| /* MIPS-specific support for ELF |
| Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, |
| 2003 Free Software Foundation, Inc. |
| |
| Most of the information added by Ian Lance Taylor, Cygnus Support, |
| <ian@cygnus.com>. |
| N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. |
| <mark@codesourcery.com> |
| Traditional MIPS targets support added by Koundinya.K, Dansk Data |
| Elektronik & Operations Research Group. <kk@ddeorg.soft.net> |
| |
| This file is part of BFD, the Binary File Descriptor library. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the Free Software |
| Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ |
| |
| /* This file handles functionality common to the different MIPS ABI's. */ |
| |
| #include "bfd.h" |
| #include "sysdep.h" |
| #include "libbfd.h" |
| #include "libiberty.h" |
| #include "elf-bfd.h" |
| #include "elfxx-mips.h" |
| #include "elf/mips.h" |
| |
| /* Get the ECOFF swapping routines. */ |
| #include "coff/sym.h" |
| #include "coff/symconst.h" |
| #include "coff/ecoff.h" |
| #include "coff/mips.h" |
| |
| #include "hashtab.h" |
| |
| /* This structure is used to hold .got entries while estimating got |
| sizes. */ |
| struct mips_got_entry |
| { |
| /* The input bfd in which the symbol is defined. */ |
| bfd *abfd; |
| /* The index of the symbol, as stored in the relocation r_info, if |
| we have a local symbol; -1 otherwise. */ |
| long symndx; |
| union |
| { |
| /* If abfd == NULL, an address that must be stored in the got. */ |
| bfd_vma address; |
| /* If abfd != NULL && symndx != -1, the addend of the relocation |
| that should be added to the symbol value. */ |
| bfd_vma addend; |
| /* If abfd != NULL && symndx == -1, the hash table entry |
| corresponding to a global symbol in the got (or, local, if |
| h->forced_local). */ |
| struct mips_elf_link_hash_entry *h; |
| } d; |
| /* The offset from the beginning of the .got section to the entry |
| corresponding to this symbol+addend. If it's a global symbol |
| whose offset is yet to be decided, it's going to be -1. */ |
| long gotidx; |
| }; |
| |
| /* This structure is used to hold .got information when linking. */ |
| |
| struct mips_got_info |
| { |
| /* The global symbol in the GOT with the lowest index in the dynamic |
| symbol table. */ |
| struct elf_link_hash_entry *global_gotsym; |
| /* The number of global .got entries. */ |
| unsigned int global_gotno; |
| /* The number of local .got entries. */ |
| unsigned int local_gotno; |
| /* The number of local .got entries we have used. */ |
| unsigned int assigned_gotno; |
| /* A hash table holding members of the got. */ |
| struct htab *got_entries; |
| /* A hash table mapping input bfds to other mips_got_info. NULL |
| unless multi-got was necessary. */ |
| struct htab *bfd2got; |
| /* In multi-got links, a pointer to the next got (err, rather, most |
| of the time, it points to the previous got). */ |
| struct mips_got_info *next; |
| }; |
| |
| /* Map an input bfd to a got in a multi-got link. */ |
| |
| struct mips_elf_bfd2got_hash { |
| bfd *bfd; |
| struct mips_got_info *g; |
| }; |
| |
| /* Structure passed when traversing the bfd2got hash table, used to |
| create and merge bfd's gots. */ |
| |
| struct mips_elf_got_per_bfd_arg |
| { |
| /* A hashtable that maps bfds to gots. */ |
| htab_t bfd2got; |
| /* The output bfd. */ |
| bfd *obfd; |
| /* The link information. */ |
| struct bfd_link_info *info; |
| /* A pointer to the primary got, i.e., the one that's going to get |
| the implicit relocations from DT_MIPS_LOCAL_GOTNO and |
| DT_MIPS_GOTSYM. */ |
| struct mips_got_info *primary; |
| /* A non-primary got we're trying to merge with other input bfd's |
| gots. */ |
| struct mips_got_info *current; |
| /* The maximum number of got entries that can be addressed with a |
| 16-bit offset. */ |
| unsigned int max_count; |
| /* The number of local and global entries in the primary got. */ |
| unsigned int primary_count; |
| /* The number of local and global entries in the current got. */ |
| unsigned int current_count; |
| }; |
| |
| /* Another structure used to pass arguments for got entries traversal. */ |
| |
| struct mips_elf_set_global_got_offset_arg |
| { |
| struct mips_got_info *g; |
| int value; |
| unsigned int needed_relocs; |
| struct bfd_link_info *info; |
| }; |
| |
| struct _mips_elf_section_data |
| { |
| struct bfd_elf_section_data elf; |
| union |
| { |
| struct mips_got_info *got_info; |
| bfd_byte *tdata; |
| } u; |
| }; |
| |
| #define mips_elf_section_data(sec) \ |
| ((struct _mips_elf_section_data *) elf_section_data (sec)) |
| |
| /* This structure is passed to mips_elf_sort_hash_table_f when sorting |
| the dynamic symbols. */ |
| |
| struct mips_elf_hash_sort_data |
| { |
| /* The symbol in the global GOT with the lowest dynamic symbol table |
| index. */ |
| struct elf_link_hash_entry *low; |
| /* The least dynamic symbol table index corresponding to a symbol |
| with a GOT entry. */ |
| long min_got_dynindx; |
| /* The greatest dynamic symbol table index corresponding to a symbol |
| with a GOT entry that is not referenced (e.g., a dynamic symbol |
| with dynamic relocations pointing to it from non-primary GOTs). */ |
| long max_unref_got_dynindx; |
| /* The greatest dynamic symbol table index not corresponding to a |
| symbol without a GOT entry. */ |
| long max_non_got_dynindx; |
| }; |
| |
| /* The MIPS ELF linker needs additional information for each symbol in |
| the global hash table. */ |
| |
| struct mips_elf_link_hash_entry |
| { |
| struct elf_link_hash_entry root; |
| |
| /* External symbol information. */ |
| EXTR esym; |
| |
| /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against |
| this symbol. */ |
| unsigned int possibly_dynamic_relocs; |
| |
| /* If the R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 reloc is against |
| a readonly section. */ |
| bfd_boolean readonly_reloc; |
| |
| /* We must not create a stub for a symbol that has relocations |
| related to taking the function's address, i.e. any but |
| R_MIPS_CALL*16 ones -- see "MIPS ABI Supplement, 3rd Edition", |
| p. 4-20. */ |
| bfd_boolean no_fn_stub; |
| |
| /* If there is a stub that 32 bit functions should use to call this |
| 16 bit function, this points to the section containing the stub. */ |
| asection *fn_stub; |
| |
| /* Whether we need the fn_stub; this is set if this symbol appears |
| in any relocs other than a 16 bit call. */ |
| bfd_boolean need_fn_stub; |
| |
| /* If there is a stub that 16 bit functions should use to call this |
| 32 bit function, this points to the section containing the stub. */ |
| asection *call_stub; |
| |
| /* This is like the call_stub field, but it is used if the function |
| being called returns a floating point value. */ |
| asection *call_fp_stub; |
| |
| /* Are we forced local? .*/ |
| bfd_boolean forced_local; |
| }; |
| |
| /* MIPS ELF linker hash table. */ |
| |
| struct mips_elf_link_hash_table |
| { |
| struct elf_link_hash_table root; |
| #if 0 |
| /* We no longer use this. */ |
| /* String section indices for the dynamic section symbols. */ |
| bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; |
| #endif |
| /* The number of .rtproc entries. */ |
| bfd_size_type procedure_count; |
| /* The size of the .compact_rel section (if SGI_COMPAT). */ |
| bfd_size_type compact_rel_size; |
| /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic |
| entry is set to the address of __rld_obj_head as in IRIX5. */ |
| bfd_boolean use_rld_obj_head; |
| /* This is the value of the __rld_map or __rld_obj_head symbol. */ |
| bfd_vma rld_value; |
| /* This is set if we see any mips16 stub sections. */ |
| bfd_boolean mips16_stubs_seen; |
| }; |
| |
| /* Structure used to pass information to mips_elf_output_extsym. */ |
| |
| struct extsym_info |
| { |
| bfd *abfd; |
| struct bfd_link_info *info; |
| struct ecoff_debug_info *debug; |
| const struct ecoff_debug_swap *swap; |
| bfd_boolean failed; |
| }; |
| |
| /* The names of the runtime procedure table symbols used on IRIX5. */ |
| |
| static const char * const mips_elf_dynsym_rtproc_names[] = |
| { |
| "_procedure_table", |
| "_procedure_string_table", |
| "_procedure_table_size", |
| NULL |
| }; |
| |
| /* These structures are used to generate the .compact_rel section on |
| IRIX5. */ |
| |
| typedef struct |
| { |
| unsigned long id1; /* Always one? */ |
| unsigned long num; /* Number of compact relocation entries. */ |
| unsigned long id2; /* Always two? */ |
| unsigned long offset; /* The file offset of the first relocation. */ |
| unsigned long reserved0; /* Zero? */ |
| unsigned long reserved1; /* Zero? */ |
| } Elf32_compact_rel; |
| |
| typedef struct |
| { |
| bfd_byte id1[4]; |
| bfd_byte num[4]; |
| bfd_byte id2[4]; |
| bfd_byte offset[4]; |
| bfd_byte reserved0[4]; |
| bfd_byte reserved1[4]; |
| } Elf32_External_compact_rel; |
| |
| typedef struct |
| { |
| unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| unsigned int rtype : 4; /* Relocation types. See below. */ |
| unsigned int dist2to : 8; |
| unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| unsigned long konst; /* KONST field. See below. */ |
| unsigned long vaddr; /* VADDR to be relocated. */ |
| } Elf32_crinfo; |
| |
| typedef struct |
| { |
| unsigned int ctype : 1; /* 1: long 0: short format. See below. */ |
| unsigned int rtype : 4; /* Relocation types. See below. */ |
| unsigned int dist2to : 8; |
| unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ |
| unsigned long konst; /* KONST field. See below. */ |
| } Elf32_crinfo2; |
| |
| typedef struct |
| { |
| bfd_byte info[4]; |
| bfd_byte konst[4]; |
| bfd_byte vaddr[4]; |
| } Elf32_External_crinfo; |
| |
| typedef struct |
| { |
| bfd_byte info[4]; |
| bfd_byte konst[4]; |
| } Elf32_External_crinfo2; |
| |
| /* These are the constants used to swap the bitfields in a crinfo. */ |
| |
| #define CRINFO_CTYPE (0x1) |
| #define CRINFO_CTYPE_SH (31) |
| #define CRINFO_RTYPE (0xf) |
| #define CRINFO_RTYPE_SH (27) |
| #define CRINFO_DIST2TO (0xff) |
| #define CRINFO_DIST2TO_SH (19) |
| #define CRINFO_RELVADDR (0x7ffff) |
| #define CRINFO_RELVADDR_SH (0) |
| |
| /* A compact relocation info has long (3 words) or short (2 words) |
| formats. A short format doesn't have VADDR field and relvaddr |
| fields contains ((VADDR - vaddr of the previous entry) >> 2). */ |
| #define CRF_MIPS_LONG 1 |
| #define CRF_MIPS_SHORT 0 |
| |
| /* There are 4 types of compact relocation at least. The value KONST |
| has different meaning for each type: |
| |
| (type) (konst) |
| CT_MIPS_REL32 Address in data |
| CT_MIPS_WORD Address in word (XXX) |
| CT_MIPS_GPHI_LO GP - vaddr |
| CT_MIPS_JMPAD Address to jump |
| */ |
| |
| #define CRT_MIPS_REL32 0xa |
| #define CRT_MIPS_WORD 0xb |
| #define CRT_MIPS_GPHI_LO 0xc |
| #define CRT_MIPS_JMPAD 0xd |
| |
| #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) |
| #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) |
| #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) |
| #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) |
| |
| /* The structure of the runtime procedure descriptor created by the |
| loader for use by the static exception system. */ |
| |
| typedef struct runtime_pdr { |
| bfd_vma adr; /* Memory address of start of procedure. */ |
| long regmask; /* Save register mask. */ |
| long regoffset; /* Save register offset. */ |
| long fregmask; /* Save floating point register mask. */ |
| long fregoffset; /* Save floating point register offset. */ |
| long frameoffset; /* Frame size. */ |
| short framereg; /* Frame pointer register. */ |
| short pcreg; /* Offset or reg of return pc. */ |
| long irpss; /* Index into the runtime string table. */ |
| long reserved; |
| struct exception_info *exception_info;/* Pointer to exception array. */ |
| } RPDR, *pRPDR; |
| #define cbRPDR sizeof (RPDR) |
| #define rpdNil ((pRPDR) 0) |
| |
| static struct bfd_hash_entry *mips_elf_link_hash_newfunc |
| PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *)); |
| static void ecoff_swap_rpdr_out |
| PARAMS ((bfd *, const RPDR *, struct rpdr_ext *)); |
| static bfd_boolean mips_elf_create_procedure_table |
| PARAMS ((PTR, bfd *, struct bfd_link_info *, asection *, |
| struct ecoff_debug_info *)); |
| static bfd_boolean mips_elf_check_mips16_stubs |
| PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
| static void bfd_mips_elf32_swap_gptab_in |
| PARAMS ((bfd *, const Elf32_External_gptab *, Elf32_gptab *)); |
| static void bfd_mips_elf32_swap_gptab_out |
| PARAMS ((bfd *, const Elf32_gptab *, Elf32_External_gptab *)); |
| static void bfd_elf32_swap_compact_rel_out |
| PARAMS ((bfd *, const Elf32_compact_rel *, Elf32_External_compact_rel *)); |
| static void bfd_elf32_swap_crinfo_out |
| PARAMS ((bfd *, const Elf32_crinfo *, Elf32_External_crinfo *)); |
| static int sort_dynamic_relocs |
| PARAMS ((const void *, const void *)); |
| static int sort_dynamic_relocs_64 |
| PARAMS ((const void *, const void *)); |
| static bfd_boolean mips_elf_output_extsym |
| PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
| static int gptab_compare PARAMS ((const void *, const void *)); |
| static asection * mips_elf_rel_dyn_section PARAMS ((bfd *, bfd_boolean)); |
| static asection * mips_elf_got_section PARAMS ((bfd *, bfd_boolean)); |
| static struct mips_got_info *mips_elf_got_info |
| PARAMS ((bfd *, asection **)); |
| static long mips_elf_get_global_gotsym_index PARAMS ((bfd *abfd)); |
| static bfd_vma mips_elf_local_got_index |
| PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma)); |
| static bfd_vma mips_elf_global_got_index |
| PARAMS ((bfd *, bfd *, struct elf_link_hash_entry *)); |
| static bfd_vma mips_elf_got_page |
| PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_vma *)); |
| static bfd_vma mips_elf_got16_entry |
| PARAMS ((bfd *, bfd *, struct bfd_link_info *, bfd_vma, bfd_boolean)); |
| static bfd_vma mips_elf_got_offset_from_index |
| PARAMS ((bfd *, bfd *, bfd *, bfd_vma)); |
| static struct mips_got_entry *mips_elf_create_local_got_entry |
| PARAMS ((bfd *, bfd *, struct mips_got_info *, asection *, bfd_vma)); |
| static bfd_boolean mips_elf_sort_hash_table |
| PARAMS ((struct bfd_link_info *, unsigned long)); |
| static bfd_boolean mips_elf_sort_hash_table_f |
| PARAMS ((struct mips_elf_link_hash_entry *, PTR)); |
| static bfd_boolean mips_elf_record_local_got_symbol |
| PARAMS ((bfd *, long, bfd_vma, struct mips_got_info *)); |
| static bfd_boolean mips_elf_record_global_got_symbol |
| PARAMS ((struct elf_link_hash_entry *, bfd *, struct bfd_link_info *, |
| struct mips_got_info *)); |
| static const Elf_Internal_Rela *mips_elf_next_relocation |
| PARAMS ((bfd *, unsigned int, const Elf_Internal_Rela *, |
| const Elf_Internal_Rela *)); |
| static bfd_boolean mips_elf_local_relocation_p |
| PARAMS ((bfd *, const Elf_Internal_Rela *, asection **, bfd_boolean)); |
| static bfd_boolean mips_elf_overflow_p PARAMS ((bfd_vma, int)); |
| static bfd_vma mips_elf_high PARAMS ((bfd_vma)); |
| static bfd_vma mips_elf_higher PARAMS ((bfd_vma)); |
| static bfd_vma mips_elf_highest PARAMS ((bfd_vma)); |
| static bfd_boolean mips_elf_create_compact_rel_section |
| PARAMS ((bfd *, struct bfd_link_info *)); |
| static bfd_boolean mips_elf_create_got_section |
| PARAMS ((bfd *, struct bfd_link_info *, bfd_boolean)); |
| static bfd_reloc_status_type mips_elf_calculate_relocation |
| PARAMS ((bfd *, bfd *, asection *, struct bfd_link_info *, |
| const Elf_Internal_Rela *, bfd_vma, reloc_howto_type *, |
| Elf_Internal_Sym *, asection **, bfd_vma *, const char **, |
| bfd_boolean *, bfd_boolean)); |
| static bfd_vma mips_elf_obtain_contents |
| PARAMS ((reloc_howto_type *, const Elf_Internal_Rela *, bfd *, bfd_byte *)); |
| static bfd_boolean mips_elf_perform_relocation |
| PARAMS ((struct bfd_link_info *, reloc_howto_type *, |
| const Elf_Internal_Rela *, bfd_vma, bfd *, asection *, bfd_byte *, |
| bfd_boolean)); |
| static bfd_boolean mips_elf_stub_section_p |
| PARAMS ((bfd *, asection *)); |
| static void mips_elf_allocate_dynamic_relocations |
| PARAMS ((bfd *, unsigned int)); |
| static bfd_boolean mips_elf_create_dynamic_relocation |
| PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, |
| struct mips_elf_link_hash_entry *, asection *, |
| bfd_vma, bfd_vma *, asection *)); |
| static void mips_set_isa_flags PARAMS ((bfd *)); |
| static INLINE char* elf_mips_abi_name PARAMS ((bfd *)); |
| static void mips_elf_irix6_finish_dynamic_symbol |
| PARAMS ((bfd *, const char *, Elf_Internal_Sym *)); |
| static bfd_boolean mips_mach_extends_p PARAMS ((unsigned long, unsigned long)); |
| static bfd_boolean mips_32bit_flags_p PARAMS ((flagword)); |
| static INLINE hashval_t mips_elf_hash_bfd_vma PARAMS ((bfd_vma)); |
| static hashval_t mips_elf_got_entry_hash PARAMS ((const PTR)); |
| static int mips_elf_got_entry_eq PARAMS ((const PTR, const PTR)); |
| |
| static bfd_boolean mips_elf_multi_got |
| PARAMS ((bfd *, struct bfd_link_info *, struct mips_got_info *, |
| asection *, bfd_size_type)); |
| static hashval_t mips_elf_multi_got_entry_hash PARAMS ((const PTR)); |
| static int mips_elf_multi_got_entry_eq PARAMS ((const PTR, const PTR)); |
| static hashval_t mips_elf_bfd2got_entry_hash PARAMS ((const PTR)); |
| static int mips_elf_bfd2got_entry_eq PARAMS ((const PTR, const PTR)); |
| static int mips_elf_make_got_per_bfd PARAMS ((void **, void *)); |
| static int mips_elf_merge_gots PARAMS ((void **, void *)); |
| static int mips_elf_set_global_got_offset PARAMS ((void**, void *)); |
| static int mips_elf_resolve_final_got_entry PARAMS ((void**, void *)); |
| static void mips_elf_resolve_final_got_entries |
| PARAMS ((struct mips_got_info *)); |
| static bfd_vma mips_elf_adjust_gp |
| PARAMS ((bfd *, struct mips_got_info *, bfd *)); |
| static struct mips_got_info *mips_elf_got_for_ibfd |
| PARAMS ((struct mips_got_info *, bfd *)); |
| |
| /* This will be used when we sort the dynamic relocation records. */ |
| static bfd *reldyn_sorting_bfd; |
| |
| /* Nonzero if ABFD is using the N32 ABI. */ |
| |
| #define ABI_N32_P(abfd) \ |
| ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) |
| |
| /* Nonzero if ABFD is using the N64 ABI. */ |
| #define ABI_64_P(abfd) \ |
| (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) |
| |
| /* Nonzero if ABFD is using NewABI conventions. */ |
| #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) |
| |
| /* The IRIX compatibility level we are striving for. */ |
| #define IRIX_COMPAT(abfd) \ |
| (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) |
| |
| /* Whether we are trying to be compatible with IRIX at all. */ |
| #define SGI_COMPAT(abfd) \ |
| (IRIX_COMPAT (abfd) != ict_none) |
| |
| /* The name of the options section. */ |
| #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ |
| (NEWABI_P (abfd) ? ".MIPS.options" : ".options") |
| |
| /* The name of the stub section. */ |
| #define MIPS_ELF_STUB_SECTION_NAME(abfd) \ |
| (NEWABI_P (abfd) ? ".MIPS.stubs" : ".stub") |
| |
| /* The size of an external REL relocation. */ |
| #define MIPS_ELF_REL_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_rel) |
| |
| /* The size of an external dynamic table entry. */ |
| #define MIPS_ELF_DYN_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_dyn) |
| |
| /* The size of a GOT entry. */ |
| #define MIPS_ELF_GOT_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->arch_size / 8) |
| |
| /* The size of a symbol-table entry. */ |
| #define MIPS_ELF_SYM_SIZE(abfd) \ |
| (get_elf_backend_data (abfd)->s->sizeof_sym) |
| |
| /* The default alignment for sections, as a power of two. */ |
| #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ |
| (get_elf_backend_data (abfd)->s->log_file_align) |
| |
| /* Get word-sized data. */ |
| #define MIPS_ELF_GET_WORD(abfd, ptr) \ |
| (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) |
| |
| /* Put out word-sized data. */ |
| #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ |
| (ABI_64_P (abfd) \ |
| ? bfd_put_64 (abfd, val, ptr) \ |
| : bfd_put_32 (abfd, val, ptr)) |
| |
| /* Add a dynamic symbol table-entry. */ |
| #ifdef BFD64 |
| #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
| (ABI_64_P (elf_hash_table (info)->dynobj) \ |
| ? bfd_elf64_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val) \ |
| : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) |
| #else |
| #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ |
| (ABI_64_P (elf_hash_table (info)->dynobj) \ |
| ? (abort (), FALSE) \ |
| : bfd_elf32_add_dynamic_entry (info, (bfd_vma) tag, (bfd_vma) val)) |
| #endif |
| |
| #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ |
| (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) |
| |
| /* Determine whether the internal relocation of index REL_IDX is REL |
| (zero) or RELA (non-zero). The assumption is that, if there are |
| two relocation sections for this section, one of them is REL and |
| the other is RELA. If the index of the relocation we're testing is |
| in range for the first relocation section, check that the external |
| relocation size is that for RELA. It is also assumed that, if |
| rel_idx is not in range for the first section, and this first |
| section contains REL relocs, then the relocation is in the second |
| section, that is RELA. */ |
| #define MIPS_RELOC_RELA_P(abfd, sec, rel_idx) \ |
| ((NUM_SHDR_ENTRIES (&elf_section_data (sec)->rel_hdr) \ |
| * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel \ |
| > (bfd_vma)(rel_idx)) \ |
| == (elf_section_data (sec)->rel_hdr.sh_entsize \ |
| == (ABI_64_P (abfd) ? sizeof (Elf64_External_Rela) \ |
| : sizeof (Elf32_External_Rela)))) |
| |
| /* In case we're on a 32-bit machine, construct a 64-bit "-1" value |
| from smaller values. Start with zero, widen, *then* decrement. */ |
| #define MINUS_ONE (((bfd_vma)0) - 1) |
| |
| /* The number of local .got entries we reserve. */ |
| #define MIPS_RESERVED_GOTNO (2) |
| |
| /* The offset of $gp from the beginning of the .got section. */ |
| #define ELF_MIPS_GP_OFFSET(abfd) (0x7ff0) |
| |
| /* The maximum size of the GOT for it to be addressable using 16-bit |
| offsets from $gp. */ |
| #define MIPS_ELF_GOT_MAX_SIZE(abfd) (ELF_MIPS_GP_OFFSET(abfd) + 0x7fff) |
| |
| /* Instructions which appear in a stub. For some reason the stub is |
| slightly different on an SGI system. */ |
| #define STUB_LW(abfd) \ |
| ((ABI_64_P (abfd) \ |
| ? 0xdf998010 /* ld t9,0x8010(gp) */ \ |
| : 0x8f998010)) /* lw t9,0x8010(gp) */ |
| #define STUB_MOVE(abfd) \ |
| (SGI_COMPAT (abfd) ? 0x03e07825 : 0x03e07821) /* move t7,ra */ |
| #define STUB_JALR 0x0320f809 /* jal t9 */ |
| #define STUB_LI16(abfd) \ |
| (SGI_COMPAT (abfd) ? 0x34180000 : 0x24180000) /* ori t8,zero,0 */ |
| #define MIPS_FUNCTION_STUB_SIZE (16) |
| |
| /* The name of the dynamic interpreter. This is put in the .interp |
| section. */ |
| |
| #define ELF_DYNAMIC_INTERPRETER(abfd) \ |
| (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ |
| : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ |
| : "/usr/lib/libc.so.1") |
| |
| #ifdef BFD64 |
| #define MNAME(bfd,pre,pos) \ |
| (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) |
| #define ELF_R_SYM(bfd, i) \ |
| (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) |
| #define ELF_R_TYPE(bfd, i) \ |
| (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) |
| #define ELF_R_INFO(bfd, s, t) \ |
| (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) |
| #else |
| #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) |
| #define ELF_R_SYM(bfd, i) \ |
| (ELF32_R_SYM (i)) |
| #define ELF_R_TYPE(bfd, i) \ |
| (ELF32_R_TYPE (i)) |
| #define ELF_R_INFO(bfd, s, t) \ |
| (ELF32_R_INFO (s, t)) |
| #endif |
| |
| /* The mips16 compiler uses a couple of special sections to handle |
| floating point arguments. |
| |
| Section names that look like .mips16.fn.FNNAME contain stubs that |
| copy floating point arguments from the fp regs to the gp regs and |
| then jump to FNNAME. If any 32 bit function calls FNNAME, the |
| call should be redirected to the stub instead. If no 32 bit |
| function calls FNNAME, the stub should be discarded. We need to |
| consider any reference to the function, not just a call, because |
| if the address of the function is taken we will need the stub, |
| since the address might be passed to a 32 bit function. |
| |
| Section names that look like .mips16.call.FNNAME contain stubs |
| that copy floating point arguments from the gp regs to the fp |
| regs and then jump to FNNAME. If FNNAME is a 32 bit function, |
| then any 16 bit function that calls FNNAME should be redirected |
| to the stub instead. If FNNAME is not a 32 bit function, the |
| stub should be discarded. |
| |
| .mips16.call.fp.FNNAME sections are similar, but contain stubs |
| which call FNNAME and then copy the return value from the fp regs |
| to the gp regs. These stubs store the return value in $18 while |
| calling FNNAME; any function which might call one of these stubs |
| must arrange to save $18 around the call. (This case is not |
| needed for 32 bit functions that call 16 bit functions, because |
| 16 bit functions always return floating point values in both |
| $f0/$f1 and $2/$3.) |
| |
| Note that in all cases FNNAME might be defined statically. |
| Therefore, FNNAME is not used literally. Instead, the relocation |
| information will indicate which symbol the section is for. |
| |
| We record any stubs that we find in the symbol table. */ |
| |
| #define FN_STUB ".mips16.fn." |
| #define CALL_STUB ".mips16.call." |
| #define CALL_FP_STUB ".mips16.call.fp." |
| |
| /* Look up an entry in a MIPS ELF linker hash table. */ |
| |
| #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ |
| ((struct mips_elf_link_hash_entry *) \ |
| elf_link_hash_lookup (&(table)->root, (string), (create), \ |
| (copy), (follow))) |
| |
| /* Traverse a MIPS ELF linker hash table. */ |
| |
| #define mips_elf_link_hash_traverse(table, func, info) \ |
| (elf_link_hash_traverse \ |
| (&(table)->root, \ |
| (bfd_boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func), \ |
| (info))) |
| |
| /* Get the MIPS ELF linker hash table from a link_info structure. */ |
| |
| #define mips_elf_hash_table(p) \ |
| ((struct mips_elf_link_hash_table *) ((p)->hash)) |
| |
| /* Create an entry in a MIPS ELF linker hash table. */ |
| |
| static struct bfd_hash_entry * |
| mips_elf_link_hash_newfunc (entry, table, string) |
| struct bfd_hash_entry *entry; |
| struct bfd_hash_table *table; |
| const char *string; |
| { |
| struct mips_elf_link_hash_entry *ret = |
| (struct mips_elf_link_hash_entry *) entry; |
| |
| /* Allocate the structure if it has not already been allocated by a |
| subclass. */ |
| if (ret == (struct mips_elf_link_hash_entry *) NULL) |
| ret = ((struct mips_elf_link_hash_entry *) |
| bfd_hash_allocate (table, |
| sizeof (struct mips_elf_link_hash_entry))); |
| if (ret == (struct mips_elf_link_hash_entry *) NULL) |
| return (struct bfd_hash_entry *) ret; |
| |
| /* Call the allocation method of the superclass. */ |
| ret = ((struct mips_elf_link_hash_entry *) |
| _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, |
| table, string)); |
| if (ret != (struct mips_elf_link_hash_entry *) NULL) |
| { |
| /* Set local fields. */ |
| memset (&ret->esym, 0, sizeof (EXTR)); |
| /* We use -2 as a marker to indicate that the information has |
| not been set. -1 means there is no associated ifd. */ |
| ret->esym.ifd = -2; |
| ret->possibly_dynamic_relocs = 0; |
| ret->readonly_reloc = FALSE; |
| ret->no_fn_stub = FALSE; |
| ret->fn_stub = NULL; |
| ret->need_fn_stub = FALSE; |
| ret->call_stub = NULL; |
| ret->call_fp_stub = NULL; |
| ret->forced_local = FALSE; |
| } |
| |
| return (struct bfd_hash_entry *) ret; |
| } |
| |
| bfd_boolean |
| _bfd_mips_elf_new_section_hook (abfd, sec) |
| bfd *abfd; |
| asection *sec; |
| { |
| struct _mips_elf_section_data *sdata; |
| bfd_size_type amt = sizeof (*sdata); |
| |
| sdata = (struct _mips_elf_section_data *) bfd_zalloc (abfd, amt); |
| if (sdata == NULL) |
| return FALSE; |
| sec->used_by_bfd = (PTR) sdata; |
| |
| return _bfd_elf_new_section_hook (abfd, sec); |
| } |
| |
| /* Read ECOFF debugging information from a .mdebug section into a |
| ecoff_debug_info structure. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_read_ecoff_info (abfd, section, debug) |
| bfd *abfd; |
| asection *section; |
| struct ecoff_debug_info *debug; |
| { |
| HDRR *symhdr; |
| const struct ecoff_debug_swap *swap; |
| char *ext_hdr = NULL; |
| |
| swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| memset (debug, 0, sizeof (*debug)); |
| |
| ext_hdr = (char *) bfd_malloc (swap->external_hdr_size); |
| if (ext_hdr == NULL && swap->external_hdr_size != 0) |
| goto error_return; |
| |
| if (! bfd_get_section_contents (abfd, section, ext_hdr, (file_ptr) 0, |
| swap->external_hdr_size)) |
| goto error_return; |
| |
| symhdr = &debug->symbolic_header; |
| (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); |
| |
| /* The symbolic header contains absolute file offsets and sizes to |
| read. */ |
| #define READ(ptr, offset, count, size, type) \ |
| if (symhdr->count == 0) \ |
| debug->ptr = NULL; \ |
| else \ |
| { \ |
| bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ |
| debug->ptr = (type) bfd_malloc (amt); \ |
| if (debug->ptr == NULL) \ |
| goto error_return; \ |
| if (bfd_seek (abfd, (file_ptr) symhdr->offset, SEEK_SET) != 0 \ |
| || bfd_bread (debug->ptr, amt, abfd) != amt) \ |
| goto error_return; \ |
| } |
| |
| READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); |
| READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, PTR); |
| READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, PTR); |
| READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, PTR); |
| READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, PTR); |
| READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), |
| union aux_ext *); |
| READ (ss, cbSsOffset, issMax, sizeof (char), char *); |
| READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); |
| READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, PTR); |
| READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, PTR); |
| READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, PTR); |
| #undef READ |
| |
| debug->fdr = NULL; |
| debug->adjust = NULL; |
| |
| return TRUE; |
| |
| error_return: |
| if (ext_hdr != NULL) |
| free (ext_hdr); |
| if (debug->line != NULL) |
| free (debug->line); |
| if (debug->external_dnr != NULL) |
| free (debug->external_dnr); |
| if (debug->external_pdr != NULL) |
| free (debug->external_pdr); |
| if (debug->external_sym != NULL) |
| free (debug->external_sym); |
| if (debug->external_opt != NULL) |
| free (debug->external_opt); |
| if (debug->external_aux != NULL) |
| free (debug->external_aux); |
| if (debug->ss != NULL) |
| free (debug->ss); |
| if (debug->ssext != NULL) |
| free (debug->ssext); |
| if (debug->external_fdr != NULL) |
| free (debug->external_fdr); |
| if (debug->external_rfd != NULL) |
| free (debug->external_rfd); |
| if (debug->external_ext != NULL) |
| free (debug->external_ext); |
| return FALSE; |
| } |
| |
| /* Swap RPDR (runtime procedure table entry) for output. */ |
| |
| static void |
| ecoff_swap_rpdr_out (abfd, in, ex) |
| bfd *abfd; |
| const RPDR *in; |
| struct rpdr_ext *ex; |
| { |
| H_PUT_S32 (abfd, in->adr, ex->p_adr); |
| H_PUT_32 (abfd, in->regmask, ex->p_regmask); |
| H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); |
| H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); |
| H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); |
| H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); |
| |
| H_PUT_16 (abfd, in->framereg, ex->p_framereg); |
| H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); |
| |
| H_PUT_32 (abfd, in->irpss, ex->p_irpss); |
| #if 0 /* FIXME */ |
| H_PUT_S32 (abfd, in->exception_info, ex->p_exception_info); |
| #endif |
| } |
| |
| /* Create a runtime procedure table from the .mdebug section. */ |
| |
| static bfd_boolean |
| mips_elf_create_procedure_table (handle, abfd, info, s, debug) |
| PTR handle; |
| bfd *abfd; |
| struct bfd_link_info *info; |
| asection *s; |
| struct ecoff_debug_info *debug; |
| { |
| const struct ecoff_debug_swap *swap; |
| HDRR *hdr = &debug->symbolic_header; |
| RPDR *rpdr, *rp; |
| struct rpdr_ext *erp; |
| PTR rtproc; |
| struct pdr_ext *epdr; |
| struct sym_ext *esym; |
| char *ss, **sv; |
| char *str; |
| bfd_size_type size; |
| bfd_size_type count; |
| unsigned long sindex; |
| unsigned long i; |
| PDR pdr; |
| SYMR sym; |
| const char *no_name_func = _("static procedure (no name)"); |
| |
| epdr = NULL; |
| rpdr = NULL; |
| esym = NULL; |
| ss = NULL; |
| sv = NULL; |
| |
| swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| |
| sindex = strlen (no_name_func) + 1; |
| count = hdr->ipdMax; |
| if (count > 0) |
| { |
| size = swap->external_pdr_size; |
| |
| epdr = (struct pdr_ext *) bfd_malloc (size * count); |
| if (epdr == NULL) |
| goto error_return; |
| |
| if (! _bfd_ecoff_get_accumulated_pdr (handle, (PTR) epdr)) |
| goto error_return; |
| |
| size = sizeof (RPDR); |
| rp = rpdr = (RPDR *) bfd_malloc (size * count); |
| if (rpdr == NULL) |
| goto error_return; |
| |
| size = sizeof (char *); |
| sv = (char **) bfd_malloc (size * count); |
| if (sv == NULL) |
| goto error_return; |
| |
| count = hdr->isymMax; |
| size = swap->external_sym_size; |
| esym = (struct sym_ext *) bfd_malloc (size * count); |
| if (esym == NULL) |
| goto error_return; |
| |
| if (! _bfd_ecoff_get_accumulated_sym (handle, (PTR) esym)) |
| goto error_return; |
| |
| count = hdr->issMax; |
| ss = (char *) bfd_malloc (count); |
| if (ss == NULL) |
| goto error_return; |
| if (! _bfd_ecoff_get_accumulated_ss (handle, (PTR) ss)) |
| goto error_return; |
| |
| count = hdr->ipdMax; |
| for (i = 0; i < (unsigned long) count; i++, rp++) |
| { |
| (*swap->swap_pdr_in) (abfd, (PTR) (epdr + i), &pdr); |
| (*swap->swap_sym_in) (abfd, (PTR) &esym[pdr.isym], &sym); |
| rp->adr = sym.value; |
| rp->regmask = pdr.regmask; |
| rp->regoffset = pdr.regoffset; |
| rp->fregmask = pdr.fregmask; |
| rp->fregoffset = pdr.fregoffset; |
| rp->frameoffset = pdr.frameoffset; |
| rp->framereg = pdr.framereg; |
| rp->pcreg = pdr.pcreg; |
| rp->irpss = sindex; |
| sv[i] = ss + sym.iss; |
| sindex += strlen (sv[i]) + 1; |
| } |
| } |
| |
| size = sizeof (struct rpdr_ext) * (count + 2) + sindex; |
| size = BFD_ALIGN (size, 16); |
| rtproc = (PTR) bfd_alloc (abfd, size); |
| if (rtproc == NULL) |
| { |
| mips_elf_hash_table (info)->procedure_count = 0; |
| goto error_return; |
| } |
| |
