| /* Target-dependent code for the HP PA-RISC architecture. |
| |
| Copyright (C) 1986-2021 Free Software Foundation, Inc. |
| |
| Contributed by the Center for Software Science at the |
| University of Utah (pa-gdb-bugs@cs.utah.edu). |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "bfd.h" |
| #include "inferior.h" |
| #include "regcache.h" |
| #include "completer.h" |
| #include "osabi.h" |
| #include "arch-utils.h" |
| /* For argument passing to the inferior. */ |
| #include "symtab.h" |
| #include "dis-asm.h" |
| #include "trad-frame.h" |
| #include "frame-unwind.h" |
| #include "frame-base.h" |
| |
| #include "gdbcore.h" |
| #include "gdbcmd.h" |
| #include "gdbtypes.h" |
| #include "objfiles.h" |
| #include "hppa-tdep.h" |
| #include <algorithm> |
| |
| static bool hppa_debug = false; |
| |
| /* Some local constants. */ |
| static const int hppa32_num_regs = 128; |
| static const int hppa64_num_regs = 96; |
| |
| /* We use the objfile->obj_private pointer for two things: |
| * 1. An unwind table; |
| * |
| * 2. A pointer to any associated shared library object. |
| * |
| * #defines are used to help refer to these objects. |
| */ |
| |
| /* Info about the unwind table associated with an object file. |
| * This is hung off of the "objfile->obj_private" pointer, and |
| * is allocated in the objfile's psymbol obstack. This allows |
| * us to have unique unwind info for each executable and shared |
| * library that we are debugging. |
| */ |
| struct hppa_unwind_info |
| { |
| struct unwind_table_entry *table; /* Pointer to unwind info */ |
| struct unwind_table_entry *cache; /* Pointer to last entry we found */ |
| int last; /* Index of last entry */ |
| }; |
| |
| struct hppa_objfile_private |
| { |
| struct hppa_unwind_info *unwind_info; /* a pointer */ |
| struct so_list *so_info; /* a pointer */ |
| CORE_ADDR dp; |
| |
| int dummy_call_sequence_reg; |
| CORE_ADDR dummy_call_sequence_addr; |
| }; |
| |
| /* hppa-specific object data -- unwind and solib info. |
| TODO/maybe: think about splitting this into two parts; the unwind data is |
| common to all hppa targets, but is only used in this file; we can register |
| that separately and make this static. The solib data is probably hpux- |
| specific, so we can create a separate extern objfile_data that is registered |
| by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */ |
| static const struct objfile_key<hppa_objfile_private, |
| gdb::noop_deleter<hppa_objfile_private>> |
| hppa_objfile_priv_data; |
| |
| /* Get at various relevant fields of an instruction word. */ |
| #define MASK_5 0x1f |
| #define MASK_11 0x7ff |
| #define MASK_14 0x3fff |
| #define MASK_21 0x1fffff |
| |
| /* Sizes (in bytes) of the native unwind entries. */ |
| #define UNWIND_ENTRY_SIZE 16 |
| #define STUB_UNWIND_ENTRY_SIZE 8 |
| |
| /* Routines to extract various sized constants out of hppa |
| instructions. */ |
| |
| /* This assumes that no garbage lies outside of the lower bits of |
| value. */ |
| |
| static int |
| hppa_sign_extend (unsigned val, unsigned bits) |
| { |
| return (int) (val >> (bits - 1) ? (-(1 << bits)) | val : val); |
| } |
| |
| /* For many immediate values the sign bit is the low bit! */ |
| |
| static int |
| hppa_low_hppa_sign_extend (unsigned val, unsigned bits) |
| { |
| return (int) ((val & 0x1 ? (-(1 << (bits - 1))) : 0) | val >> 1); |
| } |
| |
| /* Extract the bits at positions between FROM and TO, using HP's numbering |
| (MSB = 0). */ |
| |
| int |
| hppa_get_field (unsigned word, int from, int to) |
| { |
| return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1)); |
| } |
| |
| /* Extract the immediate field from a ld{bhw}s instruction. */ |
| |
| int |
| hppa_extract_5_load (unsigned word) |
| { |
| return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5); |
| } |
| |
| /* Extract the immediate field from a break instruction. */ |
| |
| unsigned |
| hppa_extract_5r_store (unsigned word) |
| { |
| return (word & MASK_5); |
| } |
| |
| /* Extract the immediate field from a {sr}sm instruction. */ |
| |
| unsigned |
| hppa_extract_5R_store (unsigned word) |
| { |
| return (word >> 16 & MASK_5); |
| } |
| |
| /* Extract a 14 bit immediate field. */ |
| |
| int |
| hppa_extract_14 (unsigned word) |
| { |
| return hppa_low_hppa_sign_extend (word & MASK_14, 14); |
| } |
| |
| /* Extract a 21 bit constant. */ |
| |
| int |
| hppa_extract_21 (unsigned word) |
| { |
| int val; |
| |
| word &= MASK_21; |
| word <<= 11; |
| val = hppa_get_field (word, 20, 20); |
| val <<= 11; |
| val |= hppa_get_field (word, 9, 19); |
| val <<= 2; |
| val |= hppa_get_field (word, 5, 6); |
| val <<= 5; |
| val |= hppa_get_field (word, 0, 4); |
| val <<= 2; |
| val |= hppa_get_field (word, 7, 8); |
| return hppa_sign_extend (val, 21) << 11; |
| } |
| |
| /* extract a 17 bit constant from branch instructions, returning the |
| 19 bit signed value. */ |
| |
| int |
| hppa_extract_17 (unsigned word) |
| { |
| return hppa_sign_extend (hppa_get_field (word, 19, 28) | |
| hppa_get_field (word, 29, 29) << 10 | |
| hppa_get_field (word, 11, 15) << 11 | |
| (word & 0x1) << 16, 17) << 2; |
| } |
| |
| CORE_ADDR |
| hppa_symbol_address(const char *sym) |
| { |
| struct bound_minimal_symbol minsym; |
| |
| minsym = lookup_minimal_symbol (sym, NULL, NULL); |
| if (minsym.minsym) |
| return BMSYMBOL_VALUE_ADDRESS (minsym); |
| else |
| return (CORE_ADDR)-1; |
| } |
| |
| static struct hppa_objfile_private * |
| hppa_init_objfile_priv_data (struct objfile *objfile) |
| { |
| hppa_objfile_private *priv |
| = OBSTACK_ZALLOC (&objfile->objfile_obstack, hppa_objfile_private); |
| |
| hppa_objfile_priv_data.set (objfile, priv); |
| |
| return priv; |
| } |
| |
| |
| /* Compare the start address for two unwind entries returning 1 if |
| the first address is larger than the second, -1 if the second is |
| larger than the first, and zero if they are equal. */ |
| |
| static int |
| compare_unwind_entries (const void *arg1, const void *arg2) |
| { |
| const struct unwind_table_entry *a = (const struct unwind_table_entry *) arg1; |
| const struct unwind_table_entry *b = (const struct unwind_table_entry *) arg2; |
| |
| if (a->region_start > b->region_start) |
| return 1; |
| else if (a->region_start < b->region_start) |
| return -1; |
| else |
| return 0; |
| } |
| |
| static void |
| record_text_segment_lowaddr (bfd *abfd, asection *section, void *data) |
| { |
| if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) |
| { |
| bfd_vma value = section->vma - section->filepos; |
| CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data; |
| |
| if (value < *low_text_segment_address) |
| *low_text_segment_address = value; |
| } |
| } |
| |
| static void |
| internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table, |
| asection *section, unsigned int entries, |
| size_t size, CORE_ADDR text_offset) |
| { |
| /* We will read the unwind entries into temporary memory, then |
| fill in the actual unwind table. */ |
| |
| if (size > 0) |
| { |
| struct gdbarch *gdbarch = objfile->arch (); |
| unsigned long tmp; |
| unsigned i; |
| char *buf = (char *) alloca (size); |
| CORE_ADDR low_text_segment_address; |
| |
| /* For ELF targets, then unwinds are supposed to |
| be segment relative offsets instead of absolute addresses. |
| |
| Note that when loading a shared library (text_offset != 0) the |
| unwinds are already relative to the text_offset that will be |
| passed in. */ |
| if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0) |
| { |
| low_text_segment_address = -1; |
| |
| bfd_map_over_sections (objfile->obfd, |
| record_text_segment_lowaddr, |
| &low_text_segment_address); |
| |
| text_offset = low_text_segment_address; |
| } |
| else if (gdbarch_tdep (gdbarch)->solib_get_text_base) |
| { |
| text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile); |
| } |
| |
| bfd_get_section_contents (objfile->obfd, section, buf, 0, size); |
| |
| /* Now internalize the information being careful to handle host/target |
| endian issues. */ |
| for (i = 0; i < entries; i++) |
| { |
| table[i].region_start = bfd_get_32 (objfile->obfd, |
| (bfd_byte *) buf); |
| table[i].region_start += text_offset; |
| buf += 4; |
| table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| table[i].region_end += text_offset; |
| buf += 4; |
| tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| buf += 4; |
| table[i].Cannot_unwind = (tmp >> 31) & 0x1; |
| table[i].Millicode = (tmp >> 30) & 0x1; |
| table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1; |
| table[i].Region_description = (tmp >> 27) & 0x3; |
| table[i].reserved = (tmp >> 26) & 0x1; |
| table[i].Entry_SR = (tmp >> 25) & 0x1; |
| table[i].Entry_FR = (tmp >> 21) & 0xf; |
| table[i].Entry_GR = (tmp >> 16) & 0x1f; |
| table[i].Args_stored = (tmp >> 15) & 0x1; |
| table[i].Variable_Frame = (tmp >> 14) & 0x1; |
| table[i].Separate_Package_Body = (tmp >> 13) & 0x1; |
| table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1; |
| table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1; |
| table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1; |
| table[i].sr4export = (tmp >> 9) & 0x1; |
| table[i].cxx_info = (tmp >> 8) & 0x1; |
| table[i].cxx_try_catch = (tmp >> 7) & 0x1; |
| table[i].sched_entry_seq = (tmp >> 6) & 0x1; |
| table[i].reserved1 = (tmp >> 5) & 0x1; |
| table[i].Save_SP = (tmp >> 4) & 0x1; |
| table[i].Save_RP = (tmp >> 3) & 0x1; |
| table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1; |
| table[i].save_r19 = (tmp >> 1) & 0x1; |
| table[i].Cleanup_defined = tmp & 0x1; |
| tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf); |
| buf += 4; |
| table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1; |
| table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1; |
| table[i].Large_frame = (tmp >> 29) & 0x1; |
| table[i].alloca_frame = (tmp >> 28) & 0x1; |
| table[i].reserved2 = (tmp >> 27) & 0x1; |
| table[i].Total_frame_size = tmp & 0x7ffffff; |
| |
| /* Stub unwinds are handled elsewhere. */ |
| table[i].stub_unwind.stub_type = 0; |
| table[i].stub_unwind.padding = 0; |
| } |
| } |
| } |
| |
| /* Read in the backtrace information stored in the `$UNWIND_START$' section of |
| the object file. This info is used mainly by find_unwind_entry() to find |
| out the stack frame size and frame pointer used by procedures. We put |
| everything on the psymbol obstack in the objfile so that it automatically |
| gets freed when the objfile is destroyed. */ |
| |
| static void |
| read_unwind_info (struct objfile *objfile) |
| { |
| asection *unwind_sec, *stub_unwind_sec; |
| size_t unwind_size, stub_unwind_size, total_size; |
| unsigned index, unwind_entries; |
| unsigned stub_entries, total_entries; |
| CORE_ADDR text_offset; |
| struct hppa_unwind_info *ui; |
| struct hppa_objfile_private *obj_private; |
| |
| text_offset = objfile->text_section_offset (); |
| ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack, |
| sizeof (struct hppa_unwind_info)); |
| |
| ui->table = NULL; |
| ui->cache = NULL; |
| ui->last = -1; |
| |
| /* For reasons unknown the HP PA64 tools generate multiple unwinder |
| sections in a single executable. So we just iterate over every |
| section in the BFD looking for unwinder sections instead of trying |
| to do a lookup with bfd_get_section_by_name. |
| |
| First determine the total size of the unwind tables so that we |
| can allocate memory in a nice big hunk. */ |
| total_entries = 0; |
| for (unwind_sec = objfile->obfd->sections; |
| unwind_sec; |
| unwind_sec = unwind_sec->next) |
| { |
| if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
| || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) |
| { |
| unwind_size = bfd_section_size (unwind_sec); |
| unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
| |
| total_entries += unwind_entries; |
| } |
| } |
| |
| /* Now compute the size of the stub unwinds. Note the ELF tools do not |
