|  | /* Target-dependent code for AMD64. | 
|  |  | 
|  | Copyright (C) 2001-2024 Free Software Foundation, Inc. | 
|  |  | 
|  | Contributed by Jiri Smid, SuSE Labs. | 
|  |  | 
|  | This file is part of GDB. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 3 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
|  |  | 
|  | #include "extract-store-integer.h" | 
|  | #include "language.h" | 
|  | #include "opcode/i386.h" | 
|  | #include "dis-asm.h" | 
|  | #include "arch-utils.h" | 
|  | #include "dummy-frame.h" | 
|  | #include "frame.h" | 
|  | #include "frame-base.h" | 
|  | #include "frame-unwind.h" | 
|  | #include "inferior.h" | 
|  | #include "infrun.h" | 
|  | #include "cli/cli-cmds.h" | 
|  | #include "gdbcore.h" | 
|  | #include "objfiles.h" | 
|  | #include "regcache.h" | 
|  | #include "regset.h" | 
|  | #include "symfile.h" | 
|  | #include "disasm.h" | 
|  | #include "amd64-tdep.h" | 
|  | #include "i387-tdep.h" | 
|  | #include "gdbsupport/x86-xstate.h" | 
|  | #include <algorithm> | 
|  | #include "target-descriptions.h" | 
|  | #include "arch/amd64.h" | 
|  | #include "producer.h" | 
|  | #include "ax.h" | 
|  | #include "ax-gdb.h" | 
|  | #include "gdbsupport/byte-vector.h" | 
|  | #include "osabi.h" | 
|  | #include "x86-tdep.h" | 
|  | #include "amd64-ravenscar-thread.h" | 
|  |  | 
|  | /* Note that the AMD64 architecture was previously known as x86-64. | 
|  | The latter is (forever) engraved into the canonical system name as | 
|  | returned by config.guess, and used as the name for the AMD64 port | 
|  | of GNU/Linux.  The BSD's have renamed their ports to amd64; they | 
|  | don't like to shout.  For GDB we prefer the amd64_-prefix over the | 
|  | x86_64_-prefix since it's so much easier to type.  */ | 
|  |  | 
|  | /* Register information.  */ | 
|  |  | 
|  | static const char * const amd64_register_names[] = | 
|  | { | 
|  | "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", | 
|  |  | 
|  | /* %r8 is indeed register number 8.  */ | 
|  | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | 
|  | "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", | 
|  |  | 
|  | /* %st0 is register number 24.  */ | 
|  | "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", | 
|  | "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", | 
|  |  | 
|  | /* %xmm0 is register number 40.  */ | 
|  | "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", | 
|  | "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", | 
|  | "mxcsr", | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_ymm_names[] = | 
|  | { | 
|  | "ymm0", "ymm1", "ymm2", "ymm3", | 
|  | "ymm4", "ymm5", "ymm6", "ymm7", | 
|  | "ymm8", "ymm9", "ymm10", "ymm11", | 
|  | "ymm12", "ymm13", "ymm14", "ymm15" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_ymm_avx512_names[] = | 
|  | { | 
|  | "ymm16", "ymm17", "ymm18", "ymm19", | 
|  | "ymm20", "ymm21", "ymm22", "ymm23", | 
|  | "ymm24", "ymm25", "ymm26", "ymm27", | 
|  | "ymm28", "ymm29", "ymm30", "ymm31" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_ymmh_names[] = | 
|  | { | 
|  | "ymm0h", "ymm1h", "ymm2h", "ymm3h", | 
|  | "ymm4h", "ymm5h", "ymm6h", "ymm7h", | 
|  | "ymm8h", "ymm9h", "ymm10h", "ymm11h", | 
|  | "ymm12h", "ymm13h", "ymm14h", "ymm15h" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_ymmh_avx512_names[] = | 
|  | { | 
|  | "ymm16h", "ymm17h", "ymm18h", "ymm19h", | 
|  | "ymm20h", "ymm21h", "ymm22h", "ymm23h", | 
|  | "ymm24h", "ymm25h", "ymm26h", "ymm27h", | 
|  | "ymm28h", "ymm29h", "ymm30h", "ymm31h" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_mpx_names[] = | 
|  | { | 
|  | "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_k_names[] = | 
|  | { | 
|  | "k0", "k1", "k2", "k3", | 
|  | "k4", "k5", "k6", "k7" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_zmmh_names[] = | 
|  | { | 
|  | "zmm0h", "zmm1h", "zmm2h", "zmm3h", | 
|  | "zmm4h", "zmm5h", "zmm6h", "zmm7h", | 
|  | "zmm8h", "zmm9h", "zmm10h", "zmm11h", | 
|  | "zmm12h", "zmm13h", "zmm14h", "zmm15h", | 
|  | "zmm16h", "zmm17h", "zmm18h", "zmm19h", | 
|  | "zmm20h", "zmm21h", "zmm22h", "zmm23h", | 
|  | "zmm24h", "zmm25h", "zmm26h", "zmm27h", | 
|  | "zmm28h", "zmm29h", "zmm30h", "zmm31h" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_zmm_names[] = | 
|  | { | 
|  | "zmm0", "zmm1", "zmm2", "zmm3", | 
|  | "zmm4", "zmm5", "zmm6", "zmm7", | 
|  | "zmm8", "zmm9", "zmm10", "zmm11", | 
|  | "zmm12", "zmm13", "zmm14", "zmm15", | 
|  | "zmm16", "zmm17", "zmm18", "zmm19", | 
|  | "zmm20", "zmm21", "zmm22", "zmm23", | 
|  | "zmm24", "zmm25", "zmm26", "zmm27", | 
|  | "zmm28", "zmm29", "zmm30", "zmm31" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_xmm_avx512_names[] = { | 
|  | "xmm16",  "xmm17",  "xmm18",  "xmm19", | 
|  | "xmm20",  "xmm21",  "xmm22",  "xmm23", | 
|  | "xmm24",  "xmm25",  "xmm26",  "xmm27", | 
|  | "xmm28",  "xmm29",  "xmm30",  "xmm31" | 
|  | }; | 
|  |  | 
|  | static const char * const amd64_pkeys_names[] = { | 
|  | "pkru" | 
|  | }; | 
|  |  | 
|  | /* DWARF Register Number Mapping as defined in the System V psABI, | 
|  | section 3.6.  */ | 
|  |  | 
|  | static int amd64_dwarf_regmap[] = | 
|  | { | 
|  | /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI.  */ | 
|  | AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, | 
|  | AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, | 
|  | AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | 
|  |  | 
|  | /* Frame Pointer Register RBP.  */ | 
|  | AMD64_RBP_REGNUM, | 
|  |  | 
|  | /* Stack Pointer Register RSP.  */ | 
|  | AMD64_RSP_REGNUM, | 
|  |  | 
|  | /* Extended Integer Registers 8 - 15.  */ | 
|  | AMD64_R8_REGNUM,		/* %r8 */ | 
|  | AMD64_R9_REGNUM,		/* %r9 */ | 
|  | AMD64_R10_REGNUM,		/* %r10 */ | 
|  | AMD64_R11_REGNUM,		/* %r11 */ | 
|  | AMD64_R12_REGNUM,		/* %r12 */ | 
|  | AMD64_R13_REGNUM,		/* %r13 */ | 
|  | AMD64_R14_REGNUM,		/* %r14 */ | 
|  | AMD64_R15_REGNUM,		/* %r15 */ | 
|  |  | 
|  | /* Return Address RA.  Mapped to RIP.  */ | 
|  | AMD64_RIP_REGNUM, | 
|  |  | 
|  | /* SSE Registers 0 - 7.  */ | 
|  | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, | 
|  | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | 
|  | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | 
|  | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | 
|  |  | 
|  | /* Extended SSE Registers 8 - 15.  */ | 
|  | AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, | 
|  | AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, | 
|  | AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, | 
|  | AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, | 
|  |  | 
|  | /* Floating Point Registers 0-7.  */ | 
|  | AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, | 
|  | AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, | 
|  | AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, | 
|  | AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, | 
|  |  | 
|  | /* MMX Registers 0 - 7. | 
|  | We have to handle those registers specifically, as their register | 
|  | number within GDB depends on the target (or they may even not be | 
|  | available at all).  */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, | 
|  |  | 
|  | /* Control and Status Flags Register.  */ | 
|  | AMD64_EFLAGS_REGNUM, | 
|  |  | 
|  | /* Selector Registers.  */ | 
|  | AMD64_ES_REGNUM, | 
|  | AMD64_CS_REGNUM, | 
|  | AMD64_SS_REGNUM, | 
|  | AMD64_DS_REGNUM, | 
|  | AMD64_FS_REGNUM, | 
|  | AMD64_GS_REGNUM, | 
|  | -1, | 
|  | -1, | 
|  |  | 
|  | /* Segment Base Address Registers.  */ | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  | -1, | 
|  |  | 
|  | /* Special Selector Registers.  */ | 
|  | -1, | 
|  | -1, | 
|  |  | 
|  | /* Floating Point Control Registers.  */ | 
|  | AMD64_MXCSR_REGNUM, | 
|  | AMD64_FCTRL_REGNUM, | 
|  | AMD64_FSTAT_REGNUM, | 
|  |  | 
|  | /* XMM16-XMM31.  */ | 
|  | AMD64_XMM16_REGNUM + 0, AMD64_XMM16_REGNUM + 1, | 
|  | AMD64_XMM16_REGNUM + 2, AMD64_XMM16_REGNUM + 3, | 
|  | AMD64_XMM16_REGNUM + 4, AMD64_XMM16_REGNUM + 5, | 
|  | AMD64_XMM16_REGNUM + 6, AMD64_XMM16_REGNUM + 7, | 
|  | AMD64_XMM16_REGNUM + 8, AMD64_XMM16_REGNUM + 9, | 
|  | AMD64_XMM16_REGNUM + 10, AMD64_XMM16_REGNUM + 11, | 
|  | AMD64_XMM16_REGNUM + 12, AMD64_XMM16_REGNUM + 13, | 
|  | AMD64_XMM16_REGNUM + 14, AMD64_XMM16_REGNUM + 15, | 
|  |  | 
|  | /* Reserved.  */ | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  | -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, | 
|  |  | 
|  | /* Mask Registers.  */ | 
|  | AMD64_K0_REGNUM + 0, AMD64_K0_REGNUM + 1, | 
|  | AMD64_K0_REGNUM + 2, AMD64_K0_REGNUM + 3, | 
|  | AMD64_K0_REGNUM + 4, AMD64_K0_REGNUM + 5, | 
|  | AMD64_K0_REGNUM + 6, AMD64_K0_REGNUM + 7 | 
|  | }; | 
|  |  | 
|  | static const int amd64_dwarf_regmap_len = | 
|  | (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); | 
|  |  | 
|  | /* Convert DWARF register number REG to the appropriate register | 
|  | number used by GDB.  */ | 
|  |  | 
|  | static int | 
|  | amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | int ymm0_regnum = tdep->ymm0_regnum; | 
|  | int regnum = -1; | 
|  |  | 
|  | if (reg >= 0 && reg < amd64_dwarf_regmap_len) | 
|  | regnum = amd64_dwarf_regmap[reg]; | 
|  |  | 
|  | if (ymm0_regnum >= 0 && i386_xmm_regnum_p (gdbarch, regnum)) | 
|  | regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); | 
|  |  | 
|  | return regnum; | 
|  | } | 
|  |  | 
|  | /* Map architectural register numbers to gdb register numbers.  */ | 
|  |  | 
|  | static const int amd64_arch_regmap[16] = | 
|  | { | 
|  | AMD64_RAX_REGNUM,	/* %rax */ | 
|  | AMD64_RCX_REGNUM,	/* %rcx */ | 
|  | AMD64_RDX_REGNUM,	/* %rdx */ | 
|  | AMD64_RBX_REGNUM,	/* %rbx */ | 
|  | AMD64_RSP_REGNUM,	/* %rsp */ | 
|  | AMD64_RBP_REGNUM,	/* %rbp */ | 
|  | AMD64_RSI_REGNUM,	/* %rsi */ | 
|  | AMD64_RDI_REGNUM,	/* %rdi */ | 
|  | AMD64_R8_REGNUM,	/* %r8 */ | 
|  | AMD64_R9_REGNUM,	/* %r9 */ | 
|  | AMD64_R10_REGNUM,	/* %r10 */ | 
|  | AMD64_R11_REGNUM,	/* %r11 */ | 
|  | AMD64_R12_REGNUM,	/* %r12 */ | 
|  | AMD64_R13_REGNUM,	/* %r13 */ | 
|  | AMD64_R14_REGNUM,	/* %r14 */ | 
|  | AMD64_R15_REGNUM	/* %r15 */ | 
|  | }; | 
|  |  | 
|  | static const int amd64_arch_regmap_len = | 
|  | (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); | 
|  |  | 
|  | /* Convert architectural register number REG to the appropriate register | 
|  | number used by GDB.  */ | 
|  |  | 
|  | static int | 
|  | amd64_arch_reg_to_regnum (int reg) | 
|  | { | 
|  | gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); | 
|  |  | 
|  | return amd64_arch_regmap[reg]; | 
|  | } | 
|  |  | 
|  | /* Register names for byte pseudo-registers.  */ | 
|  |  | 
|  | static const char * const amd64_byte_names[] = | 
|  | { | 
|  | "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", | 
|  | "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", | 
|  | "ah", "bh", "ch", "dh" | 
|  | }; | 
|  |  | 
|  | /* Number of lower byte registers.  */ | 
|  | #define AMD64_NUM_LOWER_BYTE_REGS 16 | 
|  |  | 
|  | /* Register names for word pseudo-registers.  */ | 
|  |  | 
|  | static const char * const amd64_word_names[] = | 
|  | { | 
|  | "ax", "bx", "cx", "dx", "si", "di", "bp", "", | 
|  | "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" | 
|  | }; | 
|  |  | 
|  | /* Register names for dword pseudo-registers.  */ | 
|  |  | 
|  | static const char * const amd64_dword_names[] = | 
|  | { | 
|  | "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", | 
|  | "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", | 
|  | "eip" | 
|  | }; | 
|  |  | 
|  | /* Return the name of register REGNUM.  */ | 
|  |  | 
|  | static const char * | 
|  | amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | if (i386_byte_regnum_p (gdbarch, regnum)) | 
|  | return amd64_byte_names[regnum - tdep->al_regnum]; | 
|  | else if (i386_zmm_regnum_p (gdbarch, regnum)) | 
|  | return amd64_zmm_names[regnum - tdep->zmm0_regnum]; | 
|  | else if (i386_ymm_regnum_p (gdbarch, regnum)) | 
|  | return amd64_ymm_names[regnum - tdep->ymm0_regnum]; | 
|  | else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) | 
|  | return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum]; | 
|  | else if (i386_word_regnum_p (gdbarch, regnum)) | 
|  | return amd64_word_names[regnum - tdep->ax_regnum]; | 
|  | else if (i386_dword_regnum_p (gdbarch, regnum)) | 
|  | return amd64_dword_names[regnum - tdep->eax_regnum]; | 
|  | else | 
|  | return i386_pseudo_register_name (gdbarch, regnum); | 
|  | } | 
|  |  | 
|  | static value * | 
|  | amd64_pseudo_register_read_value (gdbarch *gdbarch, const frame_info_ptr &next_frame, | 
|  | int regnum) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (i386_byte_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->al_regnum; | 
|  |  | 
|  | /* Extract (always little endian).  */ | 
|  | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) | 
|  | { | 
|  | gpnum -= AMD64_NUM_LOWER_BYTE_REGS; | 
|  |  | 
|  | /* Special handling for AH, BH, CH, DH.  */ | 
|  | return pseudo_from_raw_part (next_frame, regnum, gpnum, 1); | 
|  | } | 
|  | else | 
|  | return pseudo_from_raw_part (next_frame, regnum, gpnum, 0); | 
|  | } | 
|  | else if (i386_dword_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->eax_regnum; | 
|  |  | 
|  | return pseudo_from_raw_part (next_frame, regnum, gpnum, 0); | 
|  | } | 
|  | else | 
|  | return i386_pseudo_register_read_value (gdbarch, next_frame, regnum); | 
|  | } | 
|  |  | 
|  | static void | 
|  | amd64_pseudo_register_write (gdbarch *gdbarch, const frame_info_ptr &next_frame, | 
|  | int regnum, gdb::array_view<const gdb_byte> buf) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (i386_byte_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->al_regnum; | 
|  |  | 
|  | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) | 
|  | { | 
|  | gpnum -= AMD64_NUM_LOWER_BYTE_REGS; | 
|  | pseudo_to_raw_part (next_frame, buf, gpnum, 1); | 
|  | } | 
|  | else | 
|  | pseudo_to_raw_part (next_frame, buf, gpnum, 0); | 
|  | } | 
|  | else if (i386_dword_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->eax_regnum; | 
|  | pseudo_to_raw_part (next_frame, buf, gpnum, 0); | 
|  | } | 
|  | else | 
|  | i386_pseudo_register_write (gdbarch, next_frame, regnum, buf); | 
|  | } | 
|  |  | 
|  | /* Implement the 'ax_pseudo_register_collect' gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch, | 
|  | struct agent_expr *ax, int regnum) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | if (i386_byte_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->al_regnum; | 
|  |  | 
