| /* aarch64-opc.c -- AArch64 opcode support. |
| Copyright (C) 2009-2021 Free Software Foundation, Inc. |
| Contributed by ARM Ltd. |
| |
| This file is part of the GNU opcodes library. |
| |
| This library is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3, or (at your option) |
| any later version. |
| |
| It is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
| License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; see the file COPYING3. If not, |
| see <http://www.gnu.org/licenses/>. */ |
| |
| #include "sysdep.h" |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <stdint.h> |
| #include <stdarg.h> |
| #include <inttypes.h> |
| |
| #include "opintl.h" |
| #include "libiberty.h" |
| |
| #include "aarch64-opc.h" |
| |
| #ifdef DEBUG_AARCH64 |
| int debug_dump = false; |
| #endif /* DEBUG_AARCH64 */ |
| |
| /* The enumeration strings associated with each value of a 5-bit SVE |
| pattern operand. A null entry indicates a reserved meaning. */ |
| const char *const aarch64_sve_pattern_array[32] = { |
| /* 0-7. */ |
| "pow2", |
| "vl1", |
| "vl2", |
| "vl3", |
| "vl4", |
| "vl5", |
| "vl6", |
| "vl7", |
| /* 8-15. */ |
| "vl8", |
| "vl16", |
| "vl32", |
| "vl64", |
| "vl128", |
| "vl256", |
| 0, |
| 0, |
| /* 16-23. */ |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| /* 24-31. */ |
| 0, |
| 0, |
| 0, |
| 0, |
| 0, |
| "mul4", |
| "mul3", |
| "all" |
| }; |
| |
| /* The enumeration strings associated with each value of a 4-bit SVE |
| prefetch operand. A null entry indicates a reserved meaning. */ |
| const char *const aarch64_sve_prfop_array[16] = { |
| /* 0-7. */ |
| "pldl1keep", |
| "pldl1strm", |
| "pldl2keep", |
| "pldl2strm", |
| "pldl3keep", |
| "pldl3strm", |
| 0, |
| 0, |
| /* 8-15. */ |
| "pstl1keep", |
| "pstl1strm", |
| "pstl2keep", |
| "pstl2strm", |
| "pstl3keep", |
| "pstl3strm", |
| 0, |
| 0 |
| }; |
| |
| /* Helper functions to determine which operand to be used to encode/decode |
| the size:Q fields for AdvSIMD instructions. */ |
| |
| static inline bool |
| vector_qualifier_p (enum aarch64_opnd_qualifier qualifier) |
| { |
| return (qualifier >= AARCH64_OPND_QLF_V_8B |
| && qualifier <= AARCH64_OPND_QLF_V_1Q); |
| } |
| |
| static inline bool |
| fp_qualifier_p (enum aarch64_opnd_qualifier qualifier) |
| { |
| return (qualifier >= AARCH64_OPND_QLF_S_B |
| && qualifier <= AARCH64_OPND_QLF_S_Q); |
| } |
| |
| enum data_pattern |
| { |
| DP_UNKNOWN, |
| DP_VECTOR_3SAME, |
| DP_VECTOR_LONG, |
| DP_VECTOR_WIDE, |
| DP_VECTOR_ACROSS_LANES, |
| }; |
| |
| static const char significant_operand_index [] = |
| { |
| 0, /* DP_UNKNOWN, by default using operand 0. */ |
| 0, /* DP_VECTOR_3SAME */ |
| 1, /* DP_VECTOR_LONG */ |
| 2, /* DP_VECTOR_WIDE */ |
| 1, /* DP_VECTOR_ACROSS_LANES */ |
| }; |
| |
| /* Given a sequence of qualifiers in QUALIFIERS, determine and return |
| the data pattern. |
| N.B. QUALIFIERS is a possible sequence of qualifiers each of which |
| corresponds to one of a sequence of operands. */ |
| |
| static enum data_pattern |
| get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers) |
| { |
| if (vector_qualifier_p (qualifiers[0])) |
| { |
| /* e.g. v.4s, v.4s, v.4s |
| or v.4h, v.4h, v.h[3]. */ |
| if (qualifiers[0] == qualifiers[1] |
| && vector_qualifier_p (qualifiers[2]) |
| && (aarch64_get_qualifier_esize (qualifiers[0]) |
| == aarch64_get_qualifier_esize (qualifiers[1])) |
| && (aarch64_get_qualifier_esize (qualifiers[0]) |
| == aarch64_get_qualifier_esize (qualifiers[2]))) |
| return DP_VECTOR_3SAME; |
| /* e.g. v.8h, v.8b, v.8b. |
| or v.4s, v.4h, v.h[2]. |
| or v.8h, v.16b. */ |
| if (vector_qualifier_p (qualifiers[1]) |
| && aarch64_get_qualifier_esize (qualifiers[0]) != 0 |
| && (aarch64_get_qualifier_esize (qualifiers[0]) |
| == aarch64_get_qualifier_esize (qualifiers[1]) << 1)) |
| return DP_VECTOR_LONG; |
| /* e.g. v.8h, v.8h, v.8b. */ |
| if (qualifiers[0] == qualifiers[1] |
| && vector_qualifier_p (qualifiers[2]) |
| && aarch64_get_qualifier_esize (qualifiers[0]) != 0 |
| && (aarch64_get_qualifier_esize (qualifiers[0]) |
| == aarch64_get_qualifier_esize (qualifiers[2]) << 1) |
| && (aarch64_get_qualifier_esize (qualifiers[0]) |
| == aarch64_get_qualifier_esize (qualifiers[1]))) |
| return DP_VECTOR_WIDE; |
| } |
| else if (fp_qualifier_p (qualifiers[0])) |
| { |
| /* e.g. SADDLV <V><d>, <Vn>.<T>. */ |
| if (vector_qualifier_p (qualifiers[1]) |
| && qualifiers[2] == AARCH64_OPND_QLF_NIL) |
| return DP_VECTOR_ACROSS_LANES; |
| } |
| |
| return DP_UNKNOWN; |
| } |
| |
| /* Select the operand to do the encoding/decoding of the 'size:Q' fields in |
| the AdvSIMD instructions. */ |
| /* N.B. it is possible to do some optimization that doesn't call |
| get_data_pattern each time when we need to select an operand. We can |
| either buffer the caculated the result or statically generate the data, |
| however, it is not obvious that the optimization will bring significant |
| benefit. */ |
| |
| int |
| aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode) |
| { |
| return |
| significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])]; |
| } |
| |
| const aarch64_field fields[] = |
| { |
| { 0, 0 }, /* NIL. */ |
| { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */ |
| { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */ |
| { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */ |
| { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */ |
| { 5, 19 }, /* imm19: e.g. in CBZ. */ |
| { 5, 19 }, /* immhi: e.g. in ADRP. */ |
| { 29, 2 }, /* immlo: e.g. in ADRP. */ |
| { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */ |
| { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */ |
| { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */ |
| { 30, 1 }, /* Q: in most AdvSIMD instructions. */ |
| { 0, 5 }, /* Rt: in load/store instructions. */ |
| { 0, 5 }, /* Rd: in many integer instructions. */ |
| { 5, 5 }, /* Rn: in many integer instructions. */ |
| { 10, 5 }, /* Rt2: in load/store pair instructions. */ |
| { 10, 5 }, /* Ra: in fp instructions. */ |
| { 5, 3 }, /* op2: in the system instructions. */ |
| { 8, 4 }, /* CRm: in the system instructions. */ |
| { 12, 4 }, /* CRn: in the system instructions. */ |
| { 16, 3 }, /* op1: in the system instructions. */ |
| { 19, 2 }, /* op0: in the system instructions. */ |
| { 10, 3 }, /* imm3: in add/sub extended reg instructions. */ |
| { 12, 4 }, /* cond: condition flags as a source operand. */ |
| { 12, 4 }, /* opcode: in advsimd load/store instructions. */ |
| { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */ |
| { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */ |
| { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */ |
| { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */ |
| { 16, 5 }, /* Rs: in load/store exclusive instructions. */ |
| { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */ |
| { 12, 1 }, /* S: in load/store reg offset instructions. */ |
| { 21, 2 }, /* hw: in move wide constant instructions. */ |
| { 22, 2 }, /* opc: in load/store reg offset instructions. */ |
| { 23, 1 }, /* opc1: in load/store reg offset instructions. */ |
| { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */ |
| { 22, 2 }, /* type: floating point type field in fp data inst. */ |
| { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */ |
| { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */ |
| { 15, 6 }, /* imm6_2: in rmif instructions. */ |
| { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */ |
| { 0, 4 }, /* imm4_2: in rmif instructions. */ |
| { 10, 4 }, /* imm4_3: in adddg/subg instructions. */ |
| { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */ |
| { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */ |
| { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */ |
| { 12, 9 }, /* imm9: in load/store pre/post index instructions. */ |
| { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */ |
| { 5, 14 }, /* imm14: in test bit and branch instructions. */ |
| { 5, 16 }, /* imm16: in exception instructions. */ |
| { 0, 16 }, /* imm16_2: in udf instruction. */ |
| { 0, 26 }, /* imm26: in unconditional branch instructions. */ |
| { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */ |
| { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */ |
| { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */ |
| { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */ |
| { 22, 1 }, /* S: in LDRAA and LDRAB instructions. */ |
| { 22, 1 }, /* N: in logical (immediate) instructions. */ |
| { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */ |
| { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */ |
| { 31, 1 }, /* sf: in integer data processing instructions. */ |
| { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */ |
| { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */ |
| { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */ |
| { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */ |
| { 31, 1 }, /* b5: in the test bit and branch instructions. */ |
| { 19, 5 }, /* b40: in the test bit and branch instructions. */ |
| { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */ |
| { 4, 1 }, /* SVE_M_4: Merge/zero select, bit 4. */ |
| { 14, 1 }, /* SVE_M_14: Merge/zero select, bit 14. */ |
| { 16, 1 }, /* SVE_M_16: Merge/zero select, bit 16. */ |
| { 17, 1 }, /* SVE_N: SVE equivalent of N. */ |
| { 0, 4 }, /* SVE_Pd: p0-p15, bits [3,0]. */ |
| { 10, 3 }, /* SVE_Pg3: p0-p7, bits [12,10]. */ |
| { 5, 4 }, /* SVE_Pg4_5: p0-p15, bits [8,5]. */ |
| { 10, 4 }, /* SVE_Pg4_10: p0-p15, bits [13,10]. */ |
| { 16, 4 }, /* SVE_Pg4_16: p0-p15, bits [19,16]. */ |
| { 16, 4 }, /* SVE_Pm: p0-p15, bits [19,16]. */ |
| { 5, 4 }, /* SVE_Pn: p0-p15, bits [8,5]. */ |
| { 0, 4 }, /* SVE_Pt: p0-p15, bits [3,0]. */ |
| { 5, 5 }, /* SVE_Rm: SVE alternative position for Rm. */ |
| { 16, 5 }, /* SVE_Rn: SVE alternative position for Rn. */ |
| { 0, 5 }, /* SVE_Vd: Scalar SIMD&FP register, bits [4,0]. */ |
| { 5, 5 }, /* SVE_Vm: Scalar SIMD&FP register, bits [9,5]. */ |
| { 5, 5 }, /* SVE_Vn: Scalar SIMD&FP register, bits [9,5]. */ |
| { 5, 5 }, /* SVE_Za_5: SVE vector register, bits [9,5]. */ |
| { 16, 5 }, /* SVE_Za_16: SVE vector register, bits [20,16]. */ |
| { 0, 5 }, /* SVE_Zd: SVE vector register. bits [4,0]. */ |
| { 5, 5 }, /* SVE_Zm_5: SVE vector register, bits [9,5]. */ |
| { 16, 5 }, /* SVE_Zm_16: SVE vector register, bits [20,16]. */ |
| { 5, 5 }, /* SVE_Zn: SVE vector register, bits [9,5]. */ |
| { 0, 5 }, /* SVE_Zt: SVE vector register, bits [4,0]. */ |
| { 5, 1 }, /* SVE_i1: single-bit immediate. */ |
| { 22, 1 }, /* SVE_i3h: high bit of 3-bit immediate. */ |
