blob: 04eef71cc00fdabba58ccd3fd58c38e9a2cd0d26 [file] [log] [blame]
/* CPU family header for m32rxf.
THIS FILE IS MACHINE GENERATED WITH CGEN.
Copyright 1996-2021 Free Software Foundation, Inc.
This file is part of the GNU simulators.
This file is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_M32RXF_H
#define CPU_M32RXF_H
/* Maximum number of instructions that are fetched at a time.
This is for LIW type instructions sets (e.g. m32r). */
#define MAX_LIW_INSNS 2
/* Maximum number of instructions that can be executed in parallel. */
#define MAX_PARALLEL_INSNS 2
/* The size of an "int" needed to hold an instruction word.
This is usually 32 bits, but some architectures needs 64 bits. */
typedef CGEN_INSN_INT CGEN_INSN_WORD;
#include "cgen-engine.h"
/* CPU state information. */
typedef struct {
/* Hardware elements. */
struct {
/* program counter */
USI h_pc;
#define GET_H_PC() CPU (h_pc)
#define SET_H_PC(x) (CPU (h_pc) = (x))
/* general registers */
SI h_gr[16];
#define GET_H_GR(a1) CPU (h_gr)[a1]
#define SET_H_GR(a1, x) (CPU (h_gr)[a1] = (x))
/* control registers */
USI h_cr[16];
#define GET_H_CR(index) m32rxf_h_cr_get_handler (current_cpu, index)
#define SET_H_CR(index, x) \
do { \
m32rxf_h_cr_set_handler (current_cpu, (index), (x));\
;} while (0)
/* accumulator */
DI h_accum;
#define GET_H_ACCUM() m32rxf_h_accum_get_handler (current_cpu)
#define SET_H_ACCUM(x) \
do { \
m32rxf_h_accum_set_handler (current_cpu, (x));\
;} while (0)
/* accumulators */
DI h_accums[2];
#define GET_H_ACCUMS(index) m32rxf_h_accums_get_handler (current_cpu, index)
#define SET_H_ACCUMS(index, x) \
do { \
m32rxf_h_accums_set_handler (current_cpu, (index), (x));\
;} while (0)
/* condition bit */
BI h_cond;
#define GET_H_COND() CPU (h_cond)
#define SET_H_COND(x) (CPU (h_cond) = (x))
/* psw part of psw */
UQI h_psw;
#define GET_H_PSW() m32rxf_h_psw_get_handler (current_cpu)
#define SET_H_PSW(x) \
do { \
m32rxf_h_psw_set_handler (current_cpu, (x));\
;} while (0)
/* backup psw */
UQI h_bpsw;
#define GET_H_BPSW() CPU (h_bpsw)
#define SET_H_BPSW(x) (CPU (h_bpsw) = (x))
/* backup bpsw */
UQI h_bbpsw;
#define GET_H_BBPSW() CPU (h_bbpsw)
#define SET_H_BBPSW(x) (CPU (h_bbpsw) = (x))
/* lock */
BI h_lock;
#define GET_H_LOCK() CPU (h_lock)
#define SET_H_LOCK(x) (CPU (h_lock) = (x))
} hardware;
#define CPU_CGEN_HW(cpu) (& (cpu)->cpu_data.hardware)
} M32RXF_CPU_DATA;
/* Cover fns for register access. */
USI m32rxf_h_pc_get (SIM_CPU *);
void m32rxf_h_pc_set (SIM_CPU *, USI);
SI m32rxf_h_gr_get (SIM_CPU *, UINT);
void m32rxf_h_gr_set (SIM_CPU *, UINT, SI);
USI m32rxf_h_cr_get (SIM_CPU *, UINT);
void m32rxf_h_cr_set (SIM_CPU *, UINT, USI);
DI m32rxf_h_accum_get (SIM_CPU *);
void m32rxf_h_accum_set (SIM_CPU *, DI);
DI m32rxf_h_accums_get (SIM_CPU *, UINT);
void m32rxf_h_accums_set (SIM_CPU *, UINT, DI);
BI m32rxf_h_cond_get (SIM_CPU *);
void m32rxf_h_cond_set (SIM_CPU *, BI);
UQI m32rxf_h_psw_get (SIM_CPU *);
void m32rxf_h_psw_set (SIM_CPU *, UQI);
UQI m32rxf_h_bpsw_get (SIM_CPU *);
void m32rxf_h_bpsw_set (SIM_CPU *, UQI);
UQI m32rxf_h_bbpsw_get (SIM_CPU *);
void m32rxf_h_bbpsw_set (SIM_CPU *, UQI);
BI m32rxf_h_lock_get (SIM_CPU *);
void m32rxf_h_lock_set (SIM_CPU *, BI);
/* These must be hand-written. */
