lookup_by_id (&tmp, ref) == NULL) | 
 |     return -1;			/* errno is set for us.  */ | 
 |  | 
 |   /* Make sure this type is representable.  */ | 
 |   if ((ctf_type_resolve (fp, ref) == CTF_ERR) | 
 |       && (ctf_errno (fp) == ECTF_NONREPRESENTABLE)) | 
 |     return -1; | 
 |  | 
 |   if ((dvd = malloc (sizeof (ctf_dvdef_t))) == NULL) | 
 |     return (ctf_set_errno (fp, EAGAIN)); | 
 |  | 
 |   if (name != NULL && (dvd->dvd_name = strdup (name)) == NULL) | 
 |     { | 
 |       free (dvd); | 
 |       return (ctf_set_errno (fp, EAGAIN)); | 
 |     } | 
 |   dvd->dvd_type = ref; | 
 |   dvd->dvd_snapshots = fp->ctf_snapshots; | 
 |  | 
 |   if (ctf_dvd_insert (fp, dvd) < 0) | 
 |     { | 
 |       free (dvd->dvd_name); | 
 |       free (dvd); | 
 |       return -1;			/* errno is set for us.  */ | 
 |     } | 
 |  | 
 |   return 0; | 
 | } | 
 |  | 
 | int | 
 | ctf_add_variable (ctf_dict_t *fp, const char *name, ctf_id_t ref) | 
 | { | 
 |   if (ctf_lookup_variable_here (fp, name) != CTF_ERR) | 
 |     return (ctf_set_errno (fp, ECTF_DUPLICATE)); | 
 |  | 
 |   if (ctf_errno (fp) != ECTF_NOTYPEDAT) | 
 |     return -1;				/* errno is set for us.  */ | 
 |  | 
 |   return ctf_add_variable_forced (fp, name, ref); | 
 | } | 
 |  | 
 | /* Add a function or object symbol regardless of whether or not it is already | 
 |    present (already existing symbols are silently overwritten). | 
 |  | 
 |    Internal use only.  */ | 
 | int | 
 | ctf_add_funcobjt_sym_forced (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id) | 
 | { | 
 |   ctf_dict_t *tmp = fp; | 
 |   char *dupname; | 
 |   ctf_dynhash_t *h = is_function ? fp->ctf_funchash : fp->ctf_objthash; | 
 |  | 
 |   if (ctf_lookup_by_id (&tmp, id) == NULL) | 
 |     return -1;				/* errno is set for us.  */ | 
 |  | 
 |   if (is_function && ctf_type_kind (fp, id) != CTF_K_FUNCTION) | 
 |     return (ctf_set_errno (fp, ECTF_NOTFUNC)); | 
 |  | 
 |   if ((dupname = strdup (name)) == NULL) | 
 |     return (ctf_set_errno (fp, ENOMEM)); | 
 |  | 
 |   if (ctf_dynhash_insert (h, dupname, (void *) (uintptr_t) id) < 0) | 
 |     { | 
 |       free (dupname); | 
 |       return (ctf_set_errno (fp, ENOMEM)); | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | int | 
 | ctf_add_funcobjt_sym (ctf_dict_t *fp, int is_function, const char *name, ctf_id_t id) | 
 | { | 
 |   if (ctf_lookup_by_sym_or_name (fp, 0, name, 0, is_function) != CTF_ERR) | 
 |     return (ctf_set_errno (fp, ECTF_DUPLICATE)); | 
 |  | 
 |   return ctf_add_funcobjt_sym_forced (fp, is_function, name, id); | 
 | } | 
 |  | 
 | int | 
 | ctf_add_objt_sym (ctf_dict_t *fp, const char *name, ctf_id_t id) | 
 | { | 
 |   return (ctf_add_funcobjt_sym (fp, 0, name, id)); | 
 | } | 
 |  | 
 | int | 
 | ctf_add_func_sym (ctf_dict_t *fp, const char *name, ctf_id_t id) | 
 | { | 
 |   return (ctf_add_funcobjt_sym (fp, 1, name, id)); | 
 | } | 
 |  | 
 | /* Add an enumeration constant observed in a given enum type as an identifier. | 
 |    They appear as names that cite the enum type. | 
 |  | 
 |    Constants that appear in more than one enum, or which are already the names | 
 |    of types, appear in ctf_conflicting_enums as well. | 
 |  | 
 |    This is done for all enumeration types at open time, and for newly-added ones | 
 |    as well: if the strict-enum flag is turned on, this table must be kept up to | 
