|  | /* Common base code for the decNumber C Library. | 
|  | Copyright (C) 2007-2018 Free Software Foundation, Inc. | 
|  | Contributed by IBM Corporation.  Author Mike Cowlishaw. | 
|  |  | 
|  | This file is part of GCC. | 
|  |  | 
|  | GCC is free software; you can redistribute it and/or modify it under | 
|  | the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 3, or (at your option) any later | 
|  | version. | 
|  |  | 
|  | GCC is distributed in the hope that it will be useful, but WITHOUT ANY | 
|  | WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | for more details. | 
|  |  | 
|  | Under Section 7 of GPL version 3, you are granted additional | 
|  | permissions described in the GCC Runtime Library Exception, version | 
|  | 3.1, as published by the Free Software Foundation. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License and | 
|  | a copy of the GCC Runtime Library Exception along with this program; | 
|  | see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see | 
|  | <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decBasic.c -- common base code for Basic decimal types	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This module comprises code that is shared between decDouble and    */ | 
|  | /* decQuad (but not decSingle).  The main arithmetic operations are   */ | 
|  | /* here (Add, Subtract, Multiply, FMA, and Division operators).       */ | 
|  | /*								      */ | 
|  | /* Unlike decNumber, parameterization takes place at compile time     */ | 
|  | /* rather than at runtime.  The parameters are set in the decDouble.c */ | 
|  | /* (etc.) files, which then include this one to produce the compiled  */ | 
|  | /* code.  The functions here, therefore, are code shared between      */ | 
|  | /* multiple formats.						      */ | 
|  | /*								      */ | 
|  | /* This must be included after decCommon.c.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* Names here refer to decFloat rather than to decDouble, etc., and */ | 
|  | /* the functions are in strict alphabetical order. */ | 
|  |  | 
|  | /* The compile-time flags SINGLE, DOUBLE, and QUAD are set up in */ | 
|  | /* decCommon.c */ | 
|  | #if !defined(QUAD) | 
|  | #error decBasic.c must be included after decCommon.c | 
|  | #endif | 
|  | #if SINGLE | 
|  | #error Routines in decBasic.c are for decDouble and decQuad only | 
|  | #endif | 
|  |  | 
|  | /* Private constants */ | 
|  | #define DIVIDE	    0x80000000	   /* Divide operations [as flags] */ | 
|  | #define REMAINDER   0x40000000	   /* .. */ | 
|  | #define DIVIDEINT   0x20000000	   /* .. */ | 
|  | #define REMNEAR     0x10000000	   /* .. */ | 
|  |  | 
|  | /* Private functions (local, used only by routines in this module) */ | 
|  | static decFloat *decDivide(decFloat *, const decFloat *, | 
|  | const decFloat *, decContext *, uInt); | 
|  | static decFloat *decCanonical(decFloat *, const decFloat *); | 
|  | static void	 decFiniteMultiply(bcdnum *, uByte *, const decFloat *, | 
|  | const decFloat *); | 
|  | static decFloat *decInfinity(decFloat *, const decFloat *); | 
|  | static decFloat *decInvalid(decFloat *, decContext *); | 
|  | static decFloat *decNaNs(decFloat *, const decFloat *, const decFloat *, | 
|  | decContext *); | 
|  | static Int	 decNumCompare(const decFloat *, const decFloat *, Flag); | 
|  | static decFloat *decToIntegral(decFloat *, const decFloat *, decContext *, | 
|  | enum rounding, Flag); | 
|  | static uInt	 decToInt32(const decFloat *, decContext *, enum rounding, | 
|  | Flag, Flag); | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decCanonical -- copy a decFloat, making canonical		      */ | 
|  | /*								      */ | 
|  | /*   result gets the canonicalized df				      */ | 
|  | /*   df     is the decFloat to copy and make canonical		      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is exposed via decFloatCanonical for Double and Quad only.    */ | 
|  | /* This works on specials, too; no error or exception is possible.    */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decFloat * decCanonical(decFloat *result, const decFloat *df) { | 
|  | uInt encode, precode, dpd;	   /* work */ | 
|  | uInt inword, uoff, canon;	   /* .. */ | 
|  | Int  n;			   /* counter (down) */ | 
|  | if (df!=result) *result=*df;	   /* effect copy if needed */ | 
|  | if (DFISSPECIAL(result)) { | 
|  | if (DFISINF(result)) return decInfinity(result, df); /* clean Infinity */ | 
|  | /* is a NaN */ | 
|  | DFWORD(result, 0)&=~ECONNANMASK;	/* clear ECON except selector */ | 
|  | if (DFISCCZERO(df)) return result;	/* coefficient continuation is 0 */ | 
|  | /* drop through to check payload */ | 
|  | } | 
|  | /* return quickly if the coefficient continuation is canonical */ | 
|  | { /* declare block */ | 
|  | #if DOUBLE | 
|  | uInt sourhi=DFWORD(df, 0); | 
|  | uInt sourlo=DFWORD(df, 1); | 
|  | if (CANONDPDOFF(sourhi, 8) | 
|  | && CANONDPDTWO(sourhi, sourlo, 30) | 
|  | && CANONDPDOFF(sourlo, 20) | 
|  | && CANONDPDOFF(sourlo, 10) | 
|  | && CANONDPDOFF(sourlo, 0)) return result; | 
|  | #elif QUAD | 
|  | uInt sourhi=DFWORD(df, 0); | 
|  | uInt sourmh=DFWORD(df, 1); | 
|  | uInt sourml=DFWORD(df, 2); | 
|  | uInt sourlo=DFWORD(df, 3); | 
|  | if (CANONDPDOFF(sourhi, 4) | 
|  | && CANONDPDTWO(sourhi, sourmh, 26) | 
|  | && CANONDPDOFF(sourmh, 16) | 
|  | && CANONDPDOFF(sourmh, 6) | 
|  | && CANONDPDTWO(sourmh, sourml, 28) | 
|  | && CANONDPDOFF(sourml, 18) | 
|  | && CANONDPDOFF(sourml, 8) | 
|  | && CANONDPDTWO(sourml, sourlo, 30) | 
|  | && CANONDPDOFF(sourlo, 20) | 
|  | && CANONDPDOFF(sourlo, 10) | 
|  | && CANONDPDOFF(sourlo, 0)) return result; | 
|  | #endif | 
|  | } /* block */ | 
|  |  | 
|  | /* Loop to repair a non-canonical coefficent, as needed */ | 
|  | inword=DECWORDS-1;		   /* current input word */ | 
|  | uoff=0;			   /* bit offset of declet */ | 
|  | encode=DFWORD(result, inword); | 
|  | for (n=DECLETS-1; n>=0; n--) {   /* count down declets of 10 bits */ | 
|  | dpd=encode>>uoff; | 
|  | uoff+=10; | 
|  | if (uoff>32) {		   /* crossed uInt boundary */ | 
|  | inword--; | 
|  | encode=DFWORD(result, inword); | 
|  | uoff-=32; | 
|  | dpd|=encode<<(10-uoff);	   /* get pending bits */ | 
|  | } | 
|  | dpd&=0x3ff; 		   /* clear uninteresting bits */ | 
|  | if (dpd<0x16e) continue;	   /* must be canonical */ | 
|  | canon=BIN2DPD[DPD2BIN[dpd]];   /* determine canonical declet */ | 
|  | if (canon==dpd) continue;	   /* have canonical declet */ | 
|  | /* need to replace declet */ | 
|  | if (uoff>=10) {		   /* all within current word */ | 
|  | encode&=~(0x3ff<<(uoff-10)); /* clear the 10 bits ready for replace */ | 
|  | encode|=canon<<(uoff-10);    /* insert the canonical form */ | 
|  | DFWORD(result, inword)=encode;	/* .. and save */ | 
|  | continue; | 
|  | } | 
|  | /* straddled words */ | 
|  | precode=DFWORD(result, inword+1);	/* get previous */ | 
|  | precode&=0xffffffff>>(10-uoff);	/* clear top bits */ | 
|  | DFWORD(result, inword+1)=precode|(canon<<(32-(10-uoff))); | 
|  | encode&=0xffffffff<<uoff;		/* clear bottom bits */ | 
|  | encode|=canon>>(10-uoff);		/* insert canonical */ | 
|  | DFWORD(result, inword)=encode;	/* .. and save */ | 
|  | } /* n */ | 
|  | return result; | 
|  | } /* decCanonical */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decDivide -- divide operations				      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of dividing dfl by dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   op     is the operation selector				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* op is one of DIVIDE, REMAINDER, DIVIDEINT, or REMNEAR.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #define DIVCOUNT  0		   /* 1 to instrument subtractions counter */ | 
|  | #define DIVBASE   ((uInt)BILLION)  /* the base used for divide */ | 
|  | #define DIVOPLEN  DECPMAX9	   /* operand length ('digits' base 10**9) */ | 
|  | #define DIVACCLEN (DIVOPLEN*3)	   /* accumulator length (ditto) */ | 
|  | static decFloat * decDivide(decFloat *result, const decFloat *dfl, | 
|  | const decFloat *dfr, decContext *set, uInt op) { | 
|  | decFloat quotient;		   /* for remainders */ | 
|  | bcdnum num;			   /* for final conversion */ | 
|  | uInt	 acc[DIVACCLEN];	   /* coefficent in base-billion .. */ | 
|  | uInt	 div[DIVOPLEN]; 	   /* divisor in base-billion .. */ | 
|  | uInt	 quo[DIVOPLEN+1];	   /* quotient in base-billion .. */ | 
|  | uByte  bcdacc[(DIVOPLEN+1)*9+2]; /* for quotient in BCD, +1, +1 */ | 
|  | uInt	 *msua, *msud, *msuq;	   /* -> msu of acc, div, and quo */ | 
|  | Int	 divunits, accunits;	   /* lengths */ | 
|  | Int	 quodigits;		   /* digits in quotient */ | 
|  | uInt	 *lsua, *lsuq;		   /* -> current acc and quo lsus */ | 
|  | Int	 length, multiplier;	   /* work */ | 
|  | uInt	 carry, sign;		   /* .. */ | 
|  | uInt	 *ua, *ud, *uq; 	   /* .. */ | 
|  | uByte  *ub;			   /* .. */ | 
|  | uInt	 uiwork;		   /* for macros */ | 
|  | uInt	 divtop;		   /* top unit of div adjusted for estimating */ | 
|  | #if DIVCOUNT | 
|  | static uInt maxcount=0;	   /* worst-seen subtractions count */ | 
|  | uInt	 divcount=0;		   /* subtractions count [this divide] */ | 
|  | #endif | 
|  |  | 
|  | /* calculate sign */ | 
|  | num.sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; | 
|  |  | 
|  | if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */ | 
|  | /* NaNs are handled as usual */ | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | /* one or two infinities */ | 
|  | if (DFISINF(dfl)) { | 
|  | if (DFISINF(dfr)) return decInvalid(result, set); /* Two infinities bad */ | 
|  | if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* as is rem */ | 
|  | /* Infinity/x is infinite and quiet, even if x=0 */ | 
|  | DFWORD(result, 0)=num.sign; | 
|  | return decInfinity(result, result); | 
|  | } | 
|  | /* must be x/Infinity -- remainders are lhs */ | 
|  | if (op&(REMAINDER|REMNEAR)) return decCanonical(result, dfl); | 
|  | /* divides: return zero with correct sign and exponent depending */ | 
|  | /* on op (Etiny for divide, 0 for divideInt) */ | 
|  | decFloatZero(result); | 
|  | if (op==DIVIDEINT) DFWORD(result, 0)|=num.sign; /* add sign */ | 
|  | else DFWORD(result, 0)=num.sign;	     /* zeros the exponent, too */ | 
|  | return result; | 
|  | } | 
|  | /* next, handle zero operands (x/0 and 0/x) */ | 
|  | if (DFISZERO(dfr)) {			     /* x/0 */ | 
|  | if (DFISZERO(dfl)) {		     /* 0/0 is undefined */ | 
|  | decFloatZero(result); | 
|  | DFWORD(result, 0)=DECFLOAT_qNaN; | 
|  | set->status|=DEC_Division_undefined; | 
|  | return result; | 
|  | } | 
|  | if (op&(REMAINDER|REMNEAR)) return decInvalid(result, set); /* bad rem */ | 
|  | set->status|=DEC_Division_by_zero; | 
|  | DFWORD(result, 0)=num.sign; | 
|  | return decInfinity(result, result);      /* x/0 -> signed Infinity */ | 
|  | } | 
|  | num.exponent=GETEXPUN(dfl)-GETEXPUN(dfr);  /* ideal exponent */ | 
|  | if (DFISZERO(dfl)) {			     /* 0/x (x!=0) */ | 
|  | /* if divide, result is 0 with ideal exponent; divideInt has */ | 
|  | /* exponent=0, remainders give zero with lower exponent */ | 
|  | if (op&DIVIDEINT) { | 
|  | decFloatZero(result); | 
|  | DFWORD(result, 0)|=num.sign;	     /* add sign */ | 
|  | return result; | 
|  | } | 
|  | if (!(op&DIVIDE)) { 		     /* a remainder */ | 
|  | /* exponent is the minimum of the operands */ | 
|  | num.exponent=MINI(GETEXPUN(dfl), GETEXPUN(dfr)); | 
|  | /* if the result is zero the sign shall be sign of dfl */ | 
|  | num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | 
|  | } | 
|  | bcdacc[0]=0; | 
|  | num.msd=bcdacc;			     /* -> 0 */ | 
|  | num.lsd=bcdacc;			     /* .. */ | 
|  | return decFinalize(result, &num, set);   /* [divide may clamp exponent] */ | 
|  | } /* 0/x */ | 
|  | /* [here, both operands are known to be finite and non-zero] */ | 
|  |  | 
|  | /* extract the operand coefficents into 'units' which are */ | 
|  | /* base-billion; the lhs is high-aligned in acc and the msu of both */ | 
|  | /* acc and div is at the right-hand end of array (offset length-1); */ | 
|  | /* the quotient can need one more unit than the operands as digits */ | 
|  | /* in it are not necessarily aligned neatly; further, the quotient */ | 
|  | /* may not start accumulating until after the end of the initial */ | 
|  | /* operand in acc if that is small (e.g., 1) so the accumulator */ | 
|  | /* must have at least that number of units extra (at the ls end) */ | 
|  | GETCOEFFBILL(dfl, acc+DIVACCLEN-DIVOPLEN); | 
|  | GETCOEFFBILL(dfr, div); | 
|  | /* zero the low uInts of acc */ | 
|  | acc[0]=0; | 
|  | acc[1]=0; | 
|  | acc[2]=0; | 
|  | acc[3]=0; | 
|  | #if DOUBLE | 
|  | #if DIVOPLEN!=2 | 
|  | #error Unexpected Double DIVOPLEN | 
|  | #endif | 
|  | #elif QUAD | 
|  | acc[4]=0; | 
|  | acc[5]=0; | 
|  | acc[6]=0; | 
|  | acc[7]=0; | 
|  | #if DIVOPLEN!=4 | 
|  | #error Unexpected Quad DIVOPLEN | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* set msu and lsu pointers */ | 
|  | msua=acc+DIVACCLEN-1;       /* [leading zeros removed below] */ | 
|  | msuq=quo+DIVOPLEN; | 
|  | /*[loop for div will terminate because operands are non-zero] */ | 
|  | for (msud=div+DIVOPLEN-1; *msud==0;) msud--; | 
|  | /* the initial least-significant unit of acc is set so acc appears */ | 
|  | /* to have the same length as div. */ | 
|  | /* This moves one position towards the least possible for each */ | 
|  | /* iteration */ | 
|  | divunits=(Int)(msud-div+1); /* precalculate */ | 
|  | lsua=msua-divunits+1;       /* initial working lsu of acc */ | 
|  | lsuq=msuq;		      /* and of quo */ | 
|  |  | 
|  | /* set up the estimator for the multiplier; this is the msu of div, */ | 
|  | /* plus two bits from the unit below (if any) rounded up by one if */ | 
|  | /* there are any non-zero bits or units below that [the extra two */ | 
|  | /* bits makes for a much better estimate when the top unit is small] */ | 
|  | divtop=*msud<<2; | 
|  | if (divunits>1) { | 
|  | uInt *um=msud-1; | 
|  | uInt d=*um; | 
|  | if (d>=750000000) {divtop+=3; d-=750000000;} | 
|  | else if (d>=500000000) {divtop+=2; d-=500000000;} | 
|  | else if (d>=250000000) {divtop++; d-=250000000;} | 
|  | if (d) divtop++; | 
|  | else for (um--; um>=div; um--) if (*um) { | 
|  | divtop++; | 
|  | break; | 
|  | } | 
|  | } /* >1 unit */ | 
|  |  | 
|  | #if DECTRACE | 
|  | {Int i; | 
|  | printf("----- div="); | 
|  | for (i=divunits-1; i>=0; i--) printf("%09ld ", (LI)div[i]); | 
|  | printf("\n");} | 
|  | #endif | 
|  |  | 
|  | /* now collect up to DECPMAX+1 digits in the quotient (this may */ | 
|  | /* need OPLEN+1 uInts if unaligned) */ | 
|  | quodigits=0;		      /* no digits yet */ | 
|  | for (;; lsua--) {	      /* outer loop -- each input position */ | 
|  | #if DECCHECK | 
|  | if (lsua<acc) { | 
|  | printf("Acc underrun...\n"); | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | #if DECTRACE | 
|  | printf("Outer: quodigits=%ld acc=", (LI)quodigits); | 
|  | for (ua=msua; ua>=lsua; ua--) printf("%09ld ", (LI)*ua); | 
|  | printf("\n"); | 
|  | #endif | 
|  | *lsuq=0;		      /* default unit result is 0 */ | 
|  | for (;;) {		      /* inner loop -- calculate quotient unit */ | 
|  | /* strip leading zero units from acc (either there initially or */ | 
|  | /* from subtraction below); this may strip all if exactly 0 */ | 
|  | for (; *msua==0 && msua>=lsua;) msua--; | 
|  | accunits=(Int)(msua-lsua+1);		  /* [maybe 0] */ | 
|  | /* subtraction is only necessary and possible if there are as */ | 
|  | /* least as many units remaining in acc for this iteration as */ | 
|  | /* there are in div */ | 
|  | if (accunits<divunits) { | 
|  | if (accunits==0) msua++;		  /* restore */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If acc is longer than div then subtraction is definitely */ | 
|  | /* possible (as msu of both is non-zero), but if they are the */ | 
|  | /* same length a comparison is needed. */ | 
|  | /* If a subtraction is needed then a good estimate of the */ | 
|  | /* multiplier for the subtraction is also needed in order to */ | 
|  | /* minimise the iterations of this inner loop because the */ | 
|  | /* subtractions needed dominate division performance. */ | 
|  | if (accunits==divunits) { | 
|  | /* compare the high divunits of acc and div: */ | 
|  | /* acc<div:  this quotient unit is unchanged; subtraction */ | 
|  | /*	     will be possible on the next iteration */ | 
|  | /* acc==div: quotient gains 1, set acc=0 */ | 
|  | /* acc>div:  subtraction necessary at this position */ | 
|  | for (ud=msud, ua=msua; ud>div; ud--, ua--) if (*ud!=*ua) break; | 
|  | /* [now at first mismatch or lsu] */ | 
|  | if (*ud>*ua) break;			  /* next time... */ | 
|  | if (*ud==*ua) { 			  /* all compared equal */ | 
|  | *lsuq+=1;				  /* increment result */ | 
|  | msua=lsua;				  /* collapse acc units */ | 
|  | *msua=0;				  /* .. to a zero */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* subtraction necessary; estimate multiplier [see above] */ | 
|  | /* if both *msud and *msua are small it is cost-effective to */ | 
|  | /* bring in part of the following units (if any) to get a */ | 
|  | /* better estimate (assume some other non-zero in div) */ | 
|  | #define DIVLO 1000000U | 
|  | #define DIVHI (DIVBASE/DIVLO) | 
|  | #if DECUSE64 | 
|  | if (divunits>1) { | 
|  | /* there cannot be a *(msud-2) for DECDOUBLE so next is */ | 
|  | /* an exact calculation unless DECQUAD (which needs to */ | 
|  | /* assume bits out there if divunits>2) */ | 
|  | uLong mul=(uLong)*msua * DIVBASE + *(msua-1); | 
|  | uLong div=(uLong)*msud * DIVBASE + *(msud-1); | 
|  | #if QUAD | 
|  | if (divunits>2) div++; | 
|  | #endif | 
|  | mul/=div; | 
|  | multiplier=(Int)mul; | 
|  | } | 
|  | else multiplier=*msua/(*msud); | 
|  | #else | 
|  | if (divunits>1 && *msua<DIVLO && *msud<DIVLO) { | 
|  | multiplier=(*msua*DIVHI + *(msua-1)/DIVLO) | 
|  | /(*msud*DIVHI + *(msud-1)/DIVLO +1); | 
|  | } | 
|  | else multiplier=(*msua<<2)/divtop; | 
|  | #endif | 
|  | } | 
|  | else {					  /* accunits>divunits */ | 
|  | /* msud is one unit 'lower' than msua, so estimate differently */ | 
|  | #if DECUSE64 | 
|  | uLong mul; | 
|  | /* as before, bring in extra digits if possible */ | 
|  | if (divunits>1 && *msua<DIVLO && *msud<DIVLO) { | 
|  | mul=((uLong)*msua * DIVHI * DIVBASE) + *(msua-1) * DIVHI | 
|  | + *(msua-2)/DIVLO; | 
|  | mul/=(*msud*DIVHI + *(msud-1)/DIVLO +1); | 
|  | } | 
|  | else if (divunits==1) { | 
|  | mul=(uLong)*msua * DIVBASE + *(msua-1); | 
|  | mul/=*msud;       /* no more to the right */ | 
|  | } | 
|  | else { | 
|  | mul=(uLong)(*msua) * (uInt)(DIVBASE<<2) | 
|  | + (*(msua-1)<<2); | 
|  | mul/=divtop;      /* [divtop already allows for sticky bits] */ | 
|  | } | 
|  | multiplier=(Int)mul; | 
|  | #else | 
|  | multiplier=*msua * ((DIVBASE<<2)/divtop); | 
|  | #endif | 
|  | } | 
|  | if (multiplier==0) multiplier=1;		  /* marginal case */ | 
|  | *lsuq+=multiplier; | 
|  |  | 
|  | #if DIVCOUNT | 
|  | /* printf("Multiplier: %ld\n", (LI)multiplier); */ | 
|  | divcount++; | 
|  | #endif | 
|  |  | 
|  | /* Carry out the subtraction  acc-(div*multiplier); for each */ | 
|  | /* unit in div, do the multiply, split to units (see */ | 
|  | /* decFloatMultiply for the algorithm), and subtract from acc */ | 
|  | #define DIVMAGIC	2305843009U		  /* 2**61/10**9 */ | 
|  | #define DIVSHIFTA 29 | 
|  | #define DIVSHIFTB 32 | 
|  | carry=0; | 
|  | for (ud=div, ua=lsua; ud<=msud; ud++, ua++) { | 
|  | uInt lo, hop; | 
|  | #if DECUSE64 | 
|  | uLong sub=(uLong)multiplier*(*ud)+carry; | 
|  | if (sub<DIVBASE) { | 
|  | carry=0; | 
|  | lo=(uInt)sub; | 
|  | } | 
|  | else { | 
|  | hop=(uInt)(sub>>DIVSHIFTA); | 
|  | carry=(uInt)(((uLong)hop*DIVMAGIC)>>DIVSHIFTB); | 
|  | /* the estimate is now in hi; now calculate sub-hi*10**9 */ | 
|  | /* to get the remainder (which will be <DIVBASE)) */ | 
|  | lo=(uInt)sub; | 
|  | lo-=carry*DIVBASE;			  /* low word of result */ | 
|  | if (lo>=DIVBASE) { | 
|  | lo-=DIVBASE;			  /* correct by +1 */ | 
|  | carry++; | 
|  | } | 
|  | } | 
|  | #else /* 32-bit */ | 
|  | uInt hi; | 
|  | /* calculate multiplier*(*ud) into hi and lo */ | 
|  | LONGMUL32HI(hi, *ud, multiplier);	  /* get the high word */ | 
|  | lo=multiplier*(*ud);			  /* .. and the low */ | 
|  | lo+=carry;				  /* add the old hi */ | 
|  | carry=hi+(lo<carry);			  /* .. with any carry */ | 
|  | if (carry || lo>=DIVBASE) {		  /* split is needed */ | 
|  | hop=(carry<<3)+(lo>>DIVSHIFTA);	  /* hi:lo/2**29 */ | 
|  | LONGMUL32HI(carry, hop, DIVMAGIC);	  /* only need the high word */ | 
|  | /* [DIVSHIFTB is 32, so carry can be used directly] */ | 
|  | /* the estimate is now in carry; now calculate hi:lo-est*10**9; */ | 
|  | /* happily the top word of the result is irrelevant because it */ | 
|  | /* will always be zero so this needs only one multiplication */ | 
|  | lo-=(carry*DIVBASE); | 
|  | /* the correction here will be at most +1; do it */ | 
