| /* PPC GNU/Linux native support. |
| |
| Copyright (C) 1988-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "frame.h" |
| #include "inferior.h" |
| #include "gdbthread.h" |
| #include "gdbcore.h" |
| #include "regcache.h" |
| #include "regset.h" |
| #include "target.h" |
| #include "linux-nat.h" |
| #include <sys/types.h> |
| #include <signal.h> |
| #include <sys/user.h> |
| #include <sys/ioctl.h> |
| #include <sys/uio.h> |
| #include "gdbsupport/gdb_wait.h" |
| #include <fcntl.h> |
| #include <sys/procfs.h> |
| #include "nat/gdb_ptrace.h" |
| #include "nat/linux-ptrace.h" |
| #include "inf-ptrace.h" |
| #include <algorithm> |
| #include <unordered_map> |
| #include <list> |
| |
| /* Prototypes for supply_gregset etc. */ |
| #include "gregset.h" |
| #include "ppc-tdep.h" |
| #include "ppc-linux-tdep.h" |
| |
| /* Required when using the AUXV. */ |
| #include "elf/common.h" |
| #include "auxv.h" |
| |
| #include "arch/ppc-linux-common.h" |
| #include "arch/ppc-linux-tdesc.h" |
| #include "nat/ppc-linux.h" |
| #include "linux-tdep.h" |
| #include "expop.h" |
| |
| /* Similarly for the hardware watchpoint support. These requests are used |
| when the PowerPC HWDEBUG ptrace interface is not available. */ |
| #ifndef PTRACE_GET_DEBUGREG |
| #define PTRACE_GET_DEBUGREG 25 |
| #endif |
| #ifndef PTRACE_SET_DEBUGREG |
| #define PTRACE_SET_DEBUGREG 26 |
| #endif |
| #ifndef PTRACE_GETSIGINFO |
| #define PTRACE_GETSIGINFO 0x4202 |
| #endif |
| |
| /* These requests are used when the PowerPC HWDEBUG ptrace interface is |
| available. It exposes the debug facilities of PowerPC processors, as well |
| as additional features of BookE processors, such as ranged breakpoints and |
| watchpoints and hardware-accelerated condition evaluation. */ |
| #ifndef PPC_PTRACE_GETHWDBGINFO |
| |
| /* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG |
| ptrace interface is not present in ptrace.h, so we'll have to pretty much |
| include it all here so that the code at least compiles on older systems. */ |
| #define PPC_PTRACE_GETHWDBGINFO 0x89 |
| #define PPC_PTRACE_SETHWDEBUG 0x88 |
| #define PPC_PTRACE_DELHWDEBUG 0x87 |
| |
| struct ppc_debug_info |
| { |
| uint32_t version; /* Only version 1 exists to date. */ |
| uint32_t num_instruction_bps; |
| uint32_t num_data_bps; |
| uint32_t num_condition_regs; |
| uint32_t data_bp_alignment; |
| uint32_t sizeof_condition; /* size of the DVC register. */ |
| uint64_t features; |
| }; |
| |
| /* Features will have bits indicating whether there is support for: */ |
| #define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1 |
| #define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2 |
| #define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4 |
| #define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8 |
| |
| struct ppc_hw_breakpoint |
| { |
| uint32_t version; /* currently, version must be 1 */ |
| uint32_t trigger_type; /* only some combinations allowed */ |
| uint32_t addr_mode; /* address match mode */ |
| uint32_t condition_mode; /* break/watchpoint condition flags */ |
| uint64_t addr; /* break/watchpoint address */ |
| uint64_t addr2; /* range end or mask */ |
| uint64_t condition_value; /* contents of the DVC register */ |
| }; |
| |
| /* Trigger type. */ |
| #define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1 |
| #define PPC_BREAKPOINT_TRIGGER_READ 0x2 |
| #define PPC_BREAKPOINT_TRIGGER_WRITE 0x4 |
| #define PPC_BREAKPOINT_TRIGGER_RW 0x6 |
| |
| /* Address mode. */ |
| #define PPC_BREAKPOINT_MODE_EXACT 0x0 |
| #define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1 |
| #define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2 |
| #define PPC_BREAKPOINT_MODE_MASK 0x3 |
| |
| /* Condition mode. */ |
| #define PPC_BREAKPOINT_CONDITION_NONE 0x0 |
| #define PPC_BREAKPOINT_CONDITION_AND 0x1 |
| #define PPC_BREAKPOINT_CONDITION_EXACT 0x1 |
| #define PPC_BREAKPOINT_CONDITION_OR 0x2 |
| #define PPC_BREAKPOINT_CONDITION_AND_OR 0x3 |
| #define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000 |
| #define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16 |
| #define PPC_BREAKPOINT_CONDITION_BE(n) \ |
| (1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT)) |
| #endif /* PPC_PTRACE_GETHWDBGINFO */ |
| |
| /* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider |
| watchpoint (up to 512 bytes). */ |
| #ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR |
| #define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10 |
| #endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */ |
| |
| /* Feature defined on Linux kernel v5.1: Second watchpoint support. */ |
| #ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 |
| #define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20 |
| #endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */ |
| |
| /* The version of the PowerPC HWDEBUG kernel interface that we will use, if |
| available. */ |
| #define PPC_DEBUG_CURRENT_VERSION 1 |
| |
| /* Similarly for the general-purpose (gp0 -- gp31) |
| and floating-point registers (fp0 -- fp31). */ |
| #ifndef PTRACE_GETREGS |
| #define PTRACE_GETREGS 12 |
| #endif |
| #ifndef PTRACE_SETREGS |
| #define PTRACE_SETREGS 13 |
| #endif |
| #ifndef PTRACE_GETFPREGS |
| #define PTRACE_GETFPREGS 14 |
| #endif |
| #ifndef PTRACE_SETFPREGS |
| #define PTRACE_SETFPREGS 15 |
| #endif |
| |
| /* This oddity is because the Linux kernel defines elf_vrregset_t as |
| an array of 33 16 bytes long elements. I.e. it leaves out vrsave. |
| However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return |
| the vrsave as an extra 4 bytes at the end. I opted for creating a |
| flat array of chars, so that it is easier to manipulate for gdb. |
| |
| There are 32 vector registers 16 bytes longs, plus a VSCR register |
| which is only 4 bytes long, but is fetched as a 16 bytes |
| quantity. Up to here we have the elf_vrregset_t structure. |
| Appended to this there is space for the VRSAVE register: 4 bytes. |
| Even though this vrsave register is not included in the regset |
| typedef, it is handled by the ptrace requests. |
| |
| The layout is like this (where x is the actual value of the vscr reg): */ |
| |
| /* *INDENT-OFF* */ |
| /* |
| Big-Endian: |
| |.|.|.|.|.....|.|.|.|.||.|.|.|x||.| |
| <-------> <-------><-------><-> |
| VR0 VR31 VSCR VRSAVE |
| Little-Endian: |
| |.|.|.|.|.....|.|.|.|.||X|.|.|.||.| |
| <-------> <-------><-------><-> |
| VR0 VR31 VSCR VRSAVE |
| */ |
| /* *INDENT-ON* */ |
| |
| typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET]; |
| |
| /* This is the layout of the POWER7 VSX registers and the way they overlap |
| with the existing FPR and VMX registers. |
| |
| VSR doubleword 0 VSR doubleword 1 |
| ---------------------------------------------------------------- |
| VSR[0] | FPR[0] | | |
| ---------------------------------------------------------------- |
| VSR[1] | FPR[1] | | |
| ---------------------------------------------------------------- |
| | ... | | |
| | ... | | |
| ---------------------------------------------------------------- |
| VSR[30] | FPR[30] | | |
| ---------------------------------------------------------------- |
| VSR[31] | FPR[31] | | |
| ---------------------------------------------------------------- |
| VSR[32] | VR[0] | |
| ---------------------------------------------------------------- |
| VSR[33] | VR[1] | |
| ---------------------------------------------------------------- |
| | ... | |
| | ... | |
| ---------------------------------------------------------------- |
| VSR[62] | VR[30] | |
| ---------------------------------------------------------------- |
| VSR[63] | VR[31] | |
| ---------------------------------------------------------------- |
| |
| VSX has 64 128bit registers. The first 32 registers overlap with |
| the FP registers (doubleword 0) and hence extend them with additional |
| 64 bits (doubleword 1). The other 32 regs overlap with the VMX |
| registers. */ |
| typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET]; |
| |
| /* On PPC processors that support the Signal Processing Extension |
| (SPE) APU, the general-purpose registers are 64 bits long. |
| However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER |
| ptrace calls only access the lower half of each register, to allow |
| them to behave the same way they do on non-SPE systems. There's a |
| separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that |
| read and write the top halves of all the general-purpose registers |
| at once, along with some SPE-specific registers. |
| |
| GDB itself continues to claim the general-purpose registers are 32 |
| bits long. It has unnamed raw registers that hold the upper halves |
| of the gprs, and the full 64-bit SIMD views of the registers, |
| 'ev0' -- 'ev31', are pseudo-registers that splice the top and |
| bottom halves together. |
| |
| This is the structure filled in by PTRACE_GETEVRREGS and written to |
| the inferior's registers by PTRACE_SETEVRREGS. */ |
| struct gdb_evrregset_t |
| { |
| unsigned long evr[32]; |
| unsigned long long acc; |
| unsigned long spefscr; |
| }; |
| |
| /* Non-zero if our kernel may support the PTRACE_GETVSXREGS and |
| PTRACE_SETVSXREGS requests, for reading and writing the VSX |
| POWER7 registers 0 through 31. Zero if we've tried one of them and |
| gotten an error. Note that VSX registers 32 through 63 overlap |
| with VR registers 0 through 31. */ |
| int have_ptrace_getsetvsxregs = 1; |
| |
| /* Non-zero if our kernel may support the PTRACE_GETVRREGS and |
| PTRACE_SETVRREGS requests, for reading and writing the Altivec |
| registers. Zero if we've tried one of them and gotten an |
| error. */ |
| int have_ptrace_getvrregs = 1; |
| |
| /* Non-zero if our kernel may support the PTRACE_GETEVRREGS and |
| PTRACE_SETEVRREGS requests, for reading and writing the SPE |
| registers. Zero if we've tried one of them and gotten an |
| error. */ |
| int have_ptrace_getsetevrregs = 1; |
| |
| /* Non-zero if our kernel may support the PTRACE_GETREGS and |
| PTRACE_SETREGS requests, for reading and writing the |
| general-purpose registers. Zero if we've tried one of |
| them and gotten an error. */ |
| int have_ptrace_getsetregs = 1; |
| |
| /* Non-zero if our kernel may support the PTRACE_GETFPREGS and |
| PTRACE_SETFPREGS requests, for reading and writing the |
| floating-pointers registers. Zero if we've tried one of |
| them and gotten an error. */ |
| int have_ptrace_getsetfpregs = 1; |
| |
| /* Private arch info associated with each thread lwp_info object, used |
| for debug register handling. */ |
| |
| struct arch_lwp_info |
| { |
| /* When true, indicates that the debug registers installed in the |
| thread no longer correspond to the watchpoints and breakpoints |
| requested by GDB. */ |
| bool debug_regs_stale; |
| |
| /* We need a back-reference to the PTID of the thread so that we can |
| cleanup the debug register state of the thread in |
| low_delete_thread. */ |
| ptid_t lwp_ptid; |
| }; |
| |
| /* Class used to detect which set of ptrace requests that |
| ppc_linux_nat_target will use to install and remove hardware |
| breakpoints and watchpoints. |
| |
| The interface is only detected once, testing the ptrace calls. The |
| result can indicate that no interface is available. |
| |
| The Linux kernel provides two different sets of ptrace requests to |
| handle hardware watchpoints and breakpoints for Power: |
| |
| - PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and |
| PPC_PTRACE_DELHWDEBUG. |
| |
| Or |
| |
| - PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG |
| |
| The first set is the more flexible one and allows setting watchpoints |
| with a variable watched region length and, for BookE processors, |
| multiple types of debug registers (e.g. hardware breakpoints and |
| hardware-assisted conditions for watchpoints). The second one only |
| allows setting one debug register, a watchpoint, so we only use it if |
| the first one is not available. */ |
| |
| class ppc_linux_dreg_interface |
| { |
| public: |
| |
| ppc_linux_dreg_interface () |
| : m_interface (), m_hwdebug_info () |
| { |
| }; |
| |
| DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface); |
| |
| /* One and only one of these three functions returns true, indicating |
| whether the corresponding interface is the one we detected. The |
| interface must already have been detected as a precontidion. */ |
| |
| bool hwdebug_p () |
| { |
| gdb_assert (detected_p ()); |
| return *m_interface == HWDEBUG; |
| } |
| |
| bool debugreg_p () |
| { |
| gdb_assert (detected_p ()); |
| return *m_interface == DEBUGREG; |
| } |
| |
| bool unavailable_p () |
| { |
| gdb_assert (detected_p ()); |
| return *m_interface == UNAVAILABLE; |
| } |
| |
| /* Returns the debug register capabilities of the target. Should only |
| be called if the interface is HWDEBUG. */ |
| const struct ppc_debug_info &hwdebug_info () |
