| /* Main simulator entry points specific to the CRIS. |
| Copyright (C) 2004-2021 Free Software Foundation, Inc. |
| Contributed by Axis Communications. |
| |
| This file is part of the GNU simulators. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| /* Based on the fr30 file, mixing in bits from the i960 and pruning of |
| dead code. */ |
| |
| /* This must come before any other includes. */ |
| #include "defs.h" |
| |
| #include "libiberty.h" |
| #include "bfd.h" |
| #include "elf-bfd.h" |
| |
| #include "sim-main.h" |
| #include <stdlib.h> |
| #include <errno.h> |
| #include <unistd.h> |
| #include "sim-options.h" |
| #include "sim-hw.h" |
| #include "dis-asm.h" |
| #include "environ.h" |
| |
| /* Used with get_progbounds to find out how much memory is needed for the |
| program. We don't want to allocate more, since that could mask |
| invalid memory accesses program bugs. */ |
| struct progbounds { |
| USI startmem; |
| USI endmem; |
| USI end_loadmem; |
| USI start_nonloadmem; |
| }; |
| |
| static void free_state (SIM_DESC); |
| static void get_progbounds_iterator (bfd *, asection *, void *); |
| static SIM_RC cris_option_handler (SIM_DESC, sim_cpu *, int, char *, int); |
| |
| /* Since we don't build the cgen-opcode table, we use the old |
| disassembler. */ |
| static CGEN_DISASSEMBLER cris_disassemble_insn; |
| |
| /* By default, we set up stack and environment variables like the Linux |
| kernel. */ |
| static char cris_bare_iron = 0; |
| |
| /* Whether 0x9000000xx have simulator-specific meanings. */ |
| char cris_have_900000xxif = 0; |
| |
| /* Used to optionally override the default start address of the |
| simulation. */ |
| static USI cris_start_address = 0xffffffffu; |
| |
| /* Used to optionally add offsets to the loaded image and its start |
| address. (Not used for the interpreter of dynamically loaded |
| programs or the DSO:s.) */ |
| static int cris_program_offset = 0; |
| |
| /* What to do when we face a more or less unknown syscall. */ |
| enum cris_unknown_syscall_action_type cris_unknown_syscall_action |
| = CRIS_USYSC_MSG_STOP; |
| |
| /* CRIS-specific options. */ |
| typedef enum { |
| OPTION_CRIS_STATS = OPTION_START, |
| OPTION_CRIS_TRACE, |
| OPTION_CRIS_NAKED, |
| OPTION_CRIS_PROGRAM_OFFSET, |
| OPTION_CRIS_STARTADDR, |
| OPTION_CRIS_900000XXIF, |
| OPTION_CRIS_UNKNOWN_SYSCALL |
| } CRIS_OPTIONS; |
| |
| static const OPTION cris_options[] = |
| { |
| { {"cris-cycles", required_argument, NULL, OPTION_CRIS_STATS}, |
| '\0', "basic|unaligned|schedulable|all", |
| "Dump execution statistics", |
| cris_option_handler, NULL }, |
| { {"cris-trace", required_argument, NULL, OPTION_CRIS_TRACE}, |
| '\0', "basic", |
| "Emit trace information while running", |
| cris_option_handler, NULL }, |
| { {"cris-naked", no_argument, NULL, OPTION_CRIS_NAKED}, |
| '\0', NULL, "Don't set up stack and environment", |
| cris_option_handler, NULL }, |
| { {"cris-900000xx", no_argument, NULL, OPTION_CRIS_900000XXIF}, |
| '\0', NULL, "Define addresses at 0x900000xx with simulator semantics", |
| cris_option_handler, NULL }, |
| { {"cris-unknown-syscall", required_argument, NULL, |
| OPTION_CRIS_UNKNOWN_SYSCALL}, |
| '\0', "stop|enosys|enosys-quiet", "Action at an unknown system call", |
| cris_option_handler, NULL }, |
| { {"cris-program-offset", required_argument, NULL, |
| OPTION_CRIS_PROGRAM_OFFSET}, |
| '\0', "OFFSET", |
| "Offset image addresses and default start address of a program", |
| cris_option_handler }, |
| { {"cris-start-address", required_argument, NULL, OPTION_CRIS_STARTADDR}, |
| '\0', "ADDRESS", "Set start address", |
| cris_option_handler }, |
| { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL } |
| }; |
| |
| /* Handle CRIS-specific options. */ |