extern CPUREG_FETCH_FN m32rxf_fetch_register;
extern CPUREG_STORE_FN m32rxf_store_register;
typedef struct {
int empty;
} MODEL_M32RX_DATA;
/* Instruction argument buffer. */
union sem_fields {
struct { /* no operands */
int empty;
} sfmt_empty;
struct { /* */
UINT f_uimm8;
} sfmt_clrpsw;
struct { /* */
UINT f_uimm4;
} sfmt_trap;
struct { /* */
IADDR i_disp24;
unsigned char out_h_gr_SI_14;
} sfmt_bl24;
struct { /* */
IADDR i_disp8;
unsigned char out_h_gr_SI_14;
} sfmt_bl8;
struct { /* */
SI f_imm1;
UINT f_accd;
UINT f_accs;
} sfmt_rac_dsi;
struct { /* */
SI* i_dr;
UINT f_hi16;
UINT f_r1;
unsigned char out_dr;
} sfmt_seth;
struct { /* */
SI* i_src1;
UINT f_accs;
UINT f_r1;
unsigned char in_src1;
} sfmt_mvtachi_a;
struct { /* */
SI* i_dr;
UINT f_accs;
UINT f_r1;
unsigned char out_dr;
} sfmt_mvfachi_a;
struct { /* */
ADDR i_uimm24;
SI* i_dr;
UINT f_r1;
unsigned char out_dr;
} sfmt_ld24;
struct { /* */
SI* i_sr;
UINT f_r2;
unsigned char in_sr;
unsigned char out_h_gr_SI_14;
} sfmt_jl;
struct { /* */
SI* i_sr;
INT f_simm16;
UINT f_r2;
UINT f_uimm3;
unsigned char in_sr;
} sfmt_bset;
struct { /* */
SI* i_dr;
UINT f_r1;
UINT f_uimm5;
unsigned char in_dr;
unsigned char out_dr;
} sfmt_slli;
struct { /* */
SI* i_dr;
INT f_simm8;
UINT f_r1;
unsigned char in_dr;
unsigned char out_dr;
} sfmt_addi;
struct { /* */
SI* i_src1;
SI* i_src2;
UINT f_r1;
UINT f_r2;
unsigned char in_src1;
unsigned char in_src2;
unsigned char out_src2;
} sfmt_st_plus;
struct { /* */
SI* i_src1;
SI* i_src2;
INT f_simm16;
UINT f_r1;
UINT f_r2;
unsigned char in_src1;
unsigned char in_src2;
} sfmt_st_d;
struct { /* */
SI* i_src1;
SI* i_src2;
UINT f_acc;
UINT f_r1;
UINT f_r2;
unsigned char in_src1;
unsigned char in_src2;
} sfmt_machi_a;
struct { /* */
SI* i_dr;
SI* i_sr;
UINT f_r1;
UINT f_r2;
unsigned char in_sr;
unsigned char out_dr;
unsigned char out_sr;
} sfmt_ld_plus;
struct { /* */
IADDR i_disp16;
SI* i_src1;
SI* i_src2;
UINT f_r1;
UINT f_r2;
unsigned char in_src1;
unsigned char in_src2;
} sfmt_beq;
struct { /* */
SI* i_dr;
SI* i_sr;
UINT f_r1;
UINT f_r2;
UINT f_uimm16;
unsigned char in_sr;
unsigned char out_dr;
} sfmt_and3;
struct { /* */
SI* i_dr;
SI* i_sr;
INT f_simm16;
UINT f_r1;
UINT f_r2;
unsigned char in_sr;
unsigned char out_dr;
} sfmt_add3;
struct { /* */
SI* i_dr;
SI* i_sr;
UINT f_r1;
UINT f_r2;
unsigned char in_dr;
unsigned char in_sr;
unsigned char out_dr;
} sfmt_add;
#if WITH_SCACHE_PBB
/* Writeback handler. */
struct {
/* Pointer to argbuf entry for insn whose results need writing back. */
const struct argbuf *abuf;
} write;
/* x-before handler */
struct {
/*const SCACHE *insns[MAX_PARALLEL_INSNS];*/
int first_p;
} before;
/* x-after handler */
struct {
int empty;
} after;
/* This entry is used to terminate each pbb. */
struct {
/* Number of insns in pbb. */
int insn_count;
/* Next pbb to execute. */
SCACHE *next;
SCACHE *branch_target;
} chain;
#endif
};
/* The ARGBUF struct. */
struct argbuf {
/* These are the baseclass definitions. */
IADDR addr;
const IDESC *idesc;
char trace_p;
char profile_p;
/* ??? Temporary hack for skip insns. */
char skip_count;
char unused;
/* cpu specific data follows */
union sem semantic;
int written;
union sem_fields fields;
};
/* A cached insn.