| { |
| gdb_assert (hwdebug_p ()); |
| |
| return m_hwdebug_info; |
| } |
| |
| /* Returns true if the interface has already been detected. This is |
| useful for cases when we know there is no work to be done if the |
| interface hasn't been detected yet. */ |
| bool detected_p () |
| { |
| return m_interface.has_value (); |
| } |
| |
| /* Detect the available interface, if any, if it hasn't been detected |
| before, using PTID for the necessary ptrace calls. */ |
| |
| void detect (const ptid_t &ptid) |
| { |
| if (m_interface.has_value ()) |
| return; |
| |
| gdb_assert (ptid.lwp_p ()); |
| |
| bool no_features = false; |
| |
| if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info) |
| >= 0) |
| { |
| /* If there are no advertised features, we don't use the |
| HWDEBUG interface and try the DEBUGREG interface instead. |
| It shouldn't be necessary to do this, however, when the |
| kernel is configured without CONFIG_HW_BREAKPOINTS (selected |
| by CONFIG_PERF_EVENTS), there is a bug that causes |
| watchpoints installed with the HWDEBUG interface not to |
| trigger. When this is the case, features will be zero, |
| which we use as an indicator to fall back to the DEBUGREG |
| interface. */ |
| if (m_hwdebug_info.features != 0) |
| { |
| m_interface.emplace (HWDEBUG); |
| return; |
| } |
| else |
| no_features = true; |
| } |
| |
| /* EIO indicates that the request is invalid, so we try DEBUGREG |
| next. Technically, it can also indicate other failures, but we |
| can't differentiate those. |
| |
| Other errors could happen for various reasons. We could get an |
| ESRCH if the traced thread was killed by a signal. Trying to |
| detect the interface with another thread in the future would be |
| complicated, as callers would have to handle an "unknown |
| interface" case. It's also unclear if raising an exception |
| here would be safe. |
| |
| Other errors, such as ENODEV, could be more permanent and cause |
| a failure for any thread. |
| |
| For simplicity, with all errors other than EIO, we set the |
| interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG |
| fails too, we'll also set the interface to UNAVAILABLE. It's |
| unlikely that trying the DEBUGREG interface with this same thread |
| would work, for errors other than EIO. This means that these |
| errors will cause hardware watchpoints and breakpoints to become |
| unavailable throughout a GDB session. */ |
| |
| if (no_features || errno == EIO) |
| { |
| unsigned long wp; |
| |
| if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0) |
| { |
| m_interface.emplace (DEBUGREG); |
| return; |
| } |
| } |
| |
| if (errno != EIO) |
| warning (_("Error when detecting the debug register interface. " |
| "Debug registers will be unavailable.")); |
| |
| m_interface.emplace (UNAVAILABLE); |
| return; |
| } |
| |
| private: |
| |
| /* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO, |
| PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG. |
| |
| DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and |
| PTRACE_GET_DEBUGREG. |
| |
| UNAVAILABLE can indicate that the kernel doesn't support any of the |
| two sets of requests or that there was an error when we tried to |
| detect wich interface is available. */ |
| |
| enum debug_reg_interface |
| { |
| UNAVAILABLE, |
| HWDEBUG, |
| DEBUGREG |
| }; |
| |
| /* The interface option. Initialized if has_value () returns true. */ |
| gdb::optional<enum debug_reg_interface> m_interface; |
| |
| /* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only |
| valid if we determined that the interface is HWDEBUG. */ |
| struct ppc_debug_info m_hwdebug_info; |
| }; |
| |
| /* Per-process information. This includes the hardware watchpoints and |
| breakpoints that GDB requested to this target. */ |
| |
| struct ppc_linux_process_info |
| { |
| /* The list of hardware watchpoints and breakpoints that GDB requested |
| for this process. |
| |
| Only used when the interface is HWDEBUG. */ |
| std::list<struct ppc_hw_breakpoint> requested_hw_bps; |
| |
| /* The watchpoint value that GDB requested for this process. |
| |
| Only used when the interface is DEBUGREG. */ |
| gdb::optional<long> requested_wp_val; |
| }; |
| |
| struct ppc_linux_nat_target final : public linux_nat_target |
| { |
| /* Add our register access methods. */ |
| void fetch_registers (struct regcache *, int) override; |
| void store_registers (struct regcache *, int) override; |
| |
| /* Add our breakpoint/watchpoint methods. */ |
| int can_use_hw_breakpoint (enum bptype, int, int) override; |
| |
| int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) |
| override; |
| |
| int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) |
| override; |
| |
| int region_ok_for_hw_watchpoint (CORE_ADDR, int) override; |
| |
| int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, |
| struct expression *) override; |
| |
| int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type, |
| struct expression *) override; |
| |
| int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) |
| override; |
| |
| int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type) |
| override; |
| |
| bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override; |
| |
| bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *) |
| override; |
| |
| int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override; |
| |
| int ranged_break_num_registers () override; |
| |
| const struct target_desc *read_description () override; |
| |
| int auxv_parse (gdb_byte **readptr, |
| gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp) |
| override; |
| |
| /* Override linux_nat_target low methods. */ |
| bool low_stopped_by_watchpoint () override; |
| |
| bool low_stopped_data_address (CORE_ADDR *) override; |
| |
| void low_new_thread (struct lwp_info *lp) override; |
| |
| void low_delete_thread (arch_lwp_info *) override; |
| |
| void low_new_fork (struct lwp_info *, pid_t) override; |
| |
| void low_new_clone (struct lwp_info *, pid_t) override; |
| |
| void low_forget_process (pid_t pid) override; |
| |
| void low_prepare_to_resume (struct lwp_info *) override; |
| |
| private: |
| |
| void copy_thread_dreg_state (const ptid_t &parent_ptid, |
| const ptid_t &child_ptid); |
| |
| void mark_thread_stale (struct lwp_info *lp); |
| |
| void mark_debug_registers_changed (pid_t pid); |
| |
| void register_hw_breakpoint (pid_t pid, |
| const struct ppc_hw_breakpoint &bp); |
| |
| void clear_hw_breakpoint (pid_t pid, |
| const struct ppc_hw_breakpoint &a); |
| |
| void register_wp (pid_t pid, long wp_value); |
| |
| void clear_wp (pid_t pid); |
| |
| bool can_use_watchpoint_cond_accel (void); |
| |
| void calculate_dvc (CORE_ADDR addr, int len, |
| CORE_ADDR data_value, |
| uint32_t *condition_mode, |
| uint64_t *condition_value); |
| |
| int check_condition (CORE_ADDR watch_addr, |
| struct expression *cond, |
| CORE_ADDR *data_value, int *len); |
| |
| int num_memory_accesses (const std::vector<value_ref_ptr> &chain); |
| |
| int get_trigger_type (enum target_hw_bp_type type); |
| |
| void create_watchpoint_request (struct ppc_hw_breakpoint *p, |
| CORE_ADDR addr, |
| int len, |
| enum target_hw_bp_type type, |
| struct expression *cond, |
| int insert); |
| |
| bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, |
| const struct ppc_hw_breakpoint &b); |
| |
| void init_arch_lwp_info (struct lwp_info *lp); |
| |
| arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp); |
| |
| /* The ptrace interface we'll use to install hardware watchpoints and |
| breakpoints (debug registers). */ |
| ppc_linux_dreg_interface m_dreg_interface; |
| |
| /* A map from pids to structs containing info specific to each |
| process. */ |
| std::unordered_map<pid_t, ppc_linux_process_info> m_process_info; |
| |
| /* Callable object to hash ptids by their lwp number. */ |
| struct ptid_hash |
| { |
| std::size_t operator() (const ptid_t &ptid) const |
| { |
| return std::hash<long>{} (ptid.lwp ()); |
| } |
| }; |
| |
| /* A map from ptid_t objects to a list of pairs of slots and hardware |
| breakpoint objects. This keeps track of which hardware breakpoints |
| and watchpoints were last installed in each slot of each thread. |
| |
| Only used when the interface is HWDEBUG. */ |
| std::unordered_map <ptid_t, |
| std::list<std::pair<long, ppc_hw_breakpoint>>, |
| ptid_hash> m_installed_hw_bps; |
| }; |
| |
| static ppc_linux_nat_target the_ppc_linux_nat_target; |
| |
| /* *INDENT-OFF* */ |
| /* registers layout, as presented by the ptrace interface: |
| PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7, |
| PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15, |
| PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23, |
| PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31, |
| PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6, |
| PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14, |
| PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22, |
| PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30, |
| PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38, |
| PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46, |
| PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54, |
| PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62, |
| PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */ |
| /* *INDENT_ON * */ |
| |
| static int |
| ppc_register_u_addr (struct gdbarch *gdbarch, int regno) |
| { |
| int u_addr = -1; |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| /* NOTE: cagney/2003-11-25: This is the word size used by the ptrace |
| interface, and not the wordsize of the program's ABI. */ |
| int wordsize = sizeof (long); |
| |
| /* General purpose registers occupy 1 slot each in the buffer. */ |
| if (regno >= tdep->ppc_gp0_regnum |
| && regno < tdep->ppc_gp0_regnum + ppc_num_gprs) |
| u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize); |
| |
| /* Floating point regs: eight bytes each in both 32- and 64-bit |
| ptrace interfaces. Thus, two slots each in 32-bit interface, one |
| slot each in 64-bit interface. */ |
| if (tdep->ppc_fp0_regnum >= 0 |
| && regno >= tdep->ppc_fp0_regnum |
| && regno < tdep->ppc_fp0_regnum + ppc_num_fprs) |
| u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8); |
| |
| /* UISA special purpose registers: 1 slot each. */ |
| if (regno == gdbarch_pc_regnum (gdbarch)) |
| u_addr = PT_NIP * wordsize; |
| if (regno == tdep->ppc_lr_regnum) |
| u_addr = PT_LNK * wordsize; |
| if (regno == tdep->ppc_cr_regnum) |
| u_addr = PT_CCR * wordsize; |
| if (regno == tdep->ppc_xer_regnum) |
| u_addr = PT_XER * wordsize; |
| if (regno == tdep->ppc_ctr_regnum) |
| u_addr = PT_CTR * wordsize; |
| #ifdef PT_MQ |
| if (regno == tdep->ppc_mq_regnum) |
| u_addr = PT_MQ * wordsize; |
| #endif |
| if (regno == tdep->ppc_ps_regnum) |
| u_addr = PT_MSR * wordsize; |
| if (regno == PPC_ORIG_R3_REGNUM) |
| u_addr = PT_ORIG_R3 * wordsize; |
| if (regno == PPC_TRAP_REGNUM) |
| u_addr = PT_TRAP * wordsize; |
| if (tdep->ppc_fpscr_regnum >= 0 |
| && regno == tdep->ppc_fpscr_regnum) |
| { |
| /* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the |
| kernel headers incorrectly contained the 32-bit definition of |
| PT_FPSCR. For the 32-bit definition, floating-point |
| registers occupy two 32-bit "slots", and the FPSCR lives in |
| the second half of such a slot-pair (hence +1). For 64-bit, |
| the FPSCR instead occupies the full 64-bit 2-word-slot and |
| hence no adjustment is necessary. Hack around this. */ |
| if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1)) |
| u_addr = (48 + 32) * wordsize; |
| /* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit |
| slot and not just its second word. The PT_FPSCR supplied when |
| GDB is compiled as a 32-bit app doesn't reflect this. */ |
| else if (wordsize == 4 && register_size (gdbarch, regno) == 8 |
| && PT_FPSCR == (48 + 2*32 + 1)) |
| u_addr = (48 + 2*32) * wordsize; |
| else |
| u_addr = PT_FPSCR * wordsize; |
| } |
| return u_addr; |
| } |
| |
| /* The Linux kernel ptrace interface for POWER7 VSX registers uses the |
| registers set mechanism, as opposed to the interface for all the |
| other registers, that stores/fetches each register individually. */ |
| static void |
| fetch_vsx_registers (struct regcache *regcache, int tid, int regno) |
| { |
| int ret; |
| gdb_vsxregset_t regs; |
| const struct regset *vsxregset = ppc_linux_vsxregset (); |
| |
| ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
| if (ret < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetvsxregs = 0; |
| return; |
| } |
| perror_with_name (_("Unable to fetch VSX registers")); |
| } |
| |
| vsxregset->supply_regset (vsxregset, regcache, regno, ®s, |
| PPC_LINUX_SIZEOF_VSXREGSET); |
| } |
| |
| /* The Linux kernel ptrace interface for AltiVec registers uses the |
| registers set mechanism, as opposed to the interface for all the |