 |    date with enums added in the interim.  */ | 
 |  | 
 | int | 
 | ctf_track_enumerator (ctf_dict_t *fp, ctf_id_t type, const char *cte_name) | 
 | { | 
 |   int err; | 
 |  | 
 |   if (ctf_dynhash_lookup_type (fp->ctf_names, cte_name) == 0) | 
 |     { | 
 |       uint32_t name = ctf_str_add (fp, cte_name); | 
 |  | 
 |       if (name == 0) | 
 | 	return -1;				/* errno is set for us.  */ | 
 |  | 
 |       err = ctf_dynhash_insert_type (fp, fp->ctf_names, type, name); | 
 |     } | 
 |   else | 
 |     { | 
 |       err = ctf_dynset_insert (fp->ctf_conflicting_enums, (void *) | 
 | 			       cte_name); | 
 |       if (err != 0) | 
 | 	ctf_set_errno (fp, err * -1); | 
 |     } | 
 |   if (err != 0) | 
 |     return -1;					/* errno is set for us.  */ | 
 |   return 0; | 
 | } | 
 |  | 
 | typedef struct ctf_bundle | 
 | { | 
 |   ctf_dict_t *ctb_dict;		/* CTF dict handle.  */ | 
 |   ctf_id_t ctb_type;		/* CTF type identifier.  */ | 
 |   ctf_dtdef_t *ctb_dtd;		/* CTF dynamic type definition (if any).  */ | 
 | } ctf_bundle_t; | 
 |  | 
 | static int | 
 | enumcmp (const char *name, int value, void *arg) | 
 | { | 
 |   ctf_bundle_t *ctb = arg; | 
 |   int bvalue; | 
 |  | 
 |   if (ctf_enum_value (ctb->ctb_dict, ctb->ctb_type, name, &bvalue) < 0) | 
 |     { | 
 |       ctf_err_warn (ctb->ctb_dict, 0, 0, | 
 | 		    _("conflict due to enum %s iteration error"), name); | 
 |       return 1; | 
 |     } | 
 |   if (value != bvalue) | 
 |     { | 
 |       ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT, | 
 | 		    _("conflict due to enum value change: %i versus %i"), | 
 | 		    value, bvalue); | 
 |       return 1; | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | static int | 
 | enumadd (const char *name, int value, void *arg) | 
 | { | 
 |   ctf_bundle_t *ctb = arg; | 
 |  | 
 |   return (ctf_add_enumerator (ctb->ctb_dict, ctb->ctb_type, | 
 | 			      name, value) < 0); | 
 | } | 
 |  | 
 | static int | 
 | membcmp (const char *name, ctf_id_t type _libctf_unused_, unsigned long offset, | 
 | 	 void *arg) | 
 | { | 
 |   ctf_bundle_t *ctb = arg; | 
 |   ctf_membinfo_t ctm; | 
 |  | 
 |   /* Don't check nameless members (e.g. anonymous structs/unions) against each | 
 |      other.  */ | 
 |   if (name[0] == 0) | 
 |     return 0; | 
 |  | 
 |   if (ctf_member_info (ctb->ctb_dict, ctb->ctb_type, name, &ctm) < 0) | 
 |     { | 
 |       ctf_err_warn (ctb->ctb_dict, 0, 0, | 
 | 		    _("conflict due to struct member %s iteration error"), | 
 | 		    name); | 
 |       return 1; | 
 |     } | 
 |   if (ctm.ctm_offset != offset) | 
 |     { | 
 |       ctf_err_warn (ctb->ctb_dict, 1, ECTF_CONFLICT, | 
 | 		    _("conflict due to struct member %s offset change: " | 
 | 		      "%lx versus %lx"), | 
 | 		    name, ctm.ctm_offset, offset); | 
 |       return 1; | 
 |     } | 
 |   return 0; | 
 | } | 
 |  | 
 | /* Record the correspondence between a source and ctf_add_type()-added | 
 |    destination type: both types are translated into parent type IDs if need be, | 
 |    so they relate to the actual dictionary they are in.  Outside controlled | 
 |    circumstances (like linking) it is probably not useful to do more than | 
 |    compare these pointers, since there is nothing stopping the user closing the | 
 |    source dict whenever they want to. | 