??? SCACHE used to contain more than just argbuf. We could delete the
type entirely and always just use ARGBUF, but for future concerns and as
a level of abstraction it is left in. */
struct scache {
struct argbuf argbuf;
};
/* Macros to simplify extraction, reading and semantic code.
These define and assign the local vars that contain the insn's fields. */
#define EXTRACT_IFMT_EMPTY_VARS \
unsigned int length;
#define EXTRACT_IFMT_EMPTY_CODE \
length = 0; \
#define EXTRACT_IFMT_ADD_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_ADD_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_ADD3_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_ADD3_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_AND3_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
UINT f_uimm16; \
unsigned int length;
#define EXTRACT_IFMT_AND3_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_uimm16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_OR3_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
UINT f_uimm16; \
unsigned int length;
#define EXTRACT_IFMT_OR3_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_uimm16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_ADDI_VARS \
UINT f_op1; \
UINT f_r1; \
INT f_simm8; \
unsigned int length;
#define EXTRACT_IFMT_ADDI_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_simm8 = EXTRACT_MSB0_SINT (insn, 16, 8, 8); \
#define EXTRACT_IFMT_ADDV3_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_ADDV3_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_BC8_VARS \
UINT f_op1; \
UINT f_r1; \
SI f_disp8; \
unsigned int length;
#define EXTRACT_IFMT_BC8_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_disp8 = ((((EXTRACT_MSB0_SINT (insn, 16, 8, 8)) << (2))) + (((pc) & (-4)))); \
#define EXTRACT_IFMT_BC24_VARS \
UINT f_op1; \
UINT f_r1; \
SI f_disp24; \
unsigned int length;
#define EXTRACT_IFMT_BC24_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_disp24 = ((((EXTRACT_MSB0_SINT (insn, 32, 8, 24)) << (2))) + (pc)); \
#define EXTRACT_IFMT_BEQ_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
SI f_disp16; \
unsigned int length;
#define EXTRACT_IFMT_BEQ_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_disp16 = ((((EXTRACT_MSB0_SINT (insn, 32, 16, 16)) << (2))) + (pc)); \
#define EXTRACT_IFMT_BEQZ_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
SI f_disp16; \
unsigned int length;
#define EXTRACT_IFMT_BEQZ_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_disp16 = ((((EXTRACT_MSB0_SINT (insn, 32, 16, 16)) << (2))) + (pc)); \
#define EXTRACT_IFMT_CMP_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_CMP_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_CMPI_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_CMPI_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_CMPZ_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_CMPZ_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_DIV_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_DIV_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_JC_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_JC_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_LD24_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_uimm24; \
unsigned int length;