| mips_elf_hash_table (info)->procedure_count = count + 2; |
| |
| erp = (struct rpdr_ext *) rtproc; |
| memset (erp, 0, sizeof (struct rpdr_ext)); |
| erp++; |
| str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); |
| strcpy (str, no_name_func); |
| str += strlen (no_name_func) + 1; |
| for (i = 0; i < count; i++) |
| { |
| ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); |
| strcpy (str, sv[i]); |
| str += strlen (sv[i]) + 1; |
| } |
| H_PUT_S32 (abfd, -1, (erp + count)->p_adr); |
| |
| /* Set the size and contents of .rtproc section. */ |
| s->_raw_size = size; |
| s->contents = (bfd_byte *) rtproc; |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| s->link_order_head = (struct bfd_link_order *) NULL; |
| |
| if (epdr != NULL) |
| free (epdr); |
| if (rpdr != NULL) |
| free (rpdr); |
| if (esym != NULL) |
| free (esym); |
| if (ss != NULL) |
| free (ss); |
| if (sv != NULL) |
| free (sv); |
| |
| return TRUE; |
| |
| error_return: |
| if (epdr != NULL) |
| free (epdr); |
| if (rpdr != NULL) |
| free (rpdr); |
| if (esym != NULL) |
| free (esym); |
| if (ss != NULL) |
| free (ss); |
| if (sv != NULL) |
| free (sv); |
| return FALSE; |
| } |
| |
| /* Check the mips16 stubs for a particular symbol, and see if we can |
| discard them. */ |
| |
| static bfd_boolean |
| mips_elf_check_mips16_stubs (h, data) |
| struct mips_elf_link_hash_entry *h; |
| PTR data ATTRIBUTE_UNUSED; |
| { |
| if (h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| if (h->fn_stub != NULL |
| && ! h->need_fn_stub) |
| { |
| /* We don't need the fn_stub; the only references to this symbol |
| are 16 bit calls. Clobber the size to 0 to prevent it from |
| being included in the link. */ |
| h->fn_stub->_raw_size = 0; |
| h->fn_stub->_cooked_size = 0; |
| h->fn_stub->flags &= ~SEC_RELOC; |
| h->fn_stub->reloc_count = 0; |
| h->fn_stub->flags |= SEC_EXCLUDE; |
| } |
| |
| if (h->call_stub != NULL |
| && h->root.other == STO_MIPS16) |
| { |
| /* We don't need the call_stub; this is a 16 bit function, so |
| calls from other 16 bit functions are OK. Clobber the size |
| to 0 to prevent it from being included in the link. */ |
| h->call_stub->_raw_size = 0; |
| h->call_stub->_cooked_size = 0; |
| h->call_stub->flags &= ~SEC_RELOC; |
| h->call_stub->reloc_count = 0; |
| h->call_stub->flags |= SEC_EXCLUDE; |
| } |
| |
| if (h->call_fp_stub != NULL |
| && h->root.other == STO_MIPS16) |
| { |
| /* We don't need the call_stub; this is a 16 bit function, so |
| calls from other 16 bit functions are OK. Clobber the size |
| to 0 to prevent it from being included in the link. */ |
| h->call_fp_stub->_raw_size = 0; |
| h->call_fp_stub->_cooked_size = 0; |
| h->call_fp_stub->flags &= ~SEC_RELOC; |
| h->call_fp_stub->reloc_count = 0; |
| h->call_fp_stub->flags |= SEC_EXCLUDE; |
| } |
| |
| return TRUE; |
| } |
| |
| bfd_reloc_status_type |
| _bfd_mips_elf_gprel16_with_gp (abfd, symbol, reloc_entry, input_section, |
| relocatable, data, gp) |
| bfd *abfd; |
| asymbol *symbol; |
| arelent *reloc_entry; |
| asection *input_section; |
| bfd_boolean relocatable; |
| PTR data; |
| bfd_vma gp; |
| { |
| bfd_vma relocation; |
| unsigned long insn = 0; |
| bfd_signed_vma val; |
| |
| if (bfd_is_com_section (symbol->section)) |
| relocation = 0; |
| else |
| relocation = symbol->value; |
| |
| relocation += symbol->section->output_section->vma; |
| relocation += symbol->section->output_offset; |
| |
| if (reloc_entry->address > input_section->_cooked_size) |
| return bfd_reloc_outofrange; |
| |
| /* Set val to the offset into the section or symbol. */ |
| val = reloc_entry->addend; |
| |
| if (reloc_entry->howto->partial_inplace) |
| { |
| insn = bfd_get_32 (abfd, (bfd_byte *) data + reloc_entry->address); |
| val += insn & 0xffff; |
| } |
| |
| _bfd_mips_elf_sign_extend(val, 16); |
| |
| /* Adjust val for the final section location and GP value. If we |
| are producing relocatable output, we don't want to do this for |
| an external symbol. */ |
| if (! relocatable |
| || (symbol->flags & BSF_SECTION_SYM) != 0) |
| val += relocation - gp; |
| |
| if (reloc_entry->howto->partial_inplace) |
| { |
| insn = (insn & ~0xffff) | (val & 0xffff); |
| bfd_put_32 (abfd, (bfd_vma) insn, |
| (bfd_byte *) data + reloc_entry->address); |
| } |
| else |
| reloc_entry->addend = val; |
| |
| if (relocatable) |
| reloc_entry->address += input_section->output_offset; |
| else if (((val & ~0xffff) != ~0xffff) && ((val & ~0xffff) != 0)) |
| return bfd_reloc_overflow; |
| |
| return bfd_reloc_ok; |
| } |
| |
| /* Swap an entry in a .gptab section. Note that these routines rely |
| on the equivalence of the two elements of the union. */ |
| |
| static void |
| bfd_mips_elf32_swap_gptab_in (abfd, ex, in) |
| bfd *abfd; |
| const Elf32_External_gptab *ex; |
| Elf32_gptab *in; |
| { |
| in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); |
| in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); |
| } |
| |
| static void |
| bfd_mips_elf32_swap_gptab_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf32_gptab *in; |
| Elf32_External_gptab *ex; |
| { |
| H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); |
| H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); |
| } |
| |
| static void |
| bfd_elf32_swap_compact_rel_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf32_compact_rel *in; |
| Elf32_External_compact_rel *ex; |
| { |
| H_PUT_32 (abfd, in->id1, ex->id1); |
| H_PUT_32 (abfd, in->num, ex->num); |
| H_PUT_32 (abfd, in->id2, ex->id2); |
| H_PUT_32 (abfd, in->offset, ex->offset); |
| H_PUT_32 (abfd, in->reserved0, ex->reserved0); |
| H_PUT_32 (abfd, in->reserved1, ex->reserved1); |
| } |
| |
| static void |
| bfd_elf32_swap_crinfo_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf32_crinfo *in; |
| Elf32_External_crinfo *ex; |
| { |
| unsigned long l; |
| |
| l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) |
| | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) |
| | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) |
| | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); |
| H_PUT_32 (abfd, l, ex->info); |
| H_PUT_32 (abfd, in->konst, ex->konst); |
| H_PUT_32 (abfd, in->vaddr, ex->vaddr); |
| } |
| |
| /* A .reginfo section holds a single Elf32_RegInfo structure. These |
| routines swap this structure in and out. They are used outside of |
| BFD, so they are globally visible. */ |
| |
| void |
| bfd_mips_elf32_swap_reginfo_in (abfd, ex, in) |
| bfd *abfd; |
| const Elf32_External_RegInfo *ex; |
| Elf32_RegInfo *in; |
| { |
| in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); |
| } |
| |
| void |
| bfd_mips_elf32_swap_reginfo_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf32_RegInfo *in; |
| Elf32_External_RegInfo *ex; |
| { |
| H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| } |
| |
| /* In the 64 bit ABI, the .MIPS.options section holds register |
| information in an Elf64_Reginfo structure. These routines swap |
| them in and out. They are globally visible because they are used |
| outside of BFD. These routines are here so that gas can call them |
| without worrying about whether the 64 bit ABI has been included. */ |
| |
| void |
| bfd_mips_elf64_swap_reginfo_in (abfd, ex, in) |
| bfd *abfd; |
| const Elf64_External_RegInfo *ex; |
| Elf64_Internal_RegInfo *in; |
| { |
| in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); |
| in->ri_pad = H_GET_32 (abfd, ex->ri_pad); |
| in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); |
| in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); |
| in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); |
| in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); |
| in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); |
| } |
| |
| void |
| bfd_mips_elf64_swap_reginfo_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf64_Internal_RegInfo *in; |
| Elf64_External_RegInfo *ex; |
| { |
| H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); |
| H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); |
| H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); |
| H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); |
| H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); |
| H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); |
| H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); |
| } |
| |
| /* Swap in an options header. */ |
| |
| void |
| bfd_mips_elf_swap_options_in (abfd, ex, in) |
| bfd *abfd; |
| const Elf_External_Options *ex; |
| Elf_Internal_Options *in; |
| { |
| in->kind = H_GET_8 (abfd, ex->kind); |
| in->size = H_GET_8 (abfd, ex->size); |
| in->section = H_GET_16 (abfd, ex->section); |
| in->info = H_GET_32 (abfd, ex->info); |
| } |
| |
| /* Swap out an options header. */ |
| |
| void |
| bfd_mips_elf_swap_options_out (abfd, in, ex) |
| bfd *abfd; |
| const Elf_Internal_Options *in; |
| Elf_External_Options *ex; |
| { |
| H_PUT_8 (abfd, in->kind, ex->kind); |
| H_PUT_8 (abfd, in->size, ex->size); |
| H_PUT_16 (abfd, in->section, ex->section); |
| H_PUT_32 (abfd, in->info, ex->info); |
| } |
| |
| /* This function is called via qsort() to sort the dynamic relocation |
| entries by increasing r_symndx value. */ |
| |
| static int |
| sort_dynamic_relocs (arg1, arg2) |
| const PTR arg1; |
| const PTR arg2; |
| { |
| Elf_Internal_Rela int_reloc1; |
| Elf_Internal_Rela int_reloc2; |
| |
| bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); |
| bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); |
| |
| return ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); |
| } |
| |
| /* Like sort_dynamic_relocs, but used for elf64 relocations. */ |
| |
| static int |
| sort_dynamic_relocs_64 (arg1, arg2) |
| const PTR arg1; |
| const PTR arg2; |
| { |
| Elf_Internal_Rela int_reloc1[3]; |
| Elf_Internal_Rela int_reloc2[3]; |
| |
| (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| (reldyn_sorting_bfd, arg1, int_reloc1); |
| (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) |
| (reldyn_sorting_bfd, arg2, int_reloc2); |
| |
| return (ELF64_R_SYM (int_reloc1[0].r_info) |
| - ELF64_R_SYM (int_reloc2[0].r_info)); |
| } |
| |
| |
| /* This routine is used to write out ECOFF debugging external symbol |
| information. It is called via mips_elf_link_hash_traverse. The |
| ECOFF external symbol information must match the ELF external |
| symbol information. Unfortunately, at this point we don't know |
| whether a symbol is required by reloc information, so the two |
| tables may wind up being different. We must sort out the external |
| symbol information before we can set the final size of the .mdebug |
| section, and we must set the size of the .mdebug section before we |
| can relocate any sections, and we can't know which symbols are |
| required by relocation until we relocate the sections. |
| Fortunately, it is relatively unlikely that any symbol will be |
| stripped but required by a reloc. In particular, it can not happen |
| when generating a final executable. */ |
| |
| static bfd_boolean |
| mips_elf_output_extsym (h, data) |
| struct mips_elf_link_hash_entry *h; |
| PTR data; |
| { |
| struct extsym_info *einfo = (struct extsym_info *) data; |
| bfd_boolean strip; |
| asection *sec, *output_section; |
| |
| if (h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| if (h->root.indx == -2) |
| strip = FALSE; |
| else if (((h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| || (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_DYNAMIC) != 0) |
| && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0 |
| && (h->root.elf_link_hash_flags & ELF_LINK_HASH_REF_REGULAR) == 0) |
| strip = TRUE; |
| else if (einfo->info->strip == strip_all |
| || (einfo->info->strip == strip_some |
| && bfd_hash_lookup (einfo->info->keep_hash, |
| h->root.root.root.string, |
| FALSE, FALSE) == NULL)) |
| strip = TRUE; |
| else |
| strip = FALSE; |
| |
| if (strip) |
| return TRUE; |
| |
| if (h->esym.ifd == -2) |
| { |
| h->esym.jmptbl = 0; |
| h->esym.cobol_main = 0; |
| h->esym.weakext = 0; |
| h->esym.reserved = 0; |
| h->esym.ifd = ifdNil; |
| h->esym.asym.value = 0; |
| h->esym.asym.st = stGlobal; |
| |
| if (h->root.root.type == bfd_link_hash_undefined |
| || h->root.root.type == bfd_link_hash_undefweak) |
| { |
| const char *name; |
| |
| /* Use undefined class. Also, set class and type for some |
| special symbols. */ |
| name = h->root.root.root.string; |
| if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| { |
| h->esym.asym.sc = scData; |
| h->esym.asym.st = stLabel; |
| h->esym.asym.value = 0; |
| } |
| else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| { |
| h->esym.asym.sc = scAbs; |
| h->esym.asym.st = stLabel; |
| h->esym.asym.value = |
| mips_elf_hash_table (einfo->info)->procedure_count; |
| } |
| else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) |
| { |
| h->esym.asym.sc = scAbs; |
| h->esym.asym.st = stLabel; |
| h->esym.asym.value = elf_gp (einfo->abfd); |
| } |
| else |
| h->esym.asym.sc = scUndefined; |
| } |
| else if (h->root.root.type != bfd_link_hash_defined |
| && h->root.root.type != bfd_link_hash_defweak) |
| h->esym.asym.sc = scAbs; |
| else |
| { |
| const char *name; |
| |
| sec = h->root.root.u.def.section; |
| output_section = sec->output_section; |
| |
| /* When making a shared library and symbol h is the one from |
| the another shared library, OUTPUT_SECTION may be null. */ |
| if (output_section == NULL) |
| h->esym.asym.sc = scUndefined; |
| else |
| { |
| name = bfd_section_name (output_section->owner, output_section); |
| |
| if (strcmp (name, ".text") == 0) |
| h->esym.asym.sc = scText; |
| else if (strcmp (name, ".data") == 0) |
| h->esym.asym.sc = scData; |
| else if (strcmp (name, ".sdata") == 0) |
| h->esym.asym.sc = scSData; |
| else if (strcmp (name, ".rodata") == 0 |
| || strcmp (name, ".rdata") == 0) |
| h->esym.asym.sc = scRData; |
| else if (strcmp (name, ".bss") == 0) |
| h->esym.asym.sc = scBss; |
| else if (strcmp (name, ".sbss") == 0) |
| h->esym.asym.sc = scSBss; |
| else if (strcmp (name, ".init") == 0) |
| h->esym.asym.sc = scInit; |
| else if (strcmp (name, ".fini") == 0) |
| h->esym.asym.sc = scFini; |
| else |
| h->esym.asym.sc = scAbs; |
| } |
| } |
| |
| h->esym.asym.reserved = 0; |
| h->esym.asym.index = indexNil; |
| } |
| |
| if (h->root.root.type == bfd_link_hash_common) |
| h->esym.asym.value = h->root.root.u.c.size; |
| else if (h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| { |
| if (h->esym.asym.sc == scCommon) |
| h->esym.asym.sc = scBss; |
| else if (h->esym.asym.sc == scSCommon) |
| h->esym.asym.sc = scSBss; |
| |
| sec = h->root.root.u.def.section; |
| output_section = sec->output_section; |
| if (output_section != NULL) |
| h->esym.asym.value = (h->root.root.u.def.value |
| + sec->output_offset |
| + output_section->vma); |
| else |
| h->esym.asym.value = 0; |
| } |
| else if ((h->root.elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) |
| { |
| struct mips_elf_link_hash_entry *hd = h; |
| bfd_boolean no_fn_stub = h->no_fn_stub; |
| |
| while (hd->root.root.type == bfd_link_hash_indirect) |
| { |
| hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; |
| no_fn_stub = no_fn_stub || hd->no_fn_stub; |
| } |
| |
| if (!no_fn_stub) |
| { |
| /* Set type and value for a symbol with a function stub. */ |
| h->esym.asym.st = stProc; |
| sec = hd->root.root.u.def.section; |
| if (sec == NULL) |
| h->esym.asym.value = 0; |
| else |
| { |
| output_section = sec->output_section; |
| if (output_section != NULL) |
| h->esym.asym.value = (hd->root.plt.offset |
| + sec->output_offset |
| + output_section->vma); |
| else |
| h->esym.asym.value = 0; |
| } |
| #if 0 /* FIXME? */ |
| h->esym.ifd = 0; |
| #endif |
| } |
| } |
| |
| if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, |
| h->root.root.root.string, |
| &h->esym)) |
| { |
| einfo->failed = TRUE; |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* A comparison routine used to sort .gptab entries. */ |
| |
| static int |
| gptab_compare (p1, p2) |
| const PTR p1; |
| const PTR p2; |
| { |
| const Elf32_gptab *a1 = (const Elf32_gptab *) p1; |
| const Elf32_gptab *a2 = (const Elf32_gptab *) p2; |
| |
| return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; |
| } |
| |
| /* Functions to manage the got entry hash table. */ |
| |
| /* Use all 64 bits of a bfd_vma for the computation of a 32-bit |
| hash number. */ |
| |
| static INLINE hashval_t |
| mips_elf_hash_bfd_vma (addr) |
| bfd_vma addr; |
| { |
| #ifdef BFD64 |
| return addr + (addr >> 32); |
| #else |
| return addr; |
| #endif |
| } |
| |
| /* got_entries only match if they're identical, except for gotidx, so |
| use all fields to compute the hash, and compare the appropriate |
| union members. */ |
| |
| static hashval_t |
| mips_elf_got_entry_hash (entry_) |
| const PTR entry_; |
| { |
| const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
| |
| return entry->symndx |
| + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) |
| : entry->abfd->id |
| + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) |
| : entry->d.h->root.root.root.hash)); |
| } |
| |
| static int |
| mips_elf_got_entry_eq (entry1, entry2) |
| const PTR entry1; |
| const PTR entry2; |
| { |
| const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
| const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
| |
| return e1->abfd == e2->abfd && e1->symndx == e2->symndx |
| && (! e1->abfd ? e1->d.address == e2->d.address |
| : e1->symndx >= 0 ? e1->d.addend == e2->d.addend |
| : e1->d.h == e2->d.h); |
| } |
| |
| /* multi_got_entries are still a match in the case of global objects, |
| even if the input bfd in which they're referenced differs, so the |
| hash computation and compare functions are adjusted |
| accordingly. */ |
| |
| static hashval_t |
| mips_elf_multi_got_entry_hash (entry_) |
| const PTR entry_; |
| { |
| const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; |
| |
| return entry->symndx |
| + (! entry->abfd |
| ? mips_elf_hash_bfd_vma (entry->d.address) |
| : entry->symndx >= 0 |
| ? (entry->abfd->id |
| + mips_elf_hash_bfd_vma (entry->d.addend)) |
| : entry->d.h->root.root.root.hash); |
| } |
| |
| static int |
| mips_elf_multi_got_entry_eq (entry1, entry2) |
| const PTR entry1; |
| const PTR entry2; |
| { |
| const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; |
| const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; |
| |
| return e1->symndx == e2->symndx |
| && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend |
| : e1->abfd == NULL || e2->abfd == NULL |
| ? e1->abfd == e2->abfd && e1->d.address == e2->d.address |
| : e1->d.h == e2->d.h); |
| } |
| |
| /* Returns the dynamic relocation section for DYNOBJ. */ |
| |
| static asection * |
| mips_elf_rel_dyn_section (dynobj, create_p) |
| bfd *dynobj; |
| bfd_boolean create_p; |
| { |
| static const char dname[] = ".rel.dyn"; |
| asection *sreloc; |
| |
| sreloc = bfd_get_section_by_name (dynobj, dname); |
| if (sreloc == NULL && create_p) |
| { |
| sreloc = bfd_make_section (dynobj, dname); |
| if (sreloc == NULL |
| || ! bfd_set_section_flags (dynobj, sreloc, |
| (SEC_ALLOC |
| | SEC_LOAD |
| | SEC_HAS_CONTENTS |
| | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED |
| | SEC_READONLY)) |
| || ! bfd_set_section_alignment (dynobj, sreloc, |
| MIPS_ELF_LOG_FILE_ALIGN (dynobj))) |
| return NULL; |
| } |
| return sreloc; |
| } |
| |
| /* Returns the GOT section for ABFD. */ |
| |
| static asection * |
| mips_elf_got_section (abfd, maybe_excluded) |
| bfd *abfd; |
| bfd_boolean maybe_excluded; |
| { |
| asection *sgot = bfd_get_section_by_name (abfd, ".got"); |
| if (sgot == NULL |
| || (! maybe_excluded && (sgot->flags & SEC_EXCLUDE) != 0)) |
| return NULL; |
| return sgot; |
| } |
| |
| /* Returns the GOT information associated with the link indicated by |
| INFO. If SGOTP is non-NULL, it is filled in with the GOT |
| section. */ |
| |
| static struct mips_got_info * |
| mips_elf_got_info (abfd, sgotp) |
| bfd *abfd; |
| asection **sgotp; |
| { |
| asection *sgot; |
| struct mips_got_info *g; |
| |
| sgot = mips_elf_got_section (abfd, TRUE); |
| BFD_ASSERT (sgot != NULL); |
| BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| g = mips_elf_section_data (sgot)->u.got_info; |
| BFD_ASSERT (g != NULL); |
| |
| if (sgotp) |
| *sgotp = (sgot->flags & SEC_EXCLUDE) == 0 ? sgot : NULL; |
| |
| return g; |
| } |
| |
| /* Obtain the lowest dynamic index of a symbol that was assigned a |
| global GOT entry. */ |
| static long |
| mips_elf_get_global_gotsym_index (abfd) |
| bfd *abfd; |
| { |
| asection *sgot; |
| struct mips_got_info *g; |
| |
| if (abfd == NULL) |
| return 0; |
| |
| sgot = mips_elf_got_section (abfd, TRUE); |
| if (sgot == NULL || mips_elf_section_data (sgot) == NULL) |
| return 0; |
| |
| g = mips_elf_section_data (sgot)->u.got_info; |
| if (g == NULL || g->global_gotsym == NULL) |
| return 0; |
| |
| return g->global_gotsym->dynindx; |
| } |
| |
| /* Returns the GOT offset at which the indicated address can be found. |
| If there is not yet a GOT entry for this value, create one. Returns |
| -1 if no satisfactory GOT offset can be found. */ |
| |
| static bfd_vma |
| mips_elf_local_got_index (abfd, ibfd, info, value) |
| bfd *abfd, *ibfd; |
| struct bfd_link_info *info; |
| bfd_vma value; |
| { |
| asection *sgot; |
| struct mips_got_info *g; |
| struct mips_got_entry *entry; |
| |
| g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| |
| entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
| if (entry) |
| return entry->gotidx; |
| else |
| return MINUS_ONE; |
| } |
| |
| /* Returns the GOT index for the global symbol indicated by H. */ |
| |
| static bfd_vma |
| mips_elf_global_got_index (abfd, ibfd, h) |
| bfd *abfd, *ibfd; |
| struct elf_link_hash_entry *h; |
| { |
| bfd_vma index; |
| asection *sgot; |
| struct mips_got_info *g, *gg; |
| long global_got_dynindx = 0; |
| |
| gg = g = mips_elf_got_info (abfd, &sgot); |
| if (g->bfd2got && ibfd) |
| { |
| struct mips_got_entry e, *p; |
| |
| BFD_ASSERT (h->dynindx >= 0); |
| |
| g = mips_elf_got_for_ibfd (g, ibfd); |
| if (g->next != gg) |
| { |
| e.abfd = ibfd; |
| e.symndx = -1; |
| e.d.h = (struct mips_elf_link_hash_entry *)h; |
| |
| p = (struct mips_got_entry *) htab_find (g->got_entries, &e); |
| |
| BFD_ASSERT (p->gotidx > 0); |
| return p->gotidx; |
| } |
| } |
| |
| if (gg->global_gotsym != NULL) |
| global_got_dynindx = gg->global_gotsym->dynindx; |
| |
| /* Once we determine the global GOT entry with the lowest dynamic |
| symbol table index, we must put all dynamic symbols with greater |
| indices into the GOT. That makes it easy to calculate the GOT |
| offset. */ |
| BFD_ASSERT (h->dynindx >= global_got_dynindx); |
| index = ((h->dynindx - global_got_dynindx + g->local_gotno) |
| * MIPS_ELF_GOT_SIZE (abfd)); |
| BFD_ASSERT (index < sgot->_raw_size); |
| |
| return index; |
| } |
| |
| /* Find a GOT entry that is within 32KB of the VALUE. These entries |
| are supposed to be placed at small offsets in the GOT, i.e., |
| within 32KB of GP. Return the index into the GOT for this page, |
| and store the offset from this entry to the desired address in |
| OFFSETP, if it is non-NULL. */ |
| |
| static bfd_vma |
| mips_elf_got_page (abfd, ibfd, info, value, offsetp) |
| bfd *abfd, *ibfd; |
| struct bfd_link_info *info; |
| bfd_vma value; |
| bfd_vma *offsetp; |
| { |
| asection *sgot; |
| struct mips_got_info *g; |
| bfd_vma index; |
| struct mips_got_entry *entry; |
| |
| g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| |
| entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, |
| (value + 0x8000) |
| & (~(bfd_vma)0xffff)); |
| |
| if (!entry) |
| return MINUS_ONE; |
| |
| index = entry->gotidx; |
| |
| if (offsetp) |
| *offsetp = value - entry->d.address; |
| |
| return index; |
| } |
| |
| /* Find a GOT entry whose higher-order 16 bits are the same as those |
| for value. Return the index into the GOT for this entry. */ |
| |
| static bfd_vma |
| mips_elf_got16_entry (abfd, ibfd, info, value, external) |
| bfd *abfd, *ibfd; |
| struct bfd_link_info *info; |
| bfd_vma value; |
| bfd_boolean external; |
| { |
| asection *sgot; |
| struct mips_got_info *g; |
| struct mips_got_entry *entry; |
| |
| if (! external) |
| { |
| /* Although the ABI says that it is "the high-order 16 bits" that we |
| want, it is really the %high value. The complete value is |
| calculated with a `addiu' of a LO16 relocation, just as with a |
| HI16/LO16 pair. */ |
| value = mips_elf_high (value) << 16; |
| } |
| |
| g = mips_elf_got_info (elf_hash_table (info)->dynobj, &sgot); |
| |
| entry = mips_elf_create_local_got_entry (abfd, ibfd, g, sgot, value); |
| if (entry) |
| return entry->gotidx; |
| else |
| return MINUS_ONE; |
| } |
| |
| /* Returns the offset for the entry at the INDEXth position |
| in the GOT. */ |
| |
| static bfd_vma |
| mips_elf_got_offset_from_index (dynobj, output_bfd, input_bfd, index) |
| bfd *dynobj; |
| bfd *output_bfd; |
| bfd *input_bfd; |
| bfd_vma index; |
| { |
| asection *sgot; |
| bfd_vma gp; |
| struct mips_got_info *g; |
| |
| g = mips_elf_got_info (dynobj, &sgot); |
| gp = _bfd_get_gp_value (output_bfd) |
| + mips_elf_adjust_gp (output_bfd, g, input_bfd); |
| |
| return sgot->output_section->vma + sgot->output_offset + index - gp; |
| } |
| |
| /* Create a local GOT entry for VALUE. Return the index of the entry, |
| or -1 if it could not be created. */ |
| |
| static struct mips_got_entry * |
| mips_elf_create_local_got_entry (abfd, ibfd, gg, sgot, value) |
| bfd *abfd, *ibfd; |
| struct mips_got_info *gg; |
| asection *sgot; |
| bfd_vma value; |
| { |
| struct mips_got_entry entry, **loc; |
| struct mips_got_info *g; |
| |
| entry.abfd = NULL; |
| entry.symndx = -1; |
| entry.d.address = value; |
| |
| g = mips_elf_got_for_ibfd (gg, ibfd); |
| if (g == NULL) |
| { |
| g = mips_elf_got_for_ibfd (gg, abfd); |
| BFD_ASSERT (g != NULL); |
| } |
| |
| loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
| INSERT); |
| if (*loc) |
| return *loc; |
| |
| entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; |
| |
| *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| |
| if (! *loc) |
| return NULL; |
| |
| memcpy (*loc, &entry, sizeof entry); |
| |
| if (g->assigned_gotno >= g->local_gotno) |
| { |
| (*loc)->gotidx = -1; |
| /* We didn't allocate enough space in the GOT. */ |
| (*_bfd_error_handler) |
| (_("not enough GOT space for local GOT entries")); |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| MIPS_ELF_PUT_WORD (abfd, value, |
| (sgot->contents + entry.gotidx)); |
| |
| return *loc; |
| } |
| |
| /* Sort the dynamic symbol table so that symbols that need GOT entries |
| appear towards the end. This reduces the amount of GOT space |
| required. MAX_LOCAL is used to set the number of local symbols |
| known to be in the dynamic symbol table. During |
| _bfd_mips_elf_size_dynamic_sections, this value is 1. Afterward, the |
| section symbols are added and the count is higher. */ |
| |
| static bfd_boolean |
| mips_elf_sort_hash_table (info, max_local) |
| struct bfd_link_info *info; |
| unsigned long max_local; |
| { |
| struct mips_elf_hash_sort_data hsd; |
| struct mips_got_info *g; |
| bfd *dynobj; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| g = mips_elf_got_info (dynobj, NULL); |
| |
| hsd.low = NULL; |
| hsd.max_unref_got_dynindx = |
| hsd.min_got_dynindx = elf_hash_table (info)->dynsymcount |
| /* In the multi-got case, assigned_gotno of the master got_info |
| indicate the number of entries that aren't referenced in the |
| primary GOT, but that must have entries because there are |
| dynamic relocations that reference it. Since they aren't |
| referenced, we move them to the end of the GOT, so that they |
| don't prevent other entries that are referenced from getting |
| too large offsets. */ |
| - (g->next ? g->assigned_gotno : 0); |
| hsd.max_non_got_dynindx = max_local; |
| mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) |
| elf_hash_table (info)), |
| mips_elf_sort_hash_table_f, |
| &hsd); |
| |
| /* There should have been enough room in the symbol table to |
| accommodate both the GOT and non-GOT symbols. */ |
| BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); |
| BFD_ASSERT ((unsigned long)hsd.max_unref_got_dynindx |
| <= elf_hash_table (info)->dynsymcount); |
| |
| /* Now we know which dynamic symbol has the lowest dynamic symbol |
| table index in the GOT. */ |
| g->global_gotsym = hsd.low; |
| |
| return TRUE; |
| } |
| |
| /* If H needs a GOT entry, assign it the highest available dynamic |
| index. Otherwise, assign it the lowest available dynamic |
| index. */ |
| |
| static bfd_boolean |
| mips_elf_sort_hash_table_f (h, data) |
| struct mips_elf_link_hash_entry *h; |
| PTR data; |
| { |
| struct mips_elf_hash_sort_data *hsd |
| = (struct mips_elf_hash_sort_data *) data; |
| |
| if (h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| /* Symbols without dynamic symbol table entries aren't interesting |
| at all. */ |
| if (h->root.dynindx == -1) |
| return TRUE; |
| |
| /* Global symbols that need GOT entries that are not explicitly |
| referenced are marked with got offset 2. Those that are |
| referenced get a 1, and those that don't need GOT entries get |
| -1. */ |
| if (h->root.got.offset == 2) |
| { |
| if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) |
| hsd->low = (struct elf_link_hash_entry *) h; |
| h->root.dynindx = hsd->max_unref_got_dynindx++; |
| } |
| else if (h->root.got.offset != 1) |
| h->root.dynindx = hsd->max_non_got_dynindx++; |
| else |
| { |
| h->root.dynindx = --hsd->min_got_dynindx; |
| hsd->low = (struct elf_link_hash_entry *) h; |
| } |
| |
| return TRUE; |
| } |
| |
| /* If H is a symbol that needs a global GOT entry, but has a dynamic |
| symbol table index lower than any we've seen to date, record it for |
| posterity. */ |
| |
| static bfd_boolean |
| mips_elf_record_global_got_symbol (h, abfd, info, g) |
| struct elf_link_hash_entry *h; |
| bfd *abfd; |
| struct bfd_link_info *info; |
| struct mips_got_info *g; |
| { |
| struct mips_got_entry entry, **loc; |
| |
| /* A global symbol in the GOT must also be in the dynamic symbol |
| table. */ |
| if (h->dynindx == -1) |
| { |
| switch (ELF_ST_VISIBILITY (h->other)) |
| { |
| case STV_INTERNAL: |
| case STV_HIDDEN: |
| _bfd_mips_elf_hide_symbol (info, h, TRUE); |
| break; |
| } |
| if (!bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| entry.abfd = abfd; |
| entry.symndx = -1; |
| entry.d.h = (struct mips_elf_link_hash_entry *) h; |
| |
| loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, |
| INSERT); |
| |
| /* If we've already marked this entry as needing GOT space, we don't |
| need to do it again. */ |
| if (*loc) |
| return TRUE; |
| |
| *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| |
| if (! *loc) |
| return FALSE; |
| |
| entry.gotidx = -1; |
| memcpy (*loc, &entry, sizeof entry); |
| |
| if (h->got.offset != MINUS_ONE) |
| return TRUE; |
| |
| /* By setting this to a value other than -1, we are indicating that |
| there needs to be a GOT entry for H. Avoid using zero, as the |
| generic ELF copy_indirect_symbol tests for <= 0. */ |
| h->got.offset = 1; |
| |
| return TRUE; |
| } |
| |
| /* Reserve space in G for a GOT entry containing the value of symbol |
| SYMNDX in input bfd ABDF, plus ADDEND. */ |
| |
| static bfd_boolean |
| mips_elf_record_local_got_symbol (abfd, symndx, addend, g) |
| bfd *abfd; |
| long symndx; |
| bfd_vma addend; |
| struct mips_got_info *g; |
| { |
| struct mips_got_entry entry, **loc; |
| |
| entry.abfd = abfd; |
| entry.symndx = symndx; |
| entry.d.addend = addend; |
| loc = (struct mips_got_entry **) |
| htab_find_slot (g->got_entries, &entry, INSERT); |
| |
| if (*loc) |
| return TRUE; |
| |
| entry.gotidx = g->local_gotno++; |
| |
| *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); |
| |
| if (! *loc) |
| return FALSE; |
| |
| memcpy (*loc, &entry, sizeof entry); |
| |
| return TRUE; |
| } |
| |
| /* Compute the hash value of the bfd in a bfd2got hash entry. */ |
| |
| static hashval_t |
| mips_elf_bfd2got_entry_hash (entry_) |
| const PTR entry_; |
| { |
| const struct mips_elf_bfd2got_hash *entry |
| = (struct mips_elf_bfd2got_hash *)entry_; |
| |
| return entry->bfd->id; |
| } |
| |
| /* Check whether two hash entries have the same bfd. */ |
| |
| static int |
| mips_elf_bfd2got_entry_eq (entry1, entry2) |
| const PTR entry1; |
| const PTR entry2; |
| { |
| const struct mips_elf_bfd2got_hash *e1 |
| = (const struct mips_elf_bfd2got_hash *)entry1; |
| const struct mips_elf_bfd2got_hash *e2 |
| = (const struct mips_elf_bfd2got_hash *)entry2; |
| |
| return e1->bfd == e2->bfd; |
| } |
| |
| /* In a multi-got link, determine the GOT to be used for IBDF. G must |
| be the master GOT data. */ |
| |
| static struct mips_got_info * |
| mips_elf_got_for_ibfd (g, ibfd) |
| struct mips_got_info *g; |
| bfd *ibfd; |
| { |
| struct mips_elf_bfd2got_hash e, *p; |
| |
| if (! g->bfd2got) |
| return g; |
| |
| e.bfd = ibfd; |
| p = (struct mips_elf_bfd2got_hash *) htab_find (g->bfd2got, &e); |
| return p ? p->g : NULL; |
| } |
| |
| /* Create one separate got for each bfd that has entries in the global |
| got, such that we can tell how many local and global entries each |
| bfd requires. */ |
| |
| static int |
| mips_elf_make_got_per_bfd (entryp, p) |
| void **entryp; |
| void *p; |
| { |
| struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; |
| htab_t bfd2got = arg->bfd2got; |
| struct mips_got_info *g; |
| struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; |
| void **bfdgotp; |
| |
| /* Find the got_info for this GOT entry's input bfd. Create one if |
| none exists. */ |
| bfdgot_entry.bfd = entry->abfd; |
| bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); |
| bfdgot = (struct mips_elf_bfd2got_hash *)*bfdgotp; |
| |
| if (bfdgot != NULL) |
| g = bfdgot->g; |
| else |
| { |
| bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
| (arg->obfd, sizeof (struct mips_elf_bfd2got_hash)); |
| |
| if (bfdgot == NULL) |
| { |
| arg->obfd = 0; |
| return 0; |
| } |
| |
| *bfdgotp = bfdgot; |
| |
| bfdgot->bfd = entry->abfd; |
| bfdgot->g = g = (struct mips_got_info *) |
| bfd_alloc (arg->obfd, sizeof (struct mips_got_info)); |
| if (g == NULL) |
| { |
| arg->obfd = 0; |
| return 0; |
| } |
| |
| g->global_gotsym = NULL; |
| g->global_gotno = 0; |
| g->local_gotno = 0; |
| g->assigned_gotno = -1; |
| g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
| mips_elf_multi_got_entry_eq, |
| (htab_del) NULL); |
| if (g->got_entries == NULL) |
| { |
| arg->obfd = 0; |
| return 0; |
| } |
| |
| g->bfd2got = NULL; |
| g->next = NULL; |
| } |
| |
