|  | /* Target-dependent code for Atmel AVR, for GDB. | 
|  |  | 
|  | Copyright (C) 1996-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | /* Contributed by Theodore A. Roth, troth@openavr.org */ | 
|  |  | 
|  | /* Portions of this file were taken from the original gdb-4.18 patch developed | 
|  | by Denis Chertykov, denisc@overta.ru */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "frame.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "frame-base.h" | 
|  | #include "trad-frame.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "gdbcore.h" | 
|  | #include "gdbtypes.h" | 
|  | #include "inferior.h" | 
|  | #include "symfile.h" | 
|  | #include "arch-utils.h" | 
|  | #include "regcache.h" | 
|  | #include "dis-asm.h" | 
|  | #include "objfiles.h" | 
|  | #include <algorithm> | 
|  | #include "gdbarch.h" | 
|  |  | 
|  | /* AVR Background: | 
|  |  | 
|  | (AVR micros are pure Harvard Architecture processors.) | 
|  |  | 
|  | The AVR family of microcontrollers have three distinctly different memory | 
|  | spaces: flash, sram and eeprom.  The flash is 16 bits wide and is used for | 
|  | the most part to store program instructions.  The sram is 8 bits wide and is | 
|  | used for the stack and the heap.  Some devices lack sram and some can have | 
|  | an additional external sram added on as a peripheral. | 
|  |  | 
|  | The eeprom is 8 bits wide and is used to store data when the device is | 
|  | powered down.  Eeprom is not directly accessible, it can only be accessed | 
|  | via io-registers using a special algorithm.  Accessing eeprom via gdb's | 
|  | remote serial protocol ('m' or 'M' packets) looks difficult to do and is | 
|  | not included at this time. | 
|  |  | 
|  | [The eeprom could be read manually via ``x/b <eaddr + AVR_EMEM_START>'' or | 
|  | written using ``set {unsigned char}<eaddr + AVR_EMEM_START>''.  For this to | 
|  | work, the remote target must be able to handle eeprom accesses and perform | 
|  | the address translation.] | 
|  |  | 
|  | All three memory spaces have physical addresses beginning at 0x0.  In | 
|  | addition, the flash is addressed by gcc/binutils/gdb with respect to 8 bit | 
|  | bytes instead of the 16 bit wide words used by the real device for the | 
|  | Program Counter. | 
|  |  | 
|  | In order for remote targets to work correctly, extra bits must be added to | 
|  | addresses before they are send to the target or received from the target | 
|  | via the remote serial protocol.  The extra bits are the MSBs and are used to | 
|  | decode which memory space the address is referring to.  */ | 
|  |  | 
|  | /* Constants: prefixed with AVR_ to avoid name space clashes */ | 
|  |  | 
|  | /* Address space flags */ | 
|  |  | 
|  | /* We are assigning the TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 to the flash address | 
|  | space.  */ | 
|  |  | 
|  | #define AVR_TYPE_ADDRESS_CLASS_FLASH TYPE_ADDRESS_CLASS_1 | 
|  | #define AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH  \ | 
|  | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | 
|  |  | 
|  |  | 
|  | enum | 
|  | { | 
|  | AVR_REG_W = 24, | 
|  | AVR_REG_X = 26, | 
|  | AVR_REG_Y = 28, | 
|  | AVR_FP_REGNUM = 28, | 
|  | AVR_REG_Z = 30, | 
|  |  | 
|  | AVR_SREG_REGNUM = 32, | 
|  | AVR_SP_REGNUM = 33, | 
|  | AVR_PC_REGNUM = 34, | 
|  |  | 
|  | AVR_NUM_REGS = 32 + 1 /*SREG*/ + 1 /*SP*/ + 1 /*PC*/, | 
|  | AVR_NUM_REG_BYTES = 32 + 1 /*SREG*/ + 2 /*SP*/ + 4 /*PC*/, | 
|  |  | 
|  | /* Pseudo registers.  */ | 
|  | AVR_PSEUDO_PC_REGNUM = 35, | 
|  | AVR_NUM_PSEUDO_REGS = 1, | 
|  |  | 
|  | AVR_PC_REG_INDEX = 35,	/* index into array of registers */ | 
|  |  | 
|  | AVR_MAX_PROLOGUE_SIZE = 64,	/* bytes */ | 
|  |  | 
|  | /* Count of pushed registers.  From r2 to r17 (inclusively), r28, r29 */ | 
|  | AVR_MAX_PUSHES = 18, | 
|  |  | 
|  | /* Number of the last pushed register.  r17 for current avr-gcc */ | 
|  | AVR_LAST_PUSHED_REGNUM = 17, | 
|  |  | 
|  | AVR_ARG1_REGNUM = 24,         /* Single byte argument */ | 
|  | AVR_ARGN_REGNUM = 25,         /* Multi byte arguments */ | 
|  | AVR_LAST_ARG_REGNUM = 8,      /* Last argument register */ | 
|  |  | 
|  | AVR_RET1_REGNUM = 24,         /* Single byte return value */ | 
|  | AVR_RETN_REGNUM = 25,         /* Multi byte return value */ | 
|  |  | 
|  | /* FIXME: TRoth/2002-01-??: Can we shift all these memory masks left 8 | 
|  | bits?  Do these have to match the bfd vma values?  It sure would make | 
|  | things easier in the future if they didn't need to match. | 
|  |  | 
|  | Note: I chose these values so as to be consistent with bfd vma | 
|  | addresses. | 
|  |  | 
|  | TRoth/2002-04-08: There is already a conflict with very large programs | 
|  | in the mega128.  The mega128 has 128K instruction bytes (64K words), | 
|  | thus the Most Significant Bit is 0x10000 which gets masked off my | 
|  | AVR_MEM_MASK. | 
|  |  | 
|  | The problem manifests itself when trying to set a breakpoint in a | 
|  | function which resides in the upper half of the instruction space and | 
|  | thus requires a 17-bit address. | 
|  |  | 
|  | For now, I've just removed the EEPROM mask and changed AVR_MEM_MASK | 
|  | from 0x00ff0000 to 0x00f00000.  Eeprom is not accessible from gdb yet, | 
|  | but could be for some remote targets by just adding the correct offset | 
|  | to the address and letting the remote target handle the low-level | 
|  | details of actually accessing the eeprom.  */ | 
|  |  | 
|  | AVR_IMEM_START = 0x00000000,	/* INSN memory */ | 
|  | AVR_SMEM_START = 0x00800000,	/* SRAM memory */ | 
|  | #if 1 | 
|  | /* No eeprom mask defined */ | 
|  | AVR_MEM_MASK = 0x00f00000,	/* mask to determine memory space */ | 
|  | #else | 
|  | AVR_EMEM_START = 0x00810000,	/* EEPROM memory */ | 
|  | AVR_MEM_MASK = 0x00ff0000,	/* mask to determine memory space */ | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Prologue types: | 
|  |  | 
|  | NORMAL and CALL are the typical types (the -mcall-prologues gcc option | 
|  | causes the generation of the CALL type prologues).  */ | 
|  |  | 
|  | enum { | 
|  | AVR_PROLOGUE_NONE,              /* No prologue */ | 
|  | AVR_PROLOGUE_NORMAL, | 
|  | AVR_PROLOGUE_CALL,              /* -mcall-prologues */ | 
|  | AVR_PROLOGUE_MAIN, | 
|  | AVR_PROLOGUE_INTR,              /* interrupt handler */ | 
|  | AVR_PROLOGUE_SIG,               /* signal handler */ | 
|  | }; | 
|  |  | 
|  | /* Any function with a frame looks like this | 
|  | .......    <-SP POINTS HERE | 
|  | LOCALS1    <-FP POINTS HERE | 
|  | LOCALS0 | 
|  | SAVED FP | 
|  | SAVED R3 | 
|  | SAVED R2 | 
|  | RET PC | 
|  | FIRST ARG | 
|  | SECOND ARG */ | 
|  |  | 
|  | struct avr_unwind_cache | 
|  | { | 
|  | /* The previous frame's inner most stack address.  Used as this | 
|  | frame ID's stack_addr.  */ | 
|  | CORE_ADDR prev_sp; | 
|  | /* The frame's base, optionally used by the high-level debug info.  */ | 
|  | CORE_ADDR base; | 
|  | int size; | 
|  | int prologue_type; | 
|  | /* Table indicating the location of each and every register.  */ | 
|  | trad_frame_saved_reg *saved_regs; | 