#define EXTRACT_IFMT_LD24_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_uimm24 = EXTRACT_MSB0_UINT (insn, 32, 8, 24); \
#define EXTRACT_IFMT_LDI16_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_LDI16_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_MACHI_A_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_acc; \
UINT f_op23; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_MACHI_A_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_acc = EXTRACT_MSB0_UINT (insn, 16, 8, 1); \
f_op23 = EXTRACT_MSB0_UINT (insn, 16, 9, 3); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_MVFACHI_A_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_accs; \
UINT f_op3; \
unsigned int length;
#define EXTRACT_IFMT_MVFACHI_A_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_accs = EXTRACT_MSB0_UINT (insn, 16, 12, 2); \
f_op3 = EXTRACT_MSB0_UINT (insn, 16, 14, 2); \
#define EXTRACT_IFMT_MVFC_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_MVFC_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_MVTACHI_A_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_accs; \
UINT f_op3; \
unsigned int length;
#define EXTRACT_IFMT_MVTACHI_A_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_accs = EXTRACT_MSB0_UINT (insn, 16, 12, 2); \
f_op3 = EXTRACT_MSB0_UINT (insn, 16, 14, 2); \
#define EXTRACT_IFMT_MVTC_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_MVTC_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_NOP_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_NOP_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_RAC_DSI_VARS \
UINT f_op1; \
UINT f_accd; \
UINT f_bits67; \
UINT f_op2; \
UINT f_accs; \
UINT f_bit14; \
SI f_imm1; \
unsigned int length;
#define EXTRACT_IFMT_RAC_DSI_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_accd = EXTRACT_MSB0_UINT (insn, 16, 4, 2); \
f_bits67 = EXTRACT_MSB0_UINT (insn, 16, 6, 2); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_accs = EXTRACT_MSB0_UINT (insn, 16, 12, 2); \
f_bit14 = EXTRACT_MSB0_UINT (insn, 16, 14, 1); \
f_imm1 = ((EXTRACT_MSB0_UINT (insn, 16, 15, 1)) + (1)); \
#define EXTRACT_IFMT_SETH_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
UINT f_hi16; \
unsigned int length;
#define EXTRACT_IFMT_SETH_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_hi16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_SLLI_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_shift_op2; \
UINT f_uimm5; \
unsigned int length;
#define EXTRACT_IFMT_SLLI_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_shift_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 3); \
f_uimm5 = EXTRACT_MSB0_UINT (insn, 16, 11, 5); \
#define EXTRACT_IFMT_ST_D_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_ST_D_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_TRAP_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_uimm4; \
unsigned int length;
#define EXTRACT_IFMT_TRAP_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_uimm4 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
#define EXTRACT_IFMT_SATB_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_op2; \
UINT f_r2; \
UINT f_uimm16; \
unsigned int length;
#define EXTRACT_IFMT_SATB_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 32, 4, 4); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_uimm16 = EXTRACT_MSB0_UINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_CLRPSW_VARS \