| |
| static SIM_RC |
| cris_option_handler (SIM_DESC sd, sim_cpu *cpu ATTRIBUTE_UNUSED, int opt, |
| char *arg, int is_command ATTRIBUTE_UNUSED) |
| { |
| /* The options are CRIS-specific, but cpu-specific option-handling is |
| broken; required to being with "--cpu0-". We store the flags in an |
| unused field in the global state structure and move the flags over |
| to the module-specific CPU data when we store things in the |
| cpu-specific structure. */ |
| char *tracefp = STATE_TRACE_FLAGS (sd); |
| char *chp = arg; |
| |
| switch ((CRIS_OPTIONS) opt) |
| { |
| case OPTION_CRIS_STATS: |
| if (strcmp (arg, "basic") == 0) |
| *tracefp = FLAG_CRIS_MISC_PROFILE_SIMPLE; |
| else if (strcmp (arg, "unaligned") == 0) |
| *tracefp |
| = (FLAG_CRIS_MISC_PROFILE_UNALIGNED |
| | FLAG_CRIS_MISC_PROFILE_SIMPLE); |
| else if (strcmp (arg, "schedulable") == 0) |
| *tracefp |
| = (FLAG_CRIS_MISC_PROFILE_SCHEDULABLE |
| | FLAG_CRIS_MISC_PROFILE_SIMPLE); |
| else if (strcmp (arg, "all") == 0) |
| *tracefp = FLAG_CRIS_MISC_PROFILE_ALL; |
| else |
| { |
| /* Beware; the framework does not handle the error case; |
| we have to do it ourselves. */ |
| sim_io_eprintf (sd, "Unknown option `--cris-cycles=%s'\n", arg); |
| return SIM_RC_FAIL; |
| } |
| break; |
| |
| case OPTION_CRIS_TRACE: |
| if (strcmp (arg, "basic") == 0) |
| *tracefp |= FLAG_CRIS_MISC_PROFILE_XSIM_TRACE; |
| else |
| { |
| sim_io_eprintf (sd, "Unknown option `--cris-trace=%s'\n", arg); |
| return SIM_RC_FAIL; |
| } |
| break; |
| |
| case OPTION_CRIS_NAKED: |
| cris_bare_iron = 1; |
| break; |
| |
| case OPTION_CRIS_900000XXIF: |
| cris_have_900000xxif = 1; |
| break; |
| |
| case OPTION_CRIS_STARTADDR: |
| errno = 0; |
| cris_start_address = (USI) strtoul (chp, &chp, 0); |
| |
| if (errno != 0 || *chp != 0) |
| { |
| sim_io_eprintf (sd, "Invalid option `--cris-start-address=%s'\n", |
| arg); |
| return SIM_RC_FAIL; |
| } |
| break; |
| |
| case OPTION_CRIS_PROGRAM_OFFSET: |
| errno = 0; |
| cris_program_offset = (int) strtol (chp, &chp, 0); |
| |
| if (errno != 0 || *chp != 0) |
| { |
| sim_io_eprintf (sd, "Invalid option `--cris-program-offset=%s'\n", |
| arg); |
| return SIM_RC_FAIL; |
| } |
| break; |
| |
| case OPTION_CRIS_UNKNOWN_SYSCALL: |
| if (strcmp (arg, "enosys") == 0) |
| cris_unknown_syscall_action = CRIS_USYSC_MSG_ENOSYS; |
| else if (strcmp (arg, "enosys-quiet") == 0) |
| cris_unknown_syscall_action = CRIS_USYSC_QUIET_ENOSYS; |
| else if (strcmp (arg, "stop") == 0) |
| cris_unknown_syscall_action = CRIS_USYSC_MSG_STOP; |
| else |
| { |
| sim_io_eprintf (sd, "Unknown option `--cris-unknown-syscall=%s'\n", |
| arg); |
| return SIM_RC_FAIL; |
| } |
| break; |
| |
| default: |
| /* We'll actually never get here; the caller handles the error |
| case. */ |
| sim_io_eprintf (sd, "Unknown option `%s'\n", arg); |
| return SIM_RC_FAIL; |
| } |
| |
| /* Imply --profile-model=on. */ |
| return sim_profile_set_option (sd, "-model", PROFILE_MODEL_IDX, "on"); |
| } |
| |
| /* An ELF-specific simplified ../common/sim-load.c:sim_load_file, |
| using the program headers, not sections, in order to make sure that |
| the program headers themeselves are also loaded. The caller is |
| responsible for asserting that ABFD is an ELF file. */ |
| |
| static bfd_boolean |
| cris_load_elf_file (SIM_DESC sd, struct bfd *abfd, sim_write_fn do_write) |
| { |
| Elf_Internal_Phdr *phdr; |
| int n_hdrs; |
| int i; |
| bfd_boolean verbose = STATE_OPEN_KIND (sd) == SIM_OPEN_DEBUG; |
| |
| phdr = elf_tdata (abfd)->phdr; |
| n_hdrs = elf_elfheader (abfd)->e_phnum; |
| |
| /* We're only interested in PT_LOAD; all necessary information |
| should be covered by that. */ |
| for (i = 0; i < n_hdrs; i++) |
| { |
| bfd_byte *buf; |