| use stub unwinds at the current time. */ |
| stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$"); |
| |
| if (stub_unwind_sec) |
| { |
| stub_unwind_size = bfd_section_size (stub_unwind_sec); |
| stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE; |
| } |
| else |
| { |
| stub_unwind_size = 0; |
| stub_entries = 0; |
| } |
| |
| /* Compute total number of unwind entries and their total size. */ |
| total_entries += stub_entries; |
| total_size = total_entries * sizeof (struct unwind_table_entry); |
| |
| /* Allocate memory for the unwind table. */ |
| ui->table = (struct unwind_table_entry *) |
| obstack_alloc (&objfile->objfile_obstack, total_size); |
| ui->last = total_entries - 1; |
| |
| /* Now read in each unwind section and internalize the standard unwind |
| entries. */ |
| index = 0; |
| for (unwind_sec = objfile->obfd->sections; |
| unwind_sec; |
| unwind_sec = unwind_sec->next) |
| { |
| if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0 |
| || strcmp (unwind_sec->name, ".PARISC.unwind") == 0) |
| { |
| unwind_size = bfd_section_size (unwind_sec); |
| unwind_entries = unwind_size / UNWIND_ENTRY_SIZE; |
| |
| internalize_unwinds (objfile, &ui->table[index], unwind_sec, |
| unwind_entries, unwind_size, text_offset); |
| index += unwind_entries; |
| } |
| } |
| |
| /* Now read in and internalize the stub unwind entries. */ |
| if (stub_unwind_size > 0) |
| { |
| unsigned int i; |
| char *buf = (char *) alloca (stub_unwind_size); |
| |
| /* Read in the stub unwind entries. */ |
| bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf, |
| 0, stub_unwind_size); |
| |
| /* Now convert them into regular unwind entries. */ |
| for (i = 0; i < stub_entries; i++, index++) |
| { |
| /* Clear out the next unwind entry. */ |
| memset (&ui->table[index], 0, sizeof (struct unwind_table_entry)); |
| |
| /* Convert offset & size into region_start and region_end. |
| Stuff away the stub type into "reserved" fields. */ |
| ui->table[index].region_start = bfd_get_32 (objfile->obfd, |
| (bfd_byte *) buf); |
| ui->table[index].region_start += text_offset; |
| buf += 4; |
| ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd, |
| (bfd_byte *) buf); |
| buf += 2; |
| ui->table[index].region_end |
| = ui->table[index].region_start + 4 * |
| (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1); |
| buf += 2; |
| } |
| |
| } |
| |
| /* Unwind table needs to be kept sorted. */ |
| qsort (ui->table, total_entries, sizeof (struct unwind_table_entry), |
| compare_unwind_entries); |
| |
| /* Keep a pointer to the unwind information. */ |
| obj_private = hppa_objfile_priv_data.get (objfile); |
| if (obj_private == NULL) |
| obj_private = hppa_init_objfile_priv_data (objfile); |
| |
| obj_private->unwind_info = ui; |
| } |
| |
| /* Lookup the unwind (stack backtrace) info for the given PC. We search all |
| of the objfiles seeking the unwind table entry for this PC. Each objfile |
| contains a sorted list of struct unwind_table_entry. Since we do a binary |
| search of the unwind tables, we depend upon them to be sorted. */ |
| |
| struct unwind_table_entry * |
| find_unwind_entry (CORE_ADDR pc) |
| { |
| int first, middle, last; |
| struct hppa_objfile_private *priv; |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ", |
| hex_string (pc)); |
| |
| /* A function at address 0? Not in HP-UX! */ |
| if (pc == (CORE_ADDR) 0) |
| { |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "NULL }\n"); |
| return NULL; |
| } |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| struct hppa_unwind_info *ui; |
| ui = NULL; |
| priv = hppa_objfile_priv_data.get (objfile); |
| if (priv) |
| ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
| |
| if (!ui) |
| { |
| read_unwind_info (objfile); |
| priv = hppa_objfile_priv_data.get (objfile); |
| if (priv == NULL) |
| error (_("Internal error reading unwind information.")); |
| ui = ((struct hppa_objfile_private *) priv)->unwind_info; |
| } |
| |
| /* First, check the cache. */ |
| |
| if (ui->cache |
| && pc >= ui->cache->region_start |
| && pc <= ui->cache->region_end) |
| { |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n", |
| hex_string ((uintptr_t) ui->cache)); |
| return ui->cache; |
| } |
| |
| /* Not in the cache, do a binary search. */ |
| |
| first = 0; |
| last = ui->last; |
| |
| while (first <= last) |
| { |
| middle = (first + last) / 2; |
| if (pc >= ui->table[middle].region_start |
| && pc <= ui->table[middle].region_end) |
| { |
| ui->cache = &ui->table[middle]; |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "%s }\n", |
| hex_string ((uintptr_t) ui->cache)); |
| return &ui->table[middle]; |
| } |
| |
| if (pc < ui->table[middle].region_start) |
| last = middle - 1; |
| else |
| first = middle + 1; |
| } |
| } |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n"); |
| |
| return NULL; |
| } |
| |
| /* Implement the stack_frame_destroyed_p gdbarch method. |
| |
| The epilogue is defined here as the area either on the `bv' instruction |
| itself or an instruction which destroys the function's stack frame. |
| |
| We do not assume that the epilogue is at the end of a function as we can |
| also have return sequences in the middle of a function. */ |
| |
| static int |
| hppa_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| unsigned long status; |
| unsigned int inst; |
| gdb_byte buf[4]; |
| |
| status = target_read_memory (pc, buf, 4); |
| if (status != 0) |
| return 0; |
| |
| inst = extract_unsigned_integer (buf, 4, byte_order); |
| |
| /* The most common way to perform a stack adjustment ldo X(sp),sp |
| We are destroying a stack frame if the offset is negative. */ |
| if ((inst & 0xffffc000) == 0x37de0000 |
| && hppa_extract_14 (inst) < 0) |
| return 1; |
| |
| /* ldw,mb D(sp),X or ldd,mb D(sp),X */ |
| if (((inst & 0x0fc010e0) == 0x0fc010e0 |
| || (inst & 0x0fc010e0) == 0x0fc010e0) |
| && hppa_extract_14 (inst) < 0) |
| return 1; |
| |
| /* bv %r0(%rp) or bv,n %r0(%rp) */ |
| if (inst == 0xe840c000 || inst == 0xe840c002) |
| return 1; |
| |
| return 0; |
| } |
| |
| constexpr gdb_byte hppa_break_insn[] = {0x00, 0x01, 0x00, 0x04}; |
| |
| typedef BP_MANIPULATION (hppa_break_insn) hppa_breakpoint; |
| |
| /* Return the name of a register. */ |
| |
| static const char * |
| hppa32_register_name (struct gdbarch *gdbarch, int i) |
| { |
| static const char *names[] = { |
| "flags", "r1", "rp", "r3", |
| "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", |
| "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", |
| "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "dp", |
| "ret0", "ret1", "sp", "r31", |
| "sar", "pcoqh", "pcsqh", "pcoqt", |
| "pcsqt", "eiem", "iir", "isr", |
| "ior", "ipsw", "goto", "sr4", |
| "sr0", "sr1", "sr2", "sr3", |
| "sr5", "sr6", "sr7", "cr0", |
| "cr8", "cr9", "ccr", "cr12", |
| "cr13", "cr24", "cr25", "cr26", |
| "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", |
| "fpsr", "fpe1", "fpe2", "fpe3", |
| "fpe4", "fpe5", "fpe6", "fpe7", |
| "fr4", "fr4R", "fr5", "fr5R", |
| "fr6", "fr6R", "fr7", "fr7R", |
| "fr8", "fr8R", "fr9", "fr9R", |
| "fr10", "fr10R", "fr11", "fr11R", |
| "fr12", "fr12R", "fr13", "fr13R", |
| "fr14", "fr14R", "fr15", "fr15R", |
| "fr16", "fr16R", "fr17", "fr17R", |
| "fr18", "fr18R", "fr19", "fr19R", |
| "fr20", "fr20R", "fr21", "fr21R", |
| "fr22", "fr22R", "fr23", "fr23R", |
| "fr24", "fr24R", "fr25", "fr25R", |
| "fr26", "fr26R", "fr27", "fr27R", |
| "fr28", "fr28R", "fr29", "fr29R", |
| "fr30", "fr30R", "fr31", "fr31R" |
| }; |
| if (i < 0 || i >= (sizeof (names) / sizeof (*names))) |
| return NULL; |
| else |
| return names[i]; |
| } |
| |
| static const char * |
| hppa64_register_name (struct gdbarch *gdbarch, int i) |
| { |
| static const char *names[] = { |
| "flags", "r1", "rp", "r3", |
| "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", |
| "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", |
| "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "dp", |
| "ret0", "ret1", "sp", "r31", |
| "sar", "pcoqh", "pcsqh", "pcoqt", |
| "pcsqt", "eiem", "iir", "isr", |
| "ior", "ipsw", "goto", "sr4", |
| "sr0", "sr1", "sr2", "sr3", |
| "sr5", "sr6", "sr7", "cr0", |
| "cr8", "cr9", "ccr", "cr12", |
| "cr13", "cr24", "cr25", "cr26", |
| "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad", |
| "fpsr", "fpe1", "fpe2", "fpe3", |
| "fr4", "fr5", "fr6", "fr7", |
| "fr8", "fr9", "fr10", "fr11", |
| "fr12", "fr13", "fr14", "fr15", |
| "fr16", "fr17", "fr18", "fr19", |
| "fr20", "fr21", "fr22", "fr23", |
| "fr24", "fr25", "fr26", "fr27", |
| "fr28", "fr29", "fr30", "fr31" |
| }; |
| if (i < 0 || i >= (sizeof (names) / sizeof (*names))) |
| return NULL; |
| else |
| return names[i]; |
| } |
| |
| /* Map dwarf DBX register numbers to GDB register numbers. */ |
| static int |
| hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| /* The general registers and the sar are the same in both sets. */ |
| if (reg >= 0 && reg <= 32) |
| return reg; |
| |
| /* fr4-fr31 are mapped from 72 in steps of 2. */ |
| if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1)) |
| return HPPA64_FP4_REGNUM + (reg - 72) / 2; |
| |
| return -1; |
| } |
| |
| /* This function pushes a stack frame with arguments as part of the |
| inferior function calling mechanism. |
| |
| This is the version of the function for the 32-bit PA machines, in |
| which later arguments appear at lower addresses. (The stack always |
| grows towards higher addresses.) |
| |
| We simply allocate the appropriate amount of stack space and put |
| arguments into their proper slots. */ |
| |
| static CORE_ADDR |
| hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* Stack base address at which any pass-by-reference parameters are |
| stored. */ |
| CORE_ADDR struct_end = 0; |
| /* Stack base address at which the first parameter is stored. */ |
| CORE_ADDR param_end = 0; |
| |
| /* Two passes. First pass computes the location of everything, |
| second pass writes the bytes out. */ |
| int write_pass; |
| |
| /* Global pointer (r19) of the function we are trying to call. */ |
| CORE_ADDR gp; |
| |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| for (write_pass = 0; write_pass < 2; write_pass++) |
| { |
| CORE_ADDR struct_ptr = 0; |
| /* The first parameter goes into sp-36, each stack slot is 4-bytes. |
| struct_ptr is adjusted for each argument below, so the first |
| argument will end up at sp-36. */ |
| CORE_ADDR param_ptr = 32; |
| int i; |
| int small_struct = 0; |
| |
| for (i = 0; i < nargs; i++) |
| { |
| struct value *arg = args[i]; |
| struct type *type = check_typedef (value_type (arg)); |
| /* The corresponding parameter that is pushed onto the |
| stack, and [possibly] passed in a register. */ |
| gdb_byte param_val[8]; |
| int param_len; |
| memset (param_val, 0, sizeof param_val); |
| if (TYPE_LENGTH (type) > 8) |
| { |
| /* Large parameter, pass by reference. Store the value |
| in "struct" area and then pass its address. */ |
| param_len = 4; |
| struct_ptr += align_up (TYPE_LENGTH (type), 8); |
| if (write_pass) |
| write_memory (struct_end - struct_ptr, value_contents (arg), |
| TYPE_LENGTH (type)); |
| store_unsigned_integer (param_val, 4, byte_order, |
| struct_end - struct_ptr); |
| } |
| else if (type->code () == TYPE_CODE_INT |
| || type->code () == TYPE_CODE_ENUM) |
| { |
| /* Integer value store, right aligned. "unpack_long" |
| takes care of any sign-extension problems. */ |
| param_len = align_up (TYPE_LENGTH (type), 4); |
| store_unsigned_integer (param_val, param_len, byte_order, |
| unpack_long (type, |
| value_contents (arg))); |
| } |
| else if (type->code () == TYPE_CODE_FLT) |
| { |
| /* Floating point value store, right aligned. */ |
| param_len = align_up (TYPE_LENGTH (type), 4); |
| memcpy (param_val, value_contents (arg), param_len); |
| } |
| else |
| { |
| param_len = align_up (TYPE_LENGTH (type), 4); |
| |
| /* Small struct value are stored right-aligned. */ |