|  | if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) | 
|  | ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS); | 
|  | else | 
|  | ax_reg_mask (ax, gpnum); | 
|  | return 0; | 
|  | } | 
|  | else if (i386_dword_regnum_p (gdbarch, regnum)) | 
|  | { | 
|  | int gpnum = regnum - tdep->eax_regnum; | 
|  |  | 
|  | ax_reg_mask (ax, gpnum); | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | return i386_ax_pseudo_register_collect (gdbarch, ax, regnum); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Register classes as defined in the psABI.  */ | 
|  |  | 
|  | enum amd64_reg_class | 
|  | { | 
|  | AMD64_INTEGER, | 
|  | AMD64_SSE, | 
|  | AMD64_SSEUP, | 
|  | AMD64_X87, | 
|  | AMD64_X87UP, | 
|  | AMD64_COMPLEX_X87, | 
|  | AMD64_NO_CLASS, | 
|  | AMD64_MEMORY | 
|  | }; | 
|  |  | 
|  | /* Return the union class of CLASS1 and CLASS2.  See the psABI for | 
|  | details.  */ | 
|  |  | 
|  | static enum amd64_reg_class | 
|  | amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) | 
|  | { | 
|  | /* Rule (a): If both classes are equal, this is the resulting class.  */ | 
|  | if (class1 == class2) | 
|  | return class1; | 
|  |  | 
|  | /* Rule (b): If one of the classes is NO_CLASS, the resulting class | 
|  | is the other class.  */ | 
|  | if (class1 == AMD64_NO_CLASS) | 
|  | return class2; | 
|  | if (class2 == AMD64_NO_CLASS) | 
|  | return class1; | 
|  |  | 
|  | /* Rule (c): If one of the classes is MEMORY, the result is MEMORY.  */ | 
|  | if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) | 
|  | return AMD64_MEMORY; | 
|  |  | 
|  | /* Rule (d): If one of the classes is INTEGER, the result is INTEGER.  */ | 
|  | if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) | 
|  | return AMD64_INTEGER; | 
|  |  | 
|  | /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, | 
|  | MEMORY is used as class.  */ | 
|  | if (class1 == AMD64_X87 || class1 == AMD64_X87UP | 
|  | || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 | 
|  | || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) | 
|  | return AMD64_MEMORY; | 
|  |  | 
|  | /* Rule (f): Otherwise class SSE is used.  */ | 
|  | return AMD64_SSE; | 
|  | } | 
|  |  | 
|  | static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]); | 
|  |  | 
|  | /* Return true if TYPE is a structure or union with unaligned fields.  */ | 
|  |  | 
|  | static bool | 
|  | amd64_has_unaligned_fields (struct type *type) | 
|  | { | 
|  | if (type->code () == TYPE_CODE_STRUCT | 
|  | || type->code () == TYPE_CODE_UNION) | 
|  | { | 
|  | for (int i = 0; i < type->num_fields (); i++) | 
|  | { | 
|  | struct type *subtype = check_typedef (type->field (i).type ()); | 
|  |  | 
|  | /* Ignore static fields, empty fields (for example nested | 
|  | empty structures), and bitfields (these are handled by | 
|  | the caller).  */ | 
|  | if (type->field (i).is_static () | 
|  | || (type->field (i).bitsize () == 0 | 
|  | && subtype->length () == 0) | 
|  | || type->field (i).is_packed ()) | 
|  | continue; | 
|  |  | 
|  | int bitpos = type->field (i).loc_bitpos (); | 
|  |  | 
|  | if (bitpos % 8 != 0) | 
|  | return true; | 
|  |  | 
|  | int align = type_align (subtype); | 
|  | if (align == 0) | 
|  | error (_("could not determine alignment of type")); | 
|  |  | 
|  | int bytepos = bitpos / 8; | 
|  | if (bytepos % align != 0) | 
|  | return true; | 
|  |  | 
|  | if (amd64_has_unaligned_fields (subtype)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Classify field I of TYPE starting at BITOFFSET according to the rules for | 
|  | structures and union types, and store the result in THECLASS.  */ | 
|  |  | 
|  | static void | 
|  | amd64_classify_aggregate_field (struct type *type, int i, | 
|  | enum amd64_reg_class theclass[2], | 
|  | unsigned int bitoffset) | 
|  | { | 
|  | struct type *subtype = check_typedef (type->field (i).type ()); | 
|  | enum amd64_reg_class subclass[2]; | 
|  | int bitsize = type->field (i).bitsize (); | 
|  |  | 
|  | if (bitsize == 0) | 
|  | bitsize = subtype->length () * 8; | 
|  |  | 
|  | /* Ignore static fields, or empty fields, for example nested | 
|  | empty structures.*/ | 
|  | if (type->field (i).is_static () || bitsize == 0) | 
|  | return; | 
|  |  | 
|  | int bitpos = bitoffset + type->field (i).loc_bitpos (); | 
|  | int pos = bitpos / 64; | 
|  | int endpos = (bitpos + bitsize - 1) / 64; | 
|  |  | 
|  | if (subtype->code () == TYPE_CODE_STRUCT | 
|  | || subtype->code () == TYPE_CODE_UNION) | 
|  | { | 
|  | /* Each field of an object is classified recursively.  */ | 
|  | int j; | 
|  | for (j = 0; j < subtype->num_fields (); j++) | 
|  | amd64_classify_aggregate_field (subtype, j, theclass, bitpos); | 
|  | return; | 
|  | } | 
|  |  | 
|  | gdb_assert (pos == 0 || pos == 1); | 
|  |  | 
|  | amd64_classify (subtype, subclass); | 
|  | theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]); | 
|  | if (bitsize <= 64 && pos == 0 && endpos == 1) | 
|  | /* This is a bit of an odd case:  We have a field that would | 
|  | normally fit in one of the two eightbytes, except that | 
|  | it is placed in a way that this field straddles them. | 
|  | This has been seen with a structure containing an array. | 
|  |  | 
|  | The ABI is a bit unclear in this case, but we assume that | 
|  | this field's class (stored in subclass[0]) must also be merged | 
|  | into class[1].  In other words, our field has a piece stored | 
|  | in the second eight-byte, and thus its class applies to | 
|  | the second eight-byte as well. | 
|  |  | 
|  | In the case where the field length exceeds 8 bytes, | 
|  | it should not be necessary to merge the field class | 
|  | into class[1].  As LEN > 8, subclass[1] is necessarily | 
|  | different from AMD64_NO_CLASS.  If subclass[1] is equal | 
|  | to subclass[0], then the normal class[1]/subclass[1] | 
|  | merging will take care of everything.  For subclass[1] | 
|  | to be different from subclass[0], I can only see the case | 
|  | where we have a SSE/SSEUP or X87/X87UP pair, which both | 
|  | use up all 16 bytes of the aggregate, and are already | 
|  | handled just fine (because each portion sits on its own | 
|  | 8-byte).  */ | 
|  | theclass[1] = amd64_merge_classes (theclass[1], subclass[0]); | 
|  | if (pos == 0) | 
|  | theclass[1] = amd64_merge_classes (theclass[1], subclass[1]); | 
|  | } | 
|  |  | 
|  | /* Classify TYPE according to the rules for aggregate (structures and | 
|  | arrays) and union types, and store the result in CLASS.  */ | 
|  |  | 
|  | static void | 
|  | amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2]) | 
|  | { | 
|  | /* 1. If the size of an object is larger than two times eight bytes, or | 
|  | it is a non-trivial C++ object, or it has unaligned fields, then it | 
|  | has class memory. | 
|  |  | 
|  | It is important that the trivially_copyable check is before the | 
|  | unaligned fields check, as C++ classes with virtual base classes | 
|  | will have fields (for the virtual base classes) with non-constant | 
|  | loc_bitpos attributes, which will cause an assert to trigger within | 
|  | the unaligned field check.  As classes with virtual bases are not | 
|  | trivially copyable, checking that first avoids this problem.  */ | 
|  | if (TYPE_HAS_DYNAMIC_LENGTH (type) | 
|  | || type->length () > 16 | 
|  | || !language_pass_by_reference (type).trivially_copyable | 
|  | || amd64_has_unaligned_fields (type)) | 
|  | { | 
|  | theclass[0] = theclass[1] = AMD64_MEMORY; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* 2. Both eightbytes get initialized to class NO_CLASS.  */ | 
|  | theclass[0] = theclass[1] = AMD64_NO_CLASS; | 
|  |  | 
|  | /* 3. Each field of an object is classified recursively so that | 
|  | always two fields are considered. The resulting class is | 
|  | calculated according to the classes of the fields in the | 
|  | eightbyte: */ | 
|  |  | 
|  | if (type->code () == TYPE_CODE_ARRAY) | 
|  | { | 
|  | struct type *subtype = check_typedef (type->target_type ()); | 
|  |  | 
|  | /* All fields in an array have the same type.  */ | 
|  | amd64_classify (subtype, theclass); | 
|  | if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS) | 
|  | theclass[1] = theclass[0]; | 
|  | } | 
|  | else | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Structure or union.  */ | 
|  | gdb_assert (type->code () == TYPE_CODE_STRUCT | 
|  | || type->code () == TYPE_CODE_UNION); | 
|  |  | 
|  | for (i = 0; i < type->num_fields (); i++) | 
|  | amd64_classify_aggregate_field (type, i, theclass, 0); | 
|  | } | 
|  |  | 
|  | /* 4. Then a post merger cleanup is done:  */ | 
|  |  | 
|  | /* Rule (a): If one of the classes is MEMORY, the whole argument is | 
|  | passed in memory.  */ | 
|  | if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY) | 
|  | theclass[0] = theclass[1] = AMD64_MEMORY; | 
|  |  | 
|  | /* Rule (b): If SSEUP is not preceded by SSE, it is converted to | 
|  | SSE.  */ | 
|  | if (theclass[0] == AMD64_SSEUP) | 
|  | theclass[0] = AMD64_SSE; | 
|  | if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE) | 
|  | theclass[1] = AMD64_SSE; | 
|  | } | 
|  |  | 
|  | /* Classify TYPE, and store the result in CLASS.  */ | 
|  |  | 
|  | static void | 
|  | amd64_classify (struct type *type, enum amd64_reg_class theclass[2]) | 
|  | { | 
|  | enum type_code code = type->code (); | 
|  | int len = type->length (); | 
|  |  | 
|  | theclass[0] = theclass[1] = AMD64_NO_CLASS; | 
|  |  | 
|  | /* Arguments of types (signed and unsigned) _Bool, char, short, int, | 
|  | long, long long, and pointers are in the INTEGER class.  Similarly, | 
|  | range types, used by languages such as Ada, are also in the INTEGER | 
|  | class.  */ | 
|  | if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM | 
|  | || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE | 
|  | || code == TYPE_CODE_CHAR | 
|  | || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)) | 
|  | && (len == 1 || len == 2 || len == 4 || len == 8)) | 
|  | theclass[0] = AMD64_INTEGER; | 
|  |  | 
|  | /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and | 
|  | __m64 are in class SSE.  */ | 
|  | else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) | 
|  | && (len == 2 || len == 4 || len == 8)) | 
|  | /* FIXME: __m64 .  */ | 
|  | theclass[0] = AMD64_SSE; | 
|  |  | 
|  | /* Arguments of types __float128, _Decimal128 and __m128 are split into | 
|  | two halves.  The least significant ones belong to class SSE, the most | 
|  | significant one to class SSEUP.  */ | 
|  | else if (code == TYPE_CODE_DECFLOAT && len == 16) | 
|  | /* FIXME: __float128, __m128.  */ | 
|  | theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP; | 
|  |  | 
|  | /* The 64-bit mantissa of arguments of type long double belongs to | 
|  | class X87, the 16-bit exponent plus 6 bytes of padding belongs to | 
|  | class X87UP.  */ | 
|  | else if (code == TYPE_CODE_FLT && len == 16) | 
|  | /* Class X87 and X87UP.  */ | 
|  | theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP; | 
|  |  | 
|  | /* Arguments of complex T - where T is one of the types _Float16, float or | 
|  | double - get treated as if they are implemented as: | 
|  |  | 
|  | struct complexT { | 
|  | T real; | 
|  | T imag; | 
|  | }; | 
|  |  | 
|  | */ | 
|  | else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4)) | 
|  | theclass[0] = AMD64_SSE; | 
|  | else if (code == TYPE_CODE_COMPLEX && len == 16) | 
|  | theclass[0] = theclass[1] = AMD64_SSE; | 
|  |  | 
|  | /* A variable of type complex long double is classified as type | 
|  | COMPLEX_X87.  */ | 
|  | else if (code == TYPE_CODE_COMPLEX && len == 32) | 
|  | theclass[0] = AMD64_COMPLEX_X87; | 
|  |  | 
|  | /* Aggregates.  */ | 
|  | else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT | 
|  | || code == TYPE_CODE_UNION) | 
|  | amd64_classify_aggregate (type, theclass); | 
|  | } | 
|  |  | 
|  | static enum return_value_convention | 
|  | amd64_return_value (struct gdbarch *gdbarch, struct value *function, | 
|  | struct type *type, struct regcache *regcache, | 
|  | struct value **read_value, const gdb_byte *writebuf) | 
|  | { | 
|  | enum amd64_reg_class theclass[2]; | 
|  | int len = type->length (); | 
|  | static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; | 
|  | static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; | 
|  | int integer_reg = 0; | 
|  | int sse_reg = 0; | 
|  | int i; | 
|  |  | 
|  | gdb_assert (!(read_value && writebuf)); | 
|  |  | 
|  | /* 1. Classify the return type with the classification algorithm.  */ | 
|  | amd64_classify (type, theclass); | 
|  |  | 
|  | /* 2. If the type has class MEMORY, then the caller provides space | 
|  | for the return value and passes the address of this storage in | 
|  | %rdi as if it were the first argument to the function.  In effect, | 
|  | this address becomes a hidden first argument. | 
|  |  | 
|  | On return %rax will contain the address that has been passed in | 
|  | by the caller in %rdi.  */ | 
|  | if (theclass[0] == AMD64_MEMORY) | 
|  | { | 
|  | /* As indicated by the comment above, the ABI guarantees that we | 
|  | can always find the return value just after the function has | 
|  | returned.  */ | 
|  |  | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | ULONGEST addr; | 
|  |  | 
|  | regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); | 
|  | *read_value = value_at_non_lval (type, addr); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_ABI_RETURNS_ADDRESS; | 
|  | } | 
|  |  | 
|  | gdb_byte *readbuf = nullptr; | 
|  | if (read_value != nullptr) | 
|  | { | 
|  | *read_value = value::allocate (type); | 
|  | readbuf = (*read_value)->contents_raw ().data (); | 
|  | } | 
|  |  | 
|  | /* 8. If the class is COMPLEX_X87, the real part of the value is | 
|  | returned in %st0 and the imaginary part in %st1.  */ | 
|  | if (theclass[0] == AMD64_COMPLEX_X87) | 
|  | { | 
|  | if (readbuf) | 
|  | { | 
|  | regcache->raw_read (AMD64_ST0_REGNUM, readbuf); | 
|  | regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16); | 
|  | } | 
|  |  | 
|  | if (writebuf) | 
|  | { | 
|  | i387_return_value (gdbarch, regcache); | 
|  | regcache->raw_write (AMD64_ST0_REGNUM, writebuf); | 
|  | regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16); | 
|  |  | 
|  | /* Fix up the tag word such that both %st(0) and %st(1) are | 
|  | marked as valid.  */ | 
|  | regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  | gdb_assert (theclass[1] != AMD64_MEMORY); | 
|  | gdb_assert (len <= 16); | 
|  |  | 
|  | for (i = 0; len > 0; i++, len -= 8) | 
|  | { | 
|  | int regnum = -1; | 