| bfd_vma lma = STATE_LOAD_AT_LMA_P (sd) |
| ? phdr[i].p_paddr : phdr[i].p_vaddr; |
| |
| if (phdr[i].p_type != PT_LOAD) |
| continue; |
| |
| buf = xmalloc (phdr[i].p_filesz); |
| |
| if (verbose) |
| sim_io_printf (sd, |
| "Loading segment at 0x%" BFD_VMA_FMT "x, size 0x%lx\n", |
| lma, phdr[i].p_filesz); |
| |
| if (bfd_seek (abfd, phdr[i].p_offset, SEEK_SET) != 0 |
| || (bfd_bread (buf, phdr[i].p_filesz, abfd) != phdr[i].p_filesz)) |
| { |
| sim_io_eprintf (sd, |
| "%s: could not read segment at 0x%" BFD_VMA_FMT "x, " |
| "size 0x%lx\n", |
| STATE_MY_NAME (sd), lma, phdr[i].p_filesz); |
| free (buf); |
| return FALSE; |
| } |
| |
| if (do_write (sd, lma, buf, phdr[i].p_filesz) != phdr[i].p_filesz) |
| { |
| sim_io_eprintf (sd, |
| "%s: could not load segment at 0x%" BFD_VMA_FMT "x, " |
| "size 0x%lx\n", |
| STATE_MY_NAME (sd), lma, phdr[i].p_filesz); |
| free (buf); |
| return FALSE; |
| } |
| |
| free (buf); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Cover function of sim_state_free to free the cpu buffers as well. */ |
| |
| static void |
| free_state (SIM_DESC sd) |
| { |
| if (STATE_MODULES (sd) != NULL) |
| sim_module_uninstall (sd); |
| sim_cpu_free_all (sd); |
| sim_state_free (sd); |
| } |
| |
| /* Helper struct for cris_set_section_offset_iterator. */ |
| |
| struct offsetinfo |
| { |
| SIM_DESC sd; |
| int offset; |
| }; |
| |
| /* BFD section iterator to offset the LMA and VMA. */ |
| |
| static void |
| cris_set_section_offset_iterator (bfd *abfd, asection *s, void *vp) |
| { |
| struct offsetinfo *p = (struct offsetinfo *) vp; |
| SIM_DESC sd = p->sd; |
| int offset = p->offset; |
| |
| if ((bfd_section_flags (s) & SEC_ALLOC)) |
| { |
| bfd_vma vma = bfd_section_vma (s); |
| |
| bfd_set_section_vma (s, vma + offset); |
| } |
| |
| /* This seems clumsy and inaccurate, but let's stick to doing it the |
| same way as sim_analyze_program for consistency. */ |
| if (strcmp (bfd_section_name (s), ".text") == 0) |
| STATE_TEXT_START (sd) = bfd_section_vma (s); |
| } |
| |
| /* Adjust the start-address, LMA and VMA of a SD. Must be called |
| after sim_analyze_program. */ |
| |
| static void |
| cris_offset_sections (SIM_DESC sd, int offset) |
| { |
| bfd_boolean ret; |
| struct bfd *abfd = STATE_PROG_BFD (sd); |
| asection *text; |
| struct offsetinfo oi; |
| |
| /* Only happens for usage error. */ |
| if (abfd == NULL) |
| return; |
| |
| oi.sd = sd; |
| oi.offset = offset; |
| |
| bfd_map_over_sections (abfd, cris_set_section_offset_iterator, &oi); |
| ret = bfd_set_start_address (abfd, bfd_get_start_address (abfd) + offset); |
| |
| STATE_START_ADDR (sd) = bfd_get_start_address (abfd); |
| } |
| |
| /* BFD section iterator to find the highest and lowest allocated and |
| non-allocated section addresses (plus one). */ |
| |
| static void |
| get_progbounds_iterator (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *vp) |
| { |
| struct progbounds *pbp = (struct progbounds *) vp; |
| |
| if ((bfd_section_flags (s) & SEC_ALLOC)) |
| { |
| bfd_size_type sec_size = bfd_section_size (s); |
| bfd_size_type sec_start = bfd_section_vma (s); |
| bfd_size_type sec_end = sec_start + sec_size; |
| |
| if (sec_end > pbp->endmem) |
| pbp->endmem = sec_end; |
| |
| if (sec_start < pbp->startmem) |
| pbp->startmem = sec_start; |
| |
| if ((bfd_section_flags (s) & SEC_LOAD)) |
| { |
| if (sec_end > pbp->end_loadmem) |
| pbp->end_loadmem = sec_end; |
| } |
| else if (sec_start < pbp->start_nonloadmem) |
| pbp->start_nonloadmem = sec_start; |
| } |
| } |
| |
| /* Get the program boundaries. Because not everything is covered by |
| sections in ELF, notably the program headers, we use the program |
| headers instead. */ |
| |
| static void |
| cris_get_progbounds (struct bfd *abfd, struct progbounds *pbp) |