| { 11, 1 }, /* SVE_i3l: low bit of 3-bit immediate. */ |
| { 19, 2 }, /* SVE_i3h2: two high bits of 3bit immediate, bits [20,19]. */ |
| { 20, 1 }, /* SVE_i2h: high bit of 2bit immediate, bits. */ |
| { 16, 3 }, /* SVE_imm3: 3-bit immediate field. */ |
| { 16, 4 }, /* SVE_imm4: 4-bit immediate field. */ |
| { 5, 5 }, /* SVE_imm5: 5-bit immediate field. */ |
| { 16, 5 }, /* SVE_imm5b: secondary 5-bit immediate field. */ |
| { 16, 6 }, /* SVE_imm6: 6-bit immediate field. */ |
| { 14, 7 }, /* SVE_imm7: 7-bit immediate field. */ |
| { 5, 8 }, /* SVE_imm8: 8-bit immediate field. */ |
| { 5, 9 }, /* SVE_imm9: 9-bit immediate field. */ |
| { 11, 6 }, /* SVE_immr: SVE equivalent of immr. */ |
| { 5, 6 }, /* SVE_imms: SVE equivalent of imms. */ |
| { 10, 2 }, /* SVE_msz: 2-bit shift amount for ADR. */ |
| { 5, 5 }, /* SVE_pattern: vector pattern enumeration. */ |
| { 0, 4 }, /* SVE_prfop: prefetch operation for SVE PRF[BHWD]. */ |
| { 16, 1 }, /* SVE_rot1: 1-bit rotation amount. */ |
| { 10, 2 }, /* SVE_rot2: 2-bit rotation amount. */ |
| { 10, 1 }, /* SVE_rot3: 1-bit rotation amount at bit 10. */ |
| { 22, 1 }, /* SVE_sz: 1-bit element size select. */ |
| { 17, 2 }, /* SVE_size: 2-bit element size, bits [18,17]. */ |
| { 30, 1 }, /* SVE_sz2: 1-bit element size select. */ |
| { 16, 4 }, /* SVE_tsz: triangular size select. */ |
| { 22, 2 }, /* SVE_tszh: triangular size select high, bits [23,22]. */ |
| { 8, 2 }, /* SVE_tszl_8: triangular size select low, bits [9,8]. */ |
| { 19, 2 }, /* SVE_tszl_19: triangular size select low, bits [20,19]. */ |
| { 14, 1 }, /* SVE_xs_14: UXTW/SXTW select (bit 14). */ |
| { 22, 1 }, /* SVE_xs_22: UXTW/SXTW select (bit 22). */ |
| { 11, 2 }, /* rotate1: FCMLA immediate rotate. */ |
| { 13, 2 }, /* rotate2: Indexed element FCMLA immediate rotate. */ |
| { 12, 1 }, /* rotate3: FCADD immediate rotate. */ |
| { 12, 2 }, /* SM3: Indexed element SM3 2 bits index immediate. */ |
| { 22, 1 }, /* sz: 1-bit element size select. */ |
| { 10, 2 }, /* CRm_dsb_nxs: 2-bit imm. encoded in CRm<3:2>. */ |
| }; |
| |
| enum aarch64_operand_class |
| aarch64_get_operand_class (enum aarch64_opnd type) |
| { |
| return aarch64_operands[type].op_class; |
| } |
| |
| const char * |
| aarch64_get_operand_name (enum aarch64_opnd type) |
| { |
| return aarch64_operands[type].name; |
| } |
| |
| /* Get operand description string. |
| This is usually for the diagnosis purpose. */ |
| const char * |
| aarch64_get_operand_desc (enum aarch64_opnd type) |
| { |
| return aarch64_operands[type].desc; |
| } |
| |
| /* Table of all conditional affixes. */ |
| const aarch64_cond aarch64_conds[16] = |
| { |
| {{"eq", "none"}, 0x0}, |
| {{"ne", "any"}, 0x1}, |
| {{"cs", "hs", "nlast"}, 0x2}, |
| {{"cc", "lo", "ul", "last"}, 0x3}, |
| {{"mi", "first"}, 0x4}, |
| {{"pl", "nfrst"}, 0x5}, |
| {{"vs"}, 0x6}, |
| {{"vc"}, 0x7}, |
| {{"hi", "pmore"}, 0x8}, |
| {{"ls", "plast"}, 0x9}, |
| {{"ge", "tcont"}, 0xa}, |
| {{"lt", "tstop"}, 0xb}, |
| {{"gt"}, 0xc}, |
| {{"le"}, 0xd}, |
| {{"al"}, 0xe}, |
| {{"nv"}, 0xf}, |
| }; |
| |
| const aarch64_cond * |
| get_cond_from_value (aarch64_insn value) |
| { |
| assert (value < 16); |
| return &aarch64_conds[(unsigned int) value]; |
| } |
| |
| const aarch64_cond * |
| get_inverted_cond (const aarch64_cond *cond) |
| { |
| return &aarch64_conds[cond->value ^ 0x1]; |
| } |
| |
| /* Table describing the operand extension/shifting operators; indexed by |
| enum aarch64_modifier_kind. |
| |
| The value column provides the most common values for encoding modifiers, |
| which enables table-driven encoding/decoding for the modifiers. */ |
| const struct aarch64_name_value_pair aarch64_operand_modifiers [] = |
| { |
| {"none", 0x0}, |
| {"msl", 0x0}, |
| {"ror", 0x3}, |
| {"asr", 0x2}, |
| {"lsr", 0x1}, |
| {"lsl", 0x0}, |
| {"uxtb", 0x0}, |
| {"uxth", 0x1}, |
| {"uxtw", 0x2}, |
| {"uxtx", 0x3}, |
| {"sxtb", 0x4}, |
| {"sxth", 0x5}, |
| {"sxtw", 0x6}, |
| {"sxtx", 0x7}, |
| {"mul", 0x0}, |
| {"mul vl", 0x0}, |
| {NULL, 0}, |
| }; |
| |
| enum aarch64_modifier_kind |
| aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc) |
| { |
| return desc - aarch64_operand_modifiers; |
| } |
| |
| aarch64_insn |
| aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind) |
| { |
| return aarch64_operand_modifiers[kind].value; |
| } |
| |
| enum aarch64_modifier_kind |
| aarch64_get_operand_modifier_from_value (aarch64_insn value, |
| bool extend_p) |
| { |
| if (extend_p) |
| return AARCH64_MOD_UXTB + value; |
| else |
| return AARCH64_MOD_LSL - value; |
| } |
| |
| bool |
| aarch64_extend_operator_p (enum aarch64_modifier_kind kind) |
| { |
| return kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX; |
| } |
| |
| static inline bool |
| aarch64_shift_operator_p (enum aarch64_modifier_kind kind) |
| { |
| return kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL; |
| } |
| |
| const struct aarch64_name_value_pair aarch64_barrier_options[16] = |
| { |
| { "#0x00", 0x0 }, |
| { "oshld", 0x1 }, |
| { "oshst", 0x2 }, |
| { "osh", 0x3 }, |
| { "#0x04", 0x4 }, |
| { "nshld", 0x5 }, |
| { "nshst", 0x6 }, |
| { "nsh", 0x7 }, |
| { "#0x08", 0x8 }, |
| { "ishld", 0x9 }, |
| { "ishst", 0xa }, |
| { "ish", 0xb }, |
| { "#0x0c", 0xc }, |
| { "ld", 0xd }, |
| { "st", 0xe }, |
| { "sy", 0xf }, |
| }; |
| |
| const struct aarch64_name_value_pair aarch64_barrier_dsb_nxs_options[4] = |
| { /* CRm<3:2> #imm */ |
| { "oshnxs", 16 }, /* 00 16 */ |
| { "nshnxs", 20 }, /* 01 20 */ |
| { "ishnxs", 24 }, /* 10 24 */ |
| { "synxs", 28 }, /* 11 28 */ |
| }; |
| |
| /* Table describing the operands supported by the aliases of the HINT |
| instruction. |
| |
| The name column is the operand that is accepted for the alias. The value |
| column is the hint number of the alias. The list of operands is terminated |
| by NULL in the name column. */ |
| |
| const struct aarch64_name_value_pair aarch64_hint_options[] = |
| { |
| /* BTI. This is also the F_DEFAULT entry for AARCH64_OPND_BTI_TARGET. */ |
| { " ", HINT_ENCODE (HINT_OPD_F_NOPRINT, 0x20) }, |
| { "csync", HINT_OPD_CSYNC }, /* PSB CSYNC. */ |
| { "c", HINT_OPD_C }, /* BTI C. */ |
| { "j", HINT_OPD_J }, /* BTI J. */ |
| { "jc", HINT_OPD_JC }, /* BTI JC. */ |
| { NULL, HINT_OPD_NULL }, |
| }; |
| |
| /* op -> op: load = 0 instruction = 1 store = 2 |
| l -> level: 1-3 |
| t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */ |
| #define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t)) |
| const struct aarch64_name_value_pair aarch64_prfops[32] = |
| { |
| { "pldl1keep", B(0, 1, 0) }, |
| { "pldl1strm", B(0, 1, 1) }, |
| { "pldl2keep", B(0, 2, 0) }, |
| { "pldl2strm", B(0, 2, 1) }, |
| { "pldl3keep", B(0, 3, 0) }, |
| { "pldl3strm", B(0, 3, 1) }, |
| { NULL, 0x06 }, |
| { NULL, 0x07 }, |
| { "plil1keep", B(1, 1, 0) }, |
| { "plil1strm", B(1, 1, 1) }, |
| { "plil2keep", B(1, 2, 0) }, |
| { "plil2strm", B(1, 2, 1) }, |
| { "plil3keep", B(1, 3, 0) }, |
| { "plil3strm", B(1, 3, 1) }, |
| { NULL, 0x0e }, |
| { NULL, 0x0f }, |
| { "pstl1keep", B(2, 1, 0) }, |
| { "pstl1strm", B(2, 1, 1) }, |
| { "pstl2keep", B(2, 2, 0) }, |
| { "pstl2strm", B(2, 2, 1) }, |
| { "pstl3keep", B(2, 3, 0) }, |
| { "pstl3strm", B(2, 3, 1) }, |
| { NULL, 0x16 }, |
| { NULL, 0x17 }, |
| { NULL, 0x18 }, |
| { NULL, 0x19 }, |
| { NULL, 0x1a }, |
| { NULL, 0x1b }, |
| { NULL, 0x1c }, |
| { NULL, 0x1d }, |
| { NULL, 0x1e }, |
| { NULL, 0x1f }, |
| }; |
| #undef B |
| |
| /* Utilities on value constraint. */ |
| |
| static inline int |
| value_in_range_p (int64_t value, int low, int high) |
| { |
| return (value >= low && value <= high) ? 1 : 0; |
| } |
| |
| /* Return true if VALUE is a multiple of ALIGN. */ |
| static inline int |
| value_aligned_p (int64_t value, int align) |
| { |
| return (value % align) == 0; |
| } |
| |
| /* A signed value fits in a field. */ |
| static inline int |
| value_fit_signed_field_p (int64_t value, unsigned width) |
| { |
| assert (width < 32); |
| if (width < sizeof (value) * 8) |
| { |
| int64_t lim = (uint64_t) 1 << (width - 1); |
| if (value >= -lim && value < lim) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* An unsigned value fits in a field. */ |
| static inline int |
| value_fit_unsigned_field_p (int64_t value, unsigned width) |
| { |
| assert (width < 32); |
| if (width < sizeof (value) * 8) |
| { |
| int64_t lim = (uint64_t) 1 << width; |
| if (value >= 0 && value < lim) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Return 1 if OPERAND is SP or WSP. */ |
| int |
| aarch64_stack_pointer_p (const aarch64_opnd_info *operand) |
| { |
| return ((aarch64_get_operand_class (operand->type) |
| == AARCH64_OPND_CLASS_INT_REG) |
| && operand_maybe_stack_pointer (aarch64_operands + operand->type) |
| && operand->reg.regno == 31); |
| } |
| |
| /* Return 1 if OPERAND is XZR or WZP. */ |
| int |
| aarch64_zero_register_p (const aarch64_opnd_info *operand) |
| { |
| return ((aarch64_get_operand_class (operand->type) |
| == AARCH64_OPND_CLASS_INT_REG) |
| && !operand_maybe_stack_pointer (aarch64_operands + operand->type) |
| && operand->reg.regno == 31); |
| } |
| |
| /* Return true if the operand *OPERAND that has the operand code |
| OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also |
| qualified by the qualifier TARGET. */ |
| |
| static inline int |
| operand_also_qualified_p (const struct aarch64_opnd_info *operand, |
| aarch64_opnd_qualifier_t target) |
| { |
| switch (operand->qualifier) |
| { |
| case AARCH64_OPND_QLF_W: |
| if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand)) |
| return 1; |
| break; |
| case AARCH64_OPND_QLF_X: |
| if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand)) |
| return 1; |
| break; |
| case AARCH64_OPND_QLF_WSP: |
| if (target == AARCH64_OPND_QLF_W |
| && operand_maybe_stack_pointer (aarch64_operands + operand->type)) |
| return 1; |
| break; |
| case AARCH64_OPND_QLF_SP: |
| if (target == AARCH64_OPND_QLF_X |
| && operand_maybe_stack_pointer (aarch64_operands + operand->type)) |
| return 1; |
| break; |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF |
| for operand KNOWN_IDX, return the expected qualifier for operand IDX. |
| |
| Return NIL if more than one expected qualifiers are found. */ |
| |
| aarch64_opnd_qualifier_t |
| aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list, |
| int idx, |
| const aarch64_opnd_qualifier_t known_qlf, |
| int known_idx) |
| { |
| int i, saved_i; |
| |
| /* Special case. |
| |
| When the known qualifier is NIL, we have to assume that there is only |
| one qualifier sequence in the *QSEQ_LIST and return the corresponding |
| qualifier directly. One scenario is that for instruction |
| PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>] |
| which has only one possible valid qualifier sequence |
| NIL, S_D |
| the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can |
| determine the correct relocation type (i.e. LDST64_LO12) for PRFM. |
| |
| Because the qualifier NIL has dual roles in the qualifier sequence: |
| it can mean no qualifier for the operand, or the qualifer sequence is |
| not in use (when all qualifiers in the sequence are NILs), we have to |
| handle this special case here. */ |
| if (known_qlf == AARCH64_OPND_NIL) |
| { |
| assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL); |
| return qseq_list[0][idx]; |
| } |
| |
| for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i) |
| { |
| if (qseq_list[i][known_idx] == known_qlf) |
| { |
| if (saved_i != -1) |
| /* More than one sequences are found to have KNOWN_QLF at |
| KNOWN_IDX. */ |
| return AARCH64_OPND_NIL; |
| saved_i = i; |
| } |
| } |
| |
| return qseq_list[saved_i][idx]; |
| } |
| |
| enum operand_qualifier_kind |
| { |
| OQK_NIL, |
| OQK_OPD_VARIANT, |
| OQK_VALUE_IN_RANGE, |
| OQK_MISC, |
| }; |
| |
| /* Operand qualifier description. */ |
| struct operand_qualifier_data |
| { |
| /* The usage of the three data fields depends on the qualifier kind. */ |
| int data0; |
| int data1; |
| int data2; |
| /* Description. */ |
| const char *desc; |
| /* Kind. */ |
| enum operand_qualifier_kind kind; |
| }; |
| |
| /* Indexed by the operand qualifier enumerators. */ |
| struct operand_qualifier_data aarch64_opnd_qualifiers[] = |
| { |
| {0, 0, 0, "NIL", OQK_NIL}, |
| |
| /* Operand variant qualifiers. |
| First 3 fields: |
| element size, number of elements and common value for encoding. */ |
| |
| {4, 1, 0x0, "w", OQK_OPD_VARIANT}, |
| {8, 1, 0x1, "x", OQK_OPD_VARIANT}, |
| {4, 1, 0x0, "wsp", OQK_OPD_VARIANT}, |
| {8, 1, 0x1, "sp", OQK_OPD_VARIANT}, |
| |
| {1, 1, 0x0, "b", OQK_OPD_VARIANT}, |
| {2, 1, 0x1, "h", OQK_OPD_VARIANT}, |
| {4, 1, 0x2, "s", OQK_OPD_VARIANT}, |
| {8, 1, 0x3, "d", OQK_OPD_VARIANT}, |
| {16, 1, 0x4, "q", OQK_OPD_VARIANT}, |
| {4, 1, 0x0, "4b", OQK_OPD_VARIANT}, |
| {4, 1, 0x0, "2h", OQK_OPD_VARIANT}, |
| |
| {1, 4, 0x0, "4b", OQK_OPD_VARIANT}, |
| {1, 8, 0x0, "8b", OQK_OPD_VARIANT}, |
| {1, 16, 0x1, "16b", OQK_OPD_VARIANT}, |
| {2, 2, 0x0, "2h", OQK_OPD_VARIANT}, |
| {2, 4, 0x2, "4h", OQK_OPD_VARIANT}, |
| {2, 8, 0x3, "8h", OQK_OPD_VARIANT}, |
| {4, 2, 0x4, "2s", OQK_OPD_VARIANT}, |
| {4, 4, 0x5, "4s", OQK_OPD_VARIANT}, |
| {8, 1, 0x6, "1d", OQK_OPD_VARIANT}, |
| {8, 2, 0x7, "2d", OQK_OPD_VARIANT}, |
| {16, 1, 0x8, "1q", OQK_OPD_VARIANT}, |
| |
| {0, 0, 0, "z", OQK_OPD_VARIANT}, |
| {0, 0, 0, "m", OQK_OPD_VARIANT}, |
| |
| /* Qualifier for scaled immediate for Tag granule (stg,st2g,etc). */ |
| {16, 0, 0, "tag", OQK_OPD_VARIANT}, |
| |
| /* Qualifiers constraining the value range. |
| First 3 fields: |
| Lower bound, higher bound, unused. */ |
| |
| {0, 15, 0, "CR", OQK_VALUE_IN_RANGE}, |
| {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE}, |
| {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE}, |
| {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE}, |
| {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE}, |
| {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE}, |
| {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE}, |
| |
| /* Qualifiers for miscellaneous purpose. |
| First 3 fields: |
| unused, unused and unused. */ |
| |
| {0, 0, 0, "lsl", 0}, |
| {0, 0, 0, "msl", 0}, |
| |
| {0, 0, 0, "retrieving", 0}, |
| }; |
| |
| static inline bool |
| operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier) |
| { |
| return aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT; |
| } |
| |
| static inline bool |
| qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier) |
| { |
| return aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE; |
| } |
| |
| const char* |
| aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier) |
| { |
| return aarch64_opnd_qualifiers[qualifier].desc; |
| } |
| |
| /* Given an operand qualifier, return the expected data element size |
| of a qualified operand. */ |
| unsigned char |
| aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (operand_variant_qualifier_p (qualifier)); |
| return aarch64_opnd_qualifiers[qualifier].data0; |
| } |
| |
| unsigned char |
| aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (operand_variant_qualifier_p (qualifier)); |
| return aarch64_opnd_qualifiers[qualifier].data1; |
| } |
| |
| aarch64_insn |
| aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (operand_variant_qualifier_p (qualifier)); |
| return aarch64_opnd_qualifiers[qualifier].data2; |
| } |
| |
| static int |
| get_lower_bound (aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (qualifier_value_in_range_constraint_p (qualifier)); |
| return aarch64_opnd_qualifiers[qualifier].data0; |
| } |
| |
| static int |
| get_upper_bound (aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (qualifier_value_in_range_constraint_p (qualifier)); |
| return aarch64_opnd_qualifiers[qualifier].data1; |
| } |
| |
| #ifdef DEBUG_AARCH64 |
| void |
| aarch64_verbose (const char *str, ...) |
| { |
| va_list ap; |
| va_start (ap, str); |
| printf ("#### "); |
| vprintf (str, ap); |
| printf ("\n"); |
| va_end (ap); |
| } |
| |
| static inline void |
| dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier) |
| { |
| int i; |
| printf ("#### \t"); |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier) |
| printf ("%s,", aarch64_get_qualifier_name (*qualifier)); |
| printf ("\n"); |
| } |
| |
| static void |
| dump_match_qualifiers (const struct aarch64_opnd_info *opnd, |
| const aarch64_opnd_qualifier_t *qualifier) |
| { |
| int i; |
| aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM]; |
| |
| aarch64_verbose ("dump_match_qualifiers:"); |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) |
| curr[i] = opnd[i].qualifier; |
| dump_qualifier_sequence (curr); |
| aarch64_verbose ("against"); |
| dump_qualifier_sequence (qualifier); |
| } |
| #endif /* DEBUG_AARCH64 */ |
| |
| /* This function checks if the given instruction INSN is a destructive |
| instruction based on the usage of the registers. It does not recognize |
| unary destructive instructions. */ |
| bool |
| aarch64_is_destructive_by_operands (const aarch64_opcode *opcode) |
| { |
| int i = 0; |
| const enum aarch64_opnd *opnds = opcode->operands; |
| |
| if (opnds[0] == AARCH64_OPND_NIL) |
| return false; |
| |
| while (opnds[++i] != AARCH64_OPND_NIL) |
| if (opnds[i] == opnds[0]) |
| return true; |
| |
| return false; |
| } |
| |
| /* TODO improve this, we can have an extra field at the runtime to |
| store the number of operands rather than calculating it every time. */ |
| |
| int |
| aarch64_num_of_operands (const aarch64_opcode *opcode) |
| { |
| int i = 0; |
| const enum aarch64_opnd *opnds = opcode->operands; |
| while (opnds[i++] != AARCH64_OPND_NIL) |
| ; |
| --i; |
| assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM); |
| return i; |
| } |
| |
| /* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST. |
| If succeeds, fill the found sequence in *RET, return 1; otherwise return 0. |
| |
| N.B. on the entry, it is very likely that only some operands in *INST |
| have had their qualifiers been established. |
| |
| If STOP_AT is not -1, the function will only try to match |
| the qualifier sequence for operands before and including the operand |
| of index STOP_AT; and on success *RET will only be filled with the first |
| (STOP_AT+1) qualifiers. |
| |
| A couple examples of the matching algorithm: |
| |
| X,W,NIL should match |
| X,W,NIL |
| |
| NIL,NIL should match |
| X ,NIL |
| |
| Apart from serving the main encoding routine, this can also be called |
| during or after the operand decoding. */ |
| |
| int |
| aarch64_find_best_match (const aarch64_inst *inst, |
| const aarch64_opnd_qualifier_seq_t *qualifiers_list, |
| int stop_at, aarch64_opnd_qualifier_t *ret) |
| { |
| int found = 0; |
| int i, num_opnds; |
| const aarch64_opnd_qualifier_t *qualifiers; |
| |
| num_opnds = aarch64_num_of_operands (inst->opcode); |
| if (num_opnds == 0) |
| { |
| DEBUG_TRACE ("SUCCEED: no operand"); |
| return 1; |
| } |
| |
| if (stop_at < 0 || stop_at >= num_opnds) |
| stop_at = num_opnds - 1; |
| |
| /* For each pattern. */ |
| for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list) |
| { |
| int j; |
| qualifiers = *qualifiers_list; |
| |
| /* Start as positive. */ |
| found = 1; |
| |
| DEBUG_TRACE ("%d", i); |
| #ifdef DEBUG_AARCH64 |
| if (debug_dump) |
| dump_match_qualifiers (inst->operands, qualifiers); |
| #endif |
| |
| /* Most opcodes has much fewer patterns in the list. |
| First NIL qualifier indicates the end in the list. */ |
| if (empty_qualifier_sequence_p (qualifiers)) |
| { |
| DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list"); |
| if (i) |
| found = 0; |
| break; |
| } |
| |
| for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers) |
| { |
| if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL) |
| { |
| /* Either the operand does not have qualifier, or the qualifier |
| for the operand needs to be deduced from the qualifier |
| sequence. |
| In the latter case, any constraint checking related with |
| the obtained qualifier should be done later in |
| operand_general_constraint_met_p. */ |
| continue; |
| } |
| else if (*qualifiers != inst->operands[j].qualifier) |
| { |
| /* Unless the target qualifier can also qualify the operand |
| (which has already had a non-nil qualifier), non-equal |
| qualifiers are generally un-matched. */ |
| if (operand_also_qualified_p (inst->operands + j, *qualifiers)) |
| continue; |
| else |
| { |
| found = 0; |
| break; |
| } |
| } |
| else |
| continue; /* Equal qualifiers are certainly matched. */ |
| } |
| |
| /* Qualifiers established. */ |
| if (found == 1) |
| break; |
| } |
| |
| if (found == 1) |
| { |
| /* Fill the result in *RET. */ |
| int j; |
| qualifiers = *qualifiers_list; |
| |
| DEBUG_TRACE ("complete qualifiers using list %d", i); |
| #ifdef DEBUG_AARCH64 |
| if (debug_dump) |
| dump_qualifier_sequence (qualifiers); |
| #endif |
| |
| for (j = 0; j <= stop_at; ++j, ++qualifiers) |
| ret[j] = *qualifiers; |
| for (; j < AARCH64_MAX_OPND_NUM; ++j) |
| ret[j] = AARCH64_OPND_QLF_NIL; |
| |
| DEBUG_TRACE ("SUCCESS"); |
| return 1; |
| } |
| |
| DEBUG_TRACE ("FAIL"); |
| return 0; |
| } |
| |
| /* Operand qualifier matching and resolving. |
| |
| Return 1 if the operand qualifier(s) in *INST match one of the qualifier |
| sequences in INST->OPCODE->qualifiers_list; otherwise return 0. |