 |  | 
 |    Our OOM handling here is just to not do anything, because this is called deep | 
 |    enough in the call stack that doing anything useful is painfully difficult: | 
 |    the worst consequence if we do OOM is a bit of type duplication anyway.  */ | 
 |  | 
 | static void | 
 | ctf_add_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, | 
 | 		      ctf_dict_t *dst_fp, ctf_id_t dst_type) | 
 | { | 
 |   if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) | 
 |     src_fp = src_fp->ctf_parent; | 
 |  | 
 |   src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); | 
 |  | 
 |   if (LCTF_TYPE_ISPARENT (dst_fp, dst_type) && dst_fp->ctf_parent) | 
 |     dst_fp = dst_fp->ctf_parent; | 
 |  | 
 |   dst_type = LCTF_TYPE_TO_INDEX(dst_fp, dst_type); | 
 |  | 
 |   if (dst_fp->ctf_link_type_mapping == NULL) | 
 |     { | 
 |       ctf_hash_fun f = ctf_hash_type_key; | 
 |       ctf_hash_eq_fun e = ctf_hash_eq_type_key; | 
 |  | 
 |       if ((dst_fp->ctf_link_type_mapping = ctf_dynhash_create (f, e, free, | 
 | 							       NULL)) == NULL) | 
 | 	return; | 
 |     } | 
 |  | 
 |   ctf_link_type_key_t *key; | 
 |   key = calloc (1, sizeof (struct ctf_link_type_key)); | 
 |   if (!key) | 
 |     return; | 
 |  | 
 |   key->cltk_fp = src_fp; | 
 |   key->cltk_idx = src_type; | 
 |  | 
 |   /* No OOM checking needed, because if this doesn't work the worst we'll do is | 
 |      add a few more duplicate types (which will probably run out of memory | 
 |      anyway).  */ | 
 |   ctf_dynhash_insert (dst_fp->ctf_link_type_mapping, key, | 
 | 		      (void *) (uintptr_t) dst_type); | 
 | } | 
 |  | 
 | /* Look up a type mapping: return 0 if none.  The DST_FP is modified to point to | 
 |    the parent if need be.  The ID returned is from the dst_fp's perspective.  */ | 
 | static ctf_id_t | 
 | ctf_type_mapping (ctf_dict_t *src_fp, ctf_id_t src_type, ctf_dict_t **dst_fp) | 
 | { | 
 |   ctf_link_type_key_t key; | 
 |   ctf_dict_t *target_fp = *dst_fp; | 
 |   ctf_id_t dst_type = 0; | 
 |  | 
 |   if (LCTF_TYPE_ISPARENT (src_fp, src_type) && src_fp->ctf_parent) | 
 |     src_fp = src_fp->ctf_parent; | 
 |  | 
 |   src_type = LCTF_TYPE_TO_INDEX(src_fp, src_type); | 
 |   key.cltk_fp = src_fp; | 
 |   key.cltk_idx = src_type; | 
 |  | 
 |   if (target_fp->ctf_link_type_mapping) | 
 |     dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, | 
 | 					       &key); | 
 |  | 
 |   if (dst_type != 0) | 
 |     { | 
 |       dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, | 
 | 				     target_fp->ctf_parent != NULL); | 
 |       *dst_fp = target_fp; | 
 |       return dst_type; | 
 |     } | 
 |  | 
 |   if (target_fp->ctf_parent) | 
 |     target_fp = target_fp->ctf_parent; | 
 |   else | 
 |     return 0; | 
 |  | 
 |   if (target_fp->ctf_link_type_mapping) | 
 |     dst_type = (uintptr_t) ctf_dynhash_lookup (target_fp->ctf_link_type_mapping, | 
 | 					       &key); | 
 |  | 
 |   if (dst_type) | 
 |     dst_type = LCTF_INDEX_TO_TYPE (target_fp, dst_type, | 
 | 				   target_fp->ctf_parent != NULL); | 
 |  | 
 |   *dst_fp = target_fp; | 
 |   return dst_type; | 
 | } | 
 |  | 
 | /* The ctf_add_type routine is used to copy a type from a source CTF dictionary | 
 |    to a dynamic destination dictionary.  This routine operates recursively by | 
