| // layout.cc -- lay out output file sections for gold |
| |
| // Copyright (C) 2006-2024 Free Software Foundation, Inc. |
| // Written by Ian Lance Taylor <iant@google.com>. |
| |
| // This file is part of gold. |
| |
| // This program is free software; you can redistribute it and/or modify |
| // it under the terms of the GNU General Public License as published by |
| // the Free Software Foundation; either version 3 of the License, or |
| // (at your option) any later version. |
| |
| // This program is distributed in the hope that it will be useful, |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| // GNU General Public License for more details. |
| |
| // You should have received a copy of the GNU General Public License |
| // along with this program; if not, write to the Free Software |
| // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, |
| // MA 02110-1301, USA. |
| |
| #include "gold.h" |
| |
| #include <cerrno> |
| #include <cstring> |
| #include <algorithm> |
| #include <iostream> |
| #include <fstream> |
| #include <utility> |
| #include <fcntl.h> |
| #include <fnmatch.h> |
| #include <unistd.h> |
| #include "libiberty.h" |
| #include "md5.h" |
| #include "sha1.h" |
| #ifdef __MINGW32__ |
| #include <windows.h> |
| #include <rpcdce.h> |
| #endif |
| #ifdef HAVE_JANSSON |
| #include <jansson.h> |
| #endif |
| |
| #include "parameters.h" |
| #include "options.h" |
| #include "mapfile.h" |
| #include "script.h" |
| #include "script-sections.h" |
| #include "output.h" |
| #include "symtab.h" |
| #include "dynobj.h" |
| #include "ehframe.h" |
| #include "gdb-index.h" |
| #include "compressed_output.h" |
| #include "reduced_debug_output.h" |
| #include "object.h" |
| #include "reloc.h" |
| #include "descriptors.h" |
| #include "plugin.h" |
| #include "incremental.h" |
| #include "layout.h" |
| |
| namespace gold |
| { |
| |
| // Class Free_list. |
| |
| // The total number of free lists used. |
| unsigned int Free_list::num_lists = 0; |
| // The total number of free list nodes used. |
| unsigned int Free_list::num_nodes = 0; |
| // The total number of calls to Free_list::remove. |
| unsigned int Free_list::num_removes = 0; |
| // The total number of nodes visited during calls to Free_list::remove. |
| unsigned int Free_list::num_remove_visits = 0; |
| // The total number of calls to Free_list::allocate. |
| unsigned int Free_list::num_allocates = 0; |
| // The total number of nodes visited during calls to Free_list::allocate. |
| unsigned int Free_list::num_allocate_visits = 0; |
| |
| // Initialize the free list. Creates a single free list node that |
| // describes the entire region of length LEN. If EXTEND is true, |
| // allocate() is allowed to extend the region beyond its initial |
| // length. |
| |
| void |
| Free_list::init(off_t len, bool extend) |
| { |
| this->list_.push_front(Free_list_node(0, len)); |
| this->last_remove_ = this->list_.begin(); |
| this->extend_ = extend; |
| this->length_ = len; |
| ++Free_list::num_lists; |
| ++Free_list::num_nodes; |
| } |
| |
| // Remove a chunk from the free list. Because we start with a single |
| // node that covers the entire section, and remove chunks from it one |
| // at a time, we do not need to coalesce chunks or handle cases that |
| // span more than one free node. We expect to remove chunks from the |
| // free list in order, and we expect to have only a few chunks of free |
| // space left (corresponding to files that have changed since the last |
| // incremental link), so a simple linear list should provide sufficient |
| // performance. |
| |
| void |
| Free_list::remove(off_t start, off_t end) |
| { |
| if (start == end) |
| return; |
| gold_assert(start < end); |
| |
| ++Free_list::num_removes; |
| |
| Iterator p = this->last_remove_; |
| if (p->start_ > start) |
| p = this->list_.begin(); |
| |
| for (; p != this->list_.end(); ++p) |
| { |
| ++Free_list::num_remove_visits; |
| // Find a node that wholly contains the indicated region. |
| if (p->start_ <= start && p->end_ >= end) |
| { |
| // Case 1: the indicated region spans the whole node. |
| // Add some fuzz to avoid creating tiny free chunks. |
| if (p->start_ + 3 >= start && p->end_ <= end + 3) |
| p = this->list_.erase(p); |
| // Case 2: remove a chunk from the start of the node. |
| else if (p->start_ + 3 >= start) |
| p->start_ = end; |
| // Case 3: remove a chunk from the end of the node. |
| else if (p->end_ <= end + 3) |
| p->end_ = start; |
| // Case 4: remove a chunk from the middle, and split |
| // the node into two. |
| else |
| { |
| Free_list_node newnode(p->start_, start); |
| p->start_ = end; |
| this->list_.insert(p, newnode); |
| ++Free_list::num_nodes; |
| } |
| this->last_remove_ = p; |
| return; |
| } |
| } |
| |
| // Did not find a node containing the given chunk. This could happen |
| // because a small chunk was already removed due to the fuzz. |
| gold_debug(DEBUG_INCREMENTAL, |
| "Free_list::remove(%d,%d) not found", |
| static_cast<int>(start), static_cast<int>(end)); |
| } |
| |
| // Allocate a chunk of size LEN from the free list. Returns -1ULL |
| // if a sufficiently large chunk of free space is not found. |
| // We use a simple first-fit algorithm. |
| |
| off_t |
| Free_list::allocate(off_t len, uint64_t align, off_t minoff) |
| { |
| gold_debug(DEBUG_INCREMENTAL, |
| "Free_list::allocate(%08lx, %d, %08lx)", |
| static_cast<long>(len), static_cast<int>(align), |
| static_cast<long>(minoff)); |
| if (len == 0) |
| return align_address(minoff, align); |
| |
| ++Free_list::num_allocates; |
| |
| // We usually want to drop free chunks smaller than 4 bytes. |
| // If we need to guarantee a minimum hole size, though, we need |
| // to keep track of all free chunks. |
| const int fuzz = this->min_hole_ > 0 ? 0 : 3; |
| |
| for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) |
| { |
| ++Free_list::num_allocate_visits; |
| off_t start = p->start_ > minoff ? p->start_ : minoff; |
| start = align_address(start, align); |
| off_t end = start + len; |
| if (end > p->end_ && p->end_ == this->length_ && this->extend_) |
| { |
| this->length_ = end; |
| p->end_ = end; |
| } |
| if (end == p->end_ || (end <= p->end_ - this->min_hole_)) |
| { |
| if (p->start_ + fuzz >= start && p->end_ <= end + fuzz) |
| this->list_.erase(p); |
| else if (p->start_ + fuzz >= start) |
| p->start_ = end; |
| else if (p->end_ <= end + fuzz) |
| p->end_ = start; |
| else |
| { |
| Free_list_node newnode(p->start_, start); |
| p->start_ = end; |
| this->list_.insert(p, newnode); |
| ++Free_list::num_nodes; |
| } |
| return start; |
| } |
| } |
| if (this->extend_) |
| { |
| off_t start = align_address(this->length_, align); |
| this->length_ = start + len; |
| return start; |
| } |
| return -1; |
| } |
| |
| // Dump the free list (for debugging). |
| void |
| Free_list::dump() |
| { |
| gold_info("Free list:\n start end length\n"); |
| for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p) |
| gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_), |
| static_cast<long>(p->end_), |
| static_cast<long>(p->end_ - p->start_)); |
| } |
| |
| // Print the statistics for the free lists. |
| void |
| Free_list::print_stats() |
| { |
| fprintf(stderr, _("%s: total free lists: %u\n"), |
| program_name, Free_list::num_lists); |
| fprintf(stderr, _("%s: total free list nodes: %u\n"), |
| program_name, Free_list::num_nodes); |
| fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"), |
| program_name, Free_list::num_removes); |
| fprintf(stderr, _("%s: nodes visited: %u\n"), |
| program_name, Free_list::num_remove_visits); |
| fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"), |
| program_name, Free_list::num_allocates); |
| fprintf(stderr, _("%s: nodes visited: %u\n"), |
| program_name, Free_list::num_allocate_visits); |
| } |
| |
| // A Hash_task computes the MD5 checksum of an array of char. |
| |
| class Hash_task : public Task |
| { |
| public: |
| Hash_task(Output_file* of, |
| size_t offset, |
| size_t size, |
| unsigned char* dst, |
| Task_token* final_blocker) |
| : of_(of), offset_(offset), size_(size), dst_(dst), |
| final_blocker_(final_blocker) |
| { } |
| |
| void |
| run(Workqueue*) |
| { |
| const unsigned char* iv = |
| this->of_->get_input_view(this->offset_, this->size_); |
| md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_); |
| this->of_->free_input_view(this->offset_, this->size_, iv); |
| } |
| |
| Task_token* |
| is_runnable() |
| { return NULL; } |
| |
| // Unblock FINAL_BLOCKER_ when done. |
| void |
| locks(Task_locker* tl) |
| { tl->add(this, this->final_blocker_); } |
| |
| std::string |
| get_name() const |
| { return "Hash_task"; } |
| |
| private: |
| Output_file* of_; |
| const size_t offset_; |
| const size_t size_; |
| unsigned char* const dst_; |
| Task_token* const final_blocker_; |
| }; |
| |
| // Layout::Relaxation_debug_check methods. |
| |
| // Check that sections and special data are in reset states. |
| // We do not save states for Output_sections and special Output_data. |
| // So we check that they have not assigned any addresses or offsets. |
| // clean_up_after_relaxation simply resets their addresses and offsets. |
| void |
| Layout::Relaxation_debug_check::check_output_data_for_reset_values( |
| const Layout::Section_list& sections, |
| const Layout::Data_list& special_outputs, |
| const Layout::Data_list& relax_outputs) |
| { |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p) |
| gold_assert((*p)->address_and_file_offset_have_reset_values()); |
| |
| for(Layout::Data_list::const_iterator p = special_outputs.begin(); |
| p != special_outputs.end(); |
| ++p) |
| gold_assert((*p)->address_and_file_offset_have_reset_values()); |
| |
| gold_assert(relax_outputs.empty()); |
| } |
| |
| // Save information of SECTIONS for checking later. |
| |
| void |
| Layout::Relaxation_debug_check::read_sections( |
| const Layout::Section_list& sections) |
| { |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p) |
| { |
| Output_section* os = *p; |
| Section_info info; |
| info.output_section = os; |
| info.address = os->is_address_valid() ? os->address() : 0; |
| info.data_size = os->is_data_size_valid() ? os->data_size() : -1; |
| info.offset = os->is_offset_valid()? os->offset() : -1 ; |
| this->section_infos_.push_back(info); |
| } |
| } |
| |
| // Verify SECTIONS using previously recorded information. |
| |
| void |
| Layout::Relaxation_debug_check::verify_sections( |
| const Layout::Section_list& sections) |
| { |
| size_t i = 0; |
| for(Layout::Section_list::const_iterator p = sections.begin(); |
| p != sections.end(); |
| ++p, ++i) |
| { |
| Output_section* os = *p; |
| uint64_t address = os->is_address_valid() ? os->address() : 0; |
| off_t data_size = os->is_data_size_valid() ? os->data_size() : -1; |
| off_t offset = os->is_offset_valid()? os->offset() : -1 ; |
| |
| if (i >= this->section_infos_.size()) |
| { |
| gold_fatal("Section_info of %s missing.\n", os->name()); |
| } |
| const Section_info& info = this->section_infos_[i]; |
| if (os != info.output_section) |
| gold_fatal("Section order changed. Expecting %s but see %s\n", |
| info.output_section->name(), os->name()); |
| if (address != info.address |
| || data_size != info.data_size |
| || offset != info.offset) |
| gold_fatal("Section %s changed.\n", os->name()); |
| } |
| } |
| |
| // Layout_task_runner methods. |
| |
| // Lay out the sections. This is called after all the input objects |
| // have been read. |
| |
| void |
| Layout_task_runner::run(Workqueue* workqueue, const Task* task) |
| { |
| // See if any of the input definitions violate the One Definition Rule. |
| // TODO: if this is too slow, do this as a task, rather than inline. |
| this->symtab_->detect_odr_violations(task, this->options_.output_file_name()); |
| |
| Layout* layout = this->layout_; |
| off_t file_size = layout->finalize(this->input_objects_, |
| this->symtab_, |
| this->target_, |
| task); |
| |
| // Now we know the final size of the output file and we know where |
| // each piece of information goes. |
| |
| if (this->mapfile_ != NULL) |
| { |
| this->mapfile_->print_discarded_sections(this->input_objects_); |
| layout->print_to_mapfile(this->mapfile_); |
| } |
| |
| Output_file* of; |
| if (layout->incremental_base() == NULL) |
| { |
| of = new Output_file(parameters->options().output_file_name()); |
| if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF) |
| of->set_is_temporary(); |
| of->open(file_size); |
| } |
| else |
| { |
| of = layout->incremental_base()->output_file(); |
| |
| // Apply the incremental relocations for symbols whose values |
| // have changed. We do this before we resize the file and start |
| // writing anything else to it, so that we can read the old |
| // incremental information from the file before (possibly) |
| // overwriting it. |
| if (parameters->incremental_update()) |
| layout->incremental_base()->apply_incremental_relocs(this->symtab_, |
| this->layout_, |
| of); |
| |
| of->resize(file_size); |
| } |
| |
| // Queue up the final set of tasks. |
| gold::queue_final_tasks(this->options_, this->input_objects_, |
| this->symtab_, layout, workqueue, of); |
| } |
| |
| // Layout methods. |
| |
| Layout::Layout(int number_of_input_files, Script_options* script_options) |
| : number_of_input_files_(number_of_input_files), |
| script_options_(script_options), |
| namepool_(), |
| sympool_(), |
| dynpool_(), |
| signatures_(), |
| section_name_map_(), |
| segment_list_(), |
| section_list_(), |
| unattached_section_list_(), |
| special_output_list_(), |
| relax_output_list_(), |
| section_headers_(NULL), |