|  | }; | 
|  |  | 
|  | struct avr_gdbarch_tdep : gdbarch_tdep_base | 
|  | { | 
|  | /* Number of bytes stored to the stack by call instructions. | 
|  | 2 bytes for avr1-5 and avrxmega1-5, 3 bytes for avr6 and avrxmega6-7.  */ | 
|  | int call_length = 0; | 
|  |  | 
|  | /* Type for void.  */ | 
|  | struct type *void_type = nullptr; | 
|  | /* Type for a function returning void.  */ | 
|  | struct type *func_void_type = nullptr; | 
|  | /* Type for a pointer to a function.  Used for the type of PC.  */ | 
|  | struct type *pc_type = nullptr; | 
|  | }; | 
|  |  | 
|  | /* Lookup the name of a register given it's number.  */ | 
|  |  | 
|  | static const char * | 
|  | avr_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | static const char * const register_names[] = { | 
|  | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | 
|  | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | 
|  | "SREG", "SP", "PC2", | 
|  | "pc" | 
|  | }; | 
|  | static_assert (ARRAY_SIZE (register_names) | 
|  | == (AVR_NUM_REGS + AVR_NUM_PSEUDO_REGS)); | 
|  | return register_names[regnum]; | 
|  | } | 
|  |  | 
|  | /* Return the GDB type object for the "standard" data type | 
|  | of data in register N.  */ | 
|  |  | 
|  | static struct type * | 
|  | avr_register_type (struct gdbarch *gdbarch, int reg_nr) | 
|  | { | 
|  | if (reg_nr == AVR_PC_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_uint32; | 
|  |  | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  | if (reg_nr == AVR_PSEUDO_PC_REGNUM) | 
|  | return tdep->pc_type; | 
|  |  | 
|  | if (reg_nr == AVR_SP_REGNUM) | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  |  | 
|  | return builtin_type (gdbarch)->builtin_uint8; | 
|  | } | 
|  |  | 
|  | /* Instruction address checks and conversions.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_make_iaddr (CORE_ADDR x) | 
|  | { | 
|  | return ((x) | AVR_IMEM_START); | 
|  | } | 
|  |  | 
|  | /* FIXME: TRoth: Really need to use a larger mask for instructions.  Some | 
|  | devices are already up to 128KBytes of flash space. | 
|  |  | 
|  | TRoth/2002-04-8: See comment above where AVR_IMEM_START is defined.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_convert_iaddr_to_raw (CORE_ADDR x) | 
|  | { | 
|  | return ((x) & 0xffffffff); | 
|  | } | 
|  |  | 
|  | /* SRAM address checks and conversions.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_make_saddr (CORE_ADDR x) | 
|  | { | 
|  | /* Return 0 for NULL.  */ | 
|  | if (x == 0) | 
|  | return 0; | 
|  |  | 
|  | return ((x) | AVR_SMEM_START); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_convert_saddr_to_raw (CORE_ADDR x) | 
|  | { | 
|  | return ((x) & 0xffffffff); | 
|  | } | 
|  |  | 
|  | /* EEPROM address checks and conversions.  I don't know if these will ever | 
|  | actually be used, but I've added them just the same.  TRoth */ | 
|  |  | 
|  | /* TRoth/2002-04-08: Commented out for now to allow fix for problem with large | 
|  | programs in the mega128.  */ | 
|  |  | 
|  | /*  static CORE_ADDR */ | 
|  | /*  avr_make_eaddr (CORE_ADDR x) */ | 
|  | /*  { */ | 
|  | /*    return ((x) | AVR_EMEM_START); */ | 
|  | /*  } */ | 
|  |  | 
|  | /*  static int */ | 
|  | /*  avr_eaddr_p (CORE_ADDR x) */ | 
|  | /*  { */ | 
|  | /*    return (((x) & AVR_MEM_MASK) == AVR_EMEM_START); */ | 
|  | /*  } */ | 
|  |  | 
|  | /*  static CORE_ADDR */ | 
|  | /*  avr_convert_eaddr_to_raw (CORE_ADDR x) */ | 
|  | /*  { */ | 
|  | /*    return ((x) & 0xffffffff); */ | 
|  | /*  } */ | 
|  |  | 
|  | /* Convert from address to pointer and vice-versa.  */ | 
|  |  | 
|  | static void | 
|  | avr_address_to_pointer (struct gdbarch *gdbarch, | 
|  | struct type *type, gdb_byte *buf, CORE_ADDR addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  |  | 
|  | /* Is it a data address in flash?  */ | 
|  | if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) | 
|  | { | 
|  | /* A data pointer in flash is byte addressed.  */ | 
|  | store_unsigned_integer (buf, type->length (), byte_order, | 
|  | avr_convert_iaddr_to_raw (addr)); | 
|  | } | 
|  | /* Is it a code address?  */ | 
|  | else if (type->target_type ()->code () == TYPE_CODE_FUNC | 
|  | || type->target_type ()->code () == TYPE_CODE_METHOD) | 
|  | { | 
|  | /* A code pointer is word (16 bits) addressed.  We shift the address down | 
|  | by 1 bit to convert it to a pointer.  */ | 
|  | store_unsigned_integer (buf, type->length (), byte_order, | 
|  | avr_convert_iaddr_to_raw (addr >> 1)); | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Strip off any upper segment bits.  */ | 
|  | store_unsigned_integer (buf, type->length (), byte_order, | 
|  | avr_convert_saddr_to_raw (addr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_pointer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | CORE_ADDR addr | 
|  | = extract_unsigned_integer (buf, type->length (), byte_order); | 
|  |  | 
|  | /* Is it a data address in flash?  */ | 
|  | if (AVR_TYPE_ADDRESS_CLASS_FLASH (type)) | 
|  | { | 
|  | /* A data pointer in flash is already byte addressed.  */ | 
|  | return avr_make_iaddr (addr); | 
|  | } | 
|  | /* Is it a code address?  */ | 
|  | else if (type->target_type ()->code () == TYPE_CODE_FUNC | 
|  | || type->target_type ()->code () == TYPE_CODE_METHOD | 
|  | || TYPE_CODE_SPACE (type->target_type ())) | 
|  | { | 
|  | /* A code pointer is word (16 bits) addressed so we shift it up | 
|  | by 1 bit to convert it to an address.  */ | 
|  | return avr_make_iaddr (addr << 1); | 
|  | } | 
|  | else | 
|  | return avr_make_saddr (addr); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_integer_to_address (struct gdbarch *gdbarch, | 
|  | struct type *type, const gdb_byte *buf) | 
|  | { | 
|  | ULONGEST addr = unpack_long (type, buf); | 
|  |  | 
|  | if (TYPE_DATA_SPACE (type)) | 
|  | return avr_make_saddr (addr); | 
|  | else | 
|  | return avr_make_iaddr (addr); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_read_pc (readable_regcache *regcache) | 
|  | { | 
|  | ULONGEST pc; | 
|  |  | 
|  | regcache->cooked_read (AVR_PC_REGNUM, &pc); | 
|  | return avr_make_iaddr (pc); | 
|  | } | 
|  |  | 
|  | static void | 
|  | avr_write_pc (struct regcache *regcache, CORE_ADDR val) | 
|  | { | 
|  | regcache_cooked_write_unsigned (regcache, AVR_PC_REGNUM, | 
|  | avr_convert_iaddr_to_raw (val)); | 
|  | } | 
|  |  | 
|  | static enum register_status | 
|  | avr_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, | 
|  | int regnum, gdb_byte *buf) | 
|  | { | 
|  | ULONGEST val; | 
|  | enum register_status status; | 
|  |  | 
|  | switch (regnum) | 
|  | { | 
|  | case AVR_PSEUDO_PC_REGNUM: | 
|  | status = regcache->raw_read (AVR_PC_REGNUM, &val); | 
|  | if (status != REG_VALID) | 
|  | return status; | 
|  | val >>= 1; | 
|  | store_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch), val); | 
|  | return status; | 
|  | default: | 
|  | internal_error (_("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | avr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | 
|  | int regnum, const gdb_byte *buf) | 
|  | { | 