| { |
| Elf_Internal_Phdr *phdr; |
| int n_hdrs; |
| int i; |
| |
| pbp->startmem = 0xffffffff; |
| pbp->endmem = 0; |
| pbp->end_loadmem = 0; |
| pbp->start_nonloadmem = 0xffffffff; |
| |
| /* In case we're ever used for something other than ELF, use the |
| generic method. */ |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| { |
| bfd_map_over_sections (abfd, get_progbounds_iterator, pbp); |
| return; |
| } |
| |
| phdr = elf_tdata (abfd)->phdr; |
| n_hdrs = elf_elfheader (abfd)->e_phnum; |
| |
| /* We're only interested in PT_LOAD; all necessary information |
| should be covered by that. */ |
| for (i = 0; i < n_hdrs; i++) |
| { |
| if (phdr[i].p_type != PT_LOAD) |
| continue; |
| |
| if (phdr[i].p_paddr < pbp->startmem) |
| pbp->startmem = phdr[i].p_paddr; |
| |
| if (phdr[i].p_paddr + phdr[i].p_memsz > pbp->endmem) |
| pbp->endmem = phdr[i].p_paddr + phdr[i].p_memsz; |
| |
| if (phdr[i].p_paddr + phdr[i].p_filesz > pbp->end_loadmem) |
| pbp->end_loadmem = phdr[i].p_paddr + phdr[i].p_filesz; |
| |
| if (phdr[i].p_memsz > phdr[i].p_filesz |
| && phdr[i].p_paddr + phdr[i].p_filesz < pbp->start_nonloadmem) |
| pbp->start_nonloadmem = phdr[i].p_paddr + phdr[i].p_filesz; |
| } |
| } |
| |
| /* Parameter communication by static variables, hmm... Oh well, for |
| simplicity. */ |
| static bfd_vma exec_load_addr; |
| static bfd_vma interp_load_addr; |
| static bfd_vma interp_start_addr; |
| |
| /* Supposed to mimic Linux' "NEW_AUX_ENT (AT_PHDR, load_addr + exec->e_phoff)". */ |
| |
| static USI |
| aux_ent_phdr (struct bfd *ebfd) |
| { |
| return elf_elfheader (ebfd)->e_phoff + exec_load_addr; |
| } |
| |
| /* We just pass on the header info; we don't have our own idea of the |
| program header entry size. */ |
| |
| static USI |
| aux_ent_phent (struct bfd *ebfd) |
| { |
| return elf_elfheader (ebfd)->e_phentsize; |
| } |
| |
| /* Like "NEW_AUX_ENT(AT_PHNUM, exec->e_phnum)". */ |
| |
| static USI |
| aux_ent_phnum (struct bfd *ebfd) |
| { |
| return elf_elfheader (ebfd)->e_phnum; |
| } |
| |
| /* Like "NEW_AUX_ENT(AT_BASE, interp_load_addr)". */ |
| |
| static USI |
| aux_ent_base (struct bfd *ebfd) |
| { |
| return interp_load_addr; |
| } |
| |
| /* Like "NEW_AUX_ENT(AT_ENTRY, exec->e_entry)". */ |
| |
| static USI |
| aux_ent_entry (struct bfd *ebfd) |
| { |
| ASSERT (elf_elfheader (ebfd)->e_entry == bfd_get_start_address (ebfd)); |
| return elf_elfheader (ebfd)->e_entry; |
| } |
| |
| /* Helper for cris_handle_interpreter: like sim_write, but load at |
| interp_load_addr offset. */ |
| |
| static int |
| cris_write_interp (SIM_DESC sd, SIM_ADDR mem, const unsigned char *buf, int length) |
| { |
| return sim_write (sd, mem + interp_load_addr, buf, length); |
| } |
| |
| /* Cater to the presence of an interpreter: load it and set |
| interp_start_addr. Return FALSE if there was an error, TRUE if |
| everything went fine, including an interpreter being absent and |
| the program being in a non-ELF format. */ |
| |
| static bfd_boolean |
| cris_handle_interpreter (SIM_DESC sd, struct bfd *abfd) |
| { |
| int i, n_hdrs; |
| bfd_byte buf[4]; |
| char *interp = NULL; |
| struct bfd *ibfd; |
| bfd_boolean ok = FALSE; |
| Elf_Internal_Phdr *phdr; |
| |
| if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) |
| return TRUE; |
| |
| phdr = elf_tdata (abfd)->phdr; |
| n_hdrs = aux_ent_phnum (abfd); |
| |
| /* Check the program headers for presence of an interpreter. */ |
| for (i = 0; i < n_hdrs; i++) |
| { |
| int interplen; |
| bfd_size_type interpsiz, interp_filesiz; |
| struct progbounds interp_bounds; |
| |
| if (phdr[i].p_type != PT_INTERP) |
| continue; |
| |
| /* Get the name of the interpreter, prepended with the sysroot |
| (empty if absent). */ |