| other registers, that stores/fetches each register individually. */ |
| static void |
| fetch_altivec_registers (struct regcache *regcache, int tid, |
| int regno) |
| { |
| int ret; |
| gdb_vrregset_t regs; |
| struct gdbarch *gdbarch = regcache->arch (); |
| const struct regset *vrregset = ppc_linux_vrregset (gdbarch); |
| |
| ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
| if (ret < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getvrregs = 0; |
| return; |
| } |
| perror_with_name (_("Unable to fetch AltiVec registers")); |
| } |
| |
| vrregset->supply_regset (vrregset, regcache, regno, ®s, |
| PPC_LINUX_SIZEOF_VRREGSET); |
| } |
| |
| /* Fetch the top 32 bits of TID's general-purpose registers and the |
| SPE-specific registers, and place the results in EVRREGSET. If we |
| don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with |
| zeros. |
| |
| All the logic to deal with whether or not the PTRACE_GETEVRREGS and |
| PTRACE_SETEVRREGS requests are supported is isolated here, and in |
| set_spe_registers. */ |
| static void |
| get_spe_registers (int tid, struct gdb_evrregset_t *evrregset) |
| { |
| if (have_ptrace_getsetevrregs) |
| { |
| if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0) |
| return; |
| else |
| { |
| /* EIO means that the PTRACE_GETEVRREGS request isn't supported; |
| we just return zeros. */ |
| if (errno == EIO) |
| have_ptrace_getsetevrregs = 0; |
| else |
| /* Anything else needs to be reported. */ |
| perror_with_name (_("Unable to fetch SPE registers")); |
| } |
| } |
| |
| memset (evrregset, 0, sizeof (*evrregset)); |
| } |
| |
| /* Supply values from TID for SPE-specific raw registers: the upper |
| halves of the GPRs, the accumulator, and the spefscr. REGNO must |
| be the number of an upper half register, acc, spefscr, or -1 to |
| supply the values of all registers. */ |
| static void |
| fetch_spe_register (struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| struct gdb_evrregset_t evrregs; |
| |
| gdb_assert (sizeof (evrregs.evr[0]) |
| == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
| gdb_assert (sizeof (evrregs.acc) |
| == register_size (gdbarch, tdep->ppc_acc_regnum)); |
| gdb_assert (sizeof (evrregs.spefscr) |
| == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
| |
| get_spe_registers (tid, &evrregs); |
| |
| if (regno == -1) |
| { |
| int i; |
| |
| for (i = 0; i < ppc_num_gprs; i++) |
| regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]); |
| } |
| else if (tdep->ppc_ev0_upper_regnum <= regno |
| && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) |
| regcache->raw_supply (regno, |
| &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
| |
| if (regno == -1 |
| || regno == tdep->ppc_acc_regnum) |
| regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc); |
| |
| if (regno == -1 |
| || regno == tdep->ppc_spefscr_regnum) |
| regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr); |
| } |
| |
| /* Use ptrace to fetch all registers from the register set with note |
| type REGSET_ID, size REGSIZE, and layout described by REGSET, from |
| process/thread TID and supply their values to REGCACHE. If ptrace |
| returns ENODATA to indicate the regset is unavailable, mark the |
| registers as unavailable in REGCACHE. */ |
| |
| static void |
| fetch_regset (struct regcache *regcache, int tid, |
| int regset_id, int regsetsize, const struct regset *regset) |
| { |
| void *buf = alloca (regsetsize); |
| struct iovec iov; |
| |
| iov.iov_base = buf; |
| iov.iov_len = regsetsize; |
| |
| if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) |
| { |
| if (errno == ENODATA) |
| regset->supply_regset (regset, regcache, -1, NULL, regsetsize); |
| else |
| perror_with_name (_("Couldn't get register set")); |
| } |
| else |
| regset->supply_regset (regset, regcache, -1, buf, regsetsize); |
| } |
| |
| /* Use ptrace to store register REGNUM of the regset with note type |
| REGSET_ID, size REGSETSIZE, and layout described by REGSET, from |
| REGCACHE back to process/thread TID. If REGNUM is -1 all registers |
| in the set are collected and stored. */ |
| |
| static void |
| store_regset (const struct regcache *regcache, int tid, int regnum, |
| int regset_id, int regsetsize, const struct regset *regset) |
| { |
| void *buf = alloca (regsetsize); |
| struct iovec iov; |
| |
| iov.iov_base = buf; |
| iov.iov_len = regsetsize; |
| |
| /* Make sure that the buffer that will be stored has up to date values |
| for the registers that won't be collected. */ |
| if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0) |
| perror_with_name (_("Couldn't get register set")); |
| |
| regset->collect_regset (regset, regcache, regnum, buf, regsetsize); |
| |
| if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0) |
| perror_with_name (_("Couldn't set register set")); |
| } |
| |
| /* Check whether the kernel provides a register set with number |
| REGSET_ID of size REGSETSIZE for process/thread TID. */ |
| |
| static bool |
| check_regset (int tid, int regset_id, int regsetsize) |
| { |
| void *buf = alloca (regsetsize); |
| struct iovec iov; |
| |
| iov.iov_base = buf; |
| iov.iov_len = regsetsize; |
| |
| if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0 |
| || errno == ENODATA) |
| return true; |
| else |
| return false; |
| } |
| |
| static void |
| fetch_register (struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| /* This isn't really an address. But ptrace thinks of it as one. */ |
| CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
| int bytes_transferred; |
| gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
| |
| if (altivec_register_p (gdbarch, regno)) |
| { |
| /* If this is the first time through, or if it is not the first |
| time through, and we have confirmed that there is kernel |
| support for such a ptrace request, then go and fetch the |
| register. */ |
| if (have_ptrace_getvrregs) |
| { |
| fetch_altivec_registers (regcache, tid, regno); |
| return; |
| } |
| /* If we have discovered that there is no ptrace support for |
| AltiVec registers, fall through and return zeroes, because |
| regaddr will be -1 in this case. */ |
| } |
| else if (vsx_register_p (gdbarch, regno)) |
| { |
| if (have_ptrace_getsetvsxregs) |
| { |
| fetch_vsx_registers (regcache, tid, regno); |
| return; |
| } |
| } |
| else if (spe_register_p (gdbarch, regno)) |
| { |
| fetch_spe_register (regcache, tid, regno); |
| return; |
| } |
| else if (regno == PPC_DSCR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_dscr_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_DSCR, |
| PPC_LINUX_SIZEOF_DSCRREGSET, |
| &ppc32_linux_dscrregset); |
| return; |
| } |
| else if (regno == PPC_PPR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_ppr_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_PPR, |
| PPC_LINUX_SIZEOF_PPRREGSET, |
| &ppc32_linux_pprregset); |
| return; |
| } |
| else if (regno == PPC_TAR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_tar_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_TAR, |
| PPC_LINUX_SIZEOF_TARREGSET, |
| &ppc32_linux_tarregset); |
| return; |
| } |
| else if (PPC_IS_EBB_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_ebb); |
| |
| fetch_regset (regcache, tid, NT_PPC_EBB, |
| PPC_LINUX_SIZEOF_EBBREGSET, |
| &ppc32_linux_ebbregset); |
| return; |
| } |
| else if (PPC_IS_PMU_REGNUM (regno)) |
| { |
| gdb_assert (tdep->ppc_mmcr0_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_PMU, |
| PPC_LINUX_SIZEOF_PMUREGSET, |
| &ppc32_linux_pmuregset); |
| return; |
| } |
| else if (PPC_IS_TMSPR_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_spr); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_SPR, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| &ppc32_linux_tm_sprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTGP_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_core); |
| |
| const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); |
| fetch_regset (regcache, tid, NT_PPC_TM_CGPR, |
| (tdep->wordsize == 4? |
| PPC32_LINUX_SIZEOF_CGPRREGSET |
| : PPC64_LINUX_SIZEOF_CGPRREGSET), |
| cgprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTFP_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_fpu); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_CFPR, |
| PPC_LINUX_SIZEOF_CFPRREGSET, |
| &ppc32_linux_cfprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTVMX_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_altivec); |
| |
| const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); |
| fetch_regset (regcache, tid, NT_PPC_TM_CVMX, |
| PPC_LINUX_SIZEOF_CVMXREGSET, |
| cvmxregset); |
| return; |
| } |
| else if (PPC_IS_CKPTVSX_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_vsx); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_CVSX, |
| PPC_LINUX_SIZEOF_CVSXREGSET, |
| &ppc32_linux_cvsxregset); |
| return; |
| } |
| else if (regno == PPC_CPPR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_cppr_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_CPPR, |
| PPC_LINUX_SIZEOF_CPPRREGSET, |
| &ppc32_linux_cpprregset); |
| return; |
| } |
| else if (regno == PPC_CDSCR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_cdscr_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, |
| PPC_LINUX_SIZEOF_CDSCRREGSET, |
| &ppc32_linux_cdscrregset); |
| return; |
| } |
| else if (regno == PPC_CTAR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_ctar_regnum != -1); |
| |
| fetch_regset (regcache, tid, NT_PPC_TM_CTAR, |
| PPC_LINUX_SIZEOF_CTARREGSET, |
| &ppc32_linux_ctarregset); |
| return; |
| } |
| |
| if (regaddr == -1) |
| { |
| memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */ |
| regcache->raw_supply (regno, buf); |
| return; |
| } |
| |
| /* Read the raw register using sizeof(long) sized chunks. On a |
| 32-bit platform, 64-bit floating-point registers will require two |
| transfers. */ |
| for (bytes_transferred = 0; |
| bytes_transferred < register_size (gdbarch, regno); |
| bytes_transferred += sizeof (long)) |
| { |
| long l; |
| |
| errno = 0; |
| l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0); |
| regaddr += sizeof (long); |
| if (errno != 0) |
| { |
| char message[128]; |
| xsnprintf (message, sizeof (message), "reading register %s (#%d)", |
| gdbarch_register_name (gdbarch, regno), regno); |
| perror_with_name (message); |
| } |
| memcpy (&buf[bytes_transferred], &l, sizeof (l)); |
| } |
| |
| /* Now supply the register. Keep in mind that the regcache's idea |
| of the register's size may not be a multiple of sizeof |
| (long). */ |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
| { |
| /* Little-endian values are always found at the left end of the |
| bytes transferred. */ |
| regcache->raw_supply (regno, buf); |
| } |
| else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| { |
| /* Big-endian values are found at the right end of the bytes |
| transferred. */ |
| size_t padding = (bytes_transferred - register_size (gdbarch, regno)); |
| regcache->raw_supply (regno, buf + padding); |
| } |
| else |
| internal_error (__FILE__, __LINE__, |
| _("fetch_register: unexpected byte order: %d"), |
| gdbarch_byte_order (gdbarch)); |
| } |
| |
| /* This function actually issues the request to ptrace, telling |
| it to get all general-purpose registers and put them into the |
| specified regset. |
| |
| If the ptrace request does not exist, this function returns 0 |
| and properly sets the have_ptrace_* flag. If the request fails, |
| this function calls perror_with_name. Otherwise, if the request |
| succeeds, then the regcache gets filled and 1 is returned. */ |
| static int |
| fetch_all_gp_regs (struct regcache *regcache, int tid) |
| { |
| gdb_gregset_t gregset; |
| |
| if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't get general-purpose registers.")); |
| } |
| |
| supply_gregset (regcache, (const gdb_gregset_t *) &gregset); |
| |
| return 1; |
| } |
| |
| /* This is a wrapper for the fetch_all_gp_regs function. It is |
| responsible for verifying if this target has the ptrace request |
| that can be used to fetch all general-purpose registers at one |
| shot. If it doesn't, then we should fetch them using the |
| old-fashioned way, which is to iterate over the registers and |
| request them one by one. */ |
| static void |
| fetch_gp_regs (struct regcache *regcache, int tid) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int i; |
| |
| if (have_ptrace_getsetregs) |
| if (fetch_all_gp_regs (regcache, tid)) |
| return; |
| |
| /* If we've hit this point, it doesn't really matter which |
| architecture we are using. We just need to read the |
| registers in the "old-fashioned way". */ |
| for (i = 0; i < ppc_num_gprs; i++) |
| fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
| } |
| |
| /* This function actually issues the request to ptrace, telling |
| it to get all floating-point registers and put them into the |