|  | ULONGEST val; | 
|  |  | 
|  | switch (regnum) | 
|  | { | 
|  | case AVR_PSEUDO_PC_REGNUM: | 
|  | val = extract_unsigned_integer (buf, 4, gdbarch_byte_order (gdbarch)); | 
|  | val <<= 1; | 
|  | regcache_raw_write_unsigned (regcache, AVR_PC_REGNUM, val); | 
|  | break; | 
|  | default: | 
|  | internal_error (_("invalid regnum")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Function: avr_scan_prologue | 
|  |  | 
|  | This function decodes an AVR function prologue to determine: | 
|  | 1) the size of the stack frame | 
|  | 2) which registers are saved on it | 
|  | 3) the offsets of saved regs | 
|  | This information is stored in the avr_unwind_cache structure. | 
|  |  | 
|  | Some devices lack the sbiw instruction, so on those replace this: | 
|  | sbiw    r28, XX | 
|  | with this: | 
|  | subi    r28,lo8(XX) | 
|  | sbci    r29,hi8(XX) | 
|  |  | 
|  | A typical AVR function prologue with a frame pointer might look like this: | 
|  | push    rXX        ; saved regs | 
|  | ... | 
|  | push    r28 | 
|  | push    r29 | 
|  | in      r28,__SP_L__ | 
|  | in      r29,__SP_H__ | 
|  | sbiw    r28,<LOCALS_SIZE> | 
|  | in      __tmp_reg__,__SREG__ | 
|  | cli | 
|  | out     __SP_H__,r29 | 
|  | out     __SREG__,__tmp_reg__ | 
|  | out     __SP_L__,r28 | 
|  |  | 
|  | A typical AVR function prologue without a frame pointer might look like | 
|  | this: | 
|  | push    rXX        ; saved regs | 
|  | ... | 
|  |  | 
|  | A main function prologue looks like this: | 
|  | ldi     r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | 
|  | ldi     r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | 
|  | out     __SP_H__,r29 | 
|  | out     __SP_L__,r28 | 
|  |  | 
|  | A signal handler prologue looks like this: | 
|  | push    __zero_reg__ | 
|  | push    __tmp_reg__ | 
|  | in      __tmp_reg__, __SREG__ | 
|  | push    __tmp_reg__ | 
|  | clr     __zero_reg__ | 
|  | push    rXX             ; save registers r18:r27, r30:r31 | 
|  | ... | 
|  | push    r28             ; save frame pointer | 
|  | push    r29 | 
|  | in      r28, __SP_L__ | 
|  | in      r29, __SP_H__ | 
|  | sbiw    r28, <LOCALS_SIZE> | 
|  | out     __SP_H__, r29 | 
|  | out     __SP_L__, r28 | 
|  |  | 
|  | A interrupt handler prologue looks like this: | 
|  | sei | 
|  | push    __zero_reg__ | 
|  | push    __tmp_reg__ | 
|  | in      __tmp_reg__, __SREG__ | 
|  | push    __tmp_reg__ | 
|  | clr     __zero_reg__ | 
|  | push    rXX             ; save registers r18:r27, r30:r31 | 
|  | ... | 
|  | push    r28             ; save frame pointer | 
|  | push    r29 | 
|  | in      r28, __SP_L__ | 
|  | in      r29, __SP_H__ | 
|  | sbiw    r28, <LOCALS_SIZE> | 
|  | cli | 
|  | out     __SP_H__, r29 | 
|  | sei | 
|  | out     __SP_L__, r28 | 
|  |  | 
|  | A `-mcall-prologues' prologue looks like this (Note that the megas use a | 
|  | jmp instead of a rjmp, thus the prologue is one word larger since jmp is a | 
|  | 32 bit insn and rjmp is a 16 bit insn): | 
|  | ldi     r26,lo8(<LOCALS_SIZE>) | 
|  | ldi     r27,hi8(<LOCALS_SIZE>) | 
|  | ldi     r30,pm_lo8(.L_foo_body) | 
|  | ldi     r31,pm_hi8(.L_foo_body) | 
|  | rjmp    __prologue_saves__+RRR | 
|  | .L_foo_body:  */ | 
|  |  | 
|  | /* Not really part of a prologue, but still need to scan for it, is when a | 
|  | function prologue moves values passed via registers as arguments to new | 
|  | registers.  In this case, all local variables live in registers, so there | 
|  | may be some register saves.  This is what it looks like: | 
|  | movw    rMM, rNN | 
|  | ... | 
|  |  | 
|  | There could be multiple movw's.  If the target doesn't have a movw insn, it | 
|  | will use two mov insns.  This could be done after any of the above prologue | 
|  | types.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc_beg, CORE_ADDR pc_end, | 
|  | struct avr_unwind_cache *info) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int i; | 
|  | unsigned short insn; | 
|  | int scan_stage = 0; | 
|  | unsigned char prologue[AVR_MAX_PROLOGUE_SIZE]; | 
|  | int vpc = 0; | 
|  | int len; | 
|  |  | 
|  | len = pc_end - pc_beg; | 
|  | if (len > AVR_MAX_PROLOGUE_SIZE) | 
|  | len = AVR_MAX_PROLOGUE_SIZE; | 
|  |  | 
|  | /* FIXME: TRoth/2003-06-11: This could be made more efficient by only | 
|  | reading in the bytes of the prologue.  The problem is that the figuring | 
|  | out where the end of the prologue is is a bit difficult.  The old code | 
|  | tried to do that, but failed quite often.  */ | 
|  | read_memory (pc_beg, prologue, len); | 
|  |  | 
|  | /* Scanning main()'s prologue | 
|  | ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) | 
|  | ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) | 
|  | out __SP_H__,r29 | 
|  | out __SP_L__,r28 */ | 
|  |  | 
|  | if (len >= 4) | 
|  | { | 
|  | CORE_ADDR locals; | 
|  | static const unsigned char img[] = { | 
|  | 0xde, 0xbf,		/* out __SP_H__,r29 */ | 
|  | 0xcd, 0xbf		/* out __SP_L__,r28 */ | 
|  | }; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | /* ldi r28,lo8(<RAM_ADDR> - <LOCALS_SIZE>) */ | 
|  | if ((insn & 0xf0f0) == 0xe0c0) | 
|  | { | 
|  | locals = (insn & 0xf) | ((insn & 0x0f00) >> 4); | 
|  | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); | 
|  | /* ldi r29,hi8(<RAM_ADDR> - <LOCALS_SIZE>) */ | 
|  | if ((insn & 0xf0f0) == 0xe0d0) | 
|  | { | 
|  | locals |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | 
|  | if (vpc + 4 + sizeof (img) < len | 
|  | && memcmp (prologue + vpc + 4, img, sizeof (img)) == 0) | 
|  | { | 
|  | info->prologue_type = AVR_PROLOGUE_MAIN; | 
|  | info->base = locals; | 
|  | return pc_beg + 4; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Scanning `-mcall-prologues' prologue | 
|  | Classic prologue is 10 bytes, mega prologue is a 12 bytes long */ | 
|  |  | 
|  | while (1)	/* Using a while to avoid many goto's */ | 
|  | { | 
|  | int loc_size; | 
|  | int body_addr; | 
|  | unsigned num_pushes; | 
|  | int pc_offset = 0; | 
|  |  | 
|  | /* At least the fifth instruction must have been executed to | 
|  | modify frame shape.  */ | 
|  | if (len < 10) | 
|  | break; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | /* ldi r26,<LOCALS_SIZE> */ | 
|  | if ((insn & 0xf0f0) != 0xe0a0) | 
|  | break; | 
|  | loc_size = (insn & 0xf) | ((insn & 0x0f00) >> 4); | 
|  | pc_offset += 2; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc + 2], 2, byte_order); | 
|  | /* ldi r27,<LOCALS_SIZE> / 256 */ | 
|  | if ((insn & 0xf0f0) != 0xe0b0) | 
|  | break; | 
|  | loc_size |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | 
|  | pc_offset += 2; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc + 4], 2, byte_order); | 
|  | /* ldi r30,pm_lo8(.L_foo_body) */ | 
|  | if ((insn & 0xf0f0) != 0xe0e0) | 
|  | break; | 
|  | body_addr = (insn & 0xf) | ((insn & 0x0f00) >> 4); | 
|  | pc_offset += 2; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc + 6], 2, byte_order); | 
|  | /* ldi r31,pm_hi8(.L_foo_body) */ | 
|  | if ((insn & 0xf0f0) != 0xe0f0) | 
|  | break; | 
|  | body_addr |= ((insn & 0xf) | ((insn & 0x0f00) >> 4)) << 8; | 