| /* Insert the GOT entry in the bfd's got entry hash table. */ |
| entryp = htab_find_slot (g->got_entries, entry, INSERT); |
| if (*entryp != NULL) |
| return 1; |
| |
| *entryp = entry; |
| |
| if (entry->symndx >= 0 || entry->d.h->forced_local) |
| ++g->local_gotno; |
| else |
| ++g->global_gotno; |
| |
| return 1; |
| } |
| |
| /* Attempt to merge gots of different input bfds. Try to use as much |
| as possible of the primary got, since it doesn't require explicit |
| dynamic relocations, but don't use bfds that would reference global |
| symbols out of the addressable range. Failing the primary got, |
| attempt to merge with the current got, or finish the current got |
| and then make make the new got current. */ |
| |
| static int |
| mips_elf_merge_gots (bfd2got_, p) |
| void **bfd2got_; |
| void *p; |
| { |
| struct mips_elf_bfd2got_hash *bfd2got |
| = (struct mips_elf_bfd2got_hash *)*bfd2got_; |
| struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; |
| unsigned int lcount = bfd2got->g->local_gotno; |
| unsigned int gcount = bfd2got->g->global_gotno; |
| unsigned int maxcnt = arg->max_count; |
| |
| /* If we don't have a primary GOT and this is not too big, use it as |
| a starting point for the primary GOT. */ |
| if (! arg->primary && lcount + gcount <= maxcnt) |
| { |
| arg->primary = bfd2got->g; |
| arg->primary_count = lcount + gcount; |
| } |
| /* If it looks like we can merge this bfd's entries with those of |
| the primary, merge them. The heuristics is conservative, but we |
| don't have to squeeze it too hard. */ |
| else if (arg->primary |
| && (arg->primary_count + lcount + gcount) <= maxcnt) |
| { |
| struct mips_got_info *g = bfd2got->g; |
| int old_lcount = arg->primary->local_gotno; |
| int old_gcount = arg->primary->global_gotno; |
| |
| bfd2got->g = arg->primary; |
| |
| htab_traverse (g->got_entries, |
| mips_elf_make_got_per_bfd, |
| arg); |
| if (arg->obfd == NULL) |
| return 0; |
| |
| htab_delete (g->got_entries); |
| /* We don't have to worry about releasing memory of the actual |
| got entries, since they're all in the master got_entries hash |
| table anyway. */ |
| |
| BFD_ASSERT (old_lcount + lcount == arg->primary->local_gotno); |
| BFD_ASSERT (old_gcount + gcount >= arg->primary->global_gotno); |
| |
| arg->primary_count = arg->primary->local_gotno |
| + arg->primary->global_gotno; |
| } |
| /* If we can merge with the last-created got, do it. */ |
| else if (arg->current |
| && arg->current_count + lcount + gcount <= maxcnt) |
| { |
| struct mips_got_info *g = bfd2got->g; |
| int old_lcount = arg->current->local_gotno; |
| int old_gcount = arg->current->global_gotno; |
| |
| bfd2got->g = arg->current; |
| |
| htab_traverse (g->got_entries, |
| mips_elf_make_got_per_bfd, |
| arg); |
| if (arg->obfd == NULL) |
| return 0; |
| |
| htab_delete (g->got_entries); |
| |
| BFD_ASSERT (old_lcount + lcount == arg->current->local_gotno); |
| BFD_ASSERT (old_gcount + gcount >= arg->current->global_gotno); |
| |
| arg->current_count = arg->current->local_gotno |
| + arg->current->global_gotno; |
| } |
| /* Well, we couldn't merge, so create a new GOT. Don't check if it |
| fits; if it turns out that it doesn't, we'll get relocation |
| overflows anyway. */ |
| else |
| { |
| bfd2got->g->next = arg->current; |
| arg->current = bfd2got->g; |
| |
| arg->current_count = lcount + gcount; |
| } |
| |
| return 1; |
| } |
| |
| /* If passed a NULL mips_got_info in the argument, set the marker used |
| to tell whether a global symbol needs a got entry (in the primary |
| got) to the given VALUE. |
| |
| If passed a pointer G to a mips_got_info in the argument (it must |
| not be the primary GOT), compute the offset from the beginning of |
| the (primary) GOT section to the entry in G corresponding to the |
| global symbol. G's assigned_gotno must contain the index of the |
| first available global GOT entry in G. VALUE must contain the size |
| of a GOT entry in bytes. For each global GOT entry that requires a |
| dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is |
| marked as not elligible for lazy resolution through a function |
| stub. */ |
| static int |
| mips_elf_set_global_got_offset (entryp, p) |
| void **entryp; |
| void *p; |
| { |
| struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| struct mips_elf_set_global_got_offset_arg *arg |
| = (struct mips_elf_set_global_got_offset_arg *)p; |
| struct mips_got_info *g = arg->g; |
| |
| if (entry->abfd != NULL && entry->symndx == -1 |
| && entry->d.h->root.dynindx != -1) |
| { |
| if (g) |
| { |
| BFD_ASSERT (g->global_gotsym == NULL); |
| |
| entry->gotidx = arg->value * (long) g->assigned_gotno++; |
| /* We can't do lazy update of GOT entries for |
| non-primary GOTs since the PLT entries don't use the |
| right offsets, so punt at it for now. */ |
| entry->d.h->no_fn_stub = TRUE; |
| if (arg->info->shared |
| || (elf_hash_table (arg->info)->dynamic_sections_created |
| && ((entry->d.h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
| && ((entry->d.h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0))) |
| ++arg->needed_relocs; |
| } |
| else |
| entry->d.h->root.got.offset = arg->value; |
| } |
| |
| return 1; |
| } |
| |
| /* Follow indirect and warning hash entries so that each got entry |
| points to the final symbol definition. P must point to a pointer |
| to the hash table we're traversing. Since this traversal may |
| modify the hash table, we set this pointer to NULL to indicate |
| we've made a potentially-destructive change to the hash table, so |
| the traversal must be restarted. */ |
| static int |
| mips_elf_resolve_final_got_entry (entryp, p) |
| void **entryp; |
| void *p; |
| { |
| struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; |
| htab_t got_entries = *(htab_t *)p; |
| |
| if (entry->abfd != NULL && entry->symndx == -1) |
| { |
| struct mips_elf_link_hash_entry *h = entry->d.h; |
| |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| if (entry->d.h == h) |
| return 1; |
| |
| entry->d.h = h; |
| |
| /* If we can't find this entry with the new bfd hash, re-insert |
| it, and get the traversal restarted. */ |
| if (! htab_find (got_entries, entry)) |
| { |
| htab_clear_slot (got_entries, entryp); |
| entryp = htab_find_slot (got_entries, entry, INSERT); |
| if (! *entryp) |
| *entryp = entry; |
| /* Abort the traversal, since the whole table may have |
| moved, and leave it up to the parent to restart the |
| process. */ |
| *(htab_t *)p = NULL; |
| return 0; |
| } |
| /* We might want to decrement the global_gotno count, but it's |
| either too early or too late for that at this point. */ |
| } |
| |
| return 1; |
| } |
| |
| /* Turn indirect got entries in a got_entries table into their final |
| locations. */ |
| static void |
| mips_elf_resolve_final_got_entries (g) |
| struct mips_got_info *g; |
| { |
| htab_t got_entries; |
| |
| do |
| { |
| got_entries = g->got_entries; |
| |
| htab_traverse (got_entries, |
| mips_elf_resolve_final_got_entry, |
| &got_entries); |
| } |
| while (got_entries == NULL); |
| } |
| |
| /* Return the offset of an input bfd IBFD's GOT from the beginning of |
| the primary GOT. */ |
| static bfd_vma |
| mips_elf_adjust_gp (abfd, g, ibfd) |
| bfd *abfd; |
| struct mips_got_info *g; |
| bfd *ibfd; |
| { |
| if (g->bfd2got == NULL) |
| return 0; |
| |
| g = mips_elf_got_for_ibfd (g, ibfd); |
| if (! g) |
| return 0; |
| |
| BFD_ASSERT (g->next); |
| |
| g = g->next; |
| |
| return (g->local_gotno + g->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); |
| } |
| |
| /* Turn a single GOT that is too big for 16-bit addressing into |
| a sequence of GOTs, each one 16-bit addressable. */ |
| |
| static bfd_boolean |
| mips_elf_multi_got (abfd, info, g, got, pages) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| struct mips_got_info *g; |
| asection *got; |
| bfd_size_type pages; |
| { |
| struct mips_elf_got_per_bfd_arg got_per_bfd_arg; |
| struct mips_elf_set_global_got_offset_arg set_got_offset_arg; |
| struct mips_got_info *gg; |
| unsigned int assign; |
| |
| g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, |
| mips_elf_bfd2got_entry_eq, |
| (htab_del) NULL); |
| if (g->bfd2got == NULL) |
| return FALSE; |
| |
| got_per_bfd_arg.bfd2got = g->bfd2got; |
| got_per_bfd_arg.obfd = abfd; |
| got_per_bfd_arg.info = info; |
| |
| /* Count how many GOT entries each input bfd requires, creating a |
| map from bfd to got info while at that. */ |
| mips_elf_resolve_final_got_entries (g); |
| htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); |
| if (got_per_bfd_arg.obfd == NULL) |
| return FALSE; |
| |
| got_per_bfd_arg.current = NULL; |
| got_per_bfd_arg.primary = NULL; |
| /* Taking out PAGES entries is a worst-case estimate. We could |
| compute the maximum number of pages that each separate input bfd |
| uses, but it's probably not worth it. */ |
| got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (abfd) |
| / MIPS_ELF_GOT_SIZE (abfd)) |
| - MIPS_RESERVED_GOTNO - pages); |
| |
| /* Try to merge the GOTs of input bfds together, as long as they |
| don't seem to exceed the maximum GOT size, choosing one of them |
| to be the primary GOT. */ |
| htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); |
| if (got_per_bfd_arg.obfd == NULL) |
| return FALSE; |
| |
| /* If we find any suitable primary GOT, create an empty one. */ |
| if (got_per_bfd_arg.primary == NULL) |
| { |
| g->next = (struct mips_got_info *) |
| bfd_alloc (abfd, sizeof (struct mips_got_info)); |
| if (g->next == NULL) |
| return FALSE; |
| |
| g->next->global_gotsym = NULL; |
| g->next->global_gotno = 0; |
| g->next->local_gotno = 0; |
| g->next->assigned_gotno = 0; |
| g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, |
| mips_elf_multi_got_entry_eq, |
| (htab_del) NULL); |
| if (g->next->got_entries == NULL) |
| return FALSE; |
| g->next->bfd2got = NULL; |
| } |
| else |
| g->next = got_per_bfd_arg.primary; |
| g->next->next = got_per_bfd_arg.current; |
| |
| /* GG is now the master GOT, and G is the primary GOT. */ |
| gg = g; |
| g = g->next; |
| |
| /* Map the output bfd to the primary got. That's what we're going |
| to use for bfds that use GOT16 or GOT_PAGE relocations that we |
| didn't mark in check_relocs, and we want a quick way to find it. |
| We can't just use gg->next because we're going to reverse the |
| list. */ |
| { |
| struct mips_elf_bfd2got_hash *bfdgot; |
| void **bfdgotp; |
| |
| bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc |
| (abfd, sizeof (struct mips_elf_bfd2got_hash)); |
| |
| if (bfdgot == NULL) |
| return FALSE; |
| |
| bfdgot->bfd = abfd; |
| bfdgot->g = g; |
| bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); |
| |
| BFD_ASSERT (*bfdgotp == NULL); |
| *bfdgotp = bfdgot; |
| } |
| |
| /* The IRIX dynamic linker requires every symbol that is referenced |
| in a dynamic relocation to be present in the primary GOT, so |
| arrange for them to appear after those that are actually |
| referenced. |
| |
| GNU/Linux could very well do without it, but it would slow down |
| the dynamic linker, since it would have to resolve every dynamic |
| symbol referenced in other GOTs more than once, without help from |
| the cache. Also, knowing that every external symbol has a GOT |
| helps speed up the resolution of local symbols too, so GNU/Linux |
| follows IRIX's practice. |
| |
| The number 2 is used by mips_elf_sort_hash_table_f to count |
| global GOT symbols that are unreferenced in the primary GOT, with |
| an initial dynamic index computed from gg->assigned_gotno, where |
| the number of unreferenced global entries in the primary GOT is |
| preserved. */ |
| if (1) |
| { |
| gg->assigned_gotno = gg->global_gotno - g->global_gotno; |
| g->global_gotno = gg->global_gotno; |
| set_got_offset_arg.value = 2; |
| } |
| else |
| { |
| /* This could be used for dynamic linkers that don't optimize |
| symbol resolution while applying relocations so as to use |
| primary GOT entries or assuming the symbol is locally-defined. |
| With this code, we assign lower dynamic indices to global |
| symbols that are not referenced in the primary GOT, so that |
| their entries can be omitted. */ |
| gg->assigned_gotno = 0; |
| set_got_offset_arg.value = -1; |
| } |
| |
| /* Reorder dynamic symbols as described above (which behavior |
| depends on the setting of VALUE). */ |
| set_got_offset_arg.g = NULL; |
| htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, |
| &set_got_offset_arg); |
| set_got_offset_arg.value = 1; |
| htab_traverse (g->got_entries, mips_elf_set_global_got_offset, |
| &set_got_offset_arg); |
| if (! mips_elf_sort_hash_table (info, 1)) |
| return FALSE; |
| |
| /* Now go through the GOTs assigning them offset ranges. |
| [assigned_gotno, local_gotno[ will be set to the range of local |
| entries in each GOT. We can then compute the end of a GOT by |
| adding local_gotno to global_gotno. We reverse the list and make |
| it circular since then we'll be able to quickly compute the |
| beginning of a GOT, by computing the end of its predecessor. To |
| avoid special cases for the primary GOT, while still preserving |
| assertions that are valid for both single- and multi-got links, |
| we arrange for the main got struct to have the right number of |
| global entries, but set its local_gotno such that the initial |
| offset of the primary GOT is zero. Remember that the primary GOT |
| will become the last item in the circular linked list, so it |
| points back to the master GOT. */ |
| gg->local_gotno = -g->global_gotno; |
| gg->global_gotno = g->global_gotno; |
| assign = 0; |
| gg->next = gg; |
| |
| do |
| { |
| struct mips_got_info *gn; |
| |
| assign += MIPS_RESERVED_GOTNO; |
| g->assigned_gotno = assign; |
| g->local_gotno += assign + pages; |
| assign = g->local_gotno + g->global_gotno; |
| |
| /* Take g out of the direct list, and push it onto the reversed |
| list that gg points to. */ |
| gn = g->next; |
| g->next = gg->next; |
| gg->next = g; |
| g = gn; |
| } |
| while (g); |
| |
| got->_raw_size = (gg->next->local_gotno |
| + gg->next->global_gotno) * MIPS_ELF_GOT_SIZE (abfd); |
| |
| return TRUE; |
| } |
| |
| |
| /* Returns the first relocation of type r_type found, beginning with |
| RELOCATION. RELEND is one-past-the-end of the relocation table. */ |
| |
| static const Elf_Internal_Rela * |
| mips_elf_next_relocation (abfd, r_type, relocation, relend) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| unsigned int r_type; |
| const Elf_Internal_Rela *relocation; |
| const Elf_Internal_Rela *relend; |
| { |
| /* According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must be |
| immediately following. However, for the IRIX6 ABI, the next |
| relocation may be a composed relocation consisting of several |
| relocations for the same address. In that case, the R_MIPS_LO16 |
| relocation may occur as one of these. We permit a similar |
| extension in general, as that is useful for GCC. */ |
| while (relocation < relend) |
| { |
| if (ELF_R_TYPE (abfd, relocation->r_info) == r_type) |
| return relocation; |
| |
| ++relocation; |
| } |
| |
| /* We didn't find it. */ |
| bfd_set_error (bfd_error_bad_value); |
| return NULL; |
| } |
| |
| /* Return whether a relocation is against a local symbol. */ |
| |
| static bfd_boolean |
| mips_elf_local_relocation_p (input_bfd, relocation, local_sections, |
| check_forced) |
| bfd *input_bfd; |
| const Elf_Internal_Rela *relocation; |
| asection **local_sections; |
| bfd_boolean check_forced; |
| { |
| unsigned long r_symndx; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct mips_elf_link_hash_entry *h; |
| size_t extsymoff; |
| |
| r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; |
| |
| if (r_symndx < extsymoff) |
| return TRUE; |
| if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) |
| return TRUE; |
| |
| if (check_forced) |
| { |
| /* Look up the hash table to check whether the symbol |
| was forced local. */ |
| h = (struct mips_elf_link_hash_entry *) |
| elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; |
| /* Find the real hash-table entry for this symbol. */ |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| if ((h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0) |
| return TRUE; |
| } |
| |
| return FALSE; |
| } |
| |
| /* Sign-extend VALUE, which has the indicated number of BITS. */ |
| |
| bfd_vma |
| _bfd_mips_elf_sign_extend (value, bits) |
| bfd_vma value; |
| int bits; |
| { |
| if (value & ((bfd_vma) 1 << (bits - 1))) |
| /* VALUE is negative. */ |
| value |= ((bfd_vma) - 1) << bits; |
| |
| return value; |
| } |
| |
| /* Return non-zero if the indicated VALUE has overflowed the maximum |
| range expressable by a signed number with the indicated number of |
| BITS. */ |
| |
| static bfd_boolean |
| mips_elf_overflow_p (value, bits) |
| bfd_vma value; |
| int bits; |
| { |
| bfd_signed_vma svalue = (bfd_signed_vma) value; |
| |
| if (svalue > (1 << (bits - 1)) - 1) |
| /* The value is too big. */ |
| return TRUE; |
| else if (svalue < -(1 << (bits - 1))) |
| /* The value is too small. */ |
| return TRUE; |
| |
| /* All is well. */ |
| return FALSE; |
| } |
| |
| /* Calculate the %high function. */ |
| |
| static bfd_vma |
| mips_elf_high (value) |
| bfd_vma value; |
| { |
| return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; |
| } |
| |
| /* Calculate the %higher function. */ |
| |
| static bfd_vma |
| mips_elf_higher (value) |
| bfd_vma value ATTRIBUTE_UNUSED; |
| { |
| #ifdef BFD64 |
| return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; |
| #else |
| abort (); |
| return (bfd_vma) -1; |
| #endif |
| } |
| |
| /* Calculate the %highest function. */ |
| |
| static bfd_vma |
| mips_elf_highest (value) |
| bfd_vma value ATTRIBUTE_UNUSED; |
| { |
| #ifdef BFD64 |
| return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; |
| #else |
| abort (); |
| return (bfd_vma) -1; |
| #endif |
| } |
| |
| /* Create the .compact_rel section. */ |
| |
| static bfd_boolean |
| mips_elf_create_compact_rel_section (abfd, info) |
| bfd *abfd; |
| struct bfd_link_info *info ATTRIBUTE_UNUSED; |
| { |
| flagword flags; |
| register asection *s; |
| |
| if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) |
| { |
| flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED |
| | SEC_READONLY); |
| |
| s = bfd_make_section (abfd, ".compact_rel"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags) |
| || ! bfd_set_section_alignment (abfd, s, |
| MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return FALSE; |
| |
| s->_raw_size = sizeof (Elf32_External_compact_rel); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Create the .got section to hold the global offset table. */ |
| |
| static bfd_boolean |
| mips_elf_create_got_section (abfd, info, maybe_exclude) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| bfd_boolean maybe_exclude; |
| { |
| flagword flags; |
| register asection *s; |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| struct mips_got_info *g; |
| bfd_size_type amt; |
| |
| /* This function may be called more than once. */ |
| s = mips_elf_got_section (abfd, TRUE); |
| if (s) |
| { |
| if (! maybe_exclude) |
| s->flags &= ~SEC_EXCLUDE; |
| return TRUE; |
| } |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED); |
| |
| if (maybe_exclude) |
| flags |= SEC_EXCLUDE; |
| |
| /* We have to use an alignment of 2**4 here because this is hardcoded |
| in the function stub generation and in the linker script. */ |
| s = bfd_make_section (abfd, ".got"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags) |
| || ! bfd_set_section_alignment (abfd, s, 4)) |
| return FALSE; |
| |
| /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the |
| linker script because we don't want to define the symbol if we |
| are not creating a global offset table. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, |
| (bfd_vma) 0, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_OBJECT; |
| |
| if (info->shared |
| && ! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| amt = sizeof (struct mips_got_info); |
| g = (struct mips_got_info *) bfd_alloc (abfd, amt); |
| if (g == NULL) |
| return FALSE; |
| g->global_gotsym = NULL; |
| g->local_gotno = MIPS_RESERVED_GOTNO; |
| g->assigned_gotno = MIPS_RESERVED_GOTNO; |
| g->bfd2got = NULL; |
| g->next = NULL; |
| g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, |
| mips_elf_got_entry_eq, |
| (htab_del) NULL); |
| if (g->got_entries == NULL) |
| return FALSE; |
| mips_elf_section_data (s)->u.got_info = g; |
| mips_elf_section_data (s)->elf.this_hdr.sh_flags |
| |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| |
| return TRUE; |
| } |
| |
| /* Calculate the value produced by the RELOCATION (which comes from |
| the INPUT_BFD). The ADDEND is the addend to use for this |
| RELOCATION; RELOCATION->R_ADDEND is ignored. |
| |
| The result of the relocation calculation is stored in VALUEP. |
| REQUIRE_JALXP indicates whether or not the opcode used with this |
| relocation must be JALX. |
| |
| This function returns bfd_reloc_continue if the caller need take no |
| further action regarding this relocation, bfd_reloc_notsupported if |
| something goes dramatically wrong, bfd_reloc_overflow if an |
| overflow occurs, and bfd_reloc_ok to indicate success. */ |
| |
| static bfd_reloc_status_type |
| mips_elf_calculate_relocation (abfd, input_bfd, input_section, info, |
| relocation, addend, howto, local_syms, |
| local_sections, valuep, namep, |
| require_jalxp, save_addend) |
| bfd *abfd; |
| bfd *input_bfd; |
| asection *input_section; |
| struct bfd_link_info *info; |
| const Elf_Internal_Rela *relocation; |
| bfd_vma addend; |
| reloc_howto_type *howto; |
| Elf_Internal_Sym *local_syms; |
| asection **local_sections; |
| bfd_vma *valuep; |
| const char **namep; |
| bfd_boolean *require_jalxp; |
| bfd_boolean save_addend; |
| { |
| /* The eventual value we will return. */ |
| bfd_vma value; |
| /* The address of the symbol against which the relocation is |
| occurring. */ |
| bfd_vma symbol = 0; |
| /* The final GP value to be used for the relocatable, executable, or |
| shared object file being produced. */ |
| bfd_vma gp = MINUS_ONE; |
| /* The place (section offset or address) of the storage unit being |
| relocated. */ |
| bfd_vma p; |
| /* The value of GP used to create the relocatable object. */ |
| bfd_vma gp0 = MINUS_ONE; |
| /* The offset into the global offset table at which the address of |
| the relocation entry symbol, adjusted by the addend, resides |
| during execution. */ |
| bfd_vma g = MINUS_ONE; |
| /* The section in which the symbol referenced by the relocation is |
| located. */ |
| asection *sec = NULL; |
| struct mips_elf_link_hash_entry *h = NULL; |
| /* TRUE if the symbol referred to by this relocation is a local |
| symbol. */ |
| bfd_boolean local_p, was_local_p; |
| /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ |
| bfd_boolean gp_disp_p = FALSE; |
| Elf_Internal_Shdr *symtab_hdr; |
| size_t extsymoff; |
| unsigned long r_symndx; |
| int r_type; |
| /* TRUE if overflow occurred during the calculation of the |
| relocation value. */ |
| bfd_boolean overflowed_p; |
| /* TRUE if this relocation refers to a MIPS16 function. */ |
| bfd_boolean target_is_16_bit_code_p = FALSE; |
| |
| /* Parse the relocation. */ |
| r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); |
| r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| p = (input_section->output_section->vma |
| + input_section->output_offset |
| + relocation->r_offset); |
| |
| /* Assume that there will be no overflow. */ |
| overflowed_p = FALSE; |
| |
| /* Figure out whether or not the symbol is local, and get the offset |
| used in the array of hash table entries. */ |
| symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; |
| local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
| local_sections, FALSE); |
| was_local_p = local_p; |
| if (! elf_bad_symtab (input_bfd)) |
| extsymoff = symtab_hdr->sh_info; |
| else |
| { |
| /* The symbol table does not follow the rule that local symbols |
| must come before globals. */ |
| extsymoff = 0; |
| } |
| |
| /* Figure out the value of the symbol. */ |
| if (local_p) |
| { |
| Elf_Internal_Sym *sym; |
| |
| sym = local_syms + r_symndx; |
| sec = local_sections[r_symndx]; |
| |
| symbol = sec->output_section->vma + sec->output_offset; |
| if (ELF_ST_TYPE (sym->st_info) != STT_SECTION |
| || (sec->flags & SEC_MERGE)) |
| symbol += sym->st_value; |
| if ((sec->flags & SEC_MERGE) |
| && ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| { |
| addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); |
| addend -= symbol; |
| addend += sec->output_section->vma + sec->output_offset; |
| } |
| |
| /* MIPS16 text labels should be treated as odd. */ |
| if (sym->st_other == STO_MIPS16) |
| ++symbol; |
| |
| /* Record the name of this symbol, for our caller. */ |
| *namep = bfd_elf_string_from_elf_section (input_bfd, |
| symtab_hdr->sh_link, |
| sym->st_name); |
| if (*namep == '\0') |
| *namep = bfd_section_name (input_bfd, sec); |
| |
| target_is_16_bit_code_p = (sym->st_other == STO_MIPS16); |
| } |
| else |
| { |
| /* For global symbols we look up the symbol in the hash-table. */ |
| h = ((struct mips_elf_link_hash_entry *) |
| elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); |
| /* Find the real hash-table entry for this symbol. */ |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| /* Record the name of this symbol, for our caller. */ |
| *namep = h->root.root.root.string; |
| |
| /* See if this is the special _gp_disp symbol. Note that such a |
| symbol must always be a global symbol. */ |
| if (strcmp (h->root.root.root.string, "_gp_disp") == 0 |
| && ! NEWABI_P (input_bfd)) |
| { |
| /* Relocations against _gp_disp are permitted only with |
| R_MIPS_HI16 and R_MIPS_LO16 relocations. */ |
| if (r_type != R_MIPS_HI16 && r_type != R_MIPS_LO16) |
| return bfd_reloc_notsupported; |
| |
| gp_disp_p = TRUE; |
| } |
| /* If this symbol is defined, calculate its address. Note that |
| _gp_disp is a magic symbol, always implicitly defined by the |
| linker, so it's inappropriate to check to see whether or not |
| its defined. */ |
| else if ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.root.u.def.section) |
| { |
| sec = h->root.root.u.def.section; |
| if (sec->output_section) |
| symbol = (h->root.root.u.def.value |
| + sec->output_section->vma |
| + sec->output_offset); |
| else |
| symbol = h->root.root.u.def.value; |
| } |
| else if (h->root.root.type == bfd_link_hash_undefweak) |
| /* We allow relocations against undefined weak symbols, giving |
| it the value zero, so that you can undefined weak functions |
| and check to see if they exist by looking at their |
| addresses. */ |
| symbol = 0; |
| else if (info->shared |
| && !info->no_undefined |
| && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) |
| symbol = 0; |
| else if (strcmp (h->root.root.root.string, "_DYNAMIC_LINK") == 0 || |
| strcmp (h->root.root.root.string, "_DYNAMIC_LINKING") == 0) |
| { |
| /* If this is a dynamic link, we should have created a |
| _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol |
| in in _bfd_mips_elf_create_dynamic_sections. |
| Otherwise, we should define the symbol with a value of 0. |
| FIXME: It should probably get into the symbol table |
| somehow as well. */ |
| BFD_ASSERT (! info->shared); |
| BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); |
| symbol = 0; |
| } |
| else |
| { |
| if (! ((*info->callbacks->undefined_symbol) |
| (info, h->root.root.root.string, input_bfd, |
| input_section, relocation->r_offset, |
| (!info->shared || info->no_undefined |
| || ELF_ST_VISIBILITY (h->root.other))))) |
| return bfd_reloc_undefined; |
| symbol = 0; |
| } |
| |
| target_is_16_bit_code_p = (h->root.other == STO_MIPS16); |
| } |
| |
| /* If this is a 32- or 64-bit call to a 16-bit function with a stub, we |
| need to redirect the call to the stub, unless we're already *in* |
| a stub. */ |
| if (r_type != R_MIPS16_26 && !info->relocatable |
| && ((h != NULL && h->fn_stub != NULL) |
| || (local_p && elf_tdata (input_bfd)->local_stubs != NULL |
| && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) |
| && !mips_elf_stub_section_p (input_bfd, input_section)) |
| { |
| /* This is a 32- or 64-bit call to a 16-bit function. We should |
| have already noticed that we were going to need the |
| stub. */ |
| if (local_p) |
| sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; |
| else |
| { |
| BFD_ASSERT (h->need_fn_stub); |
| sec = h->fn_stub; |
| } |
| |
| symbol = sec->output_section->vma + sec->output_offset; |
| } |
| /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we |
| need to redirect the call to the stub. */ |
| else if (r_type == R_MIPS16_26 && !info->relocatable |
| && h != NULL |
| && (h->call_stub != NULL || h->call_fp_stub != NULL) |
| && !target_is_16_bit_code_p) |
| { |
| /* If both call_stub and call_fp_stub are defined, we can figure |
| out which one to use by seeing which one appears in the input |
| file. */ |
| if (h->call_stub != NULL && h->call_fp_stub != NULL) |
| { |
| asection *o; |
| |
| sec = NULL; |
| for (o = input_bfd->sections; o != NULL; o = o->next) |
| { |
| if (strncmp (bfd_get_section_name (input_bfd, o), |
| CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) |
| { |
| sec = h->call_fp_stub; |
| break; |
| } |
| } |
| if (sec == NULL) |
| sec = h->call_stub; |
| } |
| else if (h->call_stub != NULL) |
| sec = h->call_stub; |
| else |
| sec = h->call_fp_stub; |
| |
| BFD_ASSERT (sec->_raw_size > 0); |
| symbol = sec->output_section->vma + sec->output_offset; |
| } |
| |
| /* Calls from 16-bit code to 32-bit code and vice versa require the |
| special jalx instruction. */ |
| *require_jalxp = (!info->relocatable |
| && (((r_type == R_MIPS16_26) && !target_is_16_bit_code_p) |
| || ((r_type == R_MIPS_26) && target_is_16_bit_code_p))); |
| |
| local_p = mips_elf_local_relocation_p (input_bfd, relocation, |
| local_sections, TRUE); |
| |
| /* If we haven't already determined the GOT offset, or the GP value, |
| and we're going to need it, get it now. */ |
| switch (r_type) |
| { |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT_OFST: |
| /* If this symbol got a global GOT entry, we have to decay |
| GOT_PAGE/GOT_OFST to GOT_DISP/addend. */ |
| local_p = local_p || ! h |
| || (h->root.dynindx |
| < mips_elf_get_global_gotsym_index (elf_hash_table (info) |
| ->dynobj)); |
| if (local_p || r_type == R_MIPS_GOT_OFST) |
| break; |
| /* Fall through. */ |
| |
| case R_MIPS_CALL16: |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_CALL_LO16: |
| /* Find the index into the GOT where this value is located. */ |
| if (!local_p) |
| { |
| /* GOT_PAGE may take a non-zero addend, that is ignored in a |
| GOT_PAGE relocation that decays to GOT_DISP because the |
| symbol turns out to be global. The addend is then added |
| as GOT_OFST. */ |
| BFD_ASSERT (addend == 0 || r_type == R_MIPS_GOT_PAGE); |
| g = mips_elf_global_got_index (elf_hash_table (info)->dynobj, |
| input_bfd, |
| (struct elf_link_hash_entry *) h); |
| if (! elf_hash_table(info)->dynamic_sections_created |
| || (info->shared |
| && (info->symbolic || h->root.dynindx == -1) |
| && (h->root.elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR))) |
| { |
| /* This is a static link or a -Bsymbolic link. The |
| symbol is defined locally, or was forced to be local. |
| We must initialize this entry in the GOT. */ |
| bfd *tmpbfd = elf_hash_table (info)->dynobj; |
| asection *sgot = mips_elf_got_section (tmpbfd, FALSE); |
| MIPS_ELF_PUT_WORD (tmpbfd, symbol, sgot->contents + g); |
| } |
| } |
| else if (r_type == R_MIPS_GOT16 || r_type == R_MIPS_CALL16) |
| /* There's no need to create a local GOT entry here; the |
| calculation for a local GOT16 entry does not involve G. */ |
| break; |
| else |
| { |
| g = mips_elf_local_got_index (abfd, input_bfd, |
| info, symbol + addend); |
| if (g == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| } |
| |
| /* Convert GOT indices to actual offsets. */ |
| g = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, |
| abfd, input_bfd, g); |
| break; |
| |
| case R_MIPS_HI16: |
| case R_MIPS_LO16: |
| case R_MIPS16_GPREL: |
| case R_MIPS_GPREL16: |
| case R_MIPS_GPREL32: |
| case R_MIPS_LITERAL: |
| gp0 = _bfd_get_gp_value (input_bfd); |
| gp = _bfd_get_gp_value (abfd); |
| if (elf_hash_table (info)->dynobj) |
| gp += mips_elf_adjust_gp (abfd, |
| mips_elf_got_info |
| (elf_hash_table (info)->dynobj, NULL), |
| input_bfd); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Figure out what kind of relocation is being performed. */ |
| switch (r_type) |
| { |
| case R_MIPS_NONE: |
| return bfd_reloc_continue; |
| |
| case R_MIPS_16: |
| value = symbol + _bfd_mips_elf_sign_extend (addend, 16); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| if ((info->shared |
| || (elf_hash_table (info)->dynamic_sections_created |
| && h != NULL |
| && ((h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
| && ((h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0))) |
| && r_symndx != 0 |
| && (input_section->flags & SEC_ALLOC) != 0) |
| { |
| /* If we're creating a shared library, or this relocation is |
| against a symbol in a shared library, then we can't know |
| where the symbol will end up. So, we create a relocation |
| record in the output, and leave the job up to the dynamic |
| linker. */ |
| value = addend; |
| if (!mips_elf_create_dynamic_relocation (abfd, |
| info, |
| relocation, |
| h, |
| sec, |
| symbol, |
| &value, |
| input_section)) |
| return bfd_reloc_undefined; |
| } |
| else |
| { |
| if (r_type != R_MIPS_REL32) |
| value = symbol + addend; |
| else |
| value = addend; |
| } |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC32: |
| case R_MIPS_PC64: |
| case R_MIPS_GNU_REL_LO16: |
| value = symbol + addend - p; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_GNU_REL16_S2: |
| value = symbol + _bfd_mips_elf_sign_extend (addend << 2, 18) - p; |
| overflowed_p = mips_elf_overflow_p (value, 18); |
| value = (value >> 2) & howto->dst_mask; |
| break; |
| |
| case R_MIPS_GNU_REL_HI16: |
| /* Instead of subtracting 'p' here, we should be subtracting the |
| equivalent value for the LO part of the reloc, since the value |
| here is relative to that address. Because that's not easy to do, |
| we adjust 'addend' in _bfd_mips_elf_relocate_section(). See also |
| the comment there for more information. */ |
| value = mips_elf_high (addend + symbol - p); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS16_26: |
| /* The calculation for R_MIPS16_26 is just the same as for an |
