| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #include "sim-main.h" |
| #include "v850_sim.h" |
| #include "simops.h" |
| |
| #include <sys/types.h> |
| |
| #ifdef HAVE_UTIME_H |
| #include <utime.h> |
| #endif |
| #include <time.h> |
| #ifdef HAVE_UNISTD_H |
| #include <unistd.h> |
| #endif |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "targ-vals.h" |
| |
| #include "libiberty.h" |
| |
| #include <errno.h> |
| #if !defined(__GO32__) && !defined(_WIN32) |
| #include <sys/stat.h> |
| #include <sys/times.h> |
| #include <sys/time.h> |
| #endif |
| |
| /* This is an array of the bit positions of registers r20 .. r31 in |
| that order in a prepare/dispose instruction. */ |
| int type1_regs[12] = { 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 0, 21 }; |
| /* This is an array of the bit positions of registers r16 .. r31 in |
| that order in a push/pop instruction. */ |
| int type2_regs[16] = { 3, 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; |
| /* This is an array of the bit positions of registers r1 .. r15 in |
| that order in a push/pop instruction. */ |
| int type3_regs[15] = { 2, 1, 0, 27, 26, 25, 24, 31, 30, 29, 28, 23, 22, 20, 21}; |
| |
| #ifdef DEBUG |
| #ifndef SIZE_INSTRUCTION |
| #define SIZE_INSTRUCTION 18 |
| #endif |
| |
| #ifndef SIZE_VALUES |
| #define SIZE_VALUES 11 |
| #endif |
| |
| |
| unsigned32 trace_values[3]; |
| int trace_num_values; |
| unsigned32 trace_pc; |
| const char * trace_name; |
| int trace_module; |
| |
| |
| void |
| trace_input (char *name, enum op_types type, int size) |
| { |
| if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) |
| return; |
| |
| trace_pc = PC; |
| trace_name = name; |
| trace_module = TRACE_ALU_IDX; |
| |
| switch (type) |
| { |
| default: |
| case OP_UNKNOWN: |
| case OP_NONE: |
| case OP_TRAP: |
| trace_num_values = 0; |
| break; |
| |
| case OP_REG: |
| case OP_REG_REG_MOVE: |
| trace_values[0] = State.regs[OP[0]]; |
| trace_num_values = 1; |
| break; |
| |
| case OP_BIT_CHANGE: |
| case OP_REG_REG: |
| case OP_REG_REG_CMP: |
| trace_values[0] = State.regs[OP[1]]; |
| trace_values[1] = State.regs[OP[0]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_IMM_REG: |
| case OP_IMM_REG_CMP: |
| trace_values[0] = SEXT5 (OP[0]); |
| trace_values[1] = OP[1]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_IMM_REG_MOVE: |
| trace_values[0] = SEXT5 (OP[0]); |
| trace_num_values = 1; |
| break; |
| |
| case OP_COND_BR: |
| trace_values[0] = State.pc; |
| trace_values[1] = SEXT9 (OP[0]); |
| trace_values[2] = PSW; |
| trace_num_values = 3; |
| break; |
| |
| case OP_LOAD16: |
| trace_values[0] = OP[1] * size; |
| trace_values[1] = State.regs[30]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_STORE16: |
| trace_values[0] = State.regs[OP[0]]; |
| trace_values[1] = OP[1] * size; |
| trace_values[2] = State.regs[30]; |
| trace_num_values = 3; |
| break; |
| |
| case OP_LOAD32: |
| trace_values[0] = EXTEND16 (OP[2]); |
| trace_values[1] = State.regs[OP[0]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_STORE32: |
| trace_values[0] = State.regs[OP[1]]; |
| trace_values[1] = EXTEND16 (OP[2]); |
| trace_values[2] = State.regs[OP[0]]; |
| trace_num_values = 3; |
| break; |
| |
| case OP_JUMP: |
| trace_values[0] = SEXT22 (OP[0]); |
| trace_values[1] = State.pc; |
| trace_num_values = 2; |
| break; |
| |
| case OP_IMM_REG_REG: |
| trace_values[0] = EXTEND16 (OP[0]) << size; |
| trace_values[1] = State.regs[OP[1]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_IMM16_REG_REG: |
| trace_values[0] = EXTEND16 (OP[2]) << size; |
| trace_values[1] = State.regs[OP[1]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_UIMM_REG_REG: |
| trace_values[0] = (OP[0] & 0xffff) << size; |
| trace_values[1] = State.regs[OP[1]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_UIMM16_REG_REG: |
| trace_values[0] = (OP[2]) << size; |
| trace_values[1] = State.regs[OP[1]]; |
| trace_num_values = 2; |
| break; |
| |
| case OP_BIT: |
| trace_num_values = 0; |
| break; |
| |
| case OP_EX1: |
| trace_values[0] = PSW; |
| trace_num_values = 1; |
| break; |
| |
| case OP_EX2: |
| trace_num_values = 0; |
| break; |
| |
| case OP_LDSR: |
| trace_values[0] = State.regs[OP[0]]; |
| trace_num_values = 1; |
| break; |
| |
| case OP_STSR: |
| trace_values[0] = State.sregs[OP[1]]; |
| trace_num_values = 1; |
| } |
| |
| } |
| |
| void |
| trace_result (int has_result, unsigned32 result) |
| { |
| char buf[1000]; |
| char *chp; |
| |
| buf[0] = '\0'; |
| chp = buf; |
| |
| /* write out the values saved during the trace_input call */ |
| { |
| int i; |
| for (i = 0; i < trace_num_values; i++) |
| { |
| sprintf (chp, "%*s0x%.8lx", SIZE_VALUES - 10, "", |
| (long) trace_values[i]); |
| chp = strchr (chp, '\0'); |
| } |
| while (i++ < 3) |
| { |
| sprintf (chp, "%*s", SIZE_VALUES, ""); |
| chp = strchr (chp, '\0'); |
| } |
| } |
| |
| /* append any result to the end of the buffer */ |
| if (has_result) |
| sprintf (chp, " :: 0x%.8lx", (unsigned long) result); |
| |
| trace_generic (simulator, STATE_CPU (simulator, 0), trace_module, "%s", buf); |
| } |
| |
| void |
| trace_output (enum op_types result) |
| { |
| if (!TRACE_ALU_P (STATE_CPU (simulator, 0))) |
| return; |
| |
| switch (result) |
| { |
| default: |
| case OP_UNKNOWN: |
| case OP_NONE: |
| case OP_TRAP: |
| case OP_REG: |
| case OP_REG_REG_CMP: |
| case OP_IMM_REG_CMP: |
| case OP_COND_BR: |
| case OP_STORE16: |
| case OP_STORE32: |
| case OP_BIT: |
| case OP_EX2: |
| trace_result (0, 0); |
| break; |
| |
| case OP_LOAD16: |
| case OP_STSR: |
| trace_result (1, State.regs[OP[0]]); |
| break; |
| |
| case OP_REG_REG: |
| case OP_REG_REG_MOVE: |
| case OP_IMM_REG: |
| case OP_IMM_REG_MOVE: |
| case OP_LOAD32: |
| case OP_EX1: |
| trace_result (1, State.regs[OP[1]]); |
| break; |
| |
| case OP_IMM_REG_REG: |
| case OP_UIMM_REG_REG: |
| case OP_IMM16_REG_REG: |
| case OP_UIMM16_REG_REG: |
| trace_result (1, State.regs[OP[1]]); |
| break; |
| |
| case OP_JUMP: |
| if (OP[1] != 0) |
| trace_result (1, State.regs[OP[1]]); |
| else |
| trace_result (0, 0); |
| break; |
| |
| case OP_LDSR: |
| trace_result (1, State.sregs[OP[1]]); |
| break; |
| } |
| } |
| #endif |
| |
| |
| /* Returns 1 if the specific condition is met, returns 0 otherwise. */ |
| int |
| condition_met (unsigned code) |
| { |
| unsigned int psw = PSW; |
| |
| switch (code & 0xf) |
| { |
| case 0x0: return ((psw & PSW_OV) != 0); |
| case 0x1: return ((psw & PSW_CY) != 0); |
| case 0x2: return ((psw & PSW_Z) != 0); |
| case 0x3: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) != 0); |
| case 0x4: return ((psw & PSW_S) != 0); |
| /*case 0x5: return 1;*/ |
| case 0x6: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) != 0); |
| case 0x7: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) != 0); |
| case 0x8: return ((psw & PSW_OV) == 0); |
| case 0x9: return ((psw & PSW_CY) == 0); |
| case 0xa: return ((psw & PSW_Z) == 0); |
| case 0xb: return ((((psw & PSW_CY) != 0) | ((psw & PSW_Z) != 0)) == 0); |
| case 0xc: return ((psw & PSW_S) == 0); |
| case 0xd: return ((psw & PSW_SAT) != 0); |
| case 0xe: return ((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) == 0); |
| case 0xf: return (((((psw & PSW_S) != 0) ^ ((psw & PSW_OV) != 0)) || ((psw & PSW_Z) != 0)) == 0); |
| } |
| |
| return 1; |
| } |
| |
| unsigned long |
| Add32 (unsigned long a1, unsigned long a2, int * carry) |
| { |
| unsigned long result = (a1 + a2); |
| |
| * carry = (result < a1); |
| |
| return result; |
| } |
| |
| static void |
| Multiply64 (int sign, unsigned long op0) |
| { |
| unsigned long op1; |
| unsigned long lo; |
| unsigned long mid1; |
| unsigned long mid2; |
| unsigned long hi; |
| unsigned long RdLo; |
| unsigned long RdHi; |
| int carry; |
| |
| op1 = State.regs[ OP[1] ]; |
| |
| if (sign) |
| { |
| /* Compute sign of result and adjust operands if necessary. */ |
| |
| sign = (op0 ^ op1) & 0x80000000; |
| |
| if (((signed long) op0) < 0) |
| op0 = - op0; |
| |
| if (((signed long) op1) < 0) |
| op1 = - op1; |
| } |
| |
| /* We can split the 32x32 into four 16x16 operations. This ensures |
| that we do not lose precision on 32bit only hosts: */ |
| lo = ( (op0 & 0xFFFF) * (op1 & 0xFFFF)); |
| mid1 = ( (op0 & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); |
| mid2 = (((op0 >> 16) & 0xFFFF) * (op1 & 0xFFFF)); |
| hi = (((op0 >> 16) & 0xFFFF) * ((op1 >> 16) & 0xFFFF)); |