| memcpy (param_val + param_len - TYPE_LENGTH (type), |
| value_contents (arg), TYPE_LENGTH (type)); |
| |
| /* Structures of size 5, 6 and 7 bytes are special in that |
| the higher-ordered word is stored in the lower-ordered |
| argument, and even though it is a 8-byte quantity the |
| registers need not be 8-byte aligned. */ |
| if (param_len > 4 && param_len < 8) |
| small_struct = 1; |
| } |
| |
| param_ptr += param_len; |
| if (param_len == 8 && !small_struct) |
| param_ptr = align_up (param_ptr, 8); |
| |
| /* First 4 non-FP arguments are passed in gr26-gr23. |
| First 4 32-bit FP arguments are passed in fr4L-fr7L. |
| First 2 64-bit FP arguments are passed in fr5 and fr7. |
| |
| The rest go on the stack, starting at sp-36, towards lower |
| addresses. 8-byte arguments must be aligned to a 8-byte |
| stack boundary. */ |
| if (write_pass) |
| { |
| write_memory (param_end - param_ptr, param_val, param_len); |
| |
| /* There are some cases when we don't know the type |
| expected by the callee (e.g. for variadic functions), so |
| pass the parameters in both general and fp regs. */ |
| if (param_ptr <= 48) |
| { |
| int grreg = 26 - (param_ptr - 36) / 4; |
| int fpLreg = 72 + (param_ptr - 36) / 4 * 2; |
| int fpreg = 74 + (param_ptr - 32) / 8 * 4; |
| |
| regcache->cooked_write (grreg, param_val); |
| regcache->cooked_write (fpLreg, param_val); |
| |
| if (param_len > 4) |
| { |
| regcache->cooked_write (grreg + 1, param_val + 4); |
| |
| regcache->cooked_write (fpreg, param_val); |
| regcache->cooked_write (fpreg + 1, param_val + 4); |
| } |
| } |
| } |
| } |
| |
| /* Update the various stack pointers. */ |
| if (!write_pass) |
| { |
| struct_end = sp + align_up (struct_ptr, 64); |
| /* PARAM_PTR already accounts for all the arguments passed |
| by the user. However, the ABI mandates minimum stack |
| space allocations for outgoing arguments. The ABI also |
| mandates minimum stack alignments which we must |
| preserve. */ |
| param_end = struct_end + align_up (param_ptr, 64); |
| } |
| } |
| |
| /* If a structure has to be returned, set up register 28 to hold its |
| address. */ |
| if (return_method == return_method_struct) |
| regcache_cooked_write_unsigned (regcache, 28, struct_addr); |
| |
| gp = tdep->find_global_pointer (gdbarch, function); |
| |
| if (gp != 0) |
| regcache_cooked_write_unsigned (regcache, 19, gp); |
| |
| /* Set the return address. */ |
| if (!gdbarch_push_dummy_code_p (gdbarch)) |
| regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
| |
| /* Update the Stack Pointer. */ |
| regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end); |
| |
| return param_end; |
| } |
| |
| /* The 64-bit PA-RISC calling conventions are documented in "64-Bit |
| Runtime Architecture for PA-RISC 2.0", which is distributed as part |
| as of the HP-UX Software Transition Kit (STK). This implementation |
| is based on version 3.3, dated October 6, 1997. */ |
| |
| /* Check whether TYPE is an "Integral or Pointer Scalar Type". */ |
| |
| static int |
| hppa64_integral_or_pointer_p (const struct type *type) |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_INT: |
| case TYPE_CODE_BOOL: |
| case TYPE_CODE_CHAR: |
| case TYPE_CODE_ENUM: |
| case TYPE_CODE_RANGE: |
| { |
| int len = TYPE_LENGTH (type); |
| return (len == 1 || len == 2 || len == 4 || len == 8); |
| } |
| case TYPE_CODE_PTR: |
| case TYPE_CODE_REF: |
| case TYPE_CODE_RVALUE_REF: |
| return (TYPE_LENGTH (type) == 8); |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* Check whether TYPE is a "Floating Scalar Type". */ |
| |
| static int |
| hppa64_floating_p (const struct type *type) |
| { |
| switch (type->code ()) |
| { |
| case TYPE_CODE_FLT: |
| { |
| int len = TYPE_LENGTH (type); |
| return (len == 4 || len == 8 || len == 16); |
| } |
| default: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| /* If CODE points to a function entry address, try to look up the corresponding |
| function descriptor and return its address instead. If CODE is not a |
| function entry address, then just return it unchanged. */ |
| static CORE_ADDR |
| hppa64_convert_code_addr_to_fptr (struct gdbarch *gdbarch, CORE_ADDR code) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct obj_section *sec, *opd; |
| |
| sec = find_pc_section (code); |
| |
| if (!sec) |
| return code; |
| |
| /* If CODE is in a data section, assume it's already a fptr. */ |
| if (!(sec->the_bfd_section->flags & SEC_CODE)) |
| return code; |
| |
| ALL_OBJFILE_OSECTIONS (sec->objfile, opd) |
| { |
| if (strcmp (opd->the_bfd_section->name, ".opd") == 0) |
| break; |
| } |
| |
| if (opd < sec->objfile->sections_end) |
| { |
| for (CORE_ADDR addr = opd->addr (); addr < opd->endaddr (); addr += 2 * 8) |
| { |
| ULONGEST opdaddr; |
| gdb_byte tmp[8]; |
| |
| if (target_read_memory (addr, tmp, sizeof (tmp))) |
| break; |
| opdaddr = extract_unsigned_integer (tmp, sizeof (tmp), byte_order); |
| |
| if (opdaddr == code) |
| return addr - 16; |
| } |
| } |
| |
| return code; |
| } |
| |
| static CORE_ADDR |
| hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int i, offset = 0; |
| CORE_ADDR gp; |
| |
| /* "The outgoing parameter area [...] must be aligned at a 16-byte |
| boundary." */ |
| sp = align_up (sp, 16); |
| |
| for (i = 0; i < nargs; i++) |
| { |
| struct value *arg = args[i]; |
| struct type *type = value_type (arg); |
| int len = TYPE_LENGTH (type); |
| const bfd_byte *valbuf; |
| bfd_byte fptrbuf[8]; |
| int regnum; |
| |
| /* "Each parameter begins on a 64-bit (8-byte) boundary." */ |
| offset = align_up (offset, 8); |
| |
| if (hppa64_integral_or_pointer_p (type)) |
| { |
| /* "Integral scalar parameters smaller than 64 bits are |
| padded on the left (i.e., the value is in the |
| least-significant bits of the 64-bit storage unit, and |
| the high-order bits are undefined)." Therefore we can |
| safely sign-extend them. */ |
| if (len < 8) |
| { |
| arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg); |
| len = 8; |
| } |
| } |
| else if (hppa64_floating_p (type)) |
| { |
| if (len > 8) |
| { |
| /* "Quad-precision (128-bit) floating-point scalar |
| parameters are aligned on a 16-byte boundary." */ |
| offset = align_up (offset, 16); |
| |
| /* "Double-extended- and quad-precision floating-point |
| parameters within the first 64 bytes of the parameter |
| list are always passed in general registers." */ |
| } |
| else |
| { |
| if (len == 4) |
| { |
| /* "Single-precision (32-bit) floating-point scalar |
| parameters are padded on the left with 32 bits of |
| garbage (i.e., the floating-point value is in the |
| least-significant 32 bits of a 64-bit storage |
| unit)." */ |
| offset += 4; |
| } |
| |
| /* "Single- and double-precision floating-point |
| parameters in this area are passed according to the |
| available formal parameter information in a function |
| prototype. [...] If no prototype is in scope, |
| floating-point parameters must be passed both in the |
| corresponding general registers and in the |
| corresponding floating-point registers." */ |
| regnum = HPPA64_FP4_REGNUM + offset / 8; |
| |
| if (regnum < HPPA64_FP4_REGNUM + 8) |
| { |
| /* "Single-precision floating-point parameters, when |
| passed in floating-point registers, are passed in |
| the right halves of the floating point registers; |
| the left halves are unused." */ |
| regcache->cooked_write_part (regnum, offset % 8, len, |
| value_contents (arg)); |
| } |
| } |
| } |
| else |
| { |
| if (len > 8) |
| { |
| /* "Aggregates larger than 8 bytes are aligned on a |
| 16-byte boundary, possibly leaving an unused argument |
| slot, which is filled with garbage. If necessary, |
| they are padded on the right (with garbage), to a |
| multiple of 8 bytes." */ |
| offset = align_up (offset, 16); |
| } |
| } |
| |
| /* If we are passing a function pointer, make sure we pass a function |
| descriptor instead of the function entry address. */ |
| if (type->code () == TYPE_CODE_PTR |
| && TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_FUNC) |
| { |
| ULONGEST codeptr, fptr; |
| |
| codeptr = unpack_long (type, value_contents (arg)); |
| fptr = hppa64_convert_code_addr_to_fptr (gdbarch, codeptr); |
| store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), byte_order, |
| fptr); |
| valbuf = fptrbuf; |
| } |
| else |
| { |
| valbuf = value_contents (arg); |
| } |
| |
| /* Always store the argument in memory. */ |
| write_memory (sp + offset, valbuf, len); |
| |
| regnum = HPPA_ARG0_REGNUM - offset / 8; |
| while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0) |
| { |
| regcache->cooked_write_part (regnum, offset % 8, std::min (len, 8), |
| valbuf); |
| offset += std::min (len, 8); |
| valbuf += std::min (len, 8); |
| len -= std::min (len, 8); |
| regnum--; |
| } |
| |
| offset += len; |
| } |
| |
| /* Set up GR29 (%ret1) to hold the argument pointer (ap). */ |
| regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64); |
| |
| /* Allocate the outgoing parameter area. Make sure the outgoing |
| parameter area is multiple of 16 bytes in length. */ |
| sp += std::max (align_up (offset, 16), (ULONGEST) 64); |
| |
| /* Allocate 32-bytes of scratch space. The documentation doesn't |
| mention this, but it seems to be needed. */ |
| sp += 32; |
| |
| /* Allocate the frame marker area. */ |
| sp += 16; |
| |
| /* If a structure has to be returned, set up GR 28 (%ret0) to hold |
| its address. */ |
| if (return_method == return_method_struct) |
| regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr); |
| |
| /* Set up GR27 (%dp) to hold the global pointer (gp). */ |
| gp = tdep->find_global_pointer (gdbarch, function); |
| if (gp != 0) |
| regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp); |
| |
| /* Set up GR2 (%rp) to hold the return pointer (rp). */ |
| if (!gdbarch_push_dummy_code_p (gdbarch)) |
| regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr); |
| |
| /* Set up GR30 to hold the stack pointer (sp). */ |
| regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp); |
| |
| return sp; |
| } |
| |
| |
| /* Handle 32/64-bit struct return conventions. */ |
| |
| static enum return_value_convention |
| hppa32_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| if (TYPE_LENGTH (type) <= 2 * 4) |
| { |
| /* The value always lives in the right hand end of the register |
| (or register pair)? */ |
| int b; |
| int reg = type->code () == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28; |
| int part = TYPE_LENGTH (type) % 4; |
| /* The left hand register contains only part of the value, |
| transfer that first so that the rest can be xfered as entire |
| 4-byte registers. */ |
| if (part > 0) |
| { |
| if (readbuf != NULL) |
| regcache->cooked_read_part (reg, 4 - part, part, readbuf); |
| if (writebuf != NULL) |
| regcache->cooked_write_part (reg, 4 - part, part, writebuf); |
| reg++; |
| } |
| /* Now transfer the remaining register values. */ |
| for (b = part; b < TYPE_LENGTH (type); b += 4) |
| { |
| if (readbuf != NULL) |
| regcache->cooked_read (reg, readbuf + b); |
| if (writebuf != NULL) |
| regcache->cooked_write (reg, writebuf + b); |
| reg++; |
| } |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| else |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| static enum return_value_convention |
| hppa64_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| int len = TYPE_LENGTH (type); |
| int regnum, offset; |
| |
| if (len > 16) |
| { |
| /* All return values larger than 128 bits must be aggregate |
| return values. */ |
| gdb_assert (!hppa64_integral_or_pointer_p (type)); |
| gdb_assert (!hppa64_floating_p (type)); |
| |
| /* "Aggregate return values larger than 128 bits are returned in |
| a buffer allocated by the caller. The address of the buffer |
| must be passed in GR 28." */ |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| if (hppa64_integral_or_pointer_p (type)) |
| { |
| /* "Integral return values are returned in GR 28. Values |