|  | pc_offset += 2; | 
|  |  | 
|  | bound_minimal_symbol msymbol | 
|  | = lookup_minimal_symbol (current_program_space, "__prologue_saves__"); | 
|  | if (!msymbol.minsym) | 
|  | break; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc + 8], 2, byte_order); | 
|  | /* rjmp __prologue_saves__+RRR */ | 
|  | if ((insn & 0xf000) == 0xc000) | 
|  | { | 
|  | /* Extract PC relative offset from RJMP */ | 
|  | i = (insn & 0xfff) | (insn & 0x800 ? (-1 ^ 0xfff) : 0); | 
|  | /* Convert offset to byte addressable mode */ | 
|  | i *= 2; | 
|  | /* Destination address */ | 
|  | i += pc_beg + 10; | 
|  |  | 
|  | if (body_addr != (pc_beg + 10)/2) | 
|  | break; | 
|  |  | 
|  | pc_offset += 2; | 
|  | } | 
|  | else if ((insn & 0xfe0e) == 0x940c) | 
|  | { | 
|  | /* Extract absolute PC address from JMP */ | 
|  | i = (((insn & 0x1) | ((insn & 0x1f0) >> 3) << 16) | 
|  | | (extract_unsigned_integer (&prologue[vpc + 10], 2, byte_order) | 
|  | & 0xffff)); | 
|  | /* Convert address to byte addressable mode */ | 
|  | i *= 2; | 
|  |  | 
|  | if (body_addr != (pc_beg + 12)/2) | 
|  | break; | 
|  |  | 
|  | pc_offset += 4; | 
|  | } | 
|  | else | 
|  | break; | 
|  |  | 
|  | /* Resolve offset (in words) from __prologue_saves__ symbol. | 
|  | Which is a pushes count in `-mcall-prologues' mode */ | 
|  | num_pushes = AVR_MAX_PUSHES - (i - msymbol.value_address ()) / 2; | 
|  |  | 
|  | if (num_pushes > AVR_MAX_PUSHES) | 
|  | { | 
|  | gdb_printf (gdb_stderr, _("Num pushes too large: %d\n"), | 
|  | num_pushes); | 
|  | num_pushes = 0; | 
|  | } | 
|  |  | 
|  | if (num_pushes) | 
|  | { | 
|  | int from; | 
|  |  | 
|  | info->saved_regs[AVR_FP_REGNUM + 1].set_addr (num_pushes); | 
|  | if (num_pushes >= 2) | 
|  | info->saved_regs[AVR_FP_REGNUM].set_addr (num_pushes - 1); | 
|  |  | 
|  | i = 0; | 
|  | for (from = AVR_LAST_PUSHED_REGNUM + 1 - (num_pushes - 2); | 
|  | from <= AVR_LAST_PUSHED_REGNUM; ++from) | 
|  | info->saved_regs [from].set_addr (++i); | 
|  | } | 
|  | info->size = loc_size + num_pushes; | 
|  | info->prologue_type = AVR_PROLOGUE_CALL; | 
|  |  | 
|  | return pc_beg + pc_offset; | 
|  | } | 
|  |  | 
|  | /* Scan for the beginning of the prologue for an interrupt or signal | 
|  | function.  Note that we have to set the prologue type here since the | 
|  | third stage of the prologue may not be present (e.g. no saved registered | 
|  | or changing of the SP register).  */ | 
|  |  | 
|  | if (1) | 
|  | { | 
|  | static const unsigned char img[] = { | 
|  | 0x78, 0x94,		/* sei */ | 
|  | 0x1f, 0x92,		/* push r1 */ | 
|  | 0x0f, 0x92,		/* push r0 */ | 
|  | 0x0f, 0xb6,		/* in r0,0x3f SREG */ | 
|  | 0x0f, 0x92,		/* push r0 */ | 
|  | 0x11, 0x24		/* clr r1 */ | 
|  | }; | 
|  | if (len >= sizeof (img) | 
|  | && memcmp (prologue, img, sizeof (img)) == 0) | 
|  | { | 
|  | info->prologue_type = AVR_PROLOGUE_INTR; | 
|  | vpc += sizeof (img); | 
|  | info->saved_regs[AVR_SREG_REGNUM].set_addr (3); | 
|  | info->saved_regs[0].set_addr (2); | 
|  | info->saved_regs[1].set_addr (1); | 
|  | info->size += 3; | 
|  | } | 
|  | else if (len >= sizeof (img) - 2 | 
|  | && memcmp (img + 2, prologue, sizeof (img) - 2) == 0) | 
|  | { | 
|  | info->prologue_type = AVR_PROLOGUE_SIG; | 
|  | vpc += sizeof (img) - 2; | 
|  | info->saved_regs[AVR_SREG_REGNUM].set_addr (3); | 
|  | info->saved_regs[0].set_addr (2); | 
|  | info->saved_regs[1].set_addr (1); | 
|  | info->size += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* First stage of the prologue scanning. | 
|  | Scan pushes (saved registers) */ | 
|  |  | 
|  | for (; vpc < len; vpc += 2) | 
|  | { | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | if ((insn & 0xfe0f) == 0x920f)	/* push rXX */ | 
|  | { | 
|  | /* Bits 4-9 contain a mask for registers R0-R32.  */ | 
|  | int regno = (insn & 0x1f0) >> 4; | 
|  | info->size++; | 
|  | info->saved_regs[regno].set_addr (info->size); | 
|  | scan_stage = 1; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | gdb_assert (vpc < AVR_MAX_PROLOGUE_SIZE); | 
|  |  | 
|  | /* Handle static small stack allocation using rcall or push.  */ | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  | while (scan_stage == 1 && vpc < len) | 
|  | { | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | if (insn == 0xd000)	/* rcall .+0 */ | 
|  | { | 
|  | info->size += tdep->call_length; | 
|  | vpc += 2; | 
|  | } | 
|  | else if (insn == 0x920f || insn == 0x921f)  /* push r0 or push r1 */ | 
|  | { | 
|  | info->size += 1; | 
|  | vpc += 2; | 
|  | } | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Second stage of the prologue scanning. | 
|  | Scan: | 
|  | in r28,__SP_L__ | 
|  | in r29,__SP_H__ */ | 
|  |  | 
|  | if (scan_stage == 1 && vpc < len) | 
|  | { | 
|  | static const unsigned char img[] = { | 
|  | 0xcd, 0xb7,		/* in r28,__SP_L__ */ | 
|  | 0xde, 0xb7		/* in r29,__SP_H__ */ | 
|  | }; | 
|  |  | 
|  | if (vpc + sizeof (img) < len | 
|  | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | 
|  | { | 
|  | vpc += 4; | 
|  | scan_stage = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Third stage of the prologue scanning.  (Really two stages). | 
|  | Scan for: | 
|  | sbiw r28,XX or subi r28,lo8(XX) | 
|  | sbci r29,hi8(XX) | 
|  | in __tmp_reg__,__SREG__ | 
|  | cli | 
|  | out __SP_H__,r29 | 
|  | out __SREG__,__tmp_reg__ | 
|  | out __SP_L__,r28 */ | 
|  |  | 
|  | if (scan_stage == 2 && vpc < len) | 
|  | { | 
|  | int locals_size = 0; | 
|  | static const unsigned char img[] = { | 
|  | 0x0f, 0xb6,		/* in r0,0x3f */ | 
|  | 0xf8, 0x94,		/* cli */ | 
|  | 0xde, 0xbf,		/* out 0x3e,r29 ; SPH */ | 
|  | 0x0f, 0xbe,		/* out 0x3f,r0  ; SREG */ | 
|  | 0xcd, 0xbf		/* out 0x3d,r28 ; SPL */ | 
|  | }; | 
|  | static const unsigned char img_sig[] = { | 
|  | 0xde, 0xbf,		/* out 0x3e,r29 ; SPH */ | 
|  | 0xcd, 0xbf		/* out 0x3d,r28 ; SPL */ | 
|  | }; | 
|  | static const unsigned char img_int[] = { | 
|  | 0xf8, 0x94,		/* cli */ | 
|  | 0xde, 0xbf,		/* out 0x3e,r29 ; SPH */ | 
|  | 0x78, 0x94,		/* sei */ | 
|  | 0xcd, 0xbf		/* out 0x3d,r28 ; SPL */ | 
|  | }; | 
|  |  | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | if ((insn & 0xff30) == 0x9720)	/* sbiw r28,XXX */ | 
|  | { | 
|  | locals_size = (insn & 0xf) | ((insn & 0xc0) >> 2); | 
|  | vpc += 2; | 
|  | } | 
|  | else if ((insn & 0xf0f0) == 0x50c0)	/* subi r28,lo8(XX) */ | 
|  | { | 
|  | locals_size = (insn & 0xf) | ((insn & 0xf00) >> 4); | 
|  | vpc += 2; | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | vpc += 2; | 
|  | locals_size += ((insn & 0xf) | ((insn & 0xf00) >> 4)) << 8; | 
|  | } | 
|  | else | 
|  | return pc_beg + vpc; | 
|  |  | 
|  | /* Scan the last part of the prologue.  May not be present for interrupt | 
|  | or signal handler functions, which is why we set the prologue type | 
|  | when we saw the beginning of the prologue previously.  */ | 
|  |  | 
|  | if (vpc + sizeof (img_sig) < len | 
|  | && memcmp (prologue + vpc, img_sig, sizeof (img_sig)) == 0) | 
|  | { | 
|  | vpc += sizeof (img_sig); | 
|  | } | 
|  | else if (vpc + sizeof (img_int) < len | 