| R_MIPS_26. It's only the storage of the relocated field into |
| the output file that's different. That's handled in |
| mips_elf_perform_relocation. So, we just fall through to the |
| R_MIPS_26 case here. */ |
| case R_MIPS_26: |
| if (local_p) |
| value = (((addend << 2) | ((p + 4) & 0xf0000000)) + symbol) >> 2; |
| else |
| value = (_bfd_mips_elf_sign_extend (addend << 2, 28) + symbol) >> 2; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_HI16: |
| if (!gp_disp_p) |
| { |
| value = mips_elf_high (addend + symbol); |
| value &= howto->dst_mask; |
| } |
| else |
| { |
| value = mips_elf_high (addend + gp - p); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| } |
| break; |
| |
| case R_MIPS_LO16: |
| if (!gp_disp_p) |
| value = (symbol + addend) & howto->dst_mask; |
| else |
| { |
| value = addend + gp - p + 4; |
| /* The MIPS ABI requires checking the R_MIPS_LO16 relocation |
| for overflow. But, on, say, IRIX5, relocations against |
| _gp_disp are normally generated from the .cpload |
| pseudo-op. It generates code that normally looks like |
| this: |
| |
| lui $gp,%hi(_gp_disp) |
| addiu $gp,$gp,%lo(_gp_disp) |
| addu $gp,$gp,$t9 |
| |
| Here $t9 holds the address of the function being called, |
| as required by the MIPS ELF ABI. The R_MIPS_LO16 |
| relocation can easily overflow in this situation, but the |
| R_MIPS_HI16 relocation will handle the overflow. |
| Therefore, we consider this a bug in the MIPS ABI, and do |
| not check for overflow here. */ |
| } |
| break; |
| |
| case R_MIPS_LITERAL: |
| /* Because we don't merge literal sections, we can handle this |
| just like R_MIPS_GPREL16. In the long run, we should merge |
| shared literals, and then we will need to additional work |
| here. */ |
| |
| /* Fall through. */ |
| |
| case R_MIPS16_GPREL: |
| /* The R_MIPS16_GPREL performs the same calculation as |
| R_MIPS_GPREL16, but stores the relocated bits in a different |
| order. We don't need to do anything special here; the |
| differences are handled in mips_elf_perform_relocation. */ |
| case R_MIPS_GPREL16: |
| /* Only sign-extend the addend if it was extracted from the |
| instruction. If the addend was separate, leave it alone, |
| otherwise we may lose significant bits. */ |
| if (howto->partial_inplace) |
| addend = _bfd_mips_elf_sign_extend (addend, 16); |
| value = symbol + addend - gp; |
| /* If the symbol was local, any earlier relocatable links will |
| have adjusted its addend with the gp offset, so compensate |
| for that now. Don't do it for symbols forced local in this |
| link, though, since they won't have had the gp offset applied |
| to them before. */ |
| if (was_local_p) |
| value += gp0; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GOT16: |
| case R_MIPS_CALL16: |
| if (local_p) |
| { |
| bfd_boolean forced; |
| |
| /* The special case is when the symbol is forced to be local. We |
| need the full address in the GOT since no R_MIPS_LO16 relocation |
| follows. */ |
| forced = ! mips_elf_local_relocation_p (input_bfd, relocation, |
| local_sections, FALSE); |
| value = mips_elf_got16_entry (abfd, input_bfd, info, |
| symbol + addend, forced); |
| if (value == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| value |
| = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, |
| abfd, input_bfd, value); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| } |
| |
| /* Fall through. */ |
| |
| case R_MIPS_GOT_DISP: |
| got_disp: |
| value = g; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GPREL32: |
| value = (addend + symbol + gp0 - gp); |
| if (!save_addend) |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PC16: |
| value = _bfd_mips_elf_sign_extend (addend, 16) + symbol - p; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_CALL_HI16: |
| /* We're allowed to handle these two relocations identically. |
| The dynamic linker is allowed to handle the CALL relocations |
| differently by creating a lazy evaluation stub. */ |
| value = g; |
| value = mips_elf_high (value); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_CALL_LO16: |
| value = g & howto->dst_mask; |
| break; |
| |
| case R_MIPS_GOT_PAGE: |
| /* GOT_PAGE relocations that reference non-local symbols decay |
| to GOT_DISP. The corresponding GOT_OFST relocation decays to |
| 0. */ |
| if (! local_p) |
| goto got_disp; |
| value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); |
| if (value == MINUS_ONE) |
| return bfd_reloc_outofrange; |
| value = mips_elf_got_offset_from_index (elf_hash_table (info)->dynobj, |
| abfd, input_bfd, value); |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_GOT_OFST: |
| if (local_p) |
| mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); |
| else |
| value = addend; |
| overflowed_p = mips_elf_overflow_p (value, 16); |
| break; |
| |
| case R_MIPS_SUB: |
| value = symbol - addend; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_HIGHER: |
| value = mips_elf_higher (addend + symbol); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_HIGHEST: |
| value = mips_elf_highest (addend + symbol); |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_SCN_DISP: |
| value = symbol + addend - sec->output_offset; |
| value &= howto->dst_mask; |
| break; |
| |
| case R_MIPS_PJUMP: |
| case R_MIPS_JALR: |
| /* Both of these may be ignored. R_MIPS_JALR is an optimization |
| hint; we could improve performance by honoring that hint. */ |
| return bfd_reloc_continue; |
| |
| case R_MIPS_GNU_VTINHERIT: |
| case R_MIPS_GNU_VTENTRY: |
| /* We don't do anything with these at present. */ |
| return bfd_reloc_continue; |
| |
| default: |
| /* An unrecognized relocation type. */ |
| return bfd_reloc_notsupported; |
| } |
| |
| /* Store the VALUE for our caller. */ |
| *valuep = value; |
| return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; |
| } |
| |
| /* Obtain the field relocated by RELOCATION. */ |
| |
| static bfd_vma |
| mips_elf_obtain_contents (howto, relocation, input_bfd, contents) |
| reloc_howto_type *howto; |
| const Elf_Internal_Rela *relocation; |
| bfd *input_bfd; |
| bfd_byte *contents; |
| { |
| bfd_vma x; |
| bfd_byte *location = contents + relocation->r_offset; |
| |
| /* Obtain the bytes. */ |
| x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); |
| |
| if ((ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_26 |
| || ELF_R_TYPE (input_bfd, relocation->r_info) == R_MIPS16_GPREL) |
| && bfd_little_endian (input_bfd)) |
| /* The two 16-bit words will be reversed on a little-endian system. |
| See mips_elf_perform_relocation for more details. */ |
| x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); |
| |
| return x; |
| } |
| |
| /* It has been determined that the result of the RELOCATION is the |
| VALUE. Use HOWTO to place VALUE into the output file at the |
| appropriate position. The SECTION is the section to which the |
| relocation applies. If REQUIRE_JALX is TRUE, then the opcode used |
| for the relocation must be either JAL or JALX, and it is |
| unconditionally converted to JALX. |
| |
| Returns FALSE if anything goes wrong. */ |
| |
| static bfd_boolean |
| mips_elf_perform_relocation (info, howto, relocation, value, input_bfd, |
| input_section, contents, require_jalx) |
| struct bfd_link_info *info; |
| reloc_howto_type *howto; |
| const Elf_Internal_Rela *relocation; |
| bfd_vma value; |
| bfd *input_bfd; |
| asection *input_section; |
| bfd_byte *contents; |
| bfd_boolean require_jalx; |
| { |
| bfd_vma x; |
| bfd_byte *location; |
| int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); |
| |
| /* Figure out where the relocation is occurring. */ |
| location = contents + relocation->r_offset; |
| |
| /* Obtain the current value. */ |
| x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); |
| |
| /* Clear the field we are setting. */ |
| x &= ~howto->dst_mask; |
| |
| /* If this is the R_MIPS16_26 relocation, we must store the |
| value in a funny way. */ |
| if (r_type == R_MIPS16_26) |
| { |
| /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. |
| Most mips16 instructions are 16 bits, but these instructions |
| are 32 bits. |
| |
| The format of these instructions is: |
| |
| +--------------+--------------------------------+ |
| ! JALX ! X! Imm 20:16 ! Imm 25:21 ! |
| +--------------+--------------------------------+ |
| ! Immediate 15:0 ! |
| +-----------------------------------------------+ |
| |
| JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. |
| Note that the immediate value in the first word is swapped. |
| |
| When producing a relocatable object file, R_MIPS16_26 is |
| handled mostly like R_MIPS_26. In particular, the addend is |
| stored as a straight 26-bit value in a 32-bit instruction. |
| (gas makes life simpler for itself by never adjusting a |
| R_MIPS16_26 reloc to be against a section, so the addend is |
| always zero). However, the 32 bit instruction is stored as 2 |
| 16-bit values, rather than a single 32-bit value. In a |
| big-endian file, the result is the same; in a little-endian |
| file, the two 16-bit halves of the 32 bit value are swapped. |
| This is so that a disassembler can recognize the jal |
| instruction. |
| |
| When doing a final link, R_MIPS16_26 is treated as a 32 bit |
| instruction stored as two 16-bit values. The addend A is the |
| contents of the targ26 field. The calculation is the same as |
| R_MIPS_26. When storing the calculated value, reorder the |
| immediate value as shown above, and don't forget to store the |
| value as two 16-bit values. |
| |
| To put it in MIPS ABI terms, the relocation field is T-targ26-16, |
| defined as |
| |
| big-endian: |
| +--------+----------------------+ |
| | | | |
| | | targ26-16 | |
| |31 26|25 0| |
| +--------+----------------------+ |
| |
| little-endian: |
| +----------+------+-------------+ |
| | | | | |
| | sub1 | | sub2 | |
| |0 9|10 15|16 31| |
| +----------+--------------------+ |
| where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is |
| ((sub1 << 16) | sub2)). |
| |
| When producing a relocatable object file, the calculation is |
| (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| When producing a fully linked file, the calculation is |
| let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) |
| ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) */ |
| |
| if (!info->relocatable) |
| /* Shuffle the bits according to the formula above. */ |
| value = (((value & 0x1f0000) << 5) |
| | ((value & 0x3e00000) >> 5) |
| | (value & 0xffff)); |
| } |
| else if (r_type == R_MIPS16_GPREL) |
| { |
| /* R_MIPS16_GPREL is used for GP-relative addressing in mips16 |
| mode. A typical instruction will have a format like this: |
| |
| +--------------+--------------------------------+ |
| ! EXTEND ! Imm 10:5 ! Imm 15:11 ! |
| +--------------+--------------------------------+ |
| ! Major ! rx ! ry ! Imm 4:0 ! |
| +--------------+--------------------------------+ |
| |
| EXTEND is the five bit value 11110. Major is the instruction |
| opcode. |
| |
| This is handled exactly like R_MIPS_GPREL16, except that the |
| addend is retrieved and stored as shown in this diagram; that |
| is, the Imm fields above replace the V-rel16 field. |
| |
| All we need to do here is shuffle the bits appropriately. As |
| above, the two 16-bit halves must be swapped on a |
| little-endian system. */ |
| value = (((value & 0x7e0) << 16) |
| | ((value & 0xf800) << 5) |
| | (value & 0x1f)); |
| } |
| |
| /* Set the field. */ |
| x |= (value & howto->dst_mask); |
| |
| /* If required, turn JAL into JALX. */ |
| if (require_jalx) |
| { |
| bfd_boolean ok; |
| bfd_vma opcode = x >> 26; |
| bfd_vma jalx_opcode; |
| |
| /* Check to see if the opcode is already JAL or JALX. */ |
| if (r_type == R_MIPS16_26) |
| { |
| ok = ((opcode == 0x6) || (opcode == 0x7)); |
| jalx_opcode = 0x7; |
| } |
| else |
| { |
| ok = ((opcode == 0x3) || (opcode == 0x1d)); |
| jalx_opcode = 0x1d; |
| } |
| |
| /* If the opcode is not JAL or JALX, there's a problem. */ |
| if (!ok) |
| { |
| (*_bfd_error_handler) |
| (_("%s: %s+0x%lx: jump to stub routine which is not jal"), |
| bfd_archive_filename (input_bfd), |
| input_section->name, |
| (unsigned long) relocation->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| /* Make this the JALX opcode. */ |
| x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); |
| } |
| |
| /* Swap the high- and low-order 16 bits on little-endian systems |
| when doing a MIPS16 relocation. */ |
| if ((r_type == R_MIPS16_GPREL || r_type == R_MIPS16_26) |
| && bfd_little_endian (input_bfd)) |
| x = (((x & 0xffff) << 16) | ((x & 0xffff0000) >> 16)); |
| |
| /* Put the value into the output. */ |
| bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); |
| return TRUE; |
| } |
| |
| /* Returns TRUE if SECTION is a MIPS16 stub section. */ |
| |
| static bfd_boolean |
| mips_elf_stub_section_p (abfd, section) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| asection *section; |
| { |
| const char *name = bfd_get_section_name (abfd, section); |
| |
| return (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0 |
| || strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 |
| || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0); |
| } |
| |
| /* Add room for N relocations to the .rel.dyn section in ABFD. */ |
| |
| static void |
| mips_elf_allocate_dynamic_relocations (abfd, n) |
| bfd *abfd; |
| unsigned int n; |
| { |
| asection *s; |
| |
| s = mips_elf_rel_dyn_section (abfd, FALSE); |
| BFD_ASSERT (s != NULL); |
| |
| if (s->_raw_size == 0) |
| { |
| /* Make room for a null element. */ |
| s->_raw_size += MIPS_ELF_REL_SIZE (abfd); |
| ++s->reloc_count; |
| } |
| s->_raw_size += n * MIPS_ELF_REL_SIZE (abfd); |
| } |
| |
| /* Create a rel.dyn relocation for the dynamic linker to resolve. REL |
| is the original relocation, which is now being transformed into a |
| dynamic relocation. The ADDENDP is adjusted if necessary; the |
| caller should store the result in place of the original addend. */ |
| |
| static bfd_boolean |
| mips_elf_create_dynamic_relocation (output_bfd, info, rel, h, sec, |
| symbol, addendp, input_section) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| const Elf_Internal_Rela *rel; |
| struct mips_elf_link_hash_entry *h; |
| asection *sec; |
| bfd_vma symbol; |
| bfd_vma *addendp; |
| asection *input_section; |
| { |
| Elf_Internal_Rela outrel[3]; |
| bfd_boolean skip; |
| asection *sreloc; |
| bfd *dynobj; |
| int r_type; |
| |
| r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| dynobj = elf_hash_table (info)->dynobj; |
| sreloc = mips_elf_rel_dyn_section (dynobj, FALSE); |
| BFD_ASSERT (sreloc != NULL); |
| BFD_ASSERT (sreloc->contents != NULL); |
| BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) |
| < sreloc->_raw_size); |
| |
| skip = FALSE; |
| outrel[0].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); |
| outrel[1].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); |
| outrel[2].r_offset = |
| _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); |
| |
| #if 0 |
| /* We begin by assuming that the offset for the dynamic relocation |
| is the same as for the original relocation. We'll adjust this |
| later to reflect the correct output offsets. */ |
| if (input_section->sec_info_type != ELF_INFO_TYPE_STABS) |
| { |
| outrel[1].r_offset = rel[1].r_offset; |
| outrel[2].r_offset = rel[2].r_offset; |
| } |
| else |
| { |
| /* Except that in a stab section things are more complex. |
| Because we compress stab information, the offset given in the |
| relocation may not be the one we want; we must let the stabs |
| machinery tell us the offset. */ |
| outrel[1].r_offset = outrel[0].r_offset; |
| outrel[2].r_offset = outrel[0].r_offset; |
| /* If we didn't need the relocation at all, this value will be |
| -1. */ |
| if (outrel[0].r_offset == (bfd_vma) -1) |
| skip = TRUE; |
| } |
| #endif |
| |
| if (outrel[0].r_offset == (bfd_vma) -1) |
| /* The relocation field has been deleted. */ |
| skip = TRUE; |
| else if (outrel[0].r_offset == (bfd_vma) -2) |
| { |
| /* The relocation field has been converted into a relative value of |
| some sort. Functions like _bfd_elf_write_section_eh_frame expect |
| the field to be fully relocated, so add in the symbol's value. */ |
| skip = TRUE; |
| *addendp += symbol; |
| } |
| |
| /* If we've decided to skip this relocation, just output an empty |
| record. Note that R_MIPS_NONE == 0, so that this call to memset |
| is a way of setting R_TYPE to R_MIPS_NONE. */ |
| if (skip) |
| memset (outrel, 0, sizeof (Elf_Internal_Rela) * 3); |
| else |
| { |
| long indx; |
| bfd_boolean defined_p; |
| |
| /* We must now calculate the dynamic symbol table index to use |
| in the relocation. */ |
| if (h != NULL |
| && (! info->symbolic || (h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| /* h->root.dynindx may be -1 if this symbol was marked to |
| become local. */ |
| && h->root.dynindx != -1) |
| { |
| indx = h->root.dynindx; |
| if (SGI_COMPAT (output_bfd)) |
| defined_p = ((h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) != 0); |
| else |
| /* ??? glibc's ld.so just adds the final GOT entry to the |
| relocation field. It therefore treats relocs against |
| defined symbols in the same way as relocs against |
| undefined symbols. */ |
| defined_p = FALSE; |
| } |
| else |
| { |
| if (sec != NULL && bfd_is_abs_section (sec)) |
| indx = 0; |
| else if (sec == NULL || sec->owner == NULL) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else |
| { |
| indx = elf_section_data (sec->output_section)->dynindx; |
| if (indx == 0) |
| abort (); |
| } |
| |
| /* Instead of generating a relocation using the section |
| symbol, we may as well make it a fully relative |
| relocation. We want to avoid generating relocations to |
| local symbols because we used to generate them |
| incorrectly, without adding the original symbol value, |
| which is mandated by the ABI for section symbols. In |
| order to give dynamic loaders and applications time to |
| phase out the incorrect use, we refrain from emitting |
| section-relative relocations. It's not like they're |
| useful, after all. This should be a bit more efficient |
| as well. */ |
| /* ??? Although this behavior is compatible with glibc's ld.so, |
| the ABI says that relocations against STN_UNDEF should have |
| a symbol value of 0. Irix rld honors this, so relocations |
| against STN_UNDEF have no effect. */ |
| if (!SGI_COMPAT (output_bfd)) |
| indx = 0; |
| defined_p = TRUE; |
| } |
| |
| /* If the relocation was previously an absolute relocation and |
| this symbol will not be referred to by the relocation, we must |
| adjust it by the value we give it in the dynamic symbol table. |
| Otherwise leave the job up to the dynamic linker. */ |
| if (defined_p && r_type != R_MIPS_REL32) |
| *addendp += symbol; |
| |
| /* The relocation is always an REL32 relocation because we don't |
| know where the shared library will wind up at load-time. */ |
| outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, |
| R_MIPS_REL32); |
| /* For strict adherence to the ABI specification, we should |
| generate a R_MIPS_64 relocation record by itself before the |
| _REL32/_64 record as well, such that the addend is read in as |
| a 64-bit value (REL32 is a 32-bit relocation, after all). |
| However, since none of the existing ELF64 MIPS dynamic |
| loaders seems to care, we don't waste space with these |
| artificial relocations. If this turns out to not be true, |
| mips_elf_allocate_dynamic_relocation() should be tweaked so |
| as to make room for a pair of dynamic relocations per |
| invocation if ABI_64_P, and here we should generate an |
| additional relocation record with R_MIPS_64 by itself for a |
| NULL symbol before this relocation record. */ |
| outrel[1].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0, |
| ABI_64_P (output_bfd) |
| ? R_MIPS_64 |
| : R_MIPS_NONE); |
| outrel[2].r_info = ELF_R_INFO (output_bfd, (unsigned long) 0, |
| R_MIPS_NONE); |
| |
| /* Adjust the output offset of the relocation to reference the |
| correct location in the output file. */ |
| outrel[0].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| outrel[1].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| outrel[2].r_offset += (input_section->output_section->vma |
| + input_section->output_offset); |
| } |
| |
| /* Put the relocation back out. We have to use the special |
| relocation outputter in the 64-bit case since the 64-bit |
| relocation format is non-standard. */ |
| if (ABI_64_P (output_bfd)) |
| { |
| (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) |
| (output_bfd, &outrel[0], |
| (sreloc->contents |
| + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); |
| } |
| else |
| bfd_elf32_swap_reloc_out |
| (output_bfd, &outrel[0], |
| (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); |
| |
| /* We've now added another relocation. */ |
| ++sreloc->reloc_count; |
| |
| /* Make sure the output section is writable. The dynamic linker |
| will be writing to it. */ |
| elf_section_data (input_section->output_section)->this_hdr.sh_flags |
| |= SHF_WRITE; |
| |
| /* On IRIX5, make an entry of compact relocation info. */ |
| if (! skip && IRIX_COMPAT (output_bfd) == ict_irix5) |
| { |
| asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); |
| bfd_byte *cr; |
| |
| if (scpt) |
| { |
| Elf32_crinfo cptrel; |
| |
| mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); |
| cptrel.vaddr = (rel->r_offset |
| + input_section->output_section->vma |
| + input_section->output_offset); |
| if (r_type == R_MIPS_REL32) |
| mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); |
| else |
| mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); |
| mips_elf_set_cr_dist2to (cptrel, 0); |
| cptrel.konst = *addendp; |
| |
| cr = (scpt->contents |
| + sizeof (Elf32_External_compact_rel)); |
| bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, |
| ((Elf32_External_crinfo *) cr |
| + scpt->reloc_count)); |
| ++scpt->reloc_count; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the MACH for a MIPS e_flags value. */ |
| |
| unsigned long |
| _bfd_elf_mips_mach (flags) |
| flagword flags; |
| { |
| switch (flags & EF_MIPS_MACH) |
| { |
| case E_MIPS_MACH_3900: |
| return bfd_mach_mips3900; |
| |
| case E_MIPS_MACH_4010: |
| return bfd_mach_mips4010; |
| |
| case E_MIPS_MACH_4100: |
| return bfd_mach_mips4100; |
| |
| case E_MIPS_MACH_4111: |
| return bfd_mach_mips4111; |
| |
| case E_MIPS_MACH_4120: |
| return bfd_mach_mips4120; |
| |
| case E_MIPS_MACH_4650: |
| return bfd_mach_mips4650; |
| |
| case E_MIPS_MACH_5400: |
| return bfd_mach_mips5400; |
| |
| case E_MIPS_MACH_5500: |
| return bfd_mach_mips5500; |
| |
| case E_MIPS_MACH_SB1: |
| return bfd_mach_mips_sb1; |
| |
| default: |
| switch (flags & EF_MIPS_ARCH) |
| { |
| default: |
| case E_MIPS_ARCH_1: |
| return bfd_mach_mips3000; |
| break; |
| |
| case E_MIPS_ARCH_2: |
| return bfd_mach_mips6000; |
| break; |
| |
| case E_MIPS_ARCH_3: |
| return bfd_mach_mips4000; |
| break; |
| |
| case E_MIPS_ARCH_4: |
| return bfd_mach_mips8000; |
| break; |
| |
| case E_MIPS_ARCH_5: |
| return bfd_mach_mips5; |
| break; |
| |
| case E_MIPS_ARCH_32: |
| return bfd_mach_mipsisa32; |
| break; |
| |
| case E_MIPS_ARCH_64: |
| return bfd_mach_mipsisa64; |
| break; |
| |
| case E_MIPS_ARCH_32R2: |
| return bfd_mach_mipsisa32r2; |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Return printable name for ABI. */ |
| |
| static INLINE char * |
| elf_mips_abi_name (abfd) |
| bfd *abfd; |
| { |
| flagword flags; |
| |
| flags = elf_elfheader (abfd)->e_flags; |
| switch (flags & EF_MIPS_ABI) |
| { |
| case 0: |
| if (ABI_N32_P (abfd)) |
| return "N32"; |
| else if (ABI_64_P (abfd)) |
| return "64"; |
| else |
| return "none"; |
| case E_MIPS_ABI_O32: |
| return "O32"; |
| case E_MIPS_ABI_O64: |
| return "O64"; |
| case E_MIPS_ABI_EABI32: |
| return "EABI32"; |
| case E_MIPS_ABI_EABI64: |
| return "EABI64"; |
| default: |
| return "unknown abi"; |
| } |
| } |
| |
| /* MIPS ELF uses two common sections. One is the usual one, and the |
| other is for small objects. All the small objects are kept |
| together, and then referenced via the gp pointer, which yields |
| faster assembler code. This is what we use for the small common |
| section. This approach is copied from ecoff.c. */ |
| static asection mips_elf_scom_section; |
| static asymbol mips_elf_scom_symbol; |
| static asymbol *mips_elf_scom_symbol_ptr; |
| |
| /* MIPS ELF also uses an acommon section, which represents an |
| allocated common symbol which may be overridden by a |
| definition in a shared library. */ |
| static asection mips_elf_acom_section; |
| static asymbol mips_elf_acom_symbol; |
| static asymbol *mips_elf_acom_symbol_ptr; |
| |
| /* Handle the special MIPS section numbers that a symbol may use. |
| This is used for both the 32-bit and the 64-bit ABI. */ |
| |
| void |
| _bfd_mips_elf_symbol_processing (abfd, asym) |
| bfd *abfd; |
| asymbol *asym; |
| { |
| elf_symbol_type *elfsym; |
| |
| elfsym = (elf_symbol_type *) asym; |
| switch (elfsym->internal_elf_sym.st_shndx) |
| { |
| case SHN_MIPS_ACOMMON: |
| /* This section is used in a dynamically linked executable file. |
| It is an allocated common section. The dynamic linker can |
| either resolve these symbols to something in a shared |
| library, or it can just leave them here. For our purposes, |
| we can consider these symbols to be in a new section. */ |
| if (mips_elf_acom_section.name == NULL) |
| { |
| /* Initialize the acommon section. */ |
| mips_elf_acom_section.name = ".acommon"; |
| mips_elf_acom_section.flags = SEC_ALLOC; |
| mips_elf_acom_section.output_section = &mips_elf_acom_section; |
| mips_elf_acom_section.symbol = &mips_elf_acom_symbol; |
| mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; |
| mips_elf_acom_symbol.name = ".acommon"; |
| mips_elf_acom_symbol.flags = BSF_SECTION_SYM; |
| mips_elf_acom_symbol.section = &mips_elf_acom_section; |
| mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; |
| } |
| asym->section = &mips_elf_acom_section; |
| break; |
| |
| case SHN_COMMON: |
| /* Common symbols less than the GP size are automatically |
| treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ |
| if (asym->value > elf_gp_size (abfd) |
| || IRIX_COMPAT (abfd) == ict_irix6) |
| break; |
| /* Fall through. */ |
| case SHN_MIPS_SCOMMON: |
| if (mips_elf_scom_section.name == NULL) |
| { |
| /* Initialize the small common section. */ |
| mips_elf_scom_section.name = ".scommon"; |
| mips_elf_scom_section.flags = SEC_IS_COMMON; |
| mips_elf_scom_section.output_section = &mips_elf_scom_section; |
| mips_elf_scom_section.symbol = &mips_elf_scom_symbol; |
| mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; |
| mips_elf_scom_symbol.name = ".scommon"; |
| mips_elf_scom_symbol.flags = BSF_SECTION_SYM; |
| mips_elf_scom_symbol.section = &mips_elf_scom_section; |
| mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; |
| } |
| asym->section = &mips_elf_scom_section; |
| asym->value = elfsym->internal_elf_sym.st_size; |
| break; |
| |
| case SHN_MIPS_SUNDEFINED: |
| asym->section = bfd_und_section_ptr; |
| break; |
| |
| #if 0 /* for SGI_COMPAT */ |
| case SHN_MIPS_TEXT: |
| asym->section = mips_elf_text_section_ptr; |
| break; |
| |
| case SHN_MIPS_DATA: |
| asym->section = mips_elf_data_section_ptr; |
| break; |
| #endif |
| } |
| } |
| |
| /* Work over a section just before writing it out. This routine is |
| used by both the 32-bit and the 64-bit ABI. FIXME: We recognize |
| sections that need the SHF_MIPS_GPREL flag by name; there has to be |
| a better way. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_section_processing (abfd, hdr) |
| bfd *abfd; |
| Elf_Internal_Shdr *hdr; |
| { |
| if (hdr->sh_type == SHT_MIPS_REGINFO |
| && hdr->sh_size > 0) |
| { |
| bfd_byte buf[4]; |
| |
| BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); |
| BFD_ASSERT (hdr->contents == NULL); |
| |
| if (bfd_seek (abfd, |
| hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, |
| SEEK_SET) != 0) |
| return FALSE; |
| H_PUT_32 (abfd, elf_gp (abfd), buf); |
| if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) |
| return FALSE; |
| } |
| |
| if (hdr->sh_type == SHT_MIPS_OPTIONS |
| && hdr->bfd_section != NULL |
| && mips_elf_section_data (hdr->bfd_section) != NULL |
| && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) |
| { |
| bfd_byte *contents, *l, *lend; |
| |
| /* We stored the section contents in the tdata field in the |
| set_section_contents routine. We save the section contents |
| so that we don't have to read them again. |
| At this point we know that elf_gp is set, so we can look |
| through the section contents to see if there is an |
| ODK_REGINFO structure. */ |
| |
| contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; |
| l = contents; |
| lend = contents + hdr->sh_size; |
| while (l + sizeof (Elf_External_Options) <= lend) |
| { |
| Elf_Internal_Options intopt; |
| |
| bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| &intopt); |
| if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
| { |
| bfd_byte buf[8]; |
| |
| if (bfd_seek (abfd, |
| (hdr->sh_offset |
| + (l - contents) |
| + sizeof (Elf_External_Options) |
| + (sizeof (Elf64_External_RegInfo) - 8)), |
| SEEK_SET) != 0) |
| return FALSE; |
| H_PUT_64 (abfd, elf_gp (abfd), buf); |
| if (bfd_bwrite (buf, (bfd_size_type) 8, abfd) != 8) |
| return FALSE; |
| } |
| else if (intopt.kind == ODK_REGINFO) |
| { |
| bfd_byte buf[4]; |
| |
| if (bfd_seek (abfd, |
| (hdr->sh_offset |
| + (l - contents) |
| + sizeof (Elf_External_Options) |
| + (sizeof (Elf32_External_RegInfo) - 4)), |
| SEEK_SET) != 0) |
| return FALSE; |
| H_PUT_32 (abfd, elf_gp (abfd), buf); |
| if (bfd_bwrite (buf, (bfd_size_type) 4, abfd) != 4) |
| return FALSE; |
| } |
| l += intopt.size; |
| } |
| } |
| |
| if (hdr->bfd_section != NULL) |
| { |
| const char *name = bfd_get_section_name (abfd, hdr->bfd_section); |
| |
| if (strcmp (name, ".sdata") == 0 |
| || strcmp (name, ".lit8") == 0 |
| || strcmp (name, ".lit4") == 0) |
| { |
| hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| hdr->sh_type = SHT_PROGBITS; |
| } |
| else if (strcmp (name, ".sbss") == 0) |
| { |
| hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; |
| hdr->sh_type = SHT_NOBITS; |
| } |
| else if (strcmp (name, ".srdata") == 0) |
| { |
| hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; |
| hdr->sh_type = SHT_PROGBITS; |
| } |
| else if (strcmp (name, ".compact_rel") == 0) |
| { |
| hdr->sh_flags = 0; |
| hdr->sh_type = SHT_PROGBITS; |
| } |
| else if (strcmp (name, ".rtproc") == 0) |
| { |
| if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) |
| { |
| unsigned int adjust; |
| |
| adjust = hdr->sh_size % hdr->sh_addralign; |
| if (adjust != 0) |
| hdr->sh_size += hdr->sh_addralign - adjust; |
| } |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Handle a MIPS specific section when reading an object file. This |
| is called when elfcode.h finds a section with an unknown type. |
| This routine supports both the 32-bit and 64-bit ELF ABI. |
| |
| FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure |
| how to. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_section_from_shdr (abfd, hdr, name) |
| bfd *abfd; |
| Elf_Internal_Shdr *hdr; |
| const char *name; |
| { |
| flagword flags = 0; |
| |
| /* There ought to be a place to keep ELF backend specific flags, but |
| at the moment there isn't one. We just keep track of the |
| sections by their name, instead. Fortunately, the ABI gives |
| suggested names for all the MIPS specific sections, so we will |
| probably get away with this. */ |
| switch (hdr->sh_type) |
| { |
| case SHT_MIPS_LIBLIST: |
| if (strcmp (name, ".liblist") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_MSYM: |
| if (strcmp (name, ".msym") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_CONFLICT: |
| if (strcmp (name, ".conflict") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_GPTAB: |
| if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_UCODE: |
| if (strcmp (name, ".ucode") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_DEBUG: |
| if (strcmp (name, ".mdebug") != 0) |
| return FALSE; |
| flags = SEC_DEBUGGING; |
| break; |
| case SHT_MIPS_REGINFO: |
| if (strcmp (name, ".reginfo") != 0 |
| || hdr->sh_size != sizeof (Elf32_External_RegInfo)) |
| return FALSE; |
| flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); |
| break; |
| case SHT_MIPS_IFACE: |
| if (strcmp (name, ".MIPS.interfaces") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_CONTENT: |
| if (strncmp (name, ".MIPS.content", sizeof ".MIPS.content" - 1) != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_OPTIONS: |
| if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_DWARF: |
| if (strncmp (name, ".debug_", sizeof ".debug_" - 1) != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_SYMBOL_LIB: |
| if (strcmp (name, ".MIPS.symlib") != 0) |
| return FALSE; |
| break; |
| case SHT_MIPS_EVENTS: |
| if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) != 0 |
| && strncmp (name, ".MIPS.post_rel", |
| sizeof ".MIPS.post_rel" - 1) != 0) |
| return FALSE; |
| break; |
| default: |
| return FALSE; |
| } |
| |
| if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name)) |
| return FALSE; |
| |
| if (flags) |
| { |
| if (! bfd_set_section_flags (abfd, hdr->bfd_section, |
| (bfd_get_section_flags (abfd, |
| hdr->bfd_section) |
| | flags))) |
| return FALSE; |
| } |
| |
| /* FIXME: We should record sh_info for a .gptab section. */ |
| |
| /* For a .reginfo section, set the gp value in the tdata information |
| from the contents of this section. We need the gp value while |
| processing relocs, so we just get it now. The .reginfo section |
| is not used in the 64-bit MIPS ELF ABI. */ |
| if (hdr->sh_type == SHT_MIPS_REGINFO) |
| { |
| Elf32_External_RegInfo ext; |
| Elf32_RegInfo s; |
| |
| if (! bfd_get_section_contents (abfd, hdr->bfd_section, (PTR) &ext, |
| (file_ptr) 0, |
| (bfd_size_type) sizeof ext)) |
| return FALSE; |
| bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); |
| elf_gp (abfd) = s.ri_gp_value; |
| } |
| |
| /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and |
| set the gp value based on what we find. We may see both |
| SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, |
| they should agree. */ |
| if (hdr->sh_type == SHT_MIPS_OPTIONS) |
| { |
| bfd_byte *contents, *l, *lend; |
| |
| contents = (bfd_byte *) bfd_malloc (hdr->sh_size); |
| if (contents == NULL) |
| return FALSE; |
| if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, |
| (file_ptr) 0, hdr->sh_size)) |
| { |