| specified regset. |
| |
| If the ptrace request does not exist, this function returns 0 |
| and properly sets the have_ptrace_* flag. If the request fails, |
| this function calls perror_with_name. Otherwise, if the request |
| succeeds, then the regcache gets filled and 1 is returned. */ |
| static int |
| fetch_all_fp_regs (struct regcache *regcache, int tid) |
| { |
| gdb_fpregset_t fpregs; |
| |
| if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetfpregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't get floating-point registers.")); |
| } |
| |
| supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs); |
| |
| return 1; |
| } |
| |
| /* This is a wrapper for the fetch_all_fp_regs function. It is |
| responsible for verifying if this target has the ptrace request |
| that can be used to fetch all floating-point registers at one |
| shot. If it doesn't, then we should fetch them using the |
| old-fashioned way, which is to iterate over the registers and |
| request them one by one. */ |
| static void |
| fetch_fp_regs (struct regcache *regcache, int tid) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int i; |
| |
| if (have_ptrace_getsetfpregs) |
| if (fetch_all_fp_regs (regcache, tid)) |
| return; |
| |
| /* If we've hit this point, it doesn't really matter which |
| architecture we are using. We just need to read the |
| registers in the "old-fashioned way". */ |
| for (i = 0; i < ppc_num_fprs; i++) |
| fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i); |
| } |
| |
| static void |
| fetch_ppc_registers (struct regcache *regcache, int tid) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| fetch_gp_regs (regcache, tid); |
| if (tdep->ppc_fp0_regnum >= 0) |
| fetch_fp_regs (regcache, tid); |
| fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
| if (tdep->ppc_ps_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_ps_regnum); |
| if (tdep->ppc_cr_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_cr_regnum); |
| if (tdep->ppc_lr_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_lr_regnum); |
| if (tdep->ppc_ctr_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_ctr_regnum); |
| if (tdep->ppc_xer_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_xer_regnum); |
| if (tdep->ppc_mq_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_mq_regnum); |
| if (ppc_linux_trap_reg_p (gdbarch)) |
| { |
| fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM); |
| fetch_register (regcache, tid, PPC_TRAP_REGNUM); |
| } |
| if (tdep->ppc_fpscr_regnum != -1) |
| fetch_register (regcache, tid, tdep->ppc_fpscr_regnum); |
| if (have_ptrace_getvrregs) |
| if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) |
| fetch_altivec_registers (regcache, tid, -1); |
| if (have_ptrace_getsetvsxregs) |
| if (tdep->ppc_vsr0_upper_regnum != -1) |
| fetch_vsx_registers (regcache, tid, -1); |
| if (tdep->ppc_ev0_upper_regnum >= 0) |
| fetch_spe_register (regcache, tid, -1); |
| if (tdep->ppc_ppr_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_PPR, |
| PPC_LINUX_SIZEOF_PPRREGSET, |
| &ppc32_linux_pprregset); |
| if (tdep->ppc_dscr_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_DSCR, |
| PPC_LINUX_SIZEOF_DSCRREGSET, |
| &ppc32_linux_dscrregset); |
| if (tdep->ppc_tar_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_TAR, |
| PPC_LINUX_SIZEOF_TARREGSET, |
| &ppc32_linux_tarregset); |
| if (tdep->have_ebb) |
| fetch_regset (regcache, tid, NT_PPC_EBB, |
| PPC_LINUX_SIZEOF_EBBREGSET, |
| &ppc32_linux_ebbregset); |
| if (tdep->ppc_mmcr0_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_PMU, |
| PPC_LINUX_SIZEOF_PMUREGSET, |
| &ppc32_linux_pmuregset); |
| if (tdep->have_htm_spr) |
| fetch_regset (regcache, tid, NT_PPC_TM_SPR, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| &ppc32_linux_tm_sprregset); |
| if (tdep->have_htm_core) |
| { |
| const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); |
| fetch_regset (regcache, tid, NT_PPC_TM_CGPR, |
| (tdep->wordsize == 4? |
| PPC32_LINUX_SIZEOF_CGPRREGSET |
| : PPC64_LINUX_SIZEOF_CGPRREGSET), |
| cgprregset); |
| } |
| if (tdep->have_htm_fpu) |
| fetch_regset (regcache, tid, NT_PPC_TM_CFPR, |
| PPC_LINUX_SIZEOF_CFPRREGSET, |
| &ppc32_linux_cfprregset); |
| if (tdep->have_htm_altivec) |
| { |
| const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); |
| fetch_regset (regcache, tid, NT_PPC_TM_CVMX, |
| PPC_LINUX_SIZEOF_CVMXREGSET, |
| cvmxregset); |
| } |
| if (tdep->have_htm_vsx) |
| fetch_regset (regcache, tid, NT_PPC_TM_CVSX, |
| PPC_LINUX_SIZEOF_CVSXREGSET, |
| &ppc32_linux_cvsxregset); |
| if (tdep->ppc_cppr_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_TM_CPPR, |
| PPC_LINUX_SIZEOF_CPPRREGSET, |
| &ppc32_linux_cpprregset); |
| if (tdep->ppc_cdscr_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_TM_CDSCR, |
| PPC_LINUX_SIZEOF_CDSCRREGSET, |
| &ppc32_linux_cdscrregset); |
| if (tdep->ppc_ctar_regnum != -1) |
| fetch_regset (regcache, tid, NT_PPC_TM_CTAR, |
| PPC_LINUX_SIZEOF_CTARREGSET, |
| &ppc32_linux_ctarregset); |
| } |
| |
| /* Fetch registers from the child process. Fetch all registers if |
| regno == -1, otherwise fetch all general registers or all floating |
| point registers depending upon the value of regno. */ |
| void |
| ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno) |
| { |
| pid_t tid = get_ptrace_pid (regcache->ptid ()); |
| |
| if (regno == -1) |
| fetch_ppc_registers (regcache, tid); |
| else |
| fetch_register (regcache, tid, regno); |
| } |
| |
| static void |
| store_vsx_registers (const struct regcache *regcache, int tid, int regno) |
| { |
| int ret; |
| gdb_vsxregset_t regs; |
| const struct regset *vsxregset = ppc_linux_vsxregset (); |
| |
| ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s); |
| if (ret < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetvsxregs = 0; |
| return; |
| } |
| perror_with_name (_("Unable to fetch VSX registers")); |
| } |
| |
| vsxregset->collect_regset (vsxregset, regcache, regno, ®s, |
| PPC_LINUX_SIZEOF_VSXREGSET); |
| |
| ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s); |
| if (ret < 0) |
| perror_with_name (_("Unable to store VSX registers")); |
| } |
| |
| static void |
| store_altivec_registers (const struct regcache *regcache, int tid, |
| int regno) |
| { |
| int ret; |
| gdb_vrregset_t regs; |
| struct gdbarch *gdbarch = regcache->arch (); |
| const struct regset *vrregset = ppc_linux_vrregset (gdbarch); |
| |
| ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s); |
| if (ret < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getvrregs = 0; |
| return; |
| } |
| perror_with_name (_("Unable to fetch AltiVec registers")); |
| } |
| |
| vrregset->collect_regset (vrregset, regcache, regno, ®s, |
| PPC_LINUX_SIZEOF_VRREGSET); |
| |
| ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s); |
| if (ret < 0) |
| perror_with_name (_("Unable to store AltiVec registers")); |
| } |
| |
| /* Assuming TID refers to an SPE process, set the top halves of TID's |
| general-purpose registers and its SPE-specific registers to the |
| values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do |
| nothing. |
| |
| All the logic to deal with whether or not the PTRACE_GETEVRREGS and |
| PTRACE_SETEVRREGS requests are supported is isolated here, and in |
| get_spe_registers. */ |
| static void |
| set_spe_registers (int tid, struct gdb_evrregset_t *evrregset) |
| { |
| if (have_ptrace_getsetevrregs) |
| { |
| if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0) |
| return; |
| else |
| { |
| /* EIO means that the PTRACE_SETEVRREGS request isn't |
| supported; we fail silently, and don't try the call |
| again. */ |
| if (errno == EIO) |
| have_ptrace_getsetevrregs = 0; |
| else |
| /* Anything else needs to be reported. */ |
| perror_with_name (_("Unable to set SPE registers")); |
| } |
| } |
| } |
| |
| /* Write GDB's value for the SPE-specific raw register REGNO to TID. |
| If REGNO is -1, write the values of all the SPE-specific |
| registers. */ |
| static void |
| store_spe_register (const struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| struct gdb_evrregset_t evrregs; |
| |
| gdb_assert (sizeof (evrregs.evr[0]) |
| == register_size (gdbarch, tdep->ppc_ev0_upper_regnum)); |
| gdb_assert (sizeof (evrregs.acc) |
| == register_size (gdbarch, tdep->ppc_acc_regnum)); |
| gdb_assert (sizeof (evrregs.spefscr) |
| == register_size (gdbarch, tdep->ppc_spefscr_regnum)); |
| |
| if (regno == -1) |
| /* Since we're going to write out every register, the code below |
| should store to every field of evrregs; if that doesn't happen, |
| make it obvious by initializing it with suspicious values. */ |
| memset (&evrregs, 42, sizeof (evrregs)); |
| else |
| /* We can only read and write the entire EVR register set at a |
| time, so to write just a single register, we do a |
| read-modify-write maneuver. */ |
| get_spe_registers (tid, &evrregs); |
| |
| if (regno == -1) |
| { |
| int i; |
| |
| for (i = 0; i < ppc_num_gprs; i++) |
| regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i, |
| &evrregs.evr[i]); |
| } |
| else if (tdep->ppc_ev0_upper_regnum <= regno |
| && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) |
| regcache->raw_collect (regno, |
| &evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]); |
| |
| if (regno == -1 |
| || regno == tdep->ppc_acc_regnum) |
| regcache->raw_collect (tdep->ppc_acc_regnum, |
| &evrregs.acc); |
| |
| if (regno == -1 |
| || regno == tdep->ppc_spefscr_regnum) |
| regcache->raw_collect (tdep->ppc_spefscr_regnum, |
| &evrregs.spefscr); |
| |
| /* Write back the modified register set. */ |
| set_spe_registers (tid, &evrregs); |
| } |
| |
| static void |
| store_register (const struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| /* This isn't really an address. But ptrace thinks of it as one. */ |
| CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno); |
| int i; |
| size_t bytes_to_transfer; |
| gdb_byte buf[PPC_MAX_REGISTER_SIZE]; |
| |
| if (altivec_register_p (gdbarch, regno)) |
| { |
| store_altivec_registers (regcache, tid, regno); |
| return; |
| } |
| else if (vsx_register_p (gdbarch, regno)) |
| { |
| store_vsx_registers (regcache, tid, regno); |
| return; |
| } |
| else if (spe_register_p (gdbarch, regno)) |
| { |
| store_spe_register (regcache, tid, regno); |
| return; |
| } |
| else if (regno == PPC_DSCR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_dscr_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_DSCR, |
| PPC_LINUX_SIZEOF_DSCRREGSET, |
| &ppc32_linux_dscrregset); |
| return; |
| } |
| else if (regno == PPC_PPR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_ppr_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_PPR, |
| PPC_LINUX_SIZEOF_PPRREGSET, |
| &ppc32_linux_pprregset); |
| return; |
| } |
| else if (regno == PPC_TAR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_tar_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TAR, |
| PPC_LINUX_SIZEOF_TARREGSET, |
| &ppc32_linux_tarregset); |
| return; |
| } |
| else if (PPC_IS_EBB_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_ebb); |
| |
| store_regset (regcache, tid, regno, NT_PPC_EBB, |
| PPC_LINUX_SIZEOF_EBBREGSET, |
| &ppc32_linux_ebbregset); |
| return; |
| } |
| else if (PPC_IS_PMU_REGNUM (regno)) |
| { |
| gdb_assert (tdep->ppc_mmcr0_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_PMU, |
| PPC_LINUX_SIZEOF_PMUREGSET, |
| &ppc32_linux_pmuregset); |
| return; |
| } |
| else if (PPC_IS_TMSPR_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_spr); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_SPR, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| &ppc32_linux_tm_sprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTGP_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_core); |
| |
| const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch); |
| store_regset (regcache, tid, regno, NT_PPC_TM_CGPR, |
| (tdep->wordsize == 4? |
| PPC32_LINUX_SIZEOF_CGPRREGSET |
| : PPC64_LINUX_SIZEOF_CGPRREGSET), |
| cgprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTFP_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_fpu); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_CFPR, |
| PPC_LINUX_SIZEOF_CFPRREGSET, |
| &ppc32_linux_cfprregset); |
| return; |
| } |
| else if (PPC_IS_CKPTVMX_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_altivec); |
| |
| const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch); |
| store_regset (regcache, tid, regno, NT_PPC_TM_CVMX, |
| PPC_LINUX_SIZEOF_CVMXREGSET, |
| cvmxregset); |
| return; |
| } |
| else if (PPC_IS_CKPTVSX_REGNUM (regno)) |
| { |
| gdb_assert (tdep->have_htm_vsx); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_CVSX, |
| PPC_LINUX_SIZEOF_CVSXREGSET, |
| &ppc32_linux_cvsxregset); |
| return; |
| } |
| else if (regno == PPC_CPPR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_cppr_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_CPPR, |