| smaller than 64 bits are padded on the left (with garbage)." */ |
| regnum = HPPA_RET0_REGNUM; |
| offset = 8 - len; |
| } |
| else if (hppa64_floating_p (type)) |
| { |
| if (len > 8) |
| { |
| /* "Double-extended- and quad-precision floating-point |
| values are returned in GRs 28 and 29. The sign, |
| exponent, and most-significant bits of the mantissa are |
| returned in GR 28; the least-significant bits of the |
| mantissa are passed in GR 29. For double-extended |
| precision values, GR 29 is padded on the right with 48 |
| bits of garbage." */ |
| regnum = HPPA_RET0_REGNUM; |
| offset = 0; |
| } |
| else |
| { |
| /* "Single-precision and double-precision floating-point |
| return values are returned in FR 4R (single precision) or |
| FR 4 (double-precision)." */ |
| regnum = HPPA64_FP4_REGNUM; |
| offset = 8 - len; |
| } |
| } |
| else |
| { |
| /* "Aggregate return values up to 64 bits in size are returned |
| in GR 28. Aggregates smaller than 64 bits are left aligned |
| in the register; the pad bits on the right are undefined." |
| |
| "Aggregate return values between 65 and 128 bits are returned |
| in GRs 28 and 29. The first 64 bits are placed in GR 28, and |
| the remaining bits are placed, left aligned, in GR 29. The |
| pad bits on the right of GR 29 (if any) are undefined." */ |
| regnum = HPPA_RET0_REGNUM; |
| offset = 0; |
| } |
| |
| if (readbuf) |
| { |
| while (len > 0) |
| { |
| regcache->cooked_read_part (regnum, offset, std::min (len, 8), |
| readbuf); |
| readbuf += std::min (len, 8); |
| len -= std::min (len, 8); |
| regnum++; |
| } |
| } |
| |
| if (writebuf) |
| { |
| while (len > 0) |
| { |
| regcache->cooked_write_part (regnum, offset, std::min (len, 8), |
| writebuf); |
| writebuf += std::min (len, 8); |
| len -= std::min (len, 8); |
| regnum++; |
| } |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| |
| static CORE_ADDR |
| hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
| struct target_ops *targ) |
| { |
| if (addr & 2) |
| { |
| struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
| CORE_ADDR plabel = addr & ~3; |
| return read_memory_typed_address (plabel, func_ptr_type); |
| } |
| |
| return addr; |
| } |
| |
| static CORE_ADDR |
| hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_ |
| and not _bit_)! */ |
| return align_up (addr, 64); |
| } |
| |
| /* Force all frames to 16-byte alignment. Better safe than sorry. */ |
| |
| static CORE_ADDR |
| hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| /* Just always 16-byte align. */ |
| return align_up (addr, 16); |
| } |
| |
| static CORE_ADDR |
| hppa_read_pc (readable_regcache *regcache) |
| { |
| ULONGEST ipsw; |
| ULONGEST pc; |
| |
| regcache->cooked_read (HPPA_IPSW_REGNUM, &ipsw); |
| regcache->cooked_read (HPPA_PCOQ_HEAD_REGNUM, &pc); |
| |
| /* If the current instruction is nullified, then we are effectively |
| still executing the previous instruction. Pretend we are still |
| there. This is needed when single stepping; if the nullified |
| instruction is on a different line, we don't want GDB to think |
| we've stepped onto that line. */ |
| if (ipsw & 0x00200000) |
| pc -= 4; |
| |
| return pc & ~0x3; |
| } |
| |
| void |
| hppa_write_pc (struct regcache *regcache, CORE_ADDR pc) |
| { |
| regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc); |
| regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4); |
| } |
| |
| /* For the given instruction (INST), return any adjustment it makes |
| to the stack pointer or zero for no adjustment. |
| |
| This only handles instructions commonly found in prologues. */ |
| |
| static int |
| prologue_inst_adjust_sp (unsigned long inst) |
| { |
| /* This must persist across calls. */ |
| static int save_high21; |
| |
| /* The most common way to perform a stack adjustment ldo X(sp),sp */ |
| if ((inst & 0xffffc000) == 0x37de0000) |
| return hppa_extract_14 (inst); |
| |
| /* stwm X,D(sp) */ |
| if ((inst & 0xffe00000) == 0x6fc00000) |
| return hppa_extract_14 (inst); |
| |
| /* std,ma X,D(sp) */ |
| if ((inst & 0xffe00008) == 0x73c00008) |
| return (inst & 0x1 ? -(1 << 13) : 0) | (((inst >> 4) & 0x3ff) << 3); |
| |
| /* addil high21,%r30; ldo low11,(%r1),%r30) |
| save high bits in save_high21 for later use. */ |
| if ((inst & 0xffe00000) == 0x2bc00000) |
| { |
| save_high21 = hppa_extract_21 (inst); |
| return 0; |
| } |
| |
| if ((inst & 0xffff0000) == 0x343e0000) |
| return save_high21 + hppa_extract_14 (inst); |
| |
| /* fstws as used by the HP compilers. */ |
| if ((inst & 0xffffffe0) == 0x2fd01220) |
| return hppa_extract_5_load (inst); |
| |
| /* No adjustment. */ |
| return 0; |
| } |
| |
| /* Return nonzero if INST is a branch of some kind, else return zero. */ |
| |
| static int |
| is_branch (unsigned long inst) |
| { |
| switch (inst >> 26) |
| { |
| case 0x20: |
| case 0x21: |
| case 0x22: |
| case 0x23: |
| case 0x27: |
| case 0x28: |
| case 0x29: |
| case 0x2a: |
| case 0x2b: |
| case 0x2f: |
| case 0x30: |
| case 0x31: |
| case 0x32: |
| case 0x33: |
| case 0x38: |
| case 0x39: |
| case 0x3a: |
| case 0x3b: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the register number for a GR which is saved by INST or |
| zero if INST does not save a GR. |
| |
| Referenced from: |
| |
| parisc 1.1: |
| https://parisc.wiki.kernel.org/images-parisc/6/68/Pa11_acd.pdf |
| |
| parisc 2.0: |
| https://parisc.wiki.kernel.org/images-parisc/7/73/Parisc2.0.pdf |
| |
| According to Table 6-5 of Chapter 6 (Memory Reference Instructions) |
| on page 106 in parisc 2.0, all instructions for storing values from |
| the general registers are: |
| |
| Store: stb, sth, stw, std (according to Chapter 7, they |
| are only in both "inst >> 26" and "inst >> 6". |
| Store Absolute: stwa, stda (according to Chapter 7, they are only |
| in "inst >> 6". |
| Store Bytes: stby, stdby (according to Chapter 7, they are |
| only in "inst >> 6"). |
| |
| For (inst >> 26), according to Chapter 7: |
| |
| The effective memory reference address is formed by the addition |
| of an immediate displacement to a base value. |
| |
| - stb: 0x18, store a byte from a general register. |
| |
| - sth: 0x19, store a halfword from a general register. |
| |
| - stw: 0x1a, store a word from a general register. |
| |
| - stwm: 0x1b, store a word from a general register and perform base |
| register modification (2.0 will still treat it as stw). |
| |
| - std: 0x1c, store a doubleword from a general register (2.0 only). |
| |
| - stw: 0x1f, store a word from a general register (2.0 only). |
| |
| For (inst >> 6) when ((inst >> 26) == 0x03), according to Chapter 7: |
| |
| The effective memory reference address is formed by the addition |
| of an index value to a base value specified in the instruction. |
| |
| - stb: 0x08, store a byte from a general register (1.1 calls stbs). |
| |
| - sth: 0x09, store a halfword from a general register (1.1 calls |
| sths). |
| |
| - stw: 0x0a, store a word from a general register (1.1 calls stws). |
| |
| - std: 0x0b: store a doubleword from a general register (2.0 only) |
| |
| Implement fast byte moves (stores) to unaligned word or doubleword |
| destination. |
| |
| - stby: 0x0c, for unaligned word (1.1 calls stbys). |
| |
| - stdby: 0x0d for unaligned doubleword (2.0 only). |
| |
| Store a word or doubleword using an absolute memory address formed |
| using short or long displacement or indexed |
| |
| - stwa: 0x0e, store a word from a general register to an absolute |
| address (1.0 calls stwas). |
| |
| - stda: 0x0f, store a doubleword from a general register to an |
| absolute address (2.0 only). */ |
| |
| static int |
| inst_saves_gr (unsigned long inst) |
| { |
| switch ((inst >> 26) & 0x0f) |
| { |
| case 0x03: |
| switch ((inst >> 6) & 0x0f) |
| { |
| case 0x08: |
| case 0x09: |
| case 0x0a: |
| case 0x0b: |
| case 0x0c: |
| case 0x0d: |
| case 0x0e: |
| case 0x0f: |
| return hppa_extract_5R_store (inst); |
| default: |
| return 0; |
| } |
| case 0x18: |
| case 0x19: |
| case 0x1a: |
| case 0x1b: |
| case 0x1c: |
| /* no 0x1d or 0x1e -- according to parisc 2.0 document */ |
| case 0x1f: |
| return hppa_extract_5R_store (inst); |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the register number for a FR which is saved by INST or |
| zero it INST does not save a FR. |
| |
| Note we only care about full 64bit register stores (that's the only |
| kind of stores the prologue will use). |
| |
| FIXME: What about argument stores with the HP compiler in ANSI mode? */ |
| |
| static int |
| inst_saves_fr (unsigned long inst) |
| { |
| /* Is this an FSTD? */ |
| if ((inst & 0xfc00dfc0) == 0x2c001200) |
| return hppa_extract_5r_store (inst); |
| if ((inst & 0xfc000002) == 0x70000002) |
| return hppa_extract_5R_store (inst); |
| /* Is this an FSTW? */ |
| if ((inst & 0xfc00df80) == 0x24001200) |
| return hppa_extract_5r_store (inst); |
| if ((inst & 0xfc000002) == 0x7c000000) |
| return hppa_extract_5R_store (inst); |
| return 0; |
| } |
| |
| /* Advance PC across any function entry prologue instructions |
| to reach some "real" code. |
| |
| Use information in the unwind table to determine what exactly should |
| be in the prologue. */ |
| |
| |
| static CORE_ADDR |
| skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc, |
| int stop_before_branch) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[4]; |
| CORE_ADDR orig_pc = pc; |
| unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp; |
| unsigned long args_stored, status, i, restart_gr, restart_fr; |
| struct unwind_table_entry *u; |
| int final_iteration; |
| |
| restart_gr = 0; |
| restart_fr = 0; |
| |
| restart: |
| u = find_unwind_entry (pc); |
| if (!u) |
| return pc; |
| |
| /* If we are not at the beginning of a function, then return now. */ |
| if ((pc & ~0x3) != u->region_start) |
| return pc; |
| |
| /* This is how much of a frame adjustment we need to account for. */ |
| stack_remaining = u->Total_frame_size << 3; |
| |
| /* Magic register saves we want to know about. */ |
| save_rp = u->Save_RP; |
| save_sp = u->Save_SP; |
| |
| /* An indication that args may be stored into the stack. Unfortunately |
| the HPUX compilers tend to set this in cases where no args were |
| stored too!. */ |
| args_stored = 1; |
| |
| /* Turn the Entry_GR field into a bitmask. */ |
| save_gr = 0; |
| for (i = 3; i < u->Entry_GR + 3; i++) |
| { |
| /* Frame pointer gets saved into a special location. */ |
| if (u->Save_SP && i == HPPA_FP_REGNUM) |
| continue; |
| |
| save_gr |= (1 << i); |
| } |
| save_gr &= ~restart_gr; |
| |
| /* Turn the Entry_FR field into a bitmask too. */ |
| save_fr = 0; |
| for (i = 12; i < u->Entry_FR + 12; i++) |
| save_fr |= (1 << i); |
| save_fr &= ~restart_fr; |
| |
| final_iteration = 0; |
| |
| /* Loop until we find everything of interest or hit a branch. |
| |
| For unoptimized GCC code and for any HP CC code this will never ever |
| examine any user instructions. |
| |
| For optimized GCC code we're faced with problems. GCC will schedule |
| its prologue and make prologue instructions available for delay slot |
| filling. The end result is user code gets mixed in with the prologue |
| and a prologue instruction may be in the delay slot of the first branch |
| or call. |
| |
| Some unexpected things are expected with debugging optimized code, so |
| we allow this routine to walk past user instructions in optimized |
| GCC code. */ |
| while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0 |
| || args_stored) |
| { |
| unsigned int reg_num; |
| unsigned long old_stack_remaining, old_save_gr, old_save_fr; |
| unsigned long old_save_rp, old_save_sp, next_inst; |
| |
| /* Save copies of all the triggers so we can compare them later |
| (only for HPC). */ |
| old_save_gr = save_gr; |
| old_save_fr = save_fr; |
| old_save_rp = save_rp; |
| old_save_sp = save_sp; |
| old_stack_remaining = stack_remaining; |
| |