UINT f_op1; \
UINT f_r1; \
UINT f_uimm8; \
unsigned int length;
#define EXTRACT_IFMT_CLRPSW_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_r1 = EXTRACT_MSB0_UINT (insn, 16, 4, 4); \
f_uimm8 = EXTRACT_MSB0_UINT (insn, 16, 8, 8); \
#define EXTRACT_IFMT_BSET_VARS \
UINT f_op1; \
UINT f_bit4; \
UINT f_uimm3; \
UINT f_op2; \
UINT f_r2; \
INT f_simm16; \
unsigned int length;
#define EXTRACT_IFMT_BSET_CODE \
length = 4; \
f_op1 = EXTRACT_MSB0_UINT (insn, 32, 0, 4); \
f_bit4 = EXTRACT_MSB0_UINT (insn, 32, 4, 1); \
f_uimm3 = EXTRACT_MSB0_UINT (insn, 32, 5, 3); \
f_op2 = EXTRACT_MSB0_UINT (insn, 32, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 32, 12, 4); \
f_simm16 = EXTRACT_MSB0_SINT (insn, 32, 16, 16); \
#define EXTRACT_IFMT_BTST_VARS \
UINT f_op1; \
UINT f_bit4; \
UINT f_uimm3; \
UINT f_op2; \
UINT f_r2; \
unsigned int length;
#define EXTRACT_IFMT_BTST_CODE \
length = 2; \
f_op1 = EXTRACT_MSB0_UINT (insn, 16, 0, 4); \
f_bit4 = EXTRACT_MSB0_UINT (insn, 16, 4, 1); \
f_uimm3 = EXTRACT_MSB0_UINT (insn, 16, 5, 3); \
f_op2 = EXTRACT_MSB0_UINT (insn, 16, 8, 4); \
f_r2 = EXTRACT_MSB0_UINT (insn, 16, 12, 4); \
/* Queued output values of an instruction. */
struct parexec {
union {
struct { /* empty sformat for unspecified field list */
int empty;
} sfmt_empty;
struct { /* e.g. add $dr,$sr */
SI dr;
} sfmt_add;
struct { /* e.g. add3 $dr,$sr,$hash$slo16 */
SI dr;
} sfmt_add3;
struct { /* e.g. and3 $dr,$sr,$uimm16 */
SI dr;
} sfmt_and3;
struct { /* e.g. or3 $dr,$sr,$hash$ulo16 */
SI dr;
} sfmt_or3;
struct { /* e.g. addi $dr,$simm8 */
SI dr;
} sfmt_addi;
struct { /* e.g. addv $dr,$sr */
BI condbit;
SI dr;
} sfmt_addv;
struct { /* e.g. addv3 $dr,$sr,$simm16 */
BI condbit;
SI dr;
} sfmt_addv3;
struct { /* e.g. addx $dr,$sr */
BI condbit;
SI dr;
} sfmt_addx;
struct { /* e.g. bc.s $disp8 */
USI pc;
} sfmt_bc8;
struct { /* e.g. bc.l $disp24 */
USI pc;
} sfmt_bc24;
struct { /* e.g. beq $src1,$src2,$disp16 */
USI pc;
} sfmt_beq;
struct { /* e.g. beqz $src2,$disp16 */
USI pc;
} sfmt_beqz;
struct { /* e.g. bl.s $disp8 */
SI h_gr_SI_14;
USI pc;
} sfmt_bl8;
struct { /* e.g. bl.l $disp24 */
SI h_gr_SI_14;
USI pc;
} sfmt_bl24;
struct { /* e.g. bcl.s $disp8 */
SI h_gr_SI_14;
USI pc;
} sfmt_bcl8;
struct { /* e.g. bcl.l $disp24 */
SI h_gr_SI_14;
USI pc;
} sfmt_bcl24;
struct { /* e.g. bra.s $disp8 */
USI pc;
} sfmt_bra8;
struct { /* e.g. bra.l $disp24 */
USI pc;
} sfmt_bra24;
struct { /* e.g. cmp $src1,$src2 */
BI condbit;
} sfmt_cmp;
struct { /* e.g. cmpi $src2,$simm16 */
BI condbit;
} sfmt_cmpi;
struct { /* e.g. cmpz $src2 */
BI condbit;
} sfmt_cmpz;
struct { /* e.g. div $dr,$sr */
SI dr;
} sfmt_div;
struct { /* e.g. jc $sr */
USI pc;
} sfmt_jc;
struct { /* e.g. jl $sr */
SI h_gr_SI_14;
USI pc;
} sfmt_jl;
struct { /* e.g. jmp $sr */
USI pc;
} sfmt_jmp;
struct { /* e.g. ld $dr,@$sr */
SI dr;
} sfmt_ld;
struct { /* e.g. ld $dr,@($slo16,$sr) */
SI dr;
} sfmt_ld_d;
struct { /* e.g. ldb $dr,@$sr */
SI dr;
} sfmt_ldb;
struct { /* e.g. ldb $dr,@($slo16,$sr) */
SI dr;
} sfmt_ldb_d;
struct { /* e.g. ldh $dr,@$sr */
SI dr;
} sfmt_ldh;
struct { /* e.g. ldh $dr,@($slo16,$sr) */
SI dr;
} sfmt_ldh_d;
struct { /* e.g. ld $dr,@$sr+ */
SI dr;
SI sr;
} sfmt_ld_plus;
struct { /* e.g. ld24 $dr,$uimm24 */
SI dr;