| free (contents); |
| return FALSE; |
| } |
| l = contents; |
| lend = contents + hdr->sh_size; |
| while (l + sizeof (Elf_External_Options) <= lend) |
| { |
| Elf_Internal_Options intopt; |
| |
| bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, |
| &intopt); |
| if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) |
| { |
| Elf64_Internal_RegInfo intreg; |
| |
| bfd_mips_elf64_swap_reginfo_in |
| (abfd, |
| ((Elf64_External_RegInfo *) |
| (l + sizeof (Elf_External_Options))), |
| &intreg); |
| elf_gp (abfd) = intreg.ri_gp_value; |
| } |
| else if (intopt.kind == ODK_REGINFO) |
| { |
| Elf32_RegInfo intreg; |
| |
| bfd_mips_elf32_swap_reginfo_in |
| (abfd, |
| ((Elf32_External_RegInfo *) |
| (l + sizeof (Elf_External_Options))), |
| &intreg); |
| elf_gp (abfd) = intreg.ri_gp_value; |
| } |
| l += intopt.size; |
| } |
| free (contents); |
| } |
| |
| return TRUE; |
| } |
| |
| /* Set the correct type for a MIPS ELF section. We do this by the |
| section name, which is a hack, but ought to work. This routine is |
| used by both the 32-bit and the 64-bit ABI. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_fake_sections (abfd, hdr, sec) |
| bfd *abfd; |
| Elf_Internal_Shdr *hdr; |
| asection *sec; |
| { |
| register const char *name; |
| |
| name = bfd_get_section_name (abfd, sec); |
| |
| if (strcmp (name, ".liblist") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_LIBLIST; |
| hdr->sh_info = sec->_raw_size / sizeof (Elf32_Lib); |
| /* The sh_link field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".conflict") == 0) |
| hdr->sh_type = SHT_MIPS_CONFLICT; |
| else if (strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0) |
| { |
| hdr->sh_type = SHT_MIPS_GPTAB; |
| hdr->sh_entsize = sizeof (Elf32_External_gptab); |
| /* The sh_info field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".ucode") == 0) |
| hdr->sh_type = SHT_MIPS_UCODE; |
| else if (strcmp (name, ".mdebug") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_DEBUG; |
| /* In a shared object on IRIX 5.3, the .mdebug section has an |
| entsize of 0. FIXME: Does this matter? */ |
| if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) |
| hdr->sh_entsize = 0; |
| else |
| hdr->sh_entsize = 1; |
| } |
| else if (strcmp (name, ".reginfo") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_REGINFO; |
| /* In a shared object on IRIX 5.3, the .reginfo section has an |
| entsize of 0x18. FIXME: Does this matter? */ |
| if (SGI_COMPAT (abfd)) |
| { |
| if ((abfd->flags & DYNAMIC) != 0) |
| hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| else |
| hdr->sh_entsize = 1; |
| } |
| else |
| hdr->sh_entsize = sizeof (Elf32_External_RegInfo); |
| } |
| else if (SGI_COMPAT (abfd) |
| && (strcmp (name, ".hash") == 0 |
| || strcmp (name, ".dynamic") == 0 |
| || strcmp (name, ".dynstr") == 0)) |
| { |
| if (SGI_COMPAT (abfd)) |
| hdr->sh_entsize = 0; |
| #if 0 |
| /* This isn't how the IRIX6 linker behaves. */ |
| hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; |
| #endif |
| } |
| else if (strcmp (name, ".got") == 0 |
| || strcmp (name, ".srdata") == 0 |
| || strcmp (name, ".sdata") == 0 |
| || strcmp (name, ".sbss") == 0 |
| || strcmp (name, ".lit4") == 0 |
| || strcmp (name, ".lit8") == 0) |
| hdr->sh_flags |= SHF_MIPS_GPREL; |
| else if (strcmp (name, ".MIPS.interfaces") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_IFACE; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| } |
| else if (strncmp (name, ".MIPS.content", strlen (".MIPS.content")) == 0) |
| { |
| hdr->sh_type = SHT_MIPS_CONTENT; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| /* The sh_info field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) |
| { |
| hdr->sh_type = SHT_MIPS_OPTIONS; |
| hdr->sh_entsize = 1; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| } |
| else if (strncmp (name, ".debug_", sizeof ".debug_" - 1) == 0) |
| hdr->sh_type = SHT_MIPS_DWARF; |
| else if (strcmp (name, ".MIPS.symlib") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_SYMBOL_LIB; |
| /* The sh_link and sh_info fields are set in |
| final_write_processing. */ |
| } |
| else if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0 |
| || strncmp (name, ".MIPS.post_rel", |
| sizeof ".MIPS.post_rel" - 1) == 0) |
| { |
| hdr->sh_type = SHT_MIPS_EVENTS; |
| hdr->sh_flags |= SHF_MIPS_NOSTRIP; |
| /* The sh_link field is set in final_write_processing. */ |
| } |
| else if (strcmp (name, ".msym") == 0) |
| { |
| hdr->sh_type = SHT_MIPS_MSYM; |
| hdr->sh_flags |= SHF_ALLOC; |
| hdr->sh_entsize = 8; |
| } |
| |
| /* The generic elf_fake_sections will set up REL_HDR using the default |
| kind of relocations. We used to set up a second header for the |
| non-default kind of relocations here, but only NewABI would use |
| these, and the IRIX ld doesn't like resulting empty RELA sections. |
| Thus we create those header only on demand now. */ |
| |
| return TRUE; |
| } |
| |
| /* Given a BFD section, try to locate the corresponding ELF section |
| index. This is used by both the 32-bit and the 64-bit ABI. |
| Actually, it's not clear to me that the 64-bit ABI supports these, |
| but for non-PIC objects we will certainly want support for at least |
| the .scommon section. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_section_from_bfd_section (abfd, sec, retval) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| asection *sec; |
| int *retval; |
| { |
| if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) |
| { |
| *retval = SHN_MIPS_SCOMMON; |
| return TRUE; |
| } |
| if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) |
| { |
| *retval = SHN_MIPS_ACOMMON; |
| return TRUE; |
| } |
| return FALSE; |
| } |
| |
| /* Hook called by the linker routine which adds symbols from an object |
| file. We must handle the special MIPS section numbers here. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| const Elf_Internal_Sym *sym; |
| const char **namep; |
| flagword *flagsp ATTRIBUTE_UNUSED; |
| asection **secp; |
| bfd_vma *valp; |
| { |
| if (SGI_COMPAT (abfd) |
| && (abfd->flags & DYNAMIC) != 0 |
| && strcmp (*namep, "_rld_new_interface") == 0) |
| { |
| /* Skip IRIX5 rld entry name. */ |
| *namep = NULL; |
| return TRUE; |
| } |
| |
| switch (sym->st_shndx) |
| { |
| case SHN_COMMON: |
| /* Common symbols less than the GP size are automatically |
| treated as SHN_MIPS_SCOMMON symbols. */ |
| if (sym->st_size > elf_gp_size (abfd) |
| || IRIX_COMPAT (abfd) == ict_irix6) |
| break; |
| /* Fall through. */ |
| case SHN_MIPS_SCOMMON: |
| *secp = bfd_make_section_old_way (abfd, ".scommon"); |
| (*secp)->flags |= SEC_IS_COMMON; |
| *valp = sym->st_size; |
| break; |
| |
| case SHN_MIPS_TEXT: |
| /* This section is used in a shared object. */ |
| if (elf_tdata (abfd)->elf_text_section == NULL) |
| { |
| asymbol *elf_text_symbol; |
| asection *elf_text_section; |
| bfd_size_type amt = sizeof (asection); |
| |
| elf_text_section = bfd_zalloc (abfd, amt); |
| if (elf_text_section == NULL) |
| return FALSE; |
| |
| amt = sizeof (asymbol); |
| elf_text_symbol = bfd_zalloc (abfd, amt); |
| if (elf_text_symbol == NULL) |
| return FALSE; |
| |
| /* Initialize the section. */ |
| |
| elf_tdata (abfd)->elf_text_section = elf_text_section; |
| elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; |
| |
| elf_text_section->symbol = elf_text_symbol; |
| elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; |
| |
| elf_text_section->name = ".text"; |
| elf_text_section->flags = SEC_NO_FLAGS; |
| elf_text_section->output_section = NULL; |
| elf_text_section->owner = abfd; |
| elf_text_symbol->name = ".text"; |
| elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| elf_text_symbol->section = elf_text_section; |
| } |
| /* This code used to do *secp = bfd_und_section_ptr if |
| info->shared. I don't know why, and that doesn't make sense, |
| so I took it out. */ |
| *secp = elf_tdata (abfd)->elf_text_section; |
| break; |
| |
| case SHN_MIPS_ACOMMON: |
| /* Fall through. XXX Can we treat this as allocated data? */ |
| case SHN_MIPS_DATA: |
| /* This section is used in a shared object. */ |
| if (elf_tdata (abfd)->elf_data_section == NULL) |
| { |
| asymbol *elf_data_symbol; |
| asection *elf_data_section; |
| bfd_size_type amt = sizeof (asection); |
| |
| elf_data_section = bfd_zalloc (abfd, amt); |
| if (elf_data_section == NULL) |
| return FALSE; |
| |
| amt = sizeof (asymbol); |
| elf_data_symbol = bfd_zalloc (abfd, amt); |
| if (elf_data_symbol == NULL) |
| return FALSE; |
| |
| /* Initialize the section. */ |
| |
| elf_tdata (abfd)->elf_data_section = elf_data_section; |
| elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; |
| |
| elf_data_section->symbol = elf_data_symbol; |
| elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; |
| |
| elf_data_section->name = ".data"; |
| elf_data_section->flags = SEC_NO_FLAGS; |
| elf_data_section->output_section = NULL; |
| elf_data_section->owner = abfd; |
| elf_data_symbol->name = ".data"; |
| elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; |
| elf_data_symbol->section = elf_data_section; |
| } |
| /* This code used to do *secp = bfd_und_section_ptr if |
| info->shared. I don't know why, and that doesn't make sense, |
| so I took it out. */ |
| *secp = elf_tdata (abfd)->elf_data_section; |
| break; |
| |
| case SHN_MIPS_SUNDEFINED: |
| *secp = bfd_und_section_ptr; |
| break; |
| } |
| |
| if (SGI_COMPAT (abfd) |
| && ! info->shared |
| && info->hash->creator == abfd->xvec |
| && strcmp (*namep, "__rld_obj_head") == 0) |
| { |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| |
| /* Mark __rld_obj_head as dynamic. */ |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, *namep, BSF_GLOBAL, *secp, |
| (bfd_vma) *valp, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_OBJECT; |
| |
| if (! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| mips_elf_hash_table (info)->use_rld_obj_head = TRUE; |
| } |
| |
| /* If this is a mips16 text symbol, add 1 to the value to make it |
| odd. This will cause something like .word SYM to come up with |
| the right value when it is loaded into the PC. */ |
| if (sym->st_other == STO_MIPS16) |
| ++*valp; |
| |
| return TRUE; |
| } |
| |
| /* This hook function is called before the linker writes out a global |
| symbol. We mark symbols as small common if appropriate. This is |
| also where we undo the increment of the value for a mips16 symbol. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_link_output_symbol_hook (abfd, info, name, sym, input_sec) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| struct bfd_link_info *info ATTRIBUTE_UNUSED; |
| const char *name ATTRIBUTE_UNUSED; |
| Elf_Internal_Sym *sym; |
| asection *input_sec; |
| { |
| /* If we see a common symbol, which implies a relocatable link, then |
| if a symbol was small common in an input file, mark it as small |
| common in the output file. */ |
| if (sym->st_shndx == SHN_COMMON |
| && strcmp (input_sec->name, ".scommon") == 0) |
| sym->st_shndx = SHN_MIPS_SCOMMON; |
| |
| if (sym->st_other == STO_MIPS16 |
| && (sym->st_value & 1) != 0) |
| --sym->st_value; |
| |
| return TRUE; |
| } |
| |
| /* Functions for the dynamic linker. */ |
| |
| /* Create dynamic sections when linking against a dynamic object. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_create_dynamic_sections (abfd, info) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| { |
| struct elf_link_hash_entry *h; |
| struct bfd_link_hash_entry *bh; |
| flagword flags; |
| register asection *s; |
| const char * const *namep; |
| |
| flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED | SEC_READONLY); |
| |
| /* Mips ABI requests the .dynamic section to be read only. */ |
| s = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (s != NULL) |
| { |
| if (! bfd_set_section_flags (abfd, s, flags)) |
| return FALSE; |
| } |
| |
| /* We need to create .got section. */ |
| if (! mips_elf_create_got_section (abfd, info, FALSE)) |
| return FALSE; |
| |
| if (! mips_elf_rel_dyn_section (elf_hash_table (info)->dynobj, TRUE)) |
| return FALSE; |
| |
| /* Create .stub section. */ |
| if (bfd_get_section_by_name (abfd, |
| MIPS_ELF_STUB_SECTION_NAME (abfd)) == NULL) |
| { |
| s = bfd_make_section (abfd, MIPS_ELF_STUB_SECTION_NAME (abfd)); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags | SEC_CODE) |
| || ! bfd_set_section_alignment (abfd, s, |
| MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return FALSE; |
| } |
| |
| if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) |
| && !info->shared |
| && bfd_get_section_by_name (abfd, ".rld_map") == NULL) |
| { |
| s = bfd_make_section (abfd, ".rld_map"); |
| if (s == NULL |
| || ! bfd_set_section_flags (abfd, s, flags &~ (flagword) SEC_READONLY) |
| || ! bfd_set_section_alignment (abfd, s, |
| MIPS_ELF_LOG_FILE_ALIGN (abfd))) |
| return FALSE; |
| } |
| |
| /* On IRIX5, we adjust add some additional symbols and change the |
| alignments of several sections. There is no ABI documentation |
| indicating that this is necessary on IRIX6, nor any evidence that |
| the linker takes such action. */ |
| if (IRIX_COMPAT (abfd) == ict_irix5) |
| { |
| for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) |
| { |
| bh = NULL; |
| if (! (_bfd_generic_link_add_one_symbol |
| (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, |
| (bfd_vma) 0, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_SECTION; |
| |
| if (! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| |
| /* We need to create a .compact_rel section. */ |
| if (SGI_COMPAT (abfd)) |
| { |
| if (!mips_elf_create_compact_rel_section (abfd, info)) |
| return FALSE; |
| } |
| |
| /* Change alignments of some sections. */ |
| s = bfd_get_section_by_name (abfd, ".hash"); |
| if (s != NULL) |
| bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| s = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (s != NULL) |
| bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| s = bfd_get_section_by_name (abfd, ".dynstr"); |
| if (s != NULL) |
| bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s != NULL) |
| bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| s = bfd_get_section_by_name (abfd, ".dynamic"); |
| if (s != NULL) |
| bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); |
| } |
| |
| if (!info->shared) |
| { |
| const char *name; |
| |
| name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; |
| bh = NULL; |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, |
| (bfd_vma) 0, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_SECTION; |
| |
| if (! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| |
| if (! mips_elf_hash_table (info)->use_rld_obj_head) |
| { |
| /* __rld_map is a four byte word located in the .data section |
| and is filled in by the rtld to contain a pointer to |
| the _r_debug structure. Its symbol value will be set in |
| _bfd_mips_elf_finish_dynamic_symbol. */ |
| s = bfd_get_section_by_name (abfd, ".rld_map"); |
| BFD_ASSERT (s != NULL); |
| |
| name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; |
| bh = NULL; |
| if (!(_bfd_generic_link_add_one_symbol |
| (info, abfd, name, BSF_GLOBAL, s, |
| (bfd_vma) 0, (const char *) NULL, FALSE, |
| get_elf_backend_data (abfd)->collect, &bh))) |
| return FALSE; |
| |
| h = (struct elf_link_hash_entry *) bh; |
| h->elf_link_hash_flags &= ~ELF_LINK_NON_ELF; |
| h->elf_link_hash_flags |= ELF_LINK_HASH_DEF_REGULAR; |
| h->type = STT_OBJECT; |
| |
| if (! bfd_elf32_link_record_dynamic_symbol (info, h)) |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Look through the relocs for a section during the first phase, and |
| allocate space in the global offset table. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_check_relocs (abfd, info, sec, relocs) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| asection *sec; |
| const Elf_Internal_Rela *relocs; |
| { |
| const char *name; |
| bfd *dynobj; |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| struct mips_got_info *g; |
| size_t extsymoff; |
| const Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *rel_end; |
| asection *sgot; |
| asection *sreloc; |
| struct elf_backend_data *bed; |
| |
| if (info->relocatable) |
| return TRUE; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
| |
| /* Check for the mips16 stub sections. */ |
| |
| name = bfd_get_section_name (abfd, sec); |
| if (strncmp (name, FN_STUB, sizeof FN_STUB - 1) == 0) |
| { |
| unsigned long r_symndx; |
| |
| /* Look at the relocation information to figure out which symbol |
| this is for. */ |
| |
| r_symndx = ELF_R_SYM (abfd, relocs->r_info); |
| |
| if (r_symndx < extsymoff |
| || sym_hashes[r_symndx - extsymoff] == NULL) |
| { |
| asection *o; |
| |
| /* This stub is for a local symbol. This stub will only be |
| needed if there is some relocation in this BFD, other |
| than a 16 bit function call, which refers to this symbol. */ |
| for (o = abfd->sections; o != NULL; o = o->next) |
| { |
| Elf_Internal_Rela *sec_relocs; |
| const Elf_Internal_Rela *r, *rend; |
| |
| /* We can ignore stub sections when looking for relocs. */ |
| if ((o->flags & SEC_RELOC) == 0 |
| || o->reloc_count == 0 |
| || strncmp (bfd_get_section_name (abfd, o), FN_STUB, |
| sizeof FN_STUB - 1) == 0 |
| || strncmp (bfd_get_section_name (abfd, o), CALL_STUB, |
| sizeof CALL_STUB - 1) == 0 |
| || strncmp (bfd_get_section_name (abfd, o), CALL_FP_STUB, |
| sizeof CALL_FP_STUB - 1) == 0) |
| continue; |
| |
| sec_relocs |
| = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, |
| (Elf_Internal_Rela *) NULL, |
| info->keep_memory); |
| if (sec_relocs == NULL) |
| return FALSE; |
| |
| rend = sec_relocs + o->reloc_count; |
| for (r = sec_relocs; r < rend; r++) |
| if (ELF_R_SYM (abfd, r->r_info) == r_symndx |
| && ELF_R_TYPE (abfd, r->r_info) != R_MIPS16_26) |
| break; |
| |
| if (elf_section_data (o)->relocs != sec_relocs) |
| free (sec_relocs); |
| |
| if (r < rend) |
| break; |
| } |
| |
| if (o == NULL) |
| { |
| /* There is no non-call reloc for this stub, so we do |
| not need it. Since this function is called before |
| the linker maps input sections to output sections, we |
| can easily discard it by setting the SEC_EXCLUDE |
| flag. */ |
| sec->flags |= SEC_EXCLUDE; |
| return TRUE; |
| } |
| |
| /* Record this stub in an array of local symbol stubs for |
| this BFD. */ |
| if (elf_tdata (abfd)->local_stubs == NULL) |
| { |
| unsigned long symcount; |
| asection **n; |
| bfd_size_type amt; |
| |
| if (elf_bad_symtab (abfd)) |
| symcount = NUM_SHDR_ENTRIES (symtab_hdr); |
| else |
| symcount = symtab_hdr->sh_info; |
| amt = symcount * sizeof (asection *); |
| n = (asection **) bfd_zalloc (abfd, amt); |
| if (n == NULL) |
| return FALSE; |
| elf_tdata (abfd)->local_stubs = n; |
| } |
| |
| elf_tdata (abfd)->local_stubs[r_symndx] = sec; |
| |
| /* We don't need to set mips16_stubs_seen in this case. |
| That flag is used to see whether we need to look through |
| the global symbol table for stubs. We don't need to set |
| it here, because we just have a local stub. */ |
| } |
| else |
| { |
| struct mips_elf_link_hash_entry *h; |
| |
| h = ((struct mips_elf_link_hash_entry *) |
| sym_hashes[r_symndx - extsymoff]); |
| |
| /* H is the symbol this stub is for. */ |
| |
| h->fn_stub = sec; |
| mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
| } |
| } |
| else if (strncmp (name, CALL_STUB, sizeof CALL_STUB - 1) == 0 |
| || strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) |
| { |
| unsigned long r_symndx; |
| struct mips_elf_link_hash_entry *h; |
| asection **loc; |
| |
| /* Look at the relocation information to figure out which symbol |
| this is for. */ |
| |
| r_symndx = ELF_R_SYM (abfd, relocs->r_info); |
| |
| if (r_symndx < extsymoff |
| || sym_hashes[r_symndx - extsymoff] == NULL) |
| { |
| /* This stub was actually built for a static symbol defined |
| in the same file. We assume that all static symbols in |
| mips16 code are themselves mips16, so we can simply |
| discard this stub. Since this function is called before |
| the linker maps input sections to output sections, we can |
| easily discard it by setting the SEC_EXCLUDE flag. */ |
| sec->flags |= SEC_EXCLUDE; |
| return TRUE; |
| } |
| |
| h = ((struct mips_elf_link_hash_entry *) |
| sym_hashes[r_symndx - extsymoff]); |
| |
| /* H is the symbol this stub is for. */ |
| |
| if (strncmp (name, CALL_FP_STUB, sizeof CALL_FP_STUB - 1) == 0) |
| loc = &h->call_fp_stub; |
| else |
| loc = &h->call_stub; |
| |
| /* If we already have an appropriate stub for this function, we |
| don't need another one, so we can discard this one. Since |
| this function is called before the linker maps input sections |
| to output sections, we can easily discard it by setting the |
| SEC_EXCLUDE flag. We can also discard this section if we |
| happen to already know that this is a mips16 function; it is |
| not necessary to check this here, as it is checked later, but |
| it is slightly faster to check now. */ |
| if (*loc != NULL || h->root.other == STO_MIPS16) |
| { |
| sec->flags |= SEC_EXCLUDE; |
| return TRUE; |
| } |
| |
| *loc = sec; |
| mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; |
| } |
| |
| if (dynobj == NULL) |
| { |
| sgot = NULL; |
| g = NULL; |
| } |
| else |
| { |
| sgot = mips_elf_got_section (dynobj, FALSE); |
| if (sgot == NULL) |
| g = NULL; |
| else |
| { |
| BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| g = mips_elf_section_data (sgot)->u.got_info; |
| BFD_ASSERT (g != NULL); |
| } |
| } |
| |
| sreloc = NULL; |
| bed = get_elf_backend_data (abfd); |
| rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; |
| for (rel = relocs; rel < rel_end; ++rel) |
| { |
| unsigned long r_symndx; |
| unsigned int r_type; |
| struct elf_link_hash_entry *h; |
| |
| r_symndx = ELF_R_SYM (abfd, rel->r_info); |
| r_type = ELF_R_TYPE (abfd, rel->r_info); |
| |
| if (r_symndx < extsymoff) |
| h = NULL; |
| else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) |
| { |
| (*_bfd_error_handler) |
| (_("%s: Malformed reloc detected for section %s"), |
| bfd_archive_filename (abfd), name); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| else |
| { |
| h = sym_hashes[r_symndx - extsymoff]; |
| |
| /* This may be an indirect symbol created because of a version. */ |
| if (h != NULL) |
| { |
| while (h->root.type == bfd_link_hash_indirect) |
| h = (struct elf_link_hash_entry *) h->root.u.i.link; |
| } |
| } |
| |
| /* Some relocs require a global offset table. */ |
| if (dynobj == NULL || sgot == NULL) |
| { |
| switch (r_type) |
| { |
| case R_MIPS_GOT16: |
| case R_MIPS_CALL16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT_OFST: |
| case R_MIPS_GOT_DISP: |
| if (dynobj == NULL) |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (! mips_elf_create_got_section (dynobj, info, FALSE)) |
| return FALSE; |
| g = mips_elf_got_info (dynobj, &sgot); |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| if (dynobj == NULL |
| && (info->shared || h != NULL) |
| && (sec->flags & SEC_ALLOC) != 0) |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| if (!h && (r_type == R_MIPS_CALL_LO16 |
| || r_type == R_MIPS_GOT_LO16 |
| || r_type == R_MIPS_GOT_DISP)) |
| { |
| /* We may need a local GOT entry for this relocation. We |
| don't count R_MIPS_GOT_PAGE because we can estimate the |
| maximum number of pages needed by looking at the size of |
| the segment. Similar comments apply to R_MIPS_GOT16 and |
| R_MIPS_CALL16. We don't count R_MIPS_GOT_HI16, or |
| R_MIPS_CALL_HI16 because these are always followed by an |
| R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ |
| if (! mips_elf_record_local_got_symbol (abfd, r_symndx, |
| rel->r_addend, g)) |
| return FALSE; |
| } |
| |
| switch (r_type) |
| { |
| case R_MIPS_CALL16: |
| if (h == NULL) |
| { |
| (*_bfd_error_handler) |
| (_("%s: CALL16 reloc at 0x%lx not against global symbol"), |
| bfd_archive_filename (abfd), (unsigned long) rel->r_offset); |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| /* Fall through. */ |
| |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| if (h != NULL) |
| { |
| /* This symbol requires a global offset table entry. */ |
| if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
| return FALSE; |
| |
| /* We need a stub, not a plt entry for the undefined |
| function. But we record it as if it needs plt. See |
| elf_adjust_dynamic_symbol in elflink.h. */ |
| h->elf_link_hash_flags |= ELF_LINK_HASH_NEEDS_PLT; |
| h->type = STT_FUNC; |
| } |
| break; |
| |
| case R_MIPS_GOT_PAGE: |
| /* If this is a global, overridable symbol, GOT_PAGE will |
| decay to GOT_DISP, so we'll need a GOT entry for it. */ |
| if (h == NULL) |
| break; |
| else |
| { |
| struct mips_elf_link_hash_entry *hmips = |
| (struct mips_elf_link_hash_entry *) h; |
| |
| while (hmips->root.root.type == bfd_link_hash_indirect |
| || hmips->root.root.type == bfd_link_hash_warning) |
| hmips = (struct mips_elf_link_hash_entry *) |
| hmips->root.root.u.i.link; |
| |
| if ((hmips->root.root.type == bfd_link_hash_defined |
| || hmips->root.root.type == bfd_link_hash_defweak) |
| && hmips->root.root.u.def.section |
| && ! (info->shared && ! info->symbolic |
| && ! (hmips->root.elf_link_hash_flags |
| & ELF_LINK_FORCED_LOCAL)) |
| /* If we've encountered any other relocation |
| referencing the symbol, we'll have marked it as |
| dynamic, and, even though we might be able to get |
| rid of the GOT entry should we know for sure all |
| previous relocations were GOT_PAGE ones, at this |
| point we can't tell, so just keep using the |
| symbol as dynamic. This is very important in the |
| multi-got case, since we don't decide whether to |
| decay GOT_PAGE to GOT_DISP on a per-GOT basis: if |
| the symbol is dynamic, we'll need a GOT entry for |
| every GOT in which the symbol is referenced with |
| a GOT_PAGE relocation. */ |
| && hmips->root.dynindx == -1) |
| break; |
| } |
| /* Fall through. */ |
| |
| case R_MIPS_GOT16: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_GOT_DISP: |
| /* This symbol requires a global offset table entry. */ |
| if (h && ! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
| return FALSE; |
| break; |
| |
| case R_MIPS_32: |
| case R_MIPS_REL32: |
| case R_MIPS_64: |
| if ((info->shared || h != NULL) |
| && (sec->flags & SEC_ALLOC) != 0) |
| { |
| if (sreloc == NULL) |
| { |
| sreloc = mips_elf_rel_dyn_section (dynobj, TRUE); |
| if (sreloc == NULL) |
| return FALSE; |
| } |
| #define MIPS_READONLY_SECTION (SEC_ALLOC | SEC_LOAD | SEC_READONLY) |
| if (info->shared) |
| { |
| /* When creating a shared object, we must copy these |
| reloc types into the output file as R_MIPS_REL32 |
| relocs. We make room for this reloc in the |
| .rel.dyn reloc section. */ |
| mips_elf_allocate_dynamic_relocations (dynobj, 1); |
| if ((sec->flags & MIPS_READONLY_SECTION) |
| == MIPS_READONLY_SECTION) |
| /* We tell the dynamic linker that there are |
| relocations against the text segment. */ |
| info->flags |= DF_TEXTREL; |
| } |
| else |
| { |
| struct mips_elf_link_hash_entry *hmips; |
| |
| /* We only need to copy this reloc if the symbol is |
| defined in a dynamic object. */ |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| ++hmips->possibly_dynamic_relocs; |
| if ((sec->flags & MIPS_READONLY_SECTION) |
| == MIPS_READONLY_SECTION) |
| /* We need it to tell the dynamic linker if there |
| are relocations against the text segment. */ |
| hmips->readonly_reloc = TRUE; |
| } |
| |
| /* Even though we don't directly need a GOT entry for |
| this symbol, a symbol must have a dynamic symbol |
| table index greater that DT_MIPS_GOTSYM if there are |
| dynamic relocations against it. */ |
| if (h != NULL) |
| { |
| if (dynobj == NULL) |
| elf_hash_table (info)->dynobj = dynobj = abfd; |
| if (! mips_elf_create_got_section (dynobj, info, TRUE)) |
| return FALSE; |
| g = mips_elf_got_info (dynobj, &sgot); |
| if (! mips_elf_record_global_got_symbol (h, abfd, info, g)) |
| return FALSE; |
| } |
| } |
| |
| if (SGI_COMPAT (abfd)) |
| mips_elf_hash_table (info)->compact_rel_size += |
| sizeof (Elf32_External_crinfo); |
| break; |
| |
| case R_MIPS_26: |
| case R_MIPS_GPREL16: |
| case R_MIPS_LITERAL: |
| case R_MIPS_GPREL32: |
| if (SGI_COMPAT (abfd)) |
| mips_elf_hash_table (info)->compact_rel_size += |
| sizeof (Elf32_External_crinfo); |
| break; |
| |
| /* This relocation describes the C++ object vtable hierarchy. |
| Reconstruct it for later use during GC. */ |
| case R_MIPS_GNU_VTINHERIT: |
| if (!_bfd_elf32_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| /* This relocation describes which C++ vtable entries are actually |
| used. Record for later use during GC. */ |
| case R_MIPS_GNU_VTENTRY: |
| if (!_bfd_elf32_gc_record_vtentry (abfd, sec, h, rel->r_offset)) |
| return FALSE; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* We must not create a stub for a symbol that has relocations |
| related to taking the function's address. */ |
| switch (r_type) |
| { |
| default: |
| if (h != NULL) |
| { |
| struct mips_elf_link_hash_entry *mh; |
| |
| mh = (struct mips_elf_link_hash_entry *) h; |
| mh->no_fn_stub = TRUE; |
| } |
| break; |
| case R_MIPS_CALL16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| case R_MIPS_JALR: |
| break; |
| } |
| |
| /* If this reloc is not a 16 bit call, and it has a global |
| symbol, then we will need the fn_stub if there is one. |
| References from a stub section do not count. */ |
| if (h != NULL |
| && r_type != R_MIPS16_26 |
| && strncmp (bfd_get_section_name (abfd, sec), FN_STUB, |
| sizeof FN_STUB - 1) != 0 |
| && strncmp (bfd_get_section_name (abfd, sec), CALL_STUB, |
| sizeof CALL_STUB - 1) != 0 |
| && strncmp (bfd_get_section_name (abfd, sec), CALL_FP_STUB, |
| sizeof CALL_FP_STUB - 1) != 0) |
| { |
| struct mips_elf_link_hash_entry *mh; |
| |
| mh = (struct mips_elf_link_hash_entry *) h; |
| mh->need_fn_stub = TRUE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| bfd_boolean |
| _bfd_mips_relax_section (abfd, sec, link_info, again) |
| bfd *abfd; |
| asection *sec; |
| struct bfd_link_info *link_info; |
| bfd_boolean *again; |
| { |
| Elf_Internal_Rela *internal_relocs; |
| Elf_Internal_Rela *irel, *irelend; |
| Elf_Internal_Shdr *symtab_hdr; |
| bfd_byte *contents = NULL; |
| bfd_byte *free_contents = NULL; |
| size_t extsymoff; |
| bfd_boolean changed_contents = FALSE; |
| bfd_vma sec_start = sec->output_section->vma + sec->output_offset; |
| Elf_Internal_Sym *isymbuf = NULL; |
| |
| /* We are not currently changing any sizes, so only one pass. */ |
| *again = FALSE; |
| |
| if (link_info->relocatable) |
| return TRUE; |
| |
| internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, (PTR) NULL, |
| (Elf_Internal_Rela *) NULL, |
| link_info->keep_memory); |
| if (internal_relocs == NULL) |
| return TRUE; |
| |
| irelend = internal_relocs + sec->reloc_count |
| * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; |
| |
| for (irel = internal_relocs; irel < irelend; irel++) |
| { |
| bfd_vma symval; |
| bfd_signed_vma sym_offset; |
| unsigned int r_type; |
| unsigned long r_symndx; |
| asection *sym_sec; |
| unsigned long instruction; |
| |
| /* Turn jalr into bgezal, and jr into beq, if they're marked |
| with a JALR relocation, that indicate where they jump to. |
| This saves some pipeline bubbles. */ |
| r_type = ELF_R_TYPE (abfd, irel->r_info); |
| if (r_type != R_MIPS_JALR) |
| continue; |
| |
| r_symndx = ELF_R_SYM (abfd, irel->r_info); |
| /* Compute the address of the jump target. */ |
| if (r_symndx >= extsymoff) |
| { |
| struct mips_elf_link_hash_entry *h |
| = ((struct mips_elf_link_hash_entry *) |
| elf_sym_hashes (abfd) [r_symndx - extsymoff]); |
| |
| while (h->root.root.type == bfd_link_hash_indirect |
| || h->root.root.type == bfd_link_hash_warning) |
| h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; |
| |
| /* If a symbol is undefined, or if it may be overridden, |
| skip it. */ |
| if (! ((h->root.root.type == bfd_link_hash_defined |
| || h->root.root.type == bfd_link_hash_defweak) |
| && h->root.root.u.def.section) |
| || (link_info->shared && ! link_info->symbolic |
| && ! (h->root.elf_link_hash_flags & ELF_LINK_FORCED_LOCAL))) |
| continue; |
| |
| sym_sec = h->root.root.u.def.section; |
| if (sym_sec->output_section) |
| symval = (h->root.root.u.def.value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset); |
| else |
| symval = h->root.root.u.def.value; |
| } |
| else |
| { |
| Elf_Internal_Sym *isym; |
| |
| /* Read this BFD's symbols if we haven't done so already. */ |
| if (isymbuf == NULL && symtab_hdr->sh_info != 0) |
| { |
| isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; |
| if (isymbuf == NULL) |
| isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, |
| symtab_hdr->sh_info, 0, |
| NULL, NULL, NULL); |
| if (isymbuf == NULL) |
| goto relax_return; |
| } |
| |
| isym = isymbuf + r_symndx; |
| if (isym->st_shndx == SHN_UNDEF) |
| continue; |
| else if (isym->st_shndx == SHN_ABS) |
| sym_sec = bfd_abs_section_ptr; |
| else if (isym->st_shndx == SHN_COMMON) |
| sym_sec = bfd_com_section_ptr; |
| else |
| sym_sec |
| = bfd_section_from_elf_index (abfd, isym->st_shndx); |
| symval = isym->st_value |
| + sym_sec->output_section->vma |
| + sym_sec->output_offset; |
| } |
| |
| /* Compute branch offset, from delay slot of the jump to the |
| branch target. */ |
| sym_offset = (symval + irel->r_addend) |
| - (sec_start + irel->r_offset + 4); |
| |
| /* Branch offset must be properly aligned. */ |
| if ((sym_offset & 3) != 0) |
| continue; |
| |
| sym_offset >>= 2; |
| |
| /* Check that it's in range. */ |
| if (sym_offset < -0x8000 || sym_offset >= 0x8000) |
| continue; |
| |
| /* Get the section contents if we haven't done so already. */ |
| if (contents == NULL) |
| { |
| /* Get cached copy if it exists. */ |
| if (elf_section_data (sec)->this_hdr.contents != NULL) |
| contents = elf_section_data (sec)->this_hdr.contents; |
| else |
| { |
| contents = (bfd_byte *) bfd_malloc (sec->_raw_size); |
| if (contents == NULL) |
| goto relax_return; |
| |
| free_contents = contents; |
| if (! bfd_get_section_contents (abfd, sec, contents, |
| (file_ptr) 0, sec->_raw_size)) |
| goto relax_return; |
| } |
| } |
| |
| instruction = bfd_get_32 (abfd, contents + irel->r_offset); |
| |
| /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ |
| if ((instruction & 0xfc1fffff) == 0x0000f809) |
| instruction = 0x04110000; |
| /* If it was jr <reg>, turn it into b <target>. */ |
| else if ((instruction & 0xfc1fffff) == 0x00000008) |
| instruction = 0x10000000; |
| else |
| continue; |
| |
| instruction |= (sym_offset & 0xffff); |
| bfd_put_32 (abfd, instruction, contents + irel->r_offset); |