| |
| /* We now need to add all of these results together, taking care |
| to propogate the carries from the additions: */ |
| RdLo = Add32 (lo, (mid1 << 16), & carry); |
| RdHi = carry; |
| RdLo = Add32 (RdLo, (mid2 << 16), & carry); |
| RdHi += (carry + ((mid1 >> 16) & 0xFFFF) + ((mid2 >> 16) & 0xFFFF) + hi); |
| |
| if (sign) |
| { |
| /* Negate result if necessary. */ |
| |
| RdLo = ~ RdLo; |
| RdHi = ~ RdHi; |
| if (RdLo == 0xFFFFFFFF) |
| { |
| RdLo = 0; |
| RdHi += 1; |
| } |
| else |
| RdLo += 1; |
| } |
| |
| /* Don't store into register 0. */ |
| if (OP[1]) |
| State.regs[ OP[1] ] = RdLo; |
| if (OP[2] >> 11) |
| State.regs[ OP[2] >> 11 ] = RdHi; |
| |
| return; |
| } |
| |
| |
| /* Read a null terminated string from memory, return in a buffer. */ |
| |
| static char * |
| fetch_str (SIM_DESC sd, address_word addr) |
| { |
| char *buf; |
| int nr = 0; |
| |
| while (sim_core_read_1 (STATE_CPU (sd, 0), |
| PC, read_map, addr + nr) != 0) |
| nr++; |
| |
| buf = NZALLOC (char, nr + 1); |
| sim_read (simulator, addr, (unsigned char *) buf, nr); |
| |
| return buf; |
| } |
| |
| /* Read a null terminated argument vector from memory, return in a |
| buffer. */ |
| |
| static char ** |
| fetch_argv (SIM_DESC sd, address_word addr) |
| { |
| int max_nr = 64; |
| int nr = 0; |
| char **buf = xmalloc (max_nr * sizeof (char*)); |
| |
| while (1) |
| { |
| unsigned32 a = sim_core_read_4 (STATE_CPU (sd, 0), |
| PC, read_map, addr + nr * 4); |
| if (a == 0) break; |
| buf[nr] = fetch_str (sd, a); |
| nr ++; |
| if (nr == max_nr - 1) |
| { |
| max_nr += 50; |
| buf = xrealloc (buf, max_nr * sizeof (char*)); |
| } |
| } |
| buf[nr] = 0; |
| return buf; |
| } |
| |
| |
| /* sst.b */ |
| int |
| OP_380 (void) |
| { |
| trace_input ("sst.b", OP_STORE16, 1); |
| |
| store_mem (State.regs[30] + (OP[3] & 0x7f), 1, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE16); |
| |
| return 2; |
| } |
| |
| /* sst.h */ |
| int |
| OP_480 (void) |
| { |
| trace_input ("sst.h", OP_STORE16, 2); |
| |
| store_mem (State.regs[30] + ((OP[3] & 0x7f) << 1), 2, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE16); |
| |
| return 2; |
| } |
| |
| /* sst.w */ |
| int |
| OP_501 (void) |
| { |
| trace_input ("sst.w", OP_STORE16, 4); |
| |
| store_mem (State.regs[30] + ((OP[3] & 0x7e) << 1), 4, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE16); |
| |
| return 2; |
| } |
| |
| /* ld.b */ |
| int |
| OP_700 (void) |
| { |
| int adr; |
| |
| trace_input ("ld.b", OP_LOAD32, 1); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); |
| |
| State.regs[ OP[1] ] = EXTEND8 (load_mem (adr, 1)); |
| |
| trace_output (OP_LOAD32); |
| |
| return 4; |
| } |
| |
| /* ld.h */ |
| int |
| OP_720 (void) |
| { |
| int adr; |
| |
| trace_input ("ld.h", OP_LOAD32, 2); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); |
| adr &= ~0x1; |
| |
| State.regs[ OP[1] ] = EXTEND16 (load_mem (adr, 2)); |
| |
| trace_output (OP_LOAD32); |
| |
| return 4; |
| } |
| |
| /* ld.w */ |
| int |
| OP_10720 (void) |
| { |
| int adr; |
| |
| trace_input ("ld.w", OP_LOAD32, 4); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); |
| adr &= ~0x3; |
| |
| State.regs[ OP[1] ] = load_mem (adr, 4); |
| |
| trace_output (OP_LOAD32); |
| |
| return 4; |
| } |
| |
| /* st.b */ |
| int |
| OP_740 (void) |
| { |
| trace_input ("st.b", OP_STORE32, 1); |
| |
| store_mem (State.regs[ OP[0] ] + EXTEND16 (OP[2]), 1, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE32); |
| |
| return 4; |
| } |
| |
| /* st.h */ |
| int |
| OP_760 (void) |
| { |
| int adr; |
| |
| trace_input ("st.h", OP_STORE32, 2); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2]); |
| adr &= ~1; |
| |
| store_mem (adr, 2, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE32); |
| |
| return 4; |
| } |
| |
| /* st.w */ |
| int |
| OP_10760 (void) |
| { |
| int adr; |
| |
| trace_input ("st.w", OP_STORE32, 4); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); |
| adr &= ~3; |
| |
| store_mem (adr, 4, State.regs[ OP[1] ]); |
| |
| trace_output (OP_STORE32); |
| |
| return 4; |
| } |
| |
| /* add reg, reg */ |
| int |
| OP_1C0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| |
| trace_input ("add", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* add sign_extend(imm5), reg */ |
| int |
| OP_240 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| int temp; |
| |
| trace_input ("add", OP_IMM_REG, 0); |
| |
| /* Compute the result. */ |
| temp = SEXT5 (OP[0]); |
| op0 = temp; |
| op1 = State.regs[OP[1]]; |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* addi sign_extend(imm16), reg, reg */ |
| int |
| OP_600 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| |
| trace_input ("addi", OP_IMM16_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| op0 = EXTEND16 (OP[2]); |
| op1 = State.regs[ OP[0] ]; |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_IMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* sub reg1, reg2 */ |
| int |
| OP_1A0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| |
| trace_input ("sub", OP_REG_REG, 0); |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* subr reg1, reg2 */ |
| int |
| OP_180 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| |
| trace_input ("subr", OP_REG_REG, 0); |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 - op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op0 < op1); |
| ov = ((op0 & 0x80000000) != (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* sxh reg1 */ |
| int |
| OP_E0 (void) |
| { |
| trace_input ("mulh", OP_REG_REG, 0); |
| |
| State.regs[ OP[1] ] = (EXTEND16 (State.regs[ OP[1] ]) * EXTEND16 (State.regs[ OP[0] ])); |
| |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* mulh sign_extend(imm5), reg2 */ |
| int |
| OP_2E0 (void) |
| { |
| trace_input ("mulh", OP_IMM_REG, 0); |
| |
| State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[1] ]) * SEXT5 (OP[0]); |
| |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* mulhi imm16, reg1, reg2 */ |
| int |
| OP_6E0 (void) |
| { |
| trace_input ("mulhi", OP_IMM16_REG_REG, 0); |
| |
| State.regs[ OP[1] ] = EXTEND16 (State.regs[ OP[0] ]) * EXTEND16 (OP[2]); |
| |
| trace_output (OP_IMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* cmp reg, reg */ |
| int |
| OP_1E0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| |
| trace_input ("cmp", OP_REG_REG_CMP, 0); |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_REG_REG_CMP); |
| |
| return 2; |
| } |
| |
| /* cmp sign_extend(imm5), reg */ |
| int |
| OP_260 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov; |
| int temp; |
| |
| /* Compute the result. */ |
| trace_input ("cmp", OP_IMM_REG_CMP, 0); |
| temp = SEXT5 (OP[0]); |
| op0 = temp; |
| op1 = State.regs[OP[1]]; |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0)); |
| trace_output (OP_IMM_REG_CMP); |
| |
| return 2; |
| } |
| |
| /* setf cccc,reg2 */ |
| int |
| OP_7E0 (void) |
| { |
| trace_input ("setf", OP_EX1, 0); |
| |
| State.regs[ OP[1] ] = condition_met (OP[0]); |
| |
| trace_output (OP_EX1); |
| |
| return 4; |
| } |
| |
| /* satadd reg,reg */ |
| int |
| OP_C0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov, sat; |
| |
| trace_input ("satadd", OP_REG_REG, 0); |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| /* An overflow that results in a negative result implies that we |
| became too positive. */ |
| result = 0x7fffffff; |
| s = 0; |
| } |
| else if (sat) |
| { |
| /* Any other overflow must have thus been too negative. */ |
| result = 0x80000000; |
| s = 1; |
| z = 0; |
| } |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* satadd sign_extend(imm5), reg */ |
| int |
| OP_220 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov, sat; |
| |
| int temp; |
| |
| trace_input ("satadd", OP_IMM_REG, 0); |
| |
| /* Compute the result. */ |
| temp = SEXT5 (OP[0]); |
| op0 = temp; |
| op1 = State.regs[OP[1]]; |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| /* An overflow that results in a negative result implies that we |
| became too positive. */ |
| result = 0x7fffffff; |
| s = 0; |
| } |
| else if (sat) |
| { |
| /* Any other overflow must have thus been too negative. */ |
| result = 0x80000000; |
| s = 1; |
| z = 0; |
| } |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* satsub reg1, reg2 */ |
| int |
| OP_A0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov, sat; |
| |