| |
| if UPDATE_P, update the qualifier(s) in *INST after the matching |
| succeeds. */ |
| |
| static int |
| match_operands_qualifier (aarch64_inst *inst, bool update_p) |
| { |
| int i, nops; |
| aarch64_opnd_qualifier_seq_t qualifiers; |
| |
| if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1, |
| qualifiers)) |
| { |
| DEBUG_TRACE ("matching FAIL"); |
| return 0; |
| } |
| |
| if (inst->opcode->flags & F_STRICT) |
| { |
| /* Require an exact qualifier match, even for NIL qualifiers. */ |
| nops = aarch64_num_of_operands (inst->opcode); |
| for (i = 0; i < nops; ++i) |
| if (inst->operands[i].qualifier != qualifiers[i]) |
| return false; |
| } |
| |
| /* Update the qualifiers. */ |
| if (update_p) |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) |
| { |
| if (inst->opcode->operands[i] == AARCH64_OPND_NIL) |
| break; |
| DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i], |
| "update %s with %s for operand %d", |
| aarch64_get_qualifier_name (inst->operands[i].qualifier), |
| aarch64_get_qualifier_name (qualifiers[i]), i); |
| inst->operands[i].qualifier = qualifiers[i]; |
| } |
| |
| DEBUG_TRACE ("matching SUCCESS"); |
| return 1; |
| } |
| |
| /* Return TRUE if VALUE is a wide constant that can be moved into a general |
| register by MOVZ. |
| |
| IS32 indicates whether value is a 32-bit immediate or not. |
| If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift |
| amount will be returned in *SHIFT_AMOUNT. */ |
| |
| bool |
| aarch64_wide_constant_p (uint64_t value, int is32, unsigned int *shift_amount) |
| { |
| int amount; |
| |
| DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value); |
| |
| if (is32) |
| { |
| /* Allow all zeros or all ones in top 32-bits, so that |
| 32-bit constant expressions like ~0x80000000 are |
| permitted. */ |
| if (value >> 32 != 0 && value >> 32 != 0xffffffff) |
| /* Immediate out of range. */ |
| return false; |
| value &= 0xffffffff; |
| } |
| |
| /* first, try movz then movn */ |
| amount = -1; |
| if ((value & ((uint64_t) 0xffff << 0)) == value) |
| amount = 0; |
| else if ((value & ((uint64_t) 0xffff << 16)) == value) |
| amount = 16; |
| else if (!is32 && (value & ((uint64_t) 0xffff << 32)) == value) |
| amount = 32; |
| else if (!is32 && (value & ((uint64_t) 0xffff << 48)) == value) |
| amount = 48; |
| |
| if (amount == -1) |
| { |
| DEBUG_TRACE ("exit false with 0x%" PRIx64 "(%" PRIi64 ")", value, value); |
| return false; |
| } |
| |
| if (shift_amount != NULL) |
| *shift_amount = amount; |
| |
| DEBUG_TRACE ("exit true with amount %d", amount); |
| |
| return true; |
| } |
| |
| /* Build the accepted values for immediate logical SIMD instructions. |
| |
| The standard encodings of the immediate value are: |
| N imms immr SIMD size R S |
| 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss) |
| 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss) |
| 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss) |
| 0 110sss 000rrr 8 UInt(rrr) UInt(sss) |
| 0 1110ss 0000rr 4 UInt(rr) UInt(ss) |
| 0 11110s 00000r 2 UInt(r) UInt(s) |
| where all-ones value of S is reserved. |
| |
| Let's call E the SIMD size. |
| |
| The immediate value is: S+1 bits '1' rotated to the right by R. |
| |
| The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334 |
| (remember S != E - 1). */ |
| |
| #define TOTAL_IMM_NB 5334 |
| |
| typedef struct |
| { |
| uint64_t imm; |
| aarch64_insn encoding; |
| } simd_imm_encoding; |
| |
| static simd_imm_encoding simd_immediates[TOTAL_IMM_NB]; |
| |
| static int |
| simd_imm_encoding_cmp(const void *i1, const void *i2) |
| { |
| const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1; |
| const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2; |
| |
| if (imm1->imm < imm2->imm) |
| return -1; |
| if (imm1->imm > imm2->imm) |
| return +1; |
| return 0; |
| } |
| |
| /* immediate bitfield standard encoding |
| imm13<12> imm13<5:0> imm13<11:6> SIMD size R S |
| 1 ssssss rrrrrr 64 rrrrrr ssssss |
| 0 0sssss 0rrrrr 32 rrrrr sssss |
| 0 10ssss 00rrrr 16 rrrr ssss |
| 0 110sss 000rrr 8 rrr sss |
| 0 1110ss 0000rr 4 rr ss |
| 0 11110s 00000r 2 r s */ |
| static inline int |
| encode_immediate_bitfield (int is64, uint32_t s, uint32_t r) |
| { |
| return (is64 << 12) | (r << 6) | s; |
| } |
| |
| static void |
| build_immediate_table (void) |
| { |
| uint32_t log_e, e, s, r, s_mask; |
| uint64_t mask, imm; |
| int nb_imms; |
| int is64; |
| |
| nb_imms = 0; |
| for (log_e = 1; log_e <= 6; log_e++) |
| { |
| /* Get element size. */ |
| e = 1u << log_e; |
| if (log_e == 6) |
| { |
| is64 = 1; |
| mask = 0xffffffffffffffffull; |
| s_mask = 0; |
| } |
| else |
| { |
| is64 = 0; |
| mask = (1ull << e) - 1; |
| /* log_e s_mask |
| 1 ((1 << 4) - 1) << 2 = 111100 |
| 2 ((1 << 3) - 1) << 3 = 111000 |
| 3 ((1 << 2) - 1) << 4 = 110000 |
| 4 ((1 << 1) - 1) << 5 = 100000 |
| 5 ((1 << 0) - 1) << 6 = 000000 */ |
| s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1); |
| } |
| for (s = 0; s < e - 1; s++) |
| for (r = 0; r < e; r++) |
| { |
| /* s+1 consecutive bits to 1 (s < 63) */ |
| imm = (1ull << (s + 1)) - 1; |
| /* rotate right by r */ |
| if (r != 0) |
| imm = (imm >> r) | ((imm << (e - r)) & mask); |
| /* replicate the constant depending on SIMD size */ |
| switch (log_e) |
| { |
| case 1: imm = (imm << 2) | imm; |
| /* Fall through. */ |
| case 2: imm = (imm << 4) | imm; |
| /* Fall through. */ |
| case 3: imm = (imm << 8) | imm; |
| /* Fall through. */ |
| case 4: imm = (imm << 16) | imm; |
| /* Fall through. */ |
| case 5: imm = (imm << 32) | imm; |
| /* Fall through. */ |
| case 6: break; |
| default: abort (); |
| } |
| simd_immediates[nb_imms].imm = imm; |
| simd_immediates[nb_imms].encoding = |
| encode_immediate_bitfield(is64, s | s_mask, r); |
| nb_imms++; |
| } |
| } |
| assert (nb_imms == TOTAL_IMM_NB); |
| qsort(simd_immediates, nb_imms, |
| sizeof(simd_immediates[0]), simd_imm_encoding_cmp); |
| } |
| |
| /* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can |
| be accepted by logical (immediate) instructions |
| e.g. ORR <Xd|SP>, <Xn>, #<imm>. |
| |
| ESIZE is the number of bytes in the decoded immediate value. |
| If ENCODING is not NULL, on the return of TRUE, the standard encoding for |
| VALUE will be returned in *ENCODING. */ |
| |
| bool |
| aarch64_logical_immediate_p (uint64_t value, int esize, aarch64_insn *encoding) |
| { |
| simd_imm_encoding imm_enc; |
| const simd_imm_encoding *imm_encoding; |
| static bool initialized = false; |
| uint64_t upper; |
| int i; |
| |
| DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), esize: %d", value, |
| value, esize); |
| |
| if (!initialized) |
| { |
| build_immediate_table (); |
| initialized = true; |
| } |
| |
| /* Allow all zeros or all ones in top bits, so that |
| constant expressions like ~1 are permitted. */ |
| upper = (uint64_t) -1 << (esize * 4) << (esize * 4); |
| if ((value & ~upper) != value && (value | upper) != value) |
| return false; |
| |
| /* Replicate to a full 64-bit value. */ |
| value &= ~upper; |
| for (i = esize * 8; i < 64; i *= 2) |
| value |= (value << i); |
| |
| imm_enc.imm = value; |
| imm_encoding = (const simd_imm_encoding *) |
| bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB, |
| sizeof(simd_immediates[0]), simd_imm_encoding_cmp); |
| if (imm_encoding == NULL) |
| { |
| DEBUG_TRACE ("exit with false"); |
| return false; |
| } |
| if (encoding != NULL) |
| *encoding = imm_encoding->encoding; |
| DEBUG_TRACE ("exit with true"); |
| return true; |
| } |
| |
| /* If 64-bit immediate IMM is in the format of |
| "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh", |
| where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer |
| of value "abcdefgh". Otherwise return -1. */ |
| int |
| aarch64_shrink_expanded_imm8 (uint64_t imm) |
| { |
| int i, ret; |
| uint32_t byte; |
| |
| ret = 0; |
| for (i = 0; i < 8; i++) |
| { |
| byte = (imm >> (8 * i)) & 0xff; |
| if (byte == 0xff) |
| ret |= 1 << i; |
| else if (byte != 0x00) |
| return -1; |
| } |
| return ret; |
| } |
| |
| /* Utility inline functions for operand_general_constraint_met_p. */ |
| |
| static inline void |
| set_error (aarch64_operand_error *mismatch_detail, |
| enum aarch64_operand_error_kind kind, int idx, |
| const char* error) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| mismatch_detail->kind = kind; |
| mismatch_detail->index = idx; |
| mismatch_detail->error = error; |
| } |
| |
| static inline void |
| set_syntax_error (aarch64_operand_error *mismatch_detail, int idx, |
| const char* error) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error); |
| } |
| |
| static inline void |
| set_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound, |
| const char* error) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error); |
| mismatch_detail->data[0] = lower_bound; |
| mismatch_detail->data[1] = upper_bound; |
| } |
| |
| static inline void |
| set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("immediate value")); |
| } |
| |
| static inline void |
| set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("immediate offset")); |
| } |
| |
| static inline void |
| set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("register number")); |
| } |
| |
| static inline void |
| set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("register element index")); |
| } |
| |
| static inline void |
| set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("shift amount")); |
| } |
| |
| /* Report that the MUL modifier in operand IDX should be in the range |
| [LOWER_BOUND, UPPER_BOUND]. */ |
| static inline void |
| set_multiplier_out_of_range_error (aarch64_operand_error *mismatch_detail, |
| int idx, int lower_bound, int upper_bound) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound, |
| _("multiplier")); |
| } |
| |
| static inline void |
| set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx, |
| int alignment) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL); |
| mismatch_detail->data[0] = alignment; |
| } |
| |
| static inline void |
| set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx, |
| int expected_num) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL); |
| mismatch_detail->data[0] = expected_num; |
| } |
| |
| static inline void |
| set_other_error (aarch64_operand_error *mismatch_detail, int idx, |
| const char* error) |
| { |
| if (mismatch_detail == NULL) |
| return; |
| set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error); |
| } |
| |
| /* General constraint checking based on operand code. |
| |
| Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE |
| as the IDXth operand of opcode OPCODE. Otherwise return 0. |
| |
| This function has to be called after the qualifiers for all operands |
| have been resolved. |
| |
| Mismatching error message is returned in *MISMATCH_DETAIL upon request, |
| i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation |
| of error message during the disassembling where error message is not |
| wanted. We avoid the dynamic construction of strings of error messages |
| here (i.e. in libopcodes), as it is costly and complicated; instead, we |
| use a combination of error code, static string and some integer data to |
| represent an error. */ |
| |
| static int |
| operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx, |
| enum aarch64_opnd type, |
| const aarch64_opcode *opcode, |
| aarch64_operand_error *mismatch_detail) |
| { |
| unsigned num, modifiers, shift; |
| unsigned char size; |
| int64_t imm, min_value, max_value; |
| uint64_t uvalue, mask; |
| const aarch64_opnd_info *opnd = opnds + idx; |
| aarch64_opnd_qualifier_t qualifier = opnd->qualifier; |
| |
| assert (opcode->operands[idx] == opnd->type && opnd->type == type); |
| |
| switch (aarch64_operands[type].op_class) |
| { |
| case AARCH64_OPND_CLASS_INT_REG: |
| /* Check pair reg constraints for cas* instructions. */ |
| if (type == AARCH64_OPND_PAIRREG) |
| { |
| assert (idx == 1 || idx == 3); |
| if (opnds[idx - 1].reg.regno % 2 != 0) |
| { |
| set_syntax_error (mismatch_detail, idx - 1, |
| _("reg pair must start from even reg")); |
| return 0; |
| } |
| if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1) |
| { |
| set_syntax_error (mismatch_detail, idx, |
| _("reg pair must be contiguous")); |
| return 0; |
| } |
| break; |
| } |
| |
| /* <Xt> may be optional in some IC and TLBI instructions. */ |
| if (type == AARCH64_OPND_Rt_SYS) |
| { |
| assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type) |
| == AARCH64_OPND_CLASS_SYSTEM)); |
| if (opnds[1].present |
| && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op)) |
| { |
| set_other_error (mismatch_detail, idx, _("extraneous register")); |
| return 0; |
| } |
| if (!opnds[1].present |
| && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op)) |
| { |
| set_other_error (mismatch_detail, idx, _("missing register")); |
| return 0; |
| } |
| } |
| switch (qualifier) |
| { |
| case AARCH64_OPND_QLF_WSP: |
| case AARCH64_OPND_QLF_SP: |
| if (!aarch64_stack_pointer_p (opnd)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("stack pointer register expected")); |
| return 0; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_SVE_REG: |
| switch (type) |
| { |
| case AARCH64_OPND_SVE_Zm3_INDEX: |
| case AARCH64_OPND_SVE_Zm3_22_INDEX: |
| case AARCH64_OPND_SVE_Zm3_11_INDEX: |
| case AARCH64_OPND_SVE_Zm4_11_INDEX: |
| case AARCH64_OPND_SVE_Zm4_INDEX: |
| size = get_operand_fields_width (get_operand_from_code (type)); |
| shift = get_operand_specific_data (&aarch64_operands[type]); |
| mask = (1 << shift) - 1; |
| if (opnd->reg.regno > mask) |
| { |
| assert (mask == 7 || mask == 15); |
| set_other_error (mismatch_detail, idx, |
| mask == 15 |
| ? _("z0-z15 expected") |
| : _("z0-z7 expected")); |
| return 0; |
| } |
| mask = (1u << (size - shift)) - 1; |
| if (!value_in_range_p (opnd->reglane.index, 0, mask)) |
| { |
| set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, mask); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_Zn_INDEX: |
| size = aarch64_get_qualifier_esize (opnd->qualifier); |
| if (!value_in_range_p (opnd->reglane.index, 0, 64 / size - 1)) |
| { |
| set_elem_idx_out_of_range_error (mismatch_detail, idx, |
| 0, 64 / size - 1); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ZnxN: |
| case AARCH64_OPND_SVE_ZtxN: |
| if (opnd->reglist.num_regs != get_opcode_dependent_value (opcode)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid register list")); |
| return 0; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_PRED_REG: |
| if (opnd->reg.regno >= 8 |
| && get_operand_fields_width (get_operand_from_code (type)) == 3) |
| { |
| set_other_error (mismatch_detail, idx, _("p0-p7 expected")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_COND: |
| if (type == AARCH64_OPND_COND1 |
| && (opnds[idx].cond->value & 0xe) == 0xe) |
| { |
| /* Not allow AL or NV. */ |
| set_syntax_error (mismatch_detail, idx, NULL); |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_ADDRESS: |
| /* Check writeback. */ |
| switch (opcode->iclass) |
| { |
| case ldst_pos: |
| case ldst_unscaled: |
| case ldstnapair_offs: |
| case ldstpair_off: |
| case ldst_unpriv: |
| if (opnd->addr.writeback == 1) |
| { |
| set_syntax_error (mismatch_detail, idx, |
| _("unexpected address writeback")); |
| return 0; |
| } |
| break; |
| case ldst_imm10: |
| if (opnd->addr.writeback == 1 && opnd->addr.preind != 1) |
| { |
| set_syntax_error (mismatch_detail, idx, |
| _("unexpected address writeback")); |
| return 0; |
| } |
| break; |
| case ldst_imm9: |
| case ldstpair_indexed: |
| case asisdlsep: |
| case asisdlsop: |
| if (opnd->addr.writeback == 0) |
| { |
| set_syntax_error (mismatch_detail, idx, |
| _("address writeback expected")); |
| return 0; |
| } |
| break; |
| default: |
| assert (opnd->addr.writeback == 0); |
| break; |
| } |
| switch (type) |
| { |
| case AARCH64_OPND_ADDR_SIMM7: |
| /* Scaled signed 7 bits immediate offset. */ |
| /* Get the size of the data element that is accessed, which may be |
| different from that of the source register size, |
| e.g. in strb/ldrb. */ |
| size = aarch64_get_qualifier_esize (opnd->qualifier); |
| if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, |
| -64 * size, 63 * size); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->addr.offset.imm, size)) |
| { |
| set_unaligned_error (mismatch_detail, idx, size); |
| return 0; |
| } |
| break; |
| case AARCH64_OPND_ADDR_OFFSET: |
| case AARCH64_OPND_ADDR_SIMM9: |
| /* Unscaled signed 9 bits immediate offset. */ |
| if (!value_in_range_p (opnd->addr.offset.imm, -256, 255)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, -256, 255); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_SIMM9_2: |
| /* Unscaled signed 9 bits immediate offset, which has to be negative |
| or unaligned. */ |
| size = aarch64_get_qualifier_esize (qualifier); |
| if ((value_in_range_p (opnd->addr.offset.imm, 0, 255) |
| && !value_aligned_p (opnd->addr.offset.imm, size)) |
| || value_in_range_p (opnd->addr.offset.imm, -256, -1)) |
| return 1; |
| set_other_error (mismatch_detail, idx, |
| _("negative or unaligned offset expected")); |
| return 0; |
| |
| case AARCH64_OPND_ADDR_SIMM10: |
| /* Scaled signed 10 bits immediate offset. */ |
| if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4088)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4088); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->addr.offset.imm, 8)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 8); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_SIMM11: |
| /* Signed 11 bits immediate offset (multiple of 16). */ |
| if (!value_in_range_p (opnd->addr.offset.imm, -1024, 1008)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, -1024, 1008); |
| return 0; |
| } |
| |
| if (!value_aligned_p (opnd->addr.offset.imm, 16)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 16); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_SIMM13: |
| /* Signed 13 bits immediate offset (multiple of 16). */ |
| if (!value_in_range_p (opnd->addr.offset.imm, -4096, 4080)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, -4096, 4080); |
| return 0; |
| } |
| |
| if (!value_aligned_p (opnd->addr.offset.imm, 16)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 16); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SIMD_ADDR_POST: |
| /* AdvSIMD load/store multiple structures, post-index. */ |
| assert (idx == 1); |
| if (opnd->addr.offset.is_reg) |
| { |
| if (value_in_range_p (opnd->addr.offset.regno, 0, 30)) |
| return 1; |
| else |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid register offset")); |
| return 0; |
| } |
| } |
| else |
| { |
| const aarch64_opnd_info *prev = &opnds[idx-1]; |
| unsigned num_bytes; /* total number of bytes transferred. */ |
| /* The opcode dependent area stores the number of elements in |
| each structure to be loaded/stored. */ |
| int is_ld1r = get_opcode_dependent_value (opcode) == 1; |
| if (opcode->operands[0] == AARCH64_OPND_LVt_AL) |
| /* Special handling of loading single structure to all lane. */ |
| num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs) |
| * aarch64_get_qualifier_esize (prev->qualifier); |
| else |
| num_bytes = prev->reglist.num_regs |
| * aarch64_get_qualifier_esize (prev->qualifier) |
| * aarch64_get_qualifier_nelem (prev->qualifier); |
| if ((int) num_bytes != opnd->addr.offset.imm) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid post-increment amount")); |
| return 0; |
| } |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_REGOFF: |
| /* Get the size of the data element that is accessed, which may be |
| different from that of the source register size, |
| e.g. in strb/ldrb. */ |
| size = aarch64_get_qualifier_esize (opnd->qualifier); |
| /* It is either no shift or shift by the binary logarithm of SIZE. */ |
| if (opnd->shifter.amount != 0 |
| && opnd->shifter.amount != (int)get_logsz (size)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift amount")); |
| return 0; |
| } |
| /* Only UXTW, LSL, SXTW and SXTX are the accepted extending |
| operators. */ |
| switch (opnd->shifter.kind) |
| { |
| case AARCH64_MOD_UXTW: |
| case AARCH64_MOD_LSL: |
| case AARCH64_MOD_SXTW: |
| case AARCH64_MOD_SXTX: break; |
| default: |
| set_other_error (mismatch_detail, idx, |
| _("invalid extend/shift operator")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_UIMM12: |
| imm = opnd->addr.offset.imm; |
| /* Get the size of the data element that is accessed, which may be |
| different from that of the source register size, |
| e.g. in strb/ldrb. */ |
| size = aarch64_get_qualifier_esize (qualifier); |
| if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, |
| 0, 4095 * size); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->addr.offset.imm, size)) |
| { |
| set_unaligned_error (mismatch_detail, idx, size); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_ADDR_PCREL14: |
| case AARCH64_OPND_ADDR_PCREL19: |
| case AARCH64_OPND_ADDR_PCREL21: |
| case AARCH64_OPND_ADDR_PCREL26: |
| imm = opnd->imm.value; |
| if (operand_need_shift_by_two (get_operand_from_code (type))) |
| { |
| /* The offset value in a PC-relative branch instruction is alway |
| 4-byte aligned and is encoded without the lowest 2 bits. */ |