|  | if (lo>=DIVBASE) { | 
|  | lo-=DIVBASE; | 
|  | carry++; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (lo>*ua) {		   /* borrow needed */ | 
|  | *ua+=DIVBASE; | 
|  | carry++; | 
|  | } | 
|  | *ua-=lo; | 
|  | } /* ud loop */ | 
|  | if (carry) *ua-=carry;	   /* accdigits>divdigits [cannot borrow] */ | 
|  | } /* inner loop */ | 
|  |  | 
|  | /* the outer loop terminates when there is either an exact result */ | 
|  | /* or enough digits; first update the quotient digit count and */ | 
|  | /* pointer (if any significant digits) */ | 
|  | #if DECTRACE | 
|  | if (*lsuq || quodigits) printf("*lsuq=%09ld\n", (LI)*lsuq); | 
|  | #endif | 
|  | if (quodigits) { | 
|  | quodigits+=9;		   /* had leading unit earlier */ | 
|  | lsuq--; | 
|  | if (quodigits>DECPMAX+1) break;	/* have enough */ | 
|  | } | 
|  | else if (*lsuq) {		   /* first quotient digits */ | 
|  | const uInt *pow; | 
|  | for (pow=DECPOWERS; *lsuq>=*pow; pow++) quodigits++; | 
|  | lsuq--; | 
|  | /* [cannot have >DECPMAX+1 on first unit] */ | 
|  | } | 
|  |  | 
|  | if (*msua!=0) continue;	   /* not an exact result */ | 
|  | /* acc is zero iff used all of original units and zero down to lsua */ | 
|  | /* (must also continue to original lsu for correct quotient length) */ | 
|  | if (lsua>acc+DIVACCLEN-DIVOPLEN) continue; | 
|  | for (; msua>lsua && *msua==0;) msua--; | 
|  | if (*msua==0 && msua==lsua) break; | 
|  | } /* outer loop */ | 
|  |  | 
|  | /* all of the original operand in acc has been covered at this point */ | 
|  | /* quotient now has at least DECPMAX+2 digits */ | 
|  | /* *msua is now non-0 if inexact and sticky bits */ | 
|  | /* lsuq is one below the last uint of the quotient */ | 
|  | lsuq++;			   /* set -> true lsu of quo */ | 
|  | if (*msua) *lsuq|=1;		   /* apply sticky bit */ | 
|  |  | 
|  | /* quo now holds the (unrounded) quotient in base-billion; one */ | 
|  | /* base-billion 'digit' per uInt. */ | 
|  | #if DECTRACE | 
|  | printf("DivQuo:"); | 
|  | for (uq=msuq; uq>=lsuq; uq--) printf(" %09ld", (LI)*uq); | 
|  | printf("\n"); | 
|  | #endif | 
|  |  | 
|  | /* Now convert to BCD for rounding and cleanup, starting from the */ | 
|  | /* most significant end [offset by one into bcdacc to leave room */ | 
|  | /* for a possible carry digit if rounding for REMNEAR is needed] */ | 
|  | for (uq=msuq, ub=bcdacc+1; uq>=lsuq; uq--, ub+=9) { | 
|  | uInt top, mid, rem; 		/* work */ | 
|  | if (*uq==0) {			/* no split needed */ | 
|  | UBFROMUI(ub, 0);			/* clear 9 BCD8s */ | 
|  | UBFROMUI(ub+4, 0);		/* .. */ | 
|  | *(ub+8)=0;			/* .. */ | 
|  | continue; | 
|  | } | 
|  | /* *uq is non-zero -- split the base-billion digit into */ | 
|  | /* hi, mid, and low three-digits */ | 
|  | #define divsplit9 1000000		/* divisor */ | 
|  | #define divsplit6 1000		/* divisor */ | 
|  | /* The splitting is done by simple divides and remainders, */ | 
|  | /* assuming the compiler will optimize these [GCC does] */ | 
|  | top=*uq/divsplit9; | 
|  | rem=*uq%divsplit9; | 
|  | mid=rem/divsplit6; | 
|  | rem=rem%divsplit6; | 
|  | /* lay out the nine BCD digits (plus one unwanted byte) */ | 
|  | UBFROMUI(ub,   UBTOUI(&BIN2BCD8[top*4])); | 
|  | UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); | 
|  | UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); | 
|  | } /* BCD conversion loop */ | 
|  | ub--; 				/* -> lsu */ | 
|  |  | 
|  | /* complete the bcdnum; quodigits is correct, so the position of */ | 
|  | /* the first non-zero is known */ | 
|  | num.msd=bcdacc+1+(msuq-lsuq+1)*9-quodigits; | 
|  | num.lsd=ub; | 
|  |  | 
|  | /* make exponent adjustments, etc */ | 
|  | if (lsua<acc+DIVACCLEN-DIVOPLEN) {	/* used extra digits */ | 
|  | num.exponent-=(Int)((acc+DIVACCLEN-DIVOPLEN-lsua)*9); | 
|  | /* if the result was exact then there may be up to 8 extra */ | 
|  | /* trailing zeros in the overflowed quotient final unit */ | 
|  | if (*msua==0) { | 
|  | for (; *ub==0;) ub--;		/* drop zeros */ | 
|  | num.exponent+=(Int)(num.lsd-ub);	/* and adjust exponent */ | 
|  | num.lsd=ub; | 
|  | } | 
|  | } /* adjustment needed */ | 
|  |  | 
|  | #if DIVCOUNT | 
|  | if (divcount>maxcount) {		/* new high-water nark */ | 
|  | maxcount=divcount; | 
|  | printf("DivNewMaxCount: %ld\n", (LI)maxcount); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (op&DIVIDE) return decFinalize(result, &num, set); /* all done */ | 
|  |  | 
|  | /* Is DIVIDEINT or a remainder; there is more to do -- first form */ | 
|  | /* the integer (this is done 'after the fact', unlike as in */ | 
|  | /* decNumber, so as not to tax DIVIDE) */ | 
|  |  | 
|  | /* The first non-zero digit will be in the first 9 digits, known */ | 
|  | /* from quodigits and num.msd, so there is always space for DECPMAX */ | 
|  | /* digits */ | 
|  |  | 
|  | length=(Int)(num.lsd-num.msd+1); | 
|  | /*printf("Length exp: %ld %ld\n", (LI)length, (LI)num.exponent); */ | 
|  |  | 
|  | if (length+num.exponent>DECPMAX) { /* cannot fit */ | 
|  | decFloatZero(result); | 
|  | DFWORD(result, 0)=DECFLOAT_qNaN; | 
|  | set->status|=DEC_Division_impossible; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (num.exponent>=0) {	   /* already an int, or need pad zeros */ | 
|  | for (ub=num.lsd+1; ub<=num.lsd+num.exponent; ub++) *ub=0; | 
|  | num.lsd+=num.exponent; | 
|  | } | 
|  | else {			   /* too long: round or truncate needed */ | 
|  | Int drop=-num.exponent; | 
|  | if (!(op&REMNEAR)) {	   /* simple truncate */ | 
|  | num.lsd-=drop; | 
|  | if (num.lsd<num.msd) {	   /* truncated all */ | 
|  | num.lsd=num.msd;	   /* make 0 */ | 
|  | *num.lsd=0;		   /* .. [sign still relevant] */ | 
|  | } | 
|  | } | 
|  | else {			   /* round to nearest even [sigh] */ | 
|  | /* round-to-nearest, in-place; msd is at or to right of bcdacc+1 */ | 
|  | /* (this is a special case of Quantize -- q.v. for commentary) */ | 
|  | uByte *roundat;		   /* -> re-round digit */ | 
|  | uByte reround;		   /* reround value */ | 
|  | *(num.msd-1)=0;		   /* in case of left carry, or make 0 */ | 
|  | if (drop<length) roundat=num.lsd-drop+1; | 
|  | else if (drop==length) roundat=num.msd; | 
|  | else roundat=num.msd-1;	   /* [-> 0] */ | 
|  | reround=*roundat; | 
|  | for (ub=roundat+1; ub<=num.lsd; ub++) { | 
|  | if (*ub!=0) { | 
|  | reround=DECSTICKYTAB[reround]; | 
|  | break; | 
|  | } | 
|  | } /* check stickies */ | 
|  | if (roundat>num.msd) num.lsd=roundat-1; | 
|  | else { | 
|  | num.msd--;			     /* use the 0 .. */ | 
|  | num.lsd=num.msd;		     /* .. at the new MSD place */ | 
|  | } | 
|  | if (reround!=0) { 		     /* discarding non-zero */ | 
|  | uInt bump=0; | 
|  | /* rounding is DEC_ROUND_HALF_EVEN always */ | 
|  | if (reround>5) bump=1;		     /* >0.5 goes up */ | 
|  | else if (reround==5)		     /* exactly 0.5000 .. */ | 
|  | bump=*(num.lsd) & 0x01;	     /* .. up iff [new] lsd is odd */ | 
|  | if (bump!=0) {			     /* need increment */ | 
|  | /* increment the coefficient; this might end up with 1000... */ | 
|  | ub=num.lsd; | 
|  | for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); | 
|  | for (; *ub==9; ub--) *ub=0;	     /* at most 3 more */ | 
|  | *ub+=1; | 
|  | if (ub<num.msd) num.msd--;	     /* carried */ | 
|  | } /* bump needed */ | 
|  | } /* reround!=0 */ | 
|  | } /* remnear */ | 
|  | } /* round or truncate needed */ | 
|  | num.exponent=0;			     /* all paths */ | 
|  | /*decShowNum(&num, "int"); */ | 
|  |  | 
|  | if (op&DIVIDEINT) return decFinalize(result, &num, set); /* all done */ | 
|  |  | 
|  | /* Have a remainder to calculate */ | 
|  | decFinalize("ient, &num, set);	     /* lay out the integer so far */ | 
|  | DFWORD("ient, 0)^=DECFLOAT_Sign;	     /* negate it */ | 
|  | sign=DFWORD(dfl, 0);			     /* save sign of dfl */ | 
|  | decFloatFMA(result, "ient, dfr, dfl, set); | 
|  | if (!DFISZERO(result)) return result; | 
|  | /* if the result is zero the sign shall be sign of dfl */ | 
|  | DFWORD("ient, 0)=sign;		     /* construct decFloat of sign */ | 
|  | return decFloatCopySign(result, result, "ient); | 
|  | } /* decDivide */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFiniteMultiply -- multiply two finite decFloats		      */ | 
|  | /*								      */ | 
|  | /*   num    gets the result of multiplying dfl and dfr		      */ | 
|  | /*   bcdacc .. with the coefficient in this array		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*								      */ | 
|  | /* This effects the multiplication of two decFloats, both known to be */ | 
|  | /* finite, leaving the result in a bcdnum ready for decFinalize (for  */ | 
|  | /* use in Multiply) or in a following addition (FMA).		      */ | 
|  | /*								      */ | 
|  | /* bcdacc must have space for at least DECPMAX9*18+1 bytes.	      */ | 
|  | /* No error is possible and no status is set.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This routine has two separate implementations of the core */ | 
|  | /* multiplication; both using base-billion.  One uses only 32-bit */ | 
|  | /* variables (Ints and uInts) or smaller; the other uses uLongs (for */ | 
|  | /* multiplication and addition only).  Both implementations cover */ | 
|  | /* both arithmetic sizes (DOUBLE and QUAD) in order to allow timing */ | 
|  | /* comparisons.  In any one compilation only one implementation for */ | 
|  | /* each size can be used, and if DECUSE64 is 0 then use of the 32-bit */ | 
|  | /* version is forced. */ | 
|  | /* */ | 
|  | /* Historical note: an earlier version of this code also supported the */ | 
|  | /* 256-bit format and has been preserved.  That is somewhat trickier */ | 
|  | /* during lazy carry splitting because the initial quotient estimate */ | 
|  | /* (est) can exceed 32 bits. */ | 
|  |  | 
|  | #define MULTBASE  ((uInt)BILLION)  /* the base used for multiply */ | 
|  | #define MULOPLEN  DECPMAX9	   /* operand length ('digits' base 10**9) */ | 
|  | #define MULACCLEN (MULOPLEN*2)		    /* accumulator length (ditto) */ | 
|  | #define LEADZEROS (MULACCLEN*9 - DECPMAX*2) /* leading zeros always */ | 
|  |  | 
|  | /* Assertions: exponent not too large and MULACCLEN is a multiple of 4 */ | 
|  | #if DECEMAXD>9 | 
|  | #error Exponent may overflow when doubled for Multiply | 
|  | #endif | 
|  | #if MULACCLEN!=(MULACCLEN/4)*4 | 
|  | /* This assumption is used below only for initialization */ | 
|  | #error MULACCLEN is not a multiple of 4 | 
|  | #endif | 
|  |  | 
|  | static void decFiniteMultiply(bcdnum *num, uByte *bcdacc, | 
|  | const decFloat *dfl, const decFloat *dfr) { | 
|  | uInt	 bufl[MULOPLEN];	   /* left  coefficient (base-billion) */ | 
|  | uInt	 bufr[MULOPLEN];	   /* right coefficient (base-billion) */ | 
|  | uInt	 *ui, *uj;		   /* work */ | 
|  | uByte  *ub;			   /* .. */ | 
|  | uInt	 uiwork;		   /* for macros */ | 
|  |  | 
|  | #if DECUSE64 | 
|  | uLong  accl[MULACCLEN];	   /* lazy accumulator (base-billion+) */ | 
|  | uLong  *pl;			   /* work -> lazy accumulator */ | 
|  | uInt	 acc[MULACCLEN];	   /* coefficent in base-billion .. */ | 
|  | #else | 
|  | uInt	 acc[MULACCLEN*2];	   /* accumulator in base-billion .. */ | 
|  | #endif | 
|  | uInt	 *pa;			   /* work -> accumulator */ | 
|  | /*printf("Base10**9: OpLen=%d MulAcclen=%d\n", OPLEN, MULACCLEN); */ | 
|  |  | 
|  | /* Calculate sign and exponent */ | 
|  | num->sign=(DFWORD(dfl, 0)^DFWORD(dfr, 0)) & DECFLOAT_Sign; | 
|  | num->exponent=GETEXPUN(dfl)+GETEXPUN(dfr); /* [see assertion above] */ | 
|  |  | 
|  | /* Extract the coefficients and prepare the accumulator */ | 
|  | /* the coefficients of the operands are decoded into base-billion */ | 
|  | /* numbers in uInt arrays (bufl and bufr, LSD at offset 0) of the */ | 
|  | /* appropriate size. */ | 
|  | GETCOEFFBILL(dfl, bufl); | 
|  | GETCOEFFBILL(dfr, bufr); | 
|  | #if DECTRACE && 0 | 
|  | printf("CoeffbL:"); | 
|  | for (ui=bufl+MULOPLEN-1; ui>=bufl; ui--) printf(" %08lx", (LI)*ui); | 
|  | printf("\n"); | 
|  | printf("CoeffbR:"); | 
|  | for (uj=bufr+MULOPLEN-1; uj>=bufr; uj--) printf(" %08lx", (LI)*uj); | 
|  | printf("\n"); | 
|  | #endif | 
|  |  | 
|  | /* start the 64-bit/32-bit differing paths... */ | 
|  | #if DECUSE64 | 
|  |  | 
|  | /* zero the accumulator */ | 
|  | #if MULACCLEN==4 | 
|  | accl[0]=0; accl[1]=0; accl[2]=0; accl[3]=0; | 
|  | #else 				     /* use a loop */ | 
|  | /* MULACCLEN is a multiple of four, asserted above */ | 
|  | for (pl=accl; pl<accl+MULACCLEN; pl+=4) { | 
|  | *pl=0; *(pl+1)=0; *(pl+2)=0; *(pl+3)=0;/* [reduce overhead] */ | 
|  | } /* pl */ | 
|  | #endif | 
|  |  | 
|  | /* Effect the multiplication */ | 
|  | /* The multiplcation proceeds using MFC's lazy-carry resolution */ | 
|  | /* algorithm from decNumber.	First, the multiplication is */ | 
|  | /* effected, allowing accumulation of the partial products (which */ | 
|  | /* are in base-billion at each column position) into 64 bits */ | 
|  | /* without resolving back to base=billion after each addition. */ | 
|  | /* These 64-bit numbers (which may contain up to 19 decimal digits) */ | 
|  | /* are then split using the Clark & Cowlishaw algorithm (see below). */ | 
|  | /* [Testing for 0 in the inner loop is not really a 'win'] */ | 
|  | for (ui=bufr; ui<bufr+MULOPLEN; ui++) { /* over each item in rhs */ | 
|  | if (*ui==0) continue;		  /* product cannot affect result */ | 
|  | pl=accl+(ui-bufr);			  /* where to add the lhs */ | 
|  | for (uj=bufl; uj<bufl+MULOPLEN; uj++, pl++) { /* over each item in lhs */ | 
|  | /* if (*uj==0) continue;		  // product cannot affect result */ | 
|  | *pl+=((uLong)*ui)*(*uj); | 
|  | } /* uj */ | 
|  | } /* ui */ | 
|  |  | 
|  | /* The 64-bit carries must now be resolved; this means that a */ | 
|  | /* quotient/remainder has to be calculated for base-billion (1E+9). */ | 
|  | /* For this, Clark & Cowlishaw's quotient estimation approach (also */ | 
|  | /* used in decNumber) is needed, because 64-bit divide is generally */ | 
|  | /* extremely slow on 32-bit machines, and may be slower than this */ | 
|  | /* approach even on 64-bit machines.	This algorithm splits X */ | 
|  | /* using: */ | 
|  | /* */ | 
|  | /*   magic=2**(A+B)/1E+9;   // 'magic number' */ | 
|  | /*   hop=X/2**A;	      // high order part of X (by shift) */ | 
|  | /*   est=magic*hop/2**B     // quotient estimate (may be low by 1) */ | 
|  | /* */ | 
|  | /* A and B are quite constrained; hop and magic must fit in 32 bits, */ | 
|  | /* and 2**(A+B) must be as large as possible (which is 2**61 if */ | 
|  | /* magic is to fit).	Further, maxX increases with the length of */ | 
|  | /* the operands (and hence the number of partial products */ | 
|  | /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */ | 
|  | /* */ | 
|  | /* It can be shown that when OPLEN is 2 then the maximum error in */ | 
|  | /* the estimated quotient is <1, but for larger maximum x the */ | 
|  | /* maximum error is above 1 so a correction that is >1 may be */ | 
|  | /* needed.  Values of A and B are chosen to satisfy the constraints */ | 
|  | /* just mentioned while minimizing the maximum error (and hence the */ | 
|  | /* maximum correction), as shown in the following table: */ | 
|  | /* */ | 
|  | /*   Type    OPLEN   A   B	 maxX	 maxError  maxCorrection */ | 
|  | /*   --------------------------------------------------------- */ | 
|  | /*   DOUBLE	 2    29  32  <2*10**18    0.63       1 */ | 
|  | /*   QUAD	 4    30  31  <4*10**18    1.17       2 */ | 
|  | /* */ | 
|  | /* In the OPLEN==2 case there is most choice, but the value for B */ | 
|  | /* of 32 has a big advantage as then the calculation of the */ | 
|  | /* estimate requires no shifting; the compiler can extract the high */ | 
|  | /* word directly after multiplying magic*hop. */ | 
|  | #define MULMAGIC 2305843009U		/* 2**61/10**9	[both cases] */ | 
|  | #if DOUBLE | 
|  | #define MULSHIFTA 29 | 
|  | #define MULSHIFTB 32 | 
|  | #elif QUAD | 
|  | #define MULSHIFTA 30 | 
|  | #define MULSHIFTB 31 | 
|  | #else | 
|  | #error Unexpected type | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE | 
|  | printf("MulAccl:"); | 
|  | for (pl=accl+MULACCLEN-1; pl>=accl; pl--) | 
|  | printf(" %08lx:%08lx", (LI)(*pl>>32), (LI)(*pl&0xffffffff)); | 
|  | printf("\n"); | 
|  | #endif | 
|  |  | 
|  | for (pl=accl, pa=acc; pl<accl+MULACCLEN; pl++, pa++) { /* each column position */ | 
|  | uInt lo, hop;			/* work */ | 
|  | uInt est;				/* cannot exceed 4E+9 */ | 
|  | if (*pl>=MULTBASE) { | 
|  | /* *pl holds a binary number which needs to be split */ | 
|  | hop=(uInt)(*pl>>MULSHIFTA); | 
|  | est=(uInt)(((uLong)hop*MULMAGIC)>>MULSHIFTB); | 
|  | /* the estimate is now in est; now calculate hi:lo-est*10**9; */ | 
|  | /* happily the top word of the result is irrelevant because it */ | 
|  | /* will always be zero so this needs only one multiplication */ | 
|  | lo=(uInt)(*pl-((uLong)est*MULTBASE));  /* low word of result */ | 
|  | /* If QUAD, the correction here could be +2 */ | 
|  | if (lo>=MULTBASE) { | 
|  | lo-=MULTBASE;			/* correct by +1 */ | 
|  | est++; | 
|  | #if QUAD | 
|  | /* may need to correct by +2 */ | 
|  | if (lo>=MULTBASE) { | 
|  | lo-=MULTBASE; | 
|  | est++; | 
|  | } | 
|  | #endif | 
|  | } | 
|  | /* finally place lo as the new coefficient 'digit' and add est to */ | 
|  | /* the next place up [this is safe because this path is never */ | 
|  | /* taken on the final iteration as *pl will fit] */ | 
|  | *pa=lo; | 
|  | *(pl+1)+=est; | 
|  | } /* *pl needed split */ | 
|  | else {				/* *pl<MULTBASE */ | 
|  | *pa=(uInt)*pl;			/* just copy across */ | 
|  | } | 
|  | } /* pl loop */ | 
|  |  | 
|  | #else  /* 32-bit */ | 
|  | for (pa=acc;; pa+=4) {		     /* zero the accumulator */ | 
|  | *pa=0; *(pa+1)=0; *(pa+2)=0; *(pa+3)=0;  /* [reduce overhead] */ | 
|  | if (pa==acc+MULACCLEN*2-4) break;	     /* multiple of 4 asserted */ | 
|  | } /* pa */ | 
|  |  | 
|  | /* Effect the multiplication */ | 
|  | /* uLongs are not available (and in particular, there is no uLong */ | 
|  | /* divide) but it is still possible to use MFC's lazy-carry */ | 
|  | /* resolution algorithm from decNumber.  First, the multiplication */ | 
|  | /* is effected, allowing accumulation of the partial products */ | 
|  | /* (which are in base-billion at each column position) into 64 bits */ | 
|  | /* [with the high-order 32 bits in each position being held at */ | 
|  | /* offset +ACCLEN from the low-order 32 bits in the accumulator]. */ | 
|  | /* These 64-bit numbers (which may contain up to 19 decimal digits) */ | 
|  | /* are then split using the Clark & Cowlishaw algorithm (see */ | 
|  | /* below). */ | 
|  | for (ui=bufr;; ui++) {		/* over each item in rhs */ | 
|  | uInt hi, lo;			/* words of exact multiply result */ | 
|  | pa=acc+(ui-bufr);			/* where to add the lhs */ | 
|  | for (uj=bufl;; uj++, pa++) {	/* over each item in lhs */ | 
|  | LONGMUL32HI(hi, *ui, *uj);	/* calculate product of digits */ | 
|  | lo=(*ui)*(*uj);			/* .. */ | 
|  | *pa+=lo;				/* accumulate low bits and .. */ | 
|  | *(pa+MULACCLEN)+=hi+(*pa<lo);	/* .. high bits with any carry */ | 
|  | if (uj==bufl+MULOPLEN-1) break; | 
|  | } | 
|  | if (ui==bufr+MULOPLEN-1) break; | 
|  | } | 
|  |  | 
|  | /* The 64-bit carries must now be resolved; this means that a */ | 
|  | /* quotient/remainder has to be calculated for base-billion (1E+9). */ | 
|  | /* For this, Clark & Cowlishaw's quotient estimation approach (also */ | 
|  | /* used in decNumber) is needed, because 64-bit divide is generally */ | 
|  | /* extremely slow on 32-bit machines.  This algorithm splits X */ | 
|  | /* using: */ | 
|  | /* */ | 
|  | /*   magic=2**(A+B)/1E+9;   // 'magic number' */ | 
|  | /*   hop=X/2**A;	      // high order part of X (by shift) */ | 
|  | /*   est=magic*hop/2**B     // quotient estimate (may be low by 1) */ | 
|  | /* */ | 
|  | /* A and B are quite constrained; hop and magic must fit in 32 bits, */ | 
|  | /* and 2**(A+B) must be as large as possible (which is 2**61 if */ | 
|  | /* magic is to fit).	Further, maxX increases with the length of */ | 
|  | /* the operands (and hence the number of partial products */ | 
|  | /* accumulated); maxX is OPLEN*(10**18), which is up to 19 digits. */ | 
|  | /* */ | 
|  | /* It can be shown that when OPLEN is 2 then the maximum error in */ | 
|  | /* the estimated quotient is <1, but for larger maximum x the */ | 
|  | /* maximum error is above 1 so a correction that is >1 may be */ | 
|  | /* needed.  Values of A and B are chosen to satisfy the constraints */ | 
|  | /* just mentioned while minimizing the maximum error (and hence the */ | 
|  | /* maximum correction), as shown in the following table: */ | 
|  | /* */ | 
|  | /*   Type    OPLEN   A   B	 maxX	 maxError  maxCorrection */ | 
|  | /*   --------------------------------------------------------- */ | 
|  | /*   DOUBLE	 2    29  32  <2*10**18    0.63       1 */ | 
|  | /*   QUAD	 4    30  31  <4*10**18    1.17       2 */ | 
|  | /* */ | 
|  | /* In the OPLEN==2 case there is most choice, but the value for B */ | 