| trace_input ("satsub", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| /* An overflow that results in a negative result implies that we |
| became too positive. */ |
| result = 0x7fffffff; |
| s = 0; |
| } |
| else if (sat) |
| { |
| /* Any other overflow must have thus been too negative. */ |
| result = 0x80000000; |
| s = 1; |
| z = 0; |
| } |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| trace_output (OP_REG_REG); |
| return 2; |
| } |
| |
| /* satsubi sign_extend(imm16), reg */ |
| int |
| OP_660 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov, sat; |
| int temp; |
| |
| trace_input ("satsubi", OP_IMM_REG, 0); |
| |
| /* Compute the result. */ |
| temp = EXTEND16 (OP[2]); |
| op0 = temp; |
| op1 = State.regs[ OP[0] ]; |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| /* An overflow that results in a negative result implies that we |
| became too positive. */ |
| result = 0x7fffffff; |
| s = 0; |
| } |
| else if (sat) |
| { |
| /* Any other overflow must have thus been too negative. */ |
| result = 0x80000000; |
| s = 1; |
| z = 0; |
| } |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| trace_output (OP_IMM_REG); |
| |
| return 4; |
| } |
| |
| /* satsubr reg,reg */ |
| int |
| OP_80 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy, ov, sat; |
| |
| trace_input ("satsubr", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 - op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op0 < op1); |
| ov = ((op0 & 0x80000000) != (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| /* An overflow that results in a negative result implies that we |
| became too positive. */ |
| result = 0x7fffffff; |
| s = 0; |
| } |
| else if (sat) |
| { |
| /* Any other overflow must have thus been too negative. */ |
| result = 0x80000000; |
| s = 1; |
| z = 0; |
| } |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* tst reg,reg */ |
| int |
| OP_160 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("tst", OP_REG_REG_CMP, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 & op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_REG_REG_CMP); |
| |
| return 2; |
| } |
| |
| /* mov sign_extend(imm5), reg */ |
| int |
| OP_200 (void) |
| { |
| int value = SEXT5 (OP[0]); |
| |
| trace_input ("mov", OP_IMM_REG_MOVE, 0); |
| |
| State.regs[ OP[1] ] = value; |
| |
| trace_output (OP_IMM_REG_MOVE); |
| |
| return 2; |
| } |
| |
| /* movhi imm16, reg, reg */ |
| int |
| OP_640 (void) |
| { |
| trace_input ("movhi", OP_UIMM16_REG_REG, 16); |
| |
| State.regs[ OP[1] ] = State.regs[ OP[0] ] + (OP[2] << 16); |
| |
| trace_output (OP_UIMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* sar zero_extend(imm5),reg1 */ |
| int |
| OP_2A0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("sar", OP_IMM_REG, 0); |
| op0 = OP[0]; |
| op1 = State.regs[ OP[1] ]; |
| result = (signed)op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[ OP[1] ] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* sar reg1, reg2 */ |
| int |
| OP_A007E0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("sar", OP_REG_REG, 0); |
| |
| op0 = State.regs[ OP[0] ] & 0x1f; |
| op1 = State.regs[ OP[1] ]; |
| result = (signed)op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 4; |
| } |
| |
| /* shl zero_extend(imm5),reg1 */ |
| int |
| OP_2C0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("shl", OP_IMM_REG, 0); |
| op0 = OP[0]; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 << op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (32 - op0))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* shl reg1, reg2 */ |
| int |
| OP_C007E0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("shl", OP_REG_REG, 0); |
| op0 = State.regs[ OP[0] ] & 0x1f; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 << op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (32 - op0))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 4; |
| } |
| |
| /* shr zero_extend(imm5),reg1 */ |
| int |
| OP_280 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("shr", OP_IMM_REG, 0); |
| op0 = OP[0]; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_IMM_REG); |
| |
| return 2; |
| } |
| |
| /* shr reg1, reg2 */ |
| int |
| OP_8007E0 (void) |
| { |
| unsigned int op0, op1, result, z, s, cy; |
| |
| trace_input ("shr", OP_REG_REG, 0); |
| op0 = State.regs[ OP[0] ] & 0x1f; |
| op1 = State.regs[ OP[1] ]; |
| result = op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = op0 ? (op1 & (1 << (op0 - 1))) : 0; |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 4; |
| } |
| |
| /* or reg, reg */ |
| int |
| OP_100 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("or", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 | op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* ori zero_extend(imm16), reg, reg */ |
| int |
| OP_680 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("ori", OP_UIMM16_REG_REG, 0); |
| op0 = OP[2]; |
| op1 = State.regs[ OP[0] ]; |
| result = op0 | op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_UIMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* and reg, reg */ |
| int |
| OP_140 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("and", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 & op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* andi zero_extend(imm16), reg, reg */ |
| int |
| OP_6C0 (void) |
| { |
| unsigned int result, z; |
| |
| trace_input ("andi", OP_UIMM16_REG_REG, 0); |
| |
| result = OP[2] & State.regs[ OP[0] ]; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| |
| /* Store the result and condition codes. */ |
| State.regs[ OP[1] ] = result; |
| |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= (z ? PSW_Z : 0); |
| |
| trace_output (OP_UIMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* xor reg, reg */ |
| int |
| OP_120 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("xor", OP_REG_REG, 0); |
| |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| op1 = State.regs[ OP[1] ]; |
| result = op0 ^ op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_REG_REG); |
| |
| return 2; |
| } |
| |
| /* xori zero_extend(imm16), reg, reg */ |
| int |
| OP_6A0 (void) |
| { |
| unsigned int op0, op1, result, z, s; |
| |
| trace_input ("xori", OP_UIMM16_REG_REG, 0); |
| op0 = OP[2]; |
| op1 = State.regs[ OP[0] ]; |
| result = op0 ^ op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_UIMM16_REG_REG); |
| |
| return 4; |
| } |
| |
| /* not reg1, reg2 */ |
| int |
| OP_20 (void) |
| { |
| unsigned int op0, result, z, s; |
| |
| trace_input ("not", OP_REG_REG_MOVE, 0); |
| /* Compute the result. */ |
| op0 = State.regs[ OP[0] ]; |
| result = ~op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| |
| /* Store the result and condition codes. */ |
| State.regs[OP[1]] = result; |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0)); |
| trace_output (OP_REG_REG_MOVE); |
| |
| return 2; |
| } |
| |
| /* set1 */ |
| int |
| OP_7C0 (void) |
| { |
| unsigned int op0, op1, op2; |
| int temp; |
| |
| trace_input ("set1", OP_BIT, 0); |
| op0 = State.regs[ OP[0] ]; |
| op1 = OP[1] & 0x7; |
| temp = EXTEND16 (OP[2]); |
| op2 = temp; |
| temp = load_mem (op0 + op2, 1); |
| PSW &= ~PSW_Z; |
| if ((temp & (1 << op1)) == 0) |
| PSW |= PSW_Z; |
| temp |= (1 << op1); |
| store_mem (op0 + op2, 1, temp); |
| trace_output (OP_BIT); |
| |
| return 4; |
| } |
| |
| /* not1 */ |
| int |
| OP_47C0 (void) |
| { |
| unsigned int op0, op1, op2; |
| int temp; |
| |
| trace_input ("not1", OP_BIT, 0); |
| op0 = State.regs[ OP[0] ]; |
| op1 = OP[1] & 0x7; |
| temp = EXTEND16 (OP[2]); |
| op2 = temp; |
| temp = load_mem (op0 + op2, 1); |
| PSW &= ~PSW_Z; |
| if ((temp & (1 << op1)) == 0) |
| PSW |= PSW_Z; |
| temp ^= (1 << op1); |
| store_mem (op0 + op2, 1, temp); |
| trace_output (OP_BIT); |
| |
| return 4; |
| } |
| |
| /* clr1 */ |
| int |
| OP_87C0 (void) |
| { |
| unsigned int op0, op1, op2; |
| int temp; |
| |
| trace_input ("clr1", OP_BIT, 0); |
| op0 = State.regs[ OP[0] ]; |
| op1 = OP[1] & 0x7; |
| temp = EXTEND16 (OP[2]); |
| op2 = temp; |
| temp = load_mem (op0 + op2, 1); |
| PSW &= ~PSW_Z; |
| if ((temp & (1 << op1)) == 0) |
| PSW |= PSW_Z; |
| temp &= ~(1 << op1); |
| store_mem (op0 + op2, 1, temp); |
| trace_output (OP_BIT); |
| |
| return 4; |
| } |
| |
| /* tst1 */ |
| int |
| OP_C7C0 (void) |
| { |
| unsigned int op0, op1, op2; |
| int temp; |
| |
| trace_input ("tst1", OP_BIT, 0); |