|  | int offset = 0; | 
|  |  | 
|  | switch (theclass[i]) | 
|  | { | 
|  | case AMD64_INTEGER: | 
|  | /* 3. If the class is INTEGER, the next available register | 
|  | of the sequence %rax, %rdx is used.  */ | 
|  | regnum = integer_regnum[integer_reg++]; | 
|  | break; | 
|  |  | 
|  | case AMD64_SSE: | 
|  | /* 4. If the class is SSE, the next available SSE register | 
|  | of the sequence %xmm0, %xmm1 is used.  */ | 
|  | regnum = sse_regnum[sse_reg++]; | 
|  | break; | 
|  |  | 
|  | case AMD64_SSEUP: | 
|  | /* 5. If the class is SSEUP, the eightbyte is passed in the | 
|  | upper half of the last used SSE register.  */ | 
|  | gdb_assert (sse_reg > 0); | 
|  | regnum = sse_regnum[sse_reg - 1]; | 
|  | offset = 8; | 
|  | break; | 
|  |  | 
|  | case AMD64_X87: | 
|  | /* 6. If the class is X87, the value is returned on the X87 | 
|  | stack in %st0 as 80-bit x87 number.  */ | 
|  | regnum = AMD64_ST0_REGNUM; | 
|  | if (writebuf) | 
|  | i387_return_value (gdbarch, regcache); | 
|  | break; | 
|  |  | 
|  | case AMD64_X87UP: | 
|  | /* 7. If the class is X87UP, the value is returned together | 
|  | with the previous X87 value in %st0.  */ | 
|  | gdb_assert (i > 0 && theclass[0] == AMD64_X87); | 
|  | regnum = AMD64_ST0_REGNUM; | 
|  | offset = 8; | 
|  | len = 2; | 
|  | break; | 
|  |  | 
|  | case AMD64_NO_CLASS: | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | gdb_assert (!"Unexpected register class."); | 
|  | } | 
|  |  | 
|  | gdb_assert (regnum != -1); | 
|  |  | 
|  | if (readbuf) | 
|  | regcache->raw_read_part (regnum, offset, std::min (len, 8), | 
|  | readbuf + i * 8); | 
|  | if (writebuf) | 
|  | regcache->raw_write_part (regnum, offset, std::min (len, 8), | 
|  | writebuf + i * 8); | 
|  | } | 
|  |  | 
|  | return RETURN_VALUE_REGISTER_CONVENTION; | 
|  | } | 
|  |  | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args, | 
|  | CORE_ADDR sp, function_call_return_method return_method) | 
|  | { | 
|  | static int integer_regnum[] = | 
|  | { | 
|  | AMD64_RDI_REGNUM,		/* %rdi */ | 
|  | AMD64_RSI_REGNUM,		/* %rsi */ | 
|  | AMD64_RDX_REGNUM,		/* %rdx */ | 
|  | AMD64_RCX_REGNUM,		/* %rcx */ | 
|  | AMD64_R8_REGNUM,		/* %r8 */ | 
|  | AMD64_R9_REGNUM		/* %r9 */ | 
|  | }; | 
|  | static int sse_regnum[] = | 
|  | { | 
|  | /* %xmm0 ... %xmm7 */ | 
|  | AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, | 
|  | AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, | 
|  | AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, | 
|  | AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, | 
|  | }; | 
|  | struct value **stack_args = XALLOCAVEC (struct value *, nargs); | 
|  | int num_stack_args = 0; | 
|  | int num_elements = 0; | 
|  | int element = 0; | 
|  | int integer_reg = 0; | 
|  | int sse_reg = 0; | 
|  | int i; | 
|  |  | 
|  | /* Reserve a register for the "hidden" argument.  */ | 
|  | if (return_method == return_method_struct) | 
|  | integer_reg++; | 
|  |  | 
|  | for (i = 0; i < nargs; i++) | 
|  | { | 
|  | struct type *type = args[i]->type (); | 
|  | int len = type->length (); | 
|  | enum amd64_reg_class theclass[2]; | 
|  | int needed_integer_regs = 0; | 
|  | int needed_sse_regs = 0; | 
|  | int j; | 
|  |  | 
|  | /* Classify argument.  */ | 
|  | amd64_classify (type, theclass); | 
|  |  | 
|  | /* Calculate the number of integer and SSE registers needed for | 
|  | this argument.  */ | 
|  | for (j = 0; j < 2; j++) | 
|  | { | 
|  | if (theclass[j] == AMD64_INTEGER) | 
|  | needed_integer_regs++; | 
|  | else if (theclass[j] == AMD64_SSE) | 
|  | needed_sse_regs++; | 
|  | } | 
|  |  | 
|  | /* Check whether enough registers are available, and if the | 
|  | argument should be passed in registers at all.  */ | 
|  | if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) | 
|  | || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) | 
|  | || (needed_integer_regs == 0 && needed_sse_regs == 0)) | 
|  | { | 
|  | /* The argument will be passed on the stack.  */ | 
|  | num_elements += ((len + 7) / 8); | 
|  | stack_args[num_stack_args++] = args[i]; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* The argument will be passed in registers.  */ | 
|  | const gdb_byte *valbuf = args[i]->contents ().data (); | 
|  | gdb_byte buf[8]; | 
|  |  | 
|  | gdb_assert (len <= 16); | 
|  |  | 
|  | for (j = 0; len > 0; j++, len -= 8) | 
|  | { | 
|  | int regnum = -1; | 
|  | int offset = 0; | 
|  |  | 
|  | switch (theclass[j]) | 
|  | { | 
|  | case AMD64_INTEGER: | 
|  | regnum = integer_regnum[integer_reg++]; | 
|  | break; | 
|  |  | 
|  | case AMD64_SSE: | 
|  | regnum = sse_regnum[sse_reg++]; | 
|  | break; | 
|  |  | 
|  | case AMD64_SSEUP: | 
|  | gdb_assert (sse_reg > 0); | 
|  | regnum = sse_regnum[sse_reg - 1]; | 
|  | offset = 8; | 
|  | break; | 
|  |  | 
|  | case AMD64_NO_CLASS: | 
|  | continue; | 
|  |  | 
|  | default: | 
|  | gdb_assert (!"Unexpected register class."); | 
|  | } | 
|  |  | 
|  | gdb_assert (regnum != -1); | 
|  | memset (buf, 0, sizeof buf); | 
|  | memcpy (buf, valbuf + j * 8, std::min (len, 8)); | 
|  | regcache->raw_write_part (regnum, offset, 8, buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Allocate space for the arguments on the stack.  */ | 
|  | sp -= num_elements * 8; | 
|  |  | 
|  | /* The psABI says that "The end of the input argument area shall be | 
|  | aligned on a 16 byte boundary."  */ | 
|  | sp &= ~0xf; | 
|  |  | 
|  | /* Write out the arguments to the stack.  */ | 
|  | for (i = 0; i < num_stack_args; i++) | 
|  | { | 
|  | struct type *type = stack_args[i]->type (); | 
|  | const gdb_byte *valbuf = stack_args[i]->contents ().data (); | 
|  | int len = type->length (); | 
|  |  | 
|  | write_memory (sp + element * 8, valbuf, len); | 
|  | element += ((len + 7) / 8); | 
|  | } | 
|  |  | 
|  | /* The psABI says that "For calls that may call functions that use | 
|  | varargs or stdargs (prototype-less calls or calls to functions | 
|  | containing ellipsis (...) in the declaration) %al is used as | 
|  | hidden argument to specify the number of SSE registers used.  */ | 
|  | regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
|  | struct regcache *regcache, CORE_ADDR bp_addr, | 
|  | int nargs, struct value **args,	CORE_ADDR sp, | 
|  | function_call_return_method return_method, | 
|  | CORE_ADDR struct_addr) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | gdb_byte buf[8]; | 
|  |  | 
|  | /* BND registers can be in arbitrary values at the moment of the | 
|  | inferior call.  This can cause boundary violations that are not | 
|  | due to a real bug or even desired by the user.  The best to be done | 
|  | is set the BND registers to allow access to the whole memory, INIT | 
|  | state, before pushing the inferior call.   */ | 
|  | i387_reset_bnd_regs (gdbarch, regcache); | 
|  |  | 
|  | /* Pass arguments.  */ | 
|  | sp = amd64_push_arguments (regcache, nargs, args, sp, return_method); | 
|  |  | 
|  | /* Pass "hidden" argument".  */ | 
|  | if (return_method == return_method_struct) | 
|  | { | 
|  | store_unsigned_integer (buf, 8, byte_order, struct_addr); | 
|  | regcache->cooked_write (AMD64_RDI_REGNUM, buf); | 
|  | } | 
|  |  | 
|  | /* Store return address.  */ | 
|  | sp -= 8; | 
|  | store_unsigned_integer (buf, 8, byte_order, bp_addr); | 
|  | write_memory (sp, buf, 8); | 
|  |  | 
|  | /* Finally, update the stack pointer...  */ | 
|  | store_unsigned_integer (buf, 8, byte_order, sp); | 
|  | regcache->cooked_write (AMD64_RSP_REGNUM, buf); | 
|  |  | 
|  | /* ...and fake a frame pointer.  */ | 
|  | regcache->cooked_write (AMD64_RBP_REGNUM, buf); | 
|  |  | 
|  | return sp + 16; | 
|  | } | 
|  |  | 
|  | /* Displaced instruction handling.  */ | 
|  |  | 
|  | /* A partially decoded instruction. | 
|  | This contains enough details for displaced stepping purposes.  */ | 
|  |  | 
|  | struct amd64_insn | 
|  | { | 
|  | /* The number of opcode bytes.  */ | 
|  | int opcode_len; | 
|  | /* The offset of the REX/VEX instruction encoding prefix or -1 if | 
|  | not present.  */ | 
|  | int enc_prefix_offset; | 
|  | /* The offset to the first opcode byte.  */ | 
|  | int opcode_offset; | 
|  | /* The offset to the modrm byte or -1 if not present.  */ | 
|  | int modrm_offset; | 
|  |  | 
|  | /* The raw instruction.  */ | 
|  | gdb_byte *raw_insn; | 
|  | }; | 
|  |  | 
|  | struct amd64_displaced_step_copy_insn_closure | 
|  | : public displaced_step_copy_insn_closure | 
|  | { | 
|  | amd64_displaced_step_copy_insn_closure (int insn_buf_len) | 
|  | : insn_buf (insn_buf_len, 0) | 
|  | {} | 
|  |  | 
|  | /* For rip-relative insns, saved copy of the reg we use instead of %rip.  */ | 
|  | int tmp_used = 0; | 
|  | int tmp_regno; | 
|  | ULONGEST tmp_save; | 
|  |  | 
|  | /* Details of the instruction.  */ | 
|  | struct amd64_insn insn_details; | 
|  |  | 
|  | /* The possibly modified insn.  */ | 
|  | gdb::byte_vector insn_buf; | 
|  | }; | 
|  |  | 
|  | /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with | 
|  | ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, | 
|  | at which point delete these in favor of libopcodes' versions).  */ | 
|  |  | 
|  | static const unsigned char onebyte_has_modrm[256] = { | 
|  | /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
|  | /*	   -------------------------------	  */ | 
|  | /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ | 
|  | /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ | 
|  | /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ | 
|  | /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ | 
|  | /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ | 
|  | /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ | 
|  | /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ | 
|  | /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ | 
|  | /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ | 
|  | /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ | 
|  | /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ | 
|  | /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ | 
|  | /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ | 
|  | /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ | 
|  | /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ | 
|  | /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1  /* f0 */ | 
|  | /*	   -------------------------------	  */ | 
|  | /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
|  | }; | 
|  |  | 
|  | static const unsigned char twobyte_has_modrm[256] = { | 
|  | /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
|  | /*	   -------------------------------	  */ | 
|  | /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ | 
|  | /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ | 
|  | /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ | 
|  | /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ | 
|  | /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ | 
|  | /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ | 
|  | /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ | 
|  | /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ | 
|  | /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ | 
|  | /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ | 
|  | /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ | 
|  | /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ | 
|  | /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ | 
|  | /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ | 
|  | /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ | 
|  | /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0  /* ff */ | 
|  | /*	   -------------------------------	  */ | 
|  | /*	   0 1 2 3 4 5 6 7 8 9 a b c d e f	  */ | 
|  | }; | 
|  |  | 
|  | static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); | 
|  |  | 
|  | static int | 
|  | rex_prefix_p (gdb_byte pfx) | 
|  | { | 
|  | return REX_PREFIX_P (pfx); | 
|  | } | 
|  |  | 
|  | /* True if PFX is the start of the 2-byte VEX prefix.  */ | 
|  |  | 
|  | static bool | 
|  | vex2_prefix_p (gdb_byte pfx) | 
|  | { | 
|  | return pfx == 0xc5; | 
|  | } | 
|  |  | 
|  | /* True if PFX is the start of the 3-byte VEX prefix.  */ | 
|  |  | 
|  | static bool | 
|  | vex3_prefix_p (gdb_byte pfx) | 
|  | { | 
|  | return pfx == 0xc4; | 
|  | } | 
|  |  | 
|  | /* Skip the legacy instruction prefixes in INSN. | 
|  | We assume INSN is properly sentineled so we don't have to worry | 
|  | about falling off the end of the buffer.  */ | 
|  |  | 
|  | static gdb_byte * | 
|  | amd64_skip_prefixes (gdb_byte *insn) | 
|  | { | 
|  | while (1) | 
|  | { | 
|  | switch (*insn) | 
|  | { | 
|  | case DATA_PREFIX_OPCODE: | 
|  | case ADDR_PREFIX_OPCODE: | 
|  | case CS_PREFIX_OPCODE: | 
|  | case DS_PREFIX_OPCODE: | 
|  | case ES_PREFIX_OPCODE: | 
|  | case FS_PREFIX_OPCODE: | 
|  | case GS_PREFIX_OPCODE: | 
|  | case SS_PREFIX_OPCODE: | 
|  | case LOCK_PREFIX_OPCODE: | 
|  | case REPE_PREFIX_OPCODE: | 
|  | case REPNE_PREFIX_OPCODE: | 
|  | ++insn; | 
|  | continue; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return insn; | 
|  | } | 
|  |  | 
|  | /* Return an integer register (other than RSP) that is unused as an input | 
|  | operand in INSN. | 
|  | In order to not require adding a rex prefix if the insn doesn't already | 
|  | have one, the result is restricted to RAX ... RDI, sans RSP. | 
|  | The register numbering of the result follows architecture ordering, | 
|  | e.g. RDI = 7.  */ | 
|  |  | 
|  | static int | 
|  | amd64_get_unused_input_int_reg (const struct amd64_insn *details) | 
|  | { | 
|  | /* 1 bit for each reg */ | 
|  | int used_regs_mask = 0; | 
|  |  | 
|  | /* There can be at most 3 int regs used as inputs in an insn, and we have | 
|  | 7 to choose from (RAX ... RDI, sans RSP). | 
|  | This allows us to take a conservative approach and keep things simple. | 
|  | E.g. By avoiding RAX, we don't have to specifically watch for opcodes | 
|  | that implicitly specify RAX.  */ | 
|  |  | 
|  | /* Avoid RAX.  */ | 
|  | used_regs_mask |= 1 << EAX_REG_NUM; | 
|  | /* Similarily avoid RDX, implicit operand in divides.  */ | 
|  | used_regs_mask |= 1 << EDX_REG_NUM; | 
|  | /* Avoid RSP.  */ | 
|  | used_regs_mask |= 1 << ESP_REG_NUM; | 
|  |  | 
|  | /* If the opcode is one byte long and there's no ModRM byte, | 
|  | assume the opcode specifies a register.  */ | 
|  | if (details->opcode_len == 1 && details->modrm_offset == -1) | 
|  | used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); | 
|  |  | 
|  | /* Mark used regs in the modrm/sib bytes.  */ | 
|  | if (details->modrm_offset != -1) | 