| interplen = phdr[i].p_filesz; |
| interp = xmalloc (interplen + strlen (simulator_sysroot)); |
| strcpy (interp, simulator_sysroot); |
| |
| /* Read in the name. */ |
| if (bfd_seek (abfd, phdr[i].p_offset, SEEK_SET) != 0 |
| || (bfd_bread (interp + strlen (simulator_sysroot), interplen, abfd) |
| != interplen)) |
| goto interpname_failed; |
| |
| /* Like Linux, require the string to be 0-terminated. */ |
| if (interp[interplen + strlen (simulator_sysroot) - 1] != 0) |
| goto interpname_failed; |
| |
| /* Inspect the interpreter. */ |
| ibfd = bfd_openr (interp, STATE_TARGET (sd)); |
| if (ibfd == NULL) |
| goto interpname_failed; |
| |
| /* The interpreter is at least something readable to BFD; make |
| sure it's an ELF non-archive file. */ |
| if (!bfd_check_format (ibfd, bfd_object) |
| || bfd_get_flavour (ibfd) != bfd_target_elf_flavour) |
| goto interp_failed; |
| |
| /* Check the layout of the interpreter. */ |
| cris_get_progbounds (ibfd, &interp_bounds); |
| |
| /* Round down to pagesize the start page and up the endpage. |
| Don't round the *load and *nonload members. */ |
| interp_bounds.startmem &= ~8191; |
| interp_bounds.endmem = (interp_bounds.endmem + 8191) & ~8191; |
| |
| /* Until we need a more dynamic solution, assume we can put the |
| interpreter at this fixed location. NB: this is not what |
| happens for Linux 2008-12-28, but it could and might and |
| perhaps should. */ |
| interp_load_addr = 0x40000; |
| interpsiz = interp_bounds.endmem - interp_bounds.startmem; |
| interp_filesiz = interp_bounds.end_loadmem - interp_bounds.startmem; |
| |
| /* If we have a non-DSO or interpreter starting at the wrong |
| address, bail. */ |
| if (interp_bounds.startmem != 0 |
| || interpsiz + interp_load_addr >= exec_load_addr) |
| goto interp_failed; |
| |
| /* We don't have the API to get the address of a simulator |
| memory area, so we go via a temporary area. Luckily, the |
| interpreter is supposed to be small, less than 0x40000 |
| bytes. */ |
| sim_do_commandf (sd, "memory region 0x%" BFD_VMA_FMT "x,0x%lx", |
| interp_load_addr, interpsiz); |
| |
| /* Now that memory for the interpreter is defined, load it. */ |
| if (!cris_load_elf_file (sd, ibfd, cris_write_interp)) |
| goto interp_failed; |
| |
| /* It's no use setting STATE_START_ADDR, because it gets |
| overwritten by a sim_analyze_program call in sim_load. Let's |
| just store it locally. */ |
| interp_start_addr |
| = (bfd_get_start_address (ibfd) |
| - interp_bounds.startmem + interp_load_addr); |
| |
| /* Linux cares only about the first PT_INTERP, so let's ignore |
| the rest. */ |
| goto all_done; |
| } |
| |
| /* Register R10 should hold 0 at static start (no finifunc), but |
| that's the default, so don't bother. */ |
| return TRUE; |
| |
| all_done: |
| ok = TRUE; |
| |
| interp_failed: |
| bfd_close (ibfd); |
| |
| interpname_failed: |
| if (!ok) |
| sim_io_eprintf (sd, |
| "%s: could not load ELF interpreter `%s' for program `%s'\n", |
| STATE_MY_NAME (sd), |
| interp == NULL ? "(what's-its-name)" : interp, |
| bfd_get_filename (abfd)); |
| free (interp); |
| return ok; |
| } |
| |
| extern const SIM_MACH * const cris_sim_machs[]; |
| |
| /* Create an instance of the simulator. */ |
| |
| SIM_DESC |
| sim_open (SIM_OPEN_KIND kind, host_callback *callback, struct bfd *abfd, |
| char * const *argv) |
| { |
| char c; |
| int i; |
| USI startmem = 0; |
| USI endmem = CRIS_DEFAULT_MEM_SIZE; |
| USI endbrk = endmem; |
| USI stack_low = 0; |
| SIM_DESC sd = sim_state_alloc (kind, callback); |
| |
| static const struct auxv_entries_s |
| { |
| bfd_byte id; |
| USI (*efn) (struct bfd *ebfd); |
| USI val; |
| } auxv_entries[] = |
| { |
| #define AUX_ENT(a, b) {a, NULL, b} |
| #define AUX_ENTF(a, f) {a, f, 0} |