|  | && memcmp (prologue + vpc, img_int, sizeof (img_int)) == 0) | 
|  | { | 
|  | vpc += sizeof (img_int); | 
|  | } | 
|  | if (vpc + sizeof (img) < len | 
|  | && memcmp (prologue + vpc, img, sizeof (img)) == 0) | 
|  | { | 
|  | info->prologue_type = AVR_PROLOGUE_NORMAL; | 
|  | vpc += sizeof (img); | 
|  | } | 
|  |  | 
|  | info->size += locals_size; | 
|  |  | 
|  | /* Fall through.  */ | 
|  | } | 
|  |  | 
|  | /* If we got this far, we could not scan the prologue, so just return the pc | 
|  | of the frame plus an adjustment for argument move insns.  */ | 
|  |  | 
|  | for (; vpc < len; vpc += 2) | 
|  | { | 
|  | insn = extract_unsigned_integer (&prologue[vpc], 2, byte_order); | 
|  | if ((insn & 0xff00) == 0x0100)	/* movw rXX, rYY */ | 
|  | continue; | 
|  | else if ((insn & 0xfc00) == 0x2c00) /* mov rXX, rYY */ | 
|  | continue; | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pc_beg + vpc; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | CORE_ADDR func_addr, func_end; | 
|  | CORE_ADDR post_prologue_pc; | 
|  |  | 
|  | /* See what the symbol table says */ | 
|  |  | 
|  | if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
|  | return pc; | 
|  |  | 
|  | post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr); | 
|  | if (post_prologue_pc != 0) | 
|  | return std::max (pc, post_prologue_pc); | 
|  |  | 
|  | { | 
|  | CORE_ADDR prologue_end = pc; | 
|  | struct avr_unwind_cache info = {0}; | 
|  | trad_frame_saved_reg saved_regs[AVR_NUM_REGS]; | 
|  |  | 
|  | info.saved_regs = saved_regs; | 
|  |  | 
|  | /* Need to run the prologue scanner to figure out if the function has a | 
|  | prologue and possibly skip over moving arguments passed via registers | 
|  | to other registers.  */ | 
|  |  | 
|  | prologue_end = avr_scan_prologue (gdbarch, func_addr, func_end, &info); | 
|  |  | 
|  | if (info.prologue_type != AVR_PROLOGUE_NONE) | 
|  | return prologue_end; | 
|  | } | 
|  |  | 
|  | /* Either we didn't find the start of this function (nothing we can do), | 
|  | or there's no line info, or the line after the prologue is after | 
|  | the end of the function (there probably isn't a prologue).  */ | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Not all avr devices support the BREAK insn.  Those that don't should treat | 
|  | it as a NOP.  Thus, it should be ok.  Since the avr is currently a remote | 
|  | only target, this shouldn't be a problem (I hope).  TRoth/2003-05-14  */ | 
|  |  | 
|  | constexpr gdb_byte avr_break_insn [] = { 0x98, 0x95 }; | 
|  |  | 
|  | typedef BP_MANIPULATION (avr_break_insn) avr_breakpoint; | 
|  |  | 
|  | /* Determine, for architecture GDBARCH, how a return value of TYPE | 
|  | should be returned.  If it is supposed to be returned in registers, | 
|  | and READBUF is non-zero, read the appropriate value from REGCACHE, | 
|  | and copy it into READBUF.  If WRITEBUF is non-zero, write the value | 
|  | from WRITEBUF into REGCACHE.  */ | 
|  |  | 
|  | static enum return_value_convention | 
|  | avr_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *valtype, struct regcache *regcache, | 
|  | gdb_byte *readbuf, const gdb_byte *writebuf) | 
|  | { | 
|  | int i; | 
|  | /* Single byte are returned in r24. | 
|  | Otherwise, the MSB of the return value is always in r25, calculate which | 
|  | register holds the LSB.  */ | 
|  | int lsb_reg; | 
|  |  | 
|  | if ((valtype->code () == TYPE_CODE_STRUCT | 
|  | || valtype->code () == TYPE_CODE_UNION | 
|  | || valtype->code () == TYPE_CODE_ARRAY) | 
|  | && valtype->length () > 8) | 
|  | return RETURN_VALUE_STRUCT_CONVENTION; | 
|  |  | 
|  | if (valtype->length () <= 2) | 
|  | lsb_reg = 24; | 
|  | else if (valtype->length () <= 4) | 
|  | lsb_reg = 22; | 
|  | else if (valtype->length () <= 8) | 
|  | lsb_reg = 18; | 
|  | else | 
|  | gdb_assert_not_reached ("unexpected type length"); | 
|  |  | 
|  | if (writebuf != NULL) | 
|  | { | 
|  | for (i = 0; i < valtype->length (); i++) | 
|  | regcache->cooked_write (lsb_reg + i, writebuf + i); | 
|  | } | 
|  |  | 
|  | if (readbuf != NULL) | 
|  | { | 
|  | for (i = 0; i < valtype->length (); i++) | 
|  | regcache->cooked_read (lsb_reg + i, readbuf + i); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Put here the code to store, into fi->saved_regs, the addresses of | 
|  | the saved registers of frame described by FRAME_INFO.  This | 
|  | includes special registers such as pc and fp saved in special ways | 
|  | in the stack frame.  sp is even more special: the address we return | 
|  | for it IS the sp for the next frame.  */ | 
|  |  | 
|  | static struct avr_unwind_cache * | 
|  | avr_frame_unwind_cache (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | CORE_ADDR start_pc, current_pc; | 
|  | ULONGEST prev_sp; | 
|  | ULONGEST this_base; | 
|  | struct avr_unwind_cache *info; | 
|  | struct gdbarch *gdbarch; | 
|  | int i; | 
|  |  | 
|  | if (*this_prologue_cache) | 
|  | return (struct avr_unwind_cache *) *this_prologue_cache; | 
|  |  | 
|  | info = FRAME_OBSTACK_ZALLOC (struct avr_unwind_cache); | 
|  | *this_prologue_cache = info; | 
|  | info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
|  |  | 
|  | info->size = 0; | 
|  | info->prologue_type = AVR_PROLOGUE_NONE; | 
|  |  | 
|  | start_pc = get_frame_func (this_frame); | 
|  | current_pc = get_frame_pc (this_frame); | 
|  | if ((start_pc > 0) && (start_pc <= current_pc)) | 
|  | avr_scan_prologue (get_frame_arch (this_frame), | 
|  | start_pc, current_pc, info); | 
|  |  | 
|  | if ((info->prologue_type != AVR_PROLOGUE_NONE) | 
|  | && (info->prologue_type != AVR_PROLOGUE_MAIN)) | 
|  | { | 
|  | ULONGEST high_base;       /* High byte of FP */ | 
|  |  | 
|  | /* The SP was moved to the FP.  This indicates that a new frame | 
|  | was created.  Get THIS frame's FP value by unwinding it from | 
|  | the next frame.  */ | 
|  | this_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM); | 
|  | high_base = get_frame_register_unsigned (this_frame, AVR_FP_REGNUM + 1); | 
|  | this_base += (high_base << 8); | 
|  |  | 
|  | /* The FP points at the last saved register.  Adjust the FP back | 
|  | to before the first saved register giving the SP.  */ | 
|  | prev_sp = this_base + info->size; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Assume that the FP is this frame's SP but with that pushed | 
|  | stack space added back.  */ | 
|  | this_base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); | 
|  | prev_sp = this_base + info->size; | 
|  | } | 
|  |  | 
|  | /* Add 1 here to adjust for the post-decrement nature of the push | 
|  | instruction.*/ | 
|  | info->prev_sp = avr_make_saddr (prev_sp + 1); | 
|  | info->base = avr_make_saddr (this_base); | 
|  |  | 
|  | gdbarch = get_frame_arch (this_frame); | 
|  |  | 
|  | /* Adjust all the saved registers so that they contain addresses and not | 
|  | offsets.  */ | 
|  | for (i = 0; i < gdbarch_num_regs (gdbarch) - 1; i++) | 
|  | if (info->saved_regs[i].is_addr ()) | 
|  | info->saved_regs[i].set_addr (info->prev_sp | 
|  | - info->saved_regs[i].addr ()); | 
|  |  | 