|  | /* of 32 has a big advantage as then the calculation of the */ | 
|  | /* estimate requires no shifting; the high word is simply */ | 
|  | /* calculated from multiplying magic*hop. */ | 
|  | #define MULMAGIC 2305843009U		/* 2**61/10**9	[both cases] */ | 
|  | #if DOUBLE | 
|  | #define MULSHIFTA 29 | 
|  | #define MULSHIFTB 32 | 
|  | #elif QUAD | 
|  | #define MULSHIFTA 30 | 
|  | #define MULSHIFTB 31 | 
|  | #else | 
|  | #error Unexpected type | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE | 
|  | printf("MulHiLo:"); | 
|  | for (pa=acc+MULACCLEN-1; pa>=acc; pa--) | 
|  | printf(" %08lx:%08lx", (LI)*(pa+MULACCLEN), (LI)*pa); | 
|  | printf("\n"); | 
|  | #endif | 
|  |  | 
|  | for (pa=acc;; pa++) { 		/* each low uInt */ | 
|  | uInt hi, lo;			/* words of exact multiply result */ | 
|  | uInt hop, estlo;			/* work */ | 
|  | #if QUAD | 
|  | uInt esthi; 			/* .. */ | 
|  | #endif | 
|  |  | 
|  | lo=*pa; | 
|  | hi=*(pa+MULACCLEN); 		/* top 32 bits */ | 
|  | /* hi and lo now hold a binary number which needs to be split */ | 
|  |  | 
|  | #if DOUBLE | 
|  | hop=(hi<<3)+(lo>>MULSHIFTA);	/* hi:lo/2**29 */ | 
|  | LONGMUL32HI(estlo, hop, MULMAGIC);/* only need the high word */ | 
|  | /* [MULSHIFTB is 32, so estlo can be used directly] */ | 
|  | /* the estimate is now in estlo; now calculate hi:lo-est*10**9; */ | 
|  | /* happily the top word of the result is irrelevant because it */ | 
|  | /* will always be zero so this needs only one multiplication */ | 
|  | lo-=(estlo*MULTBASE); | 
|  | /* esthi=0;			// high word is ignored below */ | 
|  | /* the correction here will be at most +1; do it */ | 
|  | if (lo>=MULTBASE) { | 
|  | lo-=MULTBASE; | 
|  | estlo++; | 
|  | } | 
|  | #elif QUAD | 
|  | hop=(hi<<2)+(lo>>MULSHIFTA);	/* hi:lo/2**30 */ | 
|  | LONGMUL32HI(esthi, hop, MULMAGIC);/* shift will be 31 .. */ | 
|  | estlo=hop*MULMAGIC;		/* .. so low word needed */ | 
|  | estlo=(esthi<<1)+(estlo>>MULSHIFTB); /* [just the top bit] */ | 
|  | /* esthi=0;			// high word is ignored below */ | 
|  | lo-=(estlo*MULTBASE);		/* as above */ | 
|  | /* the correction here could be +1 or +2 */ | 
|  | if (lo>=MULTBASE) { | 
|  | lo-=MULTBASE; | 
|  | estlo++; | 
|  | } | 
|  | if (lo>=MULTBASE) { | 
|  | lo-=MULTBASE; | 
|  | estlo++; | 
|  | } | 
|  | #else | 
|  | #error Unexpected type | 
|  | #endif | 
|  |  | 
|  | /* finally place lo as the new accumulator digit and add est to */ | 
|  | /* the next place up; this latter add could cause a carry of 1 */ | 
|  | /* to the high word of the next place */ | 
|  | *pa=lo; | 
|  | *(pa+1)+=estlo; | 
|  | /* esthi is always 0 for DOUBLE and QUAD so this is skipped */ | 
|  | /* *(pa+1+MULACCLEN)+=esthi; */ | 
|  | if (*(pa+1)<estlo) *(pa+1+MULACCLEN)+=1; /* carry */ | 
|  | if (pa==acc+MULACCLEN-2) break;	     /* [MULACCLEN-1 will never need split] */ | 
|  | } /* pa loop */ | 
|  | #endif | 
|  |  | 
|  | /* At this point, whether using the 64-bit or the 32-bit paths, the */ | 
|  | /* accumulator now holds the (unrounded) result in base-billion; */ | 
|  | /* one base-billion 'digit' per uInt. */ | 
|  | #if DECTRACE | 
|  | printf("MultAcc:"); | 
|  | for (pa=acc+MULACCLEN-1; pa>=acc; pa--) printf(" %09ld", (LI)*pa); | 
|  | printf("\n"); | 
|  | #endif | 
|  |  | 
|  | /* Now convert to BCD for rounding and cleanup, starting from the */ | 
|  | /* most significant end */ | 
|  | pa=acc+MULACCLEN-1; | 
|  | if (*pa!=0) num->msd=bcdacc+LEADZEROS;/* drop known lead zeros */ | 
|  | else {				/* >=1 word of leading zeros */ | 
|  | num->msd=bcdacc;			/* known leading zeros are gone */ | 
|  | pa--;				/* skip first word .. */ | 
|  | for (; *pa==0; pa--) if (pa==acc) break; /* .. and any more leading 0s */ | 
|  | } | 
|  | for (ub=bcdacc;; pa--, ub+=9) { | 
|  | if (*pa!=0) {			/* split(s) needed */ | 
|  | uInt top, mid, rem;		/* work */ | 
|  | /* *pa is non-zero -- split the base-billion acc digit into */ | 
|  | /* hi, mid, and low three-digits */ | 
|  | #define mulsplit9 1000000 	/* divisor */ | 
|  | #define mulsplit6 1000		/* divisor */ | 
|  | /* The splitting is done by simple divides and remainders, */ | 
|  | /* assuming the compiler will optimize these where useful */ | 
|  | /* [GCC does] */ | 
|  | top=*pa/mulsplit9; | 
|  | rem=*pa%mulsplit9; | 
|  | mid=rem/mulsplit6; | 
|  | rem=rem%mulsplit6; | 
|  | /* lay out the nine BCD digits (plus one unwanted byte) */ | 
|  | UBFROMUI(ub,   UBTOUI(&BIN2BCD8[top*4])); | 
|  | UBFROMUI(ub+3, UBTOUI(&BIN2BCD8[mid*4])); | 
|  | UBFROMUI(ub+6, UBTOUI(&BIN2BCD8[rem*4])); | 
|  | } | 
|  | else {				/* *pa==0 */ | 
|  | UBFROMUI(ub, 0);			/* clear 9 BCD8s */ | 
|  | UBFROMUI(ub+4, 0);		/* .. */ | 
|  | *(ub+8)=0;			/* .. */ | 
|  | } | 
|  | if (pa==acc) break; | 
|  | } /* BCD conversion loop */ | 
|  |  | 
|  | num->lsd=ub+8;			/* complete the bcdnum .. */ | 
|  |  | 
|  | #if DECTRACE | 
|  | decShowNum(num, "postmult"); | 
|  | decFloatShow(dfl, "dfl"); | 
|  | decFloatShow(dfr, "dfr"); | 
|  | #endif | 
|  | return; | 
|  | } /* decFiniteMultiply */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatAbs -- absolute value, heeding NaNs, etc.		      */ | 
|  | /*								      */ | 
|  | /*   result gets the canonicalized df with sign 0		      */ | 
|  | /*   df     is the decFloat to abs				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This has the same effect as decFloatPlus unless df is negative,    */ | 
|  | /* in which case it has the same effect as decFloatMinus.  The	      */ | 
|  | /* effect is also the same as decFloatCopyAbs except that NaNs are    */ | 
|  | /* handled normally (the sign of a NaN is not affected, and an sNaN   */ | 
|  | /* will signal) and the result will be canonical.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatAbs(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | 
|  | decCanonical(result, df);		/* copy and check */ | 
|  | DFBYTE(result, 0)&=~0x80;		/* zero sign bit */ | 
|  | return result; | 
|  | } /* decFloatAbs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatAdd -- add two decFloats				      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of adding dfl and dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #if QUAD | 
|  | /* Table for testing MSDs for fastpath elimination; returns the MSD of */ | 
|  | /* a decDouble or decQuad (top 6 bits tested) ignoring the sign. */ | 
|  | /* Infinities return -32 and NaNs return -128 so that summing the two */ | 
|  | /* MSDs also allows rapid tests for the Specials (see code below). */ | 
|  | const Int DECTESTMSD[64]={ | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5,   6,    7, | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128, | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5,   6,    7, | 
|  | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 9, 8, 9, -32, -128}; | 
|  | #else | 
|  | /* The table for testing MSDs is shared between the modules */ | 
|  | extern const Int DECTESTMSD[64]; | 
|  | #endif | 
|  |  | 
|  | decFloat * decFloatAdd(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | bcdnum num;			   /* for final conversion */ | 
|  | Int	 bexpl, bexpr;		   /* left and right biased exponents */ | 
|  | uByte  *ub, *us, *ut; 	   /* work */ | 
|  | uInt	 uiwork;		   /* for macros */ | 
|  | #if QUAD | 
|  | uShort uswork;		   /* .. */ | 
|  | #endif | 
|  |  | 
|  | uInt sourhil, sourhir;	   /* top words from source decFloats */ | 
|  | /* [valid only through end of */ | 
|  | /* fastpath code -- before swap] */ | 
|  | uInt diffsign;		   /* non-zero if signs differ */ | 
|  | uInt carry;			   /* carry: 0 or 1 before add loop */ | 
|  | Int  overlap; 		   /* coefficient overlap (if full) */ | 
|  | Int  summ;			   /* sum of the MSDs */ | 
|  | /* the following buffers hold coefficients with various alignments */ | 
|  | /* (see commentary and diagrams below) */ | 
|  | uByte acc[4+2+DECPMAX*3+8]; | 
|  | uByte buf[4+2+DECPMAX*2]; | 
|  | uByte *umsd, *ulsd;		   /* local MSD and LSD pointers */ | 
|  |  | 
|  | #if DECLITEND | 
|  | #define CARRYPAT 0x01000000    /* carry=1 pattern */ | 
|  | #else | 
|  | #define CARRYPAT 0x00000001    /* carry=1 pattern */ | 
|  | #endif | 
|  |  | 
|  | /* Start decoding the arguments */ | 
|  | /* The initial exponents are placed into the opposite Ints to */ | 
|  | /* that which might be expected; there are two sets of data to */ | 
|  | /* keep track of (each decFloat and the corresponding exponent), */ | 
|  | /* and this scheme means that at the swap point (after comparing */ | 
|  | /* exponents) only one pair of words needs to be swapped */ | 
|  | /* whichever path is taken (thereby minimising worst-case path). */ | 
|  | /* The calculated exponents will be nonsense when the arguments are */ | 
|  | /* Special, but are not used in that path */ | 
|  | sourhil=DFWORD(dfl, 0);	   /* LHS top word */ | 
|  | summ=DECTESTMSD[sourhil>>26];    /* get first MSD for testing */ | 
|  | bexpr=DECCOMBEXP[sourhil>>26];   /* get exponent high bits (in place) */ | 
|  | bexpr+=GETECON(dfl);		   /* .. + continuation */ | 
|  |  | 
|  | sourhir=DFWORD(dfr, 0);	   /* RHS top word */ | 
|  | summ+=DECTESTMSD[sourhir>>26];   /* sum MSDs for testing */ | 
|  | bexpl=DECCOMBEXP[sourhir>>26]; | 
|  | bexpl+=GETECON(dfr); | 
|  |  | 
|  | /* here bexpr has biased exponent from lhs, and vice versa */ | 
|  |  | 
|  | diffsign=(sourhil^sourhir)&DECFLOAT_Sign; | 
|  |  | 
|  | /* now determine whether to take a fast path or the full-function */ | 
|  | /* slow path.  The slow path must be taken when: */ | 
|  | /*   -- both numbers are finite, and: */ | 
|  | /*	     the exponents are different, or */ | 
|  | /*	     the signs are different, or */ | 
|  | /*	     the sum of the MSDs is >8 (hence might overflow) */ | 
|  | /* specialness and the sum of the MSDs can be tested at once using */ | 
|  | /* the summ value just calculated, so the test for specials is no */ | 
|  | /* longer on the worst-case path (as of 3.60) */ | 
|  |  | 
|  | if (summ<=8) {		   /* MSD+MSD is good, or there is a special */ | 
|  | if (summ<0) {		   /* there is a special */ | 
|  | /* Inf+Inf would give -64; Inf+finite is -32 or higher */ | 
|  | if (summ<-64) return decNaNs(result, dfl, dfr, set);  /* one or two NaNs */ | 
|  | /* two infinities with different signs is invalid */ | 
|  | if (summ==-64 && diffsign) return decInvalid(result, set); | 
|  | if (DFISINF(dfl)) return decInfinity(result, dfl);    /* LHS is infinite */ | 
|  | return decInfinity(result, dfr);			    /* RHS must be Inf */ | 
|  | } | 
|  | /* Here when both arguments are finite; fast path is possible */ | 
|  | /* (currently only for aligned and same-sign) */ | 
|  | if (bexpr==bexpl && !diffsign) { | 
|  | uInt tac[DECLETS+1];		/* base-1000 coefficient */ | 
|  | uInt encode;			/* work */ | 
|  |  | 
|  | /* Get one coefficient as base-1000 and add the other */ | 
|  | GETCOEFFTHOU(dfl, tac);		/* least-significant goes to [0] */ | 
|  | ADDCOEFFTHOU(dfr, tac); | 
|  | /* here the sum of the MSDs (plus any carry) will be <10 due to */ | 
|  | /* the fastpath test earlier */ | 
|  |  | 
|  | /* construct the result; low word is the same for both formats */ | 
|  | encode =BIN2DPD[tac[0]]; | 
|  | encode|=BIN2DPD[tac[1]]<<10; | 
|  | encode|=BIN2DPD[tac[2]]<<20; | 
|  | encode|=BIN2DPD[tac[3]]<<30; | 
|  | DFWORD(result, (DECBYTES/4)-1)=encode; | 
|  |  | 
|  | /* collect next two declets (all that remains, for Double) */ | 
|  | encode =BIN2DPD[tac[3]]>>2; | 
|  | encode|=BIN2DPD[tac[4]]<<8; | 
|  |  | 
|  | #if QUAD | 
|  | /* complete and lay out middling words */ | 
|  | encode|=BIN2DPD[tac[5]]<<18; | 
|  | encode|=BIN2DPD[tac[6]]<<28; | 
|  | DFWORD(result, 2)=encode; | 
|  |  | 
|  | encode =BIN2DPD[tac[6]]>>4; | 
|  | encode|=BIN2DPD[tac[7]]<<6; | 
|  | encode|=BIN2DPD[tac[8]]<<16; | 
|  | encode|=BIN2DPD[tac[9]]<<26; | 
|  | DFWORD(result, 1)=encode; | 
|  |  | 
|  | /* and final two declets */ | 
|  | encode =BIN2DPD[tac[9]]>>6; | 
|  | encode|=BIN2DPD[tac[10]]<<4; | 
|  | #endif | 
|  |  | 
|  | /* add exponent continuation and sign (from either argument) */ | 
|  | encode|=sourhil & (ECONMASK | DECFLOAT_Sign); | 
|  |  | 
|  | /* create lookup index = MSD + top two bits of biased exponent <<4 */ | 
|  | tac[DECLETS]|=(bexpl>>DECECONL)<<4; | 
|  | encode|=DECCOMBFROM[tac[DECLETS]]; /* add constructed combination field */ | 
|  | DFWORD(result, 0)=encode; 	 /* complete */ | 
|  |  | 
|  | /* decFloatShow(result, ">"); */ | 
|  | return result; | 
|  | } /* fast path OK */ | 
|  | /* drop through to slow path */ | 
|  | } /* low sum or Special(s) */ | 
|  |  | 
|  | /* Slow path required -- arguments are finite and might overflow,   */ | 
|  | /* or require alignment, or might have different signs	      */ | 
|  |  | 
|  | /* now swap either exponents or argument pointers */ | 
|  | if (bexpl<=bexpr) { | 
|  | /* original left is bigger */ | 
|  | Int bexpswap=bexpl; | 
|  | bexpl=bexpr; | 
|  | bexpr=bexpswap; | 
|  | /* printf("left bigger\n"); */ | 
|  | } | 
|  | else { | 
|  | const decFloat *dfswap=dfl; | 
|  | dfl=dfr; | 
|  | dfr=dfswap; | 
|  | /* printf("right bigger\n"); */ | 
|  | } | 
|  | /* [here dfl and bexpl refer to the datum with the larger exponent, */ | 
|  | /* of if the exponents are equal then the original LHS argument] */ | 
|  |  | 
|  | /* if lhs is zero then result will be the rhs (now known to have */ | 
|  | /* the smaller exponent), which also may need to be tested for zero */ | 
|  | /* for the weird IEEE 754 sign rules */ | 
|  | if (DFISZERO(dfl)) { | 
|  | decCanonical(result, dfr);		     /* clean copy */ | 
|  | /* "When the sum of two operands with opposite signs is */ | 
|  | /* exactly zero, the sign of that sum shall be '+' in all */ | 
|  | /* rounding modes except round toward -Infinity, in which */ | 
|  | /* mode that sign shall be '-'." */ | 
|  | if (diffsign && DFISZERO(result)) { | 
|  | DFWORD(result, 0)&=~DECFLOAT_Sign;     /* assume sign 0 */ | 
|  | if (set->round==DEC_ROUND_FLOOR) DFWORD(result, 0)|=DECFLOAT_Sign; | 
|  | } | 
|  | return result; | 
|  | } /* numfl is zero */ | 
|  | /* [here, LHS is non-zero; code below assumes that] */ | 
|  |  | 
|  | /* Coefficients layout during the calculations to follow: */ | 
|  | /* */ | 
|  | /*	   Overlap case: */ | 
|  | /*	   +------------------------------------------------+ */ | 
|  | /* acc:  |0000|      coeffa	   | tail B |		    | */ | 
|  | /*	   +------------------------------------------------+ */ | 
|  | /* buf:  |0000| pad0s |      coeffb	    |		    | */ | 
|  | /*	   +------------------------------------------------+ */ | 
|  | /* */ | 
|  | /*	   Touching coefficients or gap: */ | 
|  | /*	   +------------------------------------------------+ */ | 
|  | /* acc:  |0000|      coeffa	   | gap |	coeffb	    | */ | 
|  | /*	   +------------------------------------------------+ */ | 
|  | /*	   [buf not used or needed; gap clamped to Pmax] */ | 
|  |  | 
|  | /* lay out lhs coefficient into accumulator; this starts at acc+4 */ | 
|  | /* for decDouble or acc+6 for decQuad so the LSD is word- */ | 
|  | /* aligned; the top word gap is there only in case a carry digit */ | 
|  | /* is prefixed after the add -- it does not need to be zeroed */ | 
|  | #if DOUBLE | 
|  | #define COFF 4			/* offset into acc */ | 
|  | #elif QUAD | 
|  | UBFROMUS(acc+4, 0); 		/* prefix 00 */ | 
|  | #define COFF 6			/* offset into acc */ | 
|  | #endif | 
|  |  | 
|  | GETCOEFF(dfl, acc+COFF);		/* decode from decFloat */ | 
|  | ulsd=acc+COFF+DECPMAX-1; | 
|  | umsd=acc+4;				/* [having this here avoids */ | 
|  |  | 
|  | #if DECTRACE | 
|  | {bcdnum tum; | 
|  | tum.msd=umsd; | 
|  | tum.lsd=ulsd; | 
|  | tum.exponent=bexpl-DECBIAS; | 
|  | tum.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; | 
|  | decShowNum(&tum, "dflx");} | 
|  | #endif | 
|  |  | 
|  | /* if signs differ, take ten's complement of lhs (here the */ | 
|  | /* coefficient is subtracted from all-nines; the 1 is added during */ | 
|  | /* the later add cycle -- zeros to the right do not matter because */ | 
|  | /* the complement of zero is zero); these are fixed-length inverts */ | 
|  | /* where the lsd is known to be at a 4-byte boundary (so no borrow */ | 
|  | /* possible) */ | 
|  | carry=0;				/* assume no carry */ | 
|  | if (diffsign) { | 
|  | carry=CARRYPAT;			/* for +1 during add */ | 
|  | UBFROMUI(acc+ 4, 0x09090909-UBTOUI(acc+ 4)); | 
|  | UBFROMUI(acc+ 8, 0x09090909-UBTOUI(acc+ 8)); | 
|  | UBFROMUI(acc+12, 0x09090909-UBTOUI(acc+12)); | 
|  | UBFROMUI(acc+16, 0x09090909-UBTOUI(acc+16)); | 
|  | #if QUAD | 
|  | UBFROMUI(acc+20, 0x09090909-UBTOUI(acc+20)); | 
|  | UBFROMUI(acc+24, 0x09090909-UBTOUI(acc+24)); | 
|  | UBFROMUI(acc+28, 0x09090909-UBTOUI(acc+28)); | 
|  | UBFROMUI(acc+32, 0x09090909-UBTOUI(acc+32)); | 
|  | UBFROMUI(acc+36, 0x09090909-UBTOUI(acc+36)); | 
|  | #endif | 
|  | } /* diffsign */ | 
|  |  | 
|  | /* now process the rhs coefficient; if it cannot overlap lhs then */ | 
|  | /* it can be put straight into acc (with an appropriate gap, if */ | 
|  | /* needed) because no actual addition will be needed (except */ | 
|  | /* possibly to complete ten's complement) */ | 
|  | overlap=DECPMAX-(bexpl-bexpr); | 
|  | #if DECTRACE | 
|  | printf("exps: %ld %ld\n", (LI)(bexpl-DECBIAS), (LI)(bexpr-DECBIAS)); | 
|  | printf("Overlap=%ld carry=%08lx\n", (LI)overlap, (LI)carry); | 
|  | #endif | 
|  |  | 
|  | if (overlap<=0) {			/* no overlap possible */ | 
|  | uInt gap;				/* local work */ | 
|  | /* since a full addition is not needed, a ten's complement */ | 
|  | /* calculation started above may need to be completed */ | 
|  | if (carry) { | 
|  | for (ub=ulsd; *ub==9; ub--) *ub=0; | 
|  | *ub+=1; | 
|  | carry=0;				/* taken care of */ | 
|  | } | 
|  | /* up to DECPMAX-1 digits of the final result can extend down */ | 
|  | /* below the LSD of the lhs, so if the gap is >DECPMAX then the */ | 
|  | /* rhs will be simply sticky bits.	In this case the gap is */ | 
|  | /* clamped to DECPMAX and the exponent adjusted to suit [this is */ | 
|  | /* safe because the lhs is non-zero]. */ | 
|  | gap=-overlap; | 
|  | if (gap>DECPMAX) { | 
|  | bexpr+=gap-1; | 
|  | gap=DECPMAX; | 
|  | } | 
|  | ub=ulsd+gap+1;			/* where MSD will go */ | 
|  | /* Fill the gap with 0s; note that there is no addition to do */ | 
|  | ut=acc+COFF+DECPMAX;		/* start of gap */ | 
|  | for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* mind the gap */ | 
|  | if (overlap<-DECPMAX) {		/* gap was > DECPMAX */ | 
|  | *ub=(uByte)(!DFISZERO(dfr));	/* make sticky digit */ | 
|  | } | 
|  | else {				/* need full coefficient */ | 
|  | GETCOEFF(dfr, ub);		/* decode from decFloat */ | 
|  | ub+=DECPMAX-1;			/* new LSD... */ | 
|  | } | 
|  | ulsd=ub;				/* save new LSD */ | 
|  | } /* no overlap possible */ | 
|  |  | 
|  | else {				/* overlap>0 */ | 
|  | /* coefficients overlap (perhaps completely, although also */ | 
|  | /* perhaps only where zeros) */ | 
|  | if (overlap==DECPMAX) {		/* aligned */ | 
|  | ub=buf+COFF;			/* where msd will go */ | 
|  | #if QUAD | 
|  | UBFROMUS(buf+4, 0);		/* clear quad's 00 */ | 
|  | #endif | 
|  | GETCOEFF(dfr, ub);		/* decode from decFloat */ | 
|  | } | 
|  | else {				/* unaligned */ | 
|  | ub=buf+COFF+DECPMAX-overlap;	/* where MSD will go */ | 
|  | /* Fill the prefix gap with 0s; 8 will cover most common */ | 
|  | /* unalignments, so start with direct assignments (a loop is */ | 
|  | /* then used for any remaining -- the loop (and the one in a */ | 
|  | /* moment) is not then on the critical path because the number */ | 
|  | /* of additions is reduced by (at least) two in this case) */ | 
|  | UBFROMUI(buf+4, 0);		/* [clears decQuad 00 too] */ | 
|  | UBFROMUI(buf+8, 0); | 
|  | if (ub>buf+12) { | 
|  | ut=buf+12;			/* start any remaining */ | 
|  | for (; ut<ub; ut+=4) UBFROMUI(ut, 0); /* fill them */ | 
|  | } | 
|  | GETCOEFF(dfr, ub);		/* decode from decFloat */ | 
|  |  | 
|  | /* now move tail of rhs across to main acc; again use direct */ | 
|  | /* copies for 8 digits-worth */ | 
|  | UBFROMUI(acc+COFF+DECPMAX,   UBTOUI(buf+COFF+DECPMAX)); | 
|  | UBFROMUI(acc+COFF+DECPMAX+4, UBTOUI(buf+COFF+DECPMAX+4)); | 
|  | if (buf+COFF+DECPMAX+8<ub+DECPMAX) { | 
|  | us=buf+COFF+DECPMAX+8;		/* source */ | 
|  | ut=acc+COFF+DECPMAX+8;		/* target */ | 
|  | for (; us<ub+DECPMAX; us+=4, ut+=4) UBFROMUI(ut, UBTOUI(us)); | 
|  | } | 
|  | } /* unaligned */ | 
|  |  | 
|  | ulsd=acc+(ub-buf+DECPMAX-1);	/* update LSD pointer */ | 
|  |  | 
|  | /* Now do the add of the non-tail; this is all nicely aligned, */ | 
|  | /* and is over a multiple of four digits (because for Quad two */ | 
|  | /* zero digits were added on the left); words in both acc and */ | 
|  | /* buf (buf especially) will often be zero */ | 
|  | /* [byte-by-byte add, here, is about 15% slower total effect than */ | 
|  | /* the by-fours] */ | 
|  |  | 