 |    following the source type's links and embedded member types.  If the | 
 |    destination dict already contains a named type which has the same attributes, | 
 |    then we succeed and return this type but no changes occur.  */ | 
 | static ctf_id_t | 
 | ctf_add_type_internal (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type, | 
 | 		       ctf_dict_t *proc_tracking_fp) | 
 | { | 
 |   ctf_id_t dst_type = CTF_ERR; | 
 |   uint32_t dst_kind = CTF_K_UNKNOWN; | 
 |   ctf_dict_t *tmp_fp = dst_fp; | 
 |   ctf_id_t tmp; | 
 |  | 
 |   const char *name; | 
 |   uint32_t kind, forward_kind, flag, vlen; | 
 |  | 
 |   const ctf_type_t *src_tp, *dst_tp; | 
 |   ctf_bundle_t src, dst; | 
 |   ctf_encoding_t src_en, dst_en; | 
 |   ctf_arinfo_t src_ar, dst_ar; | 
 |  | 
 |   ctf_funcinfo_t ctc; | 
 |  | 
 |   ctf_id_t orig_src_type = src_type; | 
 |  | 
 |   if ((src_tp = ctf_lookup_by_id (&src_fp, src_type)) == NULL) | 
 |     return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); | 
 |  | 
 |   if ((ctf_type_resolve (src_fp, src_type) == CTF_ERR) | 
 |       && (ctf_errno (src_fp) == ECTF_NONREPRESENTABLE)) | 
 |     return (ctf_set_typed_errno (dst_fp, ECTF_NONREPRESENTABLE)); | 
 |  | 
 |   name = ctf_strptr (src_fp, src_tp->ctt_name); | 
 |   kind = LCTF_INFO_KIND (src_fp, src_tp->ctt_info); | 
 |   flag = LCTF_INFO_ISROOT (src_fp, src_tp->ctt_info); | 
 |   vlen = LCTF_INFO_VLEN (src_fp, src_tp->ctt_info); | 
 |  | 
 |   /* If this is a type we are currently in the middle of adding, hand it | 
 |      straight back.  (This lets us handle self-referential structures without | 
 |      considering forwards and empty structures the same as their completed | 
 |      forms.)  */ | 
 |  | 
 |   tmp = ctf_type_mapping (src_fp, src_type, &tmp_fp); | 
 |  | 
 |   if (tmp != 0) | 
 |     { | 
 |       if (ctf_dynhash_lookup (proc_tracking_fp->ctf_add_processing, | 
 | 			      (void *) (uintptr_t) src_type)) | 
 | 	return tmp; | 
 |  | 
 |       /* If this type has already been added from this dictionary, and is the | 
 | 	 same kind and (if a struct or union) has the same number of members, | 
 | 	 hand it straight back.  */ | 
 |  | 
 |       if (ctf_type_kind_unsliced (tmp_fp, tmp) == (int) kind) | 
 | 	{ | 
 | 	  if (kind == CTF_K_STRUCT || kind == CTF_K_UNION | 
 | 	      || kind == CTF_K_ENUM) | 
 | 	    { | 
 | 	      if ((dst_tp = ctf_lookup_by_id (&tmp_fp, dst_type)) != NULL) | 
 | 		if (vlen == LCTF_INFO_VLEN (tmp_fp, dst_tp->ctt_info)) | 
 | 		  return tmp; | 
 | 	    } | 
 | 	  else | 
 | 	    return tmp; | 
 | 	} | 
 |     } | 
 |  | 
 |   forward_kind = kind; | 
 |   if (kind == CTF_K_FORWARD) | 
 |     forward_kind = src_tp->ctt_type; | 
 |  | 
 |   /* If the source type has a name and is a root type (visible at the top-level | 
 |      scope), lookup the name in the destination dictionary and verify that it is | 
 |      of the same kind before we do anything else.  */ | 
 |  | 
 |   if ((flag & CTF_ADD_ROOT) && name[0] != '\0' | 
 |       && (tmp = ctf_lookup_by_rawname (dst_fp, forward_kind, name)) != 0) | 
 |     { | 
 |       dst_type = tmp; | 
 |       dst_kind = ctf_type_kind_unsliced (dst_fp, dst_type); | 
 |     } | 
 |  | 
 |   /* If an identically named dst_type exists, fail with ECTF_CONFLICT | 
 |      unless dst_type is a forward declaration and src_type is a struct, | 