| changed_contents = TRUE; |
| } |
| |
| if (contents != NULL |
| && elf_section_data (sec)->this_hdr.contents != contents) |
| { |
| if (!changed_contents && !link_info->keep_memory) |
| free (contents); |
| else |
| { |
| /* Cache the section contents for elf_link_input_bfd. */ |
| elf_section_data (sec)->this_hdr.contents = contents; |
| } |
| } |
| return TRUE; |
| |
| relax_return: |
| if (free_contents != NULL) |
| free (free_contents); |
| return FALSE; |
| } |
| |
| /* Adjust a symbol defined by a dynamic object and referenced by a |
| regular object. The current definition is in some section of the |
| dynamic object, but we're not including those sections. We have to |
| change the definition to something the rest of the link can |
| understand. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_adjust_dynamic_symbol (info, h) |
| struct bfd_link_info *info; |
| struct elf_link_hash_entry *h; |
| { |
| bfd *dynobj; |
| struct mips_elf_link_hash_entry *hmips; |
| asection *s; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| /* Make sure we know what is going on here. */ |
| BFD_ASSERT (dynobj != NULL |
| && ((h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) |
| || h->weakdef != NULL |
| || ((h->elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_DYNAMIC) != 0 |
| && (h->elf_link_hash_flags |
| & ELF_LINK_HASH_REF_REGULAR) != 0 |
| && (h->elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0))); |
| |
| /* If this symbol is defined in a dynamic object, we need to copy |
| any R_MIPS_32 or R_MIPS_REL32 relocs against it into the output |
| file. */ |
| hmips = (struct mips_elf_link_hash_entry *) h; |
| if (! info->relocatable |
| && hmips->possibly_dynamic_relocs != 0 |
| && (h->root.type == bfd_link_hash_defweak |
| || (h->elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0)) |
| { |
| mips_elf_allocate_dynamic_relocations (dynobj, |
| hmips->possibly_dynamic_relocs); |
| if (hmips->readonly_reloc) |
| /* We tell the dynamic linker that there are relocations |
| against the text segment. */ |
| info->flags |= DF_TEXTREL; |
| } |
| |
| /* For a function, create a stub, if allowed. */ |
| if (! hmips->no_fn_stub |
| && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) != 0) |
| { |
| if (! elf_hash_table (info)->dynamic_sections_created) |
| return TRUE; |
| |
| /* If this symbol is not defined in a regular file, then set |
| the symbol to the stub location. This is required to make |
| function pointers compare as equal between the normal |
| executable and the shared library. */ |
| if ((h->elf_link_hash_flags & ELF_LINK_HASH_DEF_REGULAR) == 0) |
| { |
| /* We need .stub section. */ |
| s = bfd_get_section_by_name (dynobj, |
| MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| BFD_ASSERT (s != NULL); |
| |
| h->root.u.def.section = s; |
| h->root.u.def.value = s->_raw_size; |
| |
| /* XXX Write this stub address somewhere. */ |
| h->plt.offset = s->_raw_size; |
| |
| /* Make room for this stub code. */ |
| s->_raw_size += MIPS_FUNCTION_STUB_SIZE; |
| |
| /* The last half word of the stub will be filled with the index |
| of this symbol in .dynsym section. */ |
| return TRUE; |
| } |
| } |
| else if ((h->type == STT_FUNC) |
| && (h->elf_link_hash_flags & ELF_LINK_HASH_NEEDS_PLT) == 0) |
| { |
| /* This will set the entry for this symbol in the GOT to 0, and |
| the dynamic linker will take care of this. */ |
| h->root.u.def.value = 0; |
| return TRUE; |
| } |
| |
| /* If this is a weak symbol, and there is a real definition, the |
| processor independent code will have arranged for us to see the |
| real definition first, and we can just use the same value. */ |
| if (h->weakdef != NULL) |
| { |
| BFD_ASSERT (h->weakdef->root.type == bfd_link_hash_defined |
| || h->weakdef->root.type == bfd_link_hash_defweak); |
| h->root.u.def.section = h->weakdef->root.u.def.section; |
| h->root.u.def.value = h->weakdef->root.u.def.value; |
| return TRUE; |
| } |
| |
| /* This is a reference to a symbol defined by a dynamic object which |
| is not a function. */ |
| |
| return TRUE; |
| } |
| |
| /* This function is called after all the input files have been read, |
| and the input sections have been assigned to output sections. We |
| check for any mips16 stub sections that we can discard. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_always_size_sections (output_bfd, info) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| { |
| asection *ri; |
| |
| bfd *dynobj; |
| asection *s; |
| struct mips_got_info *g; |
| int i; |
| bfd_size_type loadable_size = 0; |
| bfd_size_type local_gotno; |
| bfd *sub; |
| |
| /* The .reginfo section has a fixed size. */ |
| ri = bfd_get_section_by_name (output_bfd, ".reginfo"); |
| if (ri != NULL) |
| bfd_set_section_size (output_bfd, ri, |
| (bfd_size_type) sizeof (Elf32_External_RegInfo)); |
| |
| if (! (info->relocatable |
| || ! mips_elf_hash_table (info)->mips16_stubs_seen)) |
| mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
| mips_elf_check_mips16_stubs, |
| (PTR) NULL); |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| if (dynobj == NULL) |
| /* Relocatable links don't have it. */ |
| return TRUE; |
| |
| g = mips_elf_got_info (dynobj, &s); |
| if (s == NULL) |
| return TRUE; |
| |
| /* Calculate the total loadable size of the output. That |
| will give us the maximum number of GOT_PAGE entries |
| required. */ |
| for (sub = info->input_bfds; sub; sub = sub->link_next) |
| { |
| asection *subsection; |
| |
| for (subsection = sub->sections; |
| subsection; |
| subsection = subsection->next) |
| { |
| if ((subsection->flags & SEC_ALLOC) == 0) |
| continue; |
| loadable_size += ((subsection->_raw_size + 0xf) |
| &~ (bfd_size_type) 0xf); |
| } |
| } |
| |
| /* There has to be a global GOT entry for every symbol with |
| a dynamic symbol table index of DT_MIPS_GOTSYM or |
| higher. Therefore, it make sense to put those symbols |
| that need GOT entries at the end of the symbol table. We |
| do that here. */ |
| if (! mips_elf_sort_hash_table (info, 1)) |
| return FALSE; |
| |
| if (g->global_gotsym != NULL) |
| i = elf_hash_table (info)->dynsymcount - g->global_gotsym->dynindx; |
| else |
| /* If there are no global symbols, or none requiring |
| relocations, then GLOBAL_GOTSYM will be NULL. */ |
| i = 0; |
| |
| /* In the worst case, we'll get one stub per dynamic symbol, plus |
| one to account for the dummy entry at the end required by IRIX |
| rld. */ |
| loadable_size += MIPS_FUNCTION_STUB_SIZE * (i + 1); |
| |
| /* Assume there are two loadable segments consisting of |
| contiguous sections. Is 5 enough? */ |
| local_gotno = (loadable_size >> 16) + 5; |
| |
| g->local_gotno += local_gotno; |
| s->_raw_size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); |
| |
| g->global_gotno = i; |
| s->_raw_size += i * MIPS_ELF_GOT_SIZE (output_bfd); |
| |
| if (s->_raw_size > MIPS_ELF_GOT_MAX_SIZE (output_bfd) |
| && ! mips_elf_multi_got (output_bfd, info, g, s, local_gotno)) |
| return FALSE; |
| |
| return TRUE; |
| } |
| |
| /* Set the sizes of the dynamic sections. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_size_dynamic_sections (output_bfd, info) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| { |
| bfd *dynobj; |
| asection *s; |
| bfd_boolean reltext; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| BFD_ASSERT (dynobj != NULL); |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Set the contents of the .interp section to the interpreter. */ |
| if (! info->shared) |
| { |
| s = bfd_get_section_by_name (dynobj, ".interp"); |
| BFD_ASSERT (s != NULL); |
| s->_raw_size |
| = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; |
| s->contents |
| = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); |
| } |
| } |
| |
| /* The check_relocs and adjust_dynamic_symbol entry points have |
| determined the sizes of the various dynamic sections. Allocate |
| memory for them. */ |
| reltext = FALSE; |
| for (s = dynobj->sections; s != NULL; s = s->next) |
| { |
| const char *name; |
| bfd_boolean strip; |
| |
| /* It's OK to base decisions on the section name, because none |
| of the dynobj section names depend upon the input files. */ |
| name = bfd_get_section_name (dynobj, s); |
| |
| if ((s->flags & SEC_LINKER_CREATED) == 0) |
| continue; |
| |
| strip = FALSE; |
| |
| if (strncmp (name, ".rel", 4) == 0) |
| { |
| if (s->_raw_size == 0) |
| { |
| /* We only strip the section if the output section name |
| has the same name. Otherwise, there might be several |
| input sections for this output section. FIXME: This |
| code is probably not needed these days anyhow, since |
| the linker now does not create empty output sections. */ |
| if (s->output_section != NULL |
| && strcmp (name, |
| bfd_get_section_name (s->output_section->owner, |
| s->output_section)) == 0) |
| strip = TRUE; |
| } |
| else |
| { |
| const char *outname; |
| asection *target; |
| |
| /* If this relocation section applies to a read only |
| section, then we probably need a DT_TEXTREL entry. |
| If the relocation section is .rel.dyn, we always |
| assert a DT_TEXTREL entry rather than testing whether |
| there exists a relocation to a read only section or |
| not. */ |
| outname = bfd_get_section_name (output_bfd, |
| s->output_section); |
| target = bfd_get_section_by_name (output_bfd, outname + 4); |
| if ((target != NULL |
| && (target->flags & SEC_READONLY) != 0 |
| && (target->flags & SEC_ALLOC) != 0) |
| || strcmp (outname, ".rel.dyn") == 0) |
| reltext = TRUE; |
| |
| /* We use the reloc_count field as a counter if we need |
| to copy relocs into the output file. */ |
| if (strcmp (name, ".rel.dyn") != 0) |
| s->reloc_count = 0; |
| |
| /* If combreloc is enabled, elf_link_sort_relocs() will |
| sort relocations, but in a different way than we do, |
| and before we're done creating relocations. Also, it |
| will move them around between input sections' |
| relocation's contents, so our sorting would be |
| broken, so don't let it run. */ |
| info->combreloc = 0; |
| } |
| } |
| else if (strncmp (name, ".got", 4) == 0) |
| { |
| /* _bfd_mips_elf_always_size_sections() has already done |
| most of the work, but some symbols may have been mapped |
| to versions that we must now resolve in the got_entries |
| hash tables. */ |
| struct mips_got_info *gg = mips_elf_got_info (dynobj, NULL); |
| struct mips_got_info *g = gg; |
| struct mips_elf_set_global_got_offset_arg set_got_offset_arg; |
| unsigned int needed_relocs = 0; |
| |
| if (gg->next) |
| { |
| set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (output_bfd); |
| set_got_offset_arg.info = info; |
| |
| mips_elf_resolve_final_got_entries (gg); |
| for (g = gg->next; g && g->next != gg; g = g->next) |
| { |
| unsigned int save_assign; |
| |
| mips_elf_resolve_final_got_entries (g); |
| |
| /* Assign offsets to global GOT entries. */ |
| save_assign = g->assigned_gotno; |
| g->assigned_gotno = g->local_gotno; |
| set_got_offset_arg.g = g; |
| set_got_offset_arg.needed_relocs = 0; |
| htab_traverse (g->got_entries, |
| mips_elf_set_global_got_offset, |
| &set_got_offset_arg); |
| needed_relocs += set_got_offset_arg.needed_relocs; |
| BFD_ASSERT (g->assigned_gotno - g->local_gotno |
| <= g->global_gotno); |
| |
| g->assigned_gotno = save_assign; |
| if (info->shared) |
| { |
| needed_relocs += g->local_gotno - g->assigned_gotno; |
| BFD_ASSERT (g->assigned_gotno == g->next->local_gotno |
| + g->next->global_gotno |
| + MIPS_RESERVED_GOTNO); |
| } |
| } |
| |
| if (needed_relocs) |
| mips_elf_allocate_dynamic_relocations (dynobj, needed_relocs); |
| } |
| } |
| else if (strcmp (name, MIPS_ELF_STUB_SECTION_NAME (output_bfd)) == 0) |
| { |
| /* IRIX rld assumes that the function stub isn't at the end |
| of .text section. So put a dummy. XXX */ |
| s->_raw_size += MIPS_FUNCTION_STUB_SIZE; |
| } |
| else if (! info->shared |
| && ! mips_elf_hash_table (info)->use_rld_obj_head |
| && strncmp (name, ".rld_map", 8) == 0) |
| { |
| /* We add a room for __rld_map. It will be filled in by the |
| rtld to contain a pointer to the _r_debug structure. */ |
| s->_raw_size += 4; |
| } |
| else if (SGI_COMPAT (output_bfd) |
| && strncmp (name, ".compact_rel", 12) == 0) |
| s->_raw_size += mips_elf_hash_table (info)->compact_rel_size; |
| else if (strncmp (name, ".init", 5) != 0) |
| { |
| /* It's not one of our sections, so don't allocate space. */ |
| continue; |
| } |
| |
| if (strip) |
| { |
| _bfd_strip_section_from_output (info, s); |
| continue; |
| } |
| |
| /* Allocate memory for the section contents. */ |
| s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->_raw_size); |
| if (s->contents == NULL && s->_raw_size != 0) |
| { |
| bfd_set_error (bfd_error_no_memory); |
| return FALSE; |
| } |
| } |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| /* Add some entries to the .dynamic section. We fill in the |
| values later, in _bfd_mips_elf_finish_dynamic_sections, but we |
| must add the entries now so that we get the correct size for |
| the .dynamic section. The DT_DEBUG entry is filled in by the |
| dynamic linker and used by the debugger. */ |
| if (! info->shared) |
| { |
| /* SGI object has the equivalence of DT_DEBUG in the |
| DT_MIPS_RLD_MAP entry. */ |
| if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) |
| return FALSE; |
| if (!SGI_COMPAT (output_bfd)) |
| { |
| if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) |
| return FALSE; |
| } |
| } |
| else |
| { |
| /* Shared libraries on traditional mips have DT_DEBUG. */ |
| if (!SGI_COMPAT (output_bfd)) |
| { |
| if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) |
| return FALSE; |
| } |
| } |
| |
| if (reltext && SGI_COMPAT (output_bfd)) |
| info->flags |= DF_TEXTREL; |
| |
| if ((info->flags & DF_TEXTREL) != 0) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) |
| return FALSE; |
| } |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) |
| return FALSE; |
| |
| if (mips_elf_rel_dyn_section (dynobj, FALSE)) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) |
| return FALSE; |
| } |
| |
| if (SGI_COMPAT (output_bfd)) |
| { |
| if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICTNO, 0)) |
| return FALSE; |
| } |
| |
| if (SGI_COMPAT (output_bfd)) |
| { |
| if (!MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLISTNO, 0)) |
| return FALSE; |
| } |
| |
| if (bfd_get_section_by_name (dynobj, ".conflict") != NULL) |
| { |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_CONFLICT, 0)) |
| return FALSE; |
| |
| s = bfd_get_section_by_name (dynobj, ".liblist"); |
| BFD_ASSERT (s != NULL); |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LIBLIST, 0)) |
| return FALSE; |
| } |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) |
| return FALSE; |
| |
| #if 0 |
| /* Time stamps in executable files are a bad idea. */ |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_TIME_STAMP, 0)) |
| return FALSE; |
| #endif |
| |
| #if 0 /* FIXME */ |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_ICHECKSUM, 0)) |
| return FALSE; |
| #endif |
| |
| #if 0 /* FIXME */ |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_IVERSION, 0)) |
| return FALSE; |
| #endif |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) |
| return FALSE; |
| |
| if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) |
| return FALSE; |
| |
| if (IRIX_COMPAT (dynobj) == ict_irix5 |
| && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) |
| return FALSE; |
| |
| if (IRIX_COMPAT (dynobj) == ict_irix6 |
| && (bfd_get_section_by_name |
| (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) |
| && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Relocate a MIPS ELF section. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_relocate_section (output_bfd, info, input_bfd, input_section, |
| contents, relocs, local_syms, local_sections) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| bfd *input_bfd; |
| asection *input_section; |
| bfd_byte *contents; |
| Elf_Internal_Rela *relocs; |
| Elf_Internal_Sym *local_syms; |
| asection **local_sections; |
| { |
| Elf_Internal_Rela *rel; |
| const Elf_Internal_Rela *relend; |
| bfd_vma addend = 0; |
| bfd_boolean use_saved_addend_p = FALSE; |
| struct elf_backend_data *bed; |
| |
| bed = get_elf_backend_data (output_bfd); |
| relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; |
| for (rel = relocs; rel < relend; ++rel) |
| { |
| const char *name; |
| bfd_vma value; |
| reloc_howto_type *howto; |
| bfd_boolean require_jalx; |
| /* TRUE if the relocation is a RELA relocation, rather than a |
| REL relocation. */ |
| bfd_boolean rela_relocation_p = TRUE; |
| unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); |
| const char * msg = (const char *) NULL; |
| |
| /* Find the relocation howto for this relocation. */ |
| if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) |
| { |
| /* Some 32-bit code uses R_MIPS_64. In particular, people use |
| 64-bit code, but make sure all their addresses are in the |
| lowermost or uppermost 32-bit section of the 64-bit address |
| space. Thus, when they use an R_MIPS_64 they mean what is |
| usually meant by R_MIPS_32, with the exception that the |
| stored value is sign-extended to 64 bits. */ |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); |
| |
| /* On big-endian systems, we need to lie about the position |
| of the reloc. */ |
| if (bfd_big_endian (input_bfd)) |
| rel->r_offset += 4; |
| } |
| else |
| /* NewABI defaults to RELA relocations. */ |
| howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, |
| NEWABI_P (input_bfd) |
| && (MIPS_RELOC_RELA_P |
| (input_bfd, input_section, |
| rel - relocs))); |
| |
| if (!use_saved_addend_p) |
| { |
| Elf_Internal_Shdr *rel_hdr; |
| |
| /* If these relocations were originally of the REL variety, |
| we must pull the addend out of the field that will be |
| relocated. Otherwise, we simply use the contents of the |
| RELA relocation. To determine which flavor or relocation |
| this is, we depend on the fact that the INPUT_SECTION's |
| REL_HDR is read before its REL_HDR2. */ |
| rel_hdr = &elf_section_data (input_section)->rel_hdr; |
| if ((size_t) (rel - relocs) |
| >= (NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel)) |
| rel_hdr = elf_section_data (input_section)->rel_hdr2; |
| if (rel_hdr->sh_entsize == MIPS_ELF_REL_SIZE (input_bfd)) |
| { |
| /* Note that this is a REL relocation. */ |
| rela_relocation_p = FALSE; |
| |
| /* Get the addend, which is stored in the input file. */ |
| addend = mips_elf_obtain_contents (howto, rel, input_bfd, |
| contents); |
| addend &= howto->src_mask; |
| addend <<= howto->rightshift; |
| |
| /* For some kinds of relocations, the ADDEND is a |
| combination of the addend stored in two different |
| relocations. */ |
| if (r_type == R_MIPS_HI16 |
| || r_type == R_MIPS_GNU_REL_HI16 |
| || (r_type == R_MIPS_GOT16 |
| && mips_elf_local_relocation_p (input_bfd, rel, |
| local_sections, FALSE))) |
| { |
| bfd_vma l; |
| const Elf_Internal_Rela *lo16_relocation; |
| reloc_howto_type *lo16_howto; |
| unsigned int lo; |
| |
| /* The combined value is the sum of the HI16 addend, |
| left-shifted by sixteen bits, and the LO16 |
| addend, sign extended. (Usually, the code does |
| a `lui' of the HI16 value, and then an `addiu' of |
| the LO16 value.) |
| |
| Scan ahead to find a matching LO16 relocation. */ |
| if (r_type == R_MIPS_GNU_REL_HI16) |
| lo = R_MIPS_GNU_REL_LO16; |
| else |
| lo = R_MIPS_LO16; |
| lo16_relocation = mips_elf_next_relocation (input_bfd, lo, |
| rel, relend); |
| if (lo16_relocation == NULL) |
| return FALSE; |
| |
| /* Obtain the addend kept there. */ |
| lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, lo, FALSE); |
| l = mips_elf_obtain_contents (lo16_howto, lo16_relocation, |
| input_bfd, contents); |
| l &= lo16_howto->src_mask; |
| l <<= lo16_howto->rightshift; |
| l = _bfd_mips_elf_sign_extend (l, 16); |
| |
| addend <<= 16; |
| |
| /* Compute the combined addend. */ |
| addend += l; |
| |
| /* If PC-relative, subtract the difference between the |
| address of the LO part of the reloc and the address of |
| the HI part. The relocation is relative to the LO |
| part, but mips_elf_calculate_relocation() doesn't |
| know its address or the difference from the HI part, so |
| we subtract that difference here. See also the |
| comment in mips_elf_calculate_relocation(). */ |
| if (r_type == R_MIPS_GNU_REL_HI16) |
| addend -= (lo16_relocation->r_offset - rel->r_offset); |
| } |
| else if (r_type == R_MIPS16_GPREL) |
| { |
| /* The addend is scrambled in the object file. See |
| mips_elf_perform_relocation for details on the |
| format. */ |
| addend = (((addend & 0x1f0000) >> 5) |
| | ((addend & 0x7e00000) >> 16) |
| | (addend & 0x1f)); |
| } |
| } |
| else |
| addend = rel->r_addend; |
| } |
| |
| if (info->relocatable) |
| { |
| Elf_Internal_Sym *sym; |
| unsigned long r_symndx; |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) |
| && bfd_big_endian (input_bfd)) |
| rel->r_offset -= 4; |
| |
| /* Since we're just relocating, all we need to do is copy |
| the relocations back out to the object file, unless |
| they're against a section symbol, in which case we need |
| to adjust by the section offset, or unless they're GP |
| relative in which case we need to adjust by the amount |
| that we're adjusting GP in this relocatable object. */ |
| |
| if (! mips_elf_local_relocation_p (input_bfd, rel, local_sections, |
| FALSE)) |
| /* There's nothing to do for non-local relocations. */ |
| continue; |
| |
| if (r_type == R_MIPS16_GPREL |
| || r_type == R_MIPS_GPREL16 |
| || r_type == R_MIPS_GPREL32 |
| || r_type == R_MIPS_LITERAL) |
| addend -= (_bfd_get_gp_value (output_bfd) |
| - _bfd_get_gp_value (input_bfd)); |
| |
| r_symndx = ELF_R_SYM (output_bfd, rel->r_info); |
| sym = local_syms + r_symndx; |
| if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) |
| /* Adjust the addend appropriately. */ |
| addend += local_sections[r_symndx]->output_offset; |
| |
| if (howto->partial_inplace) |
| { |
| /* If the relocation is for a R_MIPS_HI16 or R_MIPS_GOT16, |
| then we only want to write out the high-order 16 bits. |
| The subsequent R_MIPS_LO16 will handle the low-order bits. |
| */ |
| if (r_type == R_MIPS_HI16 || r_type == R_MIPS_GOT16 |
| || r_type == R_MIPS_GNU_REL_HI16) |
| addend = mips_elf_high (addend); |
| else if (r_type == R_MIPS_HIGHER) |
| addend = mips_elf_higher (addend); |
| else if (r_type == R_MIPS_HIGHEST) |
| addend = mips_elf_highest (addend); |
| } |
| |
| if (rela_relocation_p) |
| /* If this is a RELA relocation, just update the addend. |
| We have to cast away constness for REL. */ |
| rel->r_addend = addend; |
| else |
| { |
| /* Otherwise, we have to write the value back out. Note |
| that we use the source mask, rather than the |
| destination mask because the place to which we are |
| writing will be source of the addend in the final |
| link. */ |
| addend >>= howto->rightshift; |
| addend &= howto->src_mask; |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| /* See the comment above about using R_MIPS_64 in the 32-bit |
| ABI. Here, we need to update the addend. It would be |
| possible to get away with just using the R_MIPS_32 reloc |
| but for endianness. */ |
| { |
| bfd_vma sign_bits; |
| bfd_vma low_bits; |
| bfd_vma high_bits; |
| |
| if (addend & ((bfd_vma) 1 << 31)) |
| #ifdef BFD64 |
| sign_bits = ((bfd_vma) 1 << 32) - 1; |
| #else |
| sign_bits = -1; |
| #endif |
| else |
| sign_bits = 0; |
| |
| /* If we don't know that we have a 64-bit type, |
| do two separate stores. */ |
| if (bfd_big_endian (input_bfd)) |
| { |
| /* Store the sign-bits (which are most significant) |
| first. */ |
| low_bits = sign_bits; |
| high_bits = addend; |
| } |
| else |
| { |
| low_bits = addend; |
| high_bits = sign_bits; |
| } |
| bfd_put_32 (input_bfd, low_bits, |
| contents + rel->r_offset); |
| bfd_put_32 (input_bfd, high_bits, |
| contents + rel->r_offset + 4); |
| continue; |
| } |
| |
| if (! mips_elf_perform_relocation (info, howto, rel, addend, |
| input_bfd, input_section, |
| contents, FALSE)) |
| return FALSE; |
| } |
| |
| /* Go on to the next relocation. */ |
| continue; |
| } |
| |
| /* In the N32 and 64-bit ABIs there may be multiple consecutive |
| relocations for the same offset. In that case we are |
| supposed to treat the output of each relocation as the addend |
| for the next. */ |
| if (rel + 1 < relend |
| && rel->r_offset == rel[1].r_offset |
| && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) |
| use_saved_addend_p = TRUE; |
| else |
| use_saved_addend_p = FALSE; |
| |
| addend >>= howto->rightshift; |
| |
| /* Figure out what value we are supposed to relocate. */ |
| switch (mips_elf_calculate_relocation (output_bfd, input_bfd, |
| input_section, info, rel, |
| addend, howto, local_syms, |
| local_sections, &value, |
| &name, &require_jalx, |
| use_saved_addend_p)) |
| { |
| case bfd_reloc_continue: |
| /* There's nothing to do. */ |
| continue; |
| |
| case bfd_reloc_undefined: |
| /* mips_elf_calculate_relocation already called the |
| undefined_symbol callback. There's no real point in |
| trying to perform the relocation at this point, so we |
| just skip ahead to the next relocation. */ |
| continue; |
| |
| case bfd_reloc_notsupported: |
| msg = _("internal error: unsupported relocation error"); |
| info->callbacks->warning |
| (info, msg, name, input_bfd, input_section, rel->r_offset); |
| return FALSE; |
| |
| case bfd_reloc_overflow: |
| if (use_saved_addend_p) |
| /* Ignore overflow until we reach the last relocation for |
| a given location. */ |
| ; |
| else |
| { |
| BFD_ASSERT (name != NULL); |
| if (! ((*info->callbacks->reloc_overflow) |
| (info, name, howto->name, (bfd_vma) 0, |
| input_bfd, input_section, rel->r_offset))) |
| return FALSE; |
| } |
| break; |
| |
| case bfd_reloc_ok: |
| break; |
| |
| default: |
| abort (); |
| break; |
| } |
| |
| /* If we've got another relocation for the address, keep going |
| until we reach the last one. */ |
| if (use_saved_addend_p) |
| { |
| addend = value; |
| continue; |
| } |
| |
| if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) |
| /* See the comment above about using R_MIPS_64 in the 32-bit |
| ABI. Until now, we've been using the HOWTO for R_MIPS_32; |
| that calculated the right value. Now, however, we |
| sign-extend the 32-bit result to 64-bits, and store it as a |
| 64-bit value. We are especially generous here in that we |
| go to extreme lengths to support this usage on systems with |
| only a 32-bit VMA. */ |
| { |
| bfd_vma sign_bits; |
| bfd_vma low_bits; |
| bfd_vma high_bits; |
| |
| if (value & ((bfd_vma) 1 << 31)) |
| #ifdef BFD64 |
| sign_bits = ((bfd_vma) 1 << 32) - 1; |
| #else |
| sign_bits = -1; |
| #endif |
| else |
| sign_bits = 0; |
| |
| /* If we don't know that we have a 64-bit type, |
| do two separate stores. */ |
| if (bfd_big_endian (input_bfd)) |
| { |
| /* Undo what we did above. */ |
| rel->r_offset -= 4; |
| /* Store the sign-bits (which are most significant) |
| first. */ |
| low_bits = sign_bits; |
| high_bits = value; |
| } |
| else |
| { |
| low_bits = value; |
| high_bits = sign_bits; |
| } |
| bfd_put_32 (input_bfd, low_bits, |
| contents + rel->r_offset); |
| bfd_put_32 (input_bfd, high_bits, |
| contents + rel->r_offset + 4); |
| continue; |
| } |
| |
| /* Actually perform the relocation. */ |
| if (! mips_elf_perform_relocation (info, howto, rel, value, |
| input_bfd, input_section, |
| contents, require_jalx)) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* If NAME is one of the special IRIX6 symbols defined by the linker, |
| adjust it appropriately now. */ |
| |
| static void |
| mips_elf_irix6_finish_dynamic_symbol (abfd, name, sym) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| const char *name; |
| Elf_Internal_Sym *sym; |
| { |
| /* The linker script takes care of providing names and values for |
| these, but we must place them into the right sections. */ |
| static const char* const text_section_symbols[] = { |
| "_ftext", |
| "_etext", |
| "__dso_displacement", |
| "__elf_header", |
| "__program_header_table", |
| NULL |
| }; |
| |
| static const char* const data_section_symbols[] = { |
| "_fdata", |
| "_edata", |
| "_end", |
| "_fbss", |
| NULL |
| }; |
| |
| const char* const *p; |
| int i; |
| |
| for (i = 0; i < 2; ++i) |
| for (p = (i == 0) ? text_section_symbols : data_section_symbols; |
| *p; |
| ++p) |
| if (strcmp (*p, name) == 0) |
| { |
| /* All of these symbols are given type STT_SECTION by the |
| IRIX6 linker. */ |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| |
| /* The IRIX linker puts these symbols in special sections. */ |
| if (i == 0) |
| sym->st_shndx = SHN_MIPS_TEXT; |
| else |
| sym->st_shndx = SHN_MIPS_DATA; |
| |
| break; |
| } |
| } |
| |
| /* Finish up dynamic symbol handling. We set the contents of various |
| dynamic sections here. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_finish_dynamic_symbol (output_bfd, info, h, sym) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| { |
| bfd *dynobj; |
| bfd_vma gval; |
| asection *sgot; |
| struct mips_got_info *g, *gg; |
| const char *name; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| gval = sym->st_value; |
| |
| if (h->plt.offset != (bfd_vma) -1) |
| { |
| asection *s; |
| bfd_byte stub[MIPS_FUNCTION_STUB_SIZE]; |
| |
| /* This symbol has a stub. Set it up. */ |
| |
| BFD_ASSERT (h->dynindx != -1); |
| |
| s = bfd_get_section_by_name (dynobj, |
| MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| BFD_ASSERT (s != NULL); |
| |
| /* FIXME: Can h->dynindex be more than 64K? */ |
| if (h->dynindx & 0xffff0000) |
| return FALSE; |
| |
| /* Fill the stub. */ |
| bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub); |
| bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + 4); |
| bfd_put_32 (output_bfd, STUB_JALR, stub + 8); |
| bfd_put_32 (output_bfd, STUB_LI16 (output_bfd) + h->dynindx, stub + 12); |
| |
| BFD_ASSERT (h->plt.offset <= s->_raw_size); |
| memcpy (s->contents + h->plt.offset, stub, MIPS_FUNCTION_STUB_SIZE); |
| |
| /* Mark the symbol as undefined. plt.offset != -1 occurs |
| only for the referenced symbol. */ |
| sym->st_shndx = SHN_UNDEF; |
| |
| /* The run-time linker uses the st_value field of the symbol |
| to reset the global offset table entry for this external |
| to its stub address when unlinking a shared object. */ |
| gval = s->output_section->vma + s->output_offset + h->plt.offset; |
| sym->st_value = gval; |
| } |
| |
| BFD_ASSERT (h->dynindx != -1 |
| || (h->elf_link_hash_flags & ELF_LINK_FORCED_LOCAL) != 0); |
| |
| sgot = mips_elf_got_section (dynobj, FALSE); |
| BFD_ASSERT (sgot != NULL); |
| BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| g = mips_elf_section_data (sgot)->u.got_info; |
| BFD_ASSERT (g != NULL); |
| |
| /* Run through the global symbol table, creating GOT entries for all |
| the symbols that need them. */ |
| if (g->global_gotsym != NULL |
| && h->dynindx >= g->global_gotsym->dynindx) |
| { |
| bfd_vma offset; |
| bfd_vma value; |
| |
| value = sym->st_value; |
| offset = mips_elf_global_got_index (dynobj, output_bfd, h); |
| MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
| } |
| |
| if (g->next && h->dynindx != -1) |
| { |
| struct mips_got_entry e, *p; |
| bfd_vma offset; |
| bfd_vma value; |
| Elf_Internal_Rela rel[3]; |
| bfd_vma addend = 0; |
| |
| gg = g; |
| |
| e.abfd = output_bfd; |
| e.symndx = -1; |
| e.d.h = (struct mips_elf_link_hash_entry *)h; |
| |
| if (info->shared |
| || h->root.type == bfd_link_hash_undefined |
| || h->root.type == bfd_link_hash_undefweak) |
| value = 0; |
| else if (sym->st_value) |
| value = sym->st_value; |
| else |
| value = h->root.u.def.value; |
| |
| memset (rel, 0, sizeof (rel)); |
| rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); |
| |
| for (g = g->next; g->next != gg; g = g->next) |
| { |
| if (g->got_entries |
| && (p = (struct mips_got_entry *) htab_find (g->got_entries, |
| &e))) |
| { |
| offset = p->gotidx; |
| rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; |
| |
| MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); |
| |
| if ((info->shared |
| || (elf_hash_table (info)->dynamic_sections_created |
| && p->d.h != NULL |
| && ((p->d.h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_DYNAMIC) != 0) |
| && ((p->d.h->root.elf_link_hash_flags |
| & ELF_LINK_HASH_DEF_REGULAR) == 0))) |
| && ! (mips_elf_create_dynamic_relocation |
| (output_bfd, info, rel, |
| e.d.h, NULL, value, &addend, sgot))) |
| return FALSE; |
| BFD_ASSERT (addend == 0); |
| } |
| } |
| } |
| |
| /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ |
| name = h->root.root.string; |
| if (strcmp (name, "_DYNAMIC") == 0 |
| || strcmp (name, "_GLOBAL_OFFSET_TABLE_") == 0) |
| sym->st_shndx = SHN_ABS; |
| else if (strcmp (name, "_DYNAMIC_LINK") == 0 |
| || strcmp (name, "_DYNAMIC_LINKING") == 0) |
| { |
| sym->st_shndx = SHN_ABS; |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_value = 1; |
| } |
| else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) |
| { |
| sym->st_shndx = SHN_ABS; |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_value = elf_gp (output_bfd); |
| } |
| else if (SGI_COMPAT (output_bfd)) |
| { |
| if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 |
| || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) |
| { |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| sym->st_value = 0; |
| sym->st_shndx = SHN_MIPS_DATA; |
| } |
| else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) |
| { |
| sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); |
| sym->st_other = STO_PROTECTED; |
| sym->st_value = mips_elf_hash_table (info)->procedure_count; |
| sym->st_shndx = SHN_ABS; |
| } |
| else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) |
| { |
| if (h->type == STT_FUNC) |
| sym->st_shndx = SHN_MIPS_TEXT; |
| else if (h->type == STT_OBJECT) |
| sym->st_shndx = SHN_MIPS_DATA; |
| } |
| } |
| |
| /* Handle the IRIX6-specific symbols. */ |
| if (IRIX_COMPAT (output_bfd) == ict_irix6) |
| mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); |
| |
| if (! info->shared) |
| { |
| if (! mips_elf_hash_table (info)->use_rld_obj_head |
| && (strcmp (name, "__rld_map") == 0 |
| || strcmp (name, "__RLD_MAP") == 0)) |
| { |
| asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); |
| BFD_ASSERT (s != NULL); |
| sym->st_value = s->output_section->vma + s->output_offset; |
| bfd_put_32 (output_bfd, (bfd_vma) 0, s->contents); |
| if (mips_elf_hash_table (info)->rld_value == 0) |
| mips_elf_hash_table (info)->rld_value = sym->st_value; |
| } |