| AUX_ENT (AT_HWCAP, 0), |
| AUX_ENT (AT_PAGESZ, 8192), |
| AUX_ENT (AT_CLKTCK, 100), |
| AUX_ENTF (AT_PHDR, aux_ent_phdr), |
| AUX_ENTF (AT_PHENT, aux_ent_phent), |
| AUX_ENTF (AT_PHNUM, aux_ent_phnum), |
| AUX_ENTF (AT_BASE, aux_ent_base), |
| AUX_ENT (AT_FLAGS, 0), |
| AUX_ENTF (AT_ENTRY, aux_ent_entry), |
| |
| /* Or is root better? Maybe have it settable? */ |
| AUX_ENT (AT_UID, 500), |
| AUX_ENT (AT_EUID, 500), |
| AUX_ENT (AT_GID, 500), |
| AUX_ENT (AT_EGID, 500), |
| AUX_ENT (AT_SECURE, 0), |
| AUX_ENT (AT_NULL, 0) |
| }; |
| |
| /* Can't initialize to "" below. It's either a GCC bug in old |
| releases (up to and including 2.95.3 (.4 in debian) or a bug in the |
| standard ;-) that the rest of the elements won't be initialized. */ |
| bfd_byte sp_init[4] = {0, 0, 0, 0}; |
| |
| /* Set default options before parsing user options. */ |
| STATE_MACHS (sd) = cris_sim_machs; |
| STATE_MODEL_NAME (sd) = "crisv32"; |
| current_target_byte_order = BFD_ENDIAN_LITTLE; |
| |
| /* The cpu data is kept in a separately allocated chunk of memory. */ |
| if (sim_cpu_alloc_all (sd, 1) != SIM_RC_OK) |
| { |
| free_state (sd); |
| return 0; |
| } |
| |
| if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK) |
| { |
| free_state (sd); |
| return 0; |
| } |
| |
| /* Add the CRIS-specific option list to the simulator. */ |
| if (sim_add_option_table (sd, NULL, cris_options) != SIM_RC_OK) |
| { |
| free_state (sd); |
| return 0; |
| } |
| |
| /* The parser will print an error message for us, so we silently return. */ |
| if (sim_parse_args (sd, argv) != SIM_RC_OK) |
| { |
| free_state (sd); |
| return 0; |
| } |
| |
| /* check for/establish the reference program image */ |
| if (sim_analyze_program (sd, |
| (STATE_PROG_ARGV (sd) != NULL |
| ? *STATE_PROG_ARGV (sd) |
| : NULL), |
| abfd) != SIM_RC_OK) |
| { |
| /* When there's an error, sim_analyze_program has already output |
| a message. Let's just clarify it, as "not an object file" |
| perhaps doesn't ring a bell. */ |
| sim_io_eprintf (sd, "(not a CRIS program)\n"); |
| free_state (sd); |
| return 0; |
| } |
| |
| /* We might get called with the caller expecting us to get hold of |
| the bfd for ourselves, which would happen at the |
| sim_analyze_program call above. */ |
| if (abfd == NULL) |
| abfd = STATE_PROG_BFD (sd); |
| |
| /* Adjust the addresses of the program at this point. Unfortunately |
| this does not affect ELF program headers, so we have to handle |
| that separately. */ |
| cris_offset_sections (sd, cris_program_offset); |
| |
| if (abfd != NULL && bfd_get_arch (abfd) == bfd_arch_unknown) |
| { |
| if (STATE_PROG_ARGV (sd) != NULL) |
| sim_io_eprintf (sd, "%s: `%s' is not a CRIS program\n", |
| STATE_MY_NAME (sd), *STATE_PROG_ARGV (sd)); |
| else |
| sim_io_eprintf (sd, "%s: program to be run is not a CRIS program\n", |
| STATE_MY_NAME (sd)); |
| free_state (sd); |
| return 0; |
| } |
| |
| /* For CRIS simulator-specific use, we need to find out the bounds of |
| the program as well, which is not done by sim_analyze_program |
| above. */ |
| if (abfd != NULL) |
| { |
| struct progbounds pb; |
| |
| /* The sections should now be accessible using bfd functions. */ |
| cris_get_progbounds (abfd, &pb); |
| |
| /* We align the area that the program uses to page boundaries. */ |
| startmem = pb.startmem & ~8191; |
| endbrk = pb.endmem; |
| endmem = (endbrk + 8191) & ~8191; |
| } |
| |
| /* Find out how much room is needed for the environment and argv, create |
| that memory and fill it. Only do this when there's a program |
| specified. */ |
| if (abfd != NULL && !cris_bare_iron) |
| { |
| const char *name = bfd_get_filename (abfd); |
| /* We use these maps to give the same behavior as the old xsim |
| simulator. */ |