|  | /* Now effect the add; this is harder on a little-endian */ | 
|  | /* machine as the inter-digit carry cannot use the usual BCD */ | 
|  | /* addition trick because the bytes are loaded in the wrong order */ | 
|  | /* [this loop could be unrolled, but probably scarcely worth it] */ | 
|  |  | 
|  | ut=acc+COFF+DECPMAX-4;		/* target LSW (acc) */ | 
|  | us=buf+COFF+DECPMAX-4;		/* source LSW (buf, to add to acc) */ | 
|  |  | 
|  | #if !DECLITEND | 
|  | for (; ut>=acc+4; ut-=4, us-=4) {	/* big-endian add loop */ | 
|  | /* bcd8 add */ | 
|  | carry+=UBTOUI(us);		/* rhs + carry */ | 
|  | if (carry==0) continue;		/* no-op */ | 
|  | carry+=UBTOUI(ut);		/* lhs */ | 
|  | /* Big-endian BCD adjust (uses internal carry) */ | 
|  | carry+=0x76f6f6f6;		/* note top nibble not all bits */ | 
|  | /* apply BCD adjust and save */ | 
|  | UBFROMUI(ut, (carry & 0x0f0f0f0f) - ((carry & 0x60606060)>>4)); | 
|  | carry>>=31;			/* true carry was at far left */ | 
|  | } /* add loop */ | 
|  | #else | 
|  | for (; ut>=acc+4; ut-=4, us-=4) {	/* little-endian add loop */ | 
|  | /* bcd8 add */ | 
|  | carry+=UBTOUI(us);		/* rhs + carry */ | 
|  | if (carry==0) continue;		/* no-op [common if unaligned] */ | 
|  | carry+=UBTOUI(ut);		/* lhs */ | 
|  | /* Little-endian BCD adjust; inter-digit carry must be manual */ | 
|  | /* because the lsb from the array will be in the most-significant */ | 
|  | /* byte of carry */ | 
|  | carry+=0x76767676;		/* note no inter-byte carries */ | 
|  | carry+=(carry & 0x80000000)>>15; | 
|  | carry+=(carry & 0x00800000)>>15; | 
|  | carry+=(carry & 0x00008000)>>15; | 
|  | carry-=(carry & 0x60606060)>>4;	/* BCD adjust back */ | 
|  | UBFROMUI(ut, carry & 0x0f0f0f0f); /* clear debris and save */ | 
|  | /* here, final carry-out bit is at 0x00000080; move it ready */ | 
|  | /* for next word-add (i.e., to 0x01000000) */ | 
|  | carry=(carry & 0x00000080)<<17; | 
|  | } /* add loop */ | 
|  | #endif | 
|  |  | 
|  | #if DECTRACE | 
|  | {bcdnum tum; | 
|  | printf("Add done, carry=%08lx, diffsign=%ld\n", (LI)carry, (LI)diffsign); | 
|  | tum.msd=umsd;  /* acc+4; */ | 
|  | tum.lsd=ulsd; | 
|  | tum.exponent=0; | 
|  | tum.sign=0; | 
|  | decShowNum(&tum, "dfadd");} | 
|  | #endif | 
|  | } /* overlap possible */ | 
|  |  | 
|  | /* ordering here is a little strange in order to have slowest path */ | 
|  | /* first in GCC asm listing */ | 
|  | if (diffsign) {		   /* subtraction */ | 
|  | if (!carry) {		   /* no carry out means RHS<LHS */ | 
|  | /* borrowed -- take ten's complement */ | 
|  | /* sign is lhs sign */ | 
|  | num.sign=DFWORD(dfl, 0) & DECFLOAT_Sign; | 
|  |  | 
|  | /* invert the coefficient first by fours, then add one; space */ | 
|  | /* at the end of the buffer ensures the by-fours is always */ | 
|  | /* safe, but lsd+1 must be cleared to prevent a borrow */ | 
|  | /* if big-endian */ | 
|  | #if !DECLITEND | 
|  | *(ulsd+1)=0; | 
|  | #endif | 
|  | /* there are always at least four coefficient words */ | 
|  | UBFROMUI(umsd,	0x09090909-UBTOUI(umsd)); | 
|  | UBFROMUI(umsd+4,	0x09090909-UBTOUI(umsd+4)); | 
|  | UBFROMUI(umsd+8,	0x09090909-UBTOUI(umsd+8)); | 
|  | UBFROMUI(umsd+12, 0x09090909-UBTOUI(umsd+12)); | 
|  | #if DOUBLE | 
|  | #define BNEXT 16 | 
|  | #elif QUAD | 
|  | UBFROMUI(umsd+16, 0x09090909-UBTOUI(umsd+16)); | 
|  | UBFROMUI(umsd+20, 0x09090909-UBTOUI(umsd+20)); | 
|  | UBFROMUI(umsd+24, 0x09090909-UBTOUI(umsd+24)); | 
|  | UBFROMUI(umsd+28, 0x09090909-UBTOUI(umsd+28)); | 
|  | UBFROMUI(umsd+32, 0x09090909-UBTOUI(umsd+32)); | 
|  | #define BNEXT 36 | 
|  | #endif | 
|  | if (ulsd>=umsd+BNEXT) {		/* unaligned */ | 
|  | /* eight will handle most unaligments for Double; 16 for Quad */ | 
|  | UBFROMUI(umsd+BNEXT,   0x09090909-UBTOUI(umsd+BNEXT)); | 
|  | UBFROMUI(umsd+BNEXT+4, 0x09090909-UBTOUI(umsd+BNEXT+4)); | 
|  | #if DOUBLE | 
|  | #define BNEXTY (BNEXT+8) | 
|  | #elif QUAD | 
|  | UBFROMUI(umsd+BNEXT+8,	0x09090909-UBTOUI(umsd+BNEXT+8)); | 
|  | UBFROMUI(umsd+BNEXT+12, 0x09090909-UBTOUI(umsd+BNEXT+12)); | 
|  | #define BNEXTY (BNEXT+16) | 
|  | #endif | 
|  | if (ulsd>=umsd+BNEXTY) {	/* very unaligned */ | 
|  | ut=umsd+BNEXTY;		/* -> continue */ | 
|  | for (;;ut+=4) { | 
|  | UBFROMUI(ut, 0x09090909-UBTOUI(ut)); /* invert four digits */ | 
|  | if (ut>=ulsd-3) break;	/* all done */ | 
|  | } | 
|  | } | 
|  | } | 
|  | /* complete the ten's complement by adding 1 */ | 
|  | for (ub=ulsd; *ub==9; ub--) *ub=0; | 
|  | *ub+=1; | 
|  | } /* borrowed */ | 
|  |  | 
|  | else {			   /* carry out means RHS>=LHS */ | 
|  | num.sign=DFWORD(dfr, 0) & DECFLOAT_Sign; | 
|  | /* all done except for the special IEEE 754 exact-zero-result */ | 
|  | /* rule (see above); while testing for zero, strip leading */ | 
|  | /* zeros (which will save decFinalize doing it) (this is in */ | 
|  | /* diffsign path, so carry impossible and true umsd is */ | 
|  | /* acc+COFF) */ | 
|  |  | 
|  | /* Check the initial coefficient area using the fast macro; */ | 
|  | /* this will often be all that needs to be done (as on the */ | 
|  | /* worst-case path when the subtraction was aligned and */ | 
|  | /* full-length) */ | 
|  | if (ISCOEFFZERO(acc+COFF)) { | 
|  | umsd=acc+COFF+DECPMAX-1;   /* so far, so zero */ | 
|  | if (ulsd>umsd) {	   /* more to check */ | 
|  | umsd++;		   /* to align after checked area */ | 
|  | for (; UBTOUI(umsd)==0 && umsd+3<ulsd;) umsd+=4; | 
|  | for (; *umsd==0 && umsd<ulsd;) umsd++; | 
|  | } | 
|  | if (*umsd==0) { 	   /* must be true zero (and diffsign) */ | 
|  | num.sign=0;		   /* assume + */ | 
|  | if (set->round==DEC_ROUND_FLOOR) num.sign=DECFLOAT_Sign; | 
|  | } | 
|  | } | 
|  | /* [else was not zero, might still have leading zeros] */ | 
|  | } /* subtraction gave positive result */ | 
|  | } /* diffsign */ | 
|  |  | 
|  | else { /* same-sign addition */ | 
|  | num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | 
|  | #if DOUBLE | 
|  | if (carry) {		   /* only possible with decDouble */ | 
|  | *(acc+3)=1;		   /* [Quad has leading 00] */ | 
|  | umsd=acc+3; | 
|  | } | 
|  | #endif | 
|  | } /* same sign */ | 
|  |  | 
|  | num.msd=umsd; 		   /* set MSD .. */ | 
|  | num.lsd=ulsd; 		   /* .. and LSD */ | 
|  | num.exponent=bexpr-DECBIAS;	   /* set exponent to smaller, unbiassed */ | 
|  |  | 
|  | #if DECTRACE | 
|  | decFloatShow(dfl, "dfl"); | 
|  | decFloatShow(dfr, "dfr"); | 
|  | decShowNum(&num, "postadd"); | 
|  | #endif | 
|  | return decFinalize(result, &num, set); /* round, check, and lay out */ | 
|  | } /* decFloatAdd */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatAnd -- logical digitwise AND of two decFloats	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of ANDing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which will be canonical with sign=0	      */ | 
|  | /*								      */ | 
|  | /* The operands must be positive, finite with exponent q=0, and       */ | 
|  | /* comprise just zeros and ones; if not, Invalid operation results.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatAnd(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | 
|  | || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set); | 
|  | /* the operands are positive finite integers (q=0) with just 0s and 1s */ | 
|  | #if DOUBLE | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04009124); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x49124491; | 
|  | #elif QUAD | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) & DFWORD(dfr, 0))&0x04000912); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) & DFWORD(dfr, 1))&0x44912449; | 
|  | DFWORD(result, 2)=(DFWORD(dfl, 2) & DFWORD(dfr, 2))&0x12449124; | 
|  | DFWORD(result, 3)=(DFWORD(dfl, 3) & DFWORD(dfr, 3))&0x49124491; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatAnd */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCanonical -- copy a decFloat, making canonical	      */ | 
|  | /*								      */ | 
|  | /*   result gets the canonicalized df				      */ | 
|  | /*   df     is the decFloat to copy and make canonical		      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This works on specials, too; no error or exception is possible.    */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCanonical(decFloat *result, const decFloat *df) { | 
|  | return decCanonical(result, df); | 
|  | } /* decFloatCanonical */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatClass -- return the class of a decFloat		      */ | 
|  | /*								      */ | 
|  | /*   df is the decFloat to test 				      */ | 
|  | /*   returns the decClass that df falls into			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | enum decClass decFloatClass(const decFloat *df) { | 
|  | Int exp;			   /* exponent */ | 
|  | if (DFISSPECIAL(df)) { | 
|  | if (DFISQNAN(df)) return DEC_CLASS_QNAN; | 
|  | if (DFISSNAN(df)) return DEC_CLASS_SNAN; | 
|  | /* must be an infinity */ | 
|  | if (DFISSIGNED(df)) return DEC_CLASS_NEG_INF; | 
|  | return DEC_CLASS_POS_INF; | 
|  | } | 
|  | if (DFISZERO(df)) {		   /* quite common */ | 
|  | if (DFISSIGNED(df)) return DEC_CLASS_NEG_ZERO; | 
|  | return DEC_CLASS_POS_ZERO; | 
|  | } | 
|  | /* is finite and non-zero; similar code to decFloatIsNormal, here */ | 
|  | /* [this could be speeded up slightly by in-lining decFloatDigits] */ | 
|  | exp=GETEXPUN(df)		   /* get unbiased exponent .. */ | 
|  | +decFloatDigits(df)-1;	   /* .. and make adjusted exponent */ | 
|  | if (exp>=DECEMIN) {		   /* is normal */ | 
|  | if (DFISSIGNED(df)) return DEC_CLASS_NEG_NORMAL; | 
|  | return DEC_CLASS_POS_NORMAL; | 
|  | } | 
|  | /* is subnormal */ | 
|  | if (DFISSIGNED(df)) return DEC_CLASS_NEG_SUBNORMAL; | 
|  | return DEC_CLASS_POS_SUBNORMAL; | 
|  | } /* decFloatClass */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatClassString -- return the class of a decFloat as a string  */ | 
|  | /*								      */ | 
|  | /*   df is the decFloat to test 				      */ | 
|  | /*   returns a constant string describing the class df falls into     */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | const char *decFloatClassString(const decFloat *df) { | 
|  | enum decClass eclass=decFloatClass(df); | 
|  | if (eclass==DEC_CLASS_POS_NORMAL)    return DEC_ClassString_PN; | 
|  | if (eclass==DEC_CLASS_NEG_NORMAL)    return DEC_ClassString_NN; | 
|  | if (eclass==DEC_CLASS_POS_ZERO)      return DEC_ClassString_PZ; | 
|  | if (eclass==DEC_CLASS_NEG_ZERO)      return DEC_ClassString_NZ; | 
|  | if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS; | 
|  | if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS; | 
|  | if (eclass==DEC_CLASS_POS_INF)       return DEC_ClassString_PI; | 
|  | if (eclass==DEC_CLASS_NEG_INF)       return DEC_ClassString_NI; | 
|  | if (eclass==DEC_CLASS_QNAN)	       return DEC_ClassString_QN; | 
|  | if (eclass==DEC_CLASS_SNAN)	       return DEC_ClassString_SN; | 
|  | return DEC_ClassString_UN;	       /* Unknown */ | 
|  | } /* decFloatClassString */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCompare -- compare two decFloats; quiet NaNs allowed       */ | 
|  | /*								      */ | 
|  | /*   result gets the result of comparing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which may be -1, 0, 1, or NaN (Unordered)	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCompare(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp;				     /* work */ | 
|  | /* NaNs are handled as usual */ | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | /* numeric comparison needed */ | 
|  | comp=decNumCompare(dfl, dfr, 0); | 
|  | decFloatZero(result); | 
|  | if (comp==0) return result; | 
|  | DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */ | 
|  | if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */ | 
|  | return result; | 
|  | } /* decFloatCompare */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCompareSignal -- compare two decFloats; all NaNs signal    */ | 
|  | /*								      */ | 
|  | /*   result gets the result of comparing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which may be -1, 0, 1, or NaN (Unordered)	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCompareSignal(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp;				     /* work */ | 
|  | /* NaNs are handled as usual, except that all NaNs signal */ | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) { | 
|  | set->status|=DEC_Invalid_operation; | 
|  | return decNaNs(result, dfl, dfr, set); | 
|  | } | 
|  | /* numeric comparison needed */ | 
|  | comp=decNumCompare(dfl, dfr, 0); | 
|  | decFloatZero(result); | 
|  | if (comp==0) return result; | 
|  | DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */ | 
|  | if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */ | 
|  | return result; | 
|  | } /* decFloatCompareSignal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCompareTotal -- compare two decFloats with total ordering  */ | 
|  | /*								      */ | 
|  | /*   result gets the result of comparing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   returns result, which may be -1, 0, or 1			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCompareTotal(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr) { | 
|  | Int  comp;				     /* work */ | 
|  | uInt uiwork;				     /* for macros */ | 
|  | #if QUAD | 
|  | uShort uswork;			     /* .. */ | 
|  | #endif | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) { | 
|  | Int nanl, nanr;			     /* work */ | 
|  | /* morph NaNs to +/- 1 or 2, leave numbers as 0 */ | 
|  | nanl=DFISSNAN(dfl)+DFISQNAN(dfl)*2;      /* quiet > signalling */ | 
|  | if (DFISSIGNED(dfl)) nanl=-nanl; | 
|  | nanr=DFISSNAN(dfr)+DFISQNAN(dfr)*2; | 
|  | if (DFISSIGNED(dfr)) nanr=-nanr; | 
|  | if (nanl>nanr) comp=+1; | 
|  | else if (nanl<nanr) comp=-1; | 
|  | else { /* NaNs are the same type and sign .. must compare payload */ | 
|  | /* buffers need +2 for QUAD */ | 
|  | uByte bufl[DECPMAX+4];		     /* for LHS coefficient + foot */ | 
|  | uByte bufr[DECPMAX+4];		     /* for RHS coefficient + foot */ | 
|  | uByte *ub, *uc;			     /* work */ | 
|  | Int sigl; 			     /* signum of LHS */ | 
|  | sigl=(DFISSIGNED(dfl) ? -1 : +1); | 
|  |  | 
|  | /* decode the coefficients */ | 
|  | /* (shift both right two if Quad to make a multiple of four) */ | 
|  | #if QUAD | 
|  | UBFROMUS(bufl, 0); | 
|  | UBFROMUS(bufr, 0); | 
|  | #endif | 
|  | GETCOEFF(dfl, bufl+QUAD*2);	     /* decode from decFloat */ | 
|  | GETCOEFF(dfr, bufr+QUAD*2);	     /* .. */ | 
|  | /* all multiples of four, here */ | 
|  | comp=0;				     /* assume equal */ | 
|  | for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { | 
|  | uInt ui=UBTOUI(ub); | 
|  | if (ui==UBTOUI(uc)) continue; /* so far so same */ | 
|  | /* about to find a winner; go by bytes in case little-endian */ | 
|  | for (;; ub++, uc++) { | 
|  | if (*ub==*uc) continue; | 
|  | if (*ub>*uc) comp=sigl;	     /* difference found */ | 
|  | else comp=-sigl;		     /* .. */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | } /* same NaN type and sign */ | 
|  | } | 
|  | else { | 
|  | /* numeric comparison needed */ | 
|  | comp=decNumCompare(dfl, dfr, 1);	/* total ordering */ | 
|  | } | 
|  | decFloatZero(result); | 
|  | if (comp==0) return result; | 
|  | DFBYTE(result, DECBYTES-1)=0x01;	/* LSD=1 */ | 
|  | if (comp<0) DFBYTE(result, 0)|=0x80;	/* set sign bit */ | 
|  | return result; | 
|  | } /* decFloatCompareTotal */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCompareTotalMag -- compare magnitudes with total ordering  */ | 
|  | /*								      */ | 
|  | /*   result gets the result of comparing abs(dfl) and abs(dfr)	      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   returns result, which may be -1, 0, or 1			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCompareTotalMag(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr) { | 
|  | decFloat a, b;			/* for copy if needed */ | 
|  | /* copy and redirect signed operand(s) */ | 
|  | if (DFISSIGNED(dfl)) { | 
|  | decFloatCopyAbs(&a, dfl); | 
|  | dfl=&a; | 
|  | } | 
|  | if (DFISSIGNED(dfr)) { | 
|  | decFloatCopyAbs(&b, dfr); | 
|  | dfr=&b; | 
|  | } | 
|  | return decFloatCompareTotal(result, dfl, dfr); | 
|  | } /* decFloatCompareTotalMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCopy -- copy a decFloat as-is			      */ | 
|  | /*								      */ | 
|  | /*   result gets the copy of dfl				      */ | 
|  | /*   dfl    is the decFloat to copy				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is a bitwise operation; no errors or exceptions are possible. */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCopy(decFloat *result, const decFloat *dfl) { | 
|  | if (dfl!=result) *result=*dfl;	     /* copy needed */ | 
|  | return result; | 
|  | } /* decFloatCopy */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCopyAbs -- copy a decFloat as-is and set sign bit to 0     */ | 
|  | /*								      */ | 
|  | /*   result gets the copy of dfl with sign bit 0		      */ | 
|  | /*   dfl    is the decFloat to copy				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is a bitwise operation; no errors or exceptions are possible. */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCopyAbs(decFloat *result, const decFloat *dfl) { | 
|  | if (dfl!=result) *result=*dfl;	/* copy needed */ | 
|  | DFBYTE(result, 0)&=~0x80;		/* zero sign bit */ | 
|  | return result; | 
|  | } /* decFloatCopyAbs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCopyNegate -- copy a decFloat as-is with inverted sign bit */ | 
|  | /*								      */ | 
|  | /*   result gets the copy of dfl with sign bit inverted 	      */ | 
|  | /*   dfl    is the decFloat to copy				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is a bitwise operation; no errors or exceptions are possible. */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCopyNegate(decFloat *result, const decFloat *dfl) { | 
|  | if (dfl!=result) *result=*dfl;	/* copy needed */ | 
|  | DFBYTE(result, 0)^=0x80;		/* invert sign bit */ | 
|  | return result; | 
|  | } /* decFloatCopyNegate */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatCopySign -- copy a decFloat with the sign of another       */ | 
|  | /*								      */ | 
|  | /*   result gets the result of copying dfl with the sign of dfr       */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is a bitwise operation; no errors or exceptions are possible. */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatCopySign(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr) { | 
|  | uByte sign=(uByte)(DFBYTE(dfr, 0)&0x80);   /* save sign bit */ | 
|  | if (dfl!=result) *result=*dfl;	     /* copy needed */ | 
|  | DFBYTE(result, 0)&=~0x80;		     /* clear sign .. */ | 
|  | DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* .. and set saved */ | 
|  | return result; | 
|  | } /* decFloatCopySign */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatDigits -- return the number of digits in a decFloat	      */ | 
|  | /*								      */ | 
|  | /*   df is the decFloat to investigate				      */ | 
|  | /*   returns the number of significant digits in the decFloat; a      */ | 
|  | /*     zero coefficient returns 1 as does an infinity (a NaN returns  */ | 
|  | /*     the number of digits in the payload)			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* private macro to extract a declet according to provided formula */ | 
|  | /* (form), and if it is non-zero then return the calculated digits */ | 
|  | /* depending on the declet number (n), where n=0 for the most */ | 
|  | /* significant declet; uses uInt dpd for work */ | 
|  | #define dpdlenchk(n, form) {dpd=(form)&0x3ff;	  \ | 
|  | if (dpd) return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);} | 
|  | /* next one is used when it is known that the declet must be */ | 
|  | /* non-zero, or is the final zero declet */ | 
|  | #define dpdlendun(n, form) {dpd=(form)&0x3ff;	  \ | 
|  | if (dpd==0) return 1; 			  \ | 
|  | return (DECPMAX-1-3*(n))-(3-DPD2BCD8[dpd*4+3]);} | 
|  |  | 
|  | uInt decFloatDigits(const decFloat *df) { | 
|  | uInt dpd;			   /* work */ | 
|  | uInt sourhi=DFWORD(df, 0);	   /* top word from source decFloat */ | 
|  | #if QUAD | 
|  | uInt sourmh, sourml; | 
|  | #endif | 
|  | uInt sourlo; | 
|  |  | 
|  | if (DFISINF(df)) return 1; | 
|  | /* A NaN effectively has an MSD of 0; otherwise if non-zero MSD */ | 
|  | /* then the coefficient is full-length */ | 
|  | if (!DFISNAN(df) && DECCOMBMSD[sourhi>>26]) return DECPMAX; | 
|  |  | 
|  | #if DOUBLE | 
|  | if (sourhi&0x0003ffff) {	 /* ends in first */ | 
|  | dpdlenchk(0, sourhi>>8); | 
|  | sourlo=DFWORD(df, 1); | 
|  | dpdlendun(1, (sourhi<<2) | (sourlo>>30)); | 
|  | } /* [cannot drop through] */ | 
|  | sourlo=DFWORD(df, 1);  /* sourhi not involved now */ | 
|  | if (sourlo&0xfff00000) {	 /* in one of first two */ | 
|  | dpdlenchk(1, sourlo>>30);  /* very rare */ | 
|  | dpdlendun(2, sourlo>>20); | 
|  | } /* [cannot drop through] */ | 
|  | dpdlenchk(3, sourlo>>10); | 