|  | { | 
|  | int modrm = details->raw_insn[details->modrm_offset]; | 
|  | int mod = MODRM_MOD_FIELD (modrm); | 
|  | int reg = MODRM_REG_FIELD (modrm); | 
|  | int rm = MODRM_RM_FIELD (modrm); | 
|  | int have_sib = mod != 3 && rm == 4; | 
|  |  | 
|  | /* Assume the reg field of the modrm byte specifies a register.  */ | 
|  | used_regs_mask |= 1 << reg; | 
|  |  | 
|  | if (have_sib) | 
|  | { | 
|  | int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); | 
|  | int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); | 
|  | used_regs_mask |= 1 << base; | 
|  | used_regs_mask |= 1 << idx; | 
|  | } | 
|  | else | 
|  | { | 
|  | used_regs_mask |= 1 << rm; | 
|  | } | 
|  | } | 
|  |  | 
|  | gdb_assert (used_regs_mask < 256); | 
|  | gdb_assert (used_regs_mask != 255); | 
|  |  | 
|  | /* Finally, find a free reg.  */ | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 8; ++i) | 
|  | { | 
|  | if (! (used_regs_mask & (1 << i))) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* We shouldn't get here.  */ | 
|  | internal_error (_("unable to find free reg")); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Extract the details of INSN that we need.  */ | 
|  |  | 
|  | static void | 
|  | amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) | 
|  | { | 
|  | gdb_byte *start = insn; | 
|  | int need_modrm; | 
|  |  | 
|  | details->raw_insn = insn; | 
|  |  | 
|  | details->opcode_len = -1; | 
|  | details->enc_prefix_offset = -1; | 
|  | details->opcode_offset = -1; | 
|  | details->modrm_offset = -1; | 
|  |  | 
|  | /* Skip legacy instruction prefixes.  */ | 
|  | insn = amd64_skip_prefixes (insn); | 
|  |  | 
|  | /* Skip REX/VEX instruction encoding prefixes.  */ | 
|  | if (rex_prefix_p (*insn)) | 
|  | { | 
|  | details->enc_prefix_offset = insn - start; | 
|  | ++insn; | 
|  | } | 
|  | else if (vex2_prefix_p (*insn)) | 
|  | { | 
|  | /* Don't record the offset in this case because this prefix has | 
|  | no REX.B equivalent.  */ | 
|  | insn += 2; | 
|  | } | 
|  | else if (vex3_prefix_p (*insn)) | 
|  | { | 
|  | details->enc_prefix_offset = insn - start; | 
|  | insn += 3; | 
|  | } | 
|  |  | 
|  | details->opcode_offset = insn - start; | 
|  |  | 
|  | if (*insn == TWO_BYTE_OPCODE_ESCAPE) | 
|  | { | 
|  | /* Two or three-byte opcode.  */ | 
|  | ++insn; | 
|  | need_modrm = twobyte_has_modrm[*insn]; | 
|  |  | 
|  | /* Check for three-byte opcode.  */ | 
|  | switch (*insn) | 
|  | { | 
|  | case 0x24: | 
|  | case 0x25: | 
|  | case 0x38: | 
|  | case 0x3a: | 
|  | case 0x7a: | 
|  | case 0x7b: | 
|  | ++insn; | 
|  | details->opcode_len = 3; | 
|  | break; | 
|  | default: | 
|  | details->opcode_len = 2; | 
|  | break; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | /* One-byte opcode.  */ | 
|  | need_modrm = onebyte_has_modrm[*insn]; | 
|  | details->opcode_len = 1; | 
|  | } | 
|  |  | 
|  | if (need_modrm) | 
|  | { | 
|  | ++insn; | 
|  | details->modrm_offset = insn - start; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Update %rip-relative addressing in INSN. | 
|  |  | 
|  | %rip-relative addressing only uses a 32-bit displacement. | 
|  | 32 bits is not enough to be guaranteed to cover the distance between where | 
|  | the real instruction is and where its copy is. | 
|  | Convert the insn to use base+disp addressing. | 
|  | We set base = pc + insn_length so we can leave disp unchanged.  */ | 
|  |  | 
|  | static void | 
|  | fixup_riprel (struct gdbarch *gdbarch, | 
|  | amd64_displaced_step_copy_insn_closure *dsc, | 
|  | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | 
|  | { | 
|  | const struct amd64_insn *insn_details = &dsc->insn_details; | 
|  | int modrm_offset = insn_details->modrm_offset; | 
|  | CORE_ADDR rip_base; | 
|  | int insn_length; | 
|  | int arch_tmp_regno, tmp_regno; | 
|  | ULONGEST orig_value; | 
|  |  | 
|  | /* Compute the rip-relative address.	*/ | 
|  | insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (), | 
|  | dsc->insn_buf.size (), from); | 
|  | rip_base = from + insn_length; | 
|  |  | 
|  | /* We need a register to hold the address. | 
|  | Pick one not used in the insn. | 
|  | NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7.  */ | 
|  | arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); | 
|  | tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); | 
|  |  | 
|  | /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1).  */ | 
|  | static constexpr gdb_byte VEX3_NOT_B = 0x20; | 
|  |  | 
|  | /* REX.B should be unset (VEX.!B set) as we were using rip-relative | 
|  | addressing, but ensure it's unset (set for VEX) anyway, tmp_regno | 
|  | is not r8-r15.  */ | 
|  | if (insn_details->enc_prefix_offset != -1) | 
|  | { | 
|  | gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset]; | 
|  | if (rex_prefix_p (pfx[0])) | 
|  | pfx[0] &= ~REX_B; | 
|  | else if (vex3_prefix_p (pfx[0])) | 
|  | pfx[1] |= VEX3_NOT_B; | 
|  | else | 
|  | gdb_assert_not_reached ("unhandled prefix"); | 
|  | } | 
|  |  | 
|  | regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); | 
|  | dsc->tmp_regno = tmp_regno; | 
|  | dsc->tmp_save = orig_value; | 
|  | dsc->tmp_used = 1; | 
|  |  | 
|  | /* Convert the ModRM field to be base+disp.  */ | 
|  | dsc->insn_buf[modrm_offset] &= ~0xc7; | 
|  | dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; | 
|  |  | 
|  | regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); | 
|  |  | 
|  | displaced_debug_printf ("%%rip-relative addressing used."); | 
|  | displaced_debug_printf ("using temp reg %d, old value %s, new value %s", | 
|  | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), | 
|  | paddress (gdbarch, rip_base)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fixup_displaced_copy (struct gdbarch *gdbarch, | 
|  | amd64_displaced_step_copy_insn_closure *dsc, | 
|  | CORE_ADDR from, CORE_ADDR to, struct regcache *regs) | 
|  | { | 
|  | const struct amd64_insn *details = &dsc->insn_details; | 
|  |  | 
|  | if (details->modrm_offset != -1) | 
|  | { | 
|  | gdb_byte modrm = details->raw_insn[details->modrm_offset]; | 
|  |  | 
|  | if ((modrm & 0xc7) == 0x05) | 
|  | { | 
|  | /* The insn uses rip-relative addressing. | 
|  | Deal with it.  */ | 
|  | fixup_riprel (gdbarch, dsc, from, to, regs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | displaced_step_copy_insn_closure_up | 
|  | amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, | 
|  | CORE_ADDR from, CORE_ADDR to, | 
|  | struct regcache *regs) | 
|  | { | 
|  | int len = gdbarch_max_insn_length (gdbarch); | 
|  | /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to | 
|  | continually watch for running off the end of the buffer.  */ | 
|  | int fixup_sentinel_space = len; | 
|  | std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc | 
|  | (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space)); | 
|  | gdb_byte *buf = &dsc->insn_buf[0]; | 
|  | struct amd64_insn *details = &dsc->insn_details; | 
|  |  | 
|  | read_memory (from, buf, len); | 
|  |  | 
|  | /* Set up the sentinel space so we don't have to worry about running | 
|  | off the end of the buffer.  An excessive number of leading prefixes | 
|  | could otherwise cause this.  */ | 
|  | memset (buf + len, 0, fixup_sentinel_space); | 
|  |  | 
|  | amd64_get_insn_details (buf, details); | 
|  |  | 
|  | /* GDB may get control back after the insn after the syscall. | 
|  | Presumably this is a kernel bug. | 
|  | If this is a syscall, make sure there's a nop afterwards.  */ | 
|  | { | 
|  | int syscall_length; | 
|  |  | 
|  | if (amd64_syscall_p (details, &syscall_length)) | 
|  | buf[details->opcode_offset + syscall_length] = NOP_OPCODE; | 
|  | } | 
|  |  | 
|  | /* Modify the insn to cope with the address where it will be executed from. | 
|  | In particular, handle any rip-relative addressing.	 */ | 
|  | fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs); | 
|  |  | 
|  | write_memory (to, buf, len); | 
|  |  | 
|  | displaced_debug_printf ("copy %s->%s: %s", | 
|  | paddress (gdbarch, from), paddress (gdbarch, to), | 
|  | bytes_to_string (buf, len).c_str ()); | 
|  |  | 
|  | /* This is a work around for a problem with g++ 4.8.  */ | 
|  | return displaced_step_copy_insn_closure_up (dsc.release ()); | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_absolute_jmp_p (const struct amd64_insn *details) | 
|  | { | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | if (insn[0] == 0xff) | 
|  | { | 
|  | /* jump near, absolute indirect (/4) */ | 
|  | if ((insn[1] & 0x38) == 0x20) | 
|  | return 1; | 
|  |  | 
|  | /* jump far, absolute indirect (/5) */ | 
|  | if ((insn[1] & 0x38) == 0x28) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return non-zero if the instruction DETAILS is a jump, zero otherwise.  */ | 
|  |  | 
|  | static int | 
|  | amd64_jmp_p (const struct amd64_insn *details) | 
|  | { | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | /* jump short, relative.  */ | 
|  | if (insn[0] == 0xeb) | 
|  | return 1; | 
|  |  | 
|  | /* jump near, relative.  */ | 
|  | if (insn[0] == 0xe9) | 
|  | return 1; | 
|  |  | 
|  | return amd64_absolute_jmp_p (details); | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_absolute_call_p (const struct amd64_insn *details) | 
|  | { | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | if (insn[0] == 0xff) | 
|  | { | 
|  | /* Call near, absolute indirect (/2) */ | 
|  | if ((insn[1] & 0x38) == 0x10) | 
|  | return 1; | 
|  |  | 
|  | /* Call far, absolute indirect (/3) */ | 
|  | if ((insn[1] & 0x38) == 0x18) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_ret_p (const struct amd64_insn *details) | 
|  | { | 
|  | /* NOTE: gcc can emit "repz ; ret".  */ | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | switch (insn[0]) | 
|  | { | 
|  | case 0xc2: /* ret near, pop N bytes */ | 
|  | case 0xc3: /* ret near */ | 
|  | case 0xca: /* ret far, pop N bytes */ | 
|  | case 0xcb: /* ret far */ | 
|  | case 0xcf: /* iret */ | 
|  | return 1; | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_call_p (const struct amd64_insn *details) | 
|  | { | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | if (amd64_absolute_call_p (details)) | 
|  | return 1; | 
|  |  | 
|  | /* call near, relative */ | 
|  | if (insn[0] == 0xe8) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Return non-zero if INSN is a system call, and set *LENGTHP to its | 
|  | length in bytes.  Otherwise, return zero.  */ | 
|  |  | 
|  | static int | 
|  | amd64_syscall_p (const struct amd64_insn *details, int *lengthp) | 
|  | { | 
|  | const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; | 
|  |  | 
|  | if (insn[0] == 0x0f && insn[1] == 0x05) | 
|  | { | 
|  | *lengthp = 2; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Classify the instruction at ADDR using PRED. | 
|  | Throw an error if the memory can't be read.  */ | 
|  |  | 
|  | static int | 
|  | amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr, | 
|  | int (*pred) (const struct amd64_insn *)) | 
|  | { | 
|  | struct amd64_insn details; | 
|  |  | 
|  | gdb::byte_vector buf (gdbarch_max_insn_length (gdbarch)); | 
|  |  | 
|  | read_code (addr, buf.data (), buf.size ()); | 
|  | amd64_get_insn_details (buf.data (), &details); | 
|  |  | 
|  | int classification = pred (&details); | 
|  |  | 
|  | return classification; | 
|  | } | 
|  |  | 
|  | /* The gdbarch insn_is_call method.  */ | 
|  |  | 
|  | static int | 
|  | amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return amd64_classify_insn_at (gdbarch, addr, amd64_call_p); | 
|  | } | 
|  |  | 
|  | /* The gdbarch insn_is_ret method.  */ | 
|  |  | 
|  | static int | 
|  | amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p); | 
|  | } | 
|  |  | 
|  | /* The gdbarch insn_is_jump method.  */ | 
|  |  | 
|  | static int | 
|  | amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) | 
|  | { | 
|  | return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p); | 
|  | } | 
|  |  | 
|  | /* Fix up the state of registers and memory after having single-stepped | 
|  | a displaced instruction.  */ | 
|  |  | 
|  | void | 
|  | amd64_displaced_step_fixup (struct gdbarch *gdbarch, | 
|  | struct displaced_step_copy_insn_closure *dsc_, | 
|  | CORE_ADDR from, CORE_ADDR to, | 
|  | struct regcache *regs, bool completed_p) | 
|  | { | 
|  | amd64_displaced_step_copy_insn_closure *dsc | 
|  | = (amd64_displaced_step_copy_insn_closure *) dsc_; | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | /* The offset we applied to the instruction's address.  */ | 
|  | ULONGEST insn_offset = to - from; | 
|  | gdb_byte *insn = dsc->insn_buf.data (); | 
|  | const struct amd64_insn *insn_details = &dsc->insn_details; | 
|  |  | 
|  | displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...", | 
|  | paddress (gdbarch, from), paddress (gdbarch, to), | 
|  | insn[0], insn[1]); | 
|  |  | 
|  | /* If we used a tmp reg, restore it.	*/ | 
|  |  | 
|  | if (dsc->tmp_used) | 
|  | { | 
|  | displaced_debug_printf ("restoring reg %d to %s", | 
|  | dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); | 
|  | regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); | 
|  | } | 
|  |  | 
|  | /* The list of issues to contend with here is taken from | 
|  | resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. | 
|  | Yay for Free Software!  */ | 
|  |  | 
|  | /* Relocate the %rip back to the program's instruction stream, | 
|  | if necessary.  */ | 
|  |  | 
|  | /* Except in the case of absolute or indirect jump or call | 
|  | instructions, or a return instruction, the new rip is relative to | 
|  | the displaced instruction; make it relative to the original insn. | 
|  | Well, signal handler returns don't need relocation either, but we use the | 
|  | value of %rip to recognize those; see below.  */ | 
|  | if (!completed_p | 
|  | || (!amd64_absolute_jmp_p (insn_details) | 
|  | && !amd64_absolute_call_p (insn_details) | 
|  | && !amd64_ret_p (insn_details))) | 
|  | { | 
|  | int insn_len; | 
|  |  | 
|  | CORE_ADDR pc = regcache_read_pc (regs); | 
|  |  | 
|  | /* A signal trampoline system call changes the %rip, resuming | 
|  | execution of the main program after the signal handler has | 
|  | returned.  That makes them like 'return' instructions; we | 
|  | shouldn't relocate %rip. | 
|  |  | 
|  | But most system calls don't, and we do need to relocate %rip. | 
|  |  | 
|  | Our heuristic for distinguishing these cases: if stepping | 
|  | over the system call instruction left control directly after | 
|  | the instruction, the we relocate --- control almost certainly | 