| PPC_LINUX_SIZEOF_CPPRREGSET, |
| &ppc32_linux_cpprregset); |
| return; |
| } |
| else if (regno == PPC_CDSCR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_cdscr_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR, |
| PPC_LINUX_SIZEOF_CDSCRREGSET, |
| &ppc32_linux_cdscrregset); |
| return; |
| } |
| else if (regno == PPC_CTAR_REGNUM) |
| { |
| gdb_assert (tdep->ppc_ctar_regnum != -1); |
| |
| store_regset (regcache, tid, regno, NT_PPC_TM_CTAR, |
| PPC_LINUX_SIZEOF_CTARREGSET, |
| &ppc32_linux_ctarregset); |
| return; |
| } |
| |
| if (regaddr == -1) |
| return; |
| |
| /* First collect the register. Keep in mind that the regcache's |
| idea of the register's size may not be a multiple of sizeof |
| (long). */ |
| memset (buf, 0, sizeof buf); |
| bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long)); |
| if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE) |
| { |
| /* Little-endian values always sit at the left end of the buffer. */ |
| regcache->raw_collect (regno, buf); |
| } |
| else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
| { |
| /* Big-endian values sit at the right end of the buffer. */ |
| size_t padding = (bytes_to_transfer - register_size (gdbarch, regno)); |
| regcache->raw_collect (regno, buf + padding); |
| } |
| |
| for (i = 0; i < bytes_to_transfer; i += sizeof (long)) |
| { |
| long l; |
| |
| memcpy (&l, &buf[i], sizeof (l)); |
| errno = 0; |
| ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l); |
| regaddr += sizeof (long); |
| |
| if (errno == EIO |
| && (regno == tdep->ppc_fpscr_regnum |
| || regno == PPC_ORIG_R3_REGNUM |
| || regno == PPC_TRAP_REGNUM)) |
| { |
| /* Some older kernel versions don't allow fpscr, orig_r3 |
| or trap to be written. */ |
| continue; |
| } |
| |
| if (errno != 0) |
| { |
| char message[128]; |
| xsnprintf (message, sizeof (message), "writing register %s (#%d)", |
| gdbarch_register_name (gdbarch, regno), regno); |
| perror_with_name (message); |
| } |
| } |
| } |
| |
| /* This function actually issues the request to ptrace, telling |
| it to store all general-purpose registers present in the specified |
| regset. |
| |
| If the ptrace request does not exist, this function returns 0 |
| and properly sets the have_ptrace_* flag. If the request fails, |
| this function calls perror_with_name. Otherwise, if the request |
| succeeds, then the regcache is stored and 1 is returned. */ |
| static int |
| store_all_gp_regs (const struct regcache *regcache, int tid, int regno) |
| { |
| gdb_gregset_t gregset; |
| |
| if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't get general-purpose registers.")); |
| } |
| |
| fill_gregset (regcache, &gregset, regno); |
| |
| if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't set general-purpose registers.")); |
| } |
| |
| return 1; |
| } |
| |
| /* This is a wrapper for the store_all_gp_regs function. It is |
| responsible for verifying if this target has the ptrace request |
| that can be used to store all general-purpose registers at one |
| shot. If it doesn't, then we should store them using the |
| old-fashioned way, which is to iterate over the registers and |
| store them one by one. */ |
| static void |
| store_gp_regs (const struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int i; |
| |
| if (have_ptrace_getsetregs) |
| if (store_all_gp_regs (regcache, tid, regno)) |
| return; |
| |
| /* If we hit this point, it doesn't really matter which |
| architecture we are using. We just need to store the |
| registers in the "old-fashioned way". */ |
| for (i = 0; i < ppc_num_gprs; i++) |
| store_register (regcache, tid, tdep->ppc_gp0_regnum + i); |
| } |
| |
| /* This function actually issues the request to ptrace, telling |
| it to store all floating-point registers present in the specified |
| regset. |
| |
| If the ptrace request does not exist, this function returns 0 |
| and properly sets the have_ptrace_* flag. If the request fails, |
| this function calls perror_with_name. Otherwise, if the request |
| succeeds, then the regcache is stored and 1 is returned. */ |
| static int |
| store_all_fp_regs (const struct regcache *regcache, int tid, int regno) |
| { |
| gdb_fpregset_t fpregs; |
| |
| if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetfpregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't get floating-point registers.")); |
| } |
| |
| fill_fpregset (regcache, &fpregs, regno); |
| |
| if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0) |
| { |
| if (errno == EIO) |
| { |
| have_ptrace_getsetfpregs = 0; |
| return 0; |
| } |
| perror_with_name (_("Couldn't set floating-point registers.")); |
| } |
| |
| return 1; |
| } |
| |
| /* This is a wrapper for the store_all_fp_regs function. It is |
| responsible for verifying if this target has the ptrace request |
| that can be used to store all floating-point registers at one |
| shot. If it doesn't, then we should store them using the |
| old-fashioned way, which is to iterate over the registers and |
| store them one by one. */ |
| static void |
| store_fp_regs (const struct regcache *regcache, int tid, int regno) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| int i; |
| |
| if (have_ptrace_getsetfpregs) |
| if (store_all_fp_regs (regcache, tid, regno)) |
| return; |
| |
| /* If we hit this point, it doesn't really matter which |
| architecture we are using. We just need to store the |
| registers in the "old-fashioned way". */ |
| for (i = 0; i < ppc_num_fprs; i++) |
| store_register (regcache, tid, tdep->ppc_fp0_regnum + i); |
| } |
| |
| static void |
| store_ppc_registers (const struct regcache *regcache, int tid) |
| { |
| struct gdbarch *gdbarch = regcache->arch (); |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| |
| store_gp_regs (regcache, tid, -1); |
| if (tdep->ppc_fp0_regnum >= 0) |
| store_fp_regs (regcache, tid, -1); |
| store_register (regcache, tid, gdbarch_pc_regnum (gdbarch)); |
| if (tdep->ppc_ps_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_ps_regnum); |
| if (tdep->ppc_cr_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_cr_regnum); |
| if (tdep->ppc_lr_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_lr_regnum); |
| if (tdep->ppc_ctr_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_ctr_regnum); |
| if (tdep->ppc_xer_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_xer_regnum); |
| if (tdep->ppc_mq_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_mq_regnum); |
| if (tdep->ppc_fpscr_regnum != -1) |
| store_register (regcache, tid, tdep->ppc_fpscr_regnum); |
| if (ppc_linux_trap_reg_p (gdbarch)) |
| { |
| store_register (regcache, tid, PPC_ORIG_R3_REGNUM); |
| store_register (regcache, tid, PPC_TRAP_REGNUM); |
| } |
| if (have_ptrace_getvrregs) |
| if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) |
| store_altivec_registers (regcache, tid, -1); |
| if (have_ptrace_getsetvsxregs) |
| if (tdep->ppc_vsr0_upper_regnum != -1) |
| store_vsx_registers (regcache, tid, -1); |
| if (tdep->ppc_ev0_upper_regnum >= 0) |
| store_spe_register (regcache, tid, -1); |
| if (tdep->ppc_ppr_regnum != -1) |
| store_regset (regcache, tid, -1, NT_PPC_PPR, |
| PPC_LINUX_SIZEOF_PPRREGSET, |
| &ppc32_linux_pprregset); |
| if (tdep->ppc_dscr_regnum != -1) |
| store_regset (regcache, tid, -1, NT_PPC_DSCR, |
| PPC_LINUX_SIZEOF_DSCRREGSET, |
| &ppc32_linux_dscrregset); |
| if (tdep->ppc_tar_regnum != -1) |
| store_regset (regcache, tid, -1, NT_PPC_TAR, |
| PPC_LINUX_SIZEOF_TARREGSET, |
| &ppc32_linux_tarregset); |
| |
| if (tdep->ppc_mmcr0_regnum != -1) |
| store_regset (regcache, tid, -1, NT_PPC_PMU, |
| PPC_LINUX_SIZEOF_PMUREGSET, |
| &ppc32_linux_pmuregset); |
| |
| if (tdep->have_htm_spr) |
| store_regset (regcache, tid, -1, NT_PPC_TM_SPR, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET, |
| &ppc32_linux_tm_sprregset); |
| |
| /* Because the EBB and checkpointed HTM registers can be |
| unavailable, attempts to store them here would cause this |
| function to fail most of the time, so we ignore them. */ |
| } |
| |
| void |
| ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno) |
| { |
| pid_t tid = get_ptrace_pid (regcache->ptid ()); |
| |
| if (regno >= 0) |
| store_register (regcache, tid, regno); |
| else |
| store_ppc_registers (regcache, tid); |
| } |
| |
| /* Functions for transferring registers between a gregset_t or fpregset_t |
| (see sys/ucontext.h) and gdb's regcache. The word size is that used |
| by the ptrace interface, not the current program's ABI. Eg. if a |
| powerpc64-linux gdb is being used to debug a powerpc32-linux app, we |
| read or write 64-bit gregsets. This is to suit the host libthread_db. */ |
| |
| void |
| supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp) |
| { |
| const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
| |
| ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp)); |
| } |
| |
| void |
| fill_gregset (const struct regcache *regcache, |
| gdb_gregset_t *gregsetp, int regno) |
| { |
| const struct regset *regset = ppc_linux_gregset (sizeof (long)); |
| |
| if (regno == -1) |
| memset (gregsetp, 0, sizeof (*gregsetp)); |
| ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp)); |
| } |
| |
| void |
| supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp) |
| { |
| const struct regset *regset = ppc_linux_fpregset (); |
| |
| ppc_supply_fpregset (regset, regcache, -1, |
| fpregsetp, sizeof (*fpregsetp)); |
| } |
| |
| void |
| fill_fpregset (const struct regcache *regcache, |
| gdb_fpregset_t *fpregsetp, int regno) |
| { |
| const struct regset *regset = ppc_linux_fpregset (); |
| |
| ppc_collect_fpregset (regset, regcache, regno, |
| fpregsetp, sizeof (*fpregsetp)); |
| } |
| |
| int |
| ppc_linux_nat_target::auxv_parse (gdb_byte **readptr, |
| gdb_byte *endptr, CORE_ADDR *typep, |
| CORE_ADDR *valp) |
| { |
| int tid = inferior_ptid.lwp (); |
| if (tid == 0) |
| tid = inferior_ptid.pid (); |
| |
| int sizeof_auxv_field = ppc_linux_target_wordsize (tid); |
| |
| enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); |
| gdb_byte *ptr = *readptr; |
| |
| if (endptr == ptr) |
| return 0; |
| |
| if (endptr - ptr < sizeof_auxv_field * 2) |
| return -1; |
| |
| *typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
| ptr += sizeof_auxv_field; |
| *valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order); |
| ptr += sizeof_auxv_field; |
| |
| *readptr = ptr; |
| return 1; |
| } |
| |
| const struct target_desc * |
| ppc_linux_nat_target::read_description () |
| { |
| int tid = inferior_ptid.pid (); |
| |
| if (have_ptrace_getsetevrregs) |
| { |
| struct gdb_evrregset_t evrregset; |
| |
| if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0) |
| return tdesc_powerpc_e500l; |
| |
| /* EIO means that the PTRACE_GETEVRREGS request isn't supported. |
| Anything else needs to be reported. */ |
| else if (errno != EIO) |
| perror_with_name (_("Unable to fetch SPE registers")); |
| } |
| |
| struct ppc_linux_features features = ppc_linux_no_features; |
| |
| features.wordsize = ppc_linux_target_wordsize (tid); |
| |
| CORE_ADDR hwcap = linux_get_hwcap (current_inferior ()->top_target ()); |
| CORE_ADDR hwcap2 = linux_get_hwcap2 (current_inferior ()->top_target ()); |
| |
| if (have_ptrace_getsetvsxregs |
| && (hwcap & PPC_FEATURE_HAS_VSX)) |
| { |
| gdb_vsxregset_t vsxregset; |
| |
| if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0) |
| features.vsx = true; |
| |
| /* EIO means that the PTRACE_GETVSXREGS request isn't supported. |
| Anything else needs to be reported. */ |
| else if (errno != EIO) |
| perror_with_name (_("Unable to fetch VSX registers")); |
| } |
| |
| if (have_ptrace_getvrregs |
| && (hwcap & PPC_FEATURE_HAS_ALTIVEC)) |
| { |
| gdb_vrregset_t vrregset; |
| |
| if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0) |
| features.altivec = true; |
| |
| /* EIO means that the PTRACE_GETVRREGS request isn't supported. |
| Anything else needs to be reported. */ |
| else if (errno != EIO) |
| perror_with_name (_("Unable to fetch AltiVec registers")); |
| } |
| |
| features.isa205 = ppc_linux_has_isa205 (hwcap); |
| |
| if ((hwcap2 & PPC_FEATURE2_DSCR) |
| && check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET) |
| && check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET)) |
| { |
| features.ppr_dscr = true; |
| if ((hwcap2 & PPC_FEATURE2_ARCH_2_07) |
| && (hwcap2 & PPC_FEATURE2_TAR) |
| && (hwcap2 & PPC_FEATURE2_EBB) |
| && check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET) |
| && check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET) |
| && check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET)) |
| { |
| features.isa207 = true; |
| if ((hwcap2 & PPC_FEATURE2_HTM) |
| && check_regset (tid, NT_PPC_TM_SPR, |
| PPC_LINUX_SIZEOF_TM_SPRREGSET)) |
| features.htm = true; |
| } |
| } |
| |
| return ppc_linux_match_description (features); |
| } |