 |      union, or enum (i.e. the definition of the previous forward decl). | 
 |  | 
 |      We also allow addition in the opposite order (addition of a forward when a | 
 |      struct, union, or enum already exists), which is a NOP and returns the | 
 |      already-present struct, union, or enum.  */ | 
 |  | 
 |   if (dst_type != CTF_ERR && dst_kind != kind) | 
 |     { | 
 |       if (kind == CTF_K_FORWARD | 
 | 	  && (dst_kind == CTF_K_ENUM || dst_kind == CTF_K_STRUCT | 
 | 	      || dst_kind == CTF_K_UNION)) | 
 | 	{ | 
 | 	  ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); | 
 | 	  return dst_type; | 
 | 	} | 
 |  | 
 |       if (dst_kind != CTF_K_FORWARD | 
 | 	  || (kind != CTF_K_ENUM && kind != CTF_K_STRUCT | 
 | 	      && kind != CTF_K_UNION)) | 
 | 	{ | 
 | 	  ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, | 
 | 			_("ctf_add_type: conflict for type %s: " | 
 | 			  "kinds differ, new: %i; old (ID %lx): %i"), | 
 | 			name, kind, dst_type, dst_kind); | 
 | 	  return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* We take special action for an integer, float, or slice since it is | 
 |      described not only by its name but also its encoding.  For integers, | 
 |      bit-fields exploit this degeneracy.  */ | 
 |  | 
 |   if (kind == CTF_K_INTEGER || kind == CTF_K_FLOAT || kind == CTF_K_SLICE) | 
 |     { | 
 |       if (ctf_type_encoding (src_fp, src_type, &src_en) != 0) | 
 | 	return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); | 
 |  | 
 |       if (dst_type != CTF_ERR) | 
 | 	{ | 
 | 	  ctf_dict_t *fp = dst_fp; | 
 |  | 
 | 	  if ((dst_tp = ctf_lookup_by_id (&fp, dst_type)) == NULL) | 
 | 	    return CTF_ERR; | 
 |  | 
 | 	  if (ctf_type_encoding (dst_fp, dst_type, &dst_en) != 0) | 
 | 	    return CTF_ERR;			/* errno set for us.  */ | 
 |  | 
 | 	  if (LCTF_INFO_ISROOT (fp, dst_tp->ctt_info) & CTF_ADD_ROOT) | 
 | 	    { | 
 | 	      /* The type that we found in the hash is also root-visible.  If | 
 | 		 the two types match then use the existing one; otherwise, | 
 | 		 declare a conflict.  Note: slices are not certain to match | 
 | 		 even if there is no conflict: we must check the contained type | 
 | 		 too.  */ | 
 |  | 
 | 	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0) | 
 | 		{ | 
 | 		  if (kind != CTF_K_SLICE) | 
 | 		    { | 
 | 		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); | 
 | 		      return dst_type; | 
 | 		    } | 
 | 		} | 
 | 	      else | 
 | 		  { | 
 | 		    return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 		  } | 
 | 	    } | 
 | 	  else | 
 | 	    { | 
 | 	      /* We found a non-root-visible type in the hash.  If its encoding | 
 | 		 is the same, we can reuse it, unless it is a slice.  */ | 
 |  | 
 | 	      if (memcmp (&src_en, &dst_en, sizeof (ctf_encoding_t)) == 0) | 
 | 		{ | 
 | 		  if (kind != CTF_K_SLICE) | 
 | 		    { | 
 | 		      ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); | 
 | 		      return dst_type; | 
 | 		    } | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   src.ctb_dict = src_fp; | 
 |   src.ctb_type = src_type; | 
 |   src.ctb_dtd = NULL; | 
 |  | 
 |   dst.ctb_dict = dst_fp; | 
 |   dst.ctb_type = dst_type; | 
 |   dst.ctb_dtd = NULL; | 
 |  | 
 |   /* Now perform kind-specific processing.  If dst_type is CTF_ERR, then we add | 