|  | doesn't belong in the displaced copy.	Otherwise, we assume | 
|  | the instruction has put control where it belongs, and leave | 
|  | it unrelocated.  Goodness help us if there are PC-relative | 
|  | system calls.	*/ | 
|  | if (amd64_syscall_p (insn_details, &insn_len) | 
|  | /* GDB can get control back after the insn after the syscall. | 
|  | Presumably this is a kernel bug.  Fixup ensures it's a nop, we | 
|  | add one to the length for it.  */ | 
|  | && (pc < to || pc > (to + insn_len + 1))) | 
|  | displaced_debug_printf ("syscall changed %%rip; not relocating"); | 
|  | else | 
|  | { | 
|  | CORE_ADDR rip = pc - insn_offset; | 
|  |  | 
|  | /* If we just stepped over a breakpoint insn, we don't backup | 
|  | the pc on purpose; this is to match behaviour without | 
|  | stepping.  */ | 
|  |  | 
|  | regcache_write_pc (regs, rip); | 
|  |  | 
|  | displaced_debug_printf ("relocated %%rip from %s to %s", | 
|  | paddress (gdbarch, pc), | 
|  | paddress (gdbarch, rip)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the instruction was PUSHFL, then the TF bit will be set in the | 
|  | pushed value, and should be cleared.  We'll leave this for later, | 
|  | since GDB already messes up the TF flag when stepping over a | 
|  | pushfl.  */ | 
|  |  | 
|  | /* If the instruction was a call, the return address now atop the | 
|  | stack is the address following the copied instruction.  We need | 
|  | to make it the address following the original instruction.	 */ | 
|  | if (completed_p && amd64_call_p (insn_details)) | 
|  | { | 
|  | ULONGEST rsp; | 
|  | ULONGEST retaddr; | 
|  | const ULONGEST retaddr_len = 8; | 
|  |  | 
|  | regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); | 
|  | retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); | 
|  | retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL; | 
|  | write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); | 
|  |  | 
|  | displaced_debug_printf ("relocated return addr at %s to %s", | 
|  | paddress (gdbarch, rsp), | 
|  | paddress (gdbarch, retaddr)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the instruction INSN uses RIP-relative addressing, return the | 
|  | offset into the raw INSN where the displacement to be adjusted is | 
|  | found.  Returns 0 if the instruction doesn't use RIP-relative | 
|  | addressing.  */ | 
|  |  | 
|  | static int | 
|  | rip_relative_offset (struct amd64_insn *insn) | 
|  | { | 
|  | if (insn->modrm_offset != -1) | 
|  | { | 
|  | gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; | 
|  |  | 
|  | if ((modrm & 0xc7) == 0x05) | 
|  | { | 
|  | /* The displacement is found right after the ModRM byte.  */ | 
|  | return insn->modrm_offset + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) | 
|  | { | 
|  | target_write_memory (*to, buf, len); | 
|  | *to += len; | 
|  | } | 
|  |  | 
|  | static void | 
|  | amd64_relocate_instruction (struct gdbarch *gdbarch, | 
|  | CORE_ADDR *to, CORE_ADDR oldloc) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | int len = gdbarch_max_insn_length (gdbarch); | 
|  | /* Extra space for sentinels.  */ | 
|  | int fixup_sentinel_space = len; | 
|  | gdb::byte_vector buf (len + fixup_sentinel_space); | 
|  | struct amd64_insn insn_details; | 
|  | int offset = 0; | 
|  | LONGEST rel32, newrel; | 
|  | gdb_byte *insn; | 
|  | int insn_length; | 
|  |  | 
|  | read_memory (oldloc, buf.data (), len); | 
|  |  | 
|  | /* Set up the sentinel space so we don't have to worry about running | 
|  | off the end of the buffer.  An excessive number of leading prefixes | 
|  | could otherwise cause this.  */ | 
|  | memset (buf.data () + len, 0, fixup_sentinel_space); | 
|  |  | 
|  | insn = buf.data (); | 
|  | amd64_get_insn_details (insn, &insn_details); | 
|  |  | 
|  | insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); | 
|  |  | 
|  | /* Skip legacy instruction prefixes.  */ | 
|  | insn = amd64_skip_prefixes (insn); | 
|  |  | 
|  | /* Adjust calls with 32-bit relative addresses as push/jump, with | 
|  | the address pushed being the location where the original call in | 
|  | the user program would return to.  */ | 
|  | if (insn[0] == 0xe8) | 
|  | { | 
|  | gdb_byte push_buf[32]; | 
|  | CORE_ADDR ret_addr; | 
|  | int i = 0; | 
|  |  | 
|  | /* Where "ret" in the original code will return to.  */ | 
|  | ret_addr = oldloc + insn_length; | 
|  |  | 
|  | /* If pushing an address higher than or equal to 0x80000000, | 
|  | avoid 'pushq', as that sign extends its 32-bit operand, which | 
|  | would be incorrect.  */ | 
|  | if (ret_addr <= 0x7fffffff) | 
|  | { | 
|  | push_buf[0] = 0x68; /* pushq $...  */ | 
|  | store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); | 
|  | i = 5; | 
|  | } | 
|  | else | 
|  | { | 
|  | push_buf[i++] = 0x48; /* sub    $0x8,%rsp */ | 
|  | push_buf[i++] = 0x83; | 
|  | push_buf[i++] = 0xec; | 
|  | push_buf[i++] = 0x08; | 
|  |  | 
|  | push_buf[i++] = 0xc7; /* movl    $imm,(%rsp) */ | 
|  | push_buf[i++] = 0x04; | 
|  | push_buf[i++] = 0x24; | 
|  | store_unsigned_integer (&push_buf[i], 4, byte_order, | 
|  | ret_addr & 0xffffffff); | 
|  | i += 4; | 
|  |  | 
|  | push_buf[i++] = 0xc7; /* movl    $imm,4(%rsp) */ | 
|  | push_buf[i++] = 0x44; | 
|  | push_buf[i++] = 0x24; | 
|  | push_buf[i++] = 0x04; | 
|  | store_unsigned_integer (&push_buf[i], 4, byte_order, | 
|  | ret_addr >> 32); | 
|  | i += 4; | 
|  | } | 
|  | gdb_assert (i <= sizeof (push_buf)); | 
|  | /* Push the push.  */ | 
|  | append_insns (to, i, push_buf); | 
|  |  | 
|  | /* Convert the relative call to a relative jump.  */ | 
|  | insn[0] = 0xe9; | 
|  |  | 
|  | /* Adjust the destination offset.  */ | 
|  | rel32 = extract_signed_integer (insn + 1, 4, byte_order); | 
|  | newrel = (oldloc - *to) + rel32; | 
|  | store_signed_integer (insn + 1, 4, byte_order, newrel); | 
|  |  | 
|  | displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", | 
|  | hex_string (rel32), paddress (gdbarch, oldloc), | 
|  | hex_string (newrel), paddress (gdbarch, *to)); | 
|  |  | 
|  | /* Write the adjusted jump into its displaced location.  */ | 
|  | append_insns (to, 5, insn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | offset = rip_relative_offset (&insn_details); | 
|  | if (!offset) | 
|  | { | 
|  | /* Adjust jumps with 32-bit relative addresses.  Calls are | 
|  | already handled above.  */ | 
|  | if (insn[0] == 0xe9) | 
|  | offset = 1; | 
|  | /* Adjust conditional jumps.  */ | 
|  | else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) | 
|  | offset = 2; | 
|  | } | 
|  |  | 
|  | if (offset) | 
|  | { | 
|  | rel32 = extract_signed_integer (insn + offset, 4, byte_order); | 
|  | newrel = (oldloc - *to) + rel32; | 
|  | store_signed_integer (insn + offset, 4, byte_order, newrel); | 
|  | displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", | 
|  | hex_string (rel32), paddress (gdbarch, oldloc), | 
|  | hex_string (newrel), paddress (gdbarch, *to)); | 
|  | } | 
|  |  | 
|  | /* Write the adjusted instruction into its displaced location.  */ | 
|  | append_insns (to, insn_length, buf.data ()); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The maximum number of saved registers.  This should include %rip.  */ | 
|  | #define AMD64_NUM_SAVED_REGS	AMD64_NUM_GREGS | 
|  |  | 
|  | struct amd64_frame_cache | 
|  | { | 
|  | /* Base address.  */ | 
|  | CORE_ADDR base; | 
|  | int base_p; | 
|  | CORE_ADDR sp_offset; | 
|  | CORE_ADDR pc; | 
|  |  | 
|  | /* Saved registers.  */ | 
|  | CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; | 
|  | CORE_ADDR saved_sp; | 
|  | int saved_sp_reg; | 
|  |  | 
|  | /* Do we have a frame?  */ | 
|  | int frameless_p; | 
|  | }; | 
|  |  | 
|  | /* Initialize a frame cache.  */ | 
|  |  | 
|  | static void | 
|  | amd64_init_frame_cache (struct amd64_frame_cache *cache) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Base address.  */ | 
|  | cache->base = 0; | 
|  | cache->base_p = 0; | 
|  | cache->sp_offset = -8; | 
|  | cache->pc = 0; | 
|  |  | 
|  | /* Saved registers.  We initialize these to -1 since zero is a valid | 
|  | offset (that's where %rbp is supposed to be stored). | 
|  | The values start out as being offsets, and are later converted to | 
|  | addresses (at which point -1 is interpreted as an address, still meaning | 
|  | "invalid").  */ | 
|  | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) | 
|  | cache->saved_regs[i] = -1; | 
|  | cache->saved_sp = 0; | 
|  | cache->saved_sp_reg = -1; | 
|  |  | 
|  | /* Frameless until proven otherwise.  */ | 
|  | cache->frameless_p = 1; | 
|  | } | 
|  |  | 
|  | /* Allocate and initialize a frame cache.  */ | 
|  |  | 
|  | static struct amd64_frame_cache * | 
|  | amd64_alloc_frame_cache (void) | 
|  | { | 
|  | struct amd64_frame_cache *cache; | 
|  |  | 
|  | cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); | 
|  | amd64_init_frame_cache (cache); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | /* GCC 4.4 and later, can put code in the prologue to realign the | 
|  | stack pointer.  Check whether PC points to such code, and update | 
|  | CACHE accordingly.  Return the first instruction after the code | 
|  | sequence or CURRENT_PC, whichever is smaller.  If we don't | 
|  | recognize the code, return PC.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | 
|  | struct amd64_frame_cache *cache) | 
|  | { | 
|  | /* There are 2 code sequences to re-align stack before the frame | 
|  | gets set up: | 
|  |  | 
|  | 1. Use a caller-saved saved register: | 
|  |  | 
|  | leaq  8(%rsp), %reg | 
|  | andq  $-XXX, %rsp | 
|  | pushq -8(%reg) | 
|  |  | 
|  | 2. Use a callee-saved saved register: | 
|  |  | 
|  | pushq %reg | 
|  | leaq  16(%rsp), %reg | 
|  | andq  $-XXX, %rsp | 
|  | pushq -8(%reg) | 
|  |  | 
|  | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | 
|  |  | 
|  | 0x48 0x83 0xe4 0xf0			andq $-16, %rsp | 
|  | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff	andq $-256, %rsp | 
|  | */ | 
|  |  | 
|  | gdb_byte buf[18]; | 
|  | int reg, r; | 
|  | int offset, offset_and; | 
|  |  | 
|  | if (target_read_code (pc, buf, sizeof buf)) | 
|  | return pc; | 
|  |  | 
|  | /* Check caller-saved saved register.  The first instruction has | 
|  | to be "leaq 8(%rsp), %reg".  */ | 
|  | if ((buf[0] & 0xfb) == 0x48 | 
|  | && buf[1] == 0x8d | 
|  | && buf[3] == 0x24 | 
|  | && buf[4] == 0x8) | 
|  | { | 
|  | /* MOD must be binary 10 and R/M must be binary 100.  */ | 
|  | if ((buf[2] & 0xc7) != 0x44) | 
|  | return pc; | 
|  |  | 
|  | /* REG has register number.  */ | 
|  | reg = (buf[2] >> 3) & 7; | 
|  |  | 
|  | /* Check the REX.R bit.  */ | 
|  | if (buf[0] == 0x4c) | 
|  | reg += 8; | 
|  |  | 
|  | offset = 5; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Check callee-saved saved register.  The first instruction | 
|  | has to be "pushq %reg".  */ | 
|  | reg = 0; | 
|  | if ((buf[0] & 0xf8) == 0x50) | 
|  | offset = 0; | 
|  | else if ((buf[0] & 0xf6) == 0x40 | 
|  | && (buf[1] & 0xf8) == 0x50) | 
|  | { | 
|  | /* Check the REX.B bit.  */ | 
|  | if ((buf[0] & 1) != 0) | 
|  | reg = 8; | 
|  |  | 
|  | offset = 1; | 
|  | } | 
|  | else | 
|  | return pc; | 
|  |  | 
|  | /* Get register.  */ | 
|  | reg += buf[offset] & 0x7; | 
|  |  | 
|  | offset++; | 
|  |  | 
|  | /* The next instruction has to be "leaq 16(%rsp), %reg".  */ | 
|  | if ((buf[offset] & 0xfb) != 0x48 | 
|  | || buf[offset + 1] != 0x8d | 
|  | || buf[offset + 3] != 0x24 | 
|  | || buf[offset + 4] != 0x10) | 
|  | return pc; | 
|  |  | 
|  | /* MOD must be binary 10 and R/M must be binary 100.  */ | 
|  | if ((buf[offset + 2] & 0xc7) != 0x44) | 
|  | return pc; | 
|  |  | 
|  | /* REG has register number.  */ | 
|  | r = (buf[offset + 2] >> 3) & 7; | 
|  |  | 
|  | /* Check the REX.R bit.  */ | 
|  | if (buf[offset] == 0x4c) | 
|  | r += 8; | 
|  |  | 
|  | /* Registers in pushq and leaq have to be the same.  */ | 
|  | if (reg != r) | 
|  | return pc; | 
|  |  | 
|  | offset += 5; | 
|  | } | 
|  |  | 
|  | /* Rigister can't be %rsp nor %rbp.  */ | 
|  | if (reg == 4 || reg == 5) | 
|  | return pc; | 
|  |  | 
|  | /* The next instruction has to be "andq $-XXX, %rsp".  */ | 
|  | if (buf[offset] != 0x48 | 
|  | || buf[offset + 2] != 0xe4 | 
|  | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | 
|  | return pc; | 
|  |  | 
|  | offset_and = offset; | 
|  | offset += buf[offset + 1] == 0x81 ? 7 : 4; | 
|  |  | 
|  | /* The next instruction has to be "pushq -8(%reg)".  */ | 
|  | r = 0; | 
|  | if (buf[offset] == 0xff) | 
|  | offset++; | 
|  | else if ((buf[offset] & 0xf6) == 0x40 | 
|  | && buf[offset + 1] == 0xff) | 
|  | { | 
|  | /* Check the REX.B bit.  */ | 
|  | if ((buf[offset] & 0x1) != 0) | 
|  | r = 8; | 
|  | offset += 2; | 
|  | } | 
|  | else | 
|  | return pc; | 
|  |  | 
|  | /* 8bit -8 is 0xf8.  REG must be binary 110 and MOD must be binary | 
|  | 01.  */ | 
|  | if (buf[offset + 1] != 0xf8 | 
|  | || (buf[offset] & 0xf8) != 0x70) | 
|  | return pc; | 
|  |  | 
|  | /* R/M has register.  */ | 
|  | r += buf[offset] & 7; | 
|  |  | 
|  | /* Registers in leaq and pushq have to be the same.  */ | 
|  | if (reg != r) | 
|  | return pc; | 
|  |  | 
|  | if (current_pc > pc + offset_and) | 
|  | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); | 
|  |  | 
|  | return std::min (pc + offset + 2, current_pc); | 
|  | } | 
|  |  | 
|  | /* Similar to amd64_analyze_stack_align for x32.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, | 
|  | struct amd64_frame_cache *cache) | 
|  | { | 
|  | /* There are 2 code sequences to re-align stack before the frame | 
|  | gets set up: | 
|  |  | 
|  | 1. Use a caller-saved saved register: | 
|  |  | 
|  | leaq  8(%rsp), %reg | 
|  | andq  $-XXX, %rsp | 
|  | pushq -8(%reg) | 
|  |  | 
|  | or | 
|  |  | 
|  | [addr32] leal  8(%rsp), %reg | 
|  | andl  $-XXX, %esp | 
|  | [addr32] pushq -8(%reg) | 
|  |  | 
|  | 2. Use a callee-saved saved register: | 
|  |  | 
|  | pushq %reg | 
|  | leaq  16(%rsp), %reg | 
|  | andq  $-XXX, %rsp | 
|  | pushq -8(%reg) | 
|  |  | 
|  | or | 
|  |  | 
|  | pushq %reg | 
|  | [addr32] leal  16(%rsp), %reg | 
|  | andl  $-XXX, %esp | 
|  | [addr32] pushq -8(%reg) | 
|  |  | 
|  | "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: | 
|  |  | 
|  | 0x48 0x83 0xe4 0xf0			andq $-16, %rsp | 
|  | 0x48 0x81 0xe4 0x00 0xff 0xff 0xff	andq $-256, %rsp | 
|  |  | 
|  | "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: | 
|  |  | 
|  | 0x83 0xe4 0xf0			andl $-16, %esp | 
|  | 0x81 0xe4 0x00 0xff 0xff 0xff	andl $-256, %esp | 
|  | */ | 
|  |  | 
|  | gdb_byte buf[19]; | 