| else if (mips_elf_hash_table (info)->use_rld_obj_head |
| && strcmp (name, "__rld_obj_head") == 0) |
| { |
| /* IRIX6 does not use a .rld_map section. */ |
| if (IRIX_COMPAT (output_bfd) == ict_irix5 |
| || IRIX_COMPAT (output_bfd) == ict_none) |
| BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") |
| != NULL); |
| mips_elf_hash_table (info)->rld_value = sym->st_value; |
| } |
| } |
| |
| /* If this is a mips16 symbol, force the value to be even. */ |
| if (sym->st_other == STO_MIPS16 |
| && (sym->st_value & 1) != 0) |
| --sym->st_value; |
| |
| return TRUE; |
| } |
| |
| /* Finish up the dynamic sections. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_finish_dynamic_sections (output_bfd, info) |
| bfd *output_bfd; |
| struct bfd_link_info *info; |
| { |
| bfd *dynobj; |
| asection *sdyn; |
| asection *sgot; |
| struct mips_got_info *gg, *g; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| |
| sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); |
| |
| sgot = mips_elf_got_section (dynobj, FALSE); |
| if (sgot == NULL) |
| gg = g = NULL; |
| else |
| { |
| BFD_ASSERT (mips_elf_section_data (sgot) != NULL); |
| gg = mips_elf_section_data (sgot)->u.got_info; |
| BFD_ASSERT (gg != NULL); |
| g = mips_elf_got_for_ibfd (gg, output_bfd); |
| BFD_ASSERT (g != NULL); |
| } |
| |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| bfd_byte *b; |
| |
| BFD_ASSERT (sdyn != NULL); |
| BFD_ASSERT (g != NULL); |
| |
| for (b = sdyn->contents; |
| b < sdyn->contents + sdyn->_raw_size; |
| b += MIPS_ELF_DYN_SIZE (dynobj)) |
| { |
| Elf_Internal_Dyn dyn; |
| const char *name; |
| size_t elemsize; |
| asection *s; |
| bfd_boolean swap_out_p; |
| |
| /* Read in the current dynamic entry. */ |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); |
| |
| /* Assume that we're going to modify it and write it out. */ |
| swap_out_p = TRUE; |
| |
| switch (dyn.d_tag) |
| { |
| case DT_RELENT: |
| s = mips_elf_rel_dyn_section (dynobj, FALSE); |
| BFD_ASSERT (s != NULL); |
| dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); |
| break; |
| |
| case DT_STRSZ: |
| /* Rewrite DT_STRSZ. */ |
| dyn.d_un.d_val = |
| _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); |
| break; |
| |
| case DT_PLTGOT: |
| name = ".got"; |
| goto get_vma; |
| case DT_MIPS_CONFLICT: |
| name = ".conflict"; |
| goto get_vma; |
| case DT_MIPS_LIBLIST: |
| name = ".liblist"; |
| get_vma: |
| s = bfd_get_section_by_name (output_bfd, name); |
| BFD_ASSERT (s != NULL); |
| dyn.d_un.d_ptr = s->vma; |
| break; |
| |
| case DT_MIPS_RLD_VERSION: |
| dyn.d_un.d_val = 1; /* XXX */ |
| break; |
| |
| case DT_MIPS_FLAGS: |
| dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ |
| break; |
| |
| case DT_MIPS_CONFLICTNO: |
| name = ".conflict"; |
| elemsize = sizeof (Elf32_Conflict); |
| goto set_elemno; |
| |
| case DT_MIPS_LIBLISTNO: |
| name = ".liblist"; |
| elemsize = sizeof (Elf32_Lib); |
| set_elemno: |
| s = bfd_get_section_by_name (output_bfd, name); |
| if (s != NULL) |
| { |
| if (s->_cooked_size != 0) |
| dyn.d_un.d_val = s->_cooked_size / elemsize; |
| else |
| dyn.d_un.d_val = s->_raw_size / elemsize; |
| } |
| else |
| dyn.d_un.d_val = 0; |
| break; |
| |
| case DT_MIPS_TIME_STAMP: |
| time ((time_t *) &dyn.d_un.d_val); |
| break; |
| |
| case DT_MIPS_ICHECKSUM: |
| /* XXX FIXME: */ |
| swap_out_p = FALSE; |
| break; |
| |
| case DT_MIPS_IVERSION: |
| /* XXX FIXME: */ |
| swap_out_p = FALSE; |
| break; |
| |
| case DT_MIPS_BASE_ADDRESS: |
| s = output_bfd->sections; |
| BFD_ASSERT (s != NULL); |
| dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; |
| break; |
| |
| case DT_MIPS_LOCAL_GOTNO: |
| dyn.d_un.d_val = g->local_gotno; |
| break; |
| |
| case DT_MIPS_UNREFEXTNO: |
| /* The index into the dynamic symbol table which is the |
| entry of the first external symbol that is not |
| referenced within the same object. */ |
| dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; |
| break; |
| |
| case DT_MIPS_GOTSYM: |
| if (gg->global_gotsym) |
| { |
| dyn.d_un.d_val = gg->global_gotsym->dynindx; |
| break; |
| } |
| /* In case if we don't have global got symbols we default |
| to setting DT_MIPS_GOTSYM to the same value as |
| DT_MIPS_SYMTABNO, so we just fall through. */ |
| |
| case DT_MIPS_SYMTABNO: |
| name = ".dynsym"; |
| elemsize = MIPS_ELF_SYM_SIZE (output_bfd); |
| s = bfd_get_section_by_name (output_bfd, name); |
| BFD_ASSERT (s != NULL); |
| |
| if (s->_cooked_size != 0) |
| dyn.d_un.d_val = s->_cooked_size / elemsize; |
| else |
| dyn.d_un.d_val = s->_raw_size / elemsize; |
| break; |
| |
| case DT_MIPS_HIPAGENO: |
| dyn.d_un.d_val = g->local_gotno - MIPS_RESERVED_GOTNO; |
| break; |
| |
| case DT_MIPS_RLD_MAP: |
| dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; |
| break; |
| |
| case DT_MIPS_OPTIONS: |
| s = (bfd_get_section_by_name |
| (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); |
| dyn.d_un.d_ptr = s->vma; |
| break; |
| |
| case DT_MIPS_MSYM: |
| s = (bfd_get_section_by_name (output_bfd, ".msym")); |
| dyn.d_un.d_ptr = s->vma; |
| break; |
| |
| default: |
| swap_out_p = FALSE; |
| break; |
| } |
| |
| if (swap_out_p) |
| (*get_elf_backend_data (dynobj)->s->swap_dyn_out) |
| (dynobj, &dyn, b); |
| } |
| } |
| |
| /* The first entry of the global offset table will be filled at |
| runtime. The second entry will be used by some runtime loaders. |
| This isn't the case of IRIX rld. */ |
| if (sgot != NULL && sgot->_raw_size > 0) |
| { |
| MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); |
| MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, |
| sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); |
| } |
| |
| if (sgot != NULL) |
| elf_section_data (sgot->output_section)->this_hdr.sh_entsize |
| = MIPS_ELF_GOT_SIZE (output_bfd); |
| |
| /* Generate dynamic relocations for the non-primary gots. */ |
| if (gg != NULL && gg->next) |
| { |
| Elf_Internal_Rela rel[3]; |
| bfd_vma addend = 0; |
| |
| memset (rel, 0, sizeof (rel)); |
| rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); |
| |
| for (g = gg->next; g->next != gg; g = g->next) |
| { |
| bfd_vma index = g->next->local_gotno + g->next->global_gotno; |
| |
| MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents |
| + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0x80000000, sgot->contents |
| + index++ * MIPS_ELF_GOT_SIZE (output_bfd)); |
| |
| if (! info->shared) |
| continue; |
| |
| while (index < g->assigned_gotno) |
| { |
| rel[0].r_offset = rel[1].r_offset = rel[2].r_offset |
| = index++ * MIPS_ELF_GOT_SIZE (output_bfd); |
| if (!(mips_elf_create_dynamic_relocation |
| (output_bfd, info, rel, NULL, |
| bfd_abs_section_ptr, |
| 0, &addend, sgot))) |
| return FALSE; |
| BFD_ASSERT (addend == 0); |
| } |
| } |
| } |
| |
| { |
| asection *s; |
| Elf32_compact_rel cpt; |
| |
| if (SGI_COMPAT (output_bfd)) |
| { |
| /* Write .compact_rel section out. */ |
| s = bfd_get_section_by_name (dynobj, ".compact_rel"); |
| if (s != NULL) |
| { |
| cpt.id1 = 1; |
| cpt.num = s->reloc_count; |
| cpt.id2 = 2; |
| cpt.offset = (s->output_section->filepos |
| + sizeof (Elf32_External_compact_rel)); |
| cpt.reserved0 = 0; |
| cpt.reserved1 = 0; |
| bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, |
| ((Elf32_External_compact_rel *) |
| s->contents)); |
| |
| /* Clean up a dummy stub function entry in .text. */ |
| s = bfd_get_section_by_name (dynobj, |
| MIPS_ELF_STUB_SECTION_NAME (dynobj)); |
| if (s != NULL) |
| { |
| file_ptr dummy_offset; |
| |
| BFD_ASSERT (s->_raw_size >= MIPS_FUNCTION_STUB_SIZE); |
| dummy_offset = s->_raw_size - MIPS_FUNCTION_STUB_SIZE; |
| memset (s->contents + dummy_offset, 0, |
| MIPS_FUNCTION_STUB_SIZE); |
| } |
| } |
| } |
| |
| /* We need to sort the entries of the dynamic relocation section. */ |
| |
| s = mips_elf_rel_dyn_section (dynobj, FALSE); |
| |
| if (s != NULL |
| && s->_raw_size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) |
| { |
| reldyn_sorting_bfd = output_bfd; |
| |
| if (ABI_64_P (output_bfd)) |
| qsort ((Elf64_External_Rel *) s->contents + 1, |
| (size_t) s->reloc_count - 1, |
| sizeof (Elf64_Mips_External_Rel), sort_dynamic_relocs_64); |
| else |
| qsort ((Elf32_External_Rel *) s->contents + 1, |
| (size_t) s->reloc_count - 1, |
| sizeof (Elf32_External_Rel), sort_dynamic_relocs); |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| |
| /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ |
| |
| static void |
| mips_set_isa_flags (abfd) |
| bfd *abfd; |
| { |
| flagword val; |
| |
| switch (bfd_get_mach (abfd)) |
| { |
| default: |
| case bfd_mach_mips3000: |
| val = E_MIPS_ARCH_1; |
| break; |
| |
| case bfd_mach_mips3900: |
| val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; |
| break; |
| |
| case bfd_mach_mips6000: |
| val = E_MIPS_ARCH_2; |
| break; |
| |
| case bfd_mach_mips4000: |
| case bfd_mach_mips4300: |
| case bfd_mach_mips4400: |
| case bfd_mach_mips4600: |
| val = E_MIPS_ARCH_3; |
| break; |
| |
| case bfd_mach_mips4010: |
| val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; |
| break; |
| |
| case bfd_mach_mips4100: |
| val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; |
| break; |
| |
| case bfd_mach_mips4111: |
| val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; |
| break; |
| |
| case bfd_mach_mips4120: |
| val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; |
| break; |
| |
| case bfd_mach_mips4650: |
| val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; |
| break; |
| |
| case bfd_mach_mips5400: |
| val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; |
| break; |
| |
| case bfd_mach_mips5500: |
| val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; |
| break; |
| |
| case bfd_mach_mips5000: |
| case bfd_mach_mips7000: |
| case bfd_mach_mips8000: |
| case bfd_mach_mips10000: |
| case bfd_mach_mips12000: |
| val = E_MIPS_ARCH_4; |
| break; |
| |
| case bfd_mach_mips5: |
| val = E_MIPS_ARCH_5; |
| break; |
| |
| case bfd_mach_mips_sb1: |
| val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; |
| break; |
| |
| case bfd_mach_mipsisa32: |
| val = E_MIPS_ARCH_32; |
| break; |
| |
| case bfd_mach_mipsisa64: |
| val = E_MIPS_ARCH_64; |
| break; |
| |
| case bfd_mach_mipsisa32r2: |
| val = E_MIPS_ARCH_32R2; |
| break; |
| } |
| elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| elf_elfheader (abfd)->e_flags |= val; |
| |
| } |
| |
| |
| /* The final processing done just before writing out a MIPS ELF object |
| file. This gets the MIPS architecture right based on the machine |
| number. This is used by both the 32-bit and the 64-bit ABI. */ |
| |
| void |
| _bfd_mips_elf_final_write_processing (abfd, linker) |
| bfd *abfd; |
| bfd_boolean linker ATTRIBUTE_UNUSED; |
| { |
| unsigned int i; |
| Elf_Internal_Shdr **hdrpp; |
| const char *name; |
| asection *sec; |
| |
| /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former |
| is nonzero. This is for compatibility with old objects, which used |
| a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) |
| mips_set_isa_flags (abfd); |
| |
| /* Set the sh_info field for .gptab sections and other appropriate |
| info for each special section. */ |
| for (i = 1, hdrpp = elf_elfsections (abfd) + 1; |
| i < elf_numsections (abfd); |
| i++, hdrpp++) |
| { |
| switch ((*hdrpp)->sh_type) |
| { |
| case SHT_MIPS_MSYM: |
| case SHT_MIPS_LIBLIST: |
| sec = bfd_get_section_by_name (abfd, ".dynstr"); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_GPTAB: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| BFD_ASSERT (name != NULL |
| && strncmp (name, ".gptab.", sizeof ".gptab." - 1) == 0); |
| sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); |
| BFD_ASSERT (sec != NULL); |
| (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_CONTENT: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| BFD_ASSERT (name != NULL |
| && strncmp (name, ".MIPS.content", |
| sizeof ".MIPS.content" - 1) == 0); |
| sec = bfd_get_section_by_name (abfd, |
| name + sizeof ".MIPS.content" - 1); |
| BFD_ASSERT (sec != NULL); |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_SYMBOL_LIB: |
| sec = bfd_get_section_by_name (abfd, ".dynsym"); |
| if (sec != NULL) |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| sec = bfd_get_section_by_name (abfd, ".liblist"); |
| if (sec != NULL) |
| (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; |
| break; |
| |
| case SHT_MIPS_EVENTS: |
| BFD_ASSERT ((*hdrpp)->bfd_section != NULL); |
| name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); |
| BFD_ASSERT (name != NULL); |
| if (strncmp (name, ".MIPS.events", sizeof ".MIPS.events" - 1) == 0) |
| sec = bfd_get_section_by_name (abfd, |
| name + sizeof ".MIPS.events" - 1); |
| else |
| { |
| BFD_ASSERT (strncmp (name, ".MIPS.post_rel", |
| sizeof ".MIPS.post_rel" - 1) == 0); |
| sec = bfd_get_section_by_name (abfd, |
| (name |
| + sizeof ".MIPS.post_rel" - 1)); |
| } |
| BFD_ASSERT (sec != NULL); |
| (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; |
| break; |
| |
| } |
| } |
| } |
| |
| /* When creating an IRIX5 executable, we need REGINFO and RTPROC |
| segments. */ |
| |
| int |
| _bfd_mips_elf_additional_program_headers (abfd) |
| bfd *abfd; |
| { |
| asection *s; |
| int ret = 0; |
| |
| /* See if we need a PT_MIPS_REGINFO segment. */ |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s && (s->flags & SEC_LOAD)) |
| ++ret; |
| |
| /* See if we need a PT_MIPS_OPTIONS segment. */ |
| if (IRIX_COMPAT (abfd) == ict_irix6 |
| && bfd_get_section_by_name (abfd, |
| MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) |
| ++ret; |
| |
| /* See if we need a PT_MIPS_RTPROC segment. */ |
| if (IRIX_COMPAT (abfd) == ict_irix5 |
| && bfd_get_section_by_name (abfd, ".dynamic") |
| && bfd_get_section_by_name (abfd, ".mdebug")) |
| ++ret; |
| |
| return ret; |
| } |
| |
| /* Modify the segment map for an IRIX5 executable. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_modify_segment_map (abfd) |
| bfd *abfd; |
| { |
| asection *s; |
| struct elf_segment_map *m, **pm; |
| bfd_size_type amt; |
| |
| /* If there is a .reginfo section, we need a PT_MIPS_REGINFO |
| segment. */ |
| s = bfd_get_section_by_name (abfd, ".reginfo"); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| { |
| for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| if (m->p_type == PT_MIPS_REGINFO) |
| break; |
| if (m == NULL) |
| { |
| amt = sizeof *m; |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return FALSE; |
| |
| m->p_type = PT_MIPS_REGINFO; |
| m->count = 1; |
| m->sections[0] = s; |
| |
| /* We want to put it after the PHDR and INTERP segments. */ |
| pm = &elf_tdata (abfd)->segment_map; |
| while (*pm != NULL |
| && ((*pm)->p_type == PT_PHDR |
| || (*pm)->p_type == PT_INTERP)) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| |
| /* For IRIX 6, we don't have .mdebug sections, nor does anything but |
| .dynamic end up in PT_DYNAMIC. However, we do have to insert a |
| PT_OPTIONS segment immediately following the program header |
| table. */ |
| if (NEWABI_P (abfd) |
| /* On non-IRIX6 new abi, we'll have already created a segment |
| for this section, so don't create another. I'm not sure this |
| is not also the case for IRIX 6, but I can't test it right |
| now. */ |
| && IRIX_COMPAT (abfd) == ict_irix6) |
| { |
| for (s = abfd->sections; s; s = s->next) |
| if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) |
| break; |
| |
| if (s) |
| { |
| struct elf_segment_map *options_segment; |
| |
| /* Usually, there's a program header table. But, sometimes |
| there's not (like when running the `ld' testsuite). So, |
| if there's no program header table, we just put the |
| options segment at the end. */ |
| for (pm = &elf_tdata (abfd)->segment_map; |
| *pm != NULL; |
| pm = &(*pm)->next) |
| if ((*pm)->p_type == PT_PHDR) |
| break; |
| |
| amt = sizeof (struct elf_segment_map); |
| options_segment = bfd_zalloc (abfd, amt); |
| options_segment->next = *pm; |
| options_segment->p_type = PT_MIPS_OPTIONS; |
| options_segment->p_flags = PF_R; |
| options_segment->p_flags_valid = TRUE; |
| options_segment->count = 1; |
| options_segment->sections[0] = s; |
| *pm = options_segment; |
| } |
| } |
| else |
| { |
| if (IRIX_COMPAT (abfd) == ict_irix5) |
| { |
| /* If there are .dynamic and .mdebug sections, we make a room |
| for the RTPROC header. FIXME: Rewrite without section names. */ |
| if (bfd_get_section_by_name (abfd, ".interp") == NULL |
| && bfd_get_section_by_name (abfd, ".dynamic") != NULL |
| && bfd_get_section_by_name (abfd, ".mdebug") != NULL) |
| { |
| for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) |
| if (m->p_type == PT_MIPS_RTPROC) |
| break; |
| if (m == NULL) |
| { |
| amt = sizeof *m; |
| m = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (m == NULL) |
| return FALSE; |
| |
| m->p_type = PT_MIPS_RTPROC; |
| |
| s = bfd_get_section_by_name (abfd, ".rtproc"); |
| if (s == NULL) |
| { |
| m->count = 0; |
| m->p_flags = 0; |
| m->p_flags_valid = 1; |
| } |
| else |
| { |
| m->count = 1; |
| m->sections[0] = s; |
| } |
| |
| /* We want to put it after the DYNAMIC segment. */ |
| pm = &elf_tdata (abfd)->segment_map; |
| while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) |
| pm = &(*pm)->next; |
| if (*pm != NULL) |
| pm = &(*pm)->next; |
| |
| m->next = *pm; |
| *pm = m; |
| } |
| } |
| } |
| /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, |
| .dynstr, .dynsym, and .hash sections, and everything in |
| between. */ |
| for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; |
| pm = &(*pm)->next) |
| if ((*pm)->p_type == PT_DYNAMIC) |
| break; |
| m = *pm; |
| if (m != NULL && IRIX_COMPAT (abfd) == ict_none) |
| { |
| /* For a normal mips executable the permissions for the PT_DYNAMIC |
| segment are read, write and execute. We do that here since |
| the code in elf.c sets only the read permission. This matters |
| sometimes for the dynamic linker. */ |
| if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) |
| { |
| m->p_flags = PF_R | PF_W | PF_X; |
| m->p_flags_valid = 1; |
| } |
| } |
| if (m != NULL |
| && m->count == 1 && strcmp (m->sections[0]->name, ".dynamic") == 0) |
| { |
| static const char *sec_names[] = |
| { |
| ".dynamic", ".dynstr", ".dynsym", ".hash" |
| }; |
| bfd_vma low, high; |
| unsigned int i, c; |
| struct elf_segment_map *n; |
| |
| low = 0xffffffff; |
| high = 0; |
| for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) |
| { |
| s = bfd_get_section_by_name (abfd, sec_names[i]); |
| if (s != NULL && (s->flags & SEC_LOAD) != 0) |
| { |
| bfd_size_type sz; |
| |
| if (low > s->vma) |
| low = s->vma; |
| sz = s->_cooked_size; |
| if (sz == 0) |
| sz = s->_raw_size; |
| if (high < s->vma + sz) |
| high = s->vma + sz; |
| } |
| } |
| |
| c = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| if ((s->flags & SEC_LOAD) != 0 |
| && s->vma >= low |
| && ((s->vma |
| + (s->_cooked_size != |
| 0 ? s->_cooked_size : s->_raw_size)) <= high)) |
| ++c; |
| |
| amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); |
| n = (struct elf_segment_map *) bfd_zalloc (abfd, amt); |
| if (n == NULL) |
| return FALSE; |
| *n = *m; |
| n->count = c; |
| |
| i = 0; |
| for (s = abfd->sections; s != NULL; s = s->next) |
| { |
| if ((s->flags & SEC_LOAD) != 0 |
| && s->vma >= low |
| && ((s->vma |
| + (s->_cooked_size != 0 ? |
| s->_cooked_size : s->_raw_size)) <= high)) |
| { |
| n->sections[i] = s; |
| ++i; |
| } |
| } |
| |
| *pm = n; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Return the section that should be marked against GC for a given |
| relocation. */ |
| |
| asection * |
| _bfd_mips_elf_gc_mark_hook (sec, info, rel, h, sym) |
| asection *sec; |
| struct bfd_link_info *info ATTRIBUTE_UNUSED; |
| Elf_Internal_Rela *rel; |
| struct elf_link_hash_entry *h; |
| Elf_Internal_Sym *sym; |
| { |
| /* ??? Do mips16 stub sections need to be handled special? */ |
| |
| if (h != NULL) |
| { |
| switch (ELF_R_TYPE (sec->owner, rel->r_info)) |
| { |
| case R_MIPS_GNU_VTINHERIT: |
| case R_MIPS_GNU_VTENTRY: |
| break; |
| |
| default: |
| switch (h->root.type) |
| { |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| return h->root.u.def.section; |
| |
| case bfd_link_hash_common: |
| return h->root.u.c.p->section; |
| |
| default: |
| break; |
| } |
| } |
| } |
| else |
| return bfd_section_from_elf_index (sec->owner, sym->st_shndx); |
| |
| return NULL; |
| } |
| |
| /* Update the got entry reference counts for the section being removed. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_gc_sweep_hook (abfd, info, sec, relocs) |
| bfd *abfd ATTRIBUTE_UNUSED; |
| struct bfd_link_info *info ATTRIBUTE_UNUSED; |
| asection *sec ATTRIBUTE_UNUSED; |
| const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED; |
| { |
| #if 0 |
| Elf_Internal_Shdr *symtab_hdr; |
| struct elf_link_hash_entry **sym_hashes; |
| bfd_signed_vma *local_got_refcounts; |
| const Elf_Internal_Rela *rel, *relend; |
| unsigned long r_symndx; |
| struct elf_link_hash_entry *h; |
| |
| symtab_hdr = &elf_tdata (abfd)->symtab_hdr; |
| sym_hashes = elf_sym_hashes (abfd); |
| local_got_refcounts = elf_local_got_refcounts (abfd); |
| |
| relend = relocs + sec->reloc_count; |
| for (rel = relocs; rel < relend; rel++) |
| switch (ELF_R_TYPE (abfd, rel->r_info)) |
| { |
| case R_MIPS_GOT16: |
| case R_MIPS_CALL16: |
| case R_MIPS_CALL_HI16: |
| case R_MIPS_CALL_LO16: |
| case R_MIPS_GOT_HI16: |
| case R_MIPS_GOT_LO16: |
| case R_MIPS_GOT_DISP: |
| case R_MIPS_GOT_PAGE: |
| case R_MIPS_GOT_OFST: |
| /* ??? It would seem that the existing MIPS code does no sort |
| of reference counting or whatnot on its GOT and PLT entries, |
| so it is not possible to garbage collect them at this time. */ |
| break; |
| |
| default: |
| break; |
| } |
| #endif |
| |
| return TRUE; |
| } |
| |
| /* Copy data from a MIPS ELF indirect symbol to its direct symbol, |
| hiding the old indirect symbol. Process additional relocation |
| information. Also called for weakdefs, in which case we just let |
| _bfd_elf_link_hash_copy_indirect copy the flags for us. */ |
| |
| void |
| _bfd_mips_elf_copy_indirect_symbol (bed, dir, ind) |
| struct elf_backend_data *bed; |
| struct elf_link_hash_entry *dir, *ind; |
| { |
| struct mips_elf_link_hash_entry *dirmips, *indmips; |
| |
| _bfd_elf_link_hash_copy_indirect (bed, dir, ind); |
| |
| if (ind->root.type != bfd_link_hash_indirect) |
| return; |
| |
| dirmips = (struct mips_elf_link_hash_entry *) dir; |
| indmips = (struct mips_elf_link_hash_entry *) ind; |
| dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; |
| if (indmips->readonly_reloc) |
| dirmips->readonly_reloc = TRUE; |
| if (indmips->no_fn_stub) |
| dirmips->no_fn_stub = TRUE; |
| } |
| |
| void |
| _bfd_mips_elf_hide_symbol (info, entry, force_local) |
| struct bfd_link_info *info; |
| struct elf_link_hash_entry *entry; |
| bfd_boolean force_local; |
| { |
| bfd *dynobj; |
| asection *got; |
| struct mips_got_info *g; |
| struct mips_elf_link_hash_entry *h; |
| |
| h = (struct mips_elf_link_hash_entry *) entry; |
| if (h->forced_local) |
| return; |
| h->forced_local = force_local; |
| |
| dynobj = elf_hash_table (info)->dynobj; |
| if (dynobj != NULL && force_local) |
| { |
| got = mips_elf_got_section (dynobj, FALSE); |
| g = mips_elf_section_data (got)->u.got_info; |
| |
| if (g->next) |
| { |
| struct mips_got_entry e; |
| struct mips_got_info *gg = g; |
| |
| /* Since we're turning what used to be a global symbol into a |
| local one, bump up the number of local entries of each GOT |
| that had an entry for it. This will automatically decrease |
| the number of global entries, since global_gotno is actually |
| the upper limit of global entries. */ |
| e.abfd = dynobj; |
| e.symndx = -1; |
| e.d.h = h; |
| |
| for (g = g->next; g != gg; g = g->next) |
| if (htab_find (g->got_entries, &e)) |
| { |
| BFD_ASSERT (g->global_gotno > 0); |
| g->local_gotno++; |
| g->global_gotno--; |
| } |
| |
| /* If this was a global symbol forced into the primary GOT, we |
| no longer need an entry for it. We can't release the entry |
| at this point, but we must at least stop counting it as one |
| of the symbols that required a forced got entry. */ |
| if (h->root.got.offset == 2) |
| { |
| BFD_ASSERT (gg->assigned_gotno > 0); |
| gg->assigned_gotno--; |
| } |
| } |
| else if (g->global_gotno == 0 && g->global_gotsym == NULL) |
| /* If we haven't got through GOT allocation yet, just bump up the |
| number of local entries, as this symbol won't be counted as |
| global. */ |
| g->local_gotno++; |
| else if (h->root.got.offset == 1) |
| { |
| /* If we're past non-multi-GOT allocation and this symbol had |
| been marked for a global got entry, give it a local entry |
| instead. */ |
| BFD_ASSERT (g->global_gotno > 0); |
| g->local_gotno++; |
| g->global_gotno--; |
| } |
| } |
| |
| _bfd_elf_link_hash_hide_symbol (info, &h->root, force_local); |
| } |
| |
| #define PDR_SIZE 32 |
| |
| bfd_boolean |
| _bfd_mips_elf_discard_info (abfd, cookie, info) |
| bfd *abfd; |
| struct elf_reloc_cookie *cookie; |
| struct bfd_link_info *info; |
| { |
| asection *o; |
| bfd_boolean ret = FALSE; |
| unsigned char *tdata; |
| size_t i, skip; |
| |
| o = bfd_get_section_by_name (abfd, ".pdr"); |
| if (! o) |
| return FALSE; |
| if (o->_raw_size == 0) |
| return FALSE; |
| if (o->_raw_size % PDR_SIZE != 0) |
| return FALSE; |
| if (o->output_section != NULL |
| && bfd_is_abs_section (o->output_section)) |
| return FALSE; |
| |
| tdata = bfd_zmalloc (o->_raw_size / PDR_SIZE); |
| if (! tdata) |
| return FALSE; |
| |
| cookie->rels = _bfd_elf_link_read_relocs (abfd, o, (PTR) NULL, |
| (Elf_Internal_Rela *) NULL, |
| info->keep_memory); |
| if (!cookie->rels) |
| { |
| free (tdata); |
| return FALSE; |
| } |
| |
| cookie->rel = cookie->rels; |
| cookie->relend = cookie->rels + o->reloc_count; |
| |
| for (i = 0, skip = 0; i < o->_raw_size / PDR_SIZE; i ++) |
| { |
| if (MNAME(abfd,_bfd_elf,reloc_symbol_deleted_p) (i * PDR_SIZE, cookie)) |
| { |
| tdata[i] = 1; |
| skip ++; |
| } |
| } |
| |
| if (skip != 0) |
| { |
| mips_elf_section_data (o)->u.tdata = tdata; |
| o->_cooked_size = o->_raw_size - skip * PDR_SIZE; |
| ret = TRUE; |
| } |
| else |
| free (tdata); |
| |
| if (! info->keep_memory) |
| free (cookie->rels); |
| |
| return ret; |
| } |
| |
| bfd_boolean |
| _bfd_mips_elf_ignore_discarded_relocs (sec) |
| asection *sec; |
| { |
| if (strcmp (sec->name, ".pdr") == 0) |
| return TRUE; |
| return FALSE; |
| } |
| |
| bfd_boolean |
| _bfd_mips_elf_write_section (output_bfd, sec, contents) |
| bfd *output_bfd; |
| asection *sec; |
| bfd_byte *contents; |
| { |
| bfd_byte *to, *from, *end; |
| int i; |
| |
| if (strcmp (sec->name, ".pdr") != 0) |
| return FALSE; |
| |
| if (mips_elf_section_data (sec)->u.tdata == NULL) |
| return FALSE; |
| |
| to = contents; |
| end = contents + sec->_raw_size; |
| for (from = contents, i = 0; |
| from < end; |
| from += PDR_SIZE, i++) |
| { |
| if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) |
| continue; |
| if (to != from) |
| memcpy (to, from, PDR_SIZE); |
| to += PDR_SIZE; |
| } |
| bfd_set_section_contents (output_bfd, sec->output_section, contents, |
| (file_ptr) sec->output_offset, |
| sec->_cooked_size); |
| return TRUE; |
| } |
| |
| /* MIPS ELF uses a special find_nearest_line routine in order the |
| handle the ECOFF debugging information. */ |
| |
| struct mips_elf_find_line |
| { |
| struct ecoff_debug_info d; |
| struct ecoff_find_line i; |
| }; |
| |
| bfd_boolean |
| _bfd_mips_elf_find_nearest_line (abfd, section, symbols, offset, filename_ptr, |
| functionname_ptr, line_ptr) |
| bfd *abfd; |
| asection *section; |
| asymbol **symbols; |
| bfd_vma offset; |
| const char **filename_ptr; |
| const char **functionname_ptr; |
| unsigned int *line_ptr; |
| { |
| asection *msec; |
| |
| if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr)) |
| return TRUE; |
| |
| if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr, |
| (unsigned) (ABI_64_P (abfd) ? 8 : 0), |
| &elf_tdata (abfd)->dwarf2_find_line_info)) |
| return TRUE; |
| |
| msec = bfd_get_section_by_name (abfd, ".mdebug"); |
| if (msec != NULL) |
| { |
| flagword origflags; |
| struct mips_elf_find_line *fi; |
| const struct ecoff_debug_swap * const swap = |
| get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| |
| /* If we are called during a link, mips_elf_final_link may have |
| cleared the SEC_HAS_CONTENTS field. We force it back on here |
| if appropriate (which it normally will be). */ |
| origflags = msec->flags; |
| if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) |
| msec->flags |= SEC_HAS_CONTENTS; |
| |
| fi = elf_tdata (abfd)->find_line_info; |
| if (fi == NULL) |
| { |
| bfd_size_type external_fdr_size; |
| char *fraw_src; |
| char *fraw_end; |
| struct fdr *fdr_ptr; |
| bfd_size_type amt = sizeof (struct mips_elf_find_line); |
| |
| fi = (struct mips_elf_find_line *) bfd_zalloc (abfd, amt); |
| if (fi == NULL) |
| { |
| msec->flags = origflags; |
| return FALSE; |
| } |
| |
| if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) |
| { |
| msec->flags = origflags; |
| return FALSE; |
| } |
| |
| /* Swap in the FDR information. */ |
| amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); |
| fi->d.fdr = (struct fdr *) bfd_alloc (abfd, amt); |
| if (fi->d.fdr == NULL) |
| { |
| msec->flags = origflags; |
| return FALSE; |
| } |
| external_fdr_size = swap->external_fdr_size; |
| fdr_ptr = fi->d.fdr; |
| fraw_src = (char *) fi->d.external_fdr; |
| fraw_end = (fraw_src |
| + fi->d.symbolic_header.ifdMax * external_fdr_size); |
| for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) |
| (*swap->swap_fdr_in) (abfd, (PTR) fraw_src, fdr_ptr); |
| |
| elf_tdata (abfd)->find_line_info = fi; |
| |
| /* Note that we don't bother to ever free this information. |
| find_nearest_line is either called all the time, as in |
| objdump -l, so the information should be saved, or it is |
| rarely called, as in ld error messages, so the memory |
| wasted is unimportant. Still, it would probably be a |
| good idea for free_cached_info to throw it away. */ |
| } |
| |
| if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, |
| &fi->i, filename_ptr, functionname_ptr, |
| line_ptr)) |
| { |
| msec->flags = origflags; |
| return TRUE; |
| } |
| |
| msec->flags = origflags; |
| } |
| |
| /* Fall back on the generic ELF find_nearest_line routine. */ |
| |
| return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, |
| filename_ptr, functionname_ptr, |
| line_ptr); |
| } |
| |
| /* When are writing out the .options or .MIPS.options section, |
| remember the bytes we are writing out, so that we can install the |
| GP value in the section_processing routine. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_set_section_contents (abfd, section, location, offset, count) |
| bfd *abfd; |
| sec_ptr section; |
| PTR location; |
| file_ptr offset; |
| bfd_size_type count; |
| { |
| if (strcmp (section->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) |
| { |
| bfd_byte *c; |
| |
| if (elf_section_data (section) == NULL) |
| { |
| bfd_size_type amt = sizeof (struct bfd_elf_section_data); |
| section->used_by_bfd = (PTR) bfd_zalloc (abfd, amt); |
| if (elf_section_data (section) == NULL) |
| return FALSE; |
| } |
| c = mips_elf_section_data (section)->u.tdata; |
| if (c == NULL) |
| { |
| bfd_size_type size; |
| |
| if (section->_cooked_size != 0) |
| size = section->_cooked_size; |
| else |
| size = section->_raw_size; |
| c = (bfd_byte *) bfd_zalloc (abfd, size); |
| if (c == NULL) |
| return FALSE; |
| mips_elf_section_data (section)->u.tdata = c; |
| } |
| |
| memcpy (c + offset, location, (size_t) count); |
| } |
| |
| return _bfd_elf_set_section_contents (abfd, section, location, offset, |
| count); |
| } |
| |
| /* This is almost identical to bfd_generic_get_... except that some |
| MIPS relocations need to be handled specially. Sigh. */ |
| |
| bfd_byte * |
| _bfd_elf_mips_get_relocated_section_contents (abfd, link_info, link_order, |
| data, relocatable, symbols) |
| bfd *abfd; |
| struct bfd_link_info *link_info; |
| struct bfd_link_order *link_order; |
| bfd_byte *data; |
| bfd_boolean relocatable; |
| asymbol **symbols; |
| { |
| /* Get enough memory to hold the stuff */ |
| bfd *input_bfd = link_order->u.indirect.section->owner; |
| asection *input_section = link_order->u.indirect.section; |
| |
| long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); |
| arelent **reloc_vector = NULL; |
| long reloc_count; |
| |
| if (reloc_size < 0) |
| goto error_return; |
| |
| reloc_vector = (arelent **) bfd_malloc ((bfd_size_type) reloc_size); |
| if (reloc_vector == NULL && reloc_size != 0) |
| goto error_return; |
| |
| /* read in the section */ |
| if (!bfd_get_section_contents (input_bfd, |
| input_section, |
| (PTR) data, |
| (file_ptr) 0, |
| input_section->_raw_size)) |
| goto error_return; |
| |
| /* We're not relaxing the section, so just copy the size info */ |
| input_section->_cooked_size = input_section->_raw_size; |
| input_section->reloc_done = TRUE; |
| |
| reloc_count = bfd_canonicalize_reloc (input_bfd, |
| input_section, |
| reloc_vector, |
| symbols); |
| if (reloc_count < 0) |
| goto error_return; |
| |
| if (reloc_count > 0) |
| { |
| arelent **parent; |
| /* for mips */ |
| int gp_found; |
| bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ |
| |
| { |
| struct bfd_hash_entry *h; |
| struct bfd_link_hash_entry *lh; |
| /* Skip all this stuff if we aren't mixing formats. */ |
| if (abfd && input_bfd |
| && abfd->xvec == input_bfd->xvec) |
| lh = 0; |
| else |
| { |
| h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); |
| lh = (struct bfd_link_hash_entry *) h; |
| } |
| lookup: |
| if (lh) |
| { |
| switch (lh->type) |
| { |
| case bfd_link_hash_undefined: |
| case bfd_link_hash_undefweak: |
| case bfd_link_hash_common: |
| gp_found = 0; |
| break; |
| case bfd_link_hash_defined: |
| case bfd_link_hash_defweak: |
| gp_found = 1; |
| gp = lh->u.def.value; |
| break; |
| case bfd_link_hash_indirect: |
| case bfd_link_hash_warning: |
| lh = lh->u.i.link; |
| /* @@FIXME ignoring warning for now */ |
| goto lookup; |
| case bfd_link_hash_new: |
| default: |
| abort (); |
| } |
| } |
| else |
| gp_found = 0; |
| } |
| /* end mips */ |
| for (parent = reloc_vector; *parent != (arelent *) NULL; |
| parent++) |
| { |
| char *error_message = (char *) NULL; |
| bfd_reloc_status_type r; |
| |
| /* Specific to MIPS: Deal with relocation types that require |
| knowing the gp of the output bfd. */ |
| asymbol *sym = *(*parent)->sym_ptr_ptr; |
| if (bfd_is_abs_section (sym->section) && abfd) |
| { |
| /* The special_function wouldn't get called anyway. */ |
| } |
| else if (!gp_found) |