 |      a new type with the same properties as src_type to dst_fp.  If dst_type is | 
 |      not CTF_ERR, then we verify that dst_type has the same attributes as | 
 |      src_type.  We recurse for embedded references.  Before we start, we note | 
 |      that we are processing this type, to prevent infinite recursion: we do not | 
 |      re-process any type that appears in this list.  The list is emptied | 
 |      wholesale at the end of processing everything in this recursive stack.  */ | 
 |  | 
 |   if (ctf_dynhash_insert (proc_tracking_fp->ctf_add_processing, | 
 | 			  (void *) (uintptr_t) src_type, (void *) 1) < 0) | 
 |     return ctf_set_typed_errno (dst_fp, ENOMEM); | 
 |  | 
 |   switch (kind) | 
 |     { | 
 |     case CTF_K_INTEGER: | 
 |       /*  If we found a match we will have either returned it or declared a | 
 | 	  conflict.  */ | 
 |       dst_type = ctf_add_integer (dst_fp, flag, name, &src_en); | 
 |       break; | 
 |  | 
 |     case CTF_K_FLOAT: | 
 |       /* If we found a match we will have either returned it or declared a | 
 |        conflict.  */ | 
 |       dst_type = ctf_add_float (dst_fp, flag, name, &src_en); | 
 |       break; | 
 |  | 
 |     case CTF_K_SLICE: | 
 |       /* We have checked for conflicting encodings: now try to add the | 
 | 	 contained type.  */ | 
 |       src_type = ctf_type_reference (src_fp, src_type); | 
 |       src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, | 
 | 					proc_tracking_fp); | 
 |  | 
 |       if (src_type == CTF_ERR) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |       dst_type = ctf_add_slice (dst_fp, flag, src_type, &src_en); | 
 |       break; | 
 |  | 
 |     case CTF_K_POINTER: | 
 |     case CTF_K_VOLATILE: | 
 |     case CTF_K_CONST: | 
 |     case CTF_K_RESTRICT: | 
 |       src_type = ctf_type_reference (src_fp, src_type); | 
 |       src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, | 
 | 					proc_tracking_fp); | 
 |  | 
 |       if (src_type == CTF_ERR) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |       dst_type = ctf_add_reftype (dst_fp, flag, src_type, kind); | 
 |       break; | 
 |  | 
 |     case CTF_K_ARRAY: | 
 |       if (ctf_array_info (src_fp, src_type, &src_ar) != 0) | 
 | 	return (ctf_set_typed_errno (dst_fp, ctf_errno (src_fp))); | 
 |  | 
 |       src_ar.ctr_contents = | 
 | 	ctf_add_type_internal (dst_fp, src_fp, src_ar.ctr_contents, | 
 | 			       proc_tracking_fp); | 
 |       src_ar.ctr_index = ctf_add_type_internal (dst_fp, src_fp, | 
 | 						src_ar.ctr_index, | 
 | 						proc_tracking_fp); | 
 |       src_ar.ctr_nelems = src_ar.ctr_nelems; | 
 |  | 
 |       if (src_ar.ctr_contents == CTF_ERR || src_ar.ctr_index == CTF_ERR) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |       if (dst_type != CTF_ERR) | 
 | 	{ | 
 | 	  if (ctf_array_info (dst_fp, dst_type, &dst_ar) != 0) | 
 | 	    return CTF_ERR;			/* errno is set for us.  */ | 
 |  | 
 | 	  if (memcmp (&src_ar, &dst_ar, sizeof (ctf_arinfo_t))) | 
 | 	    { | 
 | 	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, | 
 | 			    _("conflict for type %s against ID %lx: array info " | 
 | 			      "differs, old %lx/%lx/%x; new: %lx/%lx/%x"), | 
 | 			    name, dst_type, src_ar.ctr_contents, | 
 | 			    src_ar.ctr_index, src_ar.ctr_nelems, | 
 | 			    dst_ar.ctr_contents, dst_ar.ctr_index, | 