| tls_segment_(NULL), |
| relro_segment_(NULL), |
| interp_segment_(NULL), |
| increase_relro_(0), |
| symtab_section_(NULL), |
| symtab_xindex_(NULL), |
| dynsym_section_(NULL), |
| dynsym_xindex_(NULL), |
| dynamic_section_(NULL), |
| dynamic_symbol_(NULL), |
| dynamic_data_(NULL), |
| eh_frame_section_(NULL), |
| eh_frame_data_(NULL), |
| added_eh_frame_data_(false), |
| eh_frame_hdr_section_(NULL), |
| gdb_index_data_(NULL), |
| build_id_note_(NULL), |
| debug_abbrev_(NULL), |
| debug_info_(NULL), |
| group_signatures_(), |
| output_file_size_(-1), |
| have_added_input_section_(false), |
| sections_are_attached_(false), |
| input_requires_executable_stack_(false), |
| input_with_gnu_stack_note_(false), |
| input_without_gnu_stack_note_(false), |
| has_static_tls_(false), |
| any_postprocessing_sections_(false), |
| resized_signatures_(false), |
| have_stabstr_section_(false), |
| section_ordering_specified_(false), |
| unique_segment_for_sections_specified_(false), |
| incremental_inputs_(NULL), |
| record_output_section_data_from_script_(false), |
| lto_slim_object_(false), |
| script_output_section_data_list_(), |
| segment_states_(NULL), |
| relaxation_debug_check_(NULL), |
| section_order_map_(), |
| section_segment_map_(), |
| input_section_position_(), |
| input_section_glob_(), |
| incremental_base_(NULL), |
| free_list_(), |
| gnu_properties_() |
| { |
| // Make space for more than enough segments for a typical file. |
| // This is just for efficiency--it's OK if we wind up needing more. |
| this->segment_list_.reserve(12); |
| |
| // We expect two unattached Output_data objects: the file header and |
| // the segment headers. |
| this->special_output_list_.reserve(2); |
| |
| // Initialize structure needed for an incremental build. |
| if (parameters->incremental()) |
| this->incremental_inputs_ = new Incremental_inputs; |
| |
| // The section name pool is worth optimizing in all cases, because |
| // it is small, but there are often overlaps due to .rel sections. |
| this->namepool_.set_optimize(); |
| } |
| |
| // For incremental links, record the base file to be modified. |
| |
| void |
| Layout::set_incremental_base(Incremental_binary* base) |
| { |
| this->incremental_base_ = base; |
| this->free_list_.init(base->output_file()->filesize(), true); |
| } |
| |
| // Hash a key we use to look up an output section mapping. |
| |
| size_t |
| Layout::Hash_key::operator()(const Layout::Key& k) const |
| { |
| return k.first + k.second.first + k.second.second; |
| } |
| |
| // These are the debug sections that are actually used by gdb. |
| // Currently, we've checked versions of gdb up to and including 7.4. |
| // We only check the part of the name that follows ".debug_" or |
| // ".zdebug_". |
| |
| static const char* gdb_sections[] = |
| { |
| "abbrev", |
| "addr", // Fission extension |
| // "aranges", // not used by gdb as of 7.4 |
| "frame", |
| "gdb_scripts", |
| "info", |
| "types", |
| "line", |
| "loc", |
| "macinfo", |
| "macro", |
| // "pubnames", // not used by gdb as of 7.4 |
| // "pubtypes", // not used by gdb as of 7.4 |
| // "gnu_pubnames", // Fission extension |
| // "gnu_pubtypes", // Fission extension |
| "ranges", |
| "str", |
| "str_offsets", |
| }; |
| |
| // This is the minimum set of sections needed for line numbers. |
| |
| static const char* lines_only_debug_sections[] = |
| { |
| "abbrev", |
| // "addr", // Fission extension |
| // "aranges", // not used by gdb as of 7.4 |
| // "frame", |
| // "gdb_scripts", |
| "info", |
| // "types", |
| "line", |
| // "loc", |
| // "macinfo", |
| // "macro", |
| // "pubnames", // not used by gdb as of 7.4 |
| // "pubtypes", // not used by gdb as of 7.4 |
| // "gnu_pubnames", // Fission extension |
| // "gnu_pubtypes", // Fission extension |
| // "ranges", |
| "str", |
| "str_offsets", // Fission extension |
| }; |
| |
| // These sections are the DWARF fast-lookup tables, and are not needed |
| // when building a .gdb_index section. |
| |
| static const char* gdb_fast_lookup_sections[] = |
| { |
| "aranges", |
| "pubnames", |
| "gnu_pubnames", |
| "pubtypes", |
| "gnu_pubtypes", |
| }; |
| |
| // Returns whether the given debug section is in the list of |
| // debug-sections-used-by-some-version-of-gdb. SUFFIX is the |
| // portion of the name following ".debug_" or ".zdebug_". |
| |
| static inline bool |
| is_gdb_debug_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i) |
| if (strcmp(suffix, gdb_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Returns whether the given section is needed for lines-only debugging. |
| |
| static inline bool |
| is_lines_only_debug_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; |
| i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections); |
| ++i) |
| if (strcmp(suffix, lines_only_debug_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Returns whether the given section is a fast-lookup section that |
| // will not be needed when building a .gdb_index section. |
| |
| static inline bool |
| is_gdb_fast_lookup_section(const char* suffix) |
| { |
| // We can do this faster: binary search or a hashtable. But why bother? |
| for (size_t i = 0; |
| i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections); |
| ++i) |
| if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0) |
| return true; |
| return false; |
| } |
| |
| // Sometimes we compress sections. This is typically done for |
| // sections that are not part of normal program execution (such as |
| // .debug_* sections), and where the readers of these sections know |
| // how to deal with compressed sections. This routine doesn't say for |
| // certain whether we'll compress -- it depends on commandline options |
| // as well -- just whether this section is a candidate for compression. |
| // (The Output_compressed_section class decides whether to compress |
| // a given section, and picks the name of the compressed section.) |
| |
| static bool |
| is_compressible_debug_section(const char* secname) |
| { |
| return (is_prefix_of(".debug", secname)); |
| } |
| |
| // We may see compressed debug sections in input files. Return TRUE |
| // if this is the name of a compressed debug section. |
| |
| bool |
| is_compressed_debug_section(const char* secname) |
| { |
| return (is_prefix_of(".zdebug", secname)); |
| } |
| |
| std::string |
| corresponding_uncompressed_section_name(std::string secname) |
| { |
| gold_assert(secname[0] == '.' && secname[1] == 'z'); |
| std::string ret("."); |
| ret.append(secname, 2, std::string::npos); |
| return ret; |
| } |
| |
| // Whether to include this section in the link. |
| |
| template<int size, bool big_endian> |
| bool |
| Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name, |
| const elfcpp::Shdr<size, big_endian>& shdr) |
| { |
| if (!parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)) |
| return false; |
| |
| elfcpp::Elf_Word sh_type = shdr.get_sh_type(); |
| |
| if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS) |
| || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC)) |
| return parameters->target().should_include_section(sh_type); |
| |
| switch (sh_type) |
| { |
| case elfcpp::SHT_NULL: |
| case elfcpp::SHT_SYMTAB: |
| case elfcpp::SHT_DYNSYM: |
| case elfcpp::SHT_HASH: |
| case elfcpp::SHT_DYNAMIC: |
| case elfcpp::SHT_SYMTAB_SHNDX: |
| return false; |
| |
| case elfcpp::SHT_STRTAB: |
| // Discard the sections which have special meanings in the ELF |
| // ABI. Keep others (e.g., .stabstr). We could also do this by |
| // checking the sh_link fields of the appropriate sections. |
| return (strcmp(name, ".dynstr") != 0 |
| && strcmp(name, ".strtab") != 0 |
| && strcmp(name, ".shstrtab") != 0); |
| |
| case elfcpp::SHT_RELA: |
| case elfcpp::SHT_REL: |
| case elfcpp::SHT_GROUP: |
| // If we are emitting relocations these should be handled |
| // elsewhere. |
| gold_assert(!parameters->options().relocatable()); |
| return false; |
| |
| case elfcpp::SHT_PROGBITS: |
| if (parameters->options().strip_debug() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| if (is_debug_info_section(name)) |
| return false; |
| } |
| if (parameters->options().strip_debug_non_line() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Debugging sections can only be recognized by name. |
| if (is_prefix_of(".debug_", name) |
| && !is_lines_only_debug_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && !is_lines_only_debug_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().strip_debug_gdb() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Debugging sections can only be recognized by name. |
| if (is_prefix_of(".debug_", name) |
| && !is_gdb_debug_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && !is_gdb_debug_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().gdb_index() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // When building .gdb_index, we can strip .debug_pubnames, |
| // .debug_pubtypes, and .debug_aranges sections. |
| if (is_prefix_of(".debug_", name) |
| && is_gdb_fast_lookup_section(name + 7)) |
| return false; |
| if (is_prefix_of(".zdebug_", name) |
| && is_gdb_fast_lookup_section(name + 8)) |
| return false; |
| } |
| if (parameters->options().strip_lto_sections() |
| && !parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0) |
| { |
| // Ignore LTO sections containing intermediate code. |
| if (is_prefix_of(".gnu.lto_", name)) |
| return false; |
| } |
| // The GNU linker strips .gnu_debuglink sections, so we do too. |
| // This is a feature used to keep debugging information in |
| // separate files. |
| if (strcmp(name, ".gnu_debuglink") == 0) |
| return false; |
| return true; |
| |
| default: |
| return true; |
| } |
| } |
| |
| // Return an output section named NAME, or NULL if there is none. |
| |
| Output_section* |
| Layout::find_output_section(const char* name) const |
| { |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| if (strcmp((*p)->name(), name) == 0) |
| return *p; |
| return NULL; |
| } |
| |
| // Return an output segment of type TYPE, with segment flags SET set |
| // and segment flags CLEAR clear. Return NULL if there is none. |
| |
| Output_segment* |
| Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set, |
| elfcpp::Elf_Word clear) const |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| if (static_cast<elfcpp::PT>((*p)->type()) == type |
| && ((*p)->flags() & set) == set |
| && ((*p)->flags() & clear) == 0) |
| return *p; |
| return NULL; |
| } |
| |
| // When we put a .ctors or .dtors section with more than one word into |
| // a .init_array or .fini_array section, we need to reverse the words |
| // in the .ctors/.dtors section. This is because .init_array executes |
| // constructors front to back, where .ctors executes them back to |
| // front, and vice-versa for .fini_array/.dtors. Although we do want |
| // to remap .ctors/.dtors into .init_array/.fini_array because it can |
| // be more efficient, we don't want to change the order in which |
| // constructors/destructors are run. This set just keeps track of |
| // these sections which need to be reversed. It is only changed by |
| // Layout::layout. It should be a private member of Layout, but that |
| // would require layout.h to #include object.h to get the definition |
| // of Section_id. |
| static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array; |
| |
| // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a |
| // .init_array/.fini_array section. |
| |
| bool |
| Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const |
| { |
| return (ctors_sections_in_init_array.find(Section_id(relobj, shndx)) |
| != ctors_sections_in_init_array.end()); |
| } |
| |
| // Return the output section to use for section NAME with type TYPE |
| // and section flags FLAGS. NAME must be canonicalized in the string |
| // pool, and NAME_KEY is the key. ORDER is where this should appear |
| // in the output sections. IS_RELRO is true for a relro section. |
| |
| Output_section* |
| Layout::get_output_section(const char* name, Stringpool::Key name_key, |
| elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, |
| Output_section_order order, bool is_relro) |
| { |
| elfcpp::Elf_Word lookup_type = type; |
| |
| // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and |
| // PREINIT_ARRAY like PROGBITS. This ensures that we combine |
| // .init_array, .fini_array, and .preinit_array sections by name |
| // whatever their type in the input file. We do this because the |
| // types are not always right in the input files. |
| if (lookup_type == elfcpp::SHT_INIT_ARRAY |
| || lookup_type == elfcpp::SHT_FINI_ARRAY |
| || lookup_type == elfcpp::SHT_PREINIT_ARRAY) |
| lookup_type = elfcpp::SHT_PROGBITS; |
| |
| elfcpp::Elf_Xword lookup_flags = flags; |
| |
| // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine |
| // read-write with read-only sections. Some other ELF linkers do |
| // not do this. FIXME: Perhaps there should be an option |
| // controlling this. |
| lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| |
| const Key key(name_key, std::make_pair(lookup_type, lookup_flags)); |
| const std::pair<Key, Output_section*> v(key, NULL); |
| std::pair<Section_name_map::iterator, bool> ins( |
| this->section_name_map_.insert(v)); |
| |
| if (!ins.second) |
| return ins.first->second; |
| else |
| { |
| // This is the first time we've seen this name/type/flags |
| // combination. For compatibility with the GNU linker, we |
| // combine sections with contents and zero flags with sections |
| // with non-zero flags. This is a workaround for cases where |
| // assembler code forgets to set section flags. FIXME: Perhaps |