| if (!value_aligned_p (imm, 4)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 4); |
| return 0; |
| } |
| /* Right shift by 2 so that we can carry out the following check |
| canonically. */ |
| imm >>= 2; |
| } |
| size = get_operand_fields_width (get_operand_from_code (type)); |
| if (!value_fit_signed_field_p (imm, size)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_RI_S4xVL: |
| case AARCH64_OPND_SVE_ADDR_RI_S4x2xVL: |
| case AARCH64_OPND_SVE_ADDR_RI_S4x3xVL: |
| case AARCH64_OPND_SVE_ADDR_RI_S4x4xVL: |
| min_value = -8; |
| max_value = 7; |
| sve_imm_offset_vl: |
| assert (!opnd->addr.offset.is_reg); |
| assert (opnd->addr.preind); |
| num = 1 + get_operand_specific_data (&aarch64_operands[type]); |
| min_value *= num; |
| max_value *= num; |
| if ((opnd->addr.offset.imm != 0 && !opnd->shifter.operator_present) |
| || (opnd->shifter.operator_present |
| && opnd->shifter.kind != AARCH64_MOD_MUL_VL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid addressing mode")); |
| return 0; |
| } |
| if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, |
| min_value, max_value); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->addr.offset.imm, num)) |
| { |
| set_unaligned_error (mismatch_detail, idx, num); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_RI_S6xVL: |
| min_value = -32; |
| max_value = 31; |
| goto sve_imm_offset_vl; |
| |
| case AARCH64_OPND_SVE_ADDR_RI_S9xVL: |
| min_value = -256; |
| max_value = 255; |
| goto sve_imm_offset_vl; |
| |
| case AARCH64_OPND_SVE_ADDR_RI_U6: |
| case AARCH64_OPND_SVE_ADDR_RI_U6x2: |
| case AARCH64_OPND_SVE_ADDR_RI_U6x4: |
| case AARCH64_OPND_SVE_ADDR_RI_U6x8: |
| min_value = 0; |
| max_value = 63; |
| sve_imm_offset: |
| assert (!opnd->addr.offset.is_reg); |
| assert (opnd->addr.preind); |
| num = 1 << get_operand_specific_data (&aarch64_operands[type]); |
| min_value *= num; |
| max_value *= num; |
| if (opnd->shifter.operator_present |
| || opnd->shifter.amount_present) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid addressing mode")); |
| return 0; |
| } |
| if (!value_in_range_p (opnd->addr.offset.imm, min_value, max_value)) |
| { |
| set_offset_out_of_range_error (mismatch_detail, idx, |
| min_value, max_value); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->addr.offset.imm, num)) |
| { |
| set_unaligned_error (mismatch_detail, idx, num); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_RI_S4x16: |
| case AARCH64_OPND_SVE_ADDR_RI_S4x32: |
| min_value = -8; |
| max_value = 7; |
| goto sve_imm_offset; |
| |
| case AARCH64_OPND_SVE_ADDR_ZX: |
| /* Everything is already ensured by parse_operands or |
| aarch64_ext_sve_addr_rr_lsl (because this is a very specific |
| argument type). */ |
| assert (opnd->addr.offset.is_reg); |
| assert (opnd->addr.preind); |
| assert ((aarch64_operands[type].flags & OPD_F_NO_ZR) == 0); |
| assert (opnd->shifter.kind == AARCH64_MOD_LSL); |
| assert (opnd->shifter.operator_present == 0); |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_R: |
| case AARCH64_OPND_SVE_ADDR_RR: |
| case AARCH64_OPND_SVE_ADDR_RR_LSL1: |
| case AARCH64_OPND_SVE_ADDR_RR_LSL2: |
| case AARCH64_OPND_SVE_ADDR_RR_LSL3: |
| case AARCH64_OPND_SVE_ADDR_RX: |
| case AARCH64_OPND_SVE_ADDR_RX_LSL1: |
| case AARCH64_OPND_SVE_ADDR_RX_LSL2: |
| case AARCH64_OPND_SVE_ADDR_RX_LSL3: |
| case AARCH64_OPND_SVE_ADDR_RZ: |
| case AARCH64_OPND_SVE_ADDR_RZ_LSL1: |
| case AARCH64_OPND_SVE_ADDR_RZ_LSL2: |
| case AARCH64_OPND_SVE_ADDR_RZ_LSL3: |
| modifiers = 1 << AARCH64_MOD_LSL; |
| sve_rr_operand: |
| assert (opnd->addr.offset.is_reg); |
| assert (opnd->addr.preind); |
| if ((aarch64_operands[type].flags & OPD_F_NO_ZR) != 0 |
| && opnd->addr.offset.regno == 31) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("index register xzr is not allowed")); |
| return 0; |
| } |
| if (((1 << opnd->shifter.kind) & modifiers) == 0 |
| || (opnd->shifter.amount |
| != get_operand_specific_data (&aarch64_operands[type]))) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid addressing mode")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW_14: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW_22: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW1_14: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW1_22: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW2_14: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW2_22: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW3_14: |
| case AARCH64_OPND_SVE_ADDR_RZ_XTW3_22: |
| modifiers = (1 << AARCH64_MOD_SXTW) | (1 << AARCH64_MOD_UXTW); |
| goto sve_rr_operand; |
| |
| case AARCH64_OPND_SVE_ADDR_ZI_U5: |
| case AARCH64_OPND_SVE_ADDR_ZI_U5x2: |
| case AARCH64_OPND_SVE_ADDR_ZI_U5x4: |
| case AARCH64_OPND_SVE_ADDR_ZI_U5x8: |
| min_value = 0; |
| max_value = 31; |
| goto sve_imm_offset; |
| |
| case AARCH64_OPND_SVE_ADDR_ZZ_LSL: |
| modifiers = 1 << AARCH64_MOD_LSL; |
| sve_zz_operand: |
| assert (opnd->addr.offset.is_reg); |
| assert (opnd->addr.preind); |
| if (((1 << opnd->shifter.kind) & modifiers) == 0 |
| || opnd->shifter.amount < 0 |
| || opnd->shifter.amount > 3) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid addressing mode")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ADDR_ZZ_SXTW: |
| modifiers = (1 << AARCH64_MOD_SXTW); |
| goto sve_zz_operand; |
| |
| case AARCH64_OPND_SVE_ADDR_ZZ_UXTW: |
| modifiers = 1 << AARCH64_MOD_UXTW; |
| goto sve_zz_operand; |
| |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_SIMD_REGLIST: |
| if (type == AARCH64_OPND_LEt) |
| { |
| /* Get the upper bound for the element index. */ |
| num = 16 / aarch64_get_qualifier_esize (qualifier) - 1; |
| if (!value_in_range_p (opnd->reglist.index, 0, num)) |
| { |
| set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num); |
| return 0; |
| } |
| } |
| /* The opcode dependent area stores the number of elements in |
| each structure to be loaded/stored. */ |
| num = get_opcode_dependent_value (opcode); |
| switch (type) |
| { |
| case AARCH64_OPND_LVt: |
| assert (num >= 1 && num <= 4); |
| /* Unless LD1/ST1, the number of registers should be equal to that |
| of the structure elements. */ |
| if (num != 1 && opnd->reglist.num_regs != num) |
| { |
| set_reg_list_error (mismatch_detail, idx, num); |
| return 0; |
| } |
| break; |
| case AARCH64_OPND_LVt_AL: |
| case AARCH64_OPND_LEt: |
| assert (num >= 1 && num <= 4); |
| /* The number of registers should be equal to that of the structure |
| elements. */ |
| if (opnd->reglist.num_regs != num) |
| { |
| set_reg_list_error (mismatch_detail, idx, num); |
| return 0; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_IMMEDIATE: |
| /* Constraint check on immediate operand. */ |
| imm = opnd->imm.value; |
| /* E.g. imm_0_31 constrains value to be 0..31. */ |
| if (qualifier_value_in_range_constraint_p (qualifier) |
| && !value_in_range_p (imm, get_lower_bound (qualifier), |
| get_upper_bound (qualifier))) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, |
| get_lower_bound (qualifier), |
| get_upper_bound (qualifier)); |
| return 0; |
| } |
| |
| switch (type) |
| { |
| case AARCH64_OPND_AIMM: |
| if (opnd->shifter.kind != AARCH64_MOD_LSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift amount must be 0 or 12")); |
| return 0; |
| } |
| if (!value_fit_unsigned_field_p (opnd->imm.value, 12)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_HALF: |
| assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd); |
| if (opnd->shifter.kind != AARCH64_MOD_LSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| size = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| if (!value_aligned_p (opnd->shifter.amount, 16)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift amount must be a multiple of 16")); |
| return 0; |
| } |
| if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16)) |
| { |
| set_sft_amount_out_of_range_error (mismatch_detail, idx, |
| 0, size * 8 - 16); |
| return 0; |
| } |
| if (opnd->imm.value < 0) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("negative immediate value not allowed")); |
| return 0; |
| } |
| if (!value_fit_unsigned_field_p (opnd->imm.value, 16)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_IMM_MOV: |
| { |
| int esize = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| imm = opnd->imm.value; |
| assert (idx == 1); |
| switch (opcode->op) |
| { |
| case OP_MOV_IMM_WIDEN: |
| imm = ~imm; |
| /* Fall through. */ |
| case OP_MOV_IMM_WIDE: |
| if (!aarch64_wide_constant_p (imm, esize == 4, NULL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| break; |
| case OP_MOV_IMM_LOG: |
| if (!aarch64_logical_immediate_p (imm, esize, NULL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| break; |
| default: |
| assert (0); |
| return 0; |
| } |
| } |
| break; |
| |
| case AARCH64_OPND_NZCV: |
| case AARCH64_OPND_CCMP_IMM: |
| case AARCH64_OPND_EXCEPTION: |
| case AARCH64_OPND_UNDEFINED: |
| case AARCH64_OPND_TME_UIMM16: |
| case AARCH64_OPND_UIMM4: |
| case AARCH64_OPND_UIMM4_ADDG: |
| case AARCH64_OPND_UIMM7: |
| case AARCH64_OPND_UIMM3_OP1: |
| case AARCH64_OPND_UIMM3_OP2: |
| case AARCH64_OPND_SVE_UIMM3: |
| case AARCH64_OPND_SVE_UIMM7: |
| case AARCH64_OPND_SVE_UIMM8: |
| case AARCH64_OPND_SVE_UIMM8_53: |
| size = get_operand_fields_width (get_operand_from_code (type)); |
| assert (size < 32); |
| if (!value_fit_unsigned_field_p (opnd->imm.value, size)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 0, |
| (1u << size) - 1); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_UIMM10: |
| /* Scaled unsigned 10 bits immediate offset. */ |
| if (!value_in_range_p (opnd->imm.value, 0, 1008)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 0, 1008); |
| return 0; |
| } |
| |
| if (!value_aligned_p (opnd->imm.value, 16)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 16); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SIMM5: |
| case AARCH64_OPND_SVE_SIMM5: |
| case AARCH64_OPND_SVE_SIMM5B: |
| case AARCH64_OPND_SVE_SIMM6: |
| case AARCH64_OPND_SVE_SIMM8: |
| size = get_operand_fields_width (get_operand_from_code (type)); |
| assert (size < 32); |
| if (!value_fit_signed_field_p (opnd->imm.value, size)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, |
| -(1 << (size - 1)), |
| (1 << (size - 1)) - 1); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_WIDTH: |
| assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM |
| && opnds[0].type == AARCH64_OPND_Rd); |
| size = get_upper_bound (qualifier); |
| if (opnd->imm.value + opnds[idx-1].imm.value > size) |
| /* lsb+width <= reg.size */ |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 1, |