|  | int reg, r; | 
|  | int offset, offset_and; | 
|  |  | 
|  | if (target_read_memory (pc, buf, sizeof buf)) | 
|  | return pc; | 
|  |  | 
|  | /* Skip optional addr32 prefix.  */ | 
|  | offset = buf[0] == 0x67 ? 1 : 0; | 
|  |  | 
|  | /* Check caller-saved saved register.  The first instruction has | 
|  | to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg".  */ | 
|  | if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40) | 
|  | && buf[offset + 1] == 0x8d | 
|  | && buf[offset + 3] == 0x24 | 
|  | && buf[offset + 4] == 0x8) | 
|  | { | 
|  | /* MOD must be binary 10 and R/M must be binary 100.  */ | 
|  | if ((buf[offset + 2] & 0xc7) != 0x44) | 
|  | return pc; | 
|  |  | 
|  | /* REG has register number.  */ | 
|  | reg = (buf[offset + 2] >> 3) & 7; | 
|  |  | 
|  | /* Check the REX.R bit.  */ | 
|  | if ((buf[offset] & 0x4) != 0) | 
|  | reg += 8; | 
|  |  | 
|  | offset += 5; | 
|  | } | 
|  | else | 
|  | { | 
|  | /* Check callee-saved saved register.  The first instruction | 
|  | has to be "pushq %reg".  */ | 
|  | reg = 0; | 
|  | if ((buf[offset] & 0xf6) == 0x40 | 
|  | && (buf[offset + 1] & 0xf8) == 0x50) | 
|  | { | 
|  | /* Check the REX.B bit.  */ | 
|  | if ((buf[offset] & 1) != 0) | 
|  | reg = 8; | 
|  |  | 
|  | offset += 1; | 
|  | } | 
|  | else if ((buf[offset] & 0xf8) != 0x50) | 
|  | return pc; | 
|  |  | 
|  | /* Get register.  */ | 
|  | reg += buf[offset] & 0x7; | 
|  |  | 
|  | offset++; | 
|  |  | 
|  | /* Skip optional addr32 prefix.  */ | 
|  | if (buf[offset] == 0x67) | 
|  | offset++; | 
|  |  | 
|  | /* The next instruction has to be "leaq 16(%rsp), %reg" or | 
|  | "leal 16(%rsp), %reg".  */ | 
|  | if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40) | 
|  | || buf[offset + 1] != 0x8d | 
|  | || buf[offset + 3] != 0x24 | 
|  | || buf[offset + 4] != 0x10) | 
|  | return pc; | 
|  |  | 
|  | /* MOD must be binary 10 and R/M must be binary 100.  */ | 
|  | if ((buf[offset + 2] & 0xc7) != 0x44) | 
|  | return pc; | 
|  |  | 
|  | /* REG has register number.  */ | 
|  | r = (buf[offset + 2] >> 3) & 7; | 
|  |  | 
|  | /* Check the REX.R bit.  */ | 
|  | if ((buf[offset] & 0x4) != 0) | 
|  | r += 8; | 
|  |  | 
|  | /* Registers in pushq and leaq have to be the same.  */ | 
|  | if (reg != r) | 
|  | return pc; | 
|  |  | 
|  | offset += 5; | 
|  | } | 
|  |  | 
|  | /* Rigister can't be %rsp nor %rbp.  */ | 
|  | if (reg == 4 || reg == 5) | 
|  | return pc; | 
|  |  | 
|  | /* The next instruction may be "andq $-XXX, %rsp" or | 
|  | "andl $-XXX, %esp".  */ | 
|  | if (buf[offset] != 0x48) | 
|  | offset--; | 
|  |  | 
|  | if (buf[offset + 2] != 0xe4 | 
|  | || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) | 
|  | return pc; | 
|  |  | 
|  | offset_and = offset; | 
|  | offset += buf[offset + 1] == 0x81 ? 7 : 4; | 
|  |  | 
|  | /* Skip optional addr32 prefix.  */ | 
|  | if (buf[offset] == 0x67) | 
|  | offset++; | 
|  |  | 
|  | /* The next instruction has to be "pushq -8(%reg)".  */ | 
|  | r = 0; | 
|  | if (buf[offset] == 0xff) | 
|  | offset++; | 
|  | else if ((buf[offset] & 0xf6) == 0x40 | 
|  | && buf[offset + 1] == 0xff) | 
|  | { | 
|  | /* Check the REX.B bit.  */ | 
|  | if ((buf[offset] & 0x1) != 0) | 
|  | r = 8; | 
|  | offset += 2; | 
|  | } | 
|  | else | 
|  | return pc; | 
|  |  | 
|  | /* 8bit -8 is 0xf8.  REG must be binary 110 and MOD must be binary | 
|  | 01.  */ | 
|  | if (buf[offset + 1] != 0xf8 | 
|  | || (buf[offset] & 0xf8) != 0x70) | 
|  | return pc; | 
|  |  | 
|  | /* R/M has register.  */ | 
|  | r += buf[offset] & 7; | 
|  |  | 
|  | /* Registers in leaq and pushq have to be the same.  */ | 
|  | if (reg != r) | 
|  | return pc; | 
|  |  | 
|  | if (current_pc > pc + offset_and) | 
|  | cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); | 
|  |  | 
|  | return std::min (pc + offset + 2, current_pc); | 
|  | } | 
|  |  | 
|  | /* Do a limited analysis of the prologue at PC and update CACHE | 
|  | accordingly.  Bail out early if CURRENT_PC is reached.  Return the | 
|  | address where the analysis stopped. | 
|  |  | 
|  | We will handle only functions beginning with: | 
|  |  | 
|  | pushq %rbp        0x55 | 
|  | movq %rsp, %rbp   0x48 0x89 0xe5 (or 0x48 0x8b 0xec) | 
|  |  | 
|  | or (for the X32 ABI): | 
|  |  | 
|  | pushq %rbp        0x55 | 
|  | movl %esp, %ebp   0x89 0xe5 (or 0x8b 0xec) | 
|  |  | 
|  | The `endbr64` instruction can be found before these sequences, and will be | 
|  | skipped if found. | 
|  |  | 
|  | Any function that doesn't start with one of these sequences will be | 
|  | assumed to have no prologue and thus no valid frame pointer in | 
|  | %rbp.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_analyze_prologue (struct gdbarch *gdbarch, | 
|  | CORE_ADDR pc, CORE_ADDR current_pc, | 
|  | struct amd64_frame_cache *cache) | 
|  | { | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | /* The `endbr64` instruction.  */ | 
|  | static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa }; | 
|  | /* There are two variations of movq %rsp, %rbp.  */ | 
|  | static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 }; | 
|  | static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec }; | 
|  | /* Ditto for movl %esp, %ebp.  */ | 
|  | static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 }; | 
|  | static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec }; | 
|  |  | 
|  | gdb_byte buf[3]; | 
|  | gdb_byte op; | 
|  |  | 
|  | if (current_pc <= pc) | 
|  | return current_pc; | 
|  |  | 
|  | if (gdbarch_ptr_bit (gdbarch) == 32) | 
|  | pc = amd64_x32_analyze_stack_align (pc, current_pc, cache); | 
|  | else | 
|  | pc = amd64_analyze_stack_align (pc, current_pc, cache); | 
|  |  | 
|  | op = read_code_unsigned_integer (pc, 1, byte_order); | 
|  |  | 
|  | /* Check for the `endbr64` instruction, skip it if found.  */ | 
|  | if (op == endbr64[0]) | 
|  | { | 
|  | read_code (pc + 1, buf, 3); | 
|  |  | 
|  | if (memcmp (buf, &endbr64[1], 3) == 0) | 
|  | pc += 4; | 
|  |  | 
|  | op = read_code_unsigned_integer (pc, 1, byte_order); | 
|  | } | 
|  |  | 
|  | if (current_pc <= pc) | 
|  | return current_pc; | 
|  |  | 
|  | if (op == 0x55)		/* pushq %rbp */ | 
|  | { | 
|  | /* Take into account that we've executed the `pushq %rbp' that | 
|  | starts this instruction sequence.  */ | 
|  | cache->saved_regs[AMD64_RBP_REGNUM] = 0; | 
|  | cache->sp_offset += 8; | 
|  |  | 
|  | /* If that's all, return now.  */ | 
|  | if (current_pc <= pc + 1) | 
|  | return current_pc; | 
|  |  | 
|  | read_code (pc + 1, buf, 3); | 
|  |  | 
|  | /* Check for `movq %rsp, %rbp'.  */ | 
|  | if (memcmp (buf, mov_rsp_rbp_1, 3) == 0 | 
|  | || memcmp (buf, mov_rsp_rbp_2, 3) == 0) | 
|  | { | 
|  | /* OK, we actually have a frame.  */ | 
|  | cache->frameless_p = 0; | 
|  | return pc + 4; | 
|  | } | 
|  |  | 
|  | /* For X32, also check for `movl %esp, %ebp'.  */ | 
|  | if (gdbarch_ptr_bit (gdbarch) == 32) | 
|  | { | 
|  | if (memcmp (buf, mov_esp_ebp_1, 2) == 0 | 
|  | || memcmp (buf, mov_esp_ebp_2, 2) == 0) | 
|  | { | 
|  | /* OK, we actually have a frame.  */ | 
|  | cache->frameless_p = 0; | 
|  | return pc + 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | return pc + 1; | 
|  | } | 
|  |  | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* Work around false termination of prologue - GCC PR debug/48827. | 
|  |  | 
|  | START_PC is the first instruction of a function, PC is its minimal already | 
|  | determined advanced address.  Function returns PC if it has nothing to do. | 
|  |  | 
|  | 84 c0                test   %al,%al | 
|  | 74 23                je     after | 
|  | <-- here is 0 lines advance - the false prologue end marker. | 
|  | 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp) | 
|  | 0f 29 4d 80          movaps %xmm1,-0x80(%rbp) | 
|  | 0f 29 55 90          movaps %xmm2,-0x70(%rbp) | 
|  | 0f 29 5d a0          movaps %xmm3,-0x60(%rbp) | 
|  | 0f 29 65 b0          movaps %xmm4,-0x50(%rbp) | 
|  | 0f 29 6d c0          movaps %xmm5,-0x40(%rbp) | 
|  | 0f 29 75 d0          movaps %xmm6,-0x30(%rbp) | 
|  | 0f 29 7d e0          movaps %xmm7,-0x20(%rbp) | 
|  | after:  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) | 
|  | { | 
|  | struct symtab_and_line start_pc_sal, next_sal; | 
|  | gdb_byte buf[4 + 8 * 7]; | 
|  | int offset, xmmreg; | 
|  |  | 
|  | if (pc == start_pc) | 
|  | return pc; | 
|  |  | 
|  | start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); | 
|  | if (start_pc_sal.symtab == NULL | 
|  | || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit () | 
|  | ->producer ()) < 6 | 
|  | || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) | 
|  | return pc; | 
|  |  | 
|  | next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0); | 
|  | if (next_sal.line != start_pc_sal.line) | 
|  | return pc; | 
|  |  | 
|  | /* START_PC can be from overlayed memory, ignored here.  */ | 
|  | if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0) | 
|  | return pc; | 
|  |  | 
|  | /* test %al,%al */ | 
|  | if (buf[0] != 0x84 || buf[1] != 0xc0) | 
|  | return pc; | 
|  | /* je AFTER */ | 
|  | if (buf[2] != 0x74) | 
|  | return pc; | 
|  |  | 
|  | offset = 4; | 
|  | for (xmmreg = 0; xmmreg < 8; xmmreg++) | 
|  | { | 
|  | /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */ | 
|  | if (buf[offset] != 0x0f || buf[offset + 1] != 0x29 | 
|  | || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5)) | 
|  | return pc; | 
|  |  | 
|  | /* 0b01?????? */ | 
|  | if ((buf[offset + 2] & 0xc0) == 0x40) | 
|  | { | 
|  | /* 8-bit displacement.  */ | 
|  | offset += 4; | 
|  | } | 
|  | /* 0b10?????? */ | 
|  | else if ((buf[offset + 2] & 0xc0) == 0x80) | 
|  | { | 
|  | /* 32-bit displacement.  */ | 
|  | offset += 7; | 
|  | } | 
|  | else | 
|  | return pc; | 
|  | } | 
|  |  | 
|  | /* je AFTER */ | 
|  | if (offset - 4 != buf[3]) | 
|  | return pc; | 
|  |  | 
|  | return next_sal.end; | 
|  | } | 
|  |  | 
|  | /* Return PC of first real instruction.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) | 
|  | { | 
|  | struct amd64_frame_cache cache; | 
|  | CORE_ADDR pc; | 
|  | CORE_ADDR func_addr; | 
|  |  | 
|  | if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) | 
|  | { | 
|  | CORE_ADDR post_prologue_pc | 
|  | = skip_prologue_using_sal (gdbarch, func_addr); | 
|  | struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); | 
|  |  | 
|  | /* LLVM backend (Clang/Flang) always emits a line note before the | 
|  | prologue and another one after.  We trust clang and newer Intel | 
|  | compilers to emit usable line notes.  */ | 
|  | if (post_prologue_pc | 
|  | && (cust != NULL | 
|  | && cust->producer () != nullptr | 
|  | && (producer_is_llvm (cust->producer ()) | 
|  | || producer_is_icc_ge_19 (cust->producer ())))) | 
|  | return std::max (start_pc, post_prologue_pc); | 
|  | } | 
|  |  | 
|  | amd64_init_frame_cache (&cache); | 
|  | pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, | 
|  | &cache); | 
|  | if (cache.frameless_p) | 
|  | return start_pc; | 
|  |  | 
|  | return amd64_skip_xmm_prologue (pc, start_pc); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Normal frames.  */ | 
|  |  | 
|  | static void | 
|  | amd64_frame_cache_1 (const frame_info_ptr &this_frame, | 
|  | struct amd64_frame_cache *cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | gdb_byte buf[8]; | 
|  | int i; | 
|  |  | 
|  | cache->pc = get_frame_func (this_frame); | 
|  | if (cache->pc != 0) | 
|  | amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), | 
|  | cache); | 
|  |  | 
|  | if (cache->frameless_p) | 
|  | { | 
|  | /* We didn't find a valid frame.  If we're at the start of a | 
|  | function, or somewhere half-way its prologue, the function's | 
|  | frame probably hasn't been fully setup yet.  Try to | 
|  | reconstruct the base address for the stack frame by looking | 
|  | at the stack pointer.  For truly "frameless" functions this | 
|  | might work too.  */ | 
|  |  | 
|  | if (cache->saved_sp_reg != -1) | 
|  | { | 
|  | /* Stack pointer has been saved.  */ | 
|  | get_frame_register (this_frame, cache->saved_sp_reg, buf); | 
|  | cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); | 
|  |  | 
|  | /* We're halfway aligning the stack.  */ | 
|  | cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; | 
|  | cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; | 
|  |  | 
|  | /* This will be added back below.  */ | 
|  | cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; | 
|  | } | 
|  | else | 
|  | { | 
|  | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
|  | cache->base = extract_unsigned_integer (buf, 8, byte_order) | 
|  | + cache->sp_offset; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); | 
|  | cache->base = extract_unsigned_integer (buf, 8, byte_order); | 
|  | } | 
|  |  | 
|  | /* Now that we have the base address for the stack frame we can | 
|  | calculate the value of %rsp in the calling frame.  */ | 
|  | cache->saved_sp = cache->base + 16; | 
|  |  | 
|  | /* For normal frames, %rip is stored at 8(%rbp).  If we don't have a | 
|  | frame we find it at the same offset from the reconstructed base | 
|  | address.  If we're halfway aligning the stack, %rip is handled | 
|  | differently (see above).  */ | 
|  | if (!cache->frameless_p || cache->saved_sp_reg == -1) | 
|  | cache->saved_regs[AMD64_RIP_REGNUM] = 8; | 
|  |  | 
|  | /* Adjust all the saved registers such that they contain addresses | 
|  | instead of offsets.  */ | 
|  | for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) | 
|  | if (cache->saved_regs[i] != -1) | 
|  | cache->saved_regs[i] += cache->base; | 
|  |  | 
|  | cache->base_p = 1; | 
|  | } | 
|  |  | 
|  | static struct amd64_frame_cache * | 
|  | amd64_frame_cache (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct amd64_frame_cache *cache; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct amd64_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = amd64_alloc_frame_cache (); | 
|  | *this_cache = cache; | 
|  |  | 
|  | try | 
|  | { | 
|  | amd64_frame_cache_1 (this_frame, cache); | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | if (ex.error != NOT_AVAILABLE_ERROR) | 
|  | throw; | 
|  | } | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | amd64_frame_unwind_stop_reason (const frame_info_ptr &this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | return UNWIND_UNAVAILABLE; | 
|  |  | 
|  | /* This marks the outermost frame.  */ | 
|  | if (cache->base == 0) | 
|  | return UNWIND_OUTERMOST; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | static void | 