|  | dpdlendun(4, sourlo); | 
|  | /* [cannot drop through] */ | 
|  |  | 
|  | #elif QUAD | 
|  | if (sourhi&0x00003fff) {	 /* ends in first */ | 
|  | dpdlenchk(0, sourhi>>4); | 
|  | sourmh=DFWORD(df, 1); | 
|  | dpdlendun(1, ((sourhi)<<6) | (sourmh>>26)); | 
|  | } /* [cannot drop through] */ | 
|  | sourmh=DFWORD(df, 1); | 
|  | if (sourmh) { | 
|  | dpdlenchk(1, sourmh>>26); | 
|  | dpdlenchk(2, sourmh>>16); | 
|  | dpdlenchk(3, sourmh>>6); | 
|  | sourml=DFWORD(df, 2); | 
|  | dpdlendun(4, ((sourmh)<<4) | (sourml>>28)); | 
|  | } /* [cannot drop through] */ | 
|  | sourml=DFWORD(df, 2); | 
|  | if (sourml) { | 
|  | dpdlenchk(4, sourml>>28); | 
|  | dpdlenchk(5, sourml>>18); | 
|  | dpdlenchk(6, sourml>>8); | 
|  | sourlo=DFWORD(df, 3); | 
|  | dpdlendun(7, ((sourml)<<2) | (sourlo>>30)); | 
|  | } /* [cannot drop through] */ | 
|  | sourlo=DFWORD(df, 3); | 
|  | if (sourlo&0xfff00000) {	 /* in one of first two */ | 
|  | dpdlenchk(7, sourlo>>30);  /* very rare */ | 
|  | dpdlendun(8, sourlo>>20); | 
|  | } /* [cannot drop through] */ | 
|  | dpdlenchk(9, sourlo>>10); | 
|  | dpdlendun(10, sourlo); | 
|  | /* [cannot drop through] */ | 
|  | #endif | 
|  | } /* decFloatDigits */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatDivide -- divide a decFloat by another		      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of dividing dfl by dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* This is just a wrapper. */ | 
|  | decFloat * decFloatDivide(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | return decDivide(result, dfl, dfr, set, DIVIDE); | 
|  | } /* decFloatDivide */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatDivideInteger -- integer divide a decFloat by another      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of dividing dfl by dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatDivideInteger(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | return decDivide(result, dfl, dfr, set, DIVIDEINT); | 
|  | } /* decFloatDivideInteger */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatFMA -- multiply and add three decFloats, fused	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of (dfl*dfr)+dff with a single rounding   */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   dff    is the final decFloat (fhs) 			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatFMA(decFloat *result, const decFloat *dfl, | 
|  | const decFloat *dfr, const decFloat *dff, | 
|  | decContext *set) { | 
|  |  | 
|  | /* The accumulator has the bytes needed for FiniteMultiply, plus */ | 
|  | /* one byte to the left in case of carry, plus DECPMAX+2 to the */ | 
|  | /* right for the final addition (up to full fhs + round & sticky) */ | 
|  | #define FMALEN (ROUNDUP4(1+ (DECPMAX9*18+1) +DECPMAX+2)) | 
|  | uByte  acc[FMALEN];		   /* for multiplied coefficient in BCD */ | 
|  | /* .. and for final result */ | 
|  | bcdnum mul;			   /* for multiplication result */ | 
|  | bcdnum fin;			   /* for final operand, expanded */ | 
|  | uByte  coe[ROUNDUP4(DECPMAX)];   /* dff coefficient in BCD */ | 
|  | bcdnum *hi, *lo;		   /* bcdnum with higher/lower exponent */ | 
|  | uInt	 diffsign;		   /* non-zero if signs differ */ | 
|  | uInt	 hipad; 		   /* pad digit for hi if needed */ | 
|  | Int	 padding;		   /* excess exponent */ | 
|  | uInt	 carry; 		   /* +1 for ten's complement and during add */ | 
|  | uByte  *ub, *uh, *ul; 	   /* work */ | 
|  | uInt	 uiwork;		   /* for macros */ | 
|  |  | 
|  | /* handle all the special values [any special operand leads to a */ | 
|  | /* special result] */ | 
|  | if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr) || DFISSPECIAL(dff)) { | 
|  | decFloat proxy;		   /* multiplication result proxy */ | 
|  | /* NaNs are handled as usual, giving priority to sNaNs */ | 
|  | if (DFISSNAN(dfl) || DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | if (DFISSNAN(dff)) return decNaNs(result, dff, NULL, set); | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | if (DFISNAN(dff)) return decNaNs(result, dff, NULL, set); | 
|  | /* One or more of the three is infinite */ | 
|  | /* infinity times zero is bad */ | 
|  | decFloatZero(&proxy); | 
|  | if (DFISINF(dfl)) { | 
|  | if (DFISZERO(dfr)) return decInvalid(result, set); | 
|  | decInfinity(&proxy, &proxy); | 
|  | } | 
|  | else if (DFISINF(dfr)) { | 
|  | if (DFISZERO(dfl)) return decInvalid(result, set); | 
|  | decInfinity(&proxy, &proxy); | 
|  | } | 
|  | /* compute sign of multiplication and place in proxy */ | 
|  | DFWORD(&proxy, 0)|=(DFWORD(dfl, 0)^DFWORD(dfr, 0))&DECFLOAT_Sign; | 
|  | if (!DFISINF(dff)) return decFloatCopy(result, &proxy); | 
|  | /* dff is Infinite */ | 
|  | if (!DFISINF(&proxy)) return decInfinity(result, dff); | 
|  | /* both sides of addition are infinite; different sign is bad */ | 
|  | if ((DFWORD(dff, 0)&DECFLOAT_Sign)!=(DFWORD(&proxy, 0)&DECFLOAT_Sign)) | 
|  | return decInvalid(result, set); | 
|  | return decFloatCopy(result, &proxy); | 
|  | } | 
|  |  | 
|  | /* Here when all operands are finite */ | 
|  |  | 
|  | /* First multiply dfl*dfr */ | 
|  | decFiniteMultiply(&mul, acc+1, dfl, dfr); | 
|  | /* The multiply is complete, exact and unbounded, and described in */ | 
|  | /* mul with the coefficient held in acc[1...] */ | 
|  |  | 
|  | /* now add in dff; the algorithm is essentially the same as */ | 
|  | /* decFloatAdd, but the code is different because the code there */ | 
|  | /* is highly optimized for adding two numbers of the same size */ | 
|  | fin.exponent=GETEXPUN(dff);		/* get dff exponent and sign */ | 
|  | fin.sign=DFWORD(dff, 0)&DECFLOAT_Sign; | 
|  | diffsign=mul.sign^fin.sign;		/* note if signs differ */ | 
|  | fin.msd=coe; | 
|  | fin.lsd=coe+DECPMAX-1; | 
|  | GETCOEFF(dff, coe);			/* extract the coefficient */ | 
|  |  | 
|  | /* now set hi and lo so that hi points to whichever of mul and fin */ | 
|  | /* has the higher exponent and lo points to the other [don't care, */ | 
|  | /* if the same].  One coefficient will be in acc, the other in coe. */ | 
|  | if (mul.exponent>=fin.exponent) { | 
|  | hi=&mul; | 
|  | lo=&fin; | 
|  | } | 
|  | else { | 
|  | hi=&fin; | 
|  | lo=&mul; | 
|  | } | 
|  |  | 
|  | /* remove leading zeros on both operands; this will save time later */ | 
|  | /* and make testing for zero trivial (tests are safe because acc */ | 
|  | /* and coe are rounded up to uInts) */ | 
|  | for (; UBTOUI(hi->msd)==0 && hi->msd+3<hi->lsd;) hi->msd+=4; | 
|  | for (; *hi->msd==0 && hi->msd<hi->lsd;) hi->msd++; | 
|  | for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; | 
|  | for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; | 
|  |  | 
|  | /* if hi is zero then result will be lo (which has the smaller */ | 
|  | /* exponent), which also may need to be tested for zero for the */ | 
|  | /* weird IEEE 754 sign rules */ | 
|  | if (*hi->msd==0) {			     /* hi is zero */ | 
|  | /* "When the sum of two operands with opposite signs is */ | 
|  | /* exactly zero, the sign of that sum shall be '+' in all */ | 
|  | /* rounding modes except round toward -Infinity, in which */ | 
|  | /* mode that sign shall be '-'." */ | 
|  | if (diffsign) { | 
|  | if (*lo->msd==0) {		     /* lo is zero */ | 
|  | lo->sign=0; | 
|  | if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; | 
|  | } /* diffsign && lo=0 */ | 
|  | } /* diffsign */ | 
|  | return decFinalize(result, lo, set);     /* may need clamping */ | 
|  | } /* numfl is zero */ | 
|  | /* [here, both are minimal length and hi is non-zero] */ | 
|  | /* (if lo is zero then padding with zeros may be needed, below) */ | 
|  |  | 
|  | /* if signs differ, take the ten's complement of hi (zeros to the */ | 
|  | /* right do not matter because the complement of zero is zero); the */ | 
|  | /* +1 is done later, as part of the addition, inserted at the */ | 
|  | /* correct digit */ | 
|  | hipad=0; | 
|  | carry=0; | 
|  | if (diffsign) { | 
|  | hipad=9; | 
|  | carry=1; | 
|  | /* exactly the correct number of digits must be inverted */ | 
|  | for (uh=hi->msd; uh<hi->lsd-3; uh+=4) UBFROMUI(uh, 0x09090909-UBTOUI(uh)); | 
|  | for (; uh<=hi->lsd; uh++) *uh=(uByte)(0x09-*uh); | 
|  | } | 
|  |  | 
|  | /* ready to add; note that hi has no leading zeros so gap */ | 
|  | /* calculation does not have to be as pessimistic as in decFloatAdd */ | 
|  | /* (this is much more like the arbitrary-precision algorithm in */ | 
|  | /* Rexx and decNumber) */ | 
|  |  | 
|  | /* padding is the number of zeros that would need to be added to hi */ | 
|  | /* for its lsd to be aligned with the lsd of lo */ | 
|  | padding=hi->exponent-lo->exponent; | 
|  | /* printf("FMA pad %ld\n", (LI)padding); */ | 
|  |  | 
|  | /* the result of the addition will be built into the accumulator, */ | 
|  | /* starting from the far right; this could be either hi or lo, and */ | 
|  | /* will be aligned */ | 
|  | ub=acc+FMALEN-1;		   /* where lsd of result will go */ | 
|  | ul=lo->lsd;			   /* lsd of rhs */ | 
|  |  | 
|  | if (padding!=0) {		   /* unaligned */ | 
|  | /* if the msd of lo is more than DECPMAX+2 digits to the right of */ | 
|  | /* the original msd of hi then it can be reduced to a single */ | 
|  | /* digit at the right place, as it stays clear of hi digits */ | 
|  | /* [it must be DECPMAX+2 because during a subtraction the msd */ | 
|  | /* could become 0 after a borrow from 1.000 to 0.9999...] */ | 
|  |  | 
|  | Int hilen=(Int)(hi->lsd-hi->msd+1); /* length of hi */ | 
|  | Int lolen=(Int)(lo->lsd-lo->msd+1); /* and of lo */ | 
|  |  | 
|  | if (hilen+padding-lolen > DECPMAX+2) {   /* can reduce lo to single */ | 
|  | /* make sure it is virtually at least DECPMAX from hi->msd, at */ | 
|  | /* least to right of hi->lsd (in case of destructive subtract), */ | 
|  | /* and separated by at least two digits from either of those */ | 
|  | /* (the tricky DOUBLE case is when hi is a 1 that will become a */ | 
|  | /* 0.9999... by subtraction: */ | 
|  | /*   hi:	 1				     E+16 */ | 
|  | /*   lo:	  .................1000000000000000  E-16 */ | 
|  | /* which for the addition pads to: */ | 
|  | /*   hi:	 1000000000000000000		     E-16 */ | 
|  | /*   lo:	  .................1000000000000000  E-16 */ | 
|  | Int newexp=MINI(hi->exponent, hi->exponent+hilen-DECPMAX)-3; | 
|  |  | 
|  | /* printf("FMA reduce: %ld\n", (LI)reduce); */ | 
|  | lo->lsd=lo->msd;			     /* to single digit [maybe 0] */ | 
|  | lo->exponent=newexp;		     /* new lowest exponent */ | 
|  | padding=hi->exponent-lo->exponent;     /* recalculate */ | 
|  | ul=lo->lsd;			     /* .. and repoint */ | 
|  | } | 
|  |  | 
|  | /* padding is still > 0, but will fit in acc (less leading carry slot) */ | 
|  | #if DECCHECK | 
|  | if (padding<=0) printf("FMA low padding: %ld\n", (LI)padding); | 
|  | if (hilen+padding+1>FMALEN) | 
|  | printf("FMA excess hilen+padding: %ld+%ld \n", (LI)hilen, (LI)padding); | 
|  | /* printf("FMA padding: %ld\n", (LI)padding); */ | 
|  | #endif | 
|  |  | 
|  | /* padding digits can now be set in the result; one or more of */ | 
|  | /* these will come from lo; others will be zeros in the gap */ | 
|  | for (; ul-3>=lo->msd && padding>3; padding-=4, ul-=4, ub-=4) { | 
|  | UBFROMUI(ub-3, UBTOUI(ul-3));	     /* [cannot overlap] */ | 
|  | } | 
|  | for (; ul>=lo->msd && padding>0; padding--, ul--, ub--) *ub=*ul; | 
|  | for (;padding>0; padding--, ub--) *ub=0; /* mind the gap */ | 
|  | } | 
|  |  | 
|  | /* addition now complete to the right of the rightmost digit of hi */ | 
|  | uh=hi->lsd; | 
|  |  | 
|  | /* dow do the add from hi->lsd to the left */ | 
|  | /* [bytewise, because either operand can run out at any time] */ | 
|  | /* carry was set up depending on ten's complement above */ | 
|  | /* first assume both operands have some digits */ | 
|  | for (;; ub--) { | 
|  | if (uh<hi->msd || ul<lo->msd) break; | 
|  | *ub=(uByte)(carry+(*uh--)+(*ul--)); | 
|  | carry=0; | 
|  | if (*ub<10) continue; | 
|  | *ub-=10; | 
|  | carry=1; | 
|  | } /* both loop */ | 
|  |  | 
|  | if (ul<lo->msd) {	      /* to left of lo */ | 
|  | for (;; ub--) { | 
|  | if (uh<hi->msd) break; | 
|  | *ub=(uByte)(carry+(*uh--));  /* [+0] */ | 
|  | carry=0; | 
|  | if (*ub<10) continue; | 
|  | *ub-=10; | 
|  | carry=1; | 
|  | } /* hi loop */ | 
|  | } | 
|  | else {		      /* to left of hi */ | 
|  | for (;; ub--) { | 
|  | if (ul<lo->msd) break; | 
|  | *ub=(uByte)(carry+hipad+(*ul--)); | 
|  | carry=0; | 
|  | if (*ub<10) continue; | 
|  | *ub-=10; | 
|  | carry=1; | 
|  | } /* lo loop */ | 
|  | } | 
|  |  | 
|  | /* addition complete -- now handle carry, borrow, etc. */ | 
|  | /* use lo to set up the num (its exponent is already correct, and */ | 
|  | /* sign usually is) */ | 
|  | lo->msd=ub+1; | 
|  | lo->lsd=acc+FMALEN-1; | 
|  | /* decShowNum(lo, "lo"); */ | 
|  | if (!diffsign) {		   /* same-sign addition */ | 
|  | if (carry) {		   /* carry out */ | 
|  | *ub=1;			   /* place the 1 .. */ | 
|  | lo->msd--;		   /* .. and update */ | 
|  | } | 
|  | } /* same sign */ | 
|  | else {			   /* signs differed (subtraction) */ | 
|  | if (!carry) {		   /* no carry out means hi<lo */ | 
|  | /* borrowed -- take ten's complement of the right digits */ | 
|  | lo->sign=hi->sign;	   /* sign is lhs sign */ | 
|  | for (ul=lo->msd; ul<lo->lsd-3; ul+=4) UBFROMUI(ul, 0x09090909-UBTOUI(ul)); | 
|  | for (; ul<=lo->lsd; ul++) *ul=(uByte)(0x09-*ul); /* [leaves ul at lsd+1] */ | 
|  | /* complete the ten's complement by adding 1 [cannot overrun] */ | 
|  | for (ul--; *ul==9; ul--) *ul=0; | 
|  | *ul+=1; | 
|  | } /* borrowed */ | 
|  | else {			   /* carry out means hi>=lo */ | 
|  | /* sign to use is lo->sign */ | 
|  | /* all done except for the special IEEE 754 exact-zero-result */ | 
|  | /* rule (see above); while testing for zero, strip leading */ | 
|  | /* zeros (which will save decFinalize doing it) */ | 
|  | for (; UBTOUI(lo->msd)==0 && lo->msd+3<lo->lsd;) lo->msd+=4; | 
|  | for (; *lo->msd==0 && lo->msd<lo->lsd;) lo->msd++; | 
|  | if (*lo->msd==0) {	   /* must be true zero (and diffsign) */ | 
|  | lo->sign=0;		   /* assume + */ | 
|  | if (set->round==DEC_ROUND_FLOOR) lo->sign=DECFLOAT_Sign; | 
|  | } | 
|  | /* [else was not zero, might still have leading zeros] */ | 
|  | } /* subtraction gave positive result */ | 
|  | } /* diffsign */ | 
|  |  | 
|  | #if DECCHECK | 
|  | /* assert no left underrun */ | 
|  | if (lo->msd<acc) { | 
|  | printf("FMA underrun by %ld \n", (LI)(acc-lo->msd)); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return decFinalize(result, lo, set);	/* round, check, and lay out */ | 
|  | } /* decFloatFMA */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatFromInt -- initialise a decFloat from an Int 	      */ | 
|  | /*								      */ | 
|  | /*   result gets the converted Int				      */ | 
|  | /*   n	    is the Int to convert				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* The result is Exact; no errors or exceptions are possible.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatFromInt32(decFloat *result, Int n) { | 
|  | uInt u=(uInt)n;			/* copy as bits */ | 
|  | uInt encode;				/* work */ | 
|  | DFWORD(result, 0)=ZEROWORD;		/* always */ | 
|  | #if QUAD | 
|  | DFWORD(result, 1)=0; | 
|  | DFWORD(result, 2)=0; | 
|  | #endif | 
|  | if (n<0) {				/* handle -n with care */ | 
|  | /* [This can be done without the test, but is then slightly slower] */ | 
|  | u=(~u)+1; | 
|  | DFWORD(result, 0)|=DECFLOAT_Sign; | 
|  | } | 
|  | /* Since the maximum value of u now is 2**31, only the low word of */ | 
|  | /* result is affected */ | 
|  | encode=BIN2DPD[u%1000]; | 
|  | u/=1000; | 
|  | encode|=BIN2DPD[u%1000]<<10; | 
|  | u/=1000; | 
|  | encode|=BIN2DPD[u%1000]<<20; | 
|  | u/=1000;				/* now 0, 1, or 2 */ | 
|  | encode|=u<<30; | 
|  | DFWORD(result, DECWORDS-1)=encode; | 
|  | return result; | 
|  | } /* decFloatFromInt32 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatFromUInt -- initialise a decFloat from a uInt	      */ | 
|  | /*								      */ | 
|  | /*   result gets the converted uInt				      */ | 
|  | /*   n	    is the uInt to convert				      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* The result is Exact; no errors or exceptions are possible.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatFromUInt32(decFloat *result, uInt u) { | 
|  | uInt encode;				/* work */ | 
|  | DFWORD(result, 0)=ZEROWORD;		/* always */ | 
|  | #if QUAD | 
|  | DFWORD(result, 1)=0; | 
|  | DFWORD(result, 2)=0; | 
|  | #endif | 
|  | encode=BIN2DPD[u%1000]; | 
|  | u/=1000; | 
|  | encode|=BIN2DPD[u%1000]<<10; | 
|  | u/=1000; | 
|  | encode|=BIN2DPD[u%1000]<<20; | 
|  | u/=1000;				/* now 0 -> 4 */ | 
|  | encode|=u<<30; | 
|  | DFWORD(result, DECWORDS-1)=encode; | 
|  | DFWORD(result, DECWORDS-2)|=u>>2;	/* rarely non-zero */ | 
|  | return result; | 
|  | } /* decFloatFromUInt32 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatInvert -- logical digitwise INVERT of a decFloat	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of INVERTing df			      */ | 
|  | /*   df     is the decFloat to invert				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which will be canonical with sign=0	      */ | 
|  | /*								      */ | 
|  | /* The operand must be positive, finite with exponent q=0, and	      */ | 
|  | /* comprise just zeros and ones; if not, Invalid operation results.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatInvert(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | uInt sourhi=DFWORD(df, 0);		/* top word of dfs */ | 
|  |  | 
|  | if (!DFISUINT01(df) || !DFISCC01(df)) return decInvalid(result, set); | 
|  | /* the operand is a finite integer (q=0) */ | 
|  | #if DOUBLE | 
|  | DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04009124); | 
|  | DFWORD(result, 1)=(~DFWORD(df, 1))	&0x49124491; | 
|  | #elif QUAD | 
|  | DFWORD(result, 0)=ZEROWORD|((~sourhi)&0x04000912); | 
|  | DFWORD(result, 1)=(~DFWORD(df, 1))	&0x44912449; | 
|  | DFWORD(result, 2)=(~DFWORD(df, 2))	&0x12449124; | 
|  | DFWORD(result, 3)=(~DFWORD(df, 3))	&0x49124491; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatInvert */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatIs -- decFloat tests (IsSigned, etc.)		      */ | 
|  | /*								      */ | 
|  | /*   df is the decFloat to test 				      */ | 
|  | /*   returns 0 or 1 in a uInt					      */ | 
|  | /*								      */ | 
|  | /* Many of these could be macros, but having them as real functions   */ | 
|  | /* is a little cleaner (and they can be referred to here by the       */ | 
|  | /* generic names)						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | uInt decFloatIsCanonical(const decFloat *df) { | 
|  | if (DFISSPECIAL(df)) { | 
|  | if (DFISINF(df)) { | 
|  | if (DFWORD(df, 0)&ECONMASK) return 0;  /* exponent continuation */ | 
|  | if (!DFISCCZERO(df)) return 0;	     /* coefficient continuation */ | 
|  | return 1; | 
|  | } | 
|  | /* is a NaN */ | 
|  | if (DFWORD(df, 0)&ECONNANMASK) return 0; /* exponent continuation */ | 
|  | if (DFISCCZERO(df)) return 1;	     /* coefficient continuation */ | 
|  | /* drop through to check payload */ | 
|  | } | 
|  | { /* declare block */ | 
|  | #if DOUBLE | 
|  | uInt sourhi=DFWORD(df, 0); | 
|  | uInt sourlo=DFWORD(df, 1); | 
|  | if (CANONDPDOFF(sourhi, 8) | 
|  | && CANONDPDTWO(sourhi, sourlo, 30) | 
|  | && CANONDPDOFF(sourlo, 20) | 
|  | && CANONDPDOFF(sourlo, 10) | 
|  | && CANONDPDOFF(sourlo, 0)) return 1; | 
|  | #elif QUAD | 
|  | uInt sourhi=DFWORD(df, 0); | 
|  | uInt sourmh=DFWORD(df, 1); | 
|  | uInt sourml=DFWORD(df, 2); | 
|  | uInt sourlo=DFWORD(df, 3); | 
|  | if (CANONDPDOFF(sourhi, 4) | 
|  | && CANONDPDTWO(sourhi, sourmh, 26) | 
|  | && CANONDPDOFF(sourmh, 16) | 
|  | && CANONDPDOFF(sourmh, 6) | 
|  | && CANONDPDTWO(sourmh, sourml, 28) | 
|  | && CANONDPDOFF(sourml, 18) | 
|  | && CANONDPDOFF(sourml, 8) | 
|  | && CANONDPDTWO(sourml, sourlo, 30) | 
|  | && CANONDPDOFF(sourlo, 20) | 
|  | && CANONDPDOFF(sourlo, 10) | 
|  | && CANONDPDOFF(sourlo, 0)) return 1; | 
|  | #endif | 
|  | } /* block */ | 
|  | return 0;    /* a declet is non-canonical */ | 
|  | } | 
|  |  | 
|  | uInt decFloatIsFinite(const decFloat *df) { | 
|  | return !DFISSPECIAL(df); | 
|  | } | 
|  | uInt decFloatIsInfinite(const decFloat *df) { | 
|  | return DFISINF(df); | 
|  | } | 
|  | uInt decFloatIsInteger(const decFloat *df) { | 
|  | return DFISINT(df); | 
|  | } | 
|  | uInt decFloatIsNaN(const decFloat *df) { | 
|  | return DFISNAN(df); | 
|  | } | 
|  | uInt decFloatIsNormal(const decFloat *df) { | 
|  | Int exp;			   /* exponent */ | 
|  | if (DFISSPECIAL(df)) return 0; | 
|  | if (DFISZERO(df)) return 0; | 
|  | /* is finite and non-zero */ | 
|  | exp=GETEXPUN(df)		   /* get unbiased exponent .. */ | 
|  | +decFloatDigits(df)-1;	   /* .. and make adjusted exponent */ | 
|  | return (exp>=DECEMIN);	   /* < DECEMIN is subnormal */ | 
|  | } | 
|  | uInt decFloatIsSignaling(const decFloat *df) { | 