| USI envtop = 0x40000000; |
| USI stacktop = 0x3e000000; |
| USI envstart; |
| int envc; |
| int len = strlen (name) + 1; |
| USI epp, epp0; |
| USI stacklen; |
| int i; |
| char **prog_argv = STATE_PROG_ARGV (sd); |
| int my_argc = 0; |
| USI csp; |
| bfd_byte buf[4]; |
| |
| /* Count in the environment as well. */ |
| for (envc = 0; environ[envc] != NULL; envc++) |
| len += strlen (environ[envc]) + 1; |
| |
| for (i = 0; prog_argv[i] != NULL; my_argc++, i++) |
| len += strlen (prog_argv[i]) + 1; |
| |
| envstart = (envtop - len) & ~8191; |
| |
| /* Create read-only block for the environment strings. */ |
| sim_core_attach (sd, NULL, 0, access_read, 0, |
| envstart, (len + 8191) & ~8191, |
| 0, NULL, NULL); |
| |
| /* This shouldn't happen. */ |
| if (envstart < stacktop) |
| stacktop = envstart - 64 * 8192; |
| |
| csp = stacktop; |
| |
| /* Note that the linux kernel does not correctly compute the storage |
| needs for the static-exe AUX vector. */ |
| |
| csp -= ARRAY_SIZE (auxv_entries) * 4 * 2; |
| |
| csp -= (envc + 1) * 4; |
| csp -= (my_argc + 1) * 4; |
| csp -= 4; |
| |
| /* Write the target representation of the start-up-value for the |
| stack-pointer suitable for register initialization below. */ |
| bfd_putl32 (csp, sp_init); |
| |
| /* If we make this 1M higher; say 8192*1024, we have to take |
| special precautions for pthreads, because pthreads assumes that |
| the memory that low isn't mmapped, and that it can mmap it |
| without fallback in case of failure (and we fail ungracefully |
| long before *that*: the memory isn't accounted for in our mmap |
| list). */ |
| stack_low = (csp - (7168*1024)) & ~8191; |
| |
| stacklen = stacktop - stack_low; |
| |
| /* Tee hee, we have an executable stack. Well, it's necessary to |
| test GCC trampolines... */ |
| sim_core_attach (sd, NULL, 0, access_read_write_exec, 0, |
| stack_low, stacklen, |
| 0, NULL, NULL); |
| |
| epp = epp0 = envstart; |
| |
| /* Can't use sim_core_write_unaligned_4 without everything |
| initialized when tracing, and then these writes would get into |
| the trace. */ |
| #define write_dword(addr, data) \ |
| do \ |
| { \ |
| USI data_ = data; \ |
| USI addr_ = addr; \ |
| bfd_putl32 (data_, buf); \ |
| if (sim_core_write_buffer (sd, NULL, NULL_CIA, buf, addr_, 4) != 4)\ |
| goto abandon_chip; \ |
| } \ |
| while (0) |
| |
| write_dword (csp, my_argc); |
| csp += 4; |
| |
| for (i = 0; i < my_argc; i++, csp += 4) |
| { |
| size_t strln = strlen (prog_argv[i]) + 1; |
| |
| if (sim_core_write_buffer (sd, NULL, NULL_CIA, prog_argv[i], epp, |
| strln) |
| != strln) |
| goto abandon_chip; |
| |
| write_dword (csp, envstart + epp - epp0); |
| epp += strln; |
| } |
| |
| write_dword (csp, 0); |
| csp += 4; |
| |
| for (i = 0; i < envc; i++, csp += 4) |
| { |
| unsigned int strln = strlen (environ[i]) + 1; |
| |
| if (sim_core_write_buffer (sd, NULL, NULL_CIA, environ[i], epp, strln) |
| != strln) |
| goto abandon_chip; |
| |
| write_dword (csp, envstart + epp - epp0); |
| epp += strln; |
| } |
| |
| write_dword (csp, 0); |
| csp += 4; |
| |
| /* The load address of the executable could presumably be |
| different than the lowest used memory address, but let's |
| stick to simplicity until needed. And |
| cris_handle_interpreter might change startmem and endmem, so |
| let's set it now. */ |
| exec_load_addr = startmem; |
| |
| if (!cris_handle_interpreter (sd, abfd)) |
| goto abandon_chip; |
| |
| if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) |
| for (i = 0; i < ARRAY_SIZE (auxv_entries); i++) |
| { |
| write_dword (csp, auxv_entries[i].id); |
| write_dword (csp + 4, |
| auxv_entries[i].efn != NULL |
| ? (*auxv_entries[i].efn) (abfd) |
| : auxv_entries[i].val); |
| csp += 4 + 4; |
| } |