| size - opnds[idx-1].imm.value); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_LIMM: |
| case AARCH64_OPND_SVE_LIMM: |
| { |
| int esize = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| uint64_t uimm = opnd->imm.value; |
| if (opcode->op == OP_BIC) |
| uimm = ~uimm; |
| if (!aarch64_logical_immediate_p (uimm, esize, NULL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| } |
| break; |
| |
| case AARCH64_OPND_IMM0: |
| case AARCH64_OPND_FPIMM0: |
| if (opnd->imm.value != 0) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate zero expected")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_IMM_ROT1: |
| case AARCH64_OPND_IMM_ROT2: |
| case AARCH64_OPND_SVE_IMM_ROT2: |
| if (opnd->imm.value != 0 |
| && opnd->imm.value != 90 |
| && opnd->imm.value != 180 |
| && opnd->imm.value != 270) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("rotate expected to be 0, 90, 180 or 270")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_IMM_ROT3: |
| case AARCH64_OPND_SVE_IMM_ROT1: |
| case AARCH64_OPND_SVE_IMM_ROT3: |
| if (opnd->imm.value != 90 && opnd->imm.value != 270) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("rotate expected to be 90 or 270")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SHLL_IMM: |
| assert (idx == 2); |
| size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier); |
| if (opnd->imm.value != size) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift amount")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_IMM_VLSL: |
| size = aarch64_get_qualifier_esize (qualifier); |
| if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 0, |
| size * 8 - 1); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_IMM_VLSR: |
| size = aarch64_get_qualifier_esize (qualifier); |
| if (!value_in_range_p (opnd->imm.value, 1, size * 8)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SIMD_IMM: |
| case AARCH64_OPND_SIMD_IMM_SFT: |
| /* Qualifier check. */ |
| switch (qualifier) |
| { |
| case AARCH64_OPND_QLF_LSL: |
| if (opnd->shifter.kind != AARCH64_MOD_LSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| break; |
| case AARCH64_OPND_QLF_MSL: |
| if (opnd->shifter.kind != AARCH64_MOD_MSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| break; |
| case AARCH64_OPND_QLF_NIL: |
| if (opnd->shifter.kind != AARCH64_MOD_NONE) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift is not permitted")); |
| return 0; |
| } |
| break; |
| default: |
| assert (0); |
| return 0; |
| } |
| /* Is the immediate valid? */ |
| assert (idx == 1); |
| if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8) |
| { |
| /* uimm8 or simm8 */ |
| if (!value_in_range_p (opnd->imm.value, -128, 255)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, -128, 255); |
| return 0; |
| } |
| } |
| else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0) |
| { |
| /* uimm64 is not |
| 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee |
| ffffffffgggggggghhhhhhhh'. */ |
| set_other_error (mismatch_detail, idx, |
| _("invalid value for immediate")); |
| return 0; |
| } |
| /* Is the shift amount valid? */ |
| switch (opnd->shifter.kind) |
| { |
| case AARCH64_MOD_LSL: |
| size = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8)) |
| { |
| set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, |
| (size - 1) * 8); |
| return 0; |
| } |
| if (!value_aligned_p (opnd->shifter.amount, 8)) |
| { |
| set_unaligned_error (mismatch_detail, idx, 8); |
| return 0; |
| } |
| break; |
| case AARCH64_MOD_MSL: |
| /* Only 8 and 16 are valid shift amount. */ |
| if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift amount must be 0 or 16")); |
| return 0; |
| } |
| break; |
| default: |
| if (opnd->shifter.kind != AARCH64_MOD_NONE) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_FPIMM: |
| case AARCH64_OPND_SIMD_FPIMM: |
| case AARCH64_OPND_SVE_FPIMM8: |
| if (opnd->imm.is_fp == 0) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("floating-point immediate expected")); |
| return 0; |
| } |
| /* The value is expected to be an 8-bit floating-point constant with |
| sign, 3-bit exponent and normalized 4 bits of precision, encoded |
| in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the |
| instruction). */ |
| if (!value_in_range_p (opnd->imm.value, 0, 255)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| if (opnd->shifter.kind != AARCH64_MOD_NONE) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid shift operator")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_AIMM: |
| min_value = 0; |
| sve_aimm: |
| assert (opnd->shifter.kind == AARCH64_MOD_LSL); |
| size = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| mask = ~((uint64_t) -1 << (size * 4) << (size * 4)); |
| uvalue = opnd->imm.value; |
| shift = opnd->shifter.amount; |
| if (size == 1) |
| { |
| if (shift != 0) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("no shift amount allowed for" |
| " 8-bit constants")); |
| return 0; |
| } |
| } |
| else |
| { |
| if (shift != 0 && shift != 8) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift amount must be 0 or 8")); |
| return 0; |
| } |
| if (shift == 0 && (uvalue & 0xff) == 0) |
| { |
| shift = 8; |
| uvalue = (int64_t) uvalue / 256; |
| } |
| } |
| mask >>= shift; |
| if ((uvalue & mask) != uvalue && (uvalue | ~mask) != uvalue) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate too big for element size")); |
| return 0; |
| } |
| uvalue = (uvalue - min_value) & mask; |
| if (uvalue > 0xff) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid arithmetic immediate")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_ASIMM: |
| min_value = -128; |
| goto sve_aimm; |
| |
| case AARCH64_OPND_SVE_I1_HALF_ONE: |
| assert (opnd->imm.is_fp); |
| if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x3f800000) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("floating-point value must be 0.5 or 1.0")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_I1_HALF_TWO: |
| assert (opnd->imm.is_fp); |
| if (opnd->imm.value != 0x3f000000 && opnd->imm.value != 0x40000000) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("floating-point value must be 0.5 or 2.0")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_I1_ZERO_ONE: |
| assert (opnd->imm.is_fp); |
| if (opnd->imm.value != 0 && opnd->imm.value != 0x3f800000) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("floating-point value must be 0.0 or 1.0")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_INV_LIMM: |
| { |
| int esize = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| uint64_t uimm = ~opnd->imm.value; |
| if (!aarch64_logical_immediate_p (uimm, esize, NULL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_LIMM_MOV: |
| { |
| int esize = aarch64_get_qualifier_esize (opnds[0].qualifier); |
| uint64_t uimm = opnd->imm.value; |
| if (!aarch64_logical_immediate_p (uimm, esize, NULL)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("immediate out of range")); |
| return 0; |
| } |
| if (!aarch64_sve_dupm_mov_immediate_p (uimm, esize)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("invalid replicated MOV immediate")); |
| return 0; |
| } |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_PATTERN_SCALED: |
| assert (opnd->shifter.kind == AARCH64_MOD_MUL); |
| if (!value_in_range_p (opnd->shifter.amount, 1, 16)) |
| { |
| set_multiplier_out_of_range_error (mismatch_detail, idx, 1, 16); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_SHLIMM_PRED: |
| case AARCH64_OPND_SVE_SHLIMM_UNPRED: |
| case AARCH64_OPND_SVE_SHLIMM_UNPRED_22: |
| size = aarch64_get_qualifier_esize (opnds[idx - 1].qualifier); |
| if (!value_in_range_p (opnd->imm.value, 0, 8 * size - 1)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, |
| 0, 8 * size - 1); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_SVE_SHRIMM_PRED: |
| case AARCH64_OPND_SVE_SHRIMM_UNPRED: |
| case AARCH64_OPND_SVE_SHRIMM_UNPRED_22: |
| num = (type == AARCH64_OPND_SVE_SHRIMM_UNPRED_22) ? 2 : 1; |
| size = aarch64_get_qualifier_esize (opnds[idx - num].qualifier); |
| if (!value_in_range_p (opnd->imm.value, 1, 8 * size)) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 1, 8*size); |
| return 0; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_SYSTEM: |
| switch (type) |
| { |
| case AARCH64_OPND_PSTATEFIELD: |
| assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4); |
| /* MSR UAO, #uimm4 |
| MSR PAN, #uimm4 |
| MSR SSBS,#uimm4 |
| The immediate must be #0 or #1. */ |
| if ((opnd->pstatefield == 0x03 /* UAO. */ |
| || opnd->pstatefield == 0x04 /* PAN. */ |
| || opnd->pstatefield == 0x19 /* SSBS. */ |
| || opnd->pstatefield == 0x1a) /* DIT. */ |
| && opnds[1].imm.value > 1) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 0, 1); |
| return 0; |
| } |
| /* MSR SPSel, #uimm4 |
| Uses uimm4 as a control value to select the stack pointer: if |
| bit 0 is set it selects the current exception level's stack |
| pointer, if bit 0 is clear it selects shared EL0 stack pointer. |
| Bits 1 to 3 of uimm4 are reserved and should be zero. */ |
| if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1) |
| { |
| set_imm_out_of_range_error (mismatch_detail, idx, 0, 1); |
| return 0; |
| } |
| break; |
| default: |
| break; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_SIMD_ELEMENT: |
| /* Get the upper bound for the element index. */ |
| if (opcode->op == OP_FCMLA_ELEM) |
| /* FCMLA index range depends on the vector size of other operands |
| and is halfed because complex numbers take two elements. */ |
| num = aarch64_get_qualifier_nelem (opnds[0].qualifier) |
| * aarch64_get_qualifier_esize (opnds[0].qualifier) / 2; |
| else |
| num = 16; |
| num = num / aarch64_get_qualifier_esize (qualifier) - 1; |
| assert (aarch64_get_qualifier_nelem (qualifier) == 1); |
| |
| /* Index out-of-range. */ |
| if (!value_in_range_p (opnd->reglane.index, 0, num)) |
| { |
| set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num); |
| return 0; |
| } |
| /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>]. |
| <Vm> Is the vector register (V0-V31) or (V0-V15), whose |
| number is encoded in "size:M:Rm": |
| size <Vm> |
| 00 RESERVED |
| 01 0:Rm |
| 10 M:Rm |
| 11 RESERVED */ |
| if (type == AARCH64_OPND_Em16 && qualifier == AARCH64_OPND_QLF_S_H |
| && !value_in_range_p (opnd->reglane.regno, 0, 15)) |
| { |
| set_regno_out_of_range_error (mismatch_detail, idx, 0, 15); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_CLASS_MODIFIED_REG: |
| assert (idx == 1 || idx == 2); |
| switch (type) |
| { |
| case AARCH64_OPND_Rm_EXT: |
| if (!aarch64_extend_operator_p (opnd->shifter.kind) |