| { |
| /* The gp isn't there; let the special function code |
| fall over on its own. */ |
| } |
| else if ((*parent)->howto->special_function |
| == _bfd_mips_elf32_gprel16_reloc) |
| { |
| /* bypass special_function call */ |
| r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, |
| input_section, relocatable, |
| (PTR) data, gp); |
| goto skip_bfd_perform_relocation; |
| } |
| /* end mips specific stuff */ |
| |
| r = bfd_perform_relocation (input_bfd, |
| *parent, |
| (PTR) data, |
| input_section, |
| relocatable ? abfd : (bfd *) NULL, |
| &error_message); |
| skip_bfd_perform_relocation: |
| |
| if (relocatable) |
| { |
| asection *os = input_section->output_section; |
| |
| /* A partial link, so keep the relocs */ |
| os->orelocation[os->reloc_count] = *parent; |
| os->reloc_count++; |
| } |
| |
| if (r != bfd_reloc_ok) |
| { |
| switch (r) |
| { |
| case bfd_reloc_undefined: |
| if (!((*link_info->callbacks->undefined_symbol) |
| (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| input_bfd, input_section, (*parent)->address, |
| TRUE))) |
| goto error_return; |
| break; |
| case bfd_reloc_dangerous: |
| BFD_ASSERT (error_message != (char *) NULL); |
| if (!((*link_info->callbacks->reloc_dangerous) |
| (link_info, error_message, input_bfd, input_section, |
| (*parent)->address))) |
| goto error_return; |
| break; |
| case bfd_reloc_overflow: |
| if (!((*link_info->callbacks->reloc_overflow) |
| (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), |
| (*parent)->howto->name, (*parent)->addend, |
| input_bfd, input_section, (*parent)->address))) |
| goto error_return; |
| break; |
| case bfd_reloc_outofrange: |
| default: |
| abort (); |
| break; |
| } |
| |
| } |
| } |
| } |
| if (reloc_vector != NULL) |
| free (reloc_vector); |
| return data; |
| |
| error_return: |
| if (reloc_vector != NULL) |
| free (reloc_vector); |
| return NULL; |
| } |
| |
| /* Create a MIPS ELF linker hash table. */ |
| |
| struct bfd_link_hash_table * |
| _bfd_mips_elf_link_hash_table_create (abfd) |
| bfd *abfd; |
| { |
| struct mips_elf_link_hash_table *ret; |
| bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); |
| |
| ret = (struct mips_elf_link_hash_table *) bfd_malloc (amt); |
| if (ret == (struct mips_elf_link_hash_table *) NULL) |
| return NULL; |
| |
| if (! _bfd_elf_link_hash_table_init (&ret->root, abfd, |
| mips_elf_link_hash_newfunc)) |
| { |
| free (ret); |
| return NULL; |
| } |
| |
| #if 0 |
| /* We no longer use this. */ |
| for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) |
| ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; |
| #endif |
| ret->procedure_count = 0; |
| ret->compact_rel_size = 0; |
| ret->use_rld_obj_head = FALSE; |
| ret->rld_value = 0; |
| ret->mips16_stubs_seen = FALSE; |
| |
| return &ret->root.root; |
| } |
| |
| /* We need to use a special link routine to handle the .reginfo and |
| the .mdebug sections. We need to merge all instances of these |
| sections together, not write them all out sequentially. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_final_link (abfd, info) |
| bfd *abfd; |
| struct bfd_link_info *info; |
| { |
| asection **secpp; |
| asection *o; |
| struct bfd_link_order *p; |
| asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; |
| asection *rtproc_sec; |
| Elf32_RegInfo reginfo; |
| struct ecoff_debug_info debug; |
| const struct ecoff_debug_swap *swap |
| = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; |
| HDRR *symhdr = &debug.symbolic_header; |
| PTR mdebug_handle = NULL; |
| asection *s; |
| EXTR esym; |
| unsigned int i; |
| bfd_size_type amt; |
| |
| static const char * const secname[] = |
| { |
| ".text", ".init", ".fini", ".data", |
| ".rodata", ".sdata", ".sbss", ".bss" |
| }; |
| static const int sc[] = |
| { |
| scText, scInit, scFini, scData, |
| scRData, scSData, scSBss, scBss |
| }; |
| |
| /* We'd carefully arranged the dynamic symbol indices, and then the |
| generic size_dynamic_sections renumbered them out from under us. |
| Rather than trying somehow to prevent the renumbering, just do |
| the sort again. */ |
| if (elf_hash_table (info)->dynamic_sections_created) |
| { |
| bfd *dynobj; |
| asection *got; |
| struct mips_got_info *g; |
| |
| /* When we resort, we must tell mips_elf_sort_hash_table what |
| the lowest index it may use is. That's the number of section |
| symbols we're going to add. The generic ELF linker only |
| adds these symbols when building a shared object. Note that |
| we count the sections after (possibly) removing the .options |
| section above. */ |
| if (! mips_elf_sort_hash_table (info, (info->shared |
| ? bfd_count_sections (abfd) + 1 |
| : 1))) |
| return FALSE; |
| |
| /* Make sure we didn't grow the global .got region. */ |
| dynobj = elf_hash_table (info)->dynobj; |
| got = mips_elf_got_section (dynobj, FALSE); |
| g = mips_elf_section_data (got)->u.got_info; |
| |
| if (g->global_gotsym != NULL) |
| BFD_ASSERT ((elf_hash_table (info)->dynsymcount |
| - g->global_gotsym->dynindx) |
| <= g->global_gotno); |
| } |
| |
| #if 0 |
| /* We want to set the GP value for ld -r. */ |
| /* On IRIX5, we omit the .options section. On IRIX6, however, we |
| include it, even though we don't process it quite right. (Some |
| entries are supposed to be merged.) Empirically, we seem to be |
| better off including it then not. */ |
| if (IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) |
| for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) |
| { |
| if (strcmp ((*secpp)->name, MIPS_ELF_OPTIONS_SECTION_NAME (abfd)) == 0) |
| { |
| for (p = (*secpp)->link_order_head; p != NULL; p = p->next) |
| if (p->type == bfd_indirect_link_order) |
| p->u.indirect.section->flags &= ~SEC_HAS_CONTENTS; |
| (*secpp)->link_order_head = NULL; |
| bfd_section_list_remove (abfd, secpp); |
| --abfd->section_count; |
| |
| break; |
| } |
| } |
| |
| /* We include .MIPS.options, even though we don't process it quite right. |
| (Some entries are supposed to be merged.) At IRIX6 empirically we seem |
| to be better off including it than not. */ |
| for (secpp = &abfd->sections; *secpp != NULL; secpp = &(*secpp)->next) |
| { |
| if (strcmp ((*secpp)->name, ".MIPS.options") == 0) |
| { |
| for (p = (*secpp)->link_order_head; p != NULL; p = p->next) |
| if (p->type == bfd_indirect_link_order) |
| p->u.indirect.section->flags &=~ SEC_HAS_CONTENTS; |
| (*secpp)->link_order_head = NULL; |
| bfd_section_list_remove (abfd, secpp); |
| --abfd->section_count; |
| |
| break; |
| } |
| } |
| #endif |
| |
| /* Get a value for the GP register. */ |
| if (elf_gp (abfd) == 0) |
| { |
| struct bfd_link_hash_entry *h; |
| |
| h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); |
| if (h != (struct bfd_link_hash_entry *) NULL |
| && h->type == bfd_link_hash_defined) |
| elf_gp (abfd) = (h->u.def.value |
| + h->u.def.section->output_section->vma |
| + h->u.def.section->output_offset); |
| else if (info->relocatable) |
| { |
| bfd_vma lo = MINUS_ONE; |
| |
| /* Find the GP-relative section with the lowest offset. */ |
| for (o = abfd->sections; o != (asection *) NULL; o = o->next) |
| if (o->vma < lo |
| && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) |
| lo = o->vma; |
| |
| /* And calculate GP relative to that. */ |
| elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (abfd); |
| } |
| else |
| { |
| /* If the relocate_section function needs to do a reloc |
| involving the GP value, it should make a reloc_dangerous |
| callback to warn that GP is not defined. */ |
| } |
| } |
| |
| /* Go through the sections and collect the .reginfo and .mdebug |
| information. */ |
| reginfo_sec = NULL; |
| mdebug_sec = NULL; |
| gptab_data_sec = NULL; |
| gptab_bss_sec = NULL; |
| for (o = abfd->sections; o != (asection *) NULL; o = o->next) |
| { |
| if (strcmp (o->name, ".reginfo") == 0) |
| { |
| memset (®info, 0, sizeof reginfo); |
| |
| /* We have found the .reginfo section in the output file. |
| Look through all the link_orders comprising it and merge |
| the information together. */ |
| for (p = o->link_order_head; |
| p != (struct bfd_link_order *) NULL; |
| p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| Elf32_External_RegInfo ext; |
| Elf32_RegInfo sub; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| /* The linker emulation code has probably clobbered the |
| size to be zero bytes. */ |
| if (input_section->_raw_size == 0) |
| input_section->_raw_size = sizeof (Elf32_External_RegInfo); |
| |
| if (! bfd_get_section_contents (input_bfd, input_section, |
| (PTR) &ext, |
| (file_ptr) 0, |
| (bfd_size_type) sizeof ext)) |
| return FALSE; |
| |
| bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); |
| |
| reginfo.ri_gprmask |= sub.ri_gprmask; |
| reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; |
| reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; |
| reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; |
| reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; |
| |
| /* ri_gp_value is set by the function |
| mips_elf32_section_processing when the section is |
| finally written out. */ |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* Size has been set in _bfd_mips_elf_always_size_sections. */ |
| BFD_ASSERT(o->_raw_size == sizeof (Elf32_External_RegInfo)); |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->link_order_head = (struct bfd_link_order *) NULL; |
| |
| reginfo_sec = o; |
| } |
| |
| if (strcmp (o->name, ".mdebug") == 0) |
| { |
| struct extsym_info einfo; |
| bfd_vma last; |
| |
| /* We have found the .mdebug section in the output file. |
| Look through all the link_orders comprising it and merge |
| the information together. */ |
| symhdr->magic = swap->sym_magic; |
| /* FIXME: What should the version stamp be? */ |
| symhdr->vstamp = 0; |
| symhdr->ilineMax = 0; |
| symhdr->cbLine = 0; |
| symhdr->idnMax = 0; |
| symhdr->ipdMax = 0; |
| symhdr->isymMax = 0; |
| symhdr->ioptMax = 0; |
| symhdr->iauxMax = 0; |
| symhdr->issMax = 0; |
| symhdr->issExtMax = 0; |
| symhdr->ifdMax = 0; |
| symhdr->crfd = 0; |
| symhdr->iextMax = 0; |
| |
| /* We accumulate the debugging information itself in the |
| debug_info structure. */ |
| debug.line = NULL; |
| debug.external_dnr = NULL; |
| debug.external_pdr = NULL; |
| debug.external_sym = NULL; |
| debug.external_opt = NULL; |
| debug.external_aux = NULL; |
| debug.ss = NULL; |
| debug.ssext = debug.ssext_end = NULL; |
| debug.external_fdr = NULL; |
| debug.external_rfd = NULL; |
| debug.external_ext = debug.external_ext_end = NULL; |
| |
| mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); |
| if (mdebug_handle == (PTR) NULL) |
| return FALSE; |
| |
| esym.jmptbl = 0; |
| esym.cobol_main = 0; |
| esym.weakext = 0; |
| esym.reserved = 0; |
| esym.ifd = ifdNil; |
| esym.asym.iss = issNil; |
| esym.asym.st = stLocal; |
| esym.asym.reserved = 0; |
| esym.asym.index = indexNil; |
| last = 0; |
| for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) |
| { |
| esym.asym.sc = sc[i]; |
| s = bfd_get_section_by_name (abfd, secname[i]); |
| if (s != NULL) |
| { |
| esym.asym.value = s->vma; |
| last = s->vma + s->_raw_size; |
| } |
| else |
| esym.asym.value = last; |
| if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, |
| secname[i], &esym)) |
| return FALSE; |
| } |
| |
| for (p = o->link_order_head; |
| p != (struct bfd_link_order *) NULL; |
| p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| const struct ecoff_debug_swap *input_swap; |
| struct ecoff_debug_info input_debug; |
| char *eraw_src; |
| char *eraw_end; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| if (bfd_get_flavour (input_bfd) != bfd_target_elf_flavour |
| || (get_elf_backend_data (input_bfd) |
| ->elf_backend_ecoff_debug_swap) == NULL) |
| { |
| /* I don't know what a non MIPS ELF bfd would be |
| doing with a .mdebug section, but I don't really |
| want to deal with it. */ |
| continue; |
| } |
| |
| input_swap = (get_elf_backend_data (input_bfd) |
| ->elf_backend_ecoff_debug_swap); |
| |
| BFD_ASSERT (p->size == input_section->_raw_size); |
| |
| /* The ECOFF linking code expects that we have already |
| read in the debugging information and set up an |
| ecoff_debug_info structure, so we do that now. */ |
| if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, |
| &input_debug)) |
| return FALSE; |
| |
| if (! (bfd_ecoff_debug_accumulate |
| (mdebug_handle, abfd, &debug, swap, input_bfd, |
| &input_debug, input_swap, info))) |
| return FALSE; |
| |
| /* Loop through the external symbols. For each one with |
| interesting information, try to find the symbol in |
| the linker global hash table and save the information |
| for the output external symbols. */ |
| eraw_src = input_debug.external_ext; |
| eraw_end = (eraw_src |
| + (input_debug.symbolic_header.iextMax |
| * input_swap->external_ext_size)); |
| for (; |
| eraw_src < eraw_end; |
| eraw_src += input_swap->external_ext_size) |
| { |
| EXTR ext; |
| const char *name; |
| struct mips_elf_link_hash_entry *h; |
| |
| (*input_swap->swap_ext_in) (input_bfd, (PTR) eraw_src, &ext); |
| if (ext.asym.sc == scNil |
| || ext.asym.sc == scUndefined |
| || ext.asym.sc == scSUndefined) |
| continue; |
| |
| name = input_debug.ssext + ext.asym.iss; |
| h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), |
| name, FALSE, FALSE, TRUE); |
| if (h == NULL || h->esym.ifd != -2) |
| continue; |
| |
| if (ext.ifd != -1) |
| { |
| BFD_ASSERT (ext.ifd |
| < input_debug.symbolic_header.ifdMax); |
| ext.ifd = input_debug.ifdmap[ext.ifd]; |
| } |
| |
| h->esym = ext; |
| } |
| |
| /* Free up the information we just read. */ |
| free (input_debug.line); |
| free (input_debug.external_dnr); |
| free (input_debug.external_pdr); |
| free (input_debug.external_sym); |
| free (input_debug.external_opt); |
| free (input_debug.external_aux); |
| free (input_debug.ss); |
| free (input_debug.ssext); |
| free (input_debug.external_fdr); |
| free (input_debug.external_rfd); |
| free (input_debug.external_ext); |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| if (SGI_COMPAT (abfd) && info->shared) |
| { |
| /* Create .rtproc section. */ |
| rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
| if (rtproc_sec == NULL) |
| { |
| flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY |
| | SEC_LINKER_CREATED | SEC_READONLY); |
| |
| rtproc_sec = bfd_make_section (abfd, ".rtproc"); |
| if (rtproc_sec == NULL |
| || ! bfd_set_section_flags (abfd, rtproc_sec, flags) |
| || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) |
| return FALSE; |
| } |
| |
| if (! mips_elf_create_procedure_table (mdebug_handle, abfd, |
| info, rtproc_sec, |
| &debug)) |
| return FALSE; |
| } |
| |
| /* Build the external symbol information. */ |
| einfo.abfd = abfd; |
| einfo.info = info; |
| einfo.debug = &debug; |
| einfo.swap = swap; |
| einfo.failed = FALSE; |
| mips_elf_link_hash_traverse (mips_elf_hash_table (info), |
| mips_elf_output_extsym, |
| (PTR) &einfo); |
| if (einfo.failed) |
| return FALSE; |
| |
| /* Set the size of the .mdebug section. */ |
| o->_raw_size = bfd_ecoff_debug_size (abfd, &debug, swap); |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->link_order_head = (struct bfd_link_order *) NULL; |
| |
| mdebug_sec = o; |
| } |
| |
| if (strncmp (o->name, ".gptab.", sizeof ".gptab." - 1) == 0) |
| { |
| const char *subname; |
| unsigned int c; |
| Elf32_gptab *tab; |
| Elf32_External_gptab *ext_tab; |
| unsigned int j; |
| |
| /* The .gptab.sdata and .gptab.sbss sections hold |
| information describing how the small data area would |
| change depending upon the -G switch. These sections |
| not used in executables files. */ |
| if (! info->relocatable) |
| { |
| for (p = o->link_order_head; |
| p != (struct bfd_link_order *) NULL; |
| p = p->next) |
| { |
| asection *input_section; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* Skip this section later on (I don't think this |
| currently matters, but someday it might). */ |
| o->link_order_head = (struct bfd_link_order *) NULL; |
| |
| /* Really remove the section. */ |
| for (secpp = &abfd->sections; |
| *secpp != o; |
| secpp = &(*secpp)->next) |
| ; |
| bfd_section_list_remove (abfd, secpp); |
| --abfd->section_count; |
| |
| continue; |
| } |
| |
| /* There is one gptab for initialized data, and one for |
| uninitialized data. */ |
| if (strcmp (o->name, ".gptab.sdata") == 0) |
| gptab_data_sec = o; |
| else if (strcmp (o->name, ".gptab.sbss") == 0) |
| gptab_bss_sec = o; |
| else |
| { |
| (*_bfd_error_handler) |
| (_("%s: illegal section name `%s'"), |
| bfd_get_filename (abfd), o->name); |
| bfd_set_error (bfd_error_nonrepresentable_section); |
| return FALSE; |
| } |
| |
| /* The linker script always combines .gptab.data and |
| .gptab.sdata into .gptab.sdata, and likewise for |
| .gptab.bss and .gptab.sbss. It is possible that there is |
| no .sdata or .sbss section in the output file, in which |
| case we must change the name of the output section. */ |
| subname = o->name + sizeof ".gptab" - 1; |
| if (bfd_get_section_by_name (abfd, subname) == NULL) |
| { |
| if (o == gptab_data_sec) |
| o->name = ".gptab.data"; |
| else |
| o->name = ".gptab.bss"; |
| subname = o->name + sizeof ".gptab" - 1; |
| BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); |
| } |
| |
| /* Set up the first entry. */ |
| c = 1; |
| amt = c * sizeof (Elf32_gptab); |
| tab = (Elf32_gptab *) bfd_malloc (amt); |
| if (tab == NULL) |
| return FALSE; |
| tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); |
| tab[0].gt_header.gt_unused = 0; |
| |
| /* Combine the input sections. */ |
| for (p = o->link_order_head; |
| p != (struct bfd_link_order *) NULL; |
| p = p->next) |
| { |
| asection *input_section; |
| bfd *input_bfd; |
| bfd_size_type size; |
| unsigned long last; |
| bfd_size_type gpentry; |
| |
| if (p->type != bfd_indirect_link_order) |
| { |
| if (p->type == bfd_data_link_order) |
| continue; |
| abort (); |
| } |
| |
| input_section = p->u.indirect.section; |
| input_bfd = input_section->owner; |
| |
| /* Combine the gptab entries for this input section one |
| by one. We know that the input gptab entries are |
| sorted by ascending -G value. */ |
| size = bfd_section_size (input_bfd, input_section); |
| last = 0; |
| for (gpentry = sizeof (Elf32_External_gptab); |
| gpentry < size; |
| gpentry += sizeof (Elf32_External_gptab)) |
| { |
| Elf32_External_gptab ext_gptab; |
| Elf32_gptab int_gptab; |
| unsigned long val; |
| unsigned long add; |
| bfd_boolean exact; |
| unsigned int look; |
| |
| if (! (bfd_get_section_contents |
| (input_bfd, input_section, (PTR) &ext_gptab, |
| (file_ptr) gpentry, |
| (bfd_size_type) sizeof (Elf32_External_gptab)))) |
| { |
| free (tab); |
| return FALSE; |
| } |
| |
| bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, |
| &int_gptab); |
| val = int_gptab.gt_entry.gt_g_value; |
| add = int_gptab.gt_entry.gt_bytes - last; |
| |
| exact = FALSE; |
| for (look = 1; look < c; look++) |
| { |
| if (tab[look].gt_entry.gt_g_value >= val) |
| tab[look].gt_entry.gt_bytes += add; |
| |
| if (tab[look].gt_entry.gt_g_value == val) |
| exact = TRUE; |
| } |
| |
| if (! exact) |
| { |
| Elf32_gptab *new_tab; |
| unsigned int max; |
| |
| /* We need a new table entry. */ |
| amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); |
| new_tab = (Elf32_gptab *) bfd_realloc ((PTR) tab, amt); |
| if (new_tab == NULL) |
| { |
| free (tab); |
| return FALSE; |
| } |
| tab = new_tab; |
| tab[c].gt_entry.gt_g_value = val; |
| tab[c].gt_entry.gt_bytes = add; |
| |
| /* Merge in the size for the next smallest -G |
| value, since that will be implied by this new |
| value. */ |
| max = 0; |
| for (look = 1; look < c; look++) |
| { |
| if (tab[look].gt_entry.gt_g_value < val |
| && (max == 0 |
| || (tab[look].gt_entry.gt_g_value |
| > tab[max].gt_entry.gt_g_value))) |
| max = look; |
| } |
| if (max != 0) |
| tab[c].gt_entry.gt_bytes += |
| tab[max].gt_entry.gt_bytes; |
| |
| ++c; |
| } |
| |
| last = int_gptab.gt_entry.gt_bytes; |
| } |
| |
| /* Hack: reset the SEC_HAS_CONTENTS flag so that |
| elf_link_input_bfd ignores this section. */ |
| input_section->flags &= ~SEC_HAS_CONTENTS; |
| } |
| |
| /* The table must be sorted by -G value. */ |
| if (c > 2) |
| qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); |
| |
| /* Swap out the table. */ |
| amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); |
| ext_tab = (Elf32_External_gptab *) bfd_alloc (abfd, amt); |
| if (ext_tab == NULL) |
| { |
| free (tab); |
| return FALSE; |
| } |
| |
| for (j = 0; j < c; j++) |
| bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); |
| free (tab); |
| |
| o->_raw_size = c * sizeof (Elf32_External_gptab); |
| o->contents = (bfd_byte *) ext_tab; |
| |
| /* Skip this section later on (I don't think this currently |
| matters, but someday it might). */ |
| o->link_order_head = (struct bfd_link_order *) NULL; |
| } |
| } |
| |
| /* Invoke the regular ELF backend linker to do all the work. */ |
| if (!MNAME(abfd,bfd_elf,bfd_final_link) (abfd, info)) |
| return FALSE; |
| |
| /* Now write out the computed sections. */ |
| |
| if (reginfo_sec != (asection *) NULL) |
| { |
| Elf32_External_RegInfo ext; |
| |
| bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); |
| if (! bfd_set_section_contents (abfd, reginfo_sec, (PTR) &ext, |
| (file_ptr) 0, |
| (bfd_size_type) sizeof ext)) |
| return FALSE; |
| } |
| |
| if (mdebug_sec != (asection *) NULL) |
| { |
| BFD_ASSERT (abfd->output_has_begun); |
| if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, |
| swap, info, |
| mdebug_sec->filepos)) |
| return FALSE; |
| |
| bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); |
| } |
| |
| if (gptab_data_sec != (asection *) NULL) |
| { |
| if (! bfd_set_section_contents (abfd, gptab_data_sec, |
| gptab_data_sec->contents, |
| (file_ptr) 0, |
| gptab_data_sec->_raw_size)) |
| return FALSE; |
| } |
| |
| if (gptab_bss_sec != (asection *) NULL) |
| { |
| if (! bfd_set_section_contents (abfd, gptab_bss_sec, |
| gptab_bss_sec->contents, |
| (file_ptr) 0, |
| gptab_bss_sec->_raw_size)) |
| return FALSE; |
| } |
| |
| if (SGI_COMPAT (abfd)) |
| { |
| rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); |
| if (rtproc_sec != NULL) |
| { |
| if (! bfd_set_section_contents (abfd, rtproc_sec, |
| rtproc_sec->contents, |
| (file_ptr) 0, |
| rtproc_sec->_raw_size)) |
| return FALSE; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| /* Structure for saying that BFD machine EXTENSION extends BASE. */ |
| |
| struct mips_mach_extension { |
| unsigned long extension, base; |
| }; |
| |
| |
| /* An array describing how BFD machines relate to one another. The entries |
| are ordered topologically with MIPS I extensions listed last. */ |
| |
| static const struct mips_mach_extension mips_mach_extensions[] = { |
| /* MIPS64 extensions. */ |
| { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, |
| |
| /* MIPS V extensions. */ |
| { bfd_mach_mipsisa64, bfd_mach_mips5 }, |
| |
| /* R10000 extensions. */ |
| { bfd_mach_mips12000, bfd_mach_mips10000 }, |
| |
| /* R5000 extensions. Note: the vr5500 ISA is an extension of the core |
| vr5400 ISA, but doesn't include the multimedia stuff. It seems |
| better to allow vr5400 and vr5500 code to be merged anyway, since |
| many libraries will just use the core ISA. Perhaps we could add |
| some sort of ASE flag if this ever proves a problem. */ |
| { bfd_mach_mips5500, bfd_mach_mips5400 }, |
| { bfd_mach_mips5400, bfd_mach_mips5000 }, |
| |
| /* MIPS IV extensions. */ |
| { bfd_mach_mips5, bfd_mach_mips8000 }, |
| { bfd_mach_mips10000, bfd_mach_mips8000 }, |
| { bfd_mach_mips5000, bfd_mach_mips8000 }, |
| { bfd_mach_mips7000, bfd_mach_mips8000 }, |
| |
| /* VR4100 extensions. */ |
| { bfd_mach_mips4120, bfd_mach_mips4100 }, |
| { bfd_mach_mips4111, bfd_mach_mips4100 }, |
| |
| /* MIPS III extensions. */ |
| { bfd_mach_mips8000, bfd_mach_mips4000 }, |
| { bfd_mach_mips4650, bfd_mach_mips4000 }, |
| { bfd_mach_mips4600, bfd_mach_mips4000 }, |
| { bfd_mach_mips4400, bfd_mach_mips4000 }, |
| { bfd_mach_mips4300, bfd_mach_mips4000 }, |
| { bfd_mach_mips4100, bfd_mach_mips4000 }, |
| { bfd_mach_mips4010, bfd_mach_mips4000 }, |
| |
| /* MIPS32 extensions. */ |
| { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, |
| |
| /* MIPS II extensions. */ |
| { bfd_mach_mips4000, bfd_mach_mips6000 }, |
| { bfd_mach_mipsisa32, bfd_mach_mips6000 }, |
| |
| /* MIPS I extensions. */ |
| { bfd_mach_mips6000, bfd_mach_mips3000 }, |
| { bfd_mach_mips3900, bfd_mach_mips3000 } |
| }; |
| |
| |
| /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ |
| |
| static bfd_boolean |
| mips_mach_extends_p (base, extension) |
| unsigned long base, extension; |
| { |
| size_t i; |
| |
| for (i = 0; extension != base && i < ARRAY_SIZE (mips_mach_extensions); i++) |
| if (extension == mips_mach_extensions[i].extension) |
| extension = mips_mach_extensions[i].base; |
| |
| return extension == base; |
| } |
| |
| |
| /* Return true if the given ELF header flags describe a 32-bit binary. */ |
| |
| static bfd_boolean |
| mips_32bit_flags_p (flags) |
| flagword flags; |
| { |
| return ((flags & EF_MIPS_32BITMODE) != 0 |
| || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 |
| || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 |
| || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 |
| || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 |
| || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 |
| || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); |
| } |
| |
| |
| /* Merge backend specific data from an object file to the output |
| object file when linking. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_merge_private_bfd_data (ibfd, obfd) |
| bfd *ibfd; |
| bfd *obfd; |
| { |
| flagword old_flags; |
| flagword new_flags; |
| bfd_boolean ok; |
| bfd_boolean null_input_bfd = TRUE; |
| asection *sec; |
| |
| /* Check if we have the same endianess */ |
| if (! _bfd_generic_verify_endian_match (ibfd, obfd)) |
| { |
| (*_bfd_error_handler) |
| (_("%s: endianness incompatible with that of the selected emulation"), |
| bfd_archive_filename (ibfd)); |
| return FALSE; |
| } |
| |
| if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour |
| || bfd_get_flavour (obfd) != bfd_target_elf_flavour) |
| return TRUE; |
| |
| if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) |
| { |
| (*_bfd_error_handler) |
| (_("%s: ABI is incompatible with that of the selected emulation"), |
| bfd_archive_filename (ibfd)); |
| return FALSE; |
| } |
| |
| new_flags = elf_elfheader (ibfd)->e_flags; |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; |
| old_flags = elf_elfheader (obfd)->e_flags; |
| |
| if (! elf_flags_init (obfd)) |
| { |
| elf_flags_init (obfd) = TRUE; |
| elf_elfheader (obfd)->e_flags = new_flags; |
| elf_elfheader (obfd)->e_ident[EI_CLASS] |
| = elf_elfheader (ibfd)->e_ident[EI_CLASS]; |
| |
| if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) |
| && bfd_get_arch_info (obfd)->the_default) |
| { |
| if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), |
| bfd_get_mach (ibfd))) |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Check flag compatibility. */ |
| |
| new_flags &= ~EF_MIPS_NOREORDER; |
| old_flags &= ~EF_MIPS_NOREORDER; |
| |
| /* Some IRIX 6 BSD-compatibility objects have this bit set. It |
| doesn't seem to matter. */ |
| new_flags &= ~EF_MIPS_XGOT; |
| old_flags &= ~EF_MIPS_XGOT; |
| |
| if (new_flags == old_flags) |
| return TRUE; |
| |
| /* Check to see if the input BFD actually contains any sections. |
| If not, its flags may not have been initialised either, but it cannot |
| actually cause any incompatibility. */ |
| for (sec = ibfd->sections; sec != NULL; sec = sec->next) |
| { |
| /* Ignore synthetic sections and empty .text, .data and .bss sections |
| which are automatically generated by gas. */ |
| if (strcmp (sec->name, ".reginfo") |
| && strcmp (sec->name, ".mdebug") |
| && ((!strcmp (sec->name, ".text") |
| || !strcmp (sec->name, ".data") |
| || !strcmp (sec->name, ".bss")) |
| && sec->_raw_size != 0)) |
| { |
| null_input_bfd = FALSE; |
| break; |
| } |
| } |
| if (null_input_bfd) |
| return TRUE; |
| |
| ok = TRUE; |
| |
| if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) |
| != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) |
| { |
| (*_bfd_error_handler) |
| (_("%s: warning: linking PIC files with non-PIC files"), |
| bfd_archive_filename (ibfd)); |
| ok = TRUE; |
| } |
| |
| if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) |
| elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; |
| if (! (new_flags & EF_MIPS_PIC)) |
| elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; |
| |
| new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); |
| |
| /* Compare the ISAs. */ |
| if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) |
| { |
| (*_bfd_error_handler) |
| (_("%s: linking 32-bit code with 64-bit code"), |
| bfd_archive_filename (ibfd)); |
| ok = FALSE; |
| } |
| else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) |
| { |
| /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ |
| if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) |
| { |
| /* Copy the architecture info from IBFD to OBFD. Also copy |
| the 32-bit flag (if set) so that we continue to recognise |
| OBFD as a 32-bit binary. */ |
| bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); |
| elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); |
| elf_elfheader (obfd)->e_flags |
| |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| |
| /* Copy across the ABI flags if OBFD doesn't use them |
| and if that was what caused us to treat IBFD as 32-bit. */ |
| if ((old_flags & EF_MIPS_ABI) == 0 |
| && mips_32bit_flags_p (new_flags) |
| && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; |
| } |
| else |
| { |
| /* The ISAs aren't compatible. */ |
| (*_bfd_error_handler) |
| (_("%s: linking %s module with previous %s modules"), |
| bfd_archive_filename (ibfd), |
| bfd_printable_name (ibfd), |
| bfd_printable_name (obfd)); |
| ok = FALSE; |
| } |
| } |
| |
| new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); |
| |
| /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it |
| does set EI_CLASS differently from any 32-bit ABI. */ |
| if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) |
| || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| { |
| /* Only error if both are set (to different values). */ |
| if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) |
| || (elf_elfheader (ibfd)->e_ident[EI_CLASS] |
| != elf_elfheader (obfd)->e_ident[EI_CLASS])) |
| { |
| (*_bfd_error_handler) |
| (_("%s: ABI mismatch: linking %s module with previous %s modules"), |
| bfd_archive_filename (ibfd), |
| elf_mips_abi_name (ibfd), |
| elf_mips_abi_name (obfd)); |
| ok = FALSE; |
| } |
| new_flags &= ~EF_MIPS_ABI; |
| old_flags &= ~EF_MIPS_ABI; |
| } |
| |
| /* For now, allow arbitrary mixing of ASEs (retain the union). */ |
| if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) |
| { |
| elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; |
| |
| new_flags &= ~ EF_MIPS_ARCH_ASE; |
| old_flags &= ~ EF_MIPS_ARCH_ASE; |
| } |
| |
| /* Warn about any other mismatches */ |
| if (new_flags != old_flags) |
| { |
| (*_bfd_error_handler) |
| (_("%s: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), |
| bfd_archive_filename (ibfd), (unsigned long) new_flags, |
| (unsigned long) old_flags); |
| ok = FALSE; |
| } |
| |
| if (! ok) |
| { |
| bfd_set_error (bfd_error_bad_value); |
| return FALSE; |
| } |
| |
| return TRUE; |
| } |
| |
| /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ |
| |
| bfd_boolean |
| _bfd_mips_elf_set_private_flags (abfd, flags) |
| bfd *abfd; |
| flagword flags; |
| { |
| BFD_ASSERT (!elf_flags_init (abfd) |
| || elf_elfheader (abfd)->e_flags == flags); |
| |
| elf_elfheader (abfd)->e_flags = flags; |
| elf_flags_init (abfd) = TRUE; |
| return TRUE; |
| } |
| |
| bfd_boolean |
| _bfd_mips_elf_print_private_bfd_data (abfd, ptr) |
| bfd *abfd; |
| PTR ptr; |
| { |
| FILE *file = (FILE *) ptr; |
| |
| BFD_ASSERT (abfd != NULL && ptr != NULL); |
| |
| /* Print normal ELF private data. */ |
| _bfd_elf_print_private_bfd_data (abfd, ptr); |
| |
| /* xgettext:c-format */ |
| fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); |
| |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) |
| fprintf (file, _(" [abi=O32]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) |
| fprintf (file, _(" [abi=O64]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) |
| fprintf (file, _(" [abi=EABI32]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) |
| fprintf (file, _(" [abi=EABI64]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) |
| fprintf (file, _(" [abi unknown]")); |
| else if (ABI_N32_P (abfd)) |
| fprintf (file, _(" [abi=N32]")); |
| else if (ABI_64_P (abfd)) |
| fprintf (file, _(" [abi=64]")); |
| else |
| fprintf (file, _(" [no abi set]")); |
| |
| if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) |
| fprintf (file, _(" [mips1]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) |
| fprintf (file, _(" [mips2]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) |
| fprintf (file, _(" [mips3]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) |
| fprintf (file, _(" [mips4]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) |
| fprintf (file, _(" [mips5]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) |
| fprintf (file, _(" [mips32]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) |
| fprintf (file, _(" [mips64]")); |
| else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) |
| fprintf (file, _(" [mips32r2]")); |
| else |
| fprintf (file, _(" [unknown ISA]")); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) |
| fprintf (file, _(" [mdmx]")); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) |
| fprintf (file, _(" [mips16]")); |
| |
| if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) |
| fprintf (file, _(" [32bitmode]")); |
| else |
| fprintf (file, _(" [not 32bitmode]")); |
| |
| fputc ('\n', file); |
| |
| return TRUE; |
| } |
| |
| struct bfd_elf_special_section const _bfd_mips_elf_special_sections[]= |
| { |
| { ".sdata", 0, NULL, 0, |
| SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { ".sbss", 0, NULL, 0, |
| SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { ".lit4", 0, NULL, 0, |
| SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { ".lit8", 0, NULL, 0, |
| SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, |
| { ".ucode", 0, NULL, 0, |
| SHT_MIPS_UCODE, 0 }, |
| { ".mdebug", 0, NULL, 0, |
| SHT_MIPS_DEBUG, 0 }, |
| { NULL, 0, NULL, 0, |
| 0, 0 } |
| }; |