|  | /* Except for the main and startup code, the return PC is always saved on | 
|  | the stack and is at the base of the frame.  */ | 
|  |  | 
|  | if (info->prologue_type != AVR_PROLOGUE_MAIN) | 
|  | info->saved_regs[AVR_PC_REGNUM].set_addr (info->prev_sp); | 
|  |  | 
|  | /* The previous frame's SP needed to be computed.  Save the computed | 
|  | value.  */ | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  | info->saved_regs[AVR_SP_REGNUM].set_value (info->prev_sp | 
|  | - 1 + tdep->call_length); | 
|  |  | 
|  | return info; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_unwind_pc (struct gdbarch *gdbarch, const frame_info_ptr &next_frame) | 
|  | { | 
|  | ULONGEST pc; | 
|  |  | 
|  | pc = frame_unwind_register_unsigned (next_frame, AVR_PC_REGNUM); | 
|  |  | 
|  | return avr_make_iaddr (pc); | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_unwind_sp (struct gdbarch *gdbarch, const frame_info_ptr &next_frame) | 
|  | { | 
|  | ULONGEST sp; | 
|  |  | 
|  | sp = frame_unwind_register_unsigned (next_frame, AVR_SP_REGNUM); | 
|  |  | 
|  | return avr_make_saddr (sp); | 
|  | } | 
|  |  | 
|  | /* Given a GDB frame, determine the address of the calling function's | 
|  | frame.  This will be used to create a new GDB frame struct.  */ | 
|  |  | 
|  | static void | 
|  | avr_frame_this_id (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct avr_unwind_cache *info | 
|  | = avr_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  | CORE_ADDR base; | 
|  | CORE_ADDR func; | 
|  | struct frame_id id; | 
|  |  | 
|  | /* The FUNC is easy.  */ | 
|  | func = get_frame_func (this_frame); | 
|  |  | 
|  | /* Hopefully the prologue analysis either correctly determined the | 
|  | frame's base (which is the SP from the previous frame), or set | 
|  | that base to "NULL".  */ | 
|  | base = info->prev_sp; | 
|  | if (base == 0) | 
|  | return; | 
|  |  | 
|  | id = frame_id_build (base, func); | 
|  | (*this_id) = id; | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | avr_frame_prev_register (const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache, int regnum) | 
|  | { | 
|  | struct avr_unwind_cache *info | 
|  | = avr_frame_unwind_cache (this_frame, this_prologue_cache); | 
|  |  | 
|  | if (regnum == AVR_PC_REGNUM || regnum == AVR_PSEUDO_PC_REGNUM) | 
|  | { | 
|  | if (info->saved_regs[AVR_PC_REGNUM].is_addr ()) | 
|  | { | 
|  | /* Reading the return PC from the PC register is slightly | 
|  | abnormal.  register_size(AVR_PC_REGNUM) says it is 4 bytes, | 
|  | but in reality, only two bytes (3 in upcoming mega256) are | 
|  | stored on the stack. | 
|  |  | 
|  | Also, note that the value on the stack is an addr to a word | 
|  | not a byte, so we will need to multiply it by two at some | 
|  | point. | 
|  |  | 
|  | And to confuse matters even more, the return address stored | 
|  | on the stack is in big endian byte order, even though most | 
|  | everything else about the avr is little endian.  Ick!  */ | 
|  | ULONGEST pc; | 
|  | int i; | 
|  | gdb_byte buf[3]; | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | read_memory (info->saved_regs[AVR_PC_REGNUM].addr (), | 
|  | buf, tdep->call_length); | 
|  |  | 
|  | /* Extract the PC read from memory as a big-endian.  */ | 
|  | pc = 0; | 
|  | for (i = 0; i < tdep->call_length; i++) | 
|  | pc = (pc << 8) | buf[i]; | 
|  |  | 
|  | if (regnum == AVR_PC_REGNUM) | 
|  | pc <<= 1; | 
|  |  | 
|  | return frame_unwind_got_constant (this_frame, regnum, pc); | 
|  | } | 
|  |  | 
|  | return frame_unwind_got_optimized (this_frame, regnum); | 
|  | } | 
|  |  | 
|  | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind_legacy avr_frame_unwind ( | 
|  | "avr prologue", | 
|  | NORMAL_FRAME, | 
|  | FRAME_UNWIND_ARCH, | 
|  | default_frame_unwind_stop_reason, | 
|  | avr_frame_this_id, | 
|  | avr_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | ); | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct avr_unwind_cache *info | 
|  | = avr_frame_unwind_cache (this_frame, this_cache); | 
|  |  | 
|  | return info->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base avr_frame_base = { | 
|  | &avr_frame_unwind, | 
|  | avr_frame_base_address, | 
|  | avr_frame_base_address, | 
|  | avr_frame_base_address | 
|  | }; | 
|  |  | 
|  | /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy | 
|  | frame.  The frame ID's base needs to match the TOS value saved by | 
|  | save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint.  */ | 
|  |  | 
|  | static struct frame_id | 
|  | avr_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame) | 
|  | { | 
|  | ULONGEST base; | 
|  |  | 
|  | base = get_frame_register_unsigned (this_frame, AVR_SP_REGNUM); | 
|  | return frame_id_build (avr_make_saddr (base), get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | /* When arguments must be pushed onto the stack, they go on in reverse | 
|  | order.  The below implements a FILO (stack) to do this.  */ | 
|  |  | 
|  | struct avr_stack_item | 
|  | { | 
|  | int len; | 
|  | struct avr_stack_item *prev; | 
|  | gdb_byte *data; | 
|  | }; | 
|  |  | 
|  | static struct avr_stack_item * | 
|  | push_stack_item (struct avr_stack_item *prev, const bfd_byte *contents, | 
|  | int len) | 
|  | { | 
|  | struct avr_stack_item *si; | 
|  | si = XNEW (struct avr_stack_item); | 
|  | si->data = (gdb_byte *) xmalloc (len); | 
|  | si->len = len; | 
|  | si->prev = prev; | 
|  | memcpy (si->data, contents, len); | 
|  | return si; | 
|  | } | 
|  |  | 
|  | static struct avr_stack_item * | 
|  | pop_stack_item (struct avr_stack_item *si) | 
|  | { | 
|  | struct avr_stack_item *dead = si; | 
|  | si = si->prev; | 
|  | xfree (dead->data); | 
|  | xfree (dead); | 
|  | return si; | 
|  | } | 
|  |  | 
|  | /* Setup the function arguments for calling a function in the inferior. | 
|  |  | 
|  | On the AVR architecture, there are 18 registers (R25 to R8) which are | 
|  | dedicated for passing function arguments.  Up to the first 18 arguments | 
|  | (depending on size) may go into these registers.  The rest go on the stack. | 
|  |  | 
|  | All arguments are aligned to start in even-numbered registers (odd-sized | 
|  | arguments, including char, have one free register above them).  For example, | 
|  | an int in arg1 and a char in arg2 would be passed as such: | 
|  |  | 
|  | arg1 -> r25:r24 | 
|  | arg2 -> r22 | 
|  |  | 
|  | Arguments that are larger than 2 bytes will be split between two or more | 
|  | registers as available, but will NOT be split between a register and the | 
|  | stack.  Arguments that go onto the stack are pushed last arg first (this is | 
|  | similar to the d10v).  */ | 
|  |  | 
|  | /* NOTE: TRoth/2003-06-17: The rest of this comment is old looks to be | 
|  | inaccurate. | 
|  |  | 
|  | An exceptional case exists for struct arguments (and possibly other | 
|  | aggregates such as arrays) -- if the size is larger than WORDSIZE bytes but | 
|  | not a multiple of WORDSIZE bytes.  In this case the argument is never split | 
|  | between the registers and the stack, but instead is copied in its entirety | 