| op0 = State.regs[ OP[0] ]; |
| op1 = OP[1] & 0x7; |
| temp = EXTEND16 (OP[2]); |
| op2 = temp; |
| temp = load_mem (op0 + op2, 1); |
| PSW &= ~PSW_Z; |
| if ((temp & (1 << op1)) == 0) |
| PSW |= PSW_Z; |
| trace_output (OP_BIT); |
| |
| return 4; |
| } |
| |
| /* di */ |
| int |
| OP_16007E0 (void) |
| { |
| trace_input ("di", OP_NONE, 0); |
| PSW |= PSW_ID; |
| trace_output (OP_NONE); |
| |
| return 4; |
| } |
| |
| /* ei */ |
| int |
| OP_16087E0 (void) |
| { |
| trace_input ("ei", OP_NONE, 0); |
| PSW &= ~PSW_ID; |
| trace_output (OP_NONE); |
| |
| return 4; |
| } |
| |
| /* halt */ |
| int |
| OP_12007E0 (void) |
| { |
| trace_input ("halt", OP_NONE, 0); |
| /* FIXME this should put processor into a mode where NMI still handled */ |
| trace_output (OP_NONE); |
| sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, |
| sim_stopped, SIM_SIGTRAP); |
| return 0; |
| } |
| |
| /* trap */ |
| int |
| OP_10007E0 (void) |
| { |
| trace_input ("trap", OP_TRAP, 0); |
| trace_output (OP_TRAP); |
| |
| /* Trap 31 is used for simulating OS I/O functions */ |
| |
| if (OP[0] == 31) |
| { |
| int save_errno = errno; |
| errno = 0; |
| |
| /* Registers passed to trap 0 */ |
| |
| #define FUNC State.regs[6] /* function number, return value */ |
| #define PARM1 State.regs[7] /* optional parm 1 */ |
| #define PARM2 State.regs[8] /* optional parm 2 */ |
| #define PARM3 State.regs[9] /* optional parm 3 */ |
| |
| /* Registers set by trap 0 */ |
| |
| #define RETVAL State.regs[10] /* return value */ |
| #define RETERR State.regs[11] /* return error code */ |
| |
| /* Turn a pointer in a register into a pointer into real memory. */ |
| |
| #define MEMPTR(x) (map (x)) |
| |
| RETERR = 0; |
| |
| switch (FUNC) |
| { |
| |
| #ifdef HAVE_FORK |
| #ifdef TARGET_SYS_fork |
| case TARGET_SYS_fork: |
| RETVAL = fork (); |
| RETERR = errno; |
| break; |
| #endif |
| #endif |
| |
| #ifdef HAVE_EXECVE |
| #ifdef TARGET_SYS_execv |
| case TARGET_SYS_execve: |
| { |
| char *path = fetch_str (simulator, PARM1); |
| char **argv = fetch_argv (simulator, PARM2); |
| char **envp = fetch_argv (simulator, PARM3); |
| RETVAL = execve (path, (void *)argv, (void *)envp); |
| free (path); |
| freeargv (argv); |
| freeargv (envp); |
| RETERR = errno; |
| break; |
| } |
| #endif |
| #endif |
| |
| #if HAVE_EXECV |
| #ifdef TARGET_SYS_execv |
| case TARGET_SYS_execv: |
| { |
| char *path = fetch_str (simulator, PARM1); |
| char **argv = fetch_argv (simulator, PARM2); |
| RETVAL = execv (path, (void *)argv); |
| free (path); |
| freeargv (argv); |
| RETERR = errno; |
| break; |
| } |
| #endif |
| #endif |
| |
| #if 0 |
| #ifdef TARGET_SYS_pipe |
| case TARGET_SYS_pipe: |
| { |
| reg_t buf; |
| int host_fd[2]; |
| |
| buf = PARM1; |
| RETVAL = pipe (host_fd); |
| SW (buf, host_fd[0]); |
| buf += sizeof (uint16); |
| SW (buf, host_fd[1]); |
| RETERR = errno; |
| } |
| break; |
| #endif |
| #endif |
| |
| #if 0 |
| #ifdef TARGET_SYS_wait |
| case TARGET_SYS_wait: |
| { |
| int status; |
| |
| RETVAL = wait (&status); |
| SW (PARM1, status); |
| RETERR = errno; |
| } |
| break; |
| #endif |
| #endif |
| |
| #ifdef TARGET_SYS_read |
| case TARGET_SYS_read: |
| { |
| char *buf = zalloc (PARM3); |
| RETVAL = sim_io_read (simulator, PARM1, buf, PARM3); |
| sim_write (simulator, PARM2, (unsigned char *) buf, PARM3); |
| free (buf); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| break; |
| } |
| #endif |
| |
| #ifdef TARGET_SYS_write |
| case TARGET_SYS_write: |
| { |
| char *buf = zalloc (PARM3); |
| sim_read (simulator, PARM2, (unsigned char *) buf, PARM3); |
| if (PARM1 == 1) |
| RETVAL = sim_io_write_stdout (simulator, buf, PARM3); |
| else |
| RETVAL = sim_io_write (simulator, PARM1, buf, PARM3); |
| free (buf); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| break; |
| } |
| #endif |
| |
| #ifdef TARGET_SYS_lseek |
| case TARGET_SYS_lseek: |
| RETVAL = sim_io_lseek (simulator, PARM1, PARM2, PARM3); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_close |
| case TARGET_SYS_close: |
| RETVAL = sim_io_close (simulator, PARM1); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_open |
| case TARGET_SYS_open: |
| { |
| char *buf = fetch_str (simulator, PARM1); |
| RETVAL = sim_io_open (simulator, buf, PARM2); |
| free (buf); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| break; |
| } |
| #endif |
| |
| #ifdef TARGET_SYS_exit |
| case TARGET_SYS_exit: |
| if ((PARM1 & 0xffff0000) == 0xdead0000 && (PARM1 & 0xffff) != 0) |
| /* get signal encoded by kill */ |
| sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, |
| sim_signalled, PARM1 & 0xffff); |
| else if (PARM1 == 0xdead) |
| /* old libraries */ |
| sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, |
| sim_stopped, SIM_SIGABRT); |
| else |
| /* PARM1 has exit status */ |
| sim_engine_halt (simulator, STATE_CPU (simulator, 0), NULL, PC, |
| sim_exited, PARM1); |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_stat |
| case TARGET_SYS_stat: /* added at hmsi */ |
| /* stat system call */ |
| { |
| struct stat host_stat; |
| reg_t buf; |
| char *path = fetch_str (simulator, PARM1); |
| |
| RETVAL = sim_io_stat (simulator, path, &host_stat); |
| |
| free (path); |
| buf = PARM2; |
| |
| /* Just wild-assed guesses. */ |
| store_mem (buf, 2, host_stat.st_dev); |
| store_mem (buf + 2, 2, host_stat.st_ino); |
| store_mem (buf + 4, 4, host_stat.st_mode); |
| store_mem (buf + 8, 2, host_stat.st_nlink); |
| store_mem (buf + 10, 2, host_stat.st_uid); |
| store_mem (buf + 12, 2, host_stat.st_gid); |
| store_mem (buf + 14, 2, host_stat.st_rdev); |
| store_mem (buf + 16, 4, host_stat.st_size); |
| store_mem (buf + 20, 4, host_stat.st_atime); |
| store_mem (buf + 28, 4, host_stat.st_mtime); |
| store_mem (buf + 36, 4, host_stat.st_ctime); |
| |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| } |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_fstat |
| case TARGET_SYS_fstat: |
| /* fstat system call */ |
| { |
| struct stat host_stat; |
| reg_t buf; |
| |
| RETVAL = sim_io_fstat (simulator, PARM1, &host_stat); |
| |
| buf = PARM2; |
| |
| /* Just wild-assed guesses. */ |
| store_mem (buf, 2, host_stat.st_dev); |
| store_mem (buf + 2, 2, host_stat.st_ino); |
| store_mem (buf + 4, 4, host_stat.st_mode); |
| store_mem (buf + 8, 2, host_stat.st_nlink); |
| store_mem (buf + 10, 2, host_stat.st_uid); |
| store_mem (buf + 12, 2, host_stat.st_gid); |
| store_mem (buf + 14, 2, host_stat.st_rdev); |
| store_mem (buf + 16, 4, host_stat.st_size); |
| store_mem (buf + 20, 4, host_stat.st_atime); |
| store_mem (buf + 28, 4, host_stat.st_mtime); |
| store_mem (buf + 36, 4, host_stat.st_ctime); |
| |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| } |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_rename |
| case TARGET_SYS_rename: |
| { |
| char *oldpath = fetch_str (simulator, PARM1); |
| char *newpath = fetch_str (simulator, PARM2); |
| RETVAL = sim_io_rename (simulator, oldpath, newpath); |
| free (oldpath); |
| free (newpath); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| } |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_unlink |
| case TARGET_SYS_unlink: |
| { |
| char *path = fetch_str (simulator, PARM1); |
| RETVAL = sim_io_unlink (simulator, path); |
| free (path); |
| if ((int) RETVAL < 0) |
| RETERR = sim_io_get_errno (simulator); |
| } |
| break; |
| #endif |
| |
| #ifdef TARGET_SYS_chown |
| case TARGET_SYS_chown: |
| { |
| char *path = fetch_str (simulator, PARM1); |
| RETVAL = chown (path, PARM2, PARM3); |
| free (path); |
| RETERR = errno; |
| } |
| break; |
| #endif |
| |
| #if HAVE_CHMOD |
| #ifdef TARGET_SYS_chmod |
| case TARGET_SYS_chmod: |
| { |
| char *path = fetch_str (simulator, PARM1); |
| RETVAL = chmod (path, PARM2); |
| free (path); |
| RETERR = errno; |
| } |
| break; |
| #endif |
| #endif |
| |
| #ifdef TARGET_SYS_time |
| #if HAVE_TIME |
| case TARGET_SYS_time: |
| { |
| time_t now; |
| RETVAL = time (&now); |
| store_mem (PARM1, 4, now); |
| RETERR = errno; |
| } |
| break; |
| #endif |
| #endif |
| |
| #if !defined(__GO32__) && !defined(_WIN32) |
| #ifdef TARGET_SYS_times |
| case TARGET_SYS_times: |
| { |
| struct tms tms; |
| RETVAL = times (&tms); |
| store_mem (PARM1, 4, tms.tms_utime); |
| store_mem (PARM1 + 4, 4, tms.tms_stime); |
| store_mem (PARM1 + 8, 4, tms.tms_cutime); |
| store_mem (PARM1 + 12, 4, tms.tms_cstime); |
| RETERR = errno; |
| break; |