| } |
| |
| /* Allocate core managed memory if none specified by user. */ |
| if (sim_core_read_buffer (sd, NULL, read_map, &c, startmem, 1) == 0) |
| sim_do_commandf (sd, "memory region 0x%" PRIx32 ",0x%" PRIu32, |
| startmem, endmem - startmem); |
| |
| /* Allocate simulator I/O managed memory if none specified by user. */ |
| if (cris_have_900000xxif) |
| sim_hw_parse (sd, "/core/%s/reg %#x %i", "cris_900000xx", 0x90000000, 0x100); |
| |
| /* Establish any remaining configuration options. */ |
| if (sim_config (sd) != SIM_RC_OK) |
| { |
| abandon_chip: |
| free_state (sd); |
| return 0; |
| } |
| |
| if (sim_post_argv_init (sd) != SIM_RC_OK) |
| { |
| free_state (sd); |
| return 0; |
| } |
| |
| /* Open a copy of the cpu descriptor table. */ |
| { |
| CGEN_CPU_DESC cd = cris_cgen_cpu_open_1 (STATE_ARCHITECTURE (sd)->printable_name, |
| CGEN_ENDIAN_LITTLE); |
| for (i = 0; i < MAX_NR_PROCESSORS; ++i) |
| { |
| SIM_CPU *cpu = STATE_CPU (sd, i); |
| CPU_CPU_DESC (cpu) = cd; |
| CPU_DISASSEMBLER (cpu) = cris_disassemble_insn; |
| |
| /* See cris_option_handler for the reason why this is needed. */ |
| CPU_CRIS_MISC_PROFILE (cpu)->flags = STATE_TRACE_FLAGS (sd)[0]; |
| |
| /* Set SP to the stack we allocated above. */ |
| (* CPU_REG_STORE (cpu)) (cpu, H_GR_SP, (unsigned char *) sp_init, 4); |
| |
| /* Set the simulator environment data. */ |
| cpu->highest_mmapped_page = NULL; |
| cpu->endmem = endmem; |
| cpu->endbrk = endbrk; |
| cpu->stack_low = stack_low; |
| cpu->syscalls = 0; |
| cpu->m1threads = 0; |
| cpu->threadno = 0; |
| cpu->max_threadid = 0; |
| cpu->thread_data = NULL; |
| memset (cpu->sighandler, 0, sizeof (cpu->sighandler)); |
| cpu->make_thread_cpu_data = NULL; |
| cpu->thread_cpu_data_size = 0; |
| #if WITH_HW |
| cpu->deliver_interrupt = NULL; |
| #endif |
| } |
| #if WITH_HW |
| /* Always be cycle-accurate and call before/after functions if |
| with-hardware. */ |
| sim_profile_set_option (sd, "-model", PROFILE_MODEL_IDX, "on"); |
| #endif |
| } |
| |
| cris_set_callbacks (callback); |
| |
| return sd; |
| } |
| |
| SIM_RC |
| sim_create_inferior (SIM_DESC sd, struct bfd *abfd, |
| char * const *argv ATTRIBUTE_UNUSED, |
| char * const *envp ATTRIBUTE_UNUSED) |
| { |
| SIM_CPU *current_cpu = STATE_CPU (sd, 0); |
| SIM_ADDR addr; |
| |
| if (sd != NULL) |
| addr = cris_start_address != (SIM_ADDR) -1 |
| ? cris_start_address |
| : (interp_start_addr != 0 |
| ? interp_start_addr |
| : bfd_get_start_address (abfd)); |
| else |
| addr = 0; |
| sim_pc_set (current_cpu, addr); |
| |
| /* Standalone mode (i.e. `run`) will take care of the argv for us in |
| sim_open() -> sim_parse_args(). But in debug mode (i.e. 'target sim' |
| with `gdb`), we need to handle it because the user can change the |
| argv on the fly via gdb's 'run'. */ |
| if (STATE_PROG_ARGV (sd) != argv) |
| { |
| freeargv (STATE_PROG_ARGV (sd)); |
| STATE_PROG_ARGV (sd) = dupargv (argv); |
| } |
| |
| return SIM_RC_OK; |
| } |
| |
| /* Disassemble an instruction. */ |
| |
| static void |
| cris_disassemble_insn (SIM_CPU *cpu, |
| const CGEN_INSN *insn ATTRIBUTE_UNUSED, |
| const ARGBUF *abuf ATTRIBUTE_UNUSED, |
| IADDR pc, char *buf) |
| { |
| disassembler_ftype pinsn; |
| struct disassemble_info disasm_info; |
| SFILE sfile; |
| SIM_DESC sd = CPU_STATE (cpu); |
| |
| sfile.buffer = sfile.current = buf; |
| INIT_DISASSEMBLE_INFO (disasm_info, (FILE *) &sfile, |
| (fprintf_ftype) sim_disasm_sprintf); |
| disasm_info.endian = BFD_ENDIAN_LITTLE; |
| disasm_info.read_memory_func = sim_disasm_read_memory; |
| disasm_info.memory_error_func = sim_disasm_perror_memory; |
| disasm_info.application_data = (PTR) cpu; |
| pinsn = cris_get_disassembler (STATE_PROG_BFD (sd)); |
| (*pinsn) (pc, &disasm_info); |
| } |