 | 			    dst_ar.ctr_nelems); | 
 | 	      return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	dst_type = ctf_add_array (dst_fp, flag, &src_ar); | 
 |       break; | 
 |  | 
 |     case CTF_K_FUNCTION: | 
 |       ctc.ctc_return = ctf_add_type_internal (dst_fp, src_fp, | 
 | 					      src_tp->ctt_type, | 
 | 					      proc_tracking_fp); | 
 |       ctc.ctc_argc = 0; | 
 |       ctc.ctc_flags = 0; | 
 |  | 
 |       if (ctc.ctc_return == CTF_ERR) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |       dst_type = ctf_add_function (dst_fp, flag, &ctc, NULL); | 
 |       break; | 
 |  | 
 |     case CTF_K_STRUCT: | 
 |     case CTF_K_UNION: | 
 |       { | 
 | 	ctf_next_t *i = NULL; | 
 | 	ssize_t offset; | 
 | 	const char *membname; | 
 | 	ctf_id_t src_membtype; | 
 |  | 
 | 	/* Technically to match a struct or union we need to check both | 
 | 	   ways (src members vs. dst, dst members vs. src) but we make | 
 | 	   this more optimal by only checking src vs. dst and comparing | 
 | 	   the total size of the structure (which we must do anyway) | 
 | 	   which covers the possibility of dst members not in src. | 
 | 	   This optimization can be defeated for unions, but is so | 
 | 	   pathological as to render it irrelevant for our purposes.  */ | 
 |  | 
 | 	if (dst_type != CTF_ERR && kind != CTF_K_FORWARD | 
 | 	    && dst_kind != CTF_K_FORWARD) | 
 | 	  { | 
 | 	    if (ctf_type_size (src_fp, src_type) != | 
 | 		ctf_type_size (dst_fp, dst_type)) | 
 | 	      { | 
 | 		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, | 
 | 			      _("conflict for type %s against ID %lx: union " | 
 | 				"size differs, old %li, new %li"), name, | 
 | 			      dst_type, (long) ctf_type_size (src_fp, src_type), | 
 | 			      (long) ctf_type_size (dst_fp, dst_type)); | 
 | 		return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 	      } | 
 |  | 
 | 	    if (ctf_member_iter (src_fp, src_type, membcmp, &dst)) | 
 | 	      { | 
 | 		ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, | 
 | 			      _("conflict for type %s against ID %lx: members " | 
 | 				"differ, see above"), name, dst_type); | 
 | 		return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 	      } | 
 |  | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	dst_type = ctf_add_struct_sized (dst_fp, flag, name, | 
 | 					 ctf_type_size (src_fp, src_type)); | 
 | 	if (dst_type == CTF_ERR) | 
 | 	  return CTF_ERR;			/* errno is set for us.  */ | 
 |  | 
 | 	/* Pre-emptively add this struct to the type mapping so that | 
 | 	   structures that refer to themselves work.  */ | 
 | 	ctf_add_type_mapping (src_fp, src_type, dst_fp, dst_type); | 
 |  | 
 | 	while ((offset = ctf_member_next (src_fp, src_type, &i, &membname, | 
 | 					  &src_membtype, 0)) >= 0) | 
 | 	  { | 
 | 	    ctf_dict_t *dst = dst_fp; | 
 | 	    ctf_id_t dst_membtype = ctf_type_mapping (src_fp, src_membtype, &dst); | 
 |  | 
 | 	    if (dst_membtype == 0) | 
 | 	      { | 
 | 		dst_membtype = ctf_add_type_internal (dst_fp, src_fp, | 
 | 						      src_membtype, | 
 | 						      proc_tracking_fp); | 
 | 		if (dst_membtype == CTF_ERR) | 
 | 		  { | 
 | 		    if (ctf_errno (dst_fp) != ECTF_NONREPRESENTABLE) | 
 | 		      { | 
 | 			ctf_next_destroy (i); | 
 | 			break; | 
 | 		      } | 
 | 		  } | 
 | 	      } | 
 |  | 
 | 	    if (ctf_add_member_offset (dst_fp, dst_type, membname, | 