| } |
| #endif |
| #endif |
| |
| #ifdef TARGET_SYS_gettimeofday |
| #if !defined(__GO32__) && !defined(_WIN32) |
| case TARGET_SYS_gettimeofday: |
| { |
| struct timeval t; |
| struct timezone tz; |
| RETVAL = gettimeofday (&t, &tz); |
| store_mem (PARM1, 4, t.tv_sec); |
| store_mem (PARM1 + 4, 4, t.tv_usec); |
| store_mem (PARM2, 4, tz.tz_minuteswest); |
| store_mem (PARM2 + 4, 4, tz.tz_dsttime); |
| RETERR = errno; |
| break; |
| } |
| #endif |
| #endif |
| |
| #ifdef TARGET_SYS_utime |
| #if HAVE_UTIME |
| case TARGET_SYS_utime: |
| { |
| /* Cast the second argument to void *, to avoid type mismatch |
| if a prototype is present. */ |
| sim_io_error (simulator, "Utime not supported"); |
| /* RETVAL = utime (path, (void *) MEMPTR (PARM2)); */ |
| } |
| break; |
| #endif |
| #endif |
| |
| default: |
| abort (); |
| } |
| errno = save_errno; |
| |
| return 4; |
| } |
| else |
| { /* Trap 0 -> 30 */ |
| EIPC = PC + 4; |
| EIPSW = PSW; |
| /* Mask out EICC */ |
| ECR &= 0xffff0000; |
| ECR |= 0x40 + OP[0]; |
| /* Flag that we are now doing exception processing. */ |
| PSW |= PSW_EP | PSW_ID; |
| PC = (OP[0] < 0x10) ? 0x40 : 0x50; |
| |
| return 0; |
| } |
| } |
| |
| /* tst1 reg2, [reg1] */ |
| int |
| OP_E607E0 (void) |
| { |
| int temp; |
| |
| trace_input ("tst1", OP_BIT, 1); |
| |
| temp = load_mem (State.regs[ OP[0] ], 1); |
| |
| PSW &= ~PSW_Z; |
| if ((temp & (1 << (State.regs[ OP[1] ] & 0x7))) == 0) |
| PSW |= PSW_Z; |
| |
| trace_output (OP_BIT); |
| |
| return 4; |
| } |
| |
| /* mulu reg1, reg2, reg3 */ |
| int |
| OP_22207E0 (void) |
| { |
| trace_input ("mulu", OP_REG_REG_REG, 0); |
| |
| Multiply64 (0, State.regs[ OP[0] ]); |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| #define BIT_CHANGE_OP( name, binop ) \ |
| unsigned int bit; \ |
| unsigned int temp; \ |
| \ |
| trace_input (name, OP_BIT_CHANGE, 0); \ |
| \ |
| bit = 1 << (State.regs[ OP[1] ] & 0x7); \ |
| temp = load_mem (State.regs[ OP[0] ], 1); \ |
| \ |
| PSW &= ~PSW_Z; \ |
| if ((temp & bit) == 0) \ |
| PSW |= PSW_Z; \ |
| temp binop bit; \ |
| \ |
| store_mem (State.regs[ OP[0] ], 1, temp); \ |
| \ |
| trace_output (OP_BIT_CHANGE); \ |
| \ |
| return 4; |
| |
| /* clr1 reg2, [reg1] */ |
| int |
| OP_E407E0 (void) |
| { |
| BIT_CHANGE_OP ("clr1", &= ~ ); |
| } |
| |
| /* not1 reg2, [reg1] */ |
| int |
| OP_E207E0 (void) |
| { |
| BIT_CHANGE_OP ("not1", ^= ); |
| } |
| |
| /* set1 */ |
| int |
| OP_E007E0 (void) |
| { |
| BIT_CHANGE_OP ("set1", |= ); |
| } |
| |
| /* sasf */ |
| int |
| OP_20007E0 (void) |
| { |
| trace_input ("sasf", OP_EX1, 0); |
| |
| State.regs[ OP[1] ] = (State.regs[ OP[1] ] << 1) | condition_met (OP[0]); |
| |
| trace_output (OP_EX1); |
| |
| return 4; |
| } |
| |
| /* This function is courtesy of Sugimoto at NEC, via Seow Tan |
| (Soew_Tan@el.nec.com) */ |
| void |
| divun |
| ( |
| unsigned int N, |
| unsigned long int als, |
| unsigned long int sfi, |
| unsigned32 /*unsigned long int*/ * quotient_ptr, |
| unsigned32 /*unsigned long int*/ * remainder_ptr, |
| int * overflow_ptr |
| ) |
| { |
| unsigned long ald = sfi >> (N - 1); |
| unsigned long alo = als; |
| unsigned int Q = 1; |
| unsigned int C; |
| unsigned int S = 0; |
| unsigned int i; |
| unsigned int R1 = 1; |
| unsigned int DBZ = (als == 0) ? 1 : 0; |
| unsigned long alt = Q ? ~als : als; |
| |
| /* 1st Loop */ |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| C = C ^ Q; |
| Q = ~(C ^ S) & 1; |
| R1 = (alo == 0) ? 0 : (R1 & Q); |
| if ((S ^ (alo>>31)) && !C) |
| { |
| DBZ = 1; |
| } |
| S = alo >> 31; |
| sfi = (sfi << (32-N+1)) | Q; |
| ald = (alo << 1) | (sfi >> 31); |
| |
| /* 2nd - N-1th Loop */ |
| for (i = 2; i < N; i++) |
| { |
| alt = Q ? ~als : als; |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| C = C ^ Q; |
| Q = ~(C ^ S) & 1; |
| R1 = (alo == 0) ? 0 : (R1 & Q); |
| if ((S ^ (alo>>31)) && !C && !DBZ) |
| { |
| DBZ = 1; |
| } |
| S = alo >> 31; |
| sfi = (sfi << 1) | Q; |
| ald = (alo << 1) | (sfi >> 31); |
| } |
| |
| /* Nth Loop */ |
| alt = Q ? ~als : als; |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| C = C ^ Q; |
| Q = ~(C ^ S) & 1; |
| R1 = (alo == 0) ? 0 : (R1 & Q); |
| if ((S ^ (alo>>31)) && !C) |
| { |
| DBZ = 1; |
| } |
| |
| * quotient_ptr = (sfi << 1) | Q; |
| * remainder_ptr = Q ? alo : (alo + als); |
| * overflow_ptr = DBZ | R1; |
| } |
| |
| /* This function is courtesy of Sugimoto at NEC, via Seow Tan (Soew_Tan@el.nec.com) */ |
| void |
| divn |
| ( |
| unsigned int N, |
| unsigned long int als, |
| unsigned long int sfi, |
| signed32 /*signed long int*/ * quotient_ptr, |
| signed32 /*signed long int*/ * remainder_ptr, |
| int * overflow_ptr |
| ) |
| { |
| unsigned long ald = (signed long) sfi >> (N - 1); |
| unsigned long alo = als; |
| unsigned int SS = als >> 31; |
| unsigned int SD = sfi >> 31; |
| unsigned int R1 = 1; |
| unsigned int OV; |
| unsigned int DBZ = als == 0 ? 1 : 0; |
| unsigned int Q = ~(SS ^ SD) & 1; |
| unsigned int C; |
| unsigned int S; |
| unsigned int i; |
| unsigned long alt = Q ? ~als : als; |
| |
| |
| /* 1st Loop */ |
| |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| Q = C ^ SS; |
| R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); |
| S = alo >> 31; |
| sfi = (sfi << (32-N+1)) | Q; |
| ald = (alo << 1) | (sfi >> 31); |
| if ((alo >> 31) ^ (ald >> 31)) |
| { |
| DBZ = 1; |
| } |
| |
| /* 2nd - N-1th Loop */ |
| |
| for (i = 2; i < N; i++) |
| { |
| alt = Q ? ~als : als; |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| Q = C ^ SS; |
| R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); |
| S = alo >> 31; |
| sfi = (sfi << 1) | Q; |
| ald = (alo << 1) | (sfi >> 31); |
| if ((alo >> 31) ^ (ald >> 31)) |
| { |
| DBZ = 1; |
| } |
| } |
| |
| /* Nth Loop */ |
| alt = Q ? ~als : als; |
| alo = ald + alt + Q; |
| C = (((alt >> 31) & (ald >> 31)) |
| | (((alt >> 31) ^ (ald >> 31)) & (~alo >> 31))); |
| Q = C ^ SS; |
| R1 = (alo == 0) ? 0 : (R1 & (Q ^ (SS ^ SD))); |
| sfi = (sfi << (32-N+1)); |
| ald = alo; |
| |
| /* End */ |
| if (alo != 0) |
| { |
| alt = Q ? ~als : als; |
| alo = ald + alt + Q; |
| } |
| R1 = R1 & ((~alo >> 31) ^ SD); |
| if ((alo != 0) && ((Q ^ (SS ^ SD)) ^ R1)) alo = ald; |
| if (N != 32) |
| ald = sfi = (long) ((sfi >> 1) | (SS ^ SD) << 31) >> (32-N-1) | Q; |
| else |
| ald = sfi = sfi | Q; |
| |
| OV = DBZ | ((alo == 0) ? 0 : R1); |
| |
| * remainder_ptr = alo; |
| |
| /* Adj */ |
| if (((alo != 0) && ((SS ^ SD) ^ R1)) |
| || ((alo == 0) && (SS ^ R1))) |
| alo = ald + 1; |
| else |
| alo = ald; |
| |
| OV = (DBZ | R1) ? OV : ((alo >> 31) & (~ald >> 31)); |
| |
| * quotient_ptr = alo; |
| * overflow_ptr = OV; |
| } |
| |
| /* sdivun imm5, reg1, reg2, reg3 */ |
| int |
| OP_1C207E0 (void) |
| { |
| unsigned32 /*unsigned long int*/ quotient; |
| unsigned32 /*unsigned long int*/ remainder; |
| unsigned long int divide_by; |
| unsigned long int divide_this; |
| int overflow = 0; |
| unsigned int imm5; |
| |
| trace_input ("sdivun", OP_IMM_REG_REG_REG, 0); |
| |
| imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); |
| |
| divide_by = State.regs[ OP[0] ]; |
| divide_this = State.regs[ OP[1] ] << imm5; |
| |
| divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); |
| |
| State.regs[ OP[1] ] = quotient; |
| State.regs[ OP[2] >> 11 ] = remainder; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient & 0x80000000) PSW |= PSW_S; |
| |
| trace_output (OP_IMM_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* sdivn imm5, reg1, reg2, reg3 */ |
| int |
| OP_1C007E0 (void) |
| { |
| signed32 /*signed long int*/ quotient; |
| signed32 /*signed long int*/ remainder; |
| signed long int divide_by; |
| signed long int divide_this; |
| int overflow = 0; |
| unsigned int imm5; |
| |
| trace_input ("sdivn", OP_IMM_REG_REG_REG, 0); |
| |
| imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); |
| |
| divide_by = (signed32) State.regs[ OP[0] ]; |
| divide_this = (signed32) (State.regs[ OP[1] ] << imm5); |
| |
| divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); |
| |
| State.regs[ OP[1] ] = quotient; |
| State.regs[ OP[2] >> 11 ] = remainder; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient < 0) PSW |= PSW_S; |
| |
| trace_output (OP_IMM_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* sdivhun imm5, reg1, reg2, reg3 */ |
| int |
| OP_18207E0 (void) |
| { |
| unsigned32 /*unsigned long int*/ quotient; |
| unsigned32 /*unsigned long int*/ remainder; |