| // there should be an option to control this. |
| Output_section* os = NULL; |
| |
| if (lookup_type == elfcpp::SHT_PROGBITS) |
| { |
| if (flags == 0) |
| { |
| Output_section* same_name = this->find_output_section(name); |
| if (same_name != NULL |
| && (same_name->type() == elfcpp::SHT_PROGBITS |
| || same_name->type() == elfcpp::SHT_INIT_ARRAY |
| || same_name->type() == elfcpp::SHT_FINI_ARRAY |
| || same_name->type() == elfcpp::SHT_PREINIT_ARRAY) |
| && (same_name->flags() & elfcpp::SHF_TLS) == 0) |
| os = same_name; |
| } |
| else if ((flags & elfcpp::SHF_TLS) == 0) |
| { |
| elfcpp::Elf_Xword zero_flags = 0; |
| const Key zero_key(name_key, std::make_pair(lookup_type, |
| zero_flags)); |
| Section_name_map::iterator p = |
| this->section_name_map_.find(zero_key); |
| if (p != this->section_name_map_.end()) |
| os = p->second; |
| } |
| } |
| |
| if (os == NULL) |
| os = this->make_output_section(name, type, flags, order, is_relro); |
| |
| ins.first->second = os; |
| return os; |
| } |
| } |
| |
| // Returns TRUE iff NAME (an input section from RELOBJ) will |
| // be mapped to an output section that should be KEPT. |
| |
| bool |
| Layout::keep_input_section(const Relobj* relobj, const char* name) |
| { |
| if (! this->script_options_->saw_sections_clause()) |
| return false; |
| |
| Script_sections* ss = this->script_options_->script_sections(); |
| const char* file_name = relobj == NULL ? NULL : relobj->name().c_str(); |
| Output_section** output_section_slot; |
| Script_sections::Section_type script_section_type; |
| bool keep; |
| |
| name = ss->output_section_name(file_name, name, &output_section_slot, |
| &script_section_type, &keep, true); |
| return name != NULL && keep; |
| } |
| |
| // Clear the input section flags that should not be copied to the |
| // output section. |
| |
| elfcpp::Elf_Xword |
| Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags) |
| { |
| // Some flags in the input section should not be automatically |
| // copied to the output section. |
| input_section_flags &= ~ (elfcpp::SHF_INFO_LINK |
| | elfcpp::SHF_GROUP |
| | elfcpp::SHF_COMPRESSED |
| | elfcpp::SHF_MERGE |
| | elfcpp::SHF_STRINGS); |
| |
| // We only clear the SHF_LINK_ORDER flag in for |
| // a non-relocatable link. |
| if (!parameters->options().relocatable()) |
| input_section_flags &= ~elfcpp::SHF_LINK_ORDER; |
| |
| return input_section_flags; |
| } |
| |
| // Pick the output section to use for section NAME, in input file |
| // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a |
| // linker created section. IS_INPUT_SECTION is true if we are |
| // choosing an output section for an input section found in a input |
| // file. ORDER is where this section should appear in the output |
| // sections. IS_RELRO is true for a relro section. This will return |
| // NULL if the input section should be discarded. MATCH_INPUT_SPEC |
| // is true if the section name should be matched against input specs |
| // in a linker script. |
| |
| Output_section* |
| Layout::choose_output_section(const Relobj* relobj, const char* name, |
| elfcpp::Elf_Word type, elfcpp::Elf_Xword flags, |
| bool is_input_section, Output_section_order order, |
| bool is_relro, bool is_reloc, |
| bool match_input_spec) |
| { |
| // We should not see any input sections after we have attached |
| // sections to segments. |
| gold_assert(!is_input_section || !this->sections_are_attached_); |
| |
| flags = this->get_output_section_flags(flags); |
| |
| if (this->script_options_->saw_sections_clause() && !is_reloc) |
| { |
| // We are using a SECTIONS clause, so the output section is |
| // chosen based only on the name. |
| |
| Script_sections* ss = this->script_options_->script_sections(); |
| const char* file_name = relobj == NULL ? NULL : relobj->name().c_str(); |
| Output_section** output_section_slot; |
| Script_sections::Section_type script_section_type; |
| const char* orig_name = name; |
| bool keep; |
| name = ss->output_section_name(file_name, name, &output_section_slot, |
| &script_section_type, &keep, |
| match_input_spec); |
| |
| if (name == NULL) |
| { |
| gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' " |
| "because it is not allowed by the " |
| "SECTIONS clause of the linker script"), |
| orig_name); |
| // The SECTIONS clause says to discard this input section. |
| return NULL; |
| } |
| |
| // We can only handle script section types ST_NONE and ST_NOLOAD. |
| switch (script_section_type) |
| { |
| case Script_sections::ST_NONE: |
| break; |
| case Script_sections::ST_NOLOAD: |
| flags &= elfcpp::SHF_ALLOC; |
| break; |
| default: |
| gold_unreachable(); |
| } |
| |
| // If this is an orphan section--one not mentioned in the linker |
| // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the |
| // default processing below. |
| |
| if (output_section_slot != NULL) |
| { |
| if (*output_section_slot != NULL) |
| { |
| (*output_section_slot)->update_flags_for_input_section(flags); |
| return *output_section_slot; |
| } |
| |
| // We don't put sections found in the linker script into |
| // SECTION_NAME_MAP_. That keeps us from getting confused |
| // if an orphan section is mapped to a section with the same |
| // name as one in the linker script. |
| |
| name = this->namepool_.add(name, false, NULL); |
| |
| Output_section* os = this->make_output_section(name, type, flags, |
| order, is_relro); |
| |
| os->set_found_in_sections_clause(); |
| |
| // Special handling for NOLOAD sections. |
| if (script_section_type == Script_sections::ST_NOLOAD) |
| { |
| os->set_is_noload(); |
| |
| // The constructor of Output_section sets addresses of non-ALLOC |
| // sections to 0 by default. We don't want that for NOLOAD |
| // sections even if they have no SHF_ALLOC flag. |
| if ((os->flags() & elfcpp::SHF_ALLOC) == 0 |
| && os->is_address_valid()) |
| { |
| gold_assert(os->address() == 0 |
| && !os->is_offset_valid() |
| && !os->is_data_size_valid()); |
| os->reset_address_and_file_offset(); |
| } |
| } |
| |
| *output_section_slot = os; |
| return os; |
| } |
| } |
| |
| // FIXME: Handle SHF_OS_NONCONFORMING somewhere. |
| |
| size_t len = strlen(name); |
| std::string uncompressed_name; |
| |
| // Compressed debug sections should be mapped to the corresponding |
| // uncompressed section. |
| if (is_compressed_debug_section(name)) |
| { |
| uncompressed_name = |
| corresponding_uncompressed_section_name(std::string(name, len)); |
| name = uncompressed_name.c_str(); |
| len = uncompressed_name.length(); |
| } |
| |
| // Turn NAME from the name of the input section into the name of the |
| // output section. |
| if (is_input_section |
| && !this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable()) |
| { |
| const char *orig_name = name; |
| name = parameters->target().output_section_name(relobj, name, &len); |
| if (name == NULL) |
| name = Layout::output_section_name(relobj, orig_name, &len); |
| } |
| |
| Stringpool::Key name_key; |
| name = this->namepool_.add_with_length(name, len, true, &name_key); |
| |
| // Find or make the output section. The output section is selected |
| // based on the section name, type, and flags. |
| return this->get_output_section(name, name_key, type, flags, order, is_relro); |
| } |
| |
| // For incremental links, record the initial fixed layout of a section |
| // from the base file, and return a pointer to the Output_section. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::init_fixed_output_section(const char* name, |
| elfcpp::Shdr<size, big_endian>& shdr) |
| { |
| unsigned int sh_type = shdr.get_sh_type(); |
| |
| // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY, |
| // PRE_INIT_ARRAY, and NOTE sections. |
| // All others will be created from scratch and reallocated. |
| if (!can_incremental_update(sh_type)) |
| return NULL; |
| |
| // If we're generating a .gdb_index section, we need to regenerate |
| // it from scratch. |
| if (parameters->options().gdb_index() |
| && sh_type == elfcpp::SHT_PROGBITS |
| && strcmp(name, ".gdb_index") == 0) |
| return NULL; |
| |
| typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr(); |
| typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset(); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size(); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = |
| this->get_output_section_flags(shdr.get_sh_flags()); |
| typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign = |
| shdr.get_sh_addralign(); |
| |
| // Make the output section. |
| Stringpool::Key name_key; |
| name = this->namepool_.add(name, true, &name_key); |
| Output_section* os = this->get_output_section(name, name_key, sh_type, |
| sh_flags, ORDER_INVALID, false); |
| os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign); |
| if (sh_type != elfcpp::SHT_NOBITS) |
| this->free_list_.remove(sh_offset, sh_offset + sh_size); |
| return os; |
| } |
| |
| // Return the index by which an input section should be ordered. This |
| // is used to sort some .text sections, for compatibility with GNU ld. |
| |
| int |
| Layout::special_ordering_of_input_section(const char* name) |
| { |
| // The GNU linker has some special handling for some sections that |
| // wind up in the .text section. Sections that start with these |
| // prefixes must appear first, and must appear in the order listed |
| // here. |
| static const char* const text_section_sort[] = |
| { |
| ".text.unlikely", |
| ".text.exit", |
| ".text.startup", |
| ".text.hot", |
| ".text.sorted" |
| }; |
| |
| for (size_t i = 0; |
| i < sizeof(text_section_sort) / sizeof(text_section_sort[0]); |
| i++) |
| if (is_prefix_of(text_section_sort[i], name)) |
| return i; |
| |
| return -1; |
| } |
| |
| // Return the output section to use for input section SHNDX, with name |
| // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the |
| // index of a relocation section which applies to this section, or 0 |
| // if none, or -1U if more than one. RELOC_TYPE is the type of the |
| // relocation section if there is one. Set *OFF to the offset of this |
| // input section without the output section. Return NULL if the |
| // section should be discarded. Set *OFF to -1 if the section |
| // contents should not be written directly to the output file, but |
| // will instead receive special handling. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx, |
| const char* name, const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int sh_type, unsigned int reloc_shndx, |
| unsigned int, off_t* off) |
| { |
| *off = 0; |
| |
| if (!this->include_section(object, name, shdr)) |
| return NULL; |
| |
| // In a relocatable link a grouped section must not be combined with |
| // any other sections. |
| Output_section* os; |
| if (parameters->options().relocatable() |
| && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0) |
| { |
| // Some flags in the input section should not be automatically |
| // copied to the output section. |
| elfcpp::Elf_Xword sh_flags = (shdr.get_sh_flags() |
| & ~ elfcpp::SHF_COMPRESSED); |
| name = this->namepool_.add(name, true, NULL); |
| os = this->make_output_section(name, sh_type, sh_flags, ORDER_INVALID, |
| false); |
| } |
| else |
| { |
| // Get the section flags and mask out any flags that do not |
| // take part in section matching. |
| elfcpp::Elf_Xword sh_flags |
| = (this->get_output_section_flags(shdr.get_sh_flags()) |
| & ~object->osabi().ignored_sh_flags()); |
| |
| // All ".text.unlikely.*" sections can be moved to a unique |
| // segment with --text-unlikely-segment option. |
| bool text_unlikely_segment |
| = (parameters->options().text_unlikely_segment() |
| && is_prefix_of(".text.unlikely", |
| object->section_name(shndx).c_str())); |
| if (text_unlikely_segment) |
| { |
| Stringpool::Key name_key; |
| const char* os_name = this->namepool_.add(".text.unlikely", true, |
| &name_key); |
| os = this->get_output_section(os_name, name_key, sh_type, sh_flags, |
| ORDER_INVALID, false); |
| // Map this output section to a unique segment. This is done to |
| // separate "text" that is not likely to be executed from "text" |
| // that is likely executed. |
| os->set_is_unique_segment(); |
| } |
| else |
| { |
| // Plugins can choose to place one or more subsets of sections in |
| // unique segments and this is done by mapping these section subsets |
| // to unique output sections. Check if this section needs to be |
| // remapped to a unique output section. |
| Section_segment_map::iterator it |
| = this->section_segment_map_.find(Const_section_id(object, shndx)); |
| if (it == this->section_segment_map_.end()) |
| { |
| os = this->choose_output_section(object, name, sh_type, |
| sh_flags, true, ORDER_INVALID, |
| false, false, true); |
| } |
| else |
| { |
| // We know the name of the output section, directly call |
| // get_output_section here by-passing choose_output_section. |
| const char* os_name = it->second->name; |
| Stringpool::Key name_key; |
| os_name = this->namepool_.add(os_name, true, &name_key); |
| os = this->get_output_section(os_name, name_key, sh_type, |
| sh_flags, ORDER_INVALID, false); |
| if (!os->is_unique_segment()) |
| { |
| os->set_is_unique_segment(); |
| os->set_extra_segment_flags(it->second->flags); |
| os->set_segment_alignment(it->second->align); |
| } |
| } |
| } |
| if (os == NULL) |
| return NULL; |
| } |
| |
| // By default the GNU linker sorts input sections whose names match |
| // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The |
| // sections are sorted by name. This is used to implement |
| // constructor priority ordering. We are compatible. When we put |