| status = target_read_memory (pc, buf, 4); |
| inst = extract_unsigned_integer (buf, 4, byte_order); |
| |
| /* Yow! */ |
| if (status != 0) |
| return pc; |
| |
| /* Note the interesting effects of this instruction. */ |
| stack_remaining -= prologue_inst_adjust_sp (inst); |
| |
| /* There are limited ways to store the return pointer into the |
| stack. */ |
| if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1) |
| save_rp = 0; |
| |
| /* These are the only ways we save SP into the stack. At this time |
| the HP compilers never bother to save SP into the stack. */ |
| if ((inst & 0xffffc000) == 0x6fc10000 |
| || (inst & 0xffffc00c) == 0x73c10008) |
| save_sp = 0; |
| |
| /* Are we loading some register with an offset from the argument |
| pointer? */ |
| if ((inst & 0xffe00000) == 0x37a00000 |
| || (inst & 0xffffffe0) == 0x081d0240) |
| { |
| pc += 4; |
| continue; |
| } |
| |
| /* Account for general and floating-point register saves. */ |
| reg_num = inst_saves_gr (inst); |
| save_gr &= ~(1 << reg_num); |
| |
| /* Ugh. Also account for argument stores into the stack. |
| Unfortunately args_stored only tells us that some arguments |
| where stored into the stack. Not how many or what kind! |
| |
| This is a kludge as on the HP compiler sets this bit and it |
| never does prologue scheduling. So once we see one, skip past |
| all of them. We have similar code for the fp arg stores below. |
| |
| FIXME. Can still die if we have a mix of GR and FR argument |
| stores! */ |
| if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
| && reg_num <= 26) |
| { |
| while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23) |
| && reg_num <= 26) |
| { |
| pc += 4; |
| status = target_read_memory (pc, buf, 4); |
| inst = extract_unsigned_integer (buf, 4, byte_order); |
| if (status != 0) |
| return pc; |
| reg_num = inst_saves_gr (inst); |
| } |
| args_stored = 0; |
| continue; |
| } |
| |
| reg_num = inst_saves_fr (inst); |
| save_fr &= ~(1 << reg_num); |
| |
| status = target_read_memory (pc + 4, buf, 4); |
| next_inst = extract_unsigned_integer (buf, 4, byte_order); |
| |
| /* Yow! */ |
| if (status != 0) |
| return pc; |
| |
| /* We've got to be read to handle the ldo before the fp register |
| save. */ |
| if ((inst & 0xfc000000) == 0x34000000 |
| && inst_saves_fr (next_inst) >= 4 |
| && inst_saves_fr (next_inst) |
| <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| { |
| /* So we drop into the code below in a reasonable state. */ |
| reg_num = inst_saves_fr (next_inst); |
| pc -= 4; |
| } |
| |
| /* Ugh. Also account for argument stores into the stack. |
| This is a kludge as on the HP compiler sets this bit and it |
| never does prologue scheduling. So once we see one, skip past |
| all of them. */ |
| if (reg_num >= 4 |
| && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| { |
| while (reg_num >= 4 |
| && reg_num |
| <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7)) |
| { |
| pc += 8; |
| status = target_read_memory (pc, buf, 4); |
| inst = extract_unsigned_integer (buf, 4, byte_order); |
| if (status != 0) |
| return pc; |
| if ((inst & 0xfc000000) != 0x34000000) |
| break; |
| status = target_read_memory (pc + 4, buf, 4); |
| next_inst = extract_unsigned_integer (buf, 4, byte_order); |
| if (status != 0) |
| return pc; |
| reg_num = inst_saves_fr (next_inst); |
| } |
| args_stored = 0; |
| continue; |
| } |
| |
| /* Quit if we hit any kind of branch. This can happen if a prologue |
| instruction is in the delay slot of the first call/branch. */ |
| if (is_branch (inst) && stop_before_branch) |
| break; |
| |
| /* What a crock. The HP compilers set args_stored even if no |
| arguments were stored into the stack (boo hiss). This could |
| cause this code to then skip a bunch of user insns (up to the |
| first branch). |
| |
| To combat this we try to identify when args_stored was bogusly |
| set and clear it. We only do this when args_stored is nonzero, |
| all other resources are accounted for, and nothing changed on |
| this pass. */ |
| if (args_stored |
| && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0) |
| && old_save_gr == save_gr && old_save_fr == save_fr |
| && old_save_rp == save_rp && old_save_sp == save_sp |
| && old_stack_remaining == stack_remaining) |
| break; |
| |
| /* Bump the PC. */ |
| pc += 4; |
| |
| /* !stop_before_branch, so also look at the insn in the delay slot |
| of the branch. */ |
| if (final_iteration) |
| break; |
| if (is_branch (inst)) |
| final_iteration = 1; |
| } |
| |
| /* We've got a tentative location for the end of the prologue. However |
| because of limitations in the unwind descriptor mechanism we may |
| have went too far into user code looking for the save of a register |
| that does not exist. So, if there registers we expected to be saved |
| but never were, mask them out and restart. |
| |
| This should only happen in optimized code, and should be very rare. */ |
| if (save_gr || (save_fr && !(restart_fr || restart_gr))) |
| { |
| pc = orig_pc; |
| restart_gr = save_gr; |
| restart_fr = save_fr; |
| goto restart; |
| } |
| |
| return pc; |
| } |
| |
| |
| /* Return the address of the PC after the last prologue instruction if |
| we can determine it from the debug symbols. Else return zero. */ |
| |
| static CORE_ADDR |
| after_prologue (CORE_ADDR pc) |
| { |
| struct symtab_and_line sal; |
| CORE_ADDR func_addr, func_end; |
| |
| /* If we can not find the symbol in the partial symbol table, then |
| there is no hope we can determine the function's start address |
| with this code. */ |
| if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) |
| return 0; |
| |
| /* Get the line associated with FUNC_ADDR. */ |
| sal = find_pc_line (func_addr, 0); |
| |
| /* There are only two cases to consider. First, the end of the source line |
| is within the function bounds. In that case we return the end of the |
| source line. Second is the end of the source line extends beyond the |
| bounds of the current function. We need to use the slow code to |
| examine instructions in that case. |
| |
| Anything else is simply a bug elsewhere. Fixing it here is absolutely |
| the wrong thing to do. In fact, it should be entirely possible for this |
| function to always return zero since the slow instruction scanning code |
| is supposed to *always* work. If it does not, then it is a bug. */ |
| if (sal.end < func_end) |
| return sal.end; |
| else |
| return 0; |
| } |
| |
| /* To skip prologues, I use this predicate. Returns either PC itself |
| if the code at PC does not look like a function prologue; otherwise |
| returns an address that (if we're lucky) follows the prologue. |
| |
| hppa_skip_prologue is called by gdb to place a breakpoint in a function. |
| It doesn't necessarily skips all the insns in the prologue. In fact |
| we might not want to skip all the insns because a prologue insn may |
| appear in the delay slot of the first branch, and we don't want to |
| skip over the branch in that case. */ |
| |
| static CORE_ADDR |
| hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| CORE_ADDR post_prologue_pc; |
| |
| /* See if we can determine the end of the prologue via the symbol table. |
| If so, then return either PC, or the PC after the prologue, whichever |
| is greater. */ |
| |
| post_prologue_pc = after_prologue (pc); |
| |
| /* If after_prologue returned a useful address, then use it. Else |
| fall back on the instruction skipping code. |
| |
| Some folks have claimed this causes problems because the breakpoint |
| may be the first instruction of the prologue. If that happens, then |
| the instruction skipping code has a bug that needs to be fixed. */ |
| if (post_prologue_pc != 0) |
| return std::max (pc, post_prologue_pc); |
| else |
| return (skip_prologue_hard_way (gdbarch, pc, 1)); |
| } |
| |
| /* Return an unwind entry that falls within the frame's code block. */ |
| |
| static struct unwind_table_entry * |
| hppa_find_unwind_entry_in_block (struct frame_info *this_frame) |
| { |
| CORE_ADDR pc = get_frame_address_in_block (this_frame); |
| |
| /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the |
| result of get_frame_address_in_block implies a problem. |
| The bits should have been removed earlier, before the return |
| value of gdbarch_unwind_pc. That might be happening already; |
| if it isn't, it should be fixed. Then this call can be |
| removed. */ |
| pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc); |
| return find_unwind_entry (pc); |
| } |
| |
| struct hppa_frame_cache |
| { |
| CORE_ADDR base; |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static struct hppa_frame_cache * |
| hppa_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
| struct hppa_frame_cache *cache; |
| long saved_gr_mask; |
| long saved_fr_mask; |
| long frame_size; |
| struct unwind_table_entry *u; |
| CORE_ADDR prologue_end; |
| int fp_in_r1 = 0; |
| int i; |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ", |
| frame_relative_level(this_frame)); |
| |
| if ((*this_cache) != NULL) |
| { |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }", |
| paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); |
| return (struct hppa_frame_cache *) (*this_cache); |
| } |
| cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
| (*this_cache) = cache; |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| /* Yow! */ |
| u = hppa_find_unwind_entry_in_block (this_frame); |
| if (!u) |
| { |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }"); |
| return (struct hppa_frame_cache *) (*this_cache); |
| } |
| |
| /* Turn the Entry_GR field into a bitmask. */ |
| saved_gr_mask = 0; |
| for (i = 3; i < u->Entry_GR + 3; i++) |
| { |
| /* Frame pointer gets saved into a special location. */ |
| if (u->Save_SP && i == HPPA_FP_REGNUM) |
| continue; |
| |
| saved_gr_mask |= (1 << i); |
| } |
| |
| /* Turn the Entry_FR field into a bitmask too. */ |
| saved_fr_mask = 0; |
| for (i = 12; i < u->Entry_FR + 12; i++) |
| saved_fr_mask |= (1 << i); |
| |
| /* Loop until we find everything of interest or hit a branch. |
| |
| For unoptimized GCC code and for any HP CC code this will never ever |
| examine any user instructions. |
| |
| For optimized GCC code we're faced with problems. GCC will schedule |
| its prologue and make prologue instructions available for delay slot |
| filling. The end result is user code gets mixed in with the prologue |
| and a prologue instruction may be in the delay slot of the first branch |
| or call. |
| |
| Some unexpected things are expected with debugging optimized code, so |
| we allow this routine to walk past user instructions in optimized |
| GCC code. */ |
| { |
| int final_iteration = 0; |
| CORE_ADDR pc, start_pc, end_pc; |
| int looking_for_sp = u->Save_SP; |
| int looking_for_rp = u->Save_RP; |
| int fp_loc = -1; |
| |
| /* We have to use skip_prologue_hard_way instead of just |
| skip_prologue_using_sal, in case we stepped into a function without |
| symbol information. hppa_skip_prologue also bounds the returned |
| pc by the passed in pc, so it will not return a pc in the next |
| function. |
| |
| We used to call hppa_skip_prologue to find the end of the prologue, |
| but if some non-prologue instructions get scheduled into the prologue, |
| and the program is compiled with debug information, the "easy" way |
| in hppa_skip_prologue will return a prologue end that is too early |
| for us to notice any potential frame adjustments. */ |
| |
| /* We used to use get_frame_func to locate the beginning of the |
| function to pass to skip_prologue. However, when objects are |
| compiled without debug symbols, get_frame_func can return the wrong |
| function (or 0). We can do better than that by using unwind records. |
| This only works if the Region_description of the unwind record |
| indicates that it includes the entry point of the function. |
| HP compilers sometimes generate unwind records for regions that |