| unsigned long int divide_by; |
| unsigned long int divide_this; |
| int overflow = 0; |
| unsigned int imm5; |
| |
| trace_input ("sdivhun", OP_IMM_REG_REG_REG, 0); |
| |
| imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); |
| |
| divide_by = State.regs[ OP[0] ] & 0xffff; |
| divide_this = State.regs[ OP[1] ] << imm5; |
| |
| divun (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); |
| |
| State.regs[ OP[1] ] = quotient; |
| State.regs[ OP[2] >> 11 ] = remainder; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient & 0x80000000) PSW |= PSW_S; |
| |
| trace_output (OP_IMM_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* sdivhn imm5, reg1, reg2, reg3 */ |
| int |
| OP_18007E0 (void) |
| { |
| signed32 /*signed long int*/ quotient; |
| signed32 /*signed long int*/ remainder; |
| signed long int divide_by; |
| signed long int divide_this; |
| int overflow = 0; |
| unsigned int imm5; |
| |
| trace_input ("sdivhn", OP_IMM_REG_REG_REG, 0); |
| |
| imm5 = 32 - ((OP[3] & 0x3c0000) >> 17); |
| |
| divide_by = EXTEND16 (State.regs[ OP[0] ]); |
| divide_this = (signed32) (State.regs[ OP[1] ] << imm5); |
| |
| divn (imm5, divide_by, divide_this, & quotient, & remainder, & overflow); |
| |
| State.regs[ OP[1] ] = quotient; |
| State.regs[ OP[2] >> 11 ] = remainder; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient < 0) PSW |= PSW_S; |
| |
| trace_output (OP_IMM_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* divu reg1, reg2, reg3 */ |
| int |
| OP_2C207E0 (void) |
| { |
| unsigned long int quotient; |
| unsigned long int remainder; |
| unsigned long int divide_by; |
| unsigned long int divide_this; |
| int overflow = 0; |
| |
| trace_input ("divu", OP_REG_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| divide_by = State.regs[ OP[0] ]; |
| divide_this = State.regs[ OP[1] ]; |
| |
| if (divide_by == 0) |
| { |
| PSW |= PSW_OV; |
| } |
| else |
| { |
| State.regs[ OP[1] ] = quotient = divide_this / divide_by; |
| State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient & 0x80000000) PSW |= PSW_S; |
| } |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* div reg1, reg2, reg3 */ |
| int |
| OP_2C007E0 (void) |
| { |
| signed long int quotient; |
| signed long int remainder; |
| signed long int divide_by; |
| signed long int divide_this; |
| |
| trace_input ("div", OP_REG_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| divide_by = (signed32) State.regs[ OP[0] ]; |
| divide_this = State.regs[ OP[1] ]; |
| |
| if (divide_by == 0) |
| { |
| PSW |= PSW_OV; |
| } |
| else if (divide_by == -1 && divide_this == (1L << 31)) |
| { |
| PSW &= ~PSW_Z; |
| PSW |= PSW_OV | PSW_S; |
| State.regs[ OP[1] ] = (1 << 31); |
| State.regs[ OP[2] >> 11 ] = 0; |
| } |
| else |
| { |
| divide_this = (signed32) divide_this; |
| State.regs[ OP[1] ] = quotient = divide_this / divide_by; |
| State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient < 0) PSW |= PSW_S; |
| } |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* divhu reg1, reg2, reg3 */ |
| int |
| OP_28207E0 (void) |
| { |
| unsigned long int quotient; |
| unsigned long int remainder; |
| unsigned long int divide_by; |
| unsigned long int divide_this; |
| int overflow = 0; |
| |
| trace_input ("divhu", OP_REG_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| divide_by = State.regs[ OP[0] ] & 0xffff; |
| divide_this = State.regs[ OP[1] ]; |
| |
| if (divide_by == 0) |
| { |
| PSW |= PSW_OV; |
| } |
| else |
| { |
| State.regs[ OP[1] ] = quotient = divide_this / divide_by; |
| State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient & 0x80000000) PSW |= PSW_S; |
| } |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* divh reg1, reg2, reg3 */ |
| int |
| OP_28007E0 (void) |
| { |
| signed long int quotient; |
| signed long int remainder; |
| signed long int divide_by; |
| signed long int divide_this; |
| int overflow = 0; |
| |
| trace_input ("divh", OP_REG_REG_REG, 0); |
| |
| /* Compute the result. */ |
| |
| divide_by = EXTEND16 (State.regs[ OP[0] ]); |
| divide_this = State.regs[ OP[1] ]; |
| |
| if (divide_by == 0) |
| { |
| PSW |= PSW_OV; |
| } |
| else if (divide_by == -1 && divide_this == (1L << 31)) |
| { |
| PSW &= ~PSW_Z; |
| PSW |= PSW_OV | PSW_S; |
| State.regs[ OP[1] ] = (1 << 31); |
| State.regs[ OP[2] >> 11 ] = 0; |
| } |
| else |
| { |
| divide_this = (signed32) divide_this; |
| State.regs[ OP[1] ] = quotient = divide_this / divide_by; |
| State.regs[ OP[2] >> 11 ] = remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient < 0) PSW |= PSW_S; |
| } |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* mulu imm9, reg2, reg3 */ |
| int |
| OP_24207E0 (void) |
| { |
| trace_input ("mulu", OP_IMM_REG_REG, 0); |
| |
| Multiply64 (0, (OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0)); |
| |
| trace_output (OP_IMM_REG_REG); |
| |
| return 4; |
| } |
| |
| /* mul imm9, reg2, reg3 */ |
| int |
| OP_24007E0 (void) |
| { |
| trace_input ("mul", OP_IMM_REG_REG, 0); |
| |
| Multiply64 (1, SEXT9 ((OP[3] & 0x1f) | ((OP[3] >> 13) & 0x1e0))); |
| |
| trace_output (OP_IMM_REG_REG); |
| |
| return 4; |
| } |
| |
| /* ld.hu */ |
| int |
| OP_107E0 (void) |
| { |
| int adr; |
| |
| trace_input ("ld.hu", OP_LOAD32, 2); |
| |
| adr = State.regs[ OP[0] ] + EXTEND16 (OP[2] & ~1); |
| adr &= ~0x1; |
| |
| State.regs[ OP[1] ] = load_mem (adr, 2); |
| |
| trace_output (OP_LOAD32); |
| |
| return 4; |
| } |
| |
| |
| /* ld.bu */ |
| int |
| OP_10780 (void) |
| { |
| int adr; |
| |
| trace_input ("ld.bu", OP_LOAD32, 1); |
| |
| adr = (State.regs[ OP[0] ] |
| + (EXTEND16 (OP[2] & ~1) | ((OP[3] >> 5) & 1))); |
| |
| State.regs[ OP[1] ] = load_mem (adr, 1); |
| |
| trace_output (OP_LOAD32); |
| |
| return 4; |
| } |
| |
| /* prepare list12, imm5, imm32 */ |
| int |
| OP_1B0780 (void) |
| { |
| int i; |
| |
| trace_input ("prepare", OP_PUSHPOP1, 0); |
| |
| /* Store the registers with lower number registers being placed at higher addresses. */ |
| for (i = 0; i < 12; i++) |
| if ((OP[3] & (1 << type1_regs[ i ]))) |
| { |
| SP -= 4; |
| store_mem (SP, 4, State.regs[ 20 + i ]); |
| } |
| |
| SP -= (OP[3] & 0x3e) << 1; |
| |
| EP = load_mem (PC + 4, 4); |
| |
| trace_output (OP_PUSHPOP1); |
| |
| return 8; |
| } |
| |
| /* prepare list12, imm5, imm16-32 */ |
| int |
| OP_130780 (void) |
| { |
| int i; |
| |
| trace_input ("prepare", OP_PUSHPOP1, 0); |
| |
| /* Store the registers with lower number registers being placed at higher addresses. */ |
| for (i = 0; i < 12; i++) |
| if ((OP[3] & (1 << type1_regs[ i ]))) |
| { |
| SP -= 4; |
| store_mem (SP, 4, State.regs[ 20 + i ]); |
| } |
| |
| SP -= (OP[3] & 0x3e) << 1; |
| |
| EP = load_mem (PC + 4, 2) << 16; |
| |
| trace_output (OP_PUSHPOP1); |
| |
| return 6; |
| } |
| |
| /* prepare list12, imm5, imm16 */ |
| int |
| OP_B0780 (void) |
| { |
| int i; |
| |
| trace_input ("prepare", OP_PUSHPOP1, 0); |
| |
| /* Store the registers with lower number registers being placed at higher addresses. */ |
| for (i = 0; i < 12; i++) |
| if ((OP[3] & (1 << type1_regs[ i ]))) |
| { |
| SP -= 4; |
| store_mem (SP, 4, State.regs[ 20 + i ]); |
| } |
| |
| SP -= (OP[3] & 0x3e) << 1; |
| |
| EP = EXTEND16 (load_mem (PC + 4, 2)); |
| |
| trace_output (OP_PUSHPOP1); |
| |
| return 6; |
| } |
| |
| /* prepare list12, imm5, sp */ |
| int |
| OP_30780 (void) |
| { |
| int i; |
| |
| trace_input ("prepare", OP_PUSHPOP1, 0); |
| |
| /* Store the registers with lower number registers being placed at higher addresses. */ |
| for (i = 0; i < 12; i++) |
| if ((OP[3] & (1 << type1_regs[ i ]))) |
| { |
| SP -= 4; |
| store_mem (SP, 4, State.regs[ 20 + i ]); |
| } |
| |
| SP -= (OP[3] & 0x3e) << 1; |
| |
| EP = SP; |
| |
| trace_output (OP_PUSHPOP1); |
| |
| return 4; |
| } |
| |
| /* mul reg1, reg2, reg3 */ |
| int |
| OP_22007E0 (void) |
| { |
| trace_input ("mul", OP_REG_REG_REG, 0); |
| |
| Multiply64 (1, State.regs[ OP[0] ]); |
| |
| trace_output (OP_REG_REG_REG); |
| |
| return 4; |
| } |
| |
| /* popmh list18 */ |
| int |
| OP_307F0 (void) |
| { |
| int i; |
| |
| trace_input ("popmh", OP_PUSHPOP2, 0); |
| |
| if (OP[3] & (1 << 19)) |
| { |
| if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) |
| { |
| FEPSW = load_mem ( SP & ~ 3, 4); |
| FEPC = load_mem ((SP + 4) & ~ 3, 4); |
| } |
| else |
| { |
| EIPSW = load_mem ( SP & ~ 3, 4); |
| EIPC = load_mem ((SP + 4) & ~ 3, 4); |
| } |
| |
| SP += 8; |
| } |
| |