| && opnd->shifter.kind != AARCH64_MOD_LSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("extend operator expected")); |
| return 0; |
| } |
| /* It is not optional unless at least one of "Rd" or "Rn" is '11111' |
| (i.e. SP), in which case it defaults to LSL. The LSL alias is |
| only valid when "Rd" or "Rn" is '11111', and is preferred in that |
| case. */ |
| if (!aarch64_stack_pointer_p (opnds + 0) |
| && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1))) |
| { |
| if (!opnd->shifter.operator_present) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("missing extend operator")); |
| return 0; |
| } |
| else if (opnd->shifter.kind == AARCH64_MOD_LSL) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("'LSL' operator not allowed")); |
| return 0; |
| } |
| } |
| assert (opnd->shifter.operator_present /* Default to LSL. */ |
| || opnd->shifter.kind == AARCH64_MOD_LSL); |
| if (!value_in_range_p (opnd->shifter.amount, 0, 4)) |
| { |
| set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4); |
| return 0; |
| } |
| /* In the 64-bit form, the final register operand is written as Wm |
| for all but the (possibly omitted) UXTX/LSL and SXTX |
| operators. |
| N.B. GAS allows X register to be used with any operator as a |
| programming convenience. */ |
| if (qualifier == AARCH64_OPND_QLF_X |
| && opnd->shifter.kind != AARCH64_MOD_LSL |
| && opnd->shifter.kind != AARCH64_MOD_UXTX |
| && opnd->shifter.kind != AARCH64_MOD_SXTX) |
| { |
| set_other_error (mismatch_detail, idx, _("W register expected")); |
| return 0; |
| } |
| break; |
| |
| case AARCH64_OPND_Rm_SFT: |
| /* ROR is not available to the shifted register operand in |
| arithmetic instructions. */ |
| if (!aarch64_shift_operator_p (opnd->shifter.kind)) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("shift operator expected")); |
| return 0; |
| } |
| if (opnd->shifter.kind == AARCH64_MOD_ROR |
| && opcode->iclass != log_shift) |
| { |
| set_other_error (mismatch_detail, idx, |
| _("'ROR' operator not allowed")); |
| return 0; |
| } |
| num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63; |
| if (!value_in_range_p (opnd->shifter.amount, 0, num)) |
| { |
| set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num); |
| return 0; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| |
| return 1; |
| } |
| |
| /* Main entrypoint for the operand constraint checking. |
| |
| Return 1 if operands of *INST meet the constraint applied by the operand |
| codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is |
| not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when |
| adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set |
| with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL |
| error kind when it is notified that an instruction does not pass the check). |
| |
| Un-determined operand qualifiers may get established during the process. */ |
| |
| int |
| aarch64_match_operands_constraint (aarch64_inst *inst, |
| aarch64_operand_error *mismatch_detail) |
| { |
| int i; |
| |
| DEBUG_TRACE ("enter"); |
| |
| /* Check for cases where a source register needs to be the same as the |
| destination register. Do this before matching qualifiers since if |
| an instruction has both invalid tying and invalid qualifiers, |
| the error about qualifiers would suggest several alternative |
| instructions that also have invalid tying. */ |
| i = inst->opcode->tied_operand; |
| if (i > 0 && (inst->operands[0].reg.regno != inst->operands[i].reg.regno)) |
| { |
| if (mismatch_detail) |
| { |
| mismatch_detail->kind = AARCH64_OPDE_UNTIED_OPERAND; |
| mismatch_detail->index = i; |
| mismatch_detail->error = NULL; |
| } |
| return 0; |
| } |
| |
| /* Match operands' qualifier. |
| *INST has already had qualifier establish for some, if not all, of |
| its operands; we need to find out whether these established |
| qualifiers match one of the qualifier sequence in |
| INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand |
| with the corresponding qualifier in such a sequence. |
| Only basic operand constraint checking is done here; the more thorough |
| constraint checking will carried out by operand_general_constraint_met_p, |
| which has be to called after this in order to get all of the operands' |
| qualifiers established. */ |
| if (match_operands_qualifier (inst, true /* update_p */) == 0) |
| { |
| DEBUG_TRACE ("FAIL on operand qualifier matching"); |
| if (mismatch_detail) |
| { |
| /* Return an error type to indicate that it is the qualifier |
| matching failure; we don't care about which operand as there |
| are enough information in the opcode table to reproduce it. */ |
| mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT; |
| mismatch_detail->index = -1; |
| mismatch_detail->error = NULL; |
| } |
| return 0; |
| } |
| |
| /* Match operands' constraint. */ |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) |
| { |
| enum aarch64_opnd type = inst->opcode->operands[i]; |
| if (type == AARCH64_OPND_NIL) |
| break; |
| if (inst->operands[i].skip) |
| { |
| DEBUG_TRACE ("skip the incomplete operand %d", i); |
| continue; |
| } |
| if (operand_general_constraint_met_p (inst->operands, i, type, |
| inst->opcode, mismatch_detail) == 0) |
| { |
| DEBUG_TRACE ("FAIL on operand %d", i); |
| return 0; |
| } |
| } |
| |
| DEBUG_TRACE ("PASS"); |
| |
| return 1; |
| } |
| |
| /* Replace INST->OPCODE with OPCODE and return the replaced OPCODE. |
| Also updates the TYPE of each INST->OPERANDS with the corresponding |
| value of OPCODE->OPERANDS. |
| |
| Note that some operand qualifiers may need to be manually cleared by |
| the caller before it further calls the aarch64_opcode_encode; by |
| doing this, it helps the qualifier matching facilities work |
| properly. */ |
| |
| const aarch64_opcode* |
| aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode) |
| { |
| int i; |
| const aarch64_opcode *old = inst->opcode; |
| |
| inst->opcode = opcode; |
| |
| /* Update the operand types. */ |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) |
| { |
| inst->operands[i].type = opcode->operands[i]; |
| if (opcode->operands[i] == AARCH64_OPND_NIL) |
| break; |
| } |
| |
| DEBUG_TRACE ("replace %s with %s", old->name, opcode->name); |
| |
| return old; |
| } |
| |
| int |
| aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand) |
| { |
| int i; |
| for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i) |
| if (operands[i] == operand) |
| return i; |
| else if (operands[i] == AARCH64_OPND_NIL) |
| break; |
| return -1; |
| } |
| |
| /* R0...R30, followed by FOR31. */ |
| #define BANK(R, FOR31) \ |
| { R (0), R (1), R (2), R (3), R (4), R (5), R (6), R (7), \ |
| R (8), R (9), R (10), R (11), R (12), R (13), R (14), R (15), \ |
| R (16), R (17), R (18), R (19), R (20), R (21), R (22), R (23), \ |
| R (24), R (25), R (26), R (27), R (28), R (29), R (30), FOR31 } |
| /* [0][0] 32-bit integer regs with sp Wn |
| [0][1] 64-bit integer regs with sp Xn sf=1 |
| [1][0] 32-bit integer regs with #0 Wn |
| [1][1] 64-bit integer regs with #0 Xn sf=1 */ |
| static const char *int_reg[2][2][32] = { |
| #define R32(X) "w" #X |
| #define R64(X) "x" #X |
| { BANK (R32, "wsp"), BANK (R64, "sp") }, |
| { BANK (R32, "wzr"), BANK (R64, "xzr") } |
| #undef R64 |
| #undef R32 |
| }; |
| |
| /* Names of the SVE vector registers, first with .S suffixes, |
| then with .D suffixes. */ |
| |
| static const char *sve_reg[2][32] = { |
| #define ZS(X) "z" #X ".s" |
| #define ZD(X) "z" #X ".d" |
| BANK (ZS, ZS (31)), BANK (ZD, ZD (31)) |
| #undef ZD |
| #undef ZS |
| }; |
| #undef BANK |
| |
| /* Return the integer register name. |
| if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */ |
| |
| static inline const char * |
| get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p) |
| { |
| const int has_zr = sp_reg_p ? 0 : 1; |
| const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1; |
| return int_reg[has_zr][is_64][regno]; |
| } |
| |
| /* Like get_int_reg_name, but IS_64 is always 1. */ |
| |
| static inline const char * |
| get_64bit_int_reg_name (int regno, int sp_reg_p) |
| { |
| const int has_zr = sp_reg_p ? 0 : 1; |
| return int_reg[has_zr][1][regno]; |
| } |
| |
| /* Get the name of the integer offset register in OPND, using the shift type |
| to decide whether it's a word or doubleword. */ |
| |
| static inline const char * |
| get_offset_int_reg_name (const aarch64_opnd_info *opnd) |
| { |
| switch (opnd->shifter.kind) |
| { |
| case AARCH64_MOD_UXTW: |
| case AARCH64_MOD_SXTW: |
| return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_W, 0); |
| |
| case AARCH64_MOD_LSL: |
| case AARCH64_MOD_SXTX: |
| return get_int_reg_name (opnd->addr.offset.regno, AARCH64_OPND_QLF_X, 0); |
| |
| default: |
| abort (); |
| } |
| } |
| |
| /* Get the name of the SVE vector offset register in OPND, using the operand |
| qualifier to decide whether the suffix should be .S or .D. */ |
| |
| static inline const char * |
| get_addr_sve_reg_name (int regno, aarch64_opnd_qualifier_t qualifier) |
| { |
| assert (qualifier == AARCH64_OPND_QLF_S_S |
| || qualifier == AARCH64_OPND_QLF_S_D); |
| return sve_reg[qualifier == AARCH64_OPND_QLF_S_D][regno]; |
| } |
| |
| /* Types for expanding an encoded 8-bit value to a floating-point value. */ |
| |
| typedef union |
| { |
| uint64_t i; |
| double d; |
| } double_conv_t; |
| |
| typedef union |
| { |
| uint32_t i; |
| float f; |
| } single_conv_t; |
| |
| typedef union |
| { |
| uint32_t i; |
| float f; |
| } half_conv_t; |
| |
| /* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and |
| normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8 |
| (depending on the type of the instruction). IMM8 will be expanded to a |
| single-precision floating-point value (SIZE == 4) or a double-precision |
| floating-point value (SIZE == 8). A half-precision floating-point value |
| (SIZE == 2) is expanded to a single-precision floating-point value. The |
| expanded value is returned. */ |
| |
| static uint64_t |
| expand_fp_imm (int size, uint32_t imm8) |
| { |
| uint64_t imm = 0; |
| uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4; |
| |
| imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */ |
| imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */ |
| imm8_6 = imm8_6_0 >> 6; /* imm8<6> */ |
| imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2) |
| | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */ |
| if (size == 8) |
| { |
| imm = (imm8_7 << (63-32)) /* imm8<7> */ |
| | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */ |
| | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32)) |
| | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */ |
| | (imm8_6_0 |