| do not include the entry or exit point of a function. GNU tools |
| do not do this. */ |
| |
| if ((u->Region_description & 0x2) == 0) |
| start_pc = u->region_start; |
| else |
| start_pc = get_frame_func (this_frame); |
| |
| prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0); |
| end_pc = get_frame_pc (this_frame); |
| |
| if (prologue_end != 0 && end_pc > prologue_end) |
| end_pc = prologue_end; |
| |
| frame_size = 0; |
| |
| for (pc = start_pc; |
| ((saved_gr_mask || saved_fr_mask |
| || looking_for_sp || looking_for_rp |
| || frame_size < (u->Total_frame_size << 3)) |
| && pc < end_pc); |
| pc += 4) |
| { |
| int reg; |
| gdb_byte buf4[4]; |
| long inst; |
| |
| if (!safe_frame_unwind_memory (this_frame, pc, buf4)) |
| { |
| error (_("Cannot read instruction at %s."), |
| paddress (gdbarch, pc)); |
| return (struct hppa_frame_cache *) (*this_cache); |
| } |
| |
| inst = extract_unsigned_integer (buf4, sizeof buf4, byte_order); |
| |
| /* Note the interesting effects of this instruction. */ |
| frame_size += prologue_inst_adjust_sp (inst); |
| |
| /* There are limited ways to store the return pointer into the |
| stack. */ |
| if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
| { |
| looking_for_rp = 0; |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20); |
| } |
| else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */ |
| { |
| looking_for_rp = 0; |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (-24); |
| } |
| else if (inst == 0x0fc212c1 |
| || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ |
| { |
| looking_for_rp = 0; |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16); |
| } |
| |
| /* Check to see if we saved SP into the stack. This also |
| happens to indicate the location of the saved frame |
| pointer. */ |
| if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */ |
| || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */ |
| { |
| looking_for_sp = 0; |
| cache->saved_regs[HPPA_FP_REGNUM].set_addr (0); |
| } |
| else if (inst == 0x08030241) /* copy %r3, %r1 */ |
| { |
| fp_in_r1 = 1; |
| } |
| |
| /* Account for general and floating-point register saves. */ |
| reg = inst_saves_gr (inst); |
| if (reg >= 3 && reg <= 18 |
| && (!u->Save_SP || reg != HPPA_FP_REGNUM)) |
| { |
| saved_gr_mask &= ~(1 << reg); |
| if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0) |
| /* stwm with a positive displacement is a _post_ |
| _modify_. */ |
| cache->saved_regs[reg].set_addr (0); |
| else if ((inst & 0xfc00000c) == 0x70000008) |
| /* A std has explicit post_modify forms. */ |
| cache->saved_regs[reg].set_addr (0); |
| else |
| { |
| CORE_ADDR offset; |
| |
| if ((inst >> 26) == 0x1c) |
| offset = (inst & 0x1 ? -(1 << 13) : 0) |
| | (((inst >> 4) & 0x3ff) << 3); |
| else if ((inst >> 26) == 0x03) |
| offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5); |
| else |
| offset = hppa_extract_14 (inst); |
| |
| /* Handle code with and without frame pointers. */ |
| if (u->Save_SP) |
| cache->saved_regs[reg].set_addr (offset); |
| else |
| cache->saved_regs[reg].set_addr ((u->Total_frame_size << 3) |
| + offset); |
| } |
| } |
| |
| /* GCC handles callee saved FP regs a little differently. |
| |
| It emits an instruction to put the value of the start of |
| the FP store area into %r1. It then uses fstds,ma with a |
| basereg of %r1 for the stores. |
| |
| HP CC emits them at the current stack pointer modifying the |
| stack pointer as it stores each register. */ |
| |
| /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */ |
| if ((inst & 0xffffc000) == 0x34610000 |
| || (inst & 0xffffc000) == 0x37c10000) |
| fp_loc = hppa_extract_14 (inst); |
| |
| reg = inst_saves_fr (inst); |
| if (reg >= 12 && reg <= 21) |
| { |
| /* Note +4 braindamage below is necessary because the FP |
| status registers are internally 8 registers rather than |
| the expected 4 registers. */ |
| saved_fr_mask &= ~(1 << reg); |
| if (fp_loc == -1) |
| { |
| /* 1st HP CC FP register store. After this |
| instruction we've set enough state that the GCC and |
| HPCC code are both handled in the same manner. */ |
| cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].set_addr (0); |
| fp_loc = 8; |
| } |
| else |
| { |
| cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].set_addr (fp_loc); |
| fp_loc += 8; |
| } |
| } |
| |
| /* Quit if we hit any kind of branch the previous iteration. */ |
| if (final_iteration) |
| break; |
| /* We want to look precisely one instruction beyond the branch |
| if we have not found everything yet. */ |
| if (is_branch (inst)) |
| final_iteration = 1; |
| } |
| } |
| |
| { |
| /* The frame base always represents the value of %sp at entry to |
| the current function (and is thus equivalent to the "saved" |
| stack pointer. */ |
| CORE_ADDR this_sp = get_frame_register_unsigned (this_frame, |
| HPPA_SP_REGNUM); |
| CORE_ADDR fp; |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, " |
| "prologue_end=%s) ", |
| paddress (gdbarch, this_sp), |
| paddress (gdbarch, get_frame_pc (this_frame)), |
| paddress (gdbarch, prologue_end)); |
| |
| /* Check to see if a frame pointer is available, and use it for |
| frame unwinding if it is. |
| |
| There are some situations where we need to rely on the frame |
| pointer to do stack unwinding. For example, if a function calls |
| alloca (), the stack pointer can get adjusted inside the body of |
| the function. In this case, the ABI requires that the compiler |
| maintain a frame pointer for the function. |
| |
| The unwind record has a flag (alloca_frame) that indicates that |
| a function has a variable frame; unfortunately, gcc/binutils |
| does not set this flag. Instead, whenever a frame pointer is used |
| and saved on the stack, the Save_SP flag is set. We use this to |
| decide whether to use the frame pointer for unwinding. |
| |
| TODO: For the HP compiler, maybe we should use the alloca_frame flag |
| instead of Save_SP. */ |
| |
| fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM); |
| |
| if (u->alloca_frame) |
| fp -= u->Total_frame_size << 3; |
| |
| if (get_frame_pc (this_frame) >= prologue_end |
| && (u->Save_SP || u->alloca_frame) && fp != 0) |
| { |
| cache->base = fp; |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]", |
| paddress (gdbarch, cache->base)); |
| } |
| else if (u->Save_SP |
| && cache->saved_regs[HPPA_SP_REGNUM].is_addr ()) |
| { |
| /* Both we're expecting the SP to be saved and the SP has been |
| saved. The entry SP value is saved at this frame's SP |
| address. */ |
| cache->base = read_memory_integer (this_sp, word_size, byte_order); |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]", |
| paddress (gdbarch, cache->base)); |
| } |
| else |
| { |
| /* The prologue has been slowly allocating stack space. Adjust |
| the SP back. */ |
| cache->base = this_sp - frame_size; |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]", |
| paddress (gdbarch, cache->base)); |
| |
| } |
| cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base); |
| } |
| |
| /* The PC is found in the "return register", "Millicode" uses "r31" |
| as the return register while normal code uses "rp". */ |
| if (u->Millicode) |
| { |
| if (cache->saved_regs[31].is_addr ()) |
| { |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31]; |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } "); |
| } |
| else |
| { |
| ULONGEST r31 = get_frame_register_unsigned (this_frame, 31); |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (r31); |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } "); |
| } |
| } |
| else |
| { |
| if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ()) |
| { |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
| cache->saved_regs[HPPA_RP_REGNUM]; |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } "); |
| } |
| else |
| { |
| ULONGEST rp = get_frame_register_unsigned (this_frame, |
| HPPA_RP_REGNUM); |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp); |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } "); |
| } |
| } |
| |
| /* If Save_SP is set, then we expect the frame pointer to be saved in the |
| frame. However, there is a one-insn window where we haven't saved it |
| yet, but we've already clobbered it. Detect this case and fix it up. |
| |
| The prologue sequence for frame-pointer functions is: |
| 0: stw %rp, -20(%sp) |
| 4: copy %r3, %r1 |
| 8: copy %sp, %r3 |
| c: stw,ma %r1, XX(%sp) |
| |
| So if we are at offset c, the r3 value that we want is not yet saved |
| on the stack, but it's been overwritten. The prologue analyzer will |
| set fp_in_r1 when it sees the copy insn so we know to get the value |
| from r1 instead. */ |
| if (u->Save_SP && !cache->saved_regs[HPPA_FP_REGNUM].is_addr () |
| && fp_in_r1) |
| { |
| ULONGEST r1 = get_frame_register_unsigned (this_frame, 1); |
| cache->saved_regs[HPPA_FP_REGNUM].set_value (r1); |
| } |
| |
| { |
| /* Convert all the offsets into addresses. */ |
| int reg; |
| for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++) |
| { |
| if (cache->saved_regs[reg].is_addr ()) |
| cache->saved_regs[reg].set_addr (cache->saved_regs[reg].addr () |
| + cache->base); |
| } |
| } |
| |
| { |
| struct gdbarch_tdep *tdep; |
| |
| tdep = gdbarch_tdep (gdbarch); |
| |
| if (tdep->unwind_adjust_stub) |
| tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs); |
| } |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, "base=%s }", |
| paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base)); |
| return (struct hppa_frame_cache *) (*this_cache); |
| } |
| |
| static void |
| hppa_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct hppa_frame_cache *info; |
| struct unwind_table_entry *u; |
| |
| info = hppa_frame_cache (this_frame, this_cache); |
| u = hppa_find_unwind_entry_in_block (this_frame); |
| |
| (*this_id) = frame_id_build (info->base, u->region_start); |
| } |
| |
| static struct value * |
| hppa_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache); |
| |
| return hppa_frame_prev_register_helper (this_frame, |
| info->saved_regs, regnum); |
| } |
| |
| static int |
| hppa_frame_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, void **this_cache) |
| { |
| if (hppa_find_unwind_entry_in_block (this_frame)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind hppa_frame_unwind = |
| { |
| "hppa unwind table", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| hppa_frame_this_id, |
| hppa_frame_prev_register, |
| NULL, |
| hppa_frame_unwind_sniffer |
| }; |
| |
| /* This is a generic fallback frame unwinder that kicks in if we fail all |
| the other ones. Normally we would expect the stub and regular unwinder |
| to work, but in some cases we might hit a function that just doesn't |
| have any unwind information available. In this case we try to do |
| unwinding solely based on code reading. This is obviously going to be |
| slow, so only use this as a last resort. Currently this will only |
| identify the stack and pc for the frame. */ |
| |
| static struct hppa_frame_cache * |
| hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct hppa_frame_cache *cache; |
| unsigned int frame_size = 0; |
| int found_rp = 0; |
| CORE_ADDR start_pc; |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, |
| "{ hppa_fallback_frame_cache (frame=%d) -> ", |
| frame_relative_level (this_frame)); |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache); |
| (*this_cache) = cache; |
| cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| start_pc = get_frame_func (this_frame); |
| if (start_pc) |
| { |
| CORE_ADDR cur_pc = get_frame_pc (this_frame); |
| CORE_ADDR pc; |
| |
| for (pc = start_pc; pc < cur_pc; pc += 4) |
| { |
| unsigned int insn; |
| |
| insn = read_memory_unsigned_integer (pc, 4, byte_order); |
| frame_size += prologue_inst_adjust_sp (insn); |
| |
| /* There are limited ways to store the return pointer into the |
| stack. */ |