| /* Load the registers with lower number registers being retrieved from higher addresses. */ |
| for (i = 16; i--;) |
| if ((OP[3] & (1 << type2_regs[ i ]))) |
| { |
| State.regs[ i + 16 ] = load_mem (SP & ~ 3, 4); |
| SP += 4; |
| } |
| |
| trace_output (OP_PUSHPOP2); |
| |
| return 4; |
| } |
| |
| /* popml lsit18 */ |
| int |
| OP_107F0 (void) |
| { |
| int i; |
| |
| trace_input ("popml", OP_PUSHPOP3, 0); |
| |
| if (OP[3] & (1 << 19)) |
| { |
| if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) |
| { |
| FEPSW = load_mem ( SP & ~ 3, 4); |
| FEPC = load_mem ((SP + 4) & ~ 3, 4); |
| } |
| else |
| { |
| EIPSW = load_mem ( SP & ~ 3, 4); |
| EIPC = load_mem ((SP + 4) & ~ 3, 4); |
| } |
| |
| SP += 8; |
| } |
| |
| if (OP[3] & (1 << 3)) |
| { |
| PSW = load_mem (SP & ~ 3, 4); |
| SP += 4; |
| } |
| |
| /* Load the registers with lower number registers being retrieved from higher addresses. */ |
| for (i = 15; i--;) |
| if ((OP[3] & (1 << type3_regs[ i ]))) |
| { |
| State.regs[ i + 1 ] = load_mem (SP & ~ 3, 4); |
| SP += 4; |
| } |
| |
| trace_output (OP_PUSHPOP2); |
| |
| return 4; |
| } |
| |
| /* pushmh list18 */ |
| int |
| OP_307E0 (void) |
| { |
| int i; |
| |
| trace_input ("pushmh", OP_PUSHPOP2, 0); |
| |
| /* Store the registers with lower number registers being placed at higher addresses. */ |
| for (i = 0; i < 16; i++) |
| if ((OP[3] & (1 << type2_regs[ i ]))) |
| { |
| SP -= 4; |
| store_mem (SP & ~ 3, 4, State.regs[ i + 16 ]); |
| } |
| |
| if (OP[3] & (1 << 19)) |
| { |
| SP -= 8; |
| |
| if ((PSW & PSW_NP) && ((PSW & PSW_EP) == 0)) |
| { |
| store_mem ((SP + 4) & ~ 3, 4, FEPC); |
| store_mem ( SP & ~ 3, 4, FEPSW); |
| } |
| else |
| { |
| store_mem ((SP + 4) & ~ 3, 4, EIPC); |
| store_mem ( SP & ~ 3, 4, EIPSW); |
| } |
| } |
| |
| trace_output (OP_PUSHPOP2); |
| |
| return 4; |
| } |
| |
| /* V850E2R FPU functions */ |
| /* |
| sim_fpu_status_invalid_snan = 1, -V--- (sim spec.) |
| sim_fpu_status_invalid_qnan = 2, ----- (sim spec.) |
| sim_fpu_status_invalid_isi = 4, (inf - inf) -V--- |
| sim_fpu_status_invalid_idi = 8, (inf / inf) -V--- |
| sim_fpu_status_invalid_zdz = 16, (0 / 0) -V--- |
| sim_fpu_status_invalid_imz = 32, (inf * 0) -V--- |
| sim_fpu_status_invalid_cvi = 64, convert to integer -V--- |
| sim_fpu_status_invalid_div0 = 128, (X / 0) --Z-- |
| sim_fpu_status_invalid_cmp = 256, compare ----- (sim spec.) |
| sim_fpu_status_invalid_sqrt = 512, -V--- |
| sim_fpu_status_rounded = 1024, I---- |
| sim_fpu_status_inexact = 2048, I---- (sim spec.) |
| sim_fpu_status_overflow = 4096, I--O- |
| sim_fpu_status_underflow = 8192, I---U |
| sim_fpu_status_denorm = 16384, ----U (sim spec.) |
| */ |
| |
| void |
| update_fpsr (SIM_DESC sd, sim_fpu_status status, unsigned int mask, unsigned int double_op_p) |
| { |
| unsigned int fpsr = FPSR & mask; |
| |
| unsigned int flags = 0; |
| |
| if (fpsr & FPSR_XEI |
| && ((status & (sim_fpu_status_rounded |
| | sim_fpu_status_overflow |
| | sim_fpu_status_inexact)) |
| || (status & sim_fpu_status_underflow |
| && (fpsr & (FPSR_XEU | FPSR_XEI)) == 0 |
| && fpsr & FPSR_FS))) |
| { |
| flags |= FPSR_XCI | FPSR_XPI; |
| } |
| |
| if (fpsr & FPSR_XEV |
| && (status & (sim_fpu_status_invalid_isi |
| | sim_fpu_status_invalid_imz |
| | sim_fpu_status_invalid_zdz |
| | sim_fpu_status_invalid_idi |
| | sim_fpu_status_invalid_cvi |
| | sim_fpu_status_invalid_sqrt |
| | sim_fpu_status_invalid_snan))) |
| { |
| flags |= FPSR_XCV | FPSR_XPV; |
| } |
| |
| if (fpsr & FPSR_XEZ |
| && (status & sim_fpu_status_invalid_div0)) |
| { |
| flags |= FPSR_XCV | FPSR_XPV; |
| } |
| |
| if (fpsr & FPSR_XEO |
| && (status & sim_fpu_status_overflow)) |
| { |
| flags |= FPSR_XCO | FPSR_XPO; |
| } |
| |
| if (((fpsr & FPSR_XEU) || (fpsr & FPSR_FS) == 0) |
| && (status & (sim_fpu_status_underflow |
| | sim_fpu_status_denorm))) |
| { |
| flags |= FPSR_XCU | FPSR_XPU; |
| } |
| |
| if (flags) |
| { |
| FPSR &= ~FPSR_XC; |
| FPSR |= flags; |
| |
| SignalExceptionFPE (sd, double_op_p); |
| } |
| } |
| |
| /* Exception. */ |
| |
| void |
| SignalException (SIM_DESC sd) |
| { |
| if (MPM & MPM_AUE) |
| { |
| PSW = PSW & ~(PSW_NPV | PSW_DMP | PSW_IMP); |
| } |
| } |
| |
| void |
| SignalExceptionFPE (SIM_DESC sd, unsigned int double_op_p) |
| { |
| if (((PSW & (PSW_NP|PSW_ID)) == 0) |
| || !(FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM))) |
| { |
| EIPC = PC; |
| EIPSW = PSW; |
| EIIC = (FPSR & (double_op_p ? FPSR_DEM : FPSR_SEM)) |
| ? 0x71 : 0x72; |
| PSW |= (PSW_EP | PSW_ID); |
| PC = 0x70; |
| |
| SignalException (sd); |
| } |
| } |
| |
| void |
| check_invalid_snan (SIM_DESC sd, sim_fpu_status status, unsigned int double_op_p) |
| { |
| if ((FPSR & FPSR_XEI) |
| && (status & sim_fpu_status_invalid_snan)) |
| { |
| FPSR &= ~FPSR_XC; |
| FPSR |= FPSR_XCV; |
| FPSR |= FPSR_XPV; |
| SignalExceptionFPE (sd, double_op_p); |
| } |
| } |
| |
| int |
| v850_float_compare (SIM_DESC sd, int cmp, sim_fpu wop1, sim_fpu wop2, int double_op_p) |
| { |
| int result = -1; |
| |
| if (sim_fpu_is_nan (&wop1) || sim_fpu_is_nan (&wop2)) |
| { |
| if (cmp & 0x8) |
| { |
| if (FPSR & FPSR_XEV) |
| { |
| FPSR |= FPSR_XCV | FPSR_XPV; |
| SignalExceptionFPE (sd, double_op_p); |
| } |
| } |
| |
| switch (cmp) |
| { |
| case FPU_CMP_F: |
| result = 0; |
| break; |
| case FPU_CMP_UN: |
| result = 1; |
| break; |
| case FPU_CMP_EQ: |
| result = 0; |
| break; |
| case FPU_CMP_UEQ: |
| result = 1; |
| break; |
| case FPU_CMP_OLT: |
| result = 0; |
| break; |
| case FPU_CMP_ULT: |
| result = 1; |
| break; |
| case FPU_CMP_OLE: |
| result = 0; |
| break; |
| case FPU_CMP_ULE: |
| result = 1; |
| break; |
| case FPU_CMP_SF: |
| result = 0; |
| break; |
| case FPU_CMP_NGLE: |
| result = 1; |
| break; |
| case FPU_CMP_SEQ: |
| result = 0; |
| break; |
| case FPU_CMP_NGL: |
| result = 1; |
| break; |
| case FPU_CMP_LT: |
| result = 0; |
| break; |
| case FPU_CMP_NGE: |
| result = 1; |
| break; |
| case FPU_CMP_LE: |
| result = 0; |
| break; |
| case FPU_CMP_NGT: |
| result = 1; |
| break; |
| default: |
| abort (); |
| } |
| } |
| else if (sim_fpu_is_infinity (&wop1) && sim_fpu_is_infinity (&wop2) |
| && sim_fpu_sign (&wop1) == sim_fpu_sign (&wop2)) |
| { |
| switch (cmp) |
| { |
| case FPU_CMP_F: |
| result = 0; |
| break; |
| case FPU_CMP_UN: |
| result = 0; |
| break; |
| case FPU_CMP_EQ: |
| result = 1; |
| break; |
| case FPU_CMP_UEQ: |
| result = 1; |
| break; |
| case FPU_CMP_OLT: |
| result = 0; |
| break; |
| case FPU_CMP_ULT: |
| result = 0; |
| break; |
| case FPU_CMP_OLE: |
| result = 1; |
| break; |
| case FPU_CMP_ULE: |
| result = 1; |
| break; |
| case FPU_CMP_SF: |
| result = 0; |
| break; |
| case FPU_CMP_NGLE: |
| result = 0; |
| break; |
| case FPU_CMP_SEQ: |
| result = 1; |
| break; |
| case FPU_CMP_NGL: |
| result = 1; |
| break; |
| case FPU_CMP_LT: |
| result = 0; |
| break; |
| case FPU_CMP_NGE: |
| result = 0; |
| break; |
| case FPU_CMP_LE: |
| result = 1; |
| break; |
| case FPU_CMP_NGT: |
| result = 1; |
| break; |
| default: |
| abort (); |
| } |
| } |
| else |
| { |
| int gt = 0,lt = 0,eq = 0, status; |
| |
| status = sim_fpu_cmp (&wop1, &wop2); |
| |
| switch (status) |
| { |
| case SIM_FPU_IS_SNAN: |
| case SIM_FPU_IS_QNAN: |
| abort (); |
| break; |
| |
| case SIM_FPU_IS_NINF: |
| lt = 1; |
| break; |
| case SIM_FPU_IS_PINF: |
| gt = 1; |
| break; |
| case SIM_FPU_IS_NNUMBER: |
| lt = 1; |
| break; |
| case SIM_FPU_IS_PNUMBER: |
| gt = 1; |
| break; |
| case SIM_FPU_IS_NDENORM: |
| lt = 1; |
| break; |
| case SIM_FPU_IS_PDENORM: |
| gt = 1; |
| break; |
| case SIM_FPU_IS_NZERO: |
| case SIM_FPU_IS_PZERO: |
| eq = 1; |
| break; |
| } |
| |
| switch (cmp) |
| { |
| case FPU_CMP_F: |
| result = 0; |
| break; |
| case FPU_CMP_UN: |
| result = 0; |
| break; |
| case FPU_CMP_EQ: |
| result = eq; |
| break; |
| case FPU_CMP_UEQ: |
| result = eq; |
| break; |
| case FPU_CMP_OLT: |
| result = lt; |
| break; |
| case FPU_CMP_ULT: |
| result = lt; |
| break; |
| case FPU_CMP_OLE: |
| result = lt || eq; |
| break; |
| case FPU_CMP_ULE: |
| result = lt || eq; |
| break; |
| case FPU_CMP_SF: |
| result = 0; |
| break; |
| case FPU_CMP_NGLE: |
| result = 0; |
| break; |
| case FPU_CMP_SEQ: |
| result = eq; |
| break; |
| case FPU_CMP_NGL: |
| result = eq; |
| break; |
| case FPU_CMP_LT: |
| result = lt; |
| break; |
| case FPU_CMP_NGE: |
| result = lt; |
| break; |
| case FPU_CMP_LE: |
| result = lt || eq; |
| break; |
| case FPU_CMP_NGT: |