| // .ctor sections in .init_array and .dtor sections in .fini_array, |
| // we must also sort plain .ctor and .dtor sections. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && (is_prefix_of(".ctors.", name) |
| || is_prefix_of(".dtors.", name) |
| || is_prefix_of(".init_array.", name) |
| || is_prefix_of(".fini_array.", name) |
| || (parameters->options().ctors_in_init_array() |
| && (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0)))) |
| os->set_must_sort_attached_input_sections(); |
| |
| // By default the GNU linker sorts some special text sections ahead |
| // of others. We are compatible. |
| if (parameters->options().text_reorder() |
| && !this->script_options_->saw_sections_clause() |
| && !this->is_section_ordering_specified() |
| && !parameters->options().relocatable() |
| && Layout::special_ordering_of_input_section(name) >= 0) |
| os->set_must_sort_attached_input_sections(); |
| |
| // If this is a .ctors or .ctors.* section being mapped to a |
| // .init_array section, or a .dtors or .dtors.* section being mapped |
| // to a .fini_array section, we will need to reverse the words if |
| // there is more than one. Record this section for later. See |
| // ctors_sections_in_init_array above. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && shdr.get_sh_size() > size / 8 |
| && (((strcmp(name, ".ctors") == 0 |
| || is_prefix_of(".ctors.", name)) |
| && strcmp(os->name(), ".init_array") == 0) |
| || ((strcmp(name, ".dtors") == 0 |
| || is_prefix_of(".dtors.", name)) |
| && strcmp(os->name(), ".fini_array") == 0))) |
| ctors_sections_in_init_array.insert(Section_id(object, shndx)); |
| |
| // FIXME: Handle SHF_LINK_ORDER somewhere. |
| |
| elfcpp::Elf_Xword orig_flags = os->flags(); |
| |
| *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx, |
| this->script_options_->saw_sections_clause()); |
| |
| // If the flags changed, we may have to change the order. |
| if ((orig_flags & elfcpp::SHF_ALLOC) != 0) |
| { |
| orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| elfcpp::Elf_Xword new_flags = |
| os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR); |
| if (orig_flags != new_flags) |
| os->set_order(this->default_section_order(os, false)); |
| } |
| |
| this->have_added_input_section_ = true; |
| |
| return os; |
| } |
| |
| // Maps section SECN to SEGMENT s. |
| void |
| Layout::insert_section_segment_map(Const_section_id secn, |
| Unique_segment_info *s) |
| { |
| gold_assert(this->unique_segment_for_sections_specified_); |
| this->section_segment_map_[secn] = s; |
| } |
| |
| // Handle a relocation section when doing a relocatable link. |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout_reloc(Sized_relobj_file<size, big_endian>*, |
| unsigned int, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr) |
| { |
| gold_assert(parameters->options().relocatable() |
| || parameters->options().emit_relocs()); |
| |
| int sh_type = shdr.get_sh_type(); |
| |
| std::string name; |
| if (sh_type == elfcpp::SHT_REL) |
| name = ".rel"; |
| else if (sh_type == elfcpp::SHT_RELA) |
| name = ".rela"; |
| else |
| gold_unreachable(); |
| name += data_section->name(); |
| |
| // If the output data section already has a reloc section, use that; |
| // otherwise, make a new one. |
| Output_section* os = data_section->reloc_section(); |
| if (os == NULL) |
| { |
| const char* n = this->namepool_.add(name.c_str(), true, NULL); |
| os = this->make_output_section(n, sh_type, shdr.get_sh_flags(), |
| ORDER_INVALID, false); |
| os->set_should_link_to_symtab(); |
| os->set_info_section(data_section); |
| data_section->set_reloc_section(os); |
| } |
| |
| Output_section_data* posd; |
| if (sh_type == elfcpp::SHT_REL) |
| { |
| os->set_entsize(elfcpp::Elf_sizes<size>::rel_size); |
| posd = new Output_relocatable_relocs<elfcpp::SHT_REL, |
| size, |
| big_endian>(rr); |
| } |
| else if (sh_type == elfcpp::SHT_RELA) |
| { |
| os->set_entsize(elfcpp::Elf_sizes<size>::rela_size); |
| posd = new Output_relocatable_relocs<elfcpp::SHT_RELA, |
| size, |
| big_endian>(rr); |
| } |
| else |
| gold_unreachable(); |
| |
| os->add_output_section_data(posd); |
| rr->set_output_data(posd); |
| |
| return os; |
| } |
| |
| // Handle a group section when doing a relocatable link. |
| |
| template<int size, bool big_endian> |
| void |
| Layout::layout_group(Symbol_table* symtab, |
| Sized_relobj_file<size, big_endian>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes) |
| { |
| gold_assert(parameters->options().relocatable()); |
| gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP); |
| group_section_name = this->namepool_.add(group_section_name, true, NULL); |
| Output_section* os = this->make_output_section(group_section_name, |
| elfcpp::SHT_GROUP, |
| shdr.get_sh_flags(), |
| ORDER_INVALID, false); |
| |
| // We need to find a symbol with the signature in the symbol table. |
| // If we don't find one now, we need to look again later. |
| Symbol* sym = symtab->lookup(signature, NULL); |
| if (sym != NULL) |
| os->set_info_symndx(sym); |
| else |
| { |
| // Reserve some space to minimize reallocations. |
| if (this->group_signatures_.empty()) |
| this->group_signatures_.reserve(this->number_of_input_files_ * 16); |
| |
| // We will wind up using a symbol whose name is the signature. |
| // So just put the signature in the symbol name pool to save it. |
| signature = symtab->canonicalize_name(signature); |
| this->group_signatures_.push_back(Group_signature(os, signature)); |
| } |
| |
| os->set_should_link_to_symtab(); |
| os->set_entsize(4); |
| |
| section_size_type entry_count = |
| convert_to_section_size_type(shdr.get_sh_size() / 4); |
| Output_section_data* posd = |
| new Output_data_group<size, big_endian>(object, entry_count, flags, |
| shndxes); |
| os->add_output_section_data(posd); |
| } |
| |
| // Special GNU handling of sections name .eh_frame. They will |
| // normally hold exception frame data as defined by the C++ ABI |
| // (http://codesourcery.com/cxx-abi/). |
| |
| template<int size, bool big_endian> |
| Output_section* |
| Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<size, big_endian>& shdr, |
| unsigned int reloc_shndx, unsigned int reloc_type, |
| off_t* off) |
| { |
| const unsigned int unwind_section_type = |
| parameters->target().unwind_section_type(); |
| |
| gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS |
| || shdr.get_sh_type() == unwind_section_type); |
| gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0); |
| |
| Output_section* os = this->make_eh_frame_section(object); |
| if (os == NULL) |
| return NULL; |
| |
| gold_assert(this->eh_frame_section_ == os); |
| |
| elfcpp::Elf_Xword orig_flags = os->flags(); |
| |
| Eh_frame::Eh_frame_section_disposition disp = |
| Eh_frame::EH_UNRECOGNIZED_SECTION; |
| if (!parameters->incremental()) |
| { |
| disp = this->eh_frame_data_->add_ehframe_input_section(object, |
| symbols, |
| symbols_size, |
| symbol_names, |
| symbol_names_size, |
| shndx, |
| reloc_shndx, |
| reloc_type); |
| } |
| |
| if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION) |
| { |
| os->update_flags_for_input_section(shdr.get_sh_flags()); |
| |
| // A writable .eh_frame section is a RELRO section. |
| if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) |
| != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) |
| { |
| os->set_is_relro(); |
| os->set_order(ORDER_RELRO); |
| } |
| |
| *off = -1; |
| return os; |
| } |
| |
| if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_) |
| { |
| // We found the end marker section, so now we can add the set of |
| // optimized sections to the output section. We need to postpone |
| // adding this until we've found a section we can optimize so that |
| // the .eh_frame section in crtbeginT.o winds up at the start of |
| // the output section. |
| os->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| |
| // We couldn't handle this .eh_frame section for some reason. |
| // Add it as a normal section. |
| bool saw_sections_clause = this->script_options_->saw_sections_clause(); |
| *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr, |
| reloc_shndx, saw_sections_clause); |
| this->have_added_input_section_ = true; |
| |
| if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)) |
| != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))) |
| os->set_order(this->default_section_order(os, false)); |
| |
| return os; |
| } |
| |
| void |
| Layout::finalize_eh_frame_section() |
| { |
| // If we never found an end marker section, we need to add the |
| // optimized eh sections to the output section now. |
| if (!parameters->incremental() |
| && this->eh_frame_section_ != NULL |
| && !this->added_eh_frame_data_) |
| { |
| this->eh_frame_section_->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| } |
| |
| // Create and return the magic .eh_frame section. Create |
| // .eh_frame_hdr also if appropriate. OBJECT is the object with the |
| // input .eh_frame section; it may be NULL. |
| |
| Output_section* |
| Layout::make_eh_frame_section(const Relobj* object) |
| { |
| const unsigned int unwind_section_type = |
| parameters->target().unwind_section_type(); |
| |
| Output_section* os = this->choose_output_section(object, ".eh_frame", |
| unwind_section_type, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_EHFRAME, false, false, |
| false); |
| if (os == NULL) |
| return NULL; |
| |
| if (this->eh_frame_section_ == NULL) |
| { |
| this->eh_frame_section_ = os; |
| this->eh_frame_data_ = new Eh_frame(); |
| |
| // For incremental linking, we do not optimize .eh_frame sections |
| // or create a .eh_frame_hdr section. |
| if (parameters->options().eh_frame_hdr() && !parameters->incremental()) |
| { |
| Output_section* hdr_os = |
| this->choose_output_section(NULL, ".eh_frame_hdr", |
| unwind_section_type, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_EHFRAME, false, false, |
| false); |
| |
| if (hdr_os != NULL) |
| { |
| Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os, |
| this->eh_frame_data_); |
| hdr_os->add_output_section_data(hdr_posd); |
| |
| hdr_os->set_after_input_sections(); |
| |
| if (!this->script_options_->saw_phdrs_clause()) |
| { |
| Output_segment* hdr_oseg; |
| hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME, |
| elfcpp::PF_R); |
| hdr_oseg->add_output_section_to_nonload(hdr_os, |
| elfcpp::PF_R); |
| } |
| |
| this->eh_frame_data_->set_eh_frame_hdr(hdr_posd); |
| } |
| } |
| } |
| |
| return os; |
| } |
| |
| // Add an exception frame for a PLT. This is called from target code. |
| |
| void |
| Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data, |
| size_t cie_length, const unsigned char* fde_data, |
| size_t fde_length) |
| { |
| if (parameters->incremental()) |
| { |
| // FIXME: Maybe this could work some day.... |
| return; |
| } |
| Output_section* os = this->make_eh_frame_section(NULL); |
| if (os == NULL) |
| return; |
| this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length, |
| fde_data, fde_length); |
| if (!this->added_eh_frame_data_) |
| { |
| os->add_output_section_data(this->eh_frame_data_); |
| this->added_eh_frame_data_ = true; |
| } |
| } |
| |
| // Remove all post-map .eh_frame information for a PLT. |
| |
| void |
| Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data, |
| size_t cie_length) |
| { |
| if (parameters->incremental()) |
| { |
| // FIXME: Maybe this could work some day.... |
| return; |
| } |
| this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length); |
| } |
| |
| // Scan a .debug_info or .debug_types section, and add summary |
| // information to the .gdb_index section. |
| |
| template<int size, bool big_endian> |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<size, big_endian>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type) |
| { |
| if (this->gdb_index_data_ == NULL) |
| { |
| Output_section* os = this->choose_output_section(NULL, ".gdb_index", |
| elfcpp::SHT_PROGBITS, 0, |
| false, ORDER_INVALID, |
| false, false, false); |
| if (os == NULL) |
| return; |
| |
| this->gdb_index_data_ = new Gdb_index(os); |
| os->add_output_section_data(this->gdb_index_data_); |
| os->set_after_input_sections(); |
| } |
| |
| this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols, |
| symbols_size, shndx, reloc_shndx, |
| reloc_type); |
| } |
| |
| // Add POSD to an output section using NAME, TYPE, and FLAGS. Return |
| // the output section. |
| |
| Output_section* |
| Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags, |
| Output_section_data* posd, |
| Output_section_order order, bool is_relro) |
| { |
| Output_section* os = this->choose_output_section(NULL, name, type, flags, |
| false, order, is_relro, |
| false, false); |
| if (os != NULL) |
| os->add_output_section_data(posd); |
| return os; |
| } |
| |
| // Map section flags to segment flags. |
| |
| elfcpp::Elf_Word |
| Layout::section_flags_to_segment(elfcpp::Elf_Xword flags) |
| { |
| elfcpp::Elf_Word ret = elfcpp::PF_R; |
| if ((flags & elfcpp::SHF_WRITE) != 0) |
| ret |= elfcpp::PF_W; |
| if ((flags & elfcpp::SHF_EXECINSTR) != 0) |
| ret |= elfcpp::PF_X; |
| return ret; |
| } |
| |
| // Make a new Output_section, and attach it to segments as |
| // appropriate. ORDER is the order in which this section should |
| // appear in the output segment. IS_RELRO is true if this is a relro |
| // (read-only after relocations) section. |
| |
| Output_section* |
| Layout::make_output_section(const char* name, elfcpp::Elf_Word type, |
| elfcpp::Elf_Xword flags, |
| Output_section_order order, bool is_relro) |
| { |
| Output_section* os; |