|  | return DFISSNAN(df); | 
|  | } | 
|  | uInt decFloatIsSignalling(const decFloat *df) { | 
|  | return DFISSNAN(df); | 
|  | } | 
|  | uInt decFloatIsSigned(const decFloat *df) { | 
|  | return DFISSIGNED(df); | 
|  | } | 
|  | uInt decFloatIsSubnormal(const decFloat *df) { | 
|  | if (DFISSPECIAL(df)) return 0; | 
|  | /* is finite */ | 
|  | if (decFloatIsNormal(df)) return 0; | 
|  | /* it is <Nmin, but could be zero */ | 
|  | if (DFISZERO(df)) return 0; | 
|  | return 1;				     /* is subnormal */ | 
|  | } | 
|  | uInt decFloatIsZero(const decFloat *df) { | 
|  | return DFISZERO(df); | 
|  | } /* decFloatIs... */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatLogB -- return adjusted exponent, by 754 rules	      */ | 
|  | /*								      */ | 
|  | /*   result gets the adjusted exponent as an integer, or a NaN etc.   */ | 
|  | /*   df     is the decFloat to be examined			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* Notable cases:						      */ | 
|  | /*   A<0 -> Use |A|						      */ | 
|  | /*   A=0 -> -Infinity (Division by zero)			      */ | 
|  | /*   A=Infinite -> +Infinity (Exact)				      */ | 
|  | /*   A=1 exactly -> 0 (Exact)					      */ | 
|  | /*   NaNs are propagated as usual				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatLogB(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | Int ae;				     /* adjusted exponent */ | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | 
|  | if (DFISINF(df)) { | 
|  | DFWORD(result, 0)=0;		     /* need +ve */ | 
|  | return decInfinity(result, result);      /* canonical +Infinity */ | 
|  | } | 
|  | if (DFISZERO(df)) { | 
|  | set->status|=DEC_Division_by_zero;	     /* as per 754 */ | 
|  | DFWORD(result, 0)=DECFLOAT_Sign;	     /* make negative */ | 
|  | return decInfinity(result, result);      /* canonical -Infinity */ | 
|  | } | 
|  | ae=GETEXPUN(df)			/* get unbiased exponent .. */ | 
|  | +decFloatDigits(df)-1;		/* .. and make adjusted exponent */ | 
|  | /* ae has limited range (3 digits for DOUBLE and 4 for QUAD), so */ | 
|  | /* it is worth using a special case of decFloatFromInt32 */ | 
|  | DFWORD(result, 0)=ZEROWORD;		/* always */ | 
|  | if (ae<0) { | 
|  | DFWORD(result, 0)|=DECFLOAT_Sign;	/* -0 so far */ | 
|  | ae=-ae; | 
|  | } | 
|  | #if DOUBLE | 
|  | DFWORD(result, 1)=BIN2DPD[ae];	/* a single declet */ | 
|  | #elif QUAD | 
|  | DFWORD(result, 1)=0; | 
|  | DFWORD(result, 2)=0; | 
|  | DFWORD(result, 3)=(ae/1000)<<10;	/* is <10, so need no DPD encode */ | 
|  | DFWORD(result, 3)|=BIN2DPD[ae%1000]; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatLogB */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMax -- return maxnum of two operands 		      */ | 
|  | /*								      */ | 
|  | /*   result gets the chosen decFloat				      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* If just one operand is a quiet NaN it is ignored.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMax(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp; | 
|  | if (DFISNAN(dfl)) { | 
|  | /* sNaN or both NaNs leads to normal NaN processing */ | 
|  | if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); | 
|  | return decCanonical(result, dfr);	     /* RHS is numeric */ | 
|  | } | 
|  | if (DFISNAN(dfr)) { | 
|  | /* sNaN leads to normal NaN processing (both NaN handled above) */ | 
|  | if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | return decCanonical(result, dfl);	     /* LHS is numeric */ | 
|  | } | 
|  | /* Both operands are numeric; numeric comparison needed -- use */ | 
|  | /* total order for a well-defined choice (and +0 > -0) */ | 
|  | comp=decNumCompare(dfl, dfr, 1); | 
|  | if (comp>=0) return decCanonical(result, dfl); | 
|  | return decCanonical(result, dfr); | 
|  | } /* decFloatMax */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMaxMag -- return maxnummag of two operands		      */ | 
|  | /*								      */ | 
|  | /*   result gets the chosen decFloat				      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* Returns according to the magnitude comparisons if both numeric and */ | 
|  | /* unequal, otherwise returns maxnum				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMaxMag(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp; | 
|  | decFloat absl, absr; | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMax(result, dfl, dfr, set); | 
|  |  | 
|  | decFloatCopyAbs(&absl, dfl); | 
|  | decFloatCopyAbs(&absr, dfr); | 
|  | comp=decNumCompare(&absl, &absr, 0); | 
|  | if (comp>0) return decCanonical(result, dfl); | 
|  | if (comp<0) return decCanonical(result, dfr); | 
|  | return decFloatMax(result, dfl, dfr, set); | 
|  | } /* decFloatMaxMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMin -- return minnum of two operands 		      */ | 
|  | /*								      */ | 
|  | /*   result gets the chosen decFloat				      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* If just one operand is a quiet NaN it is ignored.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMin(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp; | 
|  | if (DFISNAN(dfl)) { | 
|  | /* sNaN or both NaNs leads to normal NaN processing */ | 
|  | if (DFISNAN(dfr) || DFISSNAN(dfl)) return decNaNs(result, dfl, dfr, set); | 
|  | return decCanonical(result, dfr);	     /* RHS is numeric */ | 
|  | } | 
|  | if (DFISNAN(dfr)) { | 
|  | /* sNaN leads to normal NaN processing (both NaN handled above) */ | 
|  | if (DFISSNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | return decCanonical(result, dfl);	     /* LHS is numeric */ | 
|  | } | 
|  | /* Both operands are numeric; numeric comparison needed -- use */ | 
|  | /* total order for a well-defined choice (and +0 > -0) */ | 
|  | comp=decNumCompare(dfl, dfr, 1); | 
|  | if (comp<=0) return decCanonical(result, dfl); | 
|  | return decCanonical(result, dfr); | 
|  | } /* decFloatMin */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMinMag -- return minnummag of two operands		      */ | 
|  | /*								      */ | 
|  | /*   result gets the chosen decFloat				      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* Returns according to the magnitude comparisons if both numeric and */ | 
|  | /* unequal, otherwise returns minnum				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMinMag(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int comp; | 
|  | decFloat absl, absr; | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decFloatMin(result, dfl, dfr, set); | 
|  |  | 
|  | decFloatCopyAbs(&absl, dfl); | 
|  | decFloatCopyAbs(&absr, dfr); | 
|  | comp=decNumCompare(&absl, &absr, 0); | 
|  | if (comp<0) return decCanonical(result, dfl); | 
|  | if (comp>0) return decCanonical(result, dfr); | 
|  | return decFloatMin(result, dfl, dfr, set); | 
|  | } /* decFloatMinMag */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMinus -- negate value, heeding NaNs, etc.		      */ | 
|  | /*								      */ | 
|  | /*   result gets the canonicalized 0-df 			      */ | 
|  | /*   df     is the decFloat to minus				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This has the same effect as 0-df where the exponent of the zero is */ | 
|  | /* the same as that of df (if df is finite).			      */ | 
|  | /* The effect is also the same as decFloatCopyNegate except that NaNs */ | 
|  | /* are handled normally (the sign of a NaN is not affected, and an    */ | 
|  | /* sNaN will signal), the result is canonical, and zero gets sign 0.  */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMinus(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | 
|  | decCanonical(result, df);			  /* copy and check */ | 
|  | if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80;	  /* turn off sign bit */ | 
|  | else DFBYTE(result, 0)^=0x80;		  /* flip sign bit */ | 
|  | return result; | 
|  | } /* decFloatMinus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatMultiply -- multiply two decFloats			      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of multiplying dfl and dfr: 	      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatMultiply(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | bcdnum num;			   /* for final conversion */ | 
|  | uByte  bcdacc[DECPMAX9*18+1];    /* for coefficent in BCD */ | 
|  |  | 
|  | if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { /* either is special? */ | 
|  | /* NaNs are handled as usual */ | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | /* infinity times zero is bad */ | 
|  | if (DFISINF(dfl) && DFISZERO(dfr)) return decInvalid(result, set); | 
|  | if (DFISINF(dfr) && DFISZERO(dfl)) return decInvalid(result, set); | 
|  | /* both infinite; return canonical infinity with computed sign */ | 
|  | DFWORD(result, 0)=DFWORD(dfl, 0)^DFWORD(dfr, 0); /* compute sign */ | 
|  | return decInfinity(result, result); | 
|  | } | 
|  |  | 
|  | /* Here when both operands are finite */ | 
|  | decFiniteMultiply(&num, bcdacc, dfl, dfr); | 
|  | return decFinalize(result, &num, set); /* round, check, and lay out */ | 
|  | } /* decFloatMultiply */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatNextMinus -- next towards -Infinity			      */ | 
|  | /*								      */ | 
|  | /*   result gets the next lesser decFloat			      */ | 
|  | /*   dfl    is the decFloat to start with			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is 754 nextdown; Invalid is the only status possible (from    */ | 
|  | /* an sNaN).							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatNextMinus(decFloat *result, const decFloat *dfl, | 
|  | decContext *set) { | 
|  | decFloat delta;			/* tiny increment */ | 
|  | uInt savestat;			/* saves status */ | 
|  | enum rounding saveround;		/* .. and mode */ | 
|  |  | 
|  | /* +Infinity is the special case */ | 
|  | if (DFISINF(dfl) && !DFISSIGNED(dfl)) { | 
|  | DFSETNMAX(result); | 
|  | return result;			/* [no status to set] */ | 
|  | } | 
|  | /* other cases are effected by sutracting a tiny delta -- this */ | 
|  | /* should be done in a wider format as the delta is unrepresentable */ | 
|  | /* here (but can be done with normal add if the sign of zero is */ | 
|  | /* treated carefully, because no Inexactitude is interesting); */ | 
|  | /* rounding to -Infinity then pushes the result to next below */ | 
|  | decFloatZero(&delta); 		/* set up tiny delta */ | 
|  | DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */ | 
|  | DFWORD(&delta, 0)=DECFLOAT_Sign;	/* Sign=1 + biased exponent=0 */ | 
|  | /* set up for the directional round */ | 
|  | saveround=set->round; 		/* save mode */ | 
|  | set->round=DEC_ROUND_FLOOR;		/* .. round towards -Infinity */ | 
|  | savestat=set->status; 		/* save status */ | 
|  | decFloatAdd(result, dfl, &delta, set); | 
|  | /* Add rules mess up the sign when going from +Ntiny to 0 */ | 
|  | if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */ | 
|  | set->status&=DEC_Invalid_operation;	/* preserve only sNaN status */ | 
|  | set->status|=savestat;		/* restore pending flags */ | 
|  | set->round=saveround; 		/* .. and mode */ | 
|  | return result; | 
|  | } /* decFloatNextMinus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatNextPlus -- next towards +Infinity			      */ | 
|  | /*								      */ | 
|  | /*   result gets the next larger decFloat			      */ | 
|  | /*   dfl    is the decFloat to start with			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is 754 nextup; Invalid is the only status possible (from      */ | 
|  | /* an sNaN).							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatNextPlus(decFloat *result, const decFloat *dfl, | 
|  | decContext *set) { | 
|  | uInt savestat;			/* saves status */ | 
|  | enum rounding saveround;		/* .. and mode */ | 
|  | decFloat delta;			/* tiny increment */ | 
|  |  | 
|  | /* -Infinity is the special case */ | 
|  | if (DFISINF(dfl) && DFISSIGNED(dfl)) { | 
|  | DFSETNMAX(result); | 
|  | DFWORD(result, 0)|=DECFLOAT_Sign;	/* make negative */ | 
|  | return result;			/* [no status to set] */ | 
|  | } | 
|  | /* other cases are effected by sutracting a tiny delta -- this */ | 
|  | /* should be done in a wider format as the delta is unrepresentable */ | 
|  | /* here (but can be done with normal add if the sign of zero is */ | 
|  | /* treated carefully, because no Inexactitude is interesting); */ | 
|  | /* rounding to +Infinity then pushes the result to next above */ | 
|  | decFloatZero(&delta); 		/* set up tiny delta */ | 
|  | DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */ | 
|  | DFWORD(&delta, 0)=0;			/* Sign=0 + biased exponent=0 */ | 
|  | /* set up for the directional round */ | 
|  | saveround=set->round; 		/* save mode */ | 
|  | set->round=DEC_ROUND_CEILING; 	/* .. round towards +Infinity */ | 
|  | savestat=set->status; 		/* save status */ | 
|  | decFloatAdd(result, dfl, &delta, set); | 
|  | /* Add rules mess up the sign when going from -Ntiny to -0 */ | 
|  | if (DFISZERO(result)) DFWORD(result, 0)^=DECFLOAT_Sign; /* correct */ | 
|  | set->status&=DEC_Invalid_operation;	/* preserve only sNaN status */ | 
|  | set->status|=savestat;		/* restore pending flags */ | 
|  | set->round=saveround; 		/* .. and mode */ | 
|  | return result; | 
|  | } /* decFloatNextPlus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatNextToward -- next towards a decFloat		      */ | 
|  | /*								      */ | 
|  | /*   result gets the next decFloat				      */ | 
|  | /*   dfl    is the decFloat to start with			      */ | 
|  | /*   dfr    is the decFloat to move toward			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is 754-1985 nextafter, as modified during revision (dropped   */ | 
|  | /* from 754-2008); status may be set unless the result is a normal    */ | 
|  | /* number.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatNextToward(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | decFloat delta;			/* tiny increment or decrement */ | 
|  | decFloat pointone;			/* 1e-1 */ | 
|  | uInt	savestat;			/* saves status */ | 
|  | enum	rounding saveround;		/* .. and mode */ | 
|  | uInt	deltatop;			/* top word for delta */ | 
|  | Int	comp;				/* work */ | 
|  |  | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | /* Both are numeric, so Invalid no longer a possibility */ | 
|  | comp=decNumCompare(dfl, dfr, 0); | 
|  | if (comp==0) return decFloatCopySign(result, dfl, dfr); /* equal */ | 
|  | /* unequal; do NextPlus or NextMinus but with different status rules */ | 
|  |  | 
|  | if (comp<0) { /* lhs<rhs, do NextPlus, see above for commentary */ | 
|  | if (DFISINF(dfl) && DFISSIGNED(dfl)) {   /* -Infinity special case */ | 
|  | DFSETNMAX(result); | 
|  | DFWORD(result, 0)|=DECFLOAT_Sign; | 
|  | return result; | 
|  | } | 
|  | saveround=set->round;		     /* save mode */ | 
|  | set->round=DEC_ROUND_CEILING;	     /* .. round towards +Infinity */ | 
|  | deltatop=0; 			     /* positive delta */ | 
|  | } | 
|  | else { /* lhs>rhs, do NextMinus, see above for commentary */ | 
|  | if (DFISINF(dfl) && !DFISSIGNED(dfl)) {  /* +Infinity special case */ | 
|  | DFSETNMAX(result); | 
|  | return result; | 
|  | } | 
|  | saveround=set->round;		     /* save mode */ | 
|  | set->round=DEC_ROUND_FLOOR; 	     /* .. round towards -Infinity */ | 
|  | deltatop=DECFLOAT_Sign;		     /* negative delta */ | 
|  | } | 
|  | savestat=set->status; 		     /* save status */ | 
|  | /* Here, Inexact is needed where appropriate (and hence Underflow, */ | 
|  | /* etc.).  Therefore the tiny delta which is otherwise */ | 
|  | /* unrepresentable (see NextPlus and NextMinus) is constructed */ | 
|  | /* using the multiplication of FMA. */ | 
|  | decFloatZero(&delta); 		/* set up tiny delta */ | 
|  | DFWORD(&delta, DECWORDS-1)=1; 	/* coefficient=1 */ | 
|  | DFWORD(&delta, 0)=deltatop;		/* Sign + biased exponent=0 */ | 
|  | decFloatFromString(&pointone, "1E-1", set); /* set up multiplier */ | 
|  | decFloatFMA(result, &delta, &pointone, dfl, set); | 
|  | /* [Delta is truly tiny, so no need to correct sign of zero] */ | 
|  | /* use new status unless the result is normal */ | 
|  | if (decFloatIsNormal(result)) set->status=savestat; /* else goes forward */ | 
|  | set->round=saveround; 		/* restore mode */ | 
|  | return result; | 
|  | } /* decFloatNextToward */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatOr -- logical digitwise OR of two decFloats		      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of ORing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which will be canonical with sign=0	      */ | 
|  | /*								      */ | 
|  | /* The operands must be positive, finite with exponent q=0, and       */ | 
|  | /* comprise just zeros and ones; if not, Invalid operation results.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatOr(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | 
|  | || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set); | 
|  | /* the operands are positive finite integers (q=0) with just 0s and 1s */ | 
|  | #if DOUBLE | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04009124); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x49124491; | 
|  | #elif QUAD | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) | DFWORD(dfr, 0))&0x04000912); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) | DFWORD(dfr, 1))&0x44912449; | 
|  | DFWORD(result, 2)=(DFWORD(dfl, 2) | DFWORD(dfr, 2))&0x12449124; | 
|  | DFWORD(result, 3)=(DFWORD(dfl, 3) | DFWORD(dfr, 3))&0x49124491; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatOr */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatPlus -- add value to 0, heeding NaNs, etc.		      */ | 
|  | /*								      */ | 
|  | /*   result gets the canonicalized 0+df 			      */ | 
|  | /*   df     is the decFloat to plus				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This has the same effect as 0+df where the exponent of the zero is */ | 
|  | /* the same as that of df (if df is finite).			      */ | 
|  | /* The effect is also the same as decFloatCopy except that NaNs       */ | 
|  | /* are handled normally (the sign of a NaN is not affected, and an    */ | 
|  | /* sNaN will signal), the result is canonical, and zero gets sign 0.  */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatPlus(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | 
|  | decCanonical(result, df);			  /* copy and check */ | 
|  | if (DFISZERO(df)) DFBYTE(result, 0)&=~0x80;	  /* turn off sign bit */ | 
|  | return result; | 
|  | } /* decFloatPlus */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatQuantize -- quantize a decFloat			      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of quantizing dfl to match dfr	      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs), which sets the exponent     */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* Unless there is an error or the result is infinite, the exponent   */ | 
|  | /* of result is guaranteed to be the same as that of dfr.	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatQuantize(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int	explb, exprb;	      /* left and right biased exponents */ | 
|  | uByte *ulsd;		      /* local LSD pointer */ | 
|  | uByte *ub, *uc;	      /* work */ | 
|  | Int	drop;		      /* .. */ | 
|  | uInt	dpd;		      /* .. */ | 
|  | uInt	encode; 	      /* encoding accumulator */ | 
|  | uInt	sourhil, sourhir;     /* top words from source decFloats */ | 
|  | uInt	uiwork; 	      /* for macros */ | 
|  | #if QUAD | 
|  | uShort uswork;	      /* .. */ | 
|  | #endif | 
|  | /* the following buffer holds the coefficient for manipulation */ | 
|  | uByte buf[4+DECPMAX*3+2*QUAD];   /* + space for zeros to left or right */ | 
|  | #if DECTRACE | 
|  | bcdnum num;			   /* for trace displays */ | 
|  | #endif | 
|  |  | 
|  | /* Start decoding the arguments */ | 
|  | sourhil=DFWORD(dfl, 0);	   /* LHS top word */ | 
|  | explb=DECCOMBEXP[sourhil>>26];   /* get exponent high bits (in place) */ | 
|  | sourhir=DFWORD(dfr, 0);	   /* RHS top word */ | 
|  | exprb=DECCOMBEXP[sourhir>>26]; | 
|  |  | 
|  | if (EXPISSPECIAL(explb | exprb)) { /* either is special? */ | 
|  | /* NaNs are handled as usual */ | 
|  | if (DFISNAN(dfl) || DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | /* one infinity but not both is bad */ | 
|  | if (DFISINF(dfl)!=DFISINF(dfr)) return decInvalid(result, set); | 
|  | /* both infinite; return canonical infinity with sign of LHS */ | 
|  | return decInfinity(result, dfl); | 
|  | } | 
|  |  | 
|  | /* Here when both arguments are finite */ | 
|  | /* complete extraction of the exponents [no need to unbias] */ | 
|  | explb+=GETECON(dfl);		   /* + continuation */ | 
|  | exprb+=GETECON(dfr);		   /* .. */ | 
|  |  | 
|  | /* calculate the number of digits to drop from the coefficient */ | 
|  | drop=exprb-explb;		   /* 0 if nothing to do */ | 
|  | if (drop==0) return decCanonical(result, dfl); /* return canonical */ | 
|  |  | 