| result = lt || eq; |
| break; |
| } |
| } |
| |
| ASSERT (result != -1); |
| return result; |
| } |
| |
| void |
| v850_div (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) |
| { |
| signed long int quotient; |
| signed long int remainder; |
| signed long int divide_by; |
| signed long int divide_this; |
| bfd_boolean overflow = FALSE; |
| |
| /* Compute the result. */ |
| divide_by = op0; |
| divide_this = op1; |
| |
| if (divide_by == 0 || (divide_by == -1 && divide_this == (1 << 31))) |
| { |
| overflow = TRUE; |
| divide_by = 1; |
| } |
| |
| quotient = divide_this / divide_by; |
| remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient < 0) PSW |= PSW_S; |
| |
| *op2p = quotient; |
| *op3p = remainder; |
| } |
| |
| void |
| v850_divu (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p, unsigned int *op3p) |
| { |
| unsigned long int quotient; |
| unsigned long int remainder; |
| unsigned long int divide_by; |
| unsigned long int divide_this; |
| bfd_boolean overflow = FALSE; |
| |
| /* Compute the result. */ |
| |
| divide_by = op0; |
| divide_this = op1; |
| |
| if (divide_by == 0) |
| { |
| overflow = TRUE; |
| divide_by = 1; |
| } |
| |
| quotient = divide_this / divide_by; |
| remainder = divide_this % divide_by; |
| |
| /* Set condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV); |
| |
| if (overflow) PSW |= PSW_OV; |
| if (quotient == 0) PSW |= PSW_Z; |
| if (quotient & 0x80000000) PSW |= PSW_S; |
| |
| *op2p = quotient; |
| *op3p = remainder; |
| } |
| |
| void |
| v850_sar (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) |
| { |
| unsigned int result, z, s, cy; |
| |
| op0 &= 0x1f; |
| result = (signed)op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 & (1 << (op0 - 1))); |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| |
| *op2p = result; |
| } |
| |
| void |
| v850_shl (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) |
| { |
| unsigned int result, z, s, cy; |
| |
| op0 &= 0x1f; |
| result = op1 << op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 & (1 << (32 - op0))); |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| |
| *op2p = result; |
| } |
| |
| void |
| v850_rotl (SIM_DESC sd, unsigned int amount, unsigned int src, unsigned int * dest) |
| { |
| unsigned int result, z, s, cy; |
| |
| amount &= 0x1f; |
| result = src << amount; |
| result |= src >> (32 - amount); |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = ! (result & 1); |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| |
| * dest = result; |
| } |
| |
| void |
| v850_bins (SIM_DESC sd, unsigned int source, unsigned int lsb, unsigned int msb, |
| unsigned int * dest) |
| { |
| unsigned int mask; |
| unsigned int result, pos, width; |
| unsigned int z, s; |
| |
| pos = lsb; |
| width = (msb - lsb) + 1; |
| |
| mask = ~ (-(1 << width)); |
| source &= mask; |
| mask <<= pos; |
| result = (* dest) & ~ mask; |
| result |= source << pos; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = result & 0x80000000; |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV ); |
| PSW |= (z ? PSW_Z : 0) | (s ? PSW_S : 0); |
| |
| * dest = result; |
| } |
| |
| void |
| v850_shr (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) |
| { |
| unsigned int result, z, s, cy; |
| |
| op0 &= 0x1f; |
| result = op1 >> op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 & (1 << (op0 - 1))); |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_OV | PSW_CY); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0)); |
| |
| *op2p = result; |
| } |
| |
| void |
| v850_satadd (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) |
| { |
| unsigned int result, z, s, cy, ov, sat; |
| |
| result = op0 + op1; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (result < op0 || result < op1); |
| ov = ((op0 & 0x80000000) == (op1 & 0x80000000) |
| && (op0 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| result = 0x7fffffff; |
| PSW &= ~PSW_S; |
| } |
| else if (sat) |
| { |
| result = 0x80000000; |
| PSW |= PSW_S; |
| } |
| |
| *op2p = result; |
| } |
| |
| void |
| v850_satsub (SIM_DESC sd, unsigned int op0, unsigned int op1, unsigned int *op2p) |
| { |
| unsigned int result, z, s, cy, ov, sat; |
| |
| /* Compute the result. */ |
| result = op1 - op0; |
| |
| /* Compute the condition codes. */ |
| z = (result == 0); |
| s = (result & 0x80000000); |
| cy = (op1 < op0); |
| ov = ((op1 & 0x80000000) != (op0 & 0x80000000) |
| && (op1 & 0x80000000) != (result & 0x80000000)); |
| sat = ov; |
| |
| /* Store the result and condition codes. */ |
| PSW &= ~(PSW_Z | PSW_S | PSW_CY | PSW_OV); |
| PSW |= ((z ? PSW_Z : 0) | (s ? PSW_S : 0) |
| | (cy ? PSW_CY : 0) | (ov ? PSW_OV : 0) |
| | (sat ? PSW_SAT : 0)); |
| |
| /* Handle saturated results. */ |
| if (sat && s) |
| { |
| result = 0x7fffffff; |
| PSW &= ~PSW_S; |
| } |
| else if (sat) |
| { |
| result = 0x80000000; |
| PSW |= PSW_S; |
| } |
| |
| *op2p = result; |
| } |
| |
| unsigned32 |
| load_data_mem (SIM_DESC sd, |
| SIM_ADDR addr, |
| int len) |
| { |
| uint32 data; |
| |
| switch (len) |
| { |
| case 1: |
| data = sim_core_read_unaligned_1 (STATE_CPU (sd, 0), |
| PC, read_map, addr); |
| break; |
| case 2: |
| data = sim_core_read_unaligned_2 (STATE_CPU (sd, 0), |
| PC, read_map, addr); |
| break; |
| case 4: |
| data = sim_core_read_unaligned_4 (STATE_CPU (sd, 0), |
| PC, read_map, addr); |
| break; |
| default: |
| abort (); |
| } |
| return data; |
| } |
| |
| void |
| store_data_mem (SIM_DESC sd, |
| SIM_ADDR addr, |
| int len, |
| unsigned32 data) |
| { |
| switch (len) |
| { |
| case 1: |
| store_mem (addr, 1, data); |
| break; |
| case 2: |
| store_mem (addr, 2, data); |
| break; |
| case 4: |
| store_mem (addr, 4, data); |
| break; |
| default: |
| abort (); |
| } |
| } |
| |
| int |
| mpu_load_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) |
| { |
| int result = 1; |
| |
| if (PSW & PSW_DMP) |
| { |
| if (IPE0 && addr >= IPA2ADDR (IPA0L) && addr <= IPA2ADDR (IPA0L) && IPR0) |
| { |
| /* text area */ |
| } |
| else if (IPE1 && addr >= IPA2ADDR (IPA1L) && addr <= IPA2ADDR (IPA1L) && IPR1) |
| { |
| /* text area */ |
| } |
| else if (IPE2 && addr >= IPA2ADDR (IPA2L) && addr <= IPA2ADDR (IPA2L) && IPR2) |
| { |
| /* text area */ |
| } |
| else if (IPE3 && addr >= IPA2ADDR (IPA3L) && addr <= IPA2ADDR (IPA3L) && IPR3) |
| { |
| /* text area */ |
| } |
| else if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) |
| { |
| /* preifarallel area */ |
| } |
| else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) |
| { |
| /* stack area */ |
| } |
| else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPR0 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPR1 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPR2 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPR3 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else |
| { |
| VMECR &= ~(VMECR_VMW | VMECR_VMX); |
| VMECR |= VMECR_VMR; |
| VMADR = addr; |
| VMTID = TID; |
| FEIC = 0x431; |
| |
| PC = 0x30; |
| |
| SignalException (sd); |
| result = 0; |
| } |
| } |
| |
| return result; |
| } |
| |
| int |
| mpu_store_mem_test (SIM_DESC sd, unsigned int addr, int size, int base_reg) |
| { |
| int result = 1; |
| |
| if (PSW & PSW_DMP) |
| { |
| if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) |
| { |
| /* preifarallel area */ |
| } |
| else if (addr >= PPA2ADDR (SPAL) && addr <= DPA2ADDR (SPAU)) |
| { |
| /* stack area */ |
| } |
| else if (DPE0 && addr >= DPA2ADDR (DPA0L) && addr <= DPA2ADDR (DPA0L) && DPW0 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE1 && addr >= DPA2ADDR (DPA1L) && addr <= DPA2ADDR (DPA1L) && DPW1 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE2 && addr >= DPA2ADDR (DPA2L) && addr <= DPA2ADDR (DPA2L) && DPW2 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else if (DPE3 && addr >= DPA2ADDR (DPA3L) && addr <= DPA2ADDR (DPA3L) && DPW3 |
| && ((SPAL & SPAL_SPS) ? base_reg == SP_REGNO : 1)) |
| { |
| /* data area */ |
| } |
| else |
| { |
| if (addr >= PPA2ADDR (PPA & ~PPM) && addr <= DPA2ADDR (PPA | PPM)) |
| { |
| FEIC = 0x432; |
| VPTID = TID; |
| VPADR = PC; |
| #ifdef NOT_YET |
| VIP_PP; |
| VPECR; |
| #endif |
| } |
| else |
| { |
| FEIC = 0x431; |
| VMTID = TID; |
| VMADR = VMECR; |
| VMECR &= ~(VMECR_VMW | VMECR_VMX); |
| VMECR |= VMECR_VMR; |
| PC = 0x30; |
| } |
| result = 0; |
| } |
| } |
| |
| return result; |
| } |
| |