| if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && strcmp(parameters->options().compress_debug_sections(), "none") != 0 |
| && is_compressible_debug_section(name)) |
| os = new Output_compressed_section(¶meters->options(), name, type, |
| flags); |
| else if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && parameters->options().strip_debug_non_line() |
| && strcmp(".debug_abbrev", name) == 0) |
| { |
| os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section( |
| name, type, flags); |
| if (this->debug_info_) |
| this->debug_info_->set_abbreviations(this->debug_abbrev_); |
| } |
| else if ((flags & elfcpp::SHF_ALLOC) == 0 |
| && parameters->options().strip_debug_non_line() |
| && strcmp(".debug_info", name) == 0) |
| { |
| os = this->debug_info_ = new Output_reduced_debug_info_section( |
| name, type, flags); |
| if (this->debug_abbrev_) |
| this->debug_info_->set_abbreviations(this->debug_abbrev_); |
| } |
| else |
| { |
| // Sometimes .init_array*, .preinit_array* and .fini_array* do |
| // not have correct section types. Force them here. |
| if (type == elfcpp::SHT_PROGBITS) |
| { |
| if (is_prefix_of(".init_array", name)) |
| type = elfcpp::SHT_INIT_ARRAY; |
| else if (is_prefix_of(".preinit_array", name)) |
| type = elfcpp::SHT_PREINIT_ARRAY; |
| else if (is_prefix_of(".fini_array", name)) |
| type = elfcpp::SHT_FINI_ARRAY; |
| } |
| |
| // FIXME: const_cast is ugly. |
| Target* target = const_cast<Target*>(¶meters->target()); |
| os = target->make_output_section(name, type, flags); |
| } |
| |
| // With -z relro, we have to recognize the special sections by name. |
| // There is no other way. |
| bool is_relro_local = false; |
| if (!this->script_options_->saw_sections_clause() |
| && parameters->options().relro() |
| && (flags & elfcpp::SHF_ALLOC) != 0 |
| && (flags & elfcpp::SHF_WRITE) != 0) |
| { |
| if (type == elfcpp::SHT_PROGBITS) |
| { |
| if ((flags & elfcpp::SHF_TLS) != 0) |
| is_relro = true; |
| else if (strcmp(name, ".data.rel.ro") == 0) |
| is_relro = true; |
| else if (strcmp(name, ".data.rel.ro.local") == 0) |
| { |
| is_relro = true; |
| is_relro_local = true; |
| } |
| else if (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0 |
| || strcmp(name, ".jcr") == 0) |
| is_relro = true; |
| } |
| else if (type == elfcpp::SHT_INIT_ARRAY |
| || type == elfcpp::SHT_FINI_ARRAY |
| || type == elfcpp::SHT_PREINIT_ARRAY) |
| is_relro = true; |
| } |
| |
| if (is_relro) |
| os->set_is_relro(); |
| |
| if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0) |
| order = this->default_section_order(os, is_relro_local); |
| |
| os->set_order(order); |
| |
| parameters->target().new_output_section(os); |
| |
| this->section_list_.push_back(os); |
| |
| // The GNU linker by default sorts some sections by priority, so we |
| // do the same. We need to know that this might happen before we |
| // attach any input sections. |
| if (!this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable() |
| && (strcmp(name, ".init_array") == 0 |
| || strcmp(name, ".fini_array") == 0 |
| || (!parameters->options().ctors_in_init_array() |
| && (strcmp(name, ".ctors") == 0 |
| || strcmp(name, ".dtors") == 0)))) |
| os->set_may_sort_attached_input_sections(); |
| |
| // The GNU linker by default sorts .text.{unlikely,exit,startup,hot} |
| // sections before other .text sections. We are compatible. We |
| // need to know that this might happen before we attach any input |
| // sections. |
| if (parameters->options().text_reorder() |
| && !this->script_options_->saw_sections_clause() |
| && !this->is_section_ordering_specified() |
| && !parameters->options().relocatable() |
| && strcmp(name, ".text") == 0) |
| os->set_may_sort_attached_input_sections(); |
| |
| // GNU linker sorts section by name with --sort-section=name. |
| if (strcmp(parameters->options().sort_section(), "name") == 0) |
| os->set_must_sort_attached_input_sections(); |
| |
| // Check for .stab*str sections, as .stab* sections need to link to |
| // them. |
| if (type == elfcpp::SHT_STRTAB |
| && !this->have_stabstr_section_ |
| && strncmp(name, ".stab", 5) == 0 |
| && strcmp(name + strlen(name) - 3, "str") == 0) |
| this->have_stabstr_section_ = true; |
| |
| // During a full incremental link, we add patch space to most |
| // PROGBITS and NOBITS sections. Flag those that may be |
| // arbitrarily padded. |
| if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS) |
| && order != ORDER_INTERP |
| && order != ORDER_INIT |
| && order != ORDER_PLT |
| && order != ORDER_FINI |
| && order != ORDER_RELRO_LAST |
| && order != ORDER_NON_RELRO_FIRST |
| && strcmp(name, ".eh_frame") != 0 |
| && strcmp(name, ".ctors") != 0 |
| && strcmp(name, ".dtors") != 0 |
| && strcmp(name, ".jcr") != 0) |
| { |
| os->set_is_patch_space_allowed(); |
| |
| // Certain sections require "holes" to be filled with |
| // specific fill patterns. These fill patterns may have |
| // a minimum size, so we must prevent allocations from the |
| // free list that leave a hole smaller than the minimum. |
| if (strcmp(name, ".debug_info") == 0) |
| os->set_free_space_fill(new Output_fill_debug_info(false)); |
| else if (strcmp(name, ".debug_types") == 0) |
| os->set_free_space_fill(new Output_fill_debug_info(true)); |
| else if (strcmp(name, ".debug_line") == 0) |
| os->set_free_space_fill(new Output_fill_debug_line()); |
| } |
| |
| // If we have already attached the sections to segments, then we |
| // need to attach this one now. This happens for sections created |
| // directly by the linker. |
| if (this->sections_are_attached_) |
| this->attach_section_to_segment(¶meters->target(), os); |
| |
| return os; |
| } |
| |
| // Return the default order in which a section should be placed in an |
| // output segment. This function captures a lot of the ideas in |
| // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a |
| // linker created section is normally set when the section is created; |
| // this function is used for input sections. |
| |
| Output_section_order |
| Layout::default_section_order(Output_section* os, bool is_relro_local) |
| { |
| gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0); |
| bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0; |
| bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0; |
| bool is_bss = false; |
| |
| switch (os->type()) |
| { |
| default: |
| case elfcpp::SHT_PROGBITS: |
| break; |
| case elfcpp::SHT_NOBITS: |
| is_bss = true; |
| break; |
| case elfcpp::SHT_RELA: |
| case elfcpp::SHT_REL: |
| if (!is_write) |
| return ORDER_DYNAMIC_RELOCS; |
| break; |
| case elfcpp::SHT_HASH: |
| case elfcpp::SHT_DYNAMIC: |
| case elfcpp::SHT_SHLIB: |
| case elfcpp::SHT_DYNSYM: |
| case elfcpp::SHT_GNU_HASH: |
| case elfcpp::SHT_GNU_verdef: |
| case elfcpp::SHT_GNU_verneed: |
| case elfcpp::SHT_GNU_versym: |
| if (!is_write) |
| return ORDER_DYNAMIC_LINKER; |
| break; |
| case elfcpp::SHT_NOTE: |
| return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE; |
| } |
| |
| if ((os->flags() & elfcpp::SHF_TLS) != 0) |
| return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA; |
| |
| if (!is_bss && !is_write) |
| { |
| if (is_execinstr) |
| { |
| if (strcmp(os->name(), ".init") == 0) |
| return ORDER_INIT; |
| else if (strcmp(os->name(), ".fini") == 0) |
| return ORDER_FINI; |
| else if (parameters->options().keep_text_section_prefix()) |
| { |
| // -z,keep-text-section-prefix introduces additional |
| // output sections. |
| if (strcmp(os->name(), ".text.hot") == 0) |
| return ORDER_TEXT_HOT; |
| else if (strcmp(os->name(), ".text.startup") == 0) |
| return ORDER_TEXT_STARTUP; |
| else if (strcmp(os->name(), ".text.exit") == 0) |
| return ORDER_TEXT_EXIT; |
| else if (strcmp(os->name(), ".text.unlikely") == 0) |
| return ORDER_TEXT_UNLIKELY; |
| } |
| } |
| return is_execinstr ? ORDER_TEXT : ORDER_READONLY; |
| } |
| |
| if (os->is_relro()) |
| return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO; |
| |
| if (os->is_small_section()) |
| return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA; |
| if (os->is_large_section()) |
| return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA; |
| |
| return is_bss ? ORDER_BSS : ORDER_DATA; |
| } |
| |
| // Attach output sections to segments. This is called after we have |
| // seen all the input sections. |
| |
| void |
| Layout::attach_sections_to_segments(const Target* target) |
| { |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| this->attach_section_to_segment(target, *p); |
| |
| this->sections_are_attached_ = true; |
| } |
| |
| // Attach an output section to a segment. |
| |
| void |
| Layout::attach_section_to_segment(const Target* target, Output_section* os) |
| { |
| if ((os->flags() & elfcpp::SHF_ALLOC) == 0) |
| this->unattached_section_list_.push_back(os); |
| else |
| this->attach_allocated_section_to_segment(target, os); |
| } |
| |
| // Attach an allocated output section to a segment. |
| |
| void |
| Layout::attach_allocated_section_to_segment(const Target* target, |
| Output_section* os) |
| { |
| elfcpp::Elf_Xword flags = os->flags(); |
| gold_assert((flags & elfcpp::SHF_ALLOC) != 0); |
| |
| if (parameters->options().relocatable()) |
| return; |
| |
| // If we have a SECTIONS clause, we can't handle the attachment to |
| // segments until after we've seen all the sections. |
| if (this->script_options_->saw_sections_clause()) |
| return; |
| |
| gold_assert(!this->script_options_->saw_phdrs_clause()); |
| |
| // This output section goes into a PT_LOAD segment. |
| |
| elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags); |
| |
| // If this output section's segment has extra flags that need to be set, |
| // coming from a linker plugin, do that. |
| seg_flags |= os->extra_segment_flags(); |
| |
| // Check for --section-start. |
| uint64_t addr; |
| bool is_address_set = parameters->options().section_start(os->name(), &addr); |
| |
| // In general the only thing we really care about for PT_LOAD |
| // segments is whether or not they are writable or executable, |
| // so that is how we search for them. |
| // Large data sections also go into their own PT_LOAD segment. |
| // People who need segments sorted on some other basis will |
| // have to use a linker script. |
| |
| Segment_list::const_iterator p; |
| if (!os->is_unique_segment()) |
| { |
| for (p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() != elfcpp::PT_LOAD) |
| continue; |
| if ((*p)->is_unique_segment()) |
| continue; |
| if (!parameters->options().omagic() |
| && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W)) |
| continue; |
| if ((target->isolate_execinstr() || parameters->options().rosegment()) |
| && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X)) |
| continue; |
| // If -Tbss was specified, we need to separate the data and BSS |
| // segments. |
| if (parameters->options().user_set_Tbss()) |
| { |
| if ((os->type() == elfcpp::SHT_NOBITS) |
| == (*p)->has_any_data_sections()) |
| continue; |
| } |
| if (os->is_large_data_section() && !(*p)->is_large_data_segment()) |
| continue; |
| |
| if (is_address_set) |
| { |
| if ((*p)->are_addresses_set()) |
| continue; |
| |
| (*p)->add_initial_output_data(os); |
| (*p)->update_flags_for_output_section(seg_flags); |
| (*p)->set_addresses(addr, addr); |
| break; |
| } |
| |
| (*p)->add_output_section_to_load(this, os, seg_flags); |
| break; |
| } |
| } |
| |
| if (p == this->segment_list_.end() |
| || os->is_unique_segment()) |
| { |
| Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD, |
| seg_flags); |
| if (os->is_large_data_section()) |
| oseg->set_is_large_data_segment(); |
| oseg->add_output_section_to_load(this, os, seg_flags); |
| if (is_address_set) |
| oseg->set_addresses(addr, addr); |
| // Check if segment should be marked unique. For segments marked |
| // unique by linker plugins, set the new alignment if specified. |
| if (os->is_unique_segment()) |
| { |
| oseg->set_is_unique_segment(); |
| if (os->segment_alignment() != 0) |
| oseg->set_minimum_p_align(os->segment_alignment()); |
| } |
| } |
| |
| // If we see a loadable SHT_NOTE section, we create a PT_NOTE |
| // segment. |
| if (os->type() == elfcpp::SHT_NOTE) |
| { |
| uint64_t os_align = os->addralign(); |
| |
| // See if we already have an equivalent PT_NOTE segment. |
| for (p = this->segment_list_.begin(); |
| p != segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_NOTE |
| && (*p)->align() == os_align |
| && (((*p)->flags() & elfcpp::PF_W) |
| == (seg_flags & elfcpp::PF_W))) |
| { |
| (*p)->add_output_section_to_nonload(os, seg_flags); |
| break; |
| } |
| } |
| |
| if (p == this->segment_list_.end()) |
| { |
| Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE, |
| seg_flags); |
| oseg->add_output_section_to_nonload(os, seg_flags); |
| oseg->set_align(os_align); |
| } |
| } |
| |
| // If we see a loadable SHF_TLS section, we create a PT_TLS |
| // segment. There can only be one such segment. |
| if ((flags & elfcpp::SHF_TLS) != 0) |
| { |
| if (this->tls_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_TLS, seg_flags); |
| this->tls_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| |
| // If -z relro is in effect, and we see a relro section, we create a |
| // PT_GNU_RELRO segment. There can only be one such segment. |
| if (os->is_relro() && parameters->options().relro()) |
| { |
| gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W)); |
| if (this->relro_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags); |
| this->relro_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| |
| // If we see a section named .interp, put it into a PT_INTERP |
| // segment. This seems broken to me, but this is what GNU ld does, |