|  | /* the coefficient is needed; lay it out into buf, offset so zeros */ | 
|  | /* can be added before or after as needed -- an extra heading is */ | 
|  | /* added so can safely pad Quad DECPMAX-1 zeros to the left by */ | 
|  | /* fours */ | 
|  | #define BUFOFF (buf+4+DECPMAX) | 
|  | GETCOEFF(dfl, BUFOFF);	   /* decode from decFloat */ | 
|  | /* [now the msd is at BUFOFF and the lsd is at BUFOFF+DECPMAX-1] */ | 
|  |  | 
|  | #if DECTRACE | 
|  | num.msd=BUFOFF; | 
|  | num.lsd=BUFOFF+DECPMAX-1; | 
|  | num.exponent=explb-DECBIAS; | 
|  | num.sign=sourhil & DECFLOAT_Sign; | 
|  | decShowNum(&num, "dfl"); | 
|  | #endif | 
|  |  | 
|  | if (drop>0) { 			/* [most common case] */ | 
|  | /* (this code is very similar to that in decFloatFinalize, but */ | 
|  | /* has many differences so is duplicated here -- so any changes */ | 
|  | /* may need to be made there, too) */ | 
|  | uByte *roundat;			     /* -> re-round digit */ | 
|  | uByte reround;			     /* reround value */ | 
|  | /* printf("Rounding; drop=%ld\n", (LI)drop); */ | 
|  |  | 
|  | /* there is at least one zero needed to the left, in all but one */ | 
|  | /* exceptional (all-nines) case, so place four zeros now; this is */ | 
|  | /* needed almost always and makes rounding all-nines by fours safe */ | 
|  | UBFROMUI(BUFOFF-4, 0); | 
|  |  | 
|  | /* Three cases here: */ | 
|  | /*	 1. new LSD is in coefficient (almost always) */ | 
|  | /*	 2. new LSD is digit to left of coefficient (so MSD is */ | 
|  | /*	    round-for-reround digit) */ | 
|  | /*	 3. new LSD is to left of case 2 (whole coefficient is sticky) */ | 
|  | /* Note that leading zeros can safely be treated as useful digits */ | 
|  |  | 
|  | /* [duplicate check-stickies code to save a test] */ | 
|  | /* [by-digit check for stickies as runs of zeros are rare] */ | 
|  | if (drop<DECPMAX) { 		     /* NB lengths not addresses */ | 
|  | roundat=BUFOFF+DECPMAX-drop; | 
|  | reround=*roundat; | 
|  | for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) { | 
|  | if (*ub!=0) {			     /* non-zero to be discarded */ | 
|  | reround=DECSTICKYTAB[reround];     /* apply sticky bit */ | 
|  | break;			     /* [remainder don't-care] */ | 
|  | } | 
|  | } /* check stickies */ | 
|  | ulsd=roundat-1;			     /* set LSD */ | 
|  | } | 
|  | else {				     /* edge case */ | 
|  | if (drop==DECPMAX) { | 
|  | roundat=BUFOFF; | 
|  | reround=*roundat; | 
|  | } | 
|  | else { | 
|  | roundat=BUFOFF-1; | 
|  | reround=0; | 
|  | } | 
|  | for (ub=roundat+1; ub<BUFOFF+DECPMAX; ub++) { | 
|  | if (*ub!=0) {			     /* non-zero to be discarded */ | 
|  | reround=DECSTICKYTAB[reround];     /* apply sticky bit */ | 
|  | break;			     /* [remainder don't-care] */ | 
|  | } | 
|  | } /* check stickies */ | 
|  | *BUFOFF=0;			     /* make a coefficient of 0 */ | 
|  | ulsd=BUFOFF;			     /* .. at the MSD place */ | 
|  | } | 
|  |  | 
|  | if (reround!=0) {			     /* discarding non-zero */ | 
|  | uInt bump=0; | 
|  | set->status|=DEC_Inexact; | 
|  |  | 
|  | /* next decide whether to increment the coefficient */ | 
|  | if (set->round==DEC_ROUND_HALF_EVEN) { /* fastpath slowest case */ | 
|  | if (reround>5) bump=1;		     /* >0.5 goes up */ | 
|  | else if (reround==5)		     /* exactly 0.5000 .. */ | 
|  | bump=*ulsd & 0x01;		     /* .. up iff [new] lsd is odd */ | 
|  | } /* r-h-e */ | 
|  | else switch (set->round) { | 
|  | case DEC_ROUND_DOWN: { | 
|  | /* no change */ | 
|  | break;} /* r-d */ | 
|  | case DEC_ROUND_HALF_DOWN: { | 
|  | if (reround>5) bump=1; | 
|  | break;} /* r-h-d */ | 
|  | case DEC_ROUND_HALF_UP: { | 
|  | if (reround>=5) bump=1; | 
|  | break;} /* r-h-u */ | 
|  | case DEC_ROUND_UP: { | 
|  | if (reround>0) bump=1; | 
|  | break;} /* r-u */ | 
|  | case DEC_ROUND_CEILING: { | 
|  | /* same as _UP for positive numbers, and as _DOWN for negatives */ | 
|  | if (!(sourhil&DECFLOAT_Sign) && reround>0) bump=1; | 
|  | break;} /* r-c */ | 
|  | case DEC_ROUND_FLOOR: { | 
|  | /* same as _UP for negative numbers, and as _DOWN for positive */ | 
|  | /* [negative reround cannot occur on 0] */ | 
|  | if (sourhil&DECFLOAT_Sign && reround>0) bump=1; | 
|  | break;} /* r-f */ | 
|  | case DEC_ROUND_05UP: { | 
|  | if (reround>0) { /* anything out there is 'sticky' */ | 
|  | /* bump iff lsd=0 or 5; this cannot carry so it could be */ | 
|  | /* effected immediately with no bump -- but the code */ | 
|  | /* is clearer if this is done the same way as the others */ | 
|  | if (*ulsd==0 || *ulsd==5) bump=1; | 
|  | } | 
|  | break;} /* r-r */ | 
|  | default: {	/* e.g., DEC_ROUND_MAX */ | 
|  | set->status|=DEC_Invalid_context; | 
|  | #if DECCHECK | 
|  | printf("Unknown rounding mode: %ld\n", (LI)set->round); | 
|  | #endif | 
|  | break;} | 
|  | } /* switch (not r-h-e) */ | 
|  | /* printf("ReRound: %ld  bump: %ld\n", (LI)reround, (LI)bump); */ | 
|  |  | 
|  | if (bump!=0) {			     /* need increment */ | 
|  | /* increment the coefficient; this could give 1000... (after */ | 
|  | /* the all nines case) */ | 
|  | ub=ulsd; | 
|  | for (; UBTOUI(ub-3)==0x09090909; ub-=4) UBFROMUI(ub-3, 0); | 
|  | /* now at most 3 digits left to non-9 (usually just the one) */ | 
|  | for (; *ub==9; ub--) *ub=0; | 
|  | *ub+=1; | 
|  | /* [the all-nines case will have carried one digit to the */ | 
|  | /* left of the original MSD -- just where it is needed] */ | 
|  | } /* bump needed */ | 
|  | } /* inexact rounding */ | 
|  |  | 
|  | /* now clear zeros to the left so exactly DECPMAX digits will be */ | 
|  | /* available in the coefficent -- the first word to the left was */ | 
|  | /* cleared earlier for safe carry; now add any more needed */ | 
|  | if (drop>4) { | 
|  | UBFROMUI(BUFOFF-8, 0);		     /* must be at least 5 */ | 
|  | for (uc=BUFOFF-12; uc>ulsd-DECPMAX-3; uc-=4) UBFROMUI(uc, 0); | 
|  | } | 
|  | } /* need round (drop>0) */ | 
|  |  | 
|  | else { /* drop<0; padding with -drop digits is needed */ | 
|  | /* This is the case where an error can occur if the padded */ | 
|  | /* coefficient will not fit; checking for this can be done in the */ | 
|  | /* same loop as padding for zeros if the no-hope and zero cases */ | 
|  | /* are checked first */ | 
|  | if (-drop>DECPMAX-1) {		     /* cannot fit unless 0 */ | 
|  | if (!ISCOEFFZERO(BUFOFF)) return decInvalid(result, set); | 
|  | /* a zero can have any exponent; just drop through and use it */ | 
|  | ulsd=BUFOFF+DECPMAX-1; | 
|  | } | 
|  | else { /* padding will fit (but may still be too long) */ | 
|  | /* final-word mask depends on endianess */ | 
|  | #if DECLITEND | 
|  | static const uInt dmask[]={0, 0x000000ff, 0x0000ffff, 0x00ffffff}; | 
|  | #else | 
|  | static const uInt dmask[]={0, 0xff000000, 0xffff0000, 0xffffff00}; | 
|  | #endif | 
|  | /* note that here zeros to the right are added by fours, so in */ | 
|  | /* the Quad case this could write 36 zeros if the coefficient has */ | 
|  | /* fewer than three significant digits (hence the +2*QUAD for buf) */ | 
|  | for (uc=BUFOFF+DECPMAX;; uc+=4) { | 
|  | UBFROMUI(uc, 0); | 
|  | if (UBTOUI(uc-DECPMAX)!=0) {		  /* could be bad */ | 
|  | /* if all four digits should be zero, definitely bad */ | 
|  | if (uc<=BUFOFF+DECPMAX+(-drop)-4) | 
|  | return decInvalid(result, set); | 
|  | /* must be a 1- to 3-digit sequence; check more carefully */ | 
|  | if ((UBTOUI(uc-DECPMAX)&dmask[(-drop)%4])!=0) | 
|  | return decInvalid(result, set); | 
|  | break;    /* no need for loop end test */ | 
|  | } | 
|  | if (uc>=BUFOFF+DECPMAX+(-drop)-4) break;  /* done */ | 
|  | } | 
|  | ulsd=BUFOFF+DECPMAX+(-drop)-1; | 
|  | } /* pad and check leading zeros */ | 
|  | } /* drop<0 */ | 
|  |  | 
|  | #if DECTRACE | 
|  | num.msd=ulsd-DECPMAX+1; | 
|  | num.lsd=ulsd; | 
|  | num.exponent=explb-DECBIAS; | 
|  | num.sign=sourhil & DECFLOAT_Sign; | 
|  | decShowNum(&num, "res"); | 
|  | #endif | 
|  |  | 
|  | /*------------------------------------------------------------------*/ | 
|  | /* At this point the result is DECPMAX digits, ending at ulsd, so   */ | 
|  | /* fits the encoding exactly; there is no possibility of error      */ | 
|  | /*------------------------------------------------------------------*/ | 
|  | encode=((exprb>>DECECONL)<<4) + *(ulsd-DECPMAX+1); /* make index */ | 
|  | encode=DECCOMBFROM[encode];		     /* indexed by (0-2)*16+msd */ | 
|  | /* the exponent continuation can be extracted from the original RHS */ | 
|  | encode|=sourhir & ECONMASK; | 
|  | encode|=sourhil&DECFLOAT_Sign;	     /* add the sign from LHS */ | 
|  |  | 
|  | /* finally encode the coefficient */ | 
|  | /* private macro to encode a declet; this version can be used */ | 
|  | /* because all coefficient digits exist */ | 
|  | #define getDPD3q(dpd, n) ub=ulsd-(3*(n))-2;			\ | 
|  | dpd=BCD2DPD[(*ub*256)+(*(ub+1)*16)+*(ub+2)]; | 
|  |  | 
|  | #if DOUBLE | 
|  | getDPD3q(dpd, 4); encode|=dpd<<8; | 
|  | getDPD3q(dpd, 3); encode|=dpd>>2; | 
|  | DFWORD(result, 0)=encode; | 
|  | encode=dpd<<30; | 
|  | getDPD3q(dpd, 2); encode|=dpd<<20; | 
|  | getDPD3q(dpd, 1); encode|=dpd<<10; | 
|  | getDPD3q(dpd, 0); encode|=dpd; | 
|  | DFWORD(result, 1)=encode; | 
|  |  | 
|  | #elif QUAD | 
|  | getDPD3q(dpd,10); encode|=dpd<<4; | 
|  | getDPD3q(dpd, 9); encode|=dpd>>6; | 
|  | DFWORD(result, 0)=encode; | 
|  | encode=dpd<<26; | 
|  | getDPD3q(dpd, 8); encode|=dpd<<16; | 
|  | getDPD3q(dpd, 7); encode|=dpd<<6; | 
|  | getDPD3q(dpd, 6); encode|=dpd>>4; | 
|  | DFWORD(result, 1)=encode; | 
|  | encode=dpd<<28; | 
|  | getDPD3q(dpd, 5); encode|=dpd<<18; | 
|  | getDPD3q(dpd, 4); encode|=dpd<<8; | 
|  | getDPD3q(dpd, 3); encode|=dpd>>2; | 
|  | DFWORD(result, 2)=encode; | 
|  | encode=dpd<<30; | 
|  | getDPD3q(dpd, 2); encode|=dpd<<20; | 
|  | getDPD3q(dpd, 1); encode|=dpd<<10; | 
|  | getDPD3q(dpd, 0); encode|=dpd; | 
|  | DFWORD(result, 3)=encode; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatQuantize */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatReduce -- reduce finite coefficient to minimum length      */ | 
|  | /*								      */ | 
|  | /*   result gets the reduced decFloat				      */ | 
|  | /*   df     is the source decFloat				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which will be canonical			      */ | 
|  | /*								      */ | 
|  | /* This removes all possible trailing zeros from the coefficient;     */ | 
|  | /* some may remain when the number is very close to Nmax.	      */ | 
|  | /* Special values are unchanged and no status is set unless df=sNaN.  */ | 
|  | /* Reduced zero has an exponent q=0.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatReduce(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | bcdnum num;				/* work */ | 
|  | uByte buf[DECPMAX], *ub;		/* coefficient and pointer */ | 
|  | if (df!=result) *result=*df;		/* copy, if needed */ | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set);   /* sNaN */ | 
|  | /* zeros and infinites propagate too */ | 
|  | if (DFISINF(df)) return decInfinity(result, df);     /* canonical */ | 
|  | if (DFISZERO(df)) { | 
|  | uInt sign=DFWORD(df, 0)&DECFLOAT_Sign; | 
|  | decFloatZero(result); | 
|  | DFWORD(result, 0)|=sign; | 
|  | return result;			/* exponent dropped, sign OK */ | 
|  | } | 
|  | /* non-zero finite */ | 
|  | GETCOEFF(df, buf); | 
|  | ub=buf+DECPMAX-1;			/* -> lsd */ | 
|  | if (*ub) return result;		/* no trailing zeros */ | 
|  | for (ub--; *ub==0;) ub--;		/* terminates because non-zero */ | 
|  | /* *ub is the first non-zero from the right */ | 
|  | num.sign=DFWORD(df, 0)&DECFLOAT_Sign; /* set up number... */ | 
|  | num.exponent=GETEXPUN(df)+(Int)(buf+DECPMAX-1-ub); /* adjusted exponent */ | 
|  | num.msd=buf; | 
|  | num.lsd=ub; | 
|  | return decFinalize(result, &num, set); | 
|  | } /* decFloatReduce */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatRemainder -- integer divide and return remainder	      */ | 
|  | /*								      */ | 
|  | /*   result gets the remainder of dividing dfl by dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatRemainder(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | return decDivide(result, dfl, dfr, set, REMAINDER); | 
|  | } /* decFloatRemainder */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatRemainderNear -- integer divide to nearest and remainder   */ | 
|  | /*								      */ | 
|  | /*   result gets the remainder of dividing dfl by dfr:		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This is the IEEE remainder, where the nearest integer is used.     */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatRemainderNear(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | return decDivide(result, dfl, dfr, set, REMNEAR); | 
|  | } /* decFloatRemainderNear */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatRotate -- rotate the coefficient of a decFloat left/right  */ | 
|  | /*								      */ | 
|  | /*   result gets the result of rotating dfl			      */ | 
|  | /*   dfl    is the source decFloat to rotate			      */ | 
|  | /*   dfr    is the count of digits to rotate, an integer (with q=0)   */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* The digits of the coefficient of dfl are rotated to the left (if   */ | 
|  | /* dfr is positive) or to the right (if dfr is negative) without      */ | 
|  | /* adjusting the exponent or the sign of dfl.			      */ | 
|  | /*								      */ | 
|  | /* dfr must be in the range -DECPMAX through +DECPMAX.		      */ | 
|  | /* NaNs are propagated as usual.  An infinite dfl is unaffected (but  */ | 
|  | /* dfr must be valid).	No status is set unless dfr is invalid or an  */ | 
|  | /* operand is an sNaN.	The result is canonical.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #define PHALF (ROUNDUP(DECPMAX/2, 4))	/* half length, rounded up */ | 
|  | decFloat * decFloatRotate(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int rotate;				/* dfr as an Int */ | 
|  | uByte buf[DECPMAX+PHALF];		/* coefficient + half */ | 
|  | uInt digits, savestat;		/* work */ | 
|  | bcdnum num;				/* .. */ | 
|  | uByte *ub;				/* .. */ | 
|  |  | 
|  | if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | if (!DFISINT(dfr)) return decInvalid(result, set); | 
|  | digits=decFloatDigits(dfr);			 /* calculate digits */ | 
|  | if (digits>2) return decInvalid(result, set);  /* definitely out of range */ | 
|  | rotate=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff]; /* is in bottom declet */ | 
|  | if (rotate>DECPMAX) return decInvalid(result, set); /* too big */ | 
|  | /* [from here on no error or status change is possible] */ | 
|  | if (DFISINF(dfl)) return decInfinity(result, dfl);  /* canonical */ | 
|  | /* handle no-rotate cases */ | 
|  | if (rotate==0 || rotate==DECPMAX) return decCanonical(result, dfl); | 
|  | /* a real rotate is needed: 0 < rotate < DECPMAX */ | 
|  | /* reduce the rotation to no more than half to reduce copying later */ | 
|  | /* (for QUAD in fact half + 2 digits) */ | 
|  | if (DFISSIGNED(dfr)) rotate=-rotate; | 
|  | if (abs(rotate)>PHALF) { | 
|  | if (rotate<0) rotate=DECPMAX+rotate; | 
|  | else rotate=rotate-DECPMAX; | 
|  | } | 
|  | /* now lay out the coefficient, leaving room to the right or the */ | 
|  | /* left depending on the direction of rotation */ | 
|  | ub=buf; | 
|  | if (rotate<0) ub+=PHALF;    /* rotate right, so space to left */ | 
|  | GETCOEFF(dfl, ub); | 
|  | /* copy half the digits to left or right, and set num.msd */ | 
|  | if (rotate<0) { | 
|  | memcpy(buf, buf+DECPMAX, PHALF); | 
|  | num.msd=buf+PHALF+rotate; | 
|  | } | 
|  | else { | 
|  | memcpy(buf+DECPMAX, buf, PHALF); | 
|  | num.msd=buf+rotate; | 
|  | } | 
|  | /* fill in rest of num */ | 
|  | num.lsd=num.msd+DECPMAX-1; | 
|  | num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | 
|  | num.exponent=GETEXPUN(dfl); | 
|  | savestat=set->status; 		/* record */ | 
|  | decFinalize(result, &num, set); | 
|  | set->status=savestat; 		/* restore */ | 
|  | return result; | 
|  | } /* decFloatRotate */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatSameQuantum -- test decFloats for same quantum	      */ | 
|  | /*								      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   returns 1 if the operands have the same quantum, 0 otherwise     */ | 
|  | /*								      */ | 
|  | /* No error is possible and no status results.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | uInt decFloatSameQuantum(const decFloat *dfl, const decFloat *dfr) { | 
|  | if (DFISSPECIAL(dfl) || DFISSPECIAL(dfr)) { | 
|  | if (DFISNAN(dfl) && DFISNAN(dfr)) return 1; | 
|  | if (DFISINF(dfl) && DFISINF(dfr)) return 1; | 
|  | return 0;  /* any other special mixture gives false */ | 
|  | } | 
|  | if (GETEXP(dfl)==GETEXP(dfr)) return 1; /* biased exponents match */ | 
|  | return 0; | 
|  | } /* decFloatSameQuantum */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatScaleB -- multiply by a power of 10, as per 754	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of the operation			      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs), am integer (with q=0)       */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* This computes result=dfl x 10**dfr where dfr is an integer in the  */ | 
|  | /* range +/-2*(emax+pmax), typically resulting from LogB.	      */ | 
|  | /* Underflow and Overflow (with Inexact) may occur.  NaNs propagate   */ | 
|  | /* as usual.							      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | #define SCALEBMAX 2*(DECEMAX+DECPMAX)	/* D=800, Q=12356 */ | 
|  | decFloat * decFloatScaleB(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | uInt digits;				/* work */ | 
|  | Int  expr;				/* dfr as an Int */ | 
|  |  | 
|  | if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | if (!DFISINT(dfr)) return decInvalid(result, set); | 
|  | digits=decFloatDigits(dfr);		     /* calculate digits */ | 
|  |  | 
|  | #if DOUBLE | 
|  | if (digits>3) return decInvalid(result, set);   /* definitely out of range */ | 
|  | expr=DPD2BIN[DFWORD(dfr, 1)&0x3ff];		  /* must be in bottom declet */ | 
|  | #elif QUAD | 
|  | if (digits>5) return decInvalid(result, set);   /* definitely out of range */ | 
|  | expr=DPD2BIN[DFWORD(dfr, 3)&0x3ff]		  /* in bottom 2 declets .. */ | 
|  | +DPD2BIN[(DFWORD(dfr, 3)>>10)&0x3ff]*1000;  /* .. */ | 
|  | #endif | 
|  | if (expr>SCALEBMAX) return decInvalid(result, set);  /* oops */ | 
|  | /* [from now on no error possible] */ | 
|  | if (DFISINF(dfl)) return decInfinity(result, dfl);   /* canonical */ | 
|  | if (DFISSIGNED(dfr)) expr=-expr; | 
|  | /* dfl is finite and expr is valid */ | 
|  | *result=*dfl; 			     /* copy to target */ | 
|  | return decFloatSetExponent(result, set, GETEXPUN(result)+expr); | 
|  | } /* decFloatScaleB */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatShift -- shift the coefficient of a decFloat left or right */ | 
|  | /*								      */ | 
|  | /*   result gets the result of shifting dfl			      */ | 
|  | /*   dfl    is the source decFloat to shift			      */ | 
|  | /*   dfr    is the count of digits to shift, an integer (with q=0)    */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* The digits of the coefficient of dfl are shifted to the left (if   */ | 
|  | /* dfr is positive) or to the right (if dfr is negative) without      */ | 
|  | /* adjusting the exponent or the sign of dfl.			      */ | 
|  | /*								      */ | 
|  | /* dfr must be in the range -DECPMAX through +DECPMAX.		      */ | 
|  | /* NaNs are propagated as usual.  An infinite dfl is unaffected (but  */ | 
|  | /* dfr must be valid).	No status is set unless dfr is invalid or an  */ | 
|  | /* operand is an sNaN.	The result is canonical.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatShift(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | Int	 shift; 			/* dfr as an Int */ | 
|  | uByte  buf[DECPMAX*2];		/* coefficient + padding */ | 
|  | uInt	 digits, savestat;		/* work */ | 
|  | bcdnum num;				/* .. */ | 
|  | uInt	 uiwork;			/* for macros */ | 
|  |  | 
|  | if (DFISNAN(dfl)||DFISNAN(dfr)) return decNaNs(result, dfl, dfr, set); | 
|  | if (!DFISINT(dfr)) return decInvalid(result, set); | 
|  | digits=decFloatDigits(dfr);			  /* calculate digits */ | 
|  | if (digits>2) return decInvalid(result, set);   /* definitely out of range */ | 
|  | shift=DPD2BIN[DFWORD(dfr, DECWORDS-1)&0x3ff];   /* is in bottom declet */ | 
|  | if (shift>DECPMAX) return decInvalid(result, set);   /* too big */ | 
|  | /* [from here on no error or status change is possible] */ | 
|  |  | 
|  | if (DFISINF(dfl)) return decInfinity(result, dfl); /* canonical */ | 
|  | /* handle no-shift and all-shift (clear to zero) cases */ | 
|  | if (shift==0) return decCanonical(result, dfl); | 
|  | if (shift==DECPMAX) { 		     /* zero with sign */ | 
|  | uByte sign=(uByte)(DFBYTE(dfl, 0)&0x80); /* save sign bit */ | 
|  | decFloatZero(result);		     /* make +0 */ | 
|  | DFBYTE(result, 0)=(uByte)(DFBYTE(result, 0)|sign); /* and set sign */ | 
|  | /* [cannot safely use CopySign] */ | 
|  | return result; | 