| |
| /* Routines for installing hardware watchpoints and breakpoints. When |
| GDB requests a hardware watchpoint or breakpoint to be installed, we |
| register the request for the pid of inferior_ptid in a map with one |
| entry per process. We then issue a stop request to all the threads of |
| this process, and mark a per-thread flag indicating that their debug |
| registers should be updated. Right before they are next resumed, we |
| remove all previously installed debug registers and install all the |
| ones GDB requested. We then update a map with one entry per thread |
| that keeps track of what debug registers were last installed in each |
| thread. |
| |
| We use this second map to remove installed registers before installing |
| the ones requested by GDB, and to copy the debug register state after |
| a thread clones or forks, since depending on the kernel configuration, |
| debug registers can be inherited. */ |
| |
| /* Check if we support and have enough resources to install a hardware |
| watchpoint or breakpoint. See the description in target.h. */ |
| |
| int |
| ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt, |
| int ot) |
| { |
| int total_hw_wp, total_hw_bp; |
| |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (m_dreg_interface.unavailable_p ()) |
| return 0; |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| /* When PowerPC HWDEBUG ptrace interface is available, the number of |
| available hardware watchpoints and breakpoints is stored at the |
| hwdebug_info struct. */ |
| total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps; |
| total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps; |
| } |
| else |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| /* With the DEBUGREG ptrace interface, we should consider having 1 |
| hardware watchpoint and no hardware breakpoints. */ |
| total_hw_bp = 0; |
| total_hw_wp = 1; |
| } |
| |
| if (type == bp_hardware_watchpoint || type == bp_read_watchpoint |
| || type == bp_access_watchpoint || type == bp_watchpoint) |
| { |
| if (total_hw_wp == 0) |
| return 0; |
| else if (cnt + ot > total_hw_wp) |
| return -1; |
| else |
| return 1; |
| } |
| else if (type == bp_hardware_breakpoint) |
| { |
| if (total_hw_bp == 0) |
| return 0; |
| else if (cnt > total_hw_bp) |
| return -1; |
| else |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */ |
| |
| int |
| ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len) |
| { |
| /* Handle sub-8-byte quantities. */ |
| if (len <= 0) |
| return 0; |
| |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (m_dreg_interface.unavailable_p ()) |
| return 0; |
| |
| /* The PowerPC HWDEBUG ptrace interface tells if there are alignment |
| restrictions for watchpoints in the processors. In that case, we use that |
| information to determine the hardcoded watchable region for |
| watchpoints. */ |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| const struct ppc_debug_info &hwdebug_info = (m_dreg_interface |
| .hwdebug_info ()); |
| int region_size = hwdebug_info.data_bp_alignment; |
| int region_align = region_size; |
| |
| /* Embedded DAC-based processors, like the PowerPC 440 have ranged |
| watchpoints and can watch any access within an arbitrary memory |
| region. This is useful to watch arrays and structs, for instance. It |
| takes two hardware watchpoints though. */ |
| if (len > 1 |
| && hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE |
| && (linux_get_hwcap (current_inferior ()->top_target ()) |
| & PPC_FEATURE_BOOKE)) |
| return 2; |
| /* Check if the processor provides DAWR interface. */ |
| if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR) |
| { |
| /* DAWR interface allows to watch up to 512 byte wide ranges. */ |
| region_size = 512; |
| /* DAWR interface allows to watch up to 512 byte wide ranges which |
| can't cross a 512 byte bondary on machines that doesn't have a |
| second DAWR (P9 or less). */ |
| if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31)) |
| region_align = 512; |
| } |
| /* Server processors provide one hardware watchpoint and addr+len should |
| fall in the watchable region provided by the ptrace interface. */ |
| if (region_align |
| && (addr + len > (addr & ~(region_align - 1)) + region_size)) |
| return 0; |
| } |
| /* addr+len must fall in the 8 byte watchable region for DABR-based |
| processors (i.e., server processors). Without the new PowerPC HWDEBUG |
| ptrace interface, DAC-based processors (i.e., embedded processors) will |
| use addresses aligned to 4-bytes due to the way the read/write flags are |
| passed in the old ptrace interface. */ |
| else |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| if (((linux_get_hwcap (current_inferior ()->top_target ()) |
| & PPC_FEATURE_BOOKE) |
| && (addr + len) > (addr & ~3) + 4) |
| || (addr + len) > (addr & ~7) + 8) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| /* This function compares two ppc_hw_breakpoint structs |
| field-by-field. */ |
| |
| bool |
| ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a, |
| const struct ppc_hw_breakpoint &b) |
| { |
| return (a.trigger_type == b.trigger_type |
| && a.addr_mode == b.addr_mode |
| && a.condition_mode == b.condition_mode |
| && a.addr == b.addr |
| && a.addr2 == b.addr2 |
| && a.condition_value == b.condition_value); |
| } |
| |
| /* Return the number of registers needed for a ranged breakpoint. */ |
| |
| int |
| ppc_linux_nat_target::ranged_break_num_registers () |
| { |
| m_dreg_interface.detect (inferior_ptid); |
| |
| return ((m_dreg_interface.hwdebug_p () |
| && (m_dreg_interface.hwdebug_info ().features |
| & PPC_DEBUG_FEATURE_INSN_BP_RANGE))? |
| 2 : -1); |
| } |
| |
| /* Register the hardware breakpoint described by BP_TGT, to be inserted |
| when the threads of inferior_ptid are resumed. Returns 0 for success, |
| or -1 if the HWDEBUG interface that we need for hardware breakpoints |
| is not available. */ |
| |
| int |
| ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (!m_dreg_interface.hwdebug_p ()) |
| return -1; |
| |
| p.version = PPC_DEBUG_CURRENT_VERSION; |
| p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; |
| p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address); |
| p.condition_value = 0; |
| |
| if (bp_tgt->length) |
| { |
| p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; |
| |
| /* The breakpoint will trigger if the address of the instruction is |
| within the defined range, as follows: p.addr <= address < p.addr2. */ |
| p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; |
| } |
| else |
| { |
| p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; |
| p.addr2 = 0; |
| } |
| |
| register_hw_breakpoint (inferior_ptid.pid (), p); |
| |
| return 0; |
| } |
| |
| /* Clear a registration for the hardware breakpoint given by type BP_TGT. |
| It will be removed from the threads of inferior_ptid when they are |
| next resumed. Returns 0 for success, or -1 if the HWDEBUG interface |
| that we need for hardware breakpoints is not available. */ |
| |
| int |
| ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch, |
| struct bp_target_info *bp_tgt) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (!m_dreg_interface.hwdebug_p ()) |
| return -1; |
| |
| p.version = PPC_DEBUG_CURRENT_VERSION; |
| p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE; |
| p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p.addr = (uint64_t) bp_tgt->placed_address; |
| p.condition_value = 0; |
| |
| if (bp_tgt->length) |
| { |
| p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; |
| |
| /* The breakpoint will trigger if the address of the instruction is within |
| the defined range, as follows: p.addr <= address < p.addr2. */ |
| p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length; |
| } |
| else |
| { |
| p.addr_mode = PPC_BREAKPOINT_MODE_EXACT; |
| p.addr2 = 0; |
| } |
| |
| clear_hw_breakpoint (inferior_ptid.pid (), p); |
| |
| return 0; |
| } |
| |
| /* Return the trigger value to set in a ppc_hw_breakpoint object for a |
| given hardware watchpoint TYPE. We assume type is not hw_execute. */ |
| |
| int |
| ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type) |
| { |
| int t; |
| |
| if (type == hw_read) |
| t = PPC_BREAKPOINT_TRIGGER_READ; |
| else if (type == hw_write) |
| t = PPC_BREAKPOINT_TRIGGER_WRITE; |
| else |
| t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE; |
| |
| return t; |
| } |
| |
| /* Register a new masked watchpoint at ADDR using the mask MASK, to be |
| inserted when the threads of inferior_ptid are resumed. RW may be |
| hw_read for a read watchpoint, hw_write for a write watchpoint or |
| hw_access for an access watchpoint. */ |
| |
| int |
| ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, |
| target_hw_bp_type rw) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| gdb_assert (m_dreg_interface.hwdebug_p ()); |
| |
| p.version = PPC_DEBUG_CURRENT_VERSION; |
| p.trigger_type = get_trigger_type (rw); |
| p.addr_mode = PPC_BREAKPOINT_MODE_MASK; |
| p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p.addr = addr; |
| p.addr2 = mask; |
| p.condition_value = 0; |
| |
| register_hw_breakpoint (inferior_ptid.pid (), p); |
| |
| return 0; |
| } |
| |
| /* Clear a registration for a masked watchpoint at ADDR with the mask |
| MASK. It will be removed from the threads of inferior_ptid when they |
| are next resumed. RW may be hw_read for a read watchpoint, hw_write |
| for a write watchpoint or hw_access for an access watchpoint. */ |
| |
| int |
| ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, |
| target_hw_bp_type rw) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| gdb_assert (m_dreg_interface.hwdebug_p ()); |
| |
| p.version = PPC_DEBUG_CURRENT_VERSION; |
| p.trigger_type = get_trigger_type (rw); |
| p.addr_mode = PPC_BREAKPOINT_MODE_MASK; |
| p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p.addr = addr; |
| p.addr2 = mask; |
| p.condition_value = 0; |
| |
| clear_hw_breakpoint (inferior_ptid.pid (), p); |
| |
| return 0; |
| } |
| |
| /* Check whether we have at least one free DVC register for the threads |
| of the pid of inferior_ptid. */ |
| |
| bool |
| ppc_linux_nat_target::can_use_watchpoint_cond_accel (void) |
| { |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (!m_dreg_interface.hwdebug_p ()) |
| return false; |
| |
| int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs; |
| |
| if (cnt == 0) |
| return false; |
| |
| auto process_it = m_process_info.find (inferior_ptid.pid ()); |
| |
| /* No breakpoints or watchpoints have been requested for this process, |
| we have at least one free DVC register. */ |
| if (process_it == m_process_info.end ()) |
| return true; |
| |
| for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps) |
| if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE) |
| cnt--; |
| |
| if (cnt <= 0) |
| return false; |
| |
| return true; |
| } |
| |
| /* Calculate the enable bits and the contents of the Data Value Compare |
| debug register present in BookE processors. |
| |
| ADDR is the address to be watched, LEN is the length of watched data |
| and DATA_VALUE is the value which will trigger the watchpoint. |
| On exit, CONDITION_MODE will hold the enable bits for the DVC, and |
| CONDITION_VALUE will hold the value which should be put in the |
| DVC register. */ |
| |
| void |
| ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len, |
| CORE_ADDR data_value, |
| uint32_t *condition_mode, |
| uint64_t *condition_value) |
| { |
| const struct ppc_debug_info &hwdebug_info = (m_dreg_interface. |
| hwdebug_info ()); |
| |
| int i, num_byte_enable, align_offset, num_bytes_off_dvc, |
| rightmost_enabled_byte; |
| CORE_ADDR addr_end_data, addr_end_dvc; |
| |
| /* The DVC register compares bytes within fixed-length windows which |
| are word-aligned, with length equal to that of the DVC register. |
| We need to calculate where our watch region is relative to that |
| window and enable comparison of the bytes which fall within it. */ |
| |
| align_offset = addr % hwdebug_info.sizeof_condition; |
| addr_end_data = addr + len; |
| addr_end_dvc = (addr - align_offset |
| + hwdebug_info.sizeof_condition); |
| num_bytes_off_dvc = (addr_end_data > addr_end_dvc)? |
| addr_end_data - addr_end_dvc : 0; |
| num_byte_enable = len - num_bytes_off_dvc; |
| /* Here, bytes are numbered from right to left. */ |
| rightmost_enabled_byte = (addr_end_data < addr_end_dvc)? |
| addr_end_dvc - addr_end_data : 0; |
| |
| *condition_mode = PPC_BREAKPOINT_CONDITION_AND; |
| for (i = 0; i < num_byte_enable; i++) |
| *condition_mode |
| |= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte); |
| |
| /* Now we need to match the position within the DVC of the comparison |
| value with where the watch region is relative to the window |
| (i.e., the ALIGN_OFFSET). */ |
| |
| *condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8 |