|  | amd64_frame_this_id (const frame_info_ptr &this_frame, void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | (*this_id) = frame_id_build_unavailable_stack (cache->pc); | 
|  | else if (cache->base == 0) | 
|  | { | 
|  | /* This marks the outermost frame.  */ | 
|  | return; | 
|  | } | 
|  | else | 
|  | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | amd64_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache, | 
|  | int regnum) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | gdb_assert (regnum >= 0); | 
|  |  | 
|  | if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) | 
|  | return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); | 
|  |  | 
|  | if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) | 
|  | return frame_unwind_got_memory (this_frame, regnum, | 
|  | cache->saved_regs[regnum]); | 
|  |  | 
|  | return frame_unwind_got_register (this_frame, regnum, regnum); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind amd64_frame_unwind = | 
|  | { | 
|  | "amd64 prologue", | 
|  | NORMAL_FRAME, | 
|  | amd64_frame_unwind_stop_reason, | 
|  | amd64_frame_this_id, | 
|  | amd64_frame_prev_register, | 
|  | NULL, | 
|  | default_frame_sniffer | 
|  | }; | 
|  |  | 
|  | /* Generate a bytecode expression to get the value of the saved PC.  */ | 
|  |  | 
|  | static void | 
|  | amd64_gen_return_address (struct gdbarch *gdbarch, | 
|  | struct agent_expr *ax, struct axs_value *value, | 
|  | CORE_ADDR scope) | 
|  | { | 
|  | /* The following sequence assumes the traditional use of the base | 
|  | register.  */ | 
|  | ax_reg (ax, AMD64_RBP_REGNUM); | 
|  | ax_const_l (ax, 8); | 
|  | ax_simple (ax, aop_add); | 
|  | value->type = register_type (gdbarch, AMD64_RIP_REGNUM); | 
|  | value->kind = axs_lvalue_memory; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Signal trampolines.  */ | 
|  |  | 
|  | /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and | 
|  | 64-bit variants.  This would require using identical frame caches | 
|  | on both platforms.  */ | 
|  |  | 
|  | static struct amd64_frame_cache * | 
|  | amd64_sigtramp_frame_cache (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | struct amd64_frame_cache *cache; | 
|  | CORE_ADDR addr; | 
|  | gdb_byte buf[8]; | 
|  | int i; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct amd64_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = amd64_alloc_frame_cache (); | 
|  |  | 
|  | try | 
|  | { | 
|  | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
|  | cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; | 
|  |  | 
|  | addr = tdep->sigcontext_addr (this_frame); | 
|  | gdb_assert (tdep->sc_reg_offset); | 
|  | gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); | 
|  | for (i = 0; i < tdep->sc_num_regs; i++) | 
|  | if (tdep->sc_reg_offset[i] != -1) | 
|  | cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; | 
|  |  | 
|  | cache->base_p = 1; | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | if (ex.error != NOT_AVAILABLE_ERROR) | 
|  | throw; | 
|  | } | 
|  |  | 
|  | *this_cache = cache; | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | amd64_sigtramp_frame_unwind_stop_reason (const frame_info_ptr &this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_sigtramp_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | return UNWIND_UNAVAILABLE; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | static void | 
|  | amd64_sigtramp_frame_this_id (const frame_info_ptr &this_frame, | 
|  | void **this_cache, struct frame_id *this_id) | 
|  | { | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_sigtramp_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); | 
|  | else if (cache->base == 0) | 
|  | { | 
|  | /* This marks the outermost frame.  */ | 
|  | return; | 
|  | } | 
|  | else | 
|  | (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | static struct value * | 
|  | amd64_sigtramp_frame_prev_register (const frame_info_ptr &this_frame, | 
|  | void **this_cache, int regnum) | 
|  | { | 
|  | /* Make sure we've initialized the cache.  */ | 
|  | amd64_sigtramp_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return amd64_frame_prev_register (this_frame, this_cache, regnum); | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | gdbarch *arch = get_frame_arch (this_frame); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); | 
|  |  | 
|  | /* We shouldn't even bother if we don't have a sigcontext_addr | 
|  | handler.  */ | 
|  | if (tdep->sigcontext_addr == NULL) | 
|  | return 0; | 
|  |  | 
|  | if (tdep->sigtramp_p != NULL) | 
|  | { | 
|  | if (tdep->sigtramp_p (this_frame)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (tdep->sigtramp_start != 0) | 
|  | { | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  |  | 
|  | gdb_assert (tdep->sigtramp_end != 0); | 
|  | if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind amd64_sigtramp_frame_unwind = | 
|  | { | 
|  | "amd64 sigtramp", | 
|  | SIGTRAMP_FRAME, | 
|  | amd64_sigtramp_frame_unwind_stop_reason, | 
|  | amd64_sigtramp_frame_this_id, | 
|  | amd64_sigtramp_frame_prev_register, | 
|  | NULL, | 
|  | amd64_sigtramp_frame_sniffer | 
|  | }; | 
|  |  | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct amd64_frame_cache *cache = | 
|  | amd64_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | return cache->base; | 
|  | } | 
|  |  | 
|  | static const struct frame_base amd64_frame_base = | 
|  | { | 
|  | &amd64_frame_unwind, | 
|  | amd64_frame_base_address, | 
|  | amd64_frame_base_address, | 
|  | amd64_frame_base_address | 
|  | }; | 
|  |  | 
|  | /* Implement core of the stack_frame_destroyed_p gdbarch method.  */ | 
|  |  | 
|  | static int | 
|  | amd64_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | gdb_byte insn; | 
|  |  | 
|  | std::optional<CORE_ADDR> epilogue = find_epilogue_using_linetable (pc); | 
|  |  | 
|  | /* PC is pointing at the next instruction to be executed. If it is | 
|  | equal to the epilogue start, it means we're right before it starts, | 
|  | so the stack is still valid.  */ | 
|  | if (epilogue) | 
|  | return pc > epilogue; | 
|  |  | 
|  | if (target_read_memory (pc, &insn, 1)) | 
|  | return 0;   /* Can't read memory at pc.  */ | 
|  |  | 
|  | if (insn != 0xc3)     /* 'ret' instruction.  */ | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Normal frames, but in a function epilogue.  */ | 
|  |  | 
|  | /* Implement the stack_frame_destroyed_p gdbarch method. | 
|  |  | 
|  | The epilogue is defined here as the 'ret' instruction, which will | 
|  | follow any instruction such as 'leave' or 'pop %ebp' that destroys | 
|  | the function's stack frame.  */ | 
|  |  | 
|  | static int | 
|  | amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | struct compunit_symtab *cust = find_pc_compunit_symtab (pc); | 
|  |  | 
|  | if (cust != nullptr && cust->producer () != nullptr | 
|  | && producer_is_llvm (cust->producer ())) | 
|  | return amd64_stack_frame_destroyed_p_1 (gdbarch, pc); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_epilogue_frame_sniffer_1 (const struct frame_unwind *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache, bool override_p) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | CORE_ADDR pc = get_frame_pc (this_frame); | 
|  |  | 
|  | if (frame_relative_level (this_frame) != 0) | 
|  | /* We're not in the inner frame, so assume we're not in an epilogue.  */ | 
|  | return 0; | 
|  |  | 
|  | bool unwind_valid_p | 
|  | = compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc)); | 
|  | if (override_p) | 
|  | { | 
|  | if (unwind_valid_p) | 
|  | /* Don't override the symtab unwinders, skip | 
|  | "amd64 epilogue override".  */ | 
|  | return 0; | 
|  | } | 
|  | else | 
|  | { | 
|  | if (!unwind_valid_p) | 
|  | /* "amd64 epilogue override" unwinder already ran, skip | 
|  | "amd64 epilogue".  */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check whether we're in an epilogue.  */ | 
|  | return amd64_stack_frame_destroyed_p_1 (gdbarch, pc); | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_epilogue_override_frame_sniffer (const struct frame_unwind *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache, | 
|  | true); | 
|  | } | 
|  |  | 
|  | static int | 
|  | amd64_epilogue_frame_sniffer (const struct frame_unwind *self, | 
|  | const frame_info_ptr &this_frame, | 
|  | void **this_prologue_cache) | 
|  | { | 
|  | return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache, | 
|  | false); | 
|  | } | 
|  |  | 
|  | static struct amd64_frame_cache * | 
|  | amd64_epilogue_frame_cache (const frame_info_ptr &this_frame, void **this_cache) | 
|  | { | 
|  | struct gdbarch *gdbarch = get_frame_arch (this_frame); | 
|  | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
|  | struct amd64_frame_cache *cache; | 
|  | gdb_byte buf[8]; | 
|  |  | 
|  | if (*this_cache) | 
|  | return (struct amd64_frame_cache *) *this_cache; | 
|  |  | 
|  | cache = amd64_alloc_frame_cache (); | 
|  | *this_cache = cache; | 
|  |  | 
|  | try | 
|  | { | 
|  | /* Cache base will be %rsp plus cache->sp_offset (-8).  */ | 
|  | get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); | 
|  | cache->base = extract_unsigned_integer (buf, 8, | 
|  | byte_order) + cache->sp_offset; | 
|  |  | 
|  | /* Cache pc will be the frame func.  */ | 
|  | cache->pc = get_frame_func (this_frame); | 
|  |  | 
|  | /* The previous value of %rsp is cache->base plus 16.  */ | 
|  | cache->saved_sp = cache->base + 16; | 
|  |  | 
|  | /* The saved %rip will be at cache->base plus 8.  */ | 
|  | cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; | 
|  |  | 
|  | cache->base_p = 1; | 
|  | } | 
|  | catch (const gdb_exception_error &ex) | 
|  | { | 
|  | if (ex.error != NOT_AVAILABLE_ERROR) | 
|  | throw; | 
|  | } | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static enum unwind_stop_reason | 
|  | amd64_epilogue_frame_unwind_stop_reason (const frame_info_ptr &this_frame, | 
|  | void **this_cache) | 
|  | { | 
|  | struct amd64_frame_cache *cache | 
|  | = amd64_epilogue_frame_cache (this_frame, this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | return UNWIND_UNAVAILABLE; | 
|  |  | 
|  | return UNWIND_NO_REASON; | 
|  | } | 
|  |  | 
|  | static void | 
|  | amd64_epilogue_frame_this_id (const frame_info_ptr &this_frame, | 
|  | void **this_cache, | 
|  | struct frame_id *this_id) | 
|  | { | 
|  | struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, | 
|  | this_cache); | 
|  |  | 
|  | if (!cache->base_p) | 
|  | (*this_id) = frame_id_build_unavailable_stack (cache->pc); | 
|  | else | 
|  | (*this_id) = frame_id_build (cache->base + 16, cache->pc); | 
|  | } | 
|  |  | 
|  | static const struct frame_unwind amd64_epilogue_override_frame_unwind = | 
|  | { | 
|  | "amd64 epilogue override", | 
|  | NORMAL_FRAME, | 
|  | amd64_epilogue_frame_unwind_stop_reason, | 
|  | amd64_epilogue_frame_this_id, | 
|  | amd64_frame_prev_register, | 
|  | NULL, | 
|  | amd64_epilogue_override_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static const struct frame_unwind amd64_epilogue_frame_unwind = | 
|  | { | 
|  | "amd64 epilogue", | 
|  | NORMAL_FRAME, | 
|  | amd64_epilogue_frame_unwind_stop_reason, | 
|  | amd64_epilogue_frame_this_id, | 
|  | amd64_frame_prev_register, | 
|  | NULL, | 
|  | amd64_epilogue_frame_sniffer | 
|  | }; | 
|  |  | 
|  | static struct frame_id | 
|  | amd64_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame) | 
|  | { | 
|  | CORE_ADDR fp; | 
|  |  | 
|  | fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); | 
|  |  | 
|  | return frame_id_build (fp + 16, get_frame_pc (this_frame)); | 
|  | } | 
|  |  | 
|  | /* 16 byte align the SP per frame requirements.  */ | 
|  |  | 
|  | static CORE_ADDR | 
|  | amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
|  | { | 
|  | return sp & -(CORE_ADDR)16; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Supply register REGNUM from the buffer specified by FPREGS and LEN | 
|  | in the floating-point register set REGSET to register cache | 
|  | REGCACHE.  If REGNUM is -1, do this for all registers in REGSET.  */ | 
|  |  | 
|  | static void | 
|  | amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache, | 
|  | int regnum, const void *fpregs, size_t len) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | gdb_assert (len >= tdep->sizeof_fpregset); | 
|  | amd64_supply_fxsave (regcache, regnum, fpregs); | 
|  | } | 
|  |  | 
|  | /* Collect register REGNUM from the register cache REGCACHE and store | 
|  | it in the buffer specified by FPREGS and LEN as described by the | 
|  | floating-point register set REGSET.  If REGNUM is -1, do this for | 
|  | all registers in REGSET.  */ | 
|  |  | 
|  | static void | 
|  | amd64_collect_fpregset (const struct regset *regset, | 
|  | const struct regcache *regcache, | 
|  | int regnum, void *fpregs, size_t len) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | gdb_assert (len >= tdep->sizeof_fpregset); | 
|  | amd64_collect_fxsave (regcache, regnum, fpregs); | 
|  | } | 
|  |  | 
|  | const struct regset amd64_fpregset = | 
|  | { | 
|  | NULL, amd64_supply_fpregset, amd64_collect_fpregset | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Figure out where the longjmp will land.  Slurp the jmp_buf out of | 
|  | %rdi.  We expect its value to be a pointer to the jmp_buf structure | 
|  | from which we extract the address that we will land at.  This | 
|  | address is copied into PC.  This routine returns non-zero on | 
|  | success.  */ | 
|  |  | 
|  | static int | 
|  | amd64_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc) | 
|  | { | 
|  | gdb_byte buf[8]; | 
|  | CORE_ADDR jb_addr; | 
|  | struct gdbarch *gdbarch = get_frame_arch (frame); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | int jb_pc_offset = tdep->jb_pc_offset; | 
|  | int len = builtin_type (gdbarch)->builtin_func_ptr->length (); | 
|  |  | 
|  | /* If JB_PC_OFFSET is -1, we have no way to find out where the | 
|  | longjmp will land.	 */ | 
|  | if (jb_pc_offset == -1) | 
|  | return 0; | 
|  |  | 
|  | get_frame_register (frame, AMD64_RDI_REGNUM, buf); | 
|  | jb_addr= extract_typed_address | 
|  | (buf, builtin_type (gdbarch)->builtin_data_ptr); | 
|  | if (target_read_memory (jb_addr + jb_pc_offset, buf, len)) | 
|  | return 0; | 
|  |  | 
|  | *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static const int amd64_record_regmap[] = | 
|  | { | 
|  | AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM, | 
|  | AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, | 
|  | AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM, | 