|  | onto the stack, AND also copied into as many registers as there is room | 
|  | for.  In other words, space in registers permitting, two copies of the same | 
|  | argument are passed in.  As far as I can tell, only the one on the stack is | 
|  | used, although that may be a function of the level of compiler | 
|  | optimization.  I suspect this is a compiler bug.  Arguments of these odd | 
|  | sizes are left-justified within the word (as opposed to arguments smaller | 
|  | than WORDSIZE bytes, which are right-justified). | 
|  |  | 
|  | If the function is to return an aggregate type such as a struct, the caller | 
|  | must allocate space into which the callee will copy the return value.  In | 
|  | this case, a pointer to the return value location is passed into the callee | 
|  | in register R0, which displaces one of the other arguments passed in via | 
|  | registers R0 to R2.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | avr_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args, CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | int i; | 
|  | gdb_byte buf[3]; | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  | int call_length = tdep->call_length; | 
|  | CORE_ADDR return_pc = avr_convert_iaddr_to_raw (bp_addr); | 
|  | int regnum = AVR_ARGN_REGNUM; | 
|  | struct avr_stack_item *si = NULL; | 
|  |  | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | regcache_cooked_write_unsigned | 
|  | (regcache, regnum--, (struct_addr >> 8) & 0xff); | 
|  | regcache_cooked_write_unsigned | 
|  | (regcache, regnum--, struct_addr & 0xff); | 
|  | /* SP being post decremented, we need to reserve one byte so that the | 
|  | return address won't overwrite the result (or vice-versa).  */ | 
|  | if (sp == struct_addr) | 
|  | sp--; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nargs; i++) | 
|  | { | 
|  | int last_regnum; | 
|  | int j; | 
|  | struct value *arg = args[i]; | 
|  | struct type *type = check_typedef (arg->type ()); | 
|  | const bfd_byte *contents = arg->contents ().data (); | 
|  | int len = type->length (); | 
|  |  | 
|  | /* Calculate the potential last register needed. | 
|  | E.g. For length 2, registers regnum and regnum-1 (say 25 and 24) | 
|  | shall be used. So, last needed register will be regnum-1(24).  */ | 
|  | last_regnum = regnum - (len + (len & 1)) + 1; | 
|  |  | 
|  | /* If there are registers available, use them.  Once we start putting | 
|  | stuff on the stack, all subsequent args go on stack.  */ | 
|  | if ((si == NULL) && (last_regnum >= AVR_LAST_ARG_REGNUM)) | 
|  | { | 
|  | /* Skip a register for odd length args.  */ | 
|  | if (len & 1) | 
|  | regnum--; | 
|  |  | 
|  | /* Write MSB of argument into register and subsequent bytes in | 
|  | decreasing register numbers.  */ | 
|  | for (j = 0; j < len; j++) | 
|  | regcache_cooked_write_unsigned | 
|  | (regcache, regnum--, contents[len - j - 1]); | 
|  | } | 
|  | /* No registers available, push the args onto the stack.  */ | 
|  | else | 
|  | { | 
|  | /* From here on, we don't care about regnum.  */ | 
|  | si = push_stack_item (si, contents, len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Push args onto the stack.  */ | 
|  | while (si) | 
|  | { | 
|  | sp -= si->len; | 
|  | /* Add 1 to sp here to account for post decr nature of pushes.  */ | 
|  | write_memory (sp + 1, si->data, si->len); | 
|  | si = pop_stack_item (si); | 
|  | } | 
|  |  | 
|  | /* Set the return address.  For the avr, the return address is the BP_ADDR. | 
|  | Need to push the return address onto the stack noting that it needs to be | 
|  | in big-endian order on the stack.  */ | 
|  | for (i = 1; i <= call_length; i++) | 
|  | { | 
|  | buf[call_length - i] = return_pc & 0xff; | 
|  | return_pc >>= 8; | 
|  | } | 
|  |  | 
|  | sp -= call_length; | 
|  | /* Use 'sp + 1' since pushes are post decr ops.  */ | 
|  | write_memory (sp + 1, buf, call_length); | 
|  |  | 
|  | /* Finally, update the SP register.  */ | 
|  | regcache_cooked_write_unsigned (regcache, AVR_SP_REGNUM, | 
|  | avr_convert_saddr_to_raw (sp)); | 
|  |  | 
|  | /* Return SP value for the dummy frame, where the return address hasn't been | 
|  | pushed.  */ | 
|  | return sp + call_length; | 
|  | } | 
|  |  | 
|  | /* Unfortunately dwarf2 register for SP is 32.  */ | 
|  |  | 
|  | static int | 
|  | avr_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | if (reg >= 0 && reg < 32) | 
|  | return reg; | 
|  | if (reg == 32) | 
|  | return AVR_SP_REGNUM; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_type_flags' gdbarch method. | 
|  |  | 
|  | This method maps DW_AT_address_class attributes to a | 
|  | type_instance_flag_value.  */ | 
|  |  | 
|  | static type_instance_flags | 
|  | avr_address_class_type_flags (int byte_size, int dwarf2_addr_class) | 
|  | { | 
|  | /* The value 1 of the DW_AT_address_class attribute corresponds to the | 
|  | __flash qualifier.  Note that this attribute is only valid with | 
|  | pointer types and therefore the flag is set to the pointer type and | 
|  | not its target type.  */ | 
|  | if (dwarf2_addr_class == 1 && byte_size == 2) | 
|  | return AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_type_flags_to_name' gdbarch method. | 
|  |  | 
|  | Convert a type_instance_flag_value to an address space qualifier.  */ | 
|  |  | 
|  | static const char* | 
|  | avr_address_class_type_flags_to_name (struct gdbarch *gdbarch, | 
|  | type_instance_flags type_flags) | 
|  | { | 
|  | if (type_flags & AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH) | 
|  | return "flash"; | 
|  | else | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Implementation of `address_class_name_to_type_flags' gdbarch method. | 
|  |  | 
|  | Convert an address space qualifier to a type_instance_flag_value.  */ | 
|  |  | 
|  | static bool | 
|  | avr_address_class_name_to_type_flags (struct gdbarch *gdbarch, | 
|  | const char* name, | 
|  | type_instance_flags *type_flags_ptr) | 
|  | { | 
|  | if (strcmp (name, "flash") == 0) | 
|  | { | 
|  | *type_flags_ptr = AVR_TYPE_INSTANCE_FLAG_ADDRESS_CLASS_FLASH; | 
|  | return true; | 
|  | } | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Initialize the gdbarch structure for the AVR's.  */ | 
|  |  | 
|  | static struct gdbarch * | 
|  | avr_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
|  | { | 
|  | struct gdbarch_list *best_arch; | 
|  | int call_length; | 
|  |  | 
|  | /* Avr-6 call instructions save 3 bytes.  */ | 
|  | switch (info.bfd_arch_info->mach) | 
|  | { | 
|  | case bfd_mach_avr1: | 
|  | case bfd_mach_avrxmega1: | 
|  | case bfd_mach_avr2: | 
|  | case bfd_mach_avrxmega2: | 
|  | case bfd_mach_avr3: | 
|  | case bfd_mach_avrxmega3: | 
|  | case bfd_mach_avr4: | 
|  | case bfd_mach_avrxmega4: | 
|  | case bfd_mach_avr5: | 
|  | case bfd_mach_avrxmega5: | 
|  | default: | 
|  | call_length = 2; | 
|  | break; | 
|  | case bfd_mach_avr6: | 
|  | case bfd_mach_avrxmega6: | 
|  | case bfd_mach_avrxmega7: | 
|  | call_length = 3; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* If there is already a candidate, use it.  */ | 