| // and glibc expects it. |
| if (strcmp(os->name(), ".interp") == 0 |
| && !this->script_options_->saw_phdrs_clause()) |
| { |
| if (this->interp_segment_ == NULL) |
| this->make_output_segment(elfcpp::PT_INTERP, seg_flags); |
| else |
| gold_warning(_("multiple '.interp' sections in input files " |
| "may cause confusing PT_INTERP segment")); |
| this->interp_segment_->add_output_section_to_nonload(os, seg_flags); |
| } |
| } |
| |
| // Make an output section for a script. |
| |
| Output_section* |
| Layout::make_output_section_for_script( |
| const char* name, |
| Script_sections::Section_type section_type) |
| { |
| name = this->namepool_.add(name, false, NULL); |
| elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC; |
| if (section_type == Script_sections::ST_NOLOAD) |
| sh_flags = 0; |
| Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS, |
| sh_flags, ORDER_INVALID, |
| false); |
| os->set_found_in_sections_clause(); |
| if (section_type == Script_sections::ST_NOLOAD) |
| os->set_is_noload(); |
| return os; |
| } |
| |
| // Return the number of segments we expect to see. |
| |
| size_t |
| Layout::expected_segment_count() const |
| { |
| size_t ret = this->segment_list_.size(); |
| |
| // If we didn't see a SECTIONS clause in a linker script, we should |
| // already have the complete list of segments. Otherwise we ask the |
| // SECTIONS clause how many segments it expects, and add in the ones |
| // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.) |
| |
| if (!this->script_options_->saw_sections_clause()) |
| return ret; |
| else |
| { |
| const Script_sections* ss = this->script_options_->script_sections(); |
| return ret + ss->expected_segment_count(this); |
| } |
| } |
| |
| // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK |
| // is whether we saw a .note.GNU-stack section in the object file. |
| // GNU_STACK_FLAGS is the section flags. The flags give the |
| // protection required for stack memory. We record this in an |
| // executable as a PT_GNU_STACK segment. If an object file does not |
| // have a .note.GNU-stack segment, we must assume that it is an old |
| // object. On some targets that will force an executable stack. |
| |
| void |
| Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags, |
| const Object* obj) |
| { |
| if (!seen_gnu_stack) |
| { |
| this->input_without_gnu_stack_note_ = true; |
| if (parameters->options().warn_execstack() |
| && parameters->target().is_default_stack_executable()) |
| gold_warning(_("%s: missing .note.GNU-stack section" |
| " implies executable stack"), |
| obj->name().c_str()); |
| } |
| else |
| { |
| this->input_with_gnu_stack_note_ = true; |
| if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0) |
| { |
| this->input_requires_executable_stack_ = true; |
| if (parameters->options().warn_execstack()) |
| gold_warning(_("%s: requires executable stack"), |
| obj->name().c_str()); |
| } |
| } |
| } |
| |
| // Read a value with given size and endianness. |
| |
| static inline uint64_t |
| read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian, |
| const Object* object) |
| { |
| uint64_t val = 0; |
| if (size == 4) |
| { |
| if (is_big_endian) |
| val = elfcpp::Swap<32, true>::readval(buf); |
| else |
| val = elfcpp::Swap<32, false>::readval(buf); |
| } |
| else if (size == 8) |
| { |
| if (is_big_endian) |
| val = elfcpp::Swap<64, true>::readval(buf); |
| else |
| val = elfcpp::Swap<64, false>::readval(buf); |
| } |
| else |
| { |
| gold_warning(_("%s: in .note.gnu.property section, " |
| "pr_datasz must be 4 or 8"), |
| object->name().c_str()); |
| } |
| return val; |
| } |
| |
| // Write a value with given size and endianness. |
| |
| static inline void |
| write_sized_value(uint64_t value, size_t size, unsigned char* buf, |
| bool is_big_endian) |
| { |
| if (size == 4) |
| { |
| if (is_big_endian) |
| elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value)); |
| else |
| elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value)); |
| } |
| else if (size == 8) |
| { |
| if (is_big_endian) |
| elfcpp::Swap<64, true>::writeval(buf, value); |
| else |
| elfcpp::Swap<64, false>::writeval(buf, value); |
| } |
| else |
| { |
| // We will have already complained about this. |
| } |
| } |
| |
| // Handle the .note.gnu.property section at layout time. |
| |
| void |
| Layout::layout_gnu_property(unsigned int note_type, |
| unsigned int pr_type, |
| size_t pr_datasz, |
| const unsigned char* pr_data, |
| const Object* object) |
| { |
| // We currently support only the one note type. |
| gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0); |
| |
| if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC |
| && pr_type < elfcpp::GNU_PROPERTY_HIPROC) |
| { |
| // Target-dependent property value; call the target to record. |
| const int size = parameters->target().get_size(); |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| if (size == 32) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_32_BIG |
| parameters->sized_target<32, true>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| parameters->sized_target<32, false>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else if (size == 64) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_64_BIG |
| parameters->sized_target<64, true>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_64_LITTLE |
| parameters->sized_target<64, false>()-> |
| record_gnu_property(note_type, pr_type, pr_datasz, pr_data, |
| object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else |
| gold_unreachable(); |
| return; |
| } |
| |
| Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type); |
| if (pprop == this->gnu_properties_.end()) |
| { |
| Gnu_property prop; |
| prop.pr_datasz = pr_datasz; |
| prop.pr_data = new unsigned char[pr_datasz]; |
| memcpy(prop.pr_data, pr_data, pr_datasz); |
| this->gnu_properties_[pr_type] = prop; |
| } |
| else |
| { |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| switch (pr_type) |
| { |
| case elfcpp::GNU_PROPERTY_STACK_SIZE: |
| // Record the maximum value seen. |
| { |
| uint64_t val1 = read_sized_value(pprop->second.pr_datasz, |
| pprop->second.pr_data, |
| is_big_endian, object); |
| uint64_t val2 = read_sized_value(pr_datasz, pr_data, |
| is_big_endian, object); |
| if (val2 > val1) |
| write_sized_value(val2, pprop->second.pr_datasz, |
| pprop->second.pr_data, is_big_endian); |
| } |
| break; |
| case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED: |
| // No data to merge. |
| break; |
| default: |
| gold_warning(_("%s: unknown program property type %d " |
| "in .note.gnu.property section"), |
| object->name().c_str(), pr_type); |
| } |
| } |
| } |
| |
| // Merge per-object properties with program properties. |
| // This lets the target identify objects that are missing certain |
| // properties, in cases where properties must be ANDed together. |
| |
| void |
| Layout::merge_gnu_properties(const Object* object) |
| { |
| const int size = parameters->target().get_size(); |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| if (size == 32) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_32_BIG |
| parameters->sized_target<32, true>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| parameters->sized_target<32, false>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else if (size == 64) |
| { |
| if (is_big_endian) |
| { |
| #ifdef HAVE_TARGET_64_BIG |
| parameters->sized_target<64, true>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| else |
| { |
| #ifdef HAVE_TARGET_64_LITTLE |
| parameters->sized_target<64, false>()->merge_gnu_properties(object); |
| #else |
| gold_unreachable(); |
| #endif |
| } |
| } |
| else |
| gold_unreachable(); |
| } |
| |
| // Add a target-specific property for the output .note.gnu.property section. |
| |
| void |
| Layout::add_gnu_property(unsigned int note_type, |
| unsigned int pr_type, |
| size_t pr_datasz, |
| const unsigned char* pr_data) |
| { |
| gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0); |
| |
| Gnu_property prop; |
| prop.pr_datasz = pr_datasz; |
| prop.pr_data = new unsigned char[pr_datasz]; |
| memcpy(prop.pr_data, pr_data, pr_datasz); |
| this->gnu_properties_[pr_type] = prop; |
| } |
| |
| // Create automatic note sections. |
| |
| void |
| Layout::create_notes() |
| { |
| this->create_gnu_properties_note(); |
| this->create_gold_note(); |
| this->create_stack_segment(); |
| this->create_build_id(); |
| this->create_package_metadata(); |
| } |
| |
| // Create the dynamic sections which are needed before we read the |
| // relocs. |
| |
| void |
| Layout::create_initial_dynamic_sections(Symbol_table* symtab) |
| { |
| if (parameters->doing_static_link()) |
| return; |
| |
| this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic", |
| elfcpp::SHT_DYNAMIC, |
| (elfcpp::SHF_ALLOC |
| | elfcpp::SHF_WRITE), |
| false, ORDER_RELRO, |
| true, false, false); |
| |
| // A linker script may discard .dynamic, so check for NULL. |
| if (this->dynamic_section_ != NULL) |
| { |
| this->dynamic_symbol_ = |
| symtab->define_in_output_data("_DYNAMIC", NULL, |
| Symbol_table::PREDEFINED, |
| this->dynamic_section_, 0, 0, |
| elfcpp::STT_OBJECT, elfcpp::STB_LOCAL, |
| elfcpp::STV_HIDDEN, 0, false, false); |
| |
| this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_); |
| |
| this->dynamic_section_->add_output_section_data(this->dynamic_data_); |
| } |
| } |
| |
| // For each output section whose name can be represented as C symbol, |
| // define __start and __stop symbols for the section. This is a GNU |
| // extension. |
| |
| void |
| Layout::define_section_symbols(Symbol_table* symtab) |
| { |
| const elfcpp::STV visibility = parameters->options().start_stop_visibility_enum(); |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| const char* const name = (*p)->name(); |
| if (is_cident(name)) |
| { |
| const std::string name_string(name); |
| const std::string start_name(cident_section_start_prefix |
| + name_string); |
| const std::string stop_name(cident_section_stop_prefix |
| + name_string); |
| |
| symtab->define_in_output_data(start_name.c_str(), |
| NULL, // version |
| Symbol_table::PREDEFINED, |
| *p, |
| 0, // value |
| 0, // symsize |
| elfcpp::STT_NOTYPE, |
| elfcpp::STB_GLOBAL, |
| visibility, |
| 0, // nonvis |
| false, // offset_is_from_end |
| true); // only_if_ref |
| |
| symtab->define_in_output_data(stop_name.c_str(), |
| NULL, // version |
| Symbol_table::PREDEFINED, |
| *p, |
| 0, // value |
| 0, // symsize |
| elfcpp::STT_NOTYPE, |
| elfcpp::STB_GLOBAL, |
| visibility, |
| 0, // nonvis |
| true, // offset_is_from_end |
| true); // only_if_ref |
| } |
| } |
| } |
| |
| // Define symbols for group signatures. |
| |
| void |
| Layout::define_group_signatures(Symbol_table* symtab) |
| { |
| for (Group_signatures::iterator p = this->group_signatures_.begin(); |
| p != this->group_signatures_.end(); |
| ++p) |
| { |
| Symbol* sym = symtab->lookup(p->signature, NULL); |
| if (sym != NULL) |
| p->section->set_info_symndx(sym); |
| else |
| { |
| // Force the name of the group section to the group |
| // signature, and use the group's section symbol as the |
| // signature symbol. |
| if (strcmp(p->section->name(), p->signature) != 0) |
| { |
| const char* name = this->namepool_.add(p->signature, |
| true, NULL); |
| p->section->set_name(name); |
| } |
| p->section->set_needs_symtab_index(); |
| p->section->set_info_section_symndx(p->section); |
| } |
| } |
| |
| this->group_signatures_.clear(); |
| } |
| |
| // Find the first read-only PT_LOAD segment, creating one if |
| // necessary. |
| |
| Output_segment* |
| Layout::find_first_load_seg(const Target* target) |
| { |
| Output_segment* best = NULL; |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD |
| && ((*p)->flags() & elfcpp::PF_R) != 0 |
| && (parameters->options().omagic() |
| || ((*p)->flags() & elfcpp::PF_W) == 0) |
| && (!target->isolate_execinstr() |
| || ((*p)->flags() & elfcpp::PF_X) == 0)) |
| { |
| if (best == NULL || this->segment_precedes(*p, best)) |
| best = *p; |
| } |
| } |
| if (best != NULL) |
| return best; |
| |
| gold_assert(!this->script_options_->saw_phdrs_clause()); |
| |
| Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD, |
| elfcpp::PF_R); |
| return load_seg; |
| } |
| |
| // Save states of all current output segments. Store saved states |
| // in SEGMENT_STATES. |
| |
| void |
| Layout::save_segments(Segment_states* segment_states) |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| Output_segment* segment = *p; |
| // Shallow copy. |
| Output_segment* copy = new Output_segment(*segment); |
| (*segment_states)[segment] = copy; |
| } |
| } |
| |
| // Restore states of output segments and delete any segment not found in |
| // SEGMENT_STATES. |
| |
| void |
| Layout::restore_segments(const Segment_states* segment_states) |
| { |
| // Go through the segment list and remove any segment added in the |
| // relaxation loop. |
| this->tls_segment_ = NULL; |
| this->relro_segment_ = NULL; |
| Segment_list::iterator list_iter = this->segment_list_.begin(); |
| while (list_iter != this->segment_list_.end()) |
| { |
| Output_segment* segment = *list_iter; |
| Segment_states::const_iterator states_iter = |
| segment_states->find(segment); |
| if (states_iter != segment_states->end()) |
| { |
| const Output_segment* copy = states_iter->second; |
| // Shallow copy to restore states. |
| *segment = *copy; |
| |
| // Also fix up TLS and RELRO segment pointers as appropriate. |
| if (segment->type() == elfcpp::PT_TLS) |
| this->tls_segment_ = segment; |
| else if (segment->type() == elfcpp::PT_GNU_RELRO) |