|  | } | 
|  | /* a real shift is needed: 0 < shift < DECPMAX */ | 
|  | num.sign=DFWORD(dfl, 0)&DECFLOAT_Sign; | 
|  | num.exponent=GETEXPUN(dfl); | 
|  | num.msd=buf; | 
|  | GETCOEFF(dfl, buf); | 
|  | if (DFISSIGNED(dfr)) { /* shift right */ | 
|  | /* edge cases are taken care of, so this is easy */ | 
|  | num.lsd=buf+DECPMAX-shift-1; | 
|  | } | 
|  | else { /* shift left -- zero padding needed to right */ | 
|  | UBFROMUI(buf+DECPMAX, 0);		/* 8 will handle most cases */ | 
|  | UBFROMUI(buf+DECPMAX+4, 0); 	/* .. */ | 
|  | if (shift>8) memset(buf+DECPMAX+8, 0, 8+QUAD*18); /* all other cases */ | 
|  | num.msd+=shift; | 
|  | num.lsd=num.msd+DECPMAX-1; | 
|  | } | 
|  | savestat=set->status; 		/* record */ | 
|  | decFinalize(result, &num, set); | 
|  | set->status=savestat; 		/* restore */ | 
|  | return result; | 
|  | } /* decFloatShift */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatSubtract -- subtract a decFloat from another 	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of subtracting dfr from dfl:	      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatSubtract(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | decFloat temp; | 
|  | /* NaNs must propagate without sign change */ | 
|  | if (DFISNAN(dfr)) return decFloatAdd(result, dfl, dfr, set); | 
|  | temp=*dfr;				       /* make a copy */ | 
|  | DFBYTE(&temp, 0)^=0x80;		       /* flip sign */ | 
|  | return decFloatAdd(result, dfl, &temp, set); /* and add to the lhs */ | 
|  | } /* decFloatSubtract */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatToInt -- round to 32-bit binary integer (4 flavours)       */ | 
|  | /*								      */ | 
|  | /*   df    is the decFloat to round				      */ | 
|  | /*   set   is the context					      */ | 
|  | /*   round is the rounding mode to use				      */ | 
|  | /*   returns a uInt or an Int, rounded according to the name	      */ | 
|  | /*								      */ | 
|  | /* Invalid will always be signaled if df is a NaN, is Infinite, or is */ | 
|  | /* outside the range of the target; Inexact will not be signaled for  */ | 
|  | /* simple rounding unless 'Exact' appears in the name.		      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | uInt decFloatToUInt32(const decFloat *df, decContext *set, | 
|  | enum rounding round) { | 
|  | return decToInt32(df, set, round, 0, 1);} | 
|  |  | 
|  | uInt decFloatToUInt32Exact(const decFloat *df, decContext *set, | 
|  | enum rounding round) { | 
|  | return decToInt32(df, set, round, 1, 1);} | 
|  |  | 
|  | Int decFloatToInt32(const decFloat *df, decContext *set, | 
|  | enum rounding round) { | 
|  | return (Int)decToInt32(df, set, round, 0, 0);} | 
|  |  | 
|  | Int decFloatToInt32Exact(const decFloat *df, decContext *set, | 
|  | enum rounding round) { | 
|  | return (Int)decToInt32(df, set, round, 1, 0);} | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatToIntegral -- round to integral value (two flavours)       */ | 
|  | /*								      */ | 
|  | /*   result gets the result					      */ | 
|  | /*   df     is the decFloat to round				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   round  is the rounding mode to use 			      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* No exceptions, even Inexact, are raised except for sNaN input, or  */ | 
|  | /* if 'Exact' appears in the name.				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatToIntegralValue(decFloat *result, const decFloat *df, | 
|  | decContext *set, enum rounding round) { | 
|  | return decToIntegral(result, df, set, round, 0);} | 
|  |  | 
|  | decFloat * decFloatToIntegralExact(decFloat *result, const decFloat *df, | 
|  | decContext *set) { | 
|  | return decToIntegral(result, df, set, set->round, 1);} | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decFloatXor -- logical digitwise XOR of two decFloats	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of XORing dfl and dfr		      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs)			      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result, which will be canonical with sign=0	      */ | 
|  | /*								      */ | 
|  | /* The operands must be positive, finite with exponent q=0, and       */ | 
|  | /* comprise just zeros and ones; if not, Invalid operation results.   */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | decFloat * decFloatXor(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | if (!DFISUINT01(dfl) || !DFISUINT01(dfr) | 
|  | || !DFISCC01(dfl)   || !DFISCC01(dfr)) return decInvalid(result, set); | 
|  | /* the operands are positive finite integers (q=0) with just 0s and 1s */ | 
|  | #if DOUBLE | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04009124); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x49124491; | 
|  | #elif QUAD | 
|  | DFWORD(result, 0)=ZEROWORD | 
|  | |((DFWORD(dfl, 0) ^ DFWORD(dfr, 0))&0x04000912); | 
|  | DFWORD(result, 1)=(DFWORD(dfl, 1) ^ DFWORD(dfr, 1))&0x44912449; | 
|  | DFWORD(result, 2)=(DFWORD(dfl, 2) ^ DFWORD(dfr, 2))&0x12449124; | 
|  | DFWORD(result, 3)=(DFWORD(dfl, 3) ^ DFWORD(dfr, 3))&0x49124491; | 
|  | #endif | 
|  | return result; | 
|  | } /* decFloatXor */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decInvalid -- set Invalid_operation result			      */ | 
|  | /*								      */ | 
|  | /*   result gets a canonical NaN				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* status has Invalid_operation added				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decFloat *decInvalid(decFloat *result, decContext *set) { | 
|  | decFloatZero(result); | 
|  | DFWORD(result, 0)=DECFLOAT_qNaN; | 
|  | set->status|=DEC_Invalid_operation; | 
|  | return result; | 
|  | } /* decInvalid */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decInfinity -- set canonical Infinity with sign from a decFloat    */ | 
|  | /*								      */ | 
|  | /*   result gets a canonical Infinity				      */ | 
|  | /*   df     is source decFloat (only the sign is used)		      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* df may be the same as result 				      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decFloat *decInfinity(decFloat *result, const decFloat *df) { | 
|  | uInt sign=DFWORD(df, 0);	   /* save source signword */ | 
|  | decFloatZero(result); 	   /* clear everything */ | 
|  | DFWORD(result, 0)=DECFLOAT_Inf | (sign & DECFLOAT_Sign); | 
|  | return result; | 
|  | } /* decInfinity */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNaNs -- handle NaN argument(s)				      */ | 
|  | /*								      */ | 
|  | /*   result gets the result of handling dfl and dfr, one or both of   */ | 
|  | /*	    which is a NaN					      */ | 
|  | /*   dfl    is the first decFloat (lhs) 			      */ | 
|  | /*   dfr    is the second decFloat (rhs) -- may be NULL for a single- */ | 
|  | /*	    operand operation					      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   returns result						      */ | 
|  | /*								      */ | 
|  | /* Called when one or both operands is a NaN, and propagates the      */ | 
|  | /* appropriate result to res.  When an sNaN is found, it is changed   */ | 
|  | /* to a qNaN and Invalid operation is set.			      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decFloat *decNaNs(decFloat *result, | 
|  | const decFloat *dfl, const decFloat *dfr, | 
|  | decContext *set) { | 
|  | /* handle sNaNs first */ | 
|  | if (dfr!=NULL && DFISSNAN(dfr) && !DFISSNAN(dfl)) dfl=dfr; /* use RHS */ | 
|  | if (DFISSNAN(dfl)) { | 
|  | decCanonical(result, dfl);		/* propagate canonical sNaN */ | 
|  | DFWORD(result, 0)&=~(DECFLOAT_qNaN ^ DECFLOAT_sNaN); /* quiet */ | 
|  | set->status|=DEC_Invalid_operation; | 
|  | return result; | 
|  | } | 
|  | /* one or both is a quiet NaN */ | 
|  | if (!DFISNAN(dfl)) dfl=dfr;		/* RHS must be NaN, use it */ | 
|  | return decCanonical(result, dfl);	/* propagate canonical qNaN */ | 
|  | } /* decNaNs */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decNumCompare -- numeric comparison of two decFloats 	      */ | 
|  | /*								      */ | 
|  | /*   dfl    is the left-hand decFloat, which is not a NaN	      */ | 
|  | /*   dfr    is the right-hand decFloat, which is not a NaN	      */ | 
|  | /*   tot    is 1 for total order compare, 0 for simple numeric	      */ | 
|  | /*   returns -1, 0, or +1 for dfl<dfr, dfl=dfr, dfl>dfr 	      */ | 
|  | /*								      */ | 
|  | /* No error is possible; status and mode are unchanged. 	      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static Int decNumCompare(const decFloat *dfl, const decFloat *dfr, Flag tot) { | 
|  | Int	sigl, sigr;			/* LHS and RHS non-0 signums */ | 
|  | Int	shift;				/* shift needed to align operands */ | 
|  | uByte *ub, *uc;			/* work */ | 
|  | uInt	uiwork; 			/* for macros */ | 
|  | /* buffers +2 if Quad (36 digits), need double plus 4 for safe padding */ | 
|  | uByte bufl[DECPMAX*2+QUAD*2+4];	/* for LHS coefficient + padding */ | 
|  | uByte bufr[DECPMAX*2+QUAD*2+4];	/* for RHS coefficient + padding */ | 
|  |  | 
|  | sigl=1; | 
|  | if (DFISSIGNED(dfl)) { | 
|  | if (!DFISSIGNED(dfr)) {		/* -LHS +RHS */ | 
|  | if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; | 
|  | return -1;			/* RHS wins */ | 
|  | } | 
|  | sigl=-1; | 
|  | } | 
|  | if (DFISSIGNED(dfr)) { | 
|  | if (!DFISSIGNED(dfl)) {		/* +LHS -RHS */ | 
|  | if (DFISZERO(dfl) && DFISZERO(dfr) && !tot) return 0; | 
|  | return +1;			/* LHS wins */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* signs are the same; operand(s) could be zero */ | 
|  | sigr=-sigl;				/* sign to return if abs(RHS) wins */ | 
|  |  | 
|  | if (DFISINF(dfl)) { | 
|  | if (DFISINF(dfr)) return 0; 	/* both infinite & same sign */ | 
|  | return sigl;			/* inf > n */ | 
|  | } | 
|  | if (DFISINF(dfr)) return sigr;	/* n < inf [dfl is finite] */ | 
|  |  | 
|  | /* here, both are same sign and finite; calculate their offset */ | 
|  | shift=GETEXP(dfl)-GETEXP(dfr);	/* [0 means aligned] */ | 
|  | /* [bias can be ignored -- the absolute exponent is not relevant] */ | 
|  |  | 
|  | if (DFISZERO(dfl)) { | 
|  | if (!DFISZERO(dfr)) return sigr;	/* LHS=0, RHS!=0 */ | 
|  | /* both are zero, return 0 if both same exponent or numeric compare */ | 
|  | if (shift==0 || !tot) return 0; | 
|  | if (shift>0) return sigl; | 
|  | return sigr;			/* [shift<0] */ | 
|  | } | 
|  | else {				/* LHS!=0 */ | 
|  | if (DFISZERO(dfr)) return sigl;	/* LHS!=0, RHS=0 */ | 
|  | } | 
|  | /* both are known to be non-zero at this point */ | 
|  |  | 
|  | /* if the exponents are so different that the coefficients do not */ | 
|  | /* overlap (by even one digit) then a full comparison is not needed */ | 
|  | if (abs(shift)>=DECPMAX) {		/* no overlap */ | 
|  | /* coefficients are known to be non-zero */ | 
|  | if (shift>0) return sigl; | 
|  | return sigr;			/* [shift<0] */ | 
|  | } | 
|  |  | 
|  | /* decode the coefficients */ | 
|  | /* (shift both right two if Quad to make a multiple of four) */ | 
|  | #if QUAD | 
|  | UBFROMUI(bufl, 0); | 
|  | UBFROMUI(bufr, 0); | 
|  | #endif | 
|  | GETCOEFF(dfl, bufl+QUAD*2);		/* decode from decFloat */ | 
|  | GETCOEFF(dfr, bufr+QUAD*2);		/* .. */ | 
|  | if (shift==0) {			/* aligned; common and easy */ | 
|  | /* all multiples of four, here */ | 
|  | for (ub=bufl, uc=bufr; ub<bufl+DECPMAX+QUAD*2; ub+=4, uc+=4) { | 
|  | uInt ui=UBTOUI(ub); | 
|  | if (ui==UBTOUI(uc)) continue;	/* so far so same */ | 
|  | /* about to find a winner; go by bytes in case little-endian */ | 
|  | for (;; ub++, uc++) { | 
|  | if (*ub>*uc) return sigl;	/* difference found */ | 
|  | if (*ub<*uc) return sigr;	/* .. */ | 
|  | } | 
|  | } | 
|  | } /* aligned */ | 
|  | else if (shift>0) {			/* lhs to left */ | 
|  | ub=bufl;				/* RHS pointer */ | 
|  | /* pad bufl so right-aligned; most shifts will fit in 8 */ | 
|  | UBFROMUI(bufl+DECPMAX+QUAD*2, 0);	/* add eight zeros */ | 
|  | UBFROMUI(bufl+DECPMAX+QUAD*2+4, 0); /* .. */ | 
|  | if (shift>8) { | 
|  | /* more than eight; fill the rest, and also worth doing the */ | 
|  | /* lead-in by fours */ | 
|  | uByte *up;			/* work */ | 
|  | uByte *upend=bufl+DECPMAX+QUAD*2+shift; | 
|  | for (up=bufl+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); | 
|  | /* [pads up to 36 in all for Quad] */ | 
|  | for (;; ub+=4) { | 
|  | if (UBTOUI(ub)!=0) return sigl; | 
|  | if (ub+4>bufl+shift-4) break; | 
|  | } | 
|  | } | 
|  | /* check remaining leading digits */ | 
|  | for (; ub<bufl+shift; ub++) if (*ub!=0) return sigl; | 
|  | /* now start the overlapped part; bufl has been padded, so the */ | 
|  | /* comparison can go for the full length of bufr, which is a */ | 
|  | /* multiple of 4 bytes */ | 
|  | for (uc=bufr; ; uc+=4, ub+=4) { | 
|  | uInt ui=UBTOUI(ub); | 
|  | if (ui!=UBTOUI(uc)) {		/* mismatch found */ | 
|  | for (;; uc++, ub++) {		/* check from left [little-endian?] */ | 
|  | if (*ub>*uc) return sigl;	/* difference found */ | 
|  | if (*ub<*uc) return sigr;	/* .. */ | 
|  | } | 
|  | } /* mismatch */ | 
|  | if (uc==bufr+QUAD*2+DECPMAX-4) break; /* all checked */ | 
|  | } | 
|  | } /* shift>0 */ | 
|  |  | 
|  | else { /* shift<0) .. RHS is to left of LHS; mirror shift>0 */ | 
|  | uc=bufr;				/* RHS pointer */ | 
|  | /* pad bufr so right-aligned; most shifts will fit in 8 */ | 
|  | UBFROMUI(bufr+DECPMAX+QUAD*2, 0);	/* add eight zeros */ | 
|  | UBFROMUI(bufr+DECPMAX+QUAD*2+4, 0); /* .. */ | 
|  | if (shift<-8) { | 
|  | /* more than eight; fill the rest, and also worth doing the */ | 
|  | /* lead-in by fours */ | 
|  | uByte *up;			/* work */ | 
|  | uByte *upend=bufr+DECPMAX+QUAD*2-shift; | 
|  | for (up=bufr+DECPMAX+QUAD*2+8; up<upend; up+=4) UBFROMUI(up, 0); | 
|  | /* [pads up to 36 in all for Quad] */ | 
|  | for (;; uc+=4) { | 
|  | if (UBTOUI(uc)!=0) return sigr; | 
|  | if (uc+4>bufr-shift-4) break; | 
|  | } | 
|  | } | 
|  | /* check remaining leading digits */ | 
|  | for (; uc<bufr-shift; uc++) if (*uc!=0) return sigr; | 
|  | /* now start the overlapped part; bufr has been padded, so the */ | 
|  | /* comparison can go for the full length of bufl, which is a */ | 
|  | /* multiple of 4 bytes */ | 
|  | for (ub=bufl; ; ub+=4, uc+=4) { | 
|  | uInt ui=UBTOUI(ub); | 
|  | if (ui!=UBTOUI(uc)) {		/* mismatch found */ | 
|  | for (;; ub++, uc++) {		/* check from left [little-endian?] */ | 
|  | if (*ub>*uc) return sigl;	/* difference found */ | 
|  | if (*ub<*uc) return sigr;	/* .. */ | 
|  | } | 
|  | } /* mismatch */ | 
|  | if (ub==bufl+QUAD*2+DECPMAX-4) break; /* all checked */ | 
|  | } | 
|  | } /* shift<0 */ | 
|  |  | 
|  | /* Here when compare equal */ | 
|  | if (!tot) return 0;			/* numerically equal */ | 
|  | /* total ordering .. exponent matters */ | 
|  | if (shift>0) return sigl;		/* total order by exponent */ | 
|  | if (shift<0) return sigr;		/* .. */ | 
|  | return 0; | 
|  | } /* decNumCompare */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decToInt32 -- local routine to effect ToInteger conversions	      */ | 
|  | /*								      */ | 
|  | /*   df     is the decFloat to convert				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   rmode  is the rounding mode to use 			      */ | 
|  | /*   exact  is 1 if Inexact should be signalled 		      */ | 
|  | /*   unsign is 1 if the result a uInt, 0 if an Int (cast to uInt)     */ | 
|  | /*   returns 32-bit result as a uInt				      */ | 
|  | /*								      */ | 
|  | /* Invalid is set is df is a NaN, is infinite, or is out-of-range; in */ | 
|  | /* these cases 0 is returned.					      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static uInt decToInt32(const decFloat *df, decContext *set, | 
|  | enum rounding rmode, Flag exact, Flag unsign) { | 
|  | Int  exp;			   /* exponent */ | 
|  | uInt sourhi, sourpen, sourlo;    /* top word from source decFloat .. */ | 
|  | uInt hi, lo;			   /* .. penultimate, least, etc. */ | 
|  | decFloat zero, result;	   /* work */ | 
|  | Int  i;			   /* .. */ | 
|  |  | 
|  | /* Start decoding the argument */ | 
|  | sourhi=DFWORD(df, 0); 		/* top word */ | 
|  | exp=DECCOMBEXP[sourhi>>26];		/* get exponent high bits (in place) */ | 
|  | if (EXPISSPECIAL(exp)) {		/* is special? */ | 
|  | set->status|=DEC_Invalid_operation; /* signal */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Here when the argument is finite */ | 
|  | if (GETEXPUN(df)==0) result=*df;	/* already a true integer */ | 
|  | else {				/* need to round to integer */ | 
|  | enum rounding saveround;		/* saver */ | 
|  | uInt savestatus;			/* .. */ | 
|  | saveround=set->round;		/* save rounding mode .. */ | 
|  | savestatus=set->status;		/* .. and status */ | 
|  | set->round=rmode;			/* set mode */ | 
|  | decFloatZero(&zero);		/* make 0E+0 */ | 
|  | set->status=0;			/* clear */ | 
|  | decFloatQuantize(&result, df, &zero, set); /* [this may fail] */ | 
|  | set->round=saveround;		/* restore rounding mode .. */ | 
|  | if (exact) set->status|=savestatus; /* include Inexact */ | 
|  | else set->status=savestatus;	/* .. or just original status */ | 
|  | } | 
|  |  | 
|  | /* only the last four declets of the coefficient can contain */ | 
|  | /* non-zero; check for others (and also NaN or Infinity from the */ | 
|  | /* Quantize) first (see DFISZERO for explanation): */ | 
|  | /* decFloatShow(&result, "sofar"); */ | 
|  | #if DOUBLE | 
|  | if ((DFWORD(&result, 0)&0x1c03ff00)!=0 | 
|  | || (DFWORD(&result, 0)&0x60000000)==0x60000000) { | 
|  | #elif QUAD | 
|  | if ((DFWORD(&result, 2)&0xffffff00)!=0 | 
|  | ||  DFWORD(&result, 1)!=0 | 
|  | || (DFWORD(&result, 0)&0x1c003fff)!=0 | 
|  | || (DFWORD(&result, 0)&0x60000000)==0x60000000) { | 
|  | #endif | 
|  | set->status|=DEC_Invalid_operation; /* Invalid or out of range */ | 
|  | return 0; | 
|  | } | 
|  | /* get last twelve digits of the coefficent into hi & ho, base */ | 
|  | /* 10**9 (see GETCOEFFBILL): */ | 
|  | sourlo=DFWORD(&result, DECWORDS-1); | 
|  | lo=DPD2BIN0[sourlo&0x3ff] | 
|  | +DPD2BINK[(sourlo>>10)&0x3ff] | 
|  | +DPD2BINM[(sourlo>>20)&0x3ff]; | 
|  | sourpen=DFWORD(&result, DECWORDS-2); | 
|  | hi=DPD2BIN0[((sourpen<<2) | (sourlo>>30))&0x3ff]; | 
|  |  | 
|  | /* according to request, check range carefully */ | 
|  | if (unsign) { | 
|  | if (hi>4 || (hi==4 && lo>294967295) || (hi+lo!=0 && DFISSIGNED(&result))) { | 
|  | set->status|=DEC_Invalid_operation; /* out of range */ | 
|  | return 0; | 
|  | } | 
|  | return hi*BILLION+lo; | 
|  | } | 
|  | /* signed */ | 
|  | if (hi>2 || (hi==2 && lo>147483647)) { | 
|  | /* handle the usual edge case */ | 
|  | if (lo==147483648 && hi==2 && DFISSIGNED(&result)) return 0x80000000; | 
|  | set->status|=DEC_Invalid_operation; /* truly out of range */ | 
|  | return 0; | 
|  | } | 
|  | i=hi*BILLION+lo; | 
|  | if (DFISSIGNED(&result)) i=-i; | 
|  | return (uInt)i; | 
|  | } /* decToInt32 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------ */ | 
|  | /* decToIntegral -- local routine to effect ToIntegral value	      */ | 
|  | /*								      */ | 
|  | /*   result gets the result					      */ | 
|  | /*   df     is the decFloat to round				      */ | 
|  | /*   set    is the context					      */ | 
|  | /*   rmode  is the rounding mode to use 			      */ | 
|  | /*   exact  is 1 if Inexact should be signalled 		      */ | 
|  | /*   returns result						      */ | 
|  | /* ------------------------------------------------------------------ */ | 
|  | static decFloat * decToIntegral(decFloat *result, const decFloat *df, | 
|  | decContext *set, enum rounding rmode, | 
|  | Flag exact) { | 
|  | Int  exp;			   /* exponent */ | 
|  | uInt sourhi;			   /* top word from source decFloat */ | 
|  | enum rounding saveround;	   /* saver */ | 
|  | uInt savestatus;		   /* .. */ | 
|  | decFloat zero;		   /* work */ | 
|  |  | 
|  | /* Start decoding the argument */ | 
|  | sourhi=DFWORD(df, 0); 	   /* top word */ | 
|  | exp=DECCOMBEXP[sourhi>>26];	   /* get exponent high bits (in place) */ | 
|  |  | 
|  | if (EXPISSPECIAL(exp)) {	   /* is special? */ | 
|  | /* NaNs are handled as usual */ | 
|  | if (DFISNAN(df)) return decNaNs(result, df, NULL, set); | 
|  | /* must be infinite; return canonical infinity with sign of df */ | 
|  | return decInfinity(result, df); | 
|  | } | 
|  |  | 
|  | /* Here when the argument is finite */ | 
|  | /* complete extraction of the exponent */ | 
|  | exp+=GETECON(df)-DECBIAS;		/* .. + continuation and unbias */ | 
|  |  | 
|  | if (exp>=0) return decCanonical(result, df); /* already integral */ | 
|  |  | 
|  | saveround=set->round; 		/* save rounding mode .. */ | 
|  | savestatus=set->status;		/* .. and status */ | 
|  | set->round=rmode;			/* set mode */ | 
|  | decFloatZero(&zero);			/* make 0E+0 */ | 
|  | decFloatQuantize(result, df, &zero, set); /* 'integrate'; cannot fail */ | 
|  | set->round=saveround; 		/* restore rounding mode .. */ | 
|  | if (!exact) set->status=savestatus;	/* .. and status, unless exact */ | 
|  | return result; | 
|  | } /* decToIntegral */ |