| << rightmost_enabled_byte * 8); |
| } |
| |
| /* Return the number of memory locations that need to be accessed to |
| evaluate the expression which generated the given value chain. |
| Returns -1 if there's any register access involved, or if there are |
| other kinds of values which are not acceptable in a condition |
| expression (e.g., lval_computed or lval_internalvar). */ |
| |
| int |
| ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr> |
| &chain) |
| { |
| int found_memory_cnt = 0; |
| |
| /* The idea here is that evaluating an expression generates a series |
| of values, one holding the value of every subexpression. (The |
| expression a*b+c has five subexpressions: a, b, a*b, c, and |
| a*b+c.) GDB's values hold almost enough information to establish |
| the criteria given above --- they identify memory lvalues, |
| register lvalues, computed values, etcetera. So we can evaluate |
| the expression, and then scan the chain of values that leaves |
| behind to determine the memory locations involved in the evaluation |
| of an expression. |
| |
| However, I don't think that the values returned by inferior |
| function calls are special in any way. So this function may not |
| notice that an expression contains an inferior function call. |
| FIXME. */ |
| |
| for (const value_ref_ptr &iter : chain) |
| { |
| struct value *v = iter.get (); |
| |
| /* Constants and values from the history are fine. */ |
| if (VALUE_LVAL (v) == not_lval || deprecated_value_modifiable (v) == 0) |
| continue; |
| else if (VALUE_LVAL (v) == lval_memory) |
| { |
| /* A lazy memory lvalue is one that GDB never needed to fetch; |
| we either just used its address (e.g., `a' in `a.b') or |
| we never needed it at all (e.g., `a' in `a,b'). */ |
| if (!value_lazy (v)) |
| found_memory_cnt++; |
| } |
| /* Other kinds of values are not fine. */ |
| else |
| return -1; |
| } |
| |
| return found_memory_cnt; |
| } |
| |
| /* Verifies whether the expression COND can be implemented using the |
| DVC (Data Value Compare) register in BookE processors. The expression |
| must test the watch value for equality with a constant expression. |
| If the function returns 1, DATA_VALUE will contain the constant against |
| which the watch value should be compared and LEN will contain the size |
| of the constant. */ |
| |
| int |
| ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr, |
| struct expression *cond, |
| CORE_ADDR *data_value, int *len) |
| { |
| int num_accesses_left, num_accesses_right; |
| struct value *left_val, *right_val; |
| std::vector<value_ref_ptr> left_chain, right_chain; |
| |
| expr::equal_operation *eqop |
| = dynamic_cast<expr::equal_operation *> (cond->op.get ()); |
| if (eqop == nullptr) |
| return 0; |
| expr::operation *lhs = eqop->get_lhs (); |
| expr::operation *rhs = eqop->get_rhs (); |
| |
| fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false); |
| num_accesses_left = num_memory_accesses (left_chain); |
| |
| if (left_val == NULL || num_accesses_left < 0) |
| return 0; |
| |
| fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false); |
| num_accesses_right = num_memory_accesses (right_chain); |
| |
| if (right_val == NULL || num_accesses_right < 0) |
| return 0; |
| |
| if (num_accesses_left == 1 && num_accesses_right == 0 |
| && VALUE_LVAL (left_val) == lval_memory |
| && value_address (left_val) == watch_addr) |
| { |
| *data_value = value_as_long (right_val); |
| |
| /* DATA_VALUE is the constant in RIGHT_VAL, but actually has |
| the same type as the memory region referenced by LEFT_VAL. */ |
| *len = TYPE_LENGTH (check_typedef (value_type (left_val))); |
| } |
| else if (num_accesses_left == 0 && num_accesses_right == 1 |
| && VALUE_LVAL (right_val) == lval_memory |
| && value_address (right_val) == watch_addr) |
| { |
| *data_value = value_as_long (left_val); |
| |
| /* DATA_VALUE is the constant in LEFT_VAL, but actually has |
| the same type as the memory region referenced by RIGHT_VAL. */ |
| *len = TYPE_LENGTH (check_typedef (value_type (right_val))); |
| } |
| else |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Return true if the target is capable of using hardware to evaluate the |
| condition expression, thus only triggering the watchpoint when it is |
| true. */ |
| |
| bool |
| ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr, |
| int len, int rw, |
| struct expression *cond) |
| { |
| CORE_ADDR data_value; |
| |
| m_dreg_interface.detect (inferior_ptid); |
| |
| return (m_dreg_interface.hwdebug_p () |
| && (m_dreg_interface.hwdebug_info ().num_condition_regs > 0) |
| && check_condition (addr, cond, &data_value, &len)); |
| } |
| |
| /* Set up P with the parameters necessary to request a watchpoint covering |
| LEN bytes starting at ADDR and if possible with condition expression COND |
| evaluated by hardware. INSERT tells if we are creating a request for |
| inserting or removing the watchpoint. */ |
| |
| void |
| ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p, |
| CORE_ADDR addr, int len, |
| enum target_hw_bp_type type, |
| struct expression *cond, |
| int insert) |
| { |
| const struct ppc_debug_info &hwdebug_info = (m_dreg_interface |
| .hwdebug_info ()); |
| |
| if (len == 1 |
| || !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE)) |
| { |
| int use_condition; |
| CORE_ADDR data_value; |
| |
| use_condition = (insert? can_use_watchpoint_cond_accel () |
| : hwdebug_info.num_condition_regs > 0); |
| if (cond && use_condition && check_condition (addr, cond, |
| &data_value, &len)) |
| calculate_dvc (addr, len, data_value, &p->condition_mode, |
| &p->condition_value); |
| else |
| { |
| p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p->condition_value = 0; |
| } |
| |
| p->addr_mode = PPC_BREAKPOINT_MODE_EXACT; |
| p->addr2 = 0; |
| } |
| else |
| { |
| p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE; |
| p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE; |
| p->condition_value = 0; |
| |
| /* The watchpoint will trigger if the address of the memory access is |
| within the defined range, as follows: p->addr <= address < p->addr2. |
| |
| Note that the above sentence just documents how ptrace interprets |
| its arguments; the watchpoint is set to watch the range defined by |
| the user _inclusively_, as specified by the user interface. */ |
| p->addr2 = (uint64_t) addr + len; |
| } |
| |
| p->version = PPC_DEBUG_CURRENT_VERSION; |
| p->trigger_type = get_trigger_type (type); |
| p->addr = (uint64_t) addr; |
| } |
| |
| /* Register a watchpoint, to be inserted when the threads of the group of |
| inferior_ptid are next resumed. Returns 0 on success, and -1 if there |
| is no ptrace interface available to install the watchpoint. */ |
| |
| int |
| ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len, |
| enum target_hw_bp_type type, |
| struct expression *cond) |
| { |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (m_dreg_interface.unavailable_p ()) |
| return -1; |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| create_watchpoint_request (&p, addr, len, type, cond, 1); |
| |
| register_hw_breakpoint (inferior_ptid.pid (), p); |
| } |
| else |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| long wp_value; |
| long read_mode, write_mode; |
| |
| if (linux_get_hwcap (current_inferior ()->top_target ()) |
| & PPC_FEATURE_BOOKE) |
| { |
| /* PowerPC 440 requires only the read/write flags to be passed |
| to the kernel. */ |
| read_mode = 1; |
| write_mode = 2; |
| } |
| else |
| { |
| /* PowerPC 970 and other DABR-based processors are required to pass |
| the Breakpoint Translation bit together with the flags. */ |
| read_mode = 5; |
| write_mode = 6; |
| } |
| |
| wp_value = addr & ~(read_mode | write_mode); |
| switch (type) |
| { |
| case hw_read: |
| /* Set read and translate bits. */ |
| wp_value |= read_mode; |
| break; |
| case hw_write: |
| /* Set write and translate bits. */ |
| wp_value |= write_mode; |
| break; |
| case hw_access: |
| /* Set read, write and translate bits. */ |
| wp_value |= read_mode | write_mode; |
| break; |
| } |
| |
| register_wp (inferior_ptid.pid (), wp_value); |
| } |
| |
| return 0; |
| } |
| |
| /* Clear a registration for a hardware watchpoint. It will be removed |
| from the threads of the group of inferior_ptid when they are next |
| resumed. */ |
| |
| int |
| ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len, |
| enum target_hw_bp_type type, |
| struct expression *cond) |
| { |
| gdb_assert (!m_dreg_interface.unavailable_p ()); |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| struct ppc_hw_breakpoint p; |
| |
| create_watchpoint_request (&p, addr, len, type, cond, 0); |
| |
| clear_hw_breakpoint (inferior_ptid.pid (), p); |
| } |
| else |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| clear_wp (inferior_ptid.pid ()); |
| } |
| |
| return 0; |
| } |
| |
| /* Clean up the per-process info associated with PID. When using the |
| HWDEBUG interface, we also erase the per-thread state of installed |
| debug registers for all the threads that belong to the group of PID. |
| |
| Usually the thread state is cleaned up by low_delete_thread. We also |
| do it here because low_new_thread is not called for the initial LWP, |
| so low_delete_thread won't be able to clean up this state. */ |
| |
| void |
| ppc_linux_nat_target::low_forget_process (pid_t pid) |
| { |
| if ((!m_dreg_interface.detected_p ()) |
| || (m_dreg_interface.unavailable_p ())) |
| return; |
| |
| ptid_t pid_ptid (pid, 0, 0); |
| |
| m_process_info.erase (pid); |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| for (auto it = m_installed_hw_bps.begin (); |
| it != m_installed_hw_bps.end ();) |
| { |
| if (it->first.matches (pid_ptid)) |
| it = m_installed_hw_bps.erase (it); |
| else |
| it++; |
| } |
| } |
| } |
| |
| /* Copy the per-process state associated with the pid of PARENT to the |
| sate of CHILD_PID. GDB expects that a forked process will have the |
| same hardware breakpoints and watchpoints as the parent. |
| |
| If we're using the HWDEBUG interface, also copy the thread debug |
| register state for the ptid of PARENT to the state for CHILD_PID. |
| |
| Like for clone events, we assume the kernel will copy the debug |
| registers from the parent thread to the child. The |
| low_prepare_to_resume function is made to work even if it doesn't. |
| |
| We copy the thread state here and not in low_new_thread since we don't |
| have the pid of the parent in low_new_thread. Even if we did, |
| low_new_thread might not be called immediately after the fork event is |
| detected. For instance, with the checkpointing system (see |
| linux-fork.c), the thread won't be added until GDB decides to switch |
| to a new checkpointed process. At that point, the debug register |
| state of the parent thread is unlikely to correspond to the state it |
| had at the point when it forked. */ |
| |
| void |
| ppc_linux_nat_target::low_new_fork (struct lwp_info *parent, |
| pid_t child_pid) |
| { |
| if ((!m_dreg_interface.detected_p ()) |
| || (m_dreg_interface.unavailable_p ())) |
| return; |
| |
| auto process_it = m_process_info.find (parent->ptid.pid ()); |
| |
| if (process_it != m_process_info.end ()) |
| m_process_info[child_pid] = m_process_info[parent->ptid.pid ()]; |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| ptid_t child_ptid (child_pid, child_pid, 0); |
| |
| copy_thread_dreg_state (parent->ptid, child_ptid); |
| } |
| } |
| |
| /* Copy the thread debug register state from the PARENT thread to the the |
| state for CHILD_LWP, if we're using the HWDEBUG interface. We assume |
| the kernel copies the debug registers from one thread to another after |
| a clone event. The low_prepare_to_resume function is made to work |
| even if it doesn't. */ |
| |
| void |
| ppc_linux_nat_target::low_new_clone (struct lwp_info *parent, |
| pid_t child_lwp) |
| { |
| if ((!m_dreg_interface.detected_p ()) |
| || (m_dreg_interface.unavailable_p ())) |
| return; |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0); |
| |
| copy_thread_dreg_state (parent->ptid, child_ptid); |
| } |
| } |
| |
| /* Initialize the arch-specific thread state for LP so that it contains |
| the ptid for lp, so that we can use it in low_delete_thread. Mark the |
| new thread LP as stale so that we update its debug registers before |
| resuming it. This is not called for the initial thread. */ |
| |
| void |
| ppc_linux_nat_target::low_new_thread (struct lwp_info *lp) |
| { |
| init_arch_lwp_info (lp); |
| |
| mark_thread_stale (lp); |
| } |
| |
| /* Delete the per-thread debug register stale flag. */ |
| |
| void |
| ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info |
| *lp_arch_info) |
| { |
| if (lp_arch_info != NULL) |
| { |
| if (m_dreg_interface.detected_p () |
| && m_dreg_interface.hwdebug_p ()) |
| m_installed_hw_bps.erase (lp_arch_info->lwp_ptid); |
| |
| xfree (lp_arch_info); |