|  | AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM, | 
|  | AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM, | 
|  | AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM | 
|  | }; | 
|  |  | 
|  | /* Implement the "in_indirect_branch_thunk" gdbarch function.  */ | 
|  |  | 
|  | static bool | 
|  | amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc) | 
|  | { | 
|  | return x86_in_indirect_branch_thunk (pc, amd64_register_names, | 
|  | AMD64_RAX_REGNUM, | 
|  | AMD64_RIP_REGNUM); | 
|  | } | 
|  |  | 
|  | void | 
|  | amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, | 
|  | const target_desc *default_tdesc) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | const struct target_desc *tdesc = info.target_desc; | 
|  | static const char *const stap_integer_prefixes[] = { "$", NULL }; | 
|  | static const char *const stap_register_prefixes[] = { "%", NULL }; | 
|  | static const char *const stap_register_indirection_prefixes[] = { "(", | 
|  | NULL }; | 
|  | static const char *const stap_register_indirection_suffixes[] = { ")", | 
|  | NULL }; | 
|  |  | 
|  | /* AMD64 generally uses `fxsave' instead of `fsave' for saving its | 
|  | floating-point registers.  */ | 
|  | tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE; | 
|  | tdep->fpregset = &amd64_fpregset; | 
|  |  | 
|  | if (! tdesc_has_registers (tdesc)) | 
|  | tdesc = default_tdesc; | 
|  | tdep->tdesc = tdesc; | 
|  |  | 
|  | tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS; | 
|  | tdep->register_names = amd64_register_names; | 
|  |  | 
|  | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL) | 
|  | { | 
|  | tdep->zmmh_register_names = amd64_zmmh_names; | 
|  | tdep->k_register_names = amd64_k_names; | 
|  | tdep->xmm_avx512_register_names = amd64_xmm_avx512_names; | 
|  | tdep->ymm16h_register_names = amd64_ymmh_avx512_names; | 
|  |  | 
|  | tdep->num_zmm_regs = 32; | 
|  | tdep->num_xmm_avx512_regs = 16; | 
|  | tdep->num_ymm_avx512_regs = 16; | 
|  |  | 
|  | tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM; | 
|  | tdep->k0_regnum = AMD64_K0_REGNUM; | 
|  | tdep->xmm16_regnum = AMD64_XMM16_REGNUM; | 
|  | tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM; | 
|  | } | 
|  |  | 
|  | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL) | 
|  | { | 
|  | tdep->ymmh_register_names = amd64_ymmh_names; | 
|  | tdep->num_ymm_regs = 16; | 
|  | tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM; | 
|  | } | 
|  |  | 
|  | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL) | 
|  | { | 
|  | tdep->mpx_register_names = amd64_mpx_names; | 
|  | tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM; | 
|  | tdep->bnd0r_regnum = AMD64_BND0R_REGNUM; | 
|  | } | 
|  |  | 
|  | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL) | 
|  | { | 
|  | tdep->fsbase_regnum = AMD64_FSBASE_REGNUM; | 
|  | } | 
|  |  | 
|  | if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL) | 
|  | { | 
|  | tdep->pkeys_register_names = amd64_pkeys_names; | 
|  | tdep->pkru_regnum = AMD64_PKRU_REGNUM; | 
|  | tdep->num_pkeys_regs = 1; | 
|  | } | 
|  |  | 
|  | tdep->num_byte_regs = 20; | 
|  | tdep->num_word_regs = 16; | 
|  | tdep->num_dword_regs = 16; | 
|  | /* Avoid wiring in the MMX registers for now.  */ | 
|  | tdep->num_mmx_regs = 0; | 
|  |  | 
|  | set_gdbarch_pseudo_register_read_value (gdbarch, | 
|  | amd64_pseudo_register_read_value); | 
|  | set_gdbarch_pseudo_register_write (gdbarch, amd64_pseudo_register_write); | 
|  | set_gdbarch_ax_pseudo_register_collect (gdbarch, | 
|  | amd64_ax_pseudo_register_collect); | 
|  |  | 
|  | set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name); | 
|  |  | 
|  | /* AMD64 has an FPU and 16 SSE registers.  */ | 
|  | tdep->st0_regnum = AMD64_ST0_REGNUM; | 
|  | tdep->num_xmm_regs = 16; | 
|  |  | 
|  | /* This is what all the fuss is about.  */ | 
|  | set_gdbarch_long_bit (gdbarch, 64); | 
|  | set_gdbarch_long_long_bit (gdbarch, 64); | 
|  | set_gdbarch_ptr_bit (gdbarch, 64); | 
|  |  | 
|  | /* In contrast to the i386, on AMD64 a `long double' actually takes | 
|  | up 128 bits, even though it's still based on the i387 extended | 
|  | floating-point format which has only 80 significant bits.  */ | 
|  | set_gdbarch_long_double_bit (gdbarch, 128); | 
|  |  | 
|  | set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS); | 
|  |  | 
|  | /* Register numbers of various important registers.  */ | 
|  | set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */ | 
|  | set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */ | 
|  | set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */ | 
|  | set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */ | 
|  |  | 
|  | /* The "default" register numbering scheme for AMD64 is referred to | 
|  | as the "DWARF Register Number Mapping" in the System V psABI. | 
|  | The preferred debugging format for all known AMD64 targets is | 
|  | actually DWARF2, and GCC doesn't seem to support DWARF (that is | 
|  | DWARF-1), but we provide the same mapping just in case.  This | 
|  | mapping is also used for stabs, which GCC does support.  */ | 
|  | set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | 
|  | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum); | 
|  |  | 
|  | /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to | 
|  | be in use on any of the supported AMD64 targets.  */ | 
|  |  | 
|  | /* Call dummy code.  */ | 
|  | set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call); | 
|  | set_gdbarch_frame_align (gdbarch, amd64_frame_align); | 
|  | set_gdbarch_frame_red_zone_size (gdbarch, 128); | 
|  |  | 
|  | set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p); | 
|  | set_gdbarch_register_to_value (gdbarch, i387_register_to_value); | 
|  | set_gdbarch_value_to_register (gdbarch, i387_value_to_register); | 
|  |  | 
|  | set_gdbarch_return_value_as_value (gdbarch, amd64_return_value); | 
|  |  | 
|  | set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue); | 
|  |  | 
|  | tdep->record_regmap = amd64_record_regmap; | 
|  |  | 
|  | set_gdbarch_dummy_id (gdbarch, amd64_dummy_id); | 
|  |  | 
|  | /* Hook the function epilogue frame unwinder.  This unwinder is | 
|  | appended to the list first, so that it supersedes the other | 
|  | unwinders in function epilogues.  */ | 
|  | frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_override_frame_unwind); | 
|  |  | 
|  | frame_unwind_append_unwinder (gdbarch, &amd64_epilogue_frame_unwind); | 
|  |  | 
|  | /* Hook the prologue-based frame unwinders.  */ | 
|  | frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind); | 
|  | frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind); | 
|  | frame_base_set_default (gdbarch, &amd64_frame_base); | 
|  |  | 
|  | set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target); | 
|  |  | 
|  | set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction); | 
|  |  | 
|  | set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address); | 
|  |  | 
|  | set_gdbarch_stack_frame_destroyed_p (gdbarch, amd64_stack_frame_destroyed_p); | 
|  |  | 
|  | /* SystemTap variables and functions.  */ | 
|  | set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes); | 
|  | set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes); | 
|  | set_gdbarch_stap_register_indirection_prefixes (gdbarch, | 
|  | stap_register_indirection_prefixes); | 
|  | set_gdbarch_stap_register_indirection_suffixes (gdbarch, | 
|  | stap_register_indirection_suffixes); | 
|  | set_gdbarch_stap_is_single_operand (gdbarch, | 
|  | i386_stap_is_single_operand); | 
|  | set_gdbarch_stap_parse_special_token (gdbarch, | 
|  | i386_stap_parse_special_token); | 
|  | set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call); | 
|  | set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret); | 
|  | set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump); | 
|  |  | 
|  | set_gdbarch_in_indirect_branch_thunk (gdbarch, | 
|  | amd64_in_indirect_branch_thunk); | 
|  |  | 
|  | register_amd64_ravenscar_ops (gdbarch); | 
|  | } | 
|  |  | 
|  | /* Initialize ARCH for x86-64, no osabi.  */ | 
|  |  | 
|  | static void | 
|  | amd64_none_init_abi (gdbarch_info info, gdbarch *arch) | 
|  | { | 
|  | amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK, | 
|  | true)); | 
|  | } | 
|  |  | 
|  | static struct type * | 
|  | amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | switch (regnum - tdep->eax_regnum) | 
|  | { | 
|  | case AMD64_RBP_REGNUM:	/* %ebp */ | 
|  | case AMD64_RSP_REGNUM:	/* %esp */ | 
|  | return builtin_type (gdbarch)->builtin_data_ptr; | 
|  | case AMD64_RIP_REGNUM:	/* %eip */ | 
|  | return builtin_type (gdbarch)->builtin_func_ptr; | 
|  | } | 
|  |  | 
|  | return i386_pseudo_register_type (gdbarch, regnum); | 
|  | } | 
|  |  | 
|  | void | 
|  | amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch, | 
|  | const target_desc *default_tdesc) | 
|  | { | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | amd64_init_abi (info, gdbarch, default_tdesc); | 
|  |  | 
|  | tdep->num_dword_regs = 17; | 
|  | set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type); | 
|  |  | 
|  | set_gdbarch_long_bit (gdbarch, 32); | 
|  | set_gdbarch_ptr_bit (gdbarch, 32); | 
|  | } | 
|  |  | 
|  | /* Initialize ARCH for x64-32, no osabi.  */ | 
|  |  | 
|  | static void | 
|  | amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch) | 
|  | { | 
|  | amd64_x32_init_abi (info, arch, | 
|  | amd64_target_description (X86_XSTATE_SSE_MASK, true)); | 
|  | } | 
|  |  | 
|  | /* Return the target description for a specified XSAVE feature mask.  */ | 
|  |  | 
|  | const struct target_desc * | 
|  | amd64_target_description (uint64_t xcr0, bool segments) | 
|  | { | 
|  | static target_desc *amd64_tdescs \ | 
|  | [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {}; | 
|  | target_desc **tdesc; | 
|  |  | 
|  | tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_MPX) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0] | 
|  | [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0] | 
|  | [segments ? 1 : 0]; | 
|  |  | 
|  | if (*tdesc == NULL) | 
|  | *tdesc = amd64_create_target_description (xcr0, false, false, | 
|  | segments); | 
|  |  | 
|  | return *tdesc; | 
|  | } | 
|  |  | 
|  | void _initialize_amd64_tdep (); | 
|  | void | 
|  | _initialize_amd64_tdep () | 
|  | { | 
|  | gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE, | 
|  | amd64_none_init_abi); | 
|  | gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE, | 
|  | amd64_x32_none_init_abi); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* The 64-bit FXSAVE format differs from the 32-bit format in the | 
|  | sense that the instruction pointer and data pointer are simply | 
|  | 64-bit offsets into the code segment and the data segment instead | 
|  | of a selector offset pair.  The functions below store the upper 32 | 
|  | bits of these pointers (instead of just the 16-bits of the segment | 
|  | selector).  */ | 
|  |  | 
|  | /* Fill register REGNUM in REGCACHE with the appropriate | 
|  | floating-point or SSE register value from *FXSAVE.  If REGNUM is | 
|  | -1, do this for all registers.  This function masks off any of the | 
|  | reserved bits in *FXSAVE.  */ | 
|  |  | 
|  | void | 
|  | amd64_supply_fxsave (struct regcache *regcache, int regnum, | 
|  | const void *fxsave) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | i387_supply_fxsave (regcache, regnum, fxsave); | 
|  |  | 
|  | if (fxsave | 
|  | && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | 
|  | { | 
|  | const gdb_byte *regs = (const gdb_byte *) fxsave; | 
|  |  | 
|  | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
|  | regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); | 
|  | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
|  | regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Similar to amd64_supply_fxsave, but use XSAVE extended state.  */ | 
|  |  | 
|  | void | 
|  | amd64_supply_xsave (struct regcache *regcache, int regnum, | 
|  | const void *xsave) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  |  | 
|  | i387_supply_xsave (regcache, regnum, xsave); | 
|  |  | 
|  | if (xsave | 
|  | && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | 
|  | { | 
|  | const gdb_byte *regs = (const gdb_byte *) xsave; | 
|  | ULONGEST clear_bv; | 
|  |  | 
|  | clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); | 
|  |  | 
|  | /* If the FISEG and FOSEG registers have not been initialised yet | 
|  | (their CLEAR_BV bit is set) then their default values of zero will | 
|  | have already been setup by I387_SUPPLY_XSAVE.  */ | 
|  | if (!(clear_bv & X86_XSTATE_X87)) | 
|  | { | 
|  | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
|  | regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12); | 
|  | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
|  | regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Fill register REGNUM (if it is a floating-point or SSE register) in | 
|  | *FXSAVE with the value from REGCACHE.  If REGNUM is -1, do this for | 
|  | all registers.  This function doesn't touch any of the reserved | 
|  | bits in *FXSAVE.  */ | 
|  |  | 
|  | void | 
|  | amd64_collect_fxsave (const struct regcache *regcache, int regnum, | 
|  | void *fxsave) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | gdb_byte *regs = (gdb_byte *) fxsave; | 
|  |  | 
|  | i387_collect_fxsave (regcache, regnum, fxsave); | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | 
|  | { | 
|  | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
|  | regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12); | 
|  | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
|  | regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Similar to amd64_collect_fxsave, but use XSAVE extended state.  */ | 
|  |  | 
|  | void | 
|  | amd64_collect_xsave (const struct regcache *regcache, int regnum, | 
|  | void *xsave, int gcore) | 
|  | { | 
|  | struct gdbarch *gdbarch = regcache->arch (); | 
|  | i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); | 
|  | gdb_byte *regs = (gdb_byte *) xsave; | 
|  |  | 
|  | i387_collect_xsave (regcache, regnum, xsave, gcore); | 
|  |  | 
|  | if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64) | 
|  | { | 
|  | if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep)) | 
|  | regcache->raw_collect (I387_FISEG_REGNUM (tdep), | 
|  | regs + 12); | 
|  | if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep)) | 
|  | regcache->raw_collect (I387_FOSEG_REGNUM (tdep), | 
|  | regs + 20); | 
|  | } | 
|  | } |