| /* Copyright (C) 2012-2021 Free Software Foundation, Inc. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "defs.h" |
| #include "osabi.h" |
| #include "regcache.h" |
| #include "gdbcore.h" |
| #include "gdbtypes.h" |
| #include "infcall.h" |
| #include "ppc-tdep.h" |
| #include "target-float.h" |
| #include "value.h" |
| #include "xcoffread.h" |
| |
| /* Implement the "push_dummy_call" gdbarch method. */ |
| |
| static CORE_ADDR |
| rs6000_lynx178_push_dummy_call (struct gdbarch *gdbarch, |
| struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int ii; |
| int len = 0; |
| int argno; /* current argument number */ |
| int argbytes; /* current argument byte */ |
| gdb_byte tmp_buffer[50]; |
| int f_argno = 0; /* current floating point argno */ |
| int wordsize = gdbarch_tdep (gdbarch)->wordsize; |
| |
| struct value *arg = 0; |
| struct type *type; |
| |
| ULONGEST saved_sp; |
| |
| /* The calling convention this function implements assumes the |
| processor has floating-point registers. We shouldn't be using it |
| on PPC variants that lack them. */ |
| gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
| |
| /* The first eight words of ther arguments are passed in registers. |
| Copy them appropriately. */ |
| ii = 0; |
| |
| /* If the function is returning a `struct', then the first word |
| (which will be passed in r3) is used for struct return address. |
| In that case we should advance one word and start from r4 |
| register to copy parameters. */ |
| if (return_method == return_method_struct) |
| { |
| regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| struct_addr); |
| ii++; |
| } |
| |
| /* Effectively indirect call... gcc does... |
| |
| return_val example( float, int); |
| |
| eabi: |
| float in fp0, int in r3 |
| offset of stack on overflow 8/16 |
| for varargs, must go by type. |
| power open: |
| float in r3&r4, int in r5 |
| offset of stack on overflow different |
| both: |
| return in r3 or f0. If no float, must study how gcc emulates floats; |
| pay attention to arg promotion. |
| User may have to cast\args to handle promotion correctly |
| since gdb won't know if prototype supplied or not. */ |
| |
| for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii) |
| { |
| int reg_size = register_size (gdbarch, ii + 3); |
| |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| if (type->code () == TYPE_CODE_FLT) |
| { |
| |
| /* Floating point arguments are passed in fpr's, as well as gpr's. |
| There are 13 fpr's reserved for passing parameters. At this point |
| there is no way we would run out of them. |
| |
| Always store the floating point value using the register's |
| floating-point format. */ |
| const int fp_regnum = tdep->ppc_fp0_regnum + 1 + f_argno; |
| gdb_byte reg_val[PPC_MAX_REGISTER_SIZE]; |
| struct type *reg_type = register_type (gdbarch, fp_regnum); |
| |
| gdb_assert (len <= 8); |
| |
| target_float_convert (value_contents (arg), type, reg_val, reg_type); |
| regcache->cooked_write (fp_regnum, reg_val); |
| ++f_argno; |
| } |
| |
| if (len > reg_size) |
| { |
| |
| /* Argument takes more than one register. */ |
| while (argbytes < len) |
| { |
| gdb_byte word[PPC_MAX_REGISTER_SIZE]; |
| memset (word, 0, reg_size); |
| memcpy (word, |
| ((char *) value_contents (arg)) + argbytes, |
| (len - argbytes) > reg_size |
| ? reg_size : len - argbytes); |
| regcache->cooked_write (tdep->ppc_gp0_regnum + 3 + ii, word); |
| ++ii, argbytes += reg_size; |
| |
| if (ii >= 8) |
| goto ran_out_of_registers_for_arguments; |
| } |
| argbytes = 0; |
| --ii; |
| } |
| else |
| { |
| /* Argument can fit in one register. No problem. */ |
| gdb_byte word[PPC_MAX_REGISTER_SIZE]; |
| |
| memset (word, 0, reg_size); |
| memcpy (word, value_contents (arg), len); |
| regcache->cooked_write (tdep->ppc_gp0_regnum + 3 +ii, word); |
| } |
| ++argno; |
| } |
| |
| ran_out_of_registers_for_arguments: |
| |
| regcache_cooked_read_unsigned (regcache, |
| gdbarch_sp_regnum (gdbarch), |
| &saved_sp); |
| |
| /* Location for 8 parameters are always reserved. */ |
| sp -= wordsize * 8; |
| |