| } |
| } |
| |
| /* Install or delete debug registers in thread LP so that it matches what |
| GDB requested before it is resumed. */ |
| |
| void |
| ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp) |
| { |
| if ((!m_dreg_interface.detected_p ()) |
| || (m_dreg_interface.unavailable_p ())) |
| return; |
| |
| /* We have to re-install or clear the debug registers if we set the |
| stale flag. |
| |
| In addition, some kernels configurations can disable a hardware |
| watchpoint after it is hit. Usually, GDB will remove and re-install |
| a hardware watchpoint when the thread stops if "breakpoint |
| always-inserted" is off, or to single-step a watchpoint. But so |
| that we don't rely on this behavior, if we stop due to a hardware |
| breakpoint or watchpoint, we also refresh our debug registers. */ |
| |
| arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); |
| |
| bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT |
| || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT |
| || lp_arch_info->debug_regs_stale); |
| |
| if (!stale_dregs) |
| return; |
| |
| gdb_assert (lp->ptid.lwp_p ()); |
| |
| auto process_it = m_process_info.find (lp->ptid.pid ()); |
| |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| /* First, delete any hardware watchpoint or breakpoint installed in |
| the inferior and update the thread state. */ |
| auto installed_it = m_installed_hw_bps.find (lp->ptid); |
| |
| if (installed_it != m_installed_hw_bps.end ()) |
| { |
| auto &bp_list = installed_it->second; |
| |
| for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();) |
| { |
| /* We ignore ENOENT to account for various possible kernel |
| behaviors, e.g. the kernel might or might not copy debug |
| registers across forks and clones, and we always copy |
| the debug register state when fork and clone events are |
| detected. */ |
| if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0, |
| bp_it->first) < 0) |
| if (errno != ENOENT) |
| perror_with_name (_("Error deleting hardware " |
| "breakpoint or watchpoint")); |
| |
| /* We erase the entries one at a time after successfuly |
| removing the corresponding slot form the thread so that |
| if we throw an exception above in a future iteration the |
| map remains consistent. */ |
| bp_it = bp_list.erase (bp_it); |
| } |
| |
| gdb_assert (bp_list.empty ()); |
| } |
| |
| /* Now we install all the requested hardware breakpoints and |
| watchpoints and update the thread state. */ |
| |
| if (process_it != m_process_info.end ()) |
| { |
| auto &bp_list = m_installed_hw_bps[lp->ptid]; |
| |
| for (ppc_hw_breakpoint bp |
| : process_it->second.requested_hw_bps) |
| { |
| long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (), |
| 0, &bp); |
| |
| if (slot < 0) |
| perror_with_name (_("Error setting hardware " |
| "breakpoint or watchpoint")); |
| |
| /* Keep track of which slots we installed in this |
| thread. */ |
| bp_list.emplace (bp_list.begin (), slot, bp); |
| } |
| } |
| } |
| else |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| /* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We |
| always clear the watchpoint instead of just overwriting it, in |
| case there is a request for a new watchpoint, because on some |
| older kernel versions and configurations simply overwriting the |
| watchpoint after it was hit would not re-enable it. */ |
| if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0) |
| perror_with_name (_("Error clearing hardware watchpoint")); |
| |
| /* GDB requested a watchpoint to be installed. */ |
| if (process_it != m_process_info.end () |
| && process_it->second.requested_wp_val.has_value ()) |
| { |
| long wp = *(process_it->second.requested_wp_val); |
| |
| if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0) |
| perror_with_name (_("Error setting hardware watchpoint")); |
| } |
| } |
| |
| lp_arch_info->debug_regs_stale = false; |
| } |
| |
| /* Return true if INFERIOR_PTID is known to have been stopped by a |
| hardware watchpoint, false otherwise. If true is returned, write the |
| address that the kernel reported as causing the SIGTRAP in ADDR_P. */ |
| |
| bool |
| ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p) |
| { |
| siginfo_t siginfo; |
| |
| if (!linux_nat_get_siginfo (inferior_ptid, &siginfo)) |
| return false; |
| |
| if (siginfo.si_signo != SIGTRAP |
| || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */) |
| return false; |
| |
| gdb_assert (!m_dreg_interface.unavailable_p ()); |
| |
| /* Check if this signal corresponds to a hardware breakpoint. We only |
| need to check this if we're using the HWDEBUG interface, since the |
| DEBUGREG interface only allows setting one hardware watchpoint. */ |
| if (m_dreg_interface.hwdebug_p ()) |
| { |
| /* The index (or slot) of the *point is passed in the si_errno |
| field. Currently, this is only the case if the kernel was |
| configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume |
| the kernel will set si_errno to a value that doesn't correspond |
| to any real slot. */ |
| int slot = siginfo.si_errno; |
| |
| auto installed_it = m_installed_hw_bps.find (inferior_ptid); |
| |
| /* We must have installed slots for the thread if it got a |
| TRAP_HWBKPT signal. */ |
| gdb_assert (installed_it != m_installed_hw_bps.end ()); |
| |
| for (const auto & slot_bp_pair : installed_it->second) |
| if (slot_bp_pair.first == slot |
| && (slot_bp_pair.second.trigger_type |
| == PPC_BREAKPOINT_TRIGGER_EXECUTE)) |
| return false; |
| } |
| |
| *addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr; |
| return true; |
| } |
| |
| /* Return true if INFERIOR_PTID is known to have been stopped by a |
| hardware watchpoint, false otherwise. */ |
| |
| bool |
| ppc_linux_nat_target::low_stopped_by_watchpoint () |
| { |
| CORE_ADDR addr; |
| return low_stopped_data_address (&addr); |
| } |
| |
| bool |
| ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr, |
| CORE_ADDR start, |
| int length) |
| { |
| gdb_assert (!m_dreg_interface.unavailable_p ()); |
| |
| int mask; |
| |
| if (m_dreg_interface.hwdebug_p () |
| && (linux_get_hwcap (current_inferior ()->top_target ()) |
| & PPC_FEATURE_BOOKE)) |
| return start <= addr && start + length >= addr; |
| else if (linux_get_hwcap (current_inferior ()->top_target ()) |
| & PPC_FEATURE_BOOKE) |
| mask = 3; |
| else |
| mask = 7; |
| |
| addr &= ~mask; |
| |
| /* Check whether [start, start+length-1] intersects [addr, addr+mask]. */ |
| return start <= addr + mask && start + length - 1 >= addr; |
| } |
| |
| /* Return the number of registers needed for a masked hardware watchpoint. */ |
| |
| int |
| ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr, |
| CORE_ADDR mask) |
| { |
| m_dreg_interface.detect (inferior_ptid); |
| |
| if (!m_dreg_interface.hwdebug_p () |
| || (m_dreg_interface.hwdebug_info ().features |
| & PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0) |
| return -1; |
| else if ((mask & 0xC0000000) != 0xC0000000) |
| { |
| warning (_("The given mask covers kernel address space " |
| "and cannot be used.\n")); |
| |
| return -2; |
| } |
| else |
| return 2; |
| } |
| |
| /* Copy the per-thread debug register state, if any, from thread |
| PARENT_PTID to thread CHILD_PTID, if the debug register being used is |
| HWDEBUG. */ |
| |
| void |
| ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid, |
| const ptid_t &child_ptid) |
| { |
| gdb_assert (m_dreg_interface.hwdebug_p ()); |
| |
| auto installed_it = m_installed_hw_bps.find (parent_ptid); |
| |
| if (installed_it != m_installed_hw_bps.end ()) |
| m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid]; |
| } |
| |
| /* Mark the debug register stale flag for the new thread, if we have |
| already detected which debug register interface we use. */ |
| |
| void |
| ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp) |
| { |
| if ((!m_dreg_interface.detected_p ()) |
| || (m_dreg_interface.unavailable_p ())) |
| return; |
| |
| arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp); |
| |
| lp_arch_info->debug_regs_stale = true; |
| } |
| |
| /* Mark all the threads of the group of PID as stale with respect to |
| debug registers and issue a stop request to each such thread that |
| isn't already stopped. */ |
| |
| void |
| ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid) |
| { |
| /* We do this in two passes to make sure all threads are marked even if |
| we get an exception when stopping one of them. */ |
| |
| iterate_over_lwps (ptid_t (pid), |
| [this] (struct lwp_info *lp) -> int { |
| this->mark_thread_stale (lp); |
| return 0; |
| }); |
| |
| iterate_over_lwps (ptid_t (pid), |
| [] (struct lwp_info *lp) -> int { |
| if (!lwp_is_stopped (lp)) |
| linux_stop_lwp (lp); |
| return 0; |
| }); |
| } |
| |
| /* Register a hardware breakpoint or watchpoint BP for the pid PID, then |
| mark the stale flag for all threads of the group of PID, and issue a |
| stop request for them. The breakpoint or watchpoint will be installed |
| the next time each thread is resumed. Should only be used if the |
| debug register interface is HWDEBUG. */ |
| |
| void |
| ppc_linux_nat_target::register_hw_breakpoint (pid_t pid, |
| const struct |
| ppc_hw_breakpoint &bp) |
| { |
| gdb_assert (m_dreg_interface.hwdebug_p ()); |
| |
| m_process_info[pid].requested_hw_bps.push_back (bp); |
| |
| mark_debug_registers_changed (pid); |
| } |
| |
| /* Clear a registration for a hardware breakpoint or watchpoint BP for |
| the pid PID, then mark the stale flag for all threads of the group of |
| PID, and issue a stop request for them. The breakpoint or watchpoint |
| will be removed the next time each thread is resumed. Should only be |
| used if the debug register interface is HWDEBUG. */ |
| |
| void |
| ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid, |
| const struct ppc_hw_breakpoint &bp) |
| { |
| gdb_assert (m_dreg_interface.hwdebug_p ()); |
| |
| auto process_it = m_process_info.find (pid); |
| |
| gdb_assert (process_it != m_process_info.end ()); |
| |
| auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (), |
| process_it->second.requested_hw_bps.end (), |
| [&bp, this] |
| (const struct ppc_hw_breakpoint &curr) |
| { return hwdebug_point_cmp (bp, curr); } |
| ); |
| |
| /* If GDB is removing a watchpoint, it must have been inserted. */ |
| gdb_assert (bp_it != process_it->second.requested_hw_bps.end ()); |
| |
| process_it->second.requested_hw_bps.erase (bp_it); |
| |
| mark_debug_registers_changed (pid); |
| } |
| |
| /* Register the hardware watchpoint value WP_VALUE for the pid PID, |
| then mark the stale flag for all threads of the group of PID, and |
| issue a stop request for them. The breakpoint or watchpoint will be |
| installed the next time each thread is resumed. Should only be used |
| if the debug register interface is DEBUGREG. */ |
| |
| void |
| ppc_linux_nat_target::register_wp (pid_t pid, long wp_value) |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| /* Our other functions should have told GDB that we only have one |
| hardware watchpoint with this interface. */ |
| gdb_assert (!m_process_info[pid].requested_wp_val.has_value ()); |
| |
| m_process_info[pid].requested_wp_val.emplace (wp_value); |
| |
| mark_debug_registers_changed (pid); |
| } |
| |
| /* Clear the hardware watchpoint registration for the pid PID, then mark |
| the stale flag for all threads of the group of PID, and issue a stop |
| request for them. The breakpoint or watchpoint will be installed the |
| next time each thread is resumed. Should only be used if the debug |
| register interface is DEBUGREG. */ |
| |
| void |
| ppc_linux_nat_target::clear_wp (pid_t pid) |
| { |
| gdb_assert (m_dreg_interface.debugreg_p ()); |
| |
| auto process_it = m_process_info.find (pid); |
| |
| gdb_assert (process_it != m_process_info.end ()); |
| gdb_assert (process_it->second.requested_wp_val.has_value ()); |
| |
| process_it->second.requested_wp_val.reset (); |
| |
| mark_debug_registers_changed (pid); |
| } |
| |
| /* Initialize the arch-specific thread state for LWP, if it not already |
| created. */ |
| |
| void |
| ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp) |
| { |
| if (lwp_arch_private_info (lp) == NULL) |
| { |
| lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info)); |
| lwp_arch_private_info (lp)->debug_regs_stale = false; |
| lwp_arch_private_info (lp)->lwp_ptid = lp->ptid; |
| } |
| } |
| |
| /* Get the arch-specific thread state for LWP, creating it if |
| necessary. */ |
| |
| arch_lwp_info * |
| ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp) |
| { |
| init_arch_lwp_info (lp); |
| |
| return lwp_arch_private_info (lp); |
| } |
| |
| void _initialize_ppc_linux_nat (); |
| void |
| _initialize_ppc_linux_nat () |
| { |
| linux_target = &the_ppc_linux_nat_target; |
| |
| /* Register the target. */ |
| add_inf_child_target (linux_target); |
| } |