} sfmt_ld24;
struct { /* e.g. ldi8 $dr,$simm8 */
SI dr;
} sfmt_ldi8;
struct { /* e.g. ldi16 $dr,$hash$slo16 */
SI dr;
} sfmt_ldi16;
struct { /* e.g. lock $dr,@$sr */
SI dr;
BI h_lock_BI;
} sfmt_lock;
struct { /* e.g. machi $src1,$src2,$acc */
DI acc;
} sfmt_machi_a;
struct { /* e.g. mulhi $src1,$src2,$acc */
DI acc;
} sfmt_mulhi_a;
struct { /* e.g. mv $dr,$sr */
SI dr;
} sfmt_mv;
struct { /* e.g. mvfachi $dr,$accs */
SI dr;
} sfmt_mvfachi_a;
struct { /* e.g. mvfc $dr,$scr */
SI dr;
} sfmt_mvfc;
struct { /* e.g. mvtachi $src1,$accs */
DI accs;
} sfmt_mvtachi_a;
struct { /* e.g. mvtc $sr,$dcr */
USI dcr;
} sfmt_mvtc;
struct { /* e.g. nop */
int empty;
} sfmt_nop;
struct { /* e.g. rac $accd,$accs,$imm1 */
DI accd;
} sfmt_rac_dsi;
struct { /* e.g. rte */
UQI h_bpsw_UQI;
USI h_cr_USI_6;
UQI h_psw_UQI;
USI pc;
} sfmt_rte;
struct { /* e.g. seth $dr,$hash$hi16 */
SI dr;
} sfmt_seth;
struct { /* e.g. sll3 $dr,$sr,$simm16 */
SI dr;
} sfmt_sll3;
struct { /* e.g. slli $dr,$uimm5 */
SI dr;
} sfmt_slli;
struct { /* e.g. st $src1,@$src2 */
SI h_memory_SI_src2;
USI h_memory_SI_src2_idx;
} sfmt_st;
struct { /* e.g. st $src1,@($slo16,$src2) */
SI h_memory_SI_add__SI_src2_slo16;
USI h_memory_SI_add__SI_src2_slo16_idx;
} sfmt_st_d;
struct { /* e.g. stb $src1,@$src2 */
QI h_memory_QI_src2;
USI h_memory_QI_src2_idx;
} sfmt_stb;
struct { /* e.g. stb $src1,@($slo16,$src2) */
QI h_memory_QI_add__SI_src2_slo16;
USI h_memory_QI_add__SI_src2_slo16_idx;
} sfmt_stb_d;
struct { /* e.g. sth $src1,@$src2 */
HI h_memory_HI_src2;
USI h_memory_HI_src2_idx;
} sfmt_sth;
struct { /* e.g. sth $src1,@($slo16,$src2) */
HI h_memory_HI_add__SI_src2_slo16;
USI h_memory_HI_add__SI_src2_slo16_idx;
} sfmt_sth_d;
struct { /* e.g. st $src1,@+$src2 */
SI h_memory_SI_new_src2;
USI h_memory_SI_new_src2_idx;
SI src2;
} sfmt_st_plus;
struct { /* e.g. sth $src1,@$src2+ */
HI h_memory_HI_new_src2;
USI h_memory_HI_new_src2_idx;
SI src2;
} sfmt_sth_plus;
struct { /* e.g. stb $src1,@$src2+ */
QI h_memory_QI_new_src2;
USI h_memory_QI_new_src2_idx;
SI src2;
} sfmt_stb_plus;
struct { /* e.g. trap $uimm4 */
UQI h_bbpsw_UQI;
UQI h_bpsw_UQI;
USI h_cr_USI_14;
USI h_cr_USI_6;
UQI h_psw_UQI;
USI pc;
} sfmt_trap;
struct { /* e.g. unlock $src1,@$src2 */
BI h_lock_BI;
SI h_memory_SI_src2;
USI h_memory_SI_src2_idx;
} sfmt_unlock;
struct { /* e.g. satb $dr,$sr */
SI dr;
} sfmt_satb;
struct { /* e.g. sat $dr,$sr */
SI dr;
} sfmt_sat;
struct { /* e.g. sadd */
DI h_accums_DI_0;
} sfmt_sadd;
struct { /* e.g. macwu1 $src1,$src2 */
DI h_accums_DI_1;
} sfmt_macwu1;
struct { /* e.g. msblo $src1,$src2 */
DI accum;
} sfmt_msblo;
struct { /* e.g. mulwu1 $src1,$src2 */
DI h_accums_DI_1;
} sfmt_mulwu1;
struct { /* e.g. sc */
int empty;
} sfmt_sc;
struct { /* e.g. clrpsw $uimm8 */
USI h_cr_USI_0;
} sfmt_clrpsw;
struct { /* e.g. setpsw $uimm8 */
USI h_cr_USI_0;
} sfmt_setpsw;
struct { /* e.g. bset $uimm3,@($slo16,$sr) */
QI h_memory_QI_add__SI_sr_slo16;
USI h_memory_QI_add__SI_sr_slo16_idx;
} sfmt_bset;
struct { /* e.g. btst $uimm3,$sr */
BI condbit;
} sfmt_btst;
} operands;
/* For conditionally written operands, bitmask of which ones were. */
int written;
};
/* Collection of various things for the trace handler to use. */
typedef struct trace_record {
IADDR pc;
/* FIXME:wip */
} TRACE_RECORD;
#endif /* CPU_M32RXF_H */