| /* Another six words for back chain, TOC register, link register, etc. */ |
| sp -= wordsize * 6; |
| |
| /* Stack pointer must be quadword aligned. */ |
| sp = align_down (sp, 16); |
| |
| /* If there are more arguments, allocate space for them in |
| the stack, then push them starting from the ninth one. */ |
| |
| if ((argno < nargs) || argbytes) |
| { |
| int space = 0, jj; |
| |
| if (argbytes) |
| { |
| space += align_up (len - argbytes, 4); |
| jj = argno + 1; |
| } |
| else |
| jj = argno; |
| |
| for (; jj < nargs; ++jj) |
| { |
| struct value *val = args[jj]; |
| |
| space += align_up (TYPE_LENGTH (value_type (val)), 4); |
| } |
| |
| /* Add location required for the rest of the parameters. */ |
| space = align_up (space, 16); |
| sp -= space; |
| |
| /* This is another instance we need to be concerned about |
| securing our stack space. If we write anything underneath %sp |
| (r1), we might conflict with the kernel who thinks he is free |
| to use this area. So, update %sp first before doing anything |
| else. */ |
| |
| regcache_raw_write_signed (regcache, |
| gdbarch_sp_regnum (gdbarch), sp); |
| |
| /* If the last argument copied into the registers didn't fit there |
| completely, push the rest of it into stack. */ |
| |
| if (argbytes) |
| { |
| write_memory (sp + 24 + (ii * 4), |
| value_contents (arg) + argbytes, |
| len - argbytes); |
| ++argno; |
| ii += align_up (len - argbytes, 4) / 4; |
| } |
| |
| /* Push the rest of the arguments into stack. */ |
| for (; argno < nargs; ++argno) |
| { |
| |
| arg = args[argno]; |
| type = check_typedef (value_type (arg)); |
| len = TYPE_LENGTH (type); |
| |
| |
| /* Float types should be passed in fpr's, as well as in the |
| stack. */ |
| if (type->code () == TYPE_CODE_FLT && f_argno < 13) |
| { |
| |
| gdb_assert (len <= 8); |
| |
| regcache->cooked_write (tdep->ppc_fp0_regnum + 1 + f_argno, |
| value_contents (arg)); |
| ++f_argno; |
| } |
| |
| write_memory (sp + 24 + (ii * 4), value_contents (arg), len); |
| ii += align_up (len, 4) / 4; |
| } |
| } |
| |
| /* Set the stack pointer. According to the ABI, the SP is meant to |
| be set _before_ the corresponding stack space is used. On AIX, |
| this even applies when the target has been completely stopped! |
| Not doing this can lead to conflicts with the kernel which thinks |
| that it still has control over this not-yet-allocated stack |
| region. */ |
| regcache_raw_write_signed (regcache, gdbarch_sp_regnum (gdbarch), sp); |
| |
| /* Set back chain properly. */ |
| store_unsigned_integer (tmp_buffer, wordsize, byte_order, saved_sp); |
| write_memory (sp, tmp_buffer, wordsize); |
| |
| /* Point the inferior function call's return address at the dummy's |
| breakpoint. */ |
| regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr); |
| |
| target_store_registers (regcache, -1); |
| return sp; |
| } |
| |
| /* Implement the "return_value" gdbarch method. */ |
| |
| static enum return_value_convention |
| rs6000_lynx178_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *valtype, struct regcache *regcache, |
| gdb_byte *readbuf, const gdb_byte *writebuf) |
| { |
| struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| |
| /* The calling convention this function implements assumes the |
| processor has floating-point registers. We shouldn't be using it |
| on PowerPC variants that lack them. */ |
| gdb_assert (ppc_floating_point_unit_p (gdbarch)); |
| |
| /* AltiVec extension: Functions that declare a vector data type as a |
| return value place that return value in VR2. */ |
| if (valtype->code () == TYPE_CODE_ARRAY && valtype->is_vector () |
| && TYPE_LENGTH (valtype) == 16) |
| { |
| if (readbuf) |
| regcache->cooked_read (tdep->ppc_vr0_regnum + 2, readbuf); |
| if (writebuf) |
| regcache->cooked_write (tdep->ppc_vr0_regnum + 2, writebuf); |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* If the called subprogram returns an aggregate, there exists an |
| implicit first argument, whose value is the address of a caller- |
| allocated buffer into which the callee is assumed to store its |