|  | for (best_arch = gdbarch_list_lookup_by_info (arches, &info); | 
|  | best_arch != NULL; | 
|  | best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info)) | 
|  | { | 
|  | avr_gdbarch_tdep *tdep | 
|  | = gdbarch_tdep<avr_gdbarch_tdep> (best_arch->gdbarch); | 
|  |  | 
|  | if (tdep->call_length == call_length) | 
|  | return best_arch->gdbarch; | 
|  | } | 
|  |  | 
|  | /* None found, create a new architecture from the information provided.  */ | 
|  | gdbarch *gdbarch | 
|  | = gdbarch_alloc (&info, gdbarch_tdep_up (new avr_gdbarch_tdep)); | 
|  | avr_gdbarch_tdep *tdep = gdbarch_tdep<avr_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | tdep->call_length = call_length; | 
|  |  | 
|  | /* Create a type for PC.  We can't use builtin types here, as they may not | 
|  | be defined.  */ | 
|  | type_allocator alloc (gdbarch); | 
|  | tdep->void_type = alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void"); | 
|  | tdep->func_void_type = make_function_type (tdep->void_type, NULL); | 
|  | tdep->pc_type = init_pointer_type (alloc, 4 * TARGET_CHAR_BIT, NULL, | 
|  | tdep->func_void_type); | 
|  |  | 
|  | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_addr_bit (gdbarch, 32); | 
|  |  | 
|  | set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_wchar_signed (gdbarch, 1); | 
|  |  | 
|  | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  | set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT); | 
|  |  | 
|  | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | 
|  | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | 
|  |  | 
|  | set_gdbarch_read_pc (gdbarch, avr_read_pc); | 
|  | set_gdbarch_write_pc (gdbarch, avr_write_pc); | 
|  |  | 
|  | set_gdbarch_num_regs (gdbarch, AVR_NUM_REGS); | 
|  |  | 
|  | set_gdbarch_sp_regnum (gdbarch, AVR_SP_REGNUM); | 
|  | set_gdbarch_pc_regnum (gdbarch, AVR_PC_REGNUM); | 
|  |  | 
|  | set_gdbarch_register_name (gdbarch, avr_register_name); | 
|  | set_gdbarch_register_type (gdbarch, avr_register_type); | 
|  |  | 
|  | set_gdbarch_num_pseudo_regs (gdbarch, AVR_NUM_PSEUDO_REGS); | 
|  | set_gdbarch_pseudo_register_read (gdbarch, avr_pseudo_register_read); | 
|  | set_gdbarch_deprecated_pseudo_register_write (gdbarch, | 
|  | avr_pseudo_register_write); | 
|  |  | 
|  | set_gdbarch_return_value (gdbarch, avr_return_value); | 
|  |  | 
|  | set_gdbarch_push_dummy_call (gdbarch, avr_push_dummy_call); | 
|  |  | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, avr_dwarf_reg_to_regnum); | 
|  |  | 
|  | set_gdbarch_address_to_pointer (gdbarch, avr_address_to_pointer); | 
|  | set_gdbarch_pointer_to_address (gdbarch, avr_pointer_to_address); | 
|  | set_gdbarch_integer_to_address (gdbarch, avr_integer_to_address); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, avr_skip_prologue); | 
|  | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
|  |  | 
|  | set_gdbarch_breakpoint_kind_from_pc (gdbarch, avr_breakpoint::kind_from_pc); | 
|  | set_gdbarch_sw_breakpoint_from_kind (gdbarch, avr_breakpoint::bp_from_kind); | 
|  |  | 
|  | frame_unwind_append_unwinder (gdbarch, &avr_frame_unwind); | 
|  | frame_base_set_default (gdbarch, &avr_frame_base); | 
|  |  | 
|  | set_gdbarch_dummy_id (gdbarch, avr_dummy_id); | 
|  |  | 
|  | set_gdbarch_unwind_pc (gdbarch, avr_unwind_pc); | 
|  | set_gdbarch_unwind_sp (gdbarch, avr_unwind_sp); | 
|  |  | 
|  | set_gdbarch_address_class_type_flags (gdbarch, avr_address_class_type_flags); | 
|  | set_gdbarch_address_class_name_to_type_flags | 
|  | (gdbarch, avr_address_class_name_to_type_flags); | 
|  | set_gdbarch_address_class_type_flags_to_name | 
|  | (gdbarch, avr_address_class_type_flags_to_name); | 
|  |  | 
|  | return gdbarch; | 
|  | } | 
|  |  | 
|  | /* Send a query request to the avr remote target asking for values of the io | 
|  | registers.  If args parameter is not NULL, then the user has requested info | 
|  | on a specific io register [This still needs implemented and is ignored for | 
|  | now].  The query string should be one of these forms: | 
|  |  | 
|  | "Ravr.io_reg" -> reply is "NN" number of io registers | 
|  |  | 
|  | "Ravr.io_reg:addr,len" where addr is first register and len is number of | 
|  | registers to be read.  The reply should be "<NAME>,VV;" for each io register | 
|  | where, <NAME> is a string, and VV is the hex value of the register. | 
|  |  | 
|  | All io registers are 8-bit.  */ | 
|  |  | 
|  | static void | 
|  | avr_io_reg_read_command (const char *args, int from_tty) | 
|  | { | 
|  | char query[400]; | 
|  | unsigned int nreg = 0; | 
|  | unsigned int val; | 
|  |  | 
|  | /* Find out how many io registers the target has.  */ | 
|  | std::optional<gdb::byte_vector> buf | 
|  | = target_read_alloc (current_inferior ()->top_target (), | 
|  | TARGET_OBJECT_AVR, "avr.io_reg"); | 
|  |  | 
|  | if (!buf) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("ERR: info io_registers NOT supported " | 
|  | "by current target\n")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const char *bufstr = (const char *) buf->data (); | 
|  |  | 
|  | if (sscanf (bufstr, "%x", &nreg) != 1) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("Error fetching number of io registers\n")); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb_printf (_("Target has %u io registers:\n\n"), nreg); | 
|  |  | 
|  | /* only fetch up to 8 registers at a time to keep the buffer small */ | 
|  | int step = 8; | 
|  |  | 
|  | for (int i = 0; i < nreg; i += step) | 
|  | { | 
|  | /* how many registers this round? */ | 
|  | int j = step; | 
|  | if ((i+j) >= nreg) | 
|  | j = nreg - i;           /* last block is less than 8 registers */ | 
|  |  | 
|  | snprintf (query, sizeof (query) - 1, "avr.io_reg:%x,%x", i, j); | 
|  | buf = target_read_alloc (current_inferior ()->top_target (), | 
|  | TARGET_OBJECT_AVR, query); | 
|  |  | 
|  | if (!buf) | 
|  | { | 
|  | gdb_printf (gdb_stderr, | 
|  | _("ERR: error reading avr.io_reg:%x,%x\n"), | 
|  | i, j); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const char *p = (const char *) buf->data (); | 
|  | for (int k = i; k < (i + j); k++) | 
|  | { | 
|  | if (sscanf (p, "%[^,],%x;", query, &val) == 2) | 
|  | { | 
|  | gdb_printf ("[%02x] %-15s : %02x\n", k, query, val); | 
|  | while ((*p != ';') && (*p != '\0')) | 
|  | p++; | 
|  | p++;		/* skip over ';' */ | 
|  | if (*p == '\0') | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void _initialize_avr_tdep (); | 
|  | void | 
|  | _initialize_avr_tdep () | 
|  | { | 
|  | gdbarch_register (bfd_arch_avr, avr_gdbarch_init); | 
|  |  | 
|  | /* Add a new command to allow the user to query the avr remote target for | 
|  | the values of the io space registers in a saner way than just using | 
|  | `x/NNNb ADDR`.  */ | 
|  |  | 
|  | /* FIXME: TRoth/2002-02-18: This should probably be changed to 'info avr | 
|  | io_registers' to signify it is not available on other platforms.  */ | 
|  |  | 
|  | add_info ("io_registers", avr_io_reg_read_command, | 
|  | _("Query remote AVR target for I/O space register values.")); | 
|  | } |