| this->relro_segment_ = segment; |
| |
| ++list_iter; |
| } |
| else |
| { |
| list_iter = this->segment_list_.erase(list_iter); |
| // This is a segment created during section layout. It should be |
| // safe to remove it since we should have removed all pointers to it. |
| delete segment; |
| } |
| } |
| } |
| |
| // Clean up after relaxation so that sections can be laid out again. |
| |
| void |
| Layout::clean_up_after_relaxation() |
| { |
| // Restore the segments to point state just prior to the relaxation loop. |
| Script_sections* script_section = this->script_options_->script_sections(); |
| script_section->release_segments(); |
| this->restore_segments(this->segment_states_); |
| |
| // Reset section addresses and file offsets |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| (*p)->restore_states(); |
| |
| // If an input section changes size because of relaxation, |
| // we need to adjust the section offsets of all input sections. |
| // after such a section. |
| if ((*p)->section_offsets_need_adjustment()) |
| (*p)->adjust_section_offsets(); |
| |
| (*p)->reset_address_and_file_offset(); |
| } |
| |
| // Reset special output object address and file offsets. |
| for (Data_list::iterator p = this->special_output_list_.begin(); |
| p != this->special_output_list_.end(); |
| ++p) |
| (*p)->reset_address_and_file_offset(); |
| |
| // A linker script may have created some output section data objects. |
| // They are useless now. |
| for (Output_section_data_list::const_iterator p = |
| this->script_output_section_data_list_.begin(); |
| p != this->script_output_section_data_list_.end(); |
| ++p) |
| delete *p; |
| this->script_output_section_data_list_.clear(); |
| |
| // Special-case fill output objects are recreated each time through |
| // the relaxation loop. |
| this->reset_relax_output(); |
| } |
| |
| void |
| Layout::reset_relax_output() |
| { |
| for (Data_list::const_iterator p = this->relax_output_list_.begin(); |
| p != this->relax_output_list_.end(); |
| ++p) |
| delete *p; |
| this->relax_output_list_.clear(); |
| } |
| |
| // Prepare for relaxation. |
| |
| void |
| Layout::prepare_for_relaxation() |
| { |
| // Create an relaxation debug check if in debugging mode. |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| this->relaxation_debug_check_ = new Relaxation_debug_check(); |
| |
| // Save segment states. |
| this->segment_states_ = new Segment_states(); |
| this->save_segments(this->segment_states_); |
| |
| for(Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| (*p)->save_states(); |
| |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| this->relaxation_debug_check_->check_output_data_for_reset_values( |
| this->section_list_, this->special_output_list_, |
| this->relax_output_list_); |
| |
| // Also enable recording of output section data from scripts. |
| this->record_output_section_data_from_script_ = true; |
| } |
| |
| // If the user set the address of the text segment, that may not be |
| // compatible with putting the segment headers and file headers into |
| // that segment. For isolate_execinstr() targets, it's the rodata |
| // segment rather than text where we might put the headers. |
| static inline bool |
| load_seg_unusable_for_headers(const Target* target) |
| { |
| const General_options& options = parameters->options(); |
| if (target->isolate_execinstr()) |
| return (options.user_set_Trodata_segment() |
| && options.Trodata_segment() % target->abi_pagesize() != 0); |
| else |
| return (options.user_set_Ttext() |
| && options.Ttext() % target->abi_pagesize() != 0); |
| } |
| |
| // Relaxation loop body: If target has no relaxation, this runs only once |
| // Otherwise, the target relaxation hook is called at the end of |
| // each iteration. If the hook returns true, it means re-layout of |
| // section is required. |
| // |
| // The number of segments created by a linking script without a PHDRS |
| // clause may be affected by section sizes and alignments. There is |
| // a remote chance that relaxation causes different number of PT_LOAD |
| // segments are created and sections are attached to different segments. |
| // Therefore, we always throw away all segments created during section |
| // layout. In order to be able to restart the section layout, we keep |
| // a copy of the segment list right before the relaxation loop and use |
| // that to restore the segments. |
| // |
| // PASS is the current relaxation pass number. |
| // SYMTAB is a symbol table. |
| // PLOAD_SEG is the address of a pointer for the load segment. |
| // PHDR_SEG is a pointer to the PHDR segment. |
| // SEGMENT_HEADERS points to the output segment header. |
| // FILE_HEADER points to the output file header. |
| // PSHNDX is the address to store the output section index. |
| |
| off_t inline |
| Layout::relaxation_loop_body( |
| int pass, |
| Target* target, |
| Symbol_table* symtab, |
| Output_segment** pload_seg, |
| Output_segment* phdr_seg, |
| Output_segment_headers* segment_headers, |
| Output_file_header* file_header, |
| unsigned int* pshndx) |
| { |
| // If this is not the first iteration, we need to clean up after |
| // relaxation so that we can lay out the sections again. |
| if (pass != 0) |
| this->clean_up_after_relaxation(); |
| |
| // If there is a SECTIONS clause, put all the input sections into |
| // the required order. |
| Output_segment* load_seg; |
| if (this->script_options_->saw_sections_clause()) |
| load_seg = this->set_section_addresses_from_script(symtab); |
| else if (parameters->options().relocatable()) |
| load_seg = NULL; |
| else |
| load_seg = this->find_first_load_seg(target); |
| |
| if (parameters->options().oformat_enum() |
| != General_options::OBJECT_FORMAT_ELF) |
| load_seg = NULL; |
| |
| if (load_seg_unusable_for_headers(target)) |
| { |
| load_seg = NULL; |
| phdr_seg = NULL; |
| } |
| |
| gold_assert(phdr_seg == NULL |
| || load_seg != NULL |
| || this->script_options_->saw_sections_clause()); |
| |
| // If the address of the load segment we found has been set by |
| // --section-start rather than by a script, then adjust the VMA and |
| // LMA downward if possible to include the file and section headers. |
| uint64_t header_gap = 0; |
| if (load_seg != NULL |
| && load_seg->are_addresses_set() |
| && !this->script_options_->saw_sections_clause() |
| && !parameters->options().relocatable()) |
| { |
| file_header->finalize_data_size(); |
| segment_headers->finalize_data_size(); |
| size_t sizeof_headers = (file_header->data_size() |
| + segment_headers->data_size()); |
| const uint64_t abi_pagesize = target->abi_pagesize(); |
| uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers; |
| hdr_paddr &= ~(abi_pagesize - 1); |
| uint64_t subtract = load_seg->paddr() - hdr_paddr; |
| if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract) |
| load_seg = NULL; |
| else |
| { |
| load_seg->set_addresses(load_seg->vaddr() - subtract, |
| load_seg->paddr() - subtract); |
| header_gap = subtract - sizeof_headers; |
| } |
| } |
| |
| // Lay out the segment headers. |
| if (!parameters->options().relocatable()) |
| { |
| gold_assert(segment_headers != NULL); |
| if (header_gap != 0 && load_seg != NULL) |
| { |
| Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1); |
| load_seg->add_initial_output_data(z); |
| } |
| if (load_seg != NULL) |
| load_seg->add_initial_output_data(segment_headers); |
| if (phdr_seg != NULL) |
| phdr_seg->add_initial_output_data(segment_headers); |
| } |
| |
| // Lay out the file header. |
| if (load_seg != NULL) |
| load_seg->add_initial_output_data(file_header); |
| |
| if (this->script_options_->saw_phdrs_clause() |
| && !parameters->options().relocatable()) |
| { |
| // Support use of FILEHDRS and PHDRS attachments in a PHDRS |
| // clause in a linker script. |
| Script_sections* ss = this->script_options_->script_sections(); |
| ss->put_headers_in_phdrs(file_header, segment_headers); |
| } |
| |
| // We set the output section indexes in set_segment_offsets and |
| // set_section_indexes. |
| *pshndx = 1; |
| |
| // Set the file offsets of all the segments, and all the sections |
| // they contain. |
| off_t off; |
| if (!parameters->options().relocatable()) |
| off = this->set_segment_offsets(target, load_seg, pshndx); |
| else |
| off = this->set_relocatable_section_offsets(file_header, pshndx); |
| |
| // Verify that the dummy relaxation does not change anything. |
| if (is_debugging_enabled(DEBUG_RELAXATION)) |
| { |
| if (pass == 0) |
| this->relaxation_debug_check_->read_sections(this->section_list_); |
| else |
| this->relaxation_debug_check_->verify_sections(this->section_list_); |
| } |
| |
| *pload_seg = load_seg; |
| return off; |
| } |
| |
| // Search the list of patterns and find the position of the given section |
| // name in the output section. If the section name matches a glob |
| // pattern and a non-glob name, then the non-glob position takes |
| // precedence. Return 0 if no match is found. |
| |
| unsigned int |
| Layout::find_section_order_index(const std::string& section_name) |
| { |
| Unordered_map<std::string, unsigned int>::iterator map_it; |
| map_it = this->input_section_position_.find(section_name); |
| if (map_it != this->input_section_position_.end()) |
| return map_it->second; |
| |
| // Absolute match failed. Linear search the glob patterns. |
| std::vector<std::string>::iterator it; |
| for (it = this->input_section_glob_.begin(); |
| it != this->input_section_glob_.end(); |
| ++it) |
| { |
| if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0) |
| { |
| map_it = this->input_section_position_.find(*it); |
| gold_assert(map_it != this->input_section_position_.end()); |
| return map_it->second; |
| } |
| } |
| return 0; |
| } |
| |
| // Read the sequence of input sections from the file specified with |
| // option --section-ordering-file. |
| |
| void |
| Layout::read_layout_from_file() |
| { |
| const char* filename = parameters->options().section_ordering_file(); |
| std::ifstream in; |
| std::string line; |
| |
| in.open(filename); |
| if (!in) |
| gold_fatal(_("unable to open --section-ordering-file file %s: %s"), |
| filename, strerror(errno)); |
| |
| File_read::record_file_read(filename); |
| |
| std::getline(in, line); // this chops off the trailing \n, if any |
| unsigned int position = 1; |
| this->set_section_ordering_specified(); |
| |
| while (in) |
| { |
| if (!line.empty() && line[line.length() - 1] == '\r') // Windows |
| line.resize(line.length() - 1); |
| // Ignore comments, beginning with '#' |
| if (line[0] == '#') |
| { |
| std::getline(in, line); |
| continue; |
| } |
| this->input_section_position_[line] = position; |
| // Store all glob patterns in a vector. |
| if (is_wildcard_string(line.c_str())) |
| this->input_section_glob_.push_back(line); |
| position++; |
| std::getline(in, line); |
| } |
| } |
| |
| // Finalize the layout. When this is called, we have created all the |
| // output sections and all the output segments which are based on |
| // input sections. We have several things to do, and we have to do |
| // them in the right order, so that we get the right results correctly |
| // and efficiently. |
| |
| // 1) Finalize the list of output segments and create the segment |
| // table header. |
| |
| // 2) Finalize the dynamic symbol table and associated sections. |
| |
| // 3) Determine the final file offset of all the output segments. |
| |
| // 4) Determine the final file offset of all the SHF_ALLOC output |
| // sections. |
| |
| // 5) Create the symbol table sections and the section name table |
| // section. |
| |
| // 6) Finalize the symbol table: set symbol values to their final |
| // value and make a final determination of which symbols are going |
| // into the output symbol table. |
| |
| // 7) Create the section table header. |
| |
| // 8) Determine the final file offset of all the output sections which |
| // are not SHF_ALLOC, including the section table header. |
| |
| // 9) Finalize the ELF file header. |
| |
| // This function returns the size of the output file. |
| |
| off_t |
| Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab, |
| Target* target, const Task* task) |
| { |
| unsigned int local_dynamic_count = 0; |
| unsigned int forced_local_dynamic_count = 0; |
| |
| target->finalize_sections(this, input_objects, symtab); |
| |
| this->count_local_symbols(task, input_objects); |
| |
| this->link_stabs_sections(); |
| |
| Output_segment* phdr_seg = NULL; |
| if (!parameters->options().relocatable() && !parameters->doing_static_link()) |
| { |
| // There was a dynamic object in the link. We need to create |
| // some information for the dynamic linker. |
| |
| // Create the PT_PHDR segment which will hold the program |
| // headers. |
| if (!this->script_options_->saw_phdrs_clause()) |
| phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R); |
| |
| // Create the dynamic symbol table, including the hash table. |
| Output_section* dynstr; |
| std::vector<Symbol*> dynamic_symbols; |
| Versions versions(*this->script_options()->version_script_info(), |
| &this->dynpool_); |
| this->create_dynamic_symtab(input_objects, symtab, &dynstr, |
| &local_dynamic_count, |
| &forced_local_dynamic_count, |
| &dynamic_symbols, |
| &versions); |
| |
| // Create the .interp section to hold the name of the |
| // interpreter, and put it in a PT_INTERP segment. Don't do it |
| // if we saw a .interp section in an input file. |
| if ((!parameters->options().shared() |
| || parameters->options().dynamic_linker() != NULL) |
| && this->interp_segment_ == NULL) |