| if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */ |
| { |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (-20); |
| found_rp = 1; |
| } |
| else if (insn == 0x0fc212c1 |
| || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */ |
| { |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (-16); |
| found_rp = 1; |
| } |
| } |
| } |
| |
| if (hppa_debug) |
| fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n", |
| frame_size, found_rp); |
| |
| cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| cache->base -= frame_size; |
| cache->saved_regs[HPPA_SP_REGNUM].set_value (cache->base); |
| |
| if (cache->saved_regs[HPPA_RP_REGNUM].is_addr ()) |
| { |
| cache->saved_regs[HPPA_RP_REGNUM].set_addr (cache->saved_regs[HPPA_RP_REGNUM].addr () |
| + cache->base); |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = |
| cache->saved_regs[HPPA_RP_REGNUM]; |
| } |
| else |
| { |
| ULONGEST rp; |
| rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM); |
| cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_value (rp); |
| } |
| |
| return cache; |
| } |
| |
| static void |
| hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct hppa_frame_cache *info = |
| hppa_fallback_frame_cache (this_frame, this_cache); |
| |
| (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); |
| } |
| |
| static struct value * |
| hppa_fallback_frame_prev_register (struct frame_info *this_frame, |
| void **this_cache, int regnum) |
| { |
| struct hppa_frame_cache *info |
| = hppa_fallback_frame_cache (this_frame, this_cache); |
| |
| return hppa_frame_prev_register_helper (this_frame, |
| info->saved_regs, regnum); |
| } |
| |
| static const struct frame_unwind hppa_fallback_frame_unwind = |
| { |
| "hppa prologue", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| hppa_fallback_frame_this_id, |
| hppa_fallback_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Stub frames, used for all kinds of call stubs. */ |
| struct hppa_stub_unwind_cache |
| { |
| CORE_ADDR base; |
| trad_frame_saved_reg *saved_regs; |
| }; |
| |
| static struct hppa_stub_unwind_cache * |
| hppa_stub_frame_unwind_cache (struct frame_info *this_frame, |
| void **this_cache) |
| { |
| struct hppa_stub_unwind_cache *info; |
| |
| if (*this_cache) |
| return (struct hppa_stub_unwind_cache *) *this_cache; |
| |
| info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache); |
| *this_cache = info; |
| info->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
| |
| info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); |
| |
| /* By default we assume that stubs do not change the rp. */ |
| info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_realreg (HPPA_RP_REGNUM); |
| |
| return info; |
| } |
| |
| static void |
| hppa_stub_frame_this_id (struct frame_info *this_frame, |
| void **this_prologue_cache, |
| struct frame_id *this_id) |
| { |
| struct hppa_stub_unwind_cache *info |
| = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| if (info) |
| *this_id = frame_id_build (info->base, get_frame_func (this_frame)); |
| } |
| |
| static struct value * |
| hppa_stub_frame_prev_register (struct frame_info *this_frame, |
| void **this_prologue_cache, int regnum) |
| { |
| struct hppa_stub_unwind_cache *info |
| = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache); |
| |
| if (info == NULL) |
| error (_("Requesting registers from null frame.")); |
| |
| return hppa_frame_prev_register_helper (this_frame, |
| info->saved_regs, regnum); |
| } |
| |
| static int |
| hppa_stub_unwind_sniffer (const struct frame_unwind *self, |
| struct frame_info *this_frame, |
| void **this_cache) |
| { |
| CORE_ADDR pc = get_frame_address_in_block (this_frame); |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| if (pc == 0 |
| || (tdep->in_solib_call_trampoline != NULL |
| && tdep->in_solib_call_trampoline (gdbarch, pc)) |
| || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL)) |
| return 1; |
| return 0; |
| } |
| |
| static const struct frame_unwind hppa_stub_frame_unwind = { |
| "hppa stub", |
| NORMAL_FRAME, |
| default_frame_unwind_stop_reason, |
| hppa_stub_frame_this_id, |
| hppa_stub_frame_prev_register, |
| NULL, |
| hppa_stub_unwind_sniffer |
| }; |
| |
| CORE_ADDR |
| hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) |
| { |
| ULONGEST ipsw; |
| CORE_ADDR pc; |
| |
| ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM); |
| pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM); |
| |
| /* If the current instruction is nullified, then we are effectively |
| still executing the previous instruction. Pretend we are still |
| there. This is needed when single stepping; if the nullified |
| instruction is on a different line, we don't want GDB to think |
| we've stepped onto that line. */ |
| if (ipsw & 0x00200000) |
| pc -= 4; |
| |
| return pc & ~0x3; |
| } |
| |
| /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE. |
| Return NULL if no such symbol was found. */ |
| |
| struct bound_minimal_symbol |
| hppa_lookup_stub_minimal_symbol (const char *name, |
| enum unwind_stub_types stub_type) |
| { |
| struct bound_minimal_symbol result = { NULL, NULL }; |
| |
| for (objfile *objfile : current_program_space->objfiles ()) |
| { |
| for (minimal_symbol *msym : objfile->msymbols ()) |
| { |
| if (strcmp (msym->linkage_name (), name) == 0) |
| { |
| struct unwind_table_entry *u; |
| |
| u = find_unwind_entry (MSYMBOL_VALUE (msym)); |
| if (u != NULL && u->stub_unwind.stub_type == stub_type) |
| { |
| result.objfile = objfile; |
| result.minsym = msym; |
| return result; |
| } |
| } |
| } |
| } |
| |
| return result; |
| } |
| |
| static void |
| unwind_command (const char *exp, int from_tty) |
| { |
| CORE_ADDR address; |
| struct unwind_table_entry *u; |
| |
| /* If we have an expression, evaluate it and use it as the address. */ |
| |
| if (exp != 0 && *exp != 0) |
| address = parse_and_eval_address (exp); |
| else |
| return; |
| |
| u = find_unwind_entry (address); |
| |
| if (!u) |
| { |
| printf_unfiltered ("Can't find unwind table entry for %s\n", exp); |
| return; |
| } |
| |
| printf_unfiltered ("unwind_table_entry (%s):\n", host_address_to_string (u)); |
| |
| printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start)); |
| |
| printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end)); |
| |
| #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD); |
| |
| printf_unfiltered ("\n\tflags ="); |
| pif (Cannot_unwind); |
| pif (Millicode); |
| pif (Millicode_save_sr0); |
| pif (Entry_SR); |
| pif (Args_stored); |
| pif (Variable_Frame); |
| pif (Separate_Package_Body); |
| pif (Frame_Extension_Millicode); |
| pif (Stack_Overflow_Check); |
| pif (Two_Instruction_SP_Increment); |
| pif (sr4export); |
| pif (cxx_info); |
| pif (cxx_try_catch); |
| pif (sched_entry_seq); |
| pif (Save_SP); |
| pif (Save_RP); |
| pif (Save_MRP_in_frame); |
| pif (save_r19); |
| pif (Cleanup_defined); |
| pif (MPE_XL_interrupt_marker); |
| pif (HP_UX_interrupt_marker); |
| pif (Large_frame); |
| pif (alloca_frame); |
| |
| putchar_unfiltered ('\n'); |
| |
| #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD); |
| |
| pin (Region_description); |
| pin (Entry_FR); |
| pin (Entry_GR); |
| pin (Total_frame_size); |
| |
| if (u->stub_unwind.stub_type) |
| { |
| printf_unfiltered ("\tstub type = "); |
| switch (u->stub_unwind.stub_type) |
| { |
| case LONG_BRANCH: |
| printf_unfiltered ("long branch\n"); |
| break; |
| case PARAMETER_RELOCATION: |
| printf_unfiltered ("parameter relocation\n"); |
| break; |
| case EXPORT: |
| printf_unfiltered ("export\n"); |
| break; |
| case IMPORT: |
| printf_unfiltered ("import\n"); |
| break; |
| case IMPORT_SHLIB: |
| printf_unfiltered ("import shlib\n"); |
| break; |
| default: |
| printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type); |
| } |
| } |
| } |
| |
| /* Return the GDB type object for the "standard" data type of data in |
| register REGNUM. */ |
| |
| static struct type * |
| hppa32_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| if (regnum < HPPA_FP4_REGNUM) |
| return builtin_type (gdbarch)->builtin_uint32; |
| else |
| return builtin_type (gdbarch)->builtin_float; |
| } |
| |
| static struct type * |
| hppa64_register_type (struct gdbarch *gdbarch, int regnum) |
| { |
| if (regnum < HPPA64_FP4_REGNUM) |
| return builtin_type (gdbarch)->builtin_uint64; |
| else |
| return builtin_type (gdbarch)->builtin_double; |
| } |
| |
| /* Return non-zero if REGNUM is not a register available to the user |
| through ptrace/ttrace. */ |
| |
| static int |
| hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
| { |
| return (regnum == 0 |
| || regnum == HPPA_PCSQ_HEAD_REGNUM |
| || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) |
| || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM)); |
| } |
| |
| static int |
| hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
| { |
| /* cr26 and cr27 are readable (but not writable) from userspace. */ |
| if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) |
| return 0; |
| else |
| return hppa32_cannot_store_register (gdbarch, regnum); |
| } |
| |
| static int |
| hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum) |
| { |
| return (regnum == 0 |
| || regnum == HPPA_PCSQ_HEAD_REGNUM |
| || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM) |
| || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM)); |
| } |
| |
| static int |
| hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum) |
| { |
| /* cr26 and cr27 are readable (but not writable) from userspace. */ |
| if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM) |
| return 0; |
| else |
| return hppa64_cannot_store_register (gdbarch, regnum); |
| } |
| |
| static CORE_ADDR |
| hppa_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| /* The low two bits of the PC on the PA contain the privilege level. |
| Some genius implementing a (non-GCC) compiler apparently decided |
| this means that "addresses" in a text section therefore include a |
| privilege level, and thus symbol tables should contain these bits. |
| This seems like a bonehead thing to do--anyway, it seems to work |
| for our purposes to just ignore those bits. */ |
| |
| return (addr &= ~0x3); |
| } |
| |
| /* Get the ARGIth function argument for the current function. */ |
| |
| static CORE_ADDR |
| hppa_fetch_pointer_argument (struct frame_info *frame, int argi, |
| struct type *type) |
| { |
| return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi); |
| } |
| |
| static enum register_status |
| hppa_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
| int regnum, gdb_byte *buf) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| ULONGEST tmp; |
| enum register_status status; |
| |
| status = regcache->raw_read (regnum, &tmp); |
| if (status == REG_VALID) |
| { |
| if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM) |
| tmp &= ~0x3; |
| store_unsigned_integer (buf, sizeof tmp, byte_order, tmp); |
| } |
| return status; |
| } |
| |
| static CORE_ADDR |
| hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function) |
| { |
| return 0; |
| } |
| |
| struct value * |
| hppa_frame_prev_register_helper (struct frame_info *this_frame, |
| trad_frame_saved_reg saved_regs[], |
| int regnum) |
| { |
| struct gdbarch *arch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (arch); |
| |
| if (regnum == HPPA_PCOQ_TAIL_REGNUM) |
| { |
| int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM); |
| CORE_ADDR pc; |
| struct value *pcoq_val = |
| trad_frame_get_prev_register (this_frame, saved_regs, |
| HPPA_PCOQ_HEAD_REGNUM); |
| |
| pc = extract_unsigned_integer (value_contents_all (pcoq_val), |
| size, byte_order); |
| return frame_unwind_got_constant (this_frame, regnum, pc + 4); |
| } |
| |
| return trad_frame_get_prev_register (this_frame, saved_regs, regnum); |
| } |
| |
| |
| /* An instruction to match. */ |
| struct insn_pattern |
| { |