| return value. All explicit parameters are appropriately |
| relabeled. */ |
| if (valtype->code () == TYPE_CODE_STRUCT |
| || valtype->code () == TYPE_CODE_UNION |
| || valtype->code () == TYPE_CODE_ARRAY) |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| |
| /* Scalar floating-point values are returned in FPR1 for float or |
| double, and in FPR1:FPR2 for quadword precision. Fortran |
| complex*8 and complex*16 are returned in FPR1:FPR2, and |
| complex*32 is returned in FPR1:FPR4. */ |
| if (valtype->code () == TYPE_CODE_FLT |
| && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8)) |
| { |
| struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum); |
| gdb_byte regval[8]; |
| |
| /* FIXME: kettenis/2007-01-01: Add support for quadword |
| precision and complex. */ |
| |
| if (readbuf) |
| { |
| regcache->cooked_read (tdep->ppc_fp0_regnum + 1, regval); |
| target_float_convert (regval, regtype, readbuf, valtype); |
| } |
| if (writebuf) |
| { |
| target_float_convert (writebuf, valtype, regval, regtype); |
| regcache->cooked_write (tdep->ppc_fp0_regnum + 1, regval); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* Values of the types int, long, short, pointer, and char (length |
| is less than or equal to four bytes), as well as bit values of |
| lengths less than or equal to 32 bits, must be returned right |
| justified in GPR3 with signed values sign extended and unsigned |
| values zero extended, as necessary. */ |
| if (TYPE_LENGTH (valtype) <= tdep->wordsize) |
| { |
| if (readbuf) |
| { |
| ULONGEST regval; |
| |
| /* For reading we don't have to worry about sign extension. */ |
| regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| ®val); |
| store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), byte_order, |
| regval); |
| } |
| if (writebuf) |
| { |
| /* For writing, use unpack_long since that should handle any |
| required sign extension. */ |
| regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3, |
| unpack_long (valtype, writebuf)); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| /* Eight-byte non-floating-point scalar values must be returned in |
| GPR3:GPR4. */ |
| |
| if (TYPE_LENGTH (valtype) == 8) |
| { |
| gdb_assert (valtype->code () != TYPE_CODE_FLT); |
| gdb_assert (tdep->wordsize == 4); |
| |
| if (readbuf) |
| { |
| gdb_byte regval[8]; |
| |
| regcache->cooked_read (tdep->ppc_gp0_regnum + 3, regval); |
| regcache->cooked_read (tdep->ppc_gp0_regnum + 4, regval + 4); |
| memcpy (readbuf, regval, 8); |
| } |
| if (writebuf) |
| { |
| regcache->cooked_write (tdep->ppc_gp0_regnum + 3, writebuf); |
| regcache->cooked_write (tdep->ppc_gp0_regnum + 4, writebuf + 4); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| return RETURN_VALUE_STRUCT_CONVENTION; |
| } |
| |
| /* PowerPC Lynx178 OSABI sniffer. */ |
| |
| static enum gdb_osabi |
| rs6000_lynx178_osabi_sniffer (bfd *abfd) |
| { |
| if (bfd_get_flavour (abfd) != bfd_target_xcoff_flavour) |
| return GDB_OSABI_UNKNOWN; |
| |
| /* The only noticeable difference between Lynx178 XCOFF files and |
| AIX XCOFF files comes from the fact that there are no shared |
| libraries on Lynx178. So if the number of import files is |
| different from zero, it cannot be a Lynx178 binary. */ |
| if (xcoff_get_n_import_files (abfd) != 0) |
| return GDB_OSABI_UNKNOWN; |
| |
| return GDB_OSABI_LYNXOS178; |
| } |
| |
| /* Callback for powerpc-lynx178 initialization. */ |
| |
| static void |
| rs6000_lynx178_init_osabi (struct gdbarch_info info, struct gdbarch *gdbarch) |
| { |
| set_gdbarch_push_dummy_call (gdbarch, rs6000_lynx178_push_dummy_call); |
| set_gdbarch_return_value (gdbarch, rs6000_lynx178_return_value); |
| set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); |
| } |
| |
| void _initialize_rs6000_lynx178_tdep (); |
| void |
| _initialize_rs6000_lynx178_tdep () |
| { |
| gdbarch_register_osabi_sniffer (bfd_arch_rs6000, |
| bfd_target_xcoff_flavour, |
| rs6000_lynx178_osabi_sniffer); |
| gdbarch_register_osabi (bfd_arch_rs6000, 0, GDB_OSABI_LYNXOS178, |
| rs6000_lynx178_init_osabi); |
| } |
| |