 | 				       dst_membtype, offset) < 0) | 
 | 	      { | 
 | 		ctf_next_destroy (i); | 
 | 		break; | 
 | 	      } | 
 | 	  } | 
 | 	if (ctf_errno (src_fp) != ECTF_NEXT_END) | 
 | 	  return CTF_ERR;			/* errno is set for us.  */ | 
 | 	break; | 
 |       } | 
 |  | 
 |     case CTF_K_ENUM: | 
 |       if (dst_type != CTF_ERR && kind != CTF_K_FORWARD | 
 | 	  && dst_kind != CTF_K_FORWARD) | 
 | 	{ | 
 | 	  if (ctf_enum_iter (src_fp, src_type, enumcmp, &dst) | 
 | 	      || ctf_enum_iter (dst_fp, dst_type, enumcmp, &src)) | 
 | 	    { | 
 | 	      ctf_err_warn (dst_fp, 1, ECTF_CONFLICT, | 
 | 			    _("conflict for enum %s against ID %lx: members " | 
 | 			      "differ, see above"), name, dst_type); | 
 | 	      return (ctf_set_typed_errno (dst_fp, ECTF_CONFLICT)); | 
 | 	    } | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  ctf_snapshot_id_t snap = ctf_snapshot (dst_fp); | 
 |  | 
 | 	  dst_type = ctf_add_enum (dst_fp, flag, name); | 
 | 	  if ((dst.ctb_type = dst_type) == CTF_ERR | 
 | 	      || ctf_enum_iter (src_fp, src_type, enumadd, &dst)) | 
 | 	    { | 
 | 	      ctf_rollback (dst_fp, snap); | 
 | 	      return CTF_ERR;			/* errno is set for us */ | 
 | 	    } | 
 | 	} | 
 |       break; | 
 |  | 
 |     case CTF_K_FORWARD: | 
 |       if (dst_type == CTF_ERR) | 
 | 	  dst_type = ctf_add_forward (dst_fp, flag, name, forward_kind); | 
 |       break; | 
 |  | 
 |     case CTF_K_TYPEDEF: | 
 |       src_type = ctf_type_reference (src_fp, src_type); | 
 |       src_type = ctf_add_type_internal (dst_fp, src_fp, src_type, | 
 | 					proc_tracking_fp); | 
 |  | 
 |       if (src_type == CTF_ERR) | 
 | 	return CTF_ERR;				/* errno is set for us.  */ | 
 |  | 
 |       /* If dst_type is not CTF_ERR at this point, we should check if | 
 | 	 ctf_type_reference(dst_fp, dst_type) != src_type and if so fail with | 
 | 	 ECTF_CONFLICT.  However, this causes problems with bitness typedefs | 
 | 	 that vary based on things like if 32-bit then pid_t is int otherwise | 
 | 	 long.  We therefore omit this check and assume that if the identically | 
 | 	 named typedef already exists in dst_fp, it is correct or | 
 | 	 equivalent.  */ | 
 |  | 
 |       if (dst_type == CTF_ERR) | 
 | 	  dst_type = ctf_add_typedef (dst_fp, flag, name, src_type); | 
 |  | 
 |       break; | 
 |  | 
 |     default: | 
 |       return (ctf_set_typed_errno (dst_fp, ECTF_CORRUPT)); | 
 |     } | 
 |  | 
 |   if (dst_type != CTF_ERR) | 
 |     ctf_add_type_mapping (src_fp, orig_src_type, dst_fp, dst_type); | 
 |   return dst_type; | 
 | } | 
 |  | 
 | ctf_id_t | 
 | ctf_add_type (ctf_dict_t *dst_fp, ctf_dict_t *src_fp, ctf_id_t src_type) | 
 | { | 
 |   ctf_id_t id; | 
 |  | 
 |   if (!src_fp->ctf_add_processing) | 
 |     src_fp->ctf_add_processing = ctf_dynhash_create (ctf_hash_integer, | 
 | 						     ctf_hash_eq_integer, | 
 | 						     NULL, NULL); | 
 |  | 
 |   /* We store the hash on the source, because it contains only source type IDs: | 
 |      but callers will invariably expect errors to appear on the dest.  */ | 
 |   if (!src_fp->ctf_add_processing) | 
 |     return (ctf_set_typed_errno (dst_fp, ENOMEM)); | 
 |  | 
 |   id = ctf_add_type_internal (dst_fp, src_fp, src_type, src_fp); | 
 |   ctf_dynhash_empty (src_fp->ctf_add_processing); | 
 |  | 
 |   return id; | 
 | } |