| unsigned int data; /* See if it matches this.... */ |
| unsigned int mask; /* ... with this mask. */ |
| }; |
| |
| /* See bfd/elf32-hppa.c */ |
| static struct insn_pattern hppa_long_branch_stub[] = { |
| /* ldil LR'xxx,%r1 */ |
| { 0x20200000, 0xffe00000 }, |
| /* be,n RR'xxx(%sr4,%r1) */ |
| { 0xe0202002, 0xffe02002 }, |
| { 0, 0 } |
| }; |
| |
| static struct insn_pattern hppa_long_branch_pic_stub[] = { |
| /* b,l .+8, %r1 */ |
| { 0xe8200000, 0xffe00000 }, |
| /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */ |
| { 0x28200000, 0xffe00000 }, |
| /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */ |
| { 0xe0202002, 0xffe02002 }, |
| { 0, 0 } |
| }; |
| |
| static struct insn_pattern hppa_import_stub[] = { |
| /* addil LR'xxx, %dp */ |
| { 0x2b600000, 0xffe00000 }, |
| /* ldw RR'xxx(%r1), %r21 */ |
| { 0x48350000, 0xffffb000 }, |
| /* bv %r0(%r21) */ |
| { 0xeaa0c000, 0xffffffff }, |
| /* ldw RR'xxx+4(%r1), %r19 */ |
| { 0x48330000, 0xffffb000 }, |
| { 0, 0 } |
| }; |
| |
| static struct insn_pattern hppa_import_pic_stub[] = { |
| /* addil LR'xxx,%r19 */ |
| { 0x2a600000, 0xffe00000 }, |
| /* ldw RR'xxx(%r1),%r21 */ |
| { 0x48350000, 0xffffb000 }, |
| /* bv %r0(%r21) */ |
| { 0xeaa0c000, 0xffffffff }, |
| /* ldw RR'xxx+4(%r1),%r19 */ |
| { 0x48330000, 0xffffb000 }, |
| { 0, 0 }, |
| }; |
| |
| static struct insn_pattern hppa_plt_stub[] = { |
| /* b,l 1b, %r20 - 1b is 3 insns before here */ |
| { 0xea9f1fdd, 0xffffffff }, |
| /* depi 0,31,2,%r20 */ |
| { 0xd6801c1e, 0xffffffff }, |
| { 0, 0 } |
| }; |
| |
| /* Maximum number of instructions on the patterns above. */ |
| #define HPPA_MAX_INSN_PATTERN_LEN 4 |
| |
| /* Return non-zero if the instructions at PC match the series |
| described in PATTERN, or zero otherwise. PATTERN is an array of |
| 'struct insn_pattern' objects, terminated by an entry whose mask is |
| zero. |
| |
| When the match is successful, fill INSN[i] with what PATTERN[i] |
| matched. */ |
| |
| static int |
| hppa_match_insns (struct gdbarch *gdbarch, CORE_ADDR pc, |
| struct insn_pattern *pattern, unsigned int *insn) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| CORE_ADDR npc = pc; |
| int i; |
| |
| for (i = 0; pattern[i].mask; i++) |
| { |
| gdb_byte buf[HPPA_INSN_SIZE]; |
| |
| target_read_memory (npc, buf, HPPA_INSN_SIZE); |
| insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE, byte_order); |
| if ((insn[i] & pattern[i].mask) == pattern[i].data) |
| npc += 4; |
| else |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* This relaxed version of the instruction matcher allows us to match |
| from somewhere inside the pattern, by looking backwards in the |
| instruction scheme. */ |
| |
| static int |
| hppa_match_insns_relaxed (struct gdbarch *gdbarch, CORE_ADDR pc, |
| struct insn_pattern *pattern, unsigned int *insn) |
| { |
| int offset, len = 0; |
| |
| while (pattern[len].mask) |
| len++; |
| |
| for (offset = 0; offset < len; offset++) |
| if (hppa_match_insns (gdbarch, pc - offset * HPPA_INSN_SIZE, |
| pattern, insn)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int |
| hppa_in_dyncall (CORE_ADDR pc) |
| { |
| struct unwind_table_entry *u; |
| |
| u = find_unwind_entry (hppa_symbol_address ("$$dyncall")); |
| if (!u) |
| return 0; |
| |
| return (pc >= u->region_start && pc <= u->region_end); |
| } |
| |
| int |
| hppa_in_solib_call_trampoline (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
| struct unwind_table_entry *u; |
| |
| if (in_plt_section (pc) || hppa_in_dyncall (pc)) |
| return 1; |
| |
| /* The GNU toolchain produces linker stubs without unwind |
| information. Since the pattern matching for linker stubs can be |
| quite slow, so bail out if we do have an unwind entry. */ |
| |
| u = find_unwind_entry (pc); |
| if (u != NULL) |
| return 0; |
| |
| return |
| (hppa_match_insns_relaxed (gdbarch, pc, hppa_import_stub, insn) |
| || hppa_match_insns_relaxed (gdbarch, pc, hppa_import_pic_stub, insn) |
| || hppa_match_insns_relaxed (gdbarch, pc, hppa_long_branch_stub, insn) |
| || hppa_match_insns_relaxed (gdbarch, pc, |
| hppa_long_branch_pic_stub, insn)); |
| } |
| |
| /* This code skips several kind of "trampolines" used on PA-RISC |
| systems: $$dyncall, import stubs and PLT stubs. */ |
| |
| CORE_ADDR |
| hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (frame); |
| struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr; |
| |
| unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN]; |
| int dp_rel; |
| |
| /* $$dyncall handles both PLABELs and direct addresses. */ |
| if (hppa_in_dyncall (pc)) |
| { |
| pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22); |
| |
| /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */ |
| if (pc & 0x2) |
| pc = read_memory_typed_address (pc & ~0x3, func_ptr_type); |
| |
| return pc; |
| } |
| |
| dp_rel = hppa_match_insns (gdbarch, pc, hppa_import_stub, insn); |
| if (dp_rel || hppa_match_insns (gdbarch, pc, hppa_import_pic_stub, insn)) |
| { |
| /* Extract the target address from the addil/ldw sequence. */ |
| pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]); |
| |
| if (dp_rel) |
| pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM); |
| else |
| pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19); |
| |
| /* fallthrough */ |
| } |
| |
| if (in_plt_section (pc)) |
| { |
| pc = read_memory_typed_address (pc, func_ptr_type); |
| |
| /* If the PLT slot has not yet been resolved, the target will be |
| the PLT stub. */ |
| if (in_plt_section (pc)) |
| { |
| /* Sanity check: are we pointing to the PLT stub? */ |
| if (!hppa_match_insns (gdbarch, pc, hppa_plt_stub, insn)) |
| { |
| warning (_("Cannot resolve PLT stub at %s."), |
| paddress (gdbarch, pc)); |
| return 0; |
| } |
| |
| /* This should point to the fixup routine. */ |
| pc = read_memory_typed_address (pc + 8, func_ptr_type); |
| } |
| } |
| |
| return pc; |
| } |
| |
| |
| /* Here is a table of C type sizes on hppa with various compiles |
| and options. I measured this on PA 9000/800 with HP-UX 11.11 |
| and these compilers: |
| |
| /usr/ccs/bin/cc HP92453-01 A.11.01.21 |
| /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP |
| /opt/aCC/bin/aCC B3910B A.03.45 |
| gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11 |
| |
| cc : 1 2 4 4 8 : 4 8 -- : 4 4 |
| ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 |
| acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4 |
| acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8 |
| gcc : 1 2 4 4 8 : 4 8 16 : 4 4 |
| |
| Each line is: |
| |
| compiler and options |
| char, short, int, long, long long |
| float, double, long double |
| char *, void (*)() |
| |
| So all these compilers use either ILP32 or LP64 model. |
| TODO: gcc has more options so it needs more investigation. |
| |
| For floating point types, see: |
| |
| http://docs.hp.com/hpux/pdf/B3906-90006.pdf |
| HP-UX floating-point guide, hpux 11.00 |
| |
| -- chastain 2003-12-18 */ |
| |
| static struct gdbarch * |
| hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
| { |
| struct gdbarch_tdep *tdep; |
| struct gdbarch *gdbarch; |
| |
| /* find a candidate among the list of pre-declared architectures. */ |
| arches = gdbarch_list_lookup_by_info (arches, &info); |
| if (arches != NULL) |
| return (arches->gdbarch); |
| |
| /* If none found, then allocate and initialize one. */ |
| tdep = XCNEW (struct gdbarch_tdep); |
| gdbarch = gdbarch_alloc (&info, tdep); |
| |
| /* Determine from the bfd_arch_info structure if we are dealing with |
| a 32 or 64 bits architecture. If the bfd_arch_info is not available, |
| then default to a 32bit machine. */ |
| if (info.bfd_arch_info != NULL) |
| tdep->bytes_per_address = |
| info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte; |
| else |
| tdep->bytes_per_address = 4; |
| |
| tdep->find_global_pointer = hppa_find_global_pointer; |
| |
| /* Some parts of the gdbarch vector depend on whether we are running |
| on a 32 bits or 64 bits target. */ |
| switch (tdep->bytes_per_address) |
| { |
| case 4: |
| set_gdbarch_num_regs (gdbarch, hppa32_num_regs); |
| set_gdbarch_register_name (gdbarch, hppa32_register_name); |
| set_gdbarch_register_type (gdbarch, hppa32_register_type); |
| set_gdbarch_cannot_store_register (gdbarch, |
| hppa32_cannot_store_register); |
| set_gdbarch_cannot_fetch_register (gdbarch, |
| hppa32_cannot_fetch_register); |
| break; |
| case 8: |
| set_gdbarch_num_regs (gdbarch, hppa64_num_regs); |
| set_gdbarch_register_name (gdbarch, hppa64_register_name); |
| set_gdbarch_register_type (gdbarch, hppa64_register_type); |
| set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum); |
| set_gdbarch_cannot_store_register (gdbarch, |
| hppa64_cannot_store_register); |
| set_gdbarch_cannot_fetch_register (gdbarch, |
| hppa64_cannot_fetch_register); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"), |
| tdep->bytes_per_address); |
| } |
| |
| set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
| set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT); |
| |
| /* The following gdbarch vector elements are the same in both ILP32 |
| and LP64, but might show differences some day. */ |
| set_gdbarch_long_long_bit (gdbarch, 64); |
| set_gdbarch_long_double_bit (gdbarch, 128); |
| set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad); |
| |
| /* The following gdbarch vector elements do not depend on the address |
| size, or in any other gdbarch element previously set. */ |
| set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue); |
| set_gdbarch_stack_frame_destroyed_p (gdbarch, |
| hppa_stack_frame_destroyed_p); |
| set_gdbarch_inner_than (gdbarch, core_addr_greaterthan); |
| set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM); |
| set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM); |
| set_gdbarch_addr_bits_remove (gdbarch, hppa_addr_bits_remove); |
| set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
| set_gdbarch_read_pc (gdbarch, hppa_read_pc); |
| set_gdbarch_write_pc (gdbarch, hppa_write_pc); |
| |
| /* Helper for function argument information. */ |
| set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument); |
| |
| /* When a hardware watchpoint triggers, we'll move the inferior past |
| it by removing all eventpoints; stepping past the instruction |
| that caused the trigger; reinserting eventpoints; and checking |
| whether any watched location changed. */ |
| set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
| |
| /* Inferior function call methods. */ |
| switch (tdep->bytes_per_address) |
| { |
| case 4: |
| set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call); |
| set_gdbarch_frame_align (gdbarch, hppa32_frame_align); |
| set_gdbarch_convert_from_func_ptr_addr |
| (gdbarch, hppa32_convert_from_func_ptr_addr); |
| break; |
| case 8: |
| set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call); |
| set_gdbarch_frame_align (gdbarch, hppa64_frame_align); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, _("bad switch")); |
| } |
| |
| /* Struct return methods. */ |
| switch (tdep->bytes_per_address) |
| { |
| case 4: |
| set_gdbarch_return_value (gdbarch, hppa32_return_value); |
| break; |
| case 8: |
| set_gdbarch_return_value (gdbarch, hppa64_return_value); |
| break; |
| default: |
| internal_error (__FILE__, __LINE__, _("bad switch")); |
| } |
| |
| set_gdbarch_breakpoint_kind_from_pc (gdbarch, hppa_breakpoint::kind_from_pc); |
| set_gdbarch_sw_breakpoint_from_kind (gdbarch, hppa_breakpoint::bp_from_kind); |
| set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read); |
| |
| /* Frame unwind methods. */ |
| set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc); |
| |
| /* Hook in ABI-specific overrides, if they have been registered. */ |
| gdbarch_init_osabi (info, gdbarch); |
| |
| /* Hook in the default unwinders. */ |
| frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind); |
| frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind); |
|