| this->create_interp(target); |
| |
| // Finish the .dynamic section to hold the dynamic data, and put |
| // it in a PT_DYNAMIC segment. |
| this->finish_dynamic_section(input_objects, symtab); |
| |
| // We should have added everything we need to the dynamic string |
| // table. |
| this->dynpool_.set_string_offsets(); |
| |
| // Create the version sections. We can't do this until the |
| // dynamic string table is complete. |
| this->create_version_sections(&versions, symtab, |
| (local_dynamic_count |
| + forced_local_dynamic_count), |
| dynamic_symbols, dynstr); |
| |
| // Set the size of the _DYNAMIC symbol. We can't do this until |
| // after we call create_version_sections. |
| this->set_dynamic_symbol_size(symtab); |
| } |
| |
| // Create segment headers. |
| Output_segment_headers* segment_headers = |
| (parameters->options().relocatable() |
| ? NULL |
| : new Output_segment_headers(this->segment_list_)); |
| |
| // Lay out the file header. |
| Output_file_header* file_header = new Output_file_header(target, symtab, |
| segment_headers); |
| |
| this->special_output_list_.push_back(file_header); |
| if (segment_headers != NULL) |
| this->special_output_list_.push_back(segment_headers); |
| |
| // Find approriate places for orphan output sections if we are using |
| // a linker script. |
| if (this->script_options_->saw_sections_clause()) |
| this->place_orphan_sections_in_script(); |
| |
| Output_segment* load_seg; |
| off_t off; |
| unsigned int shndx; |
| int pass = 0; |
| |
| // Take a snapshot of the section layout as needed. |
| if (target->may_relax()) |
| this->prepare_for_relaxation(); |
| |
| // Run the relaxation loop to lay out sections. |
| do |
| { |
| off = this->relaxation_loop_body(pass, target, symtab, &load_seg, |
| phdr_seg, segment_headers, file_header, |
| &shndx); |
| pass++; |
| } |
| while (target->may_relax() |
| && target->relax(pass, input_objects, symtab, this, task)); |
| |
| // If there is a load segment that contains the file and program headers, |
| // provide a symbol __ehdr_start pointing there. |
| // A program can use this to examine itself robustly. |
| Symbol *ehdr_start = symtab->lookup("__ehdr_start"); |
| if (ehdr_start != NULL && ehdr_start->is_predefined()) |
| { |
| if (load_seg != NULL) |
| ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START); |
| else |
| ehdr_start->set_undefined(); |
| } |
| |
| // Set the file offsets of all the non-data sections we've seen so |
| // far which don't have to wait for the input sections. We need |
| // this in order to finalize local symbols in non-allocated |
| // sections. |
| off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS); |
| |
| // Set the section indexes of all unallocated sections seen so far, |
| // in case any of them are somehow referenced by a symbol. |
| shndx = this->set_section_indexes(shndx); |
| |
| // Create the symbol table sections. |
| this->create_symtab_sections(input_objects, symtab, shndx, &off, |
| local_dynamic_count); |
| if (!parameters->doing_static_link()) |
| this->assign_local_dynsym_offsets(input_objects); |
| |
| // Process any symbol assignments from a linker script. This must |
| // be called after the symbol table has been finalized. |
| this->script_options_->finalize_symbols(symtab, this); |
| |
| // Create the incremental inputs sections. |
| if (this->incremental_inputs_) |
| { |
| this->incremental_inputs_->finalize(); |
| this->create_incremental_info_sections(symtab); |
| } |
| |
| // Create the .shstrtab section. |
| Output_section* shstrtab_section = this->create_shstrtab(); |
| |
| // Set the file offsets of the rest of the non-data sections which |
| // don't have to wait for the input sections. |
| off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS); |
| |
| // Now that all sections have been created, set the section indexes |
| // for any sections which haven't been done yet. |
| shndx = this->set_section_indexes(shndx); |
| |
| // Create the section table header. |
| this->create_shdrs(shstrtab_section, &off); |
| |
| // If there are no sections which require postprocessing, we can |
| // handle the section names now, and avoid a resize later. |
| if (!this->any_postprocessing_sections_) |
| { |
| off = this->set_section_offsets(off, |
| POSTPROCESSING_SECTIONS_PASS); |
| off = |
| this->set_section_offsets(off, |
| STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS); |
| } |
| |
| file_header->set_section_info(this->section_headers_, shstrtab_section); |
| |
| // Now we know exactly where everything goes in the output file |
| // (except for non-allocated sections which require postprocessing). |
| Output_data::layout_complete(); |
| |
| this->output_file_size_ = off; |
| |
| return off; |
| } |
| |
| // Create a note header following the format defined in the ELF ABI. |
| // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name |
| // of the section to create, DESCSZ is the size of the descriptor. |
| // ALLOCATE is true if the section should be allocated in memory. |
| // This returns the new note section. It sets *TRAILING_PADDING to |
| // the number of trailing zero bytes required. |
| |
| Output_section* |
| Layout::create_note(const char* name, int note_type, |
| const char* section_name, size_t descsz, |
| bool allocate, size_t* trailing_padding) |
| { |
| // Authorities all agree that the values in a .note field should |
| // be aligned on 4-byte boundaries for 32-bit binaries. However, |
| // they differ on what the alignment is for 64-bit binaries. |
| // The GABI says unambiguously they take 8-byte alignment: |
| // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section |
| // Other documentation says alignment should always be 4 bytes: |
| // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format |
| // GNU ld and GNU readelf both support the latter (at least as of |
| // version 2.16.91), and glibc always generates the latter for |
| // .note.ABI-tag (as of version 1.6), so that's the one we go with |
| // here. |
| #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default. |
| const int size = parameters->target().get_size(); |
| #else |
| const int size = 32; |
| #endif |
| // The NT_GNU_PROPERTY_TYPE_0 note is aligned to the pointer size. |
| const int addralign = ((note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0 |
| ? parameters->target().get_size() |
| : size) / 8); |
| |
| // The contents of the .note section. |
| size_t namesz = strlen(name) + 1; |
| size_t aligned_namesz = align_address(namesz, size / 8); |
| size_t aligned_descsz = align_address(descsz, size / 8); |
| |
| size_t notehdrsz = 3 * (size / 8) + aligned_namesz; |
| |
| unsigned char* buffer = new unsigned char[notehdrsz]; |
| memset(buffer, 0, notehdrsz); |
| |
| bool is_big_endian = parameters->target().is_big_endian(); |
| |
| if (size == 32) |
| { |
| if (!is_big_endian) |
| { |
| elfcpp::Swap<32, false>::writeval(buffer, namesz); |
| elfcpp::Swap<32, false>::writeval(buffer + 4, descsz); |
| elfcpp::Swap<32, false>::writeval(buffer + 8, note_type); |
| } |
| else |
| { |
| elfcpp::Swap<32, true>::writeval(buffer, namesz); |
| elfcpp::Swap<32, true>::writeval(buffer + 4, descsz); |
| elfcpp::Swap<32, true>::writeval(buffer + 8, note_type); |
| } |
| } |
| else if (size == 64) |
| { |
| if (!is_big_endian) |
| { |
| elfcpp::Swap<64, false>::writeval(buffer, namesz); |
| elfcpp::Swap<64, false>::writeval(buffer + 8, descsz); |
| elfcpp::Swap<64, false>::writeval(buffer + 16, note_type); |
| } |
| else |
| { |
| elfcpp::Swap<64, true>::writeval(buffer, namesz); |
| elfcpp::Swap<64, true>::writeval(buffer + 8, descsz); |
| elfcpp::Swap<64, true>::writeval(buffer + 16, note_type); |
| } |
| } |
| else |
| gold_unreachable(); |
| |
| memcpy(buffer + 3 * (size / 8), name, namesz); |
| |
| elfcpp::Elf_Xword flags = 0; |
| Output_section_order order = ORDER_INVALID; |
| if (allocate) |
| { |
| flags = elfcpp::SHF_ALLOC; |
| order = (note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0 |
| ? ORDER_PROPERTY_NOTE : ORDER_RO_NOTE); |
| } |
| Output_section* os = this->choose_output_section(NULL, section_name, |
| elfcpp::SHT_NOTE, |
| flags, false, order, false, |
| false, true); |
| if (os == NULL) |
| return NULL; |
| |
| Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz, |
| addralign, |
| "** note header"); |
| os->add_output_section_data(posd); |
| |
| *trailing_padding = aligned_descsz - descsz; |
| |
| return os; |
| } |
| |
| // Create a .note.gnu.property section to record program properties |
| // accumulated from the input files. |
| |
| void |
| Layout::create_gnu_properties_note() |
| { |
| parameters->target().finalize_gnu_properties(this); |
| |
| if (this->gnu_properties_.empty()) |
| return; |
| |
| const unsigned int size = parameters->target().get_size(); |
| const bool is_big_endian = parameters->target().is_big_endian(); |
| |
| // Compute the total size of the properties array. |
| size_t descsz = 0; |
| for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin(); |
| prop != this->gnu_properties_.end(); |
| ++prop) |
| { |
| descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8); |
| } |
| |
| // Create the note section. |
| size_t trailing_padding; |
| Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0, |
| ".note.gnu.property", descsz, |
| true, &trailing_padding); |
| if (os == NULL) |
| return; |
| gold_assert(trailing_padding == 0); |
| |
| // Allocate and fill the properties array. |
| unsigned char* desc = new unsigned char[descsz]; |
| unsigned char* p = desc; |
| for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin(); |
| prop != this->gnu_properties_.end(); |
| ++prop) |
| { |
| size_t datasz = prop->second.pr_datasz; |
| size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8); |
| write_sized_value(prop->first, 4, p, is_big_endian); |
| write_sized_value(datasz, 4, p + 4, is_big_endian); |
| memcpy(p + 8, prop->second.pr_data, datasz); |
| if (aligned_datasz > datasz) |
| memset(p + 8 + datasz, 0, aligned_datasz - datasz); |
| p += 8 + aligned_datasz; |
| } |
| Output_section_data* posd = new Output_data_const(desc, descsz, 4); |
| os->add_output_section_data(posd); |
| } |
| |
| // For an executable or shared library, create a note to record the |
| // version of gold used to create the binary. |
| |
| void |
| Layout::create_gold_note() |
| { |
| if (parameters->options().relocatable() |
| || parameters->incremental_update()) |
| return; |
| |
| std::string desc = std::string("gold ") + gold::get_version_string(); |
| |
| Output_section* os; |
| Output_section_data* posd; |
| |
| if (!parameters->options().enable_linker_version()) |
| { |
| size_t trailing_padding; |
| |
| os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION, |
| ".note.gnu.gold-version", desc.size(), |
| false, &trailing_padding); |
| if (os == NULL) |
| return; |
| |
| posd = new Output_data_const(desc, 4); |
| os->add_output_section_data(posd); |
| |
| if (trailing_padding > 0) |
| { |
| posd = new Output_data_zero_fill(trailing_padding, 0); |
| os->add_output_section_data(posd); |
| } |
| } |
| else |
| { |
| os = this->choose_output_section(NULL, ".comment", |
| elfcpp::SHT_PROGBITS, 0, |
| false, ORDER_INVALID, |
| false, false, false); |
| if (os == NULL) |
| return; |
| |
| posd = new Output_data_const(desc, 1); |
| os->add_output_section_data(posd); |
| } |
| } |
| |
| // Record whether the stack should be executable. This can be set |
| // from the command line using the -z execstack or -z noexecstack |
| // options. Otherwise, if any input file has a .note.GNU-stack |
| // section with the SHF_EXECINSTR flag set, the stack should be |
| // executable. Otherwise, if at least one input file a |
| // .note.GNU-stack section, and some input file has no .note.GNU-stack |
| // section, we use the target default for whether the stack should be |
| // executable. If -z stack-size was used to set a p_memsz value for |
| // PT_GNU_STACK, we generate the segment regardless. Otherwise, we |
| // don't generate a stack note. When generating a object file, we |
| // create a .note.GNU-stack section with the appropriate marking. |
| // When generating an executable or shared library, we create a |
| // PT_GNU_STACK segment. |
| |
| void |
| Layout::create_stack_segment() |
| { |
| bool is_stack_executable; |
| if (parameters->options().is_execstack_set()) |
| { |
| is_stack_executable = parameters->options().is_stack_executable(); |
| if (!is_stack_executable |
| && this->input_requires_executable_stack_ |
| && parameters->options().warn_execstack()) |
| gold_warning(_("one or more inputs require executable stack, " |
| "but -z noexecstack was given")); |
| } |
| else if (!this->input_with_gnu_stack_note_ |
| && (!parameters->options().user_set_stack_size() |
| || parameters->options().relocatable())) |
| return; |
| else |
| { |
| if (this->input_requires_executable_stack_) |
| is_stack_executable = true; |
| else if (this->input_without_gnu_stack_note_) |
| is_stack_executable = |
| parameters->target().is_default_stack_executable(); |
| else |
| is_stack_executable = false; |
| } |
| |
| if (parameters->options().relocatable()) |
| { |
| const char* name = this->namepool_.add(".note.GNU-stack", false, NULL); |
| elfcpp::Elf_Xword flags = 0; |
| if (is_stack_executable) |
| flags |= elfcpp::SHF_EXECINSTR; |
| this->make_output_section(name, elfcpp::SHT_PROGBITS, flags, |
| ORDER_INVALID, false); |
| } |
| else |
| { |
| if (this->script_options_->saw_phdrs_clause()) |
| return; |
| int flags = elfcpp::PF_R | elfcpp::PF_W; |
| if (is_stack_executable) |
| flags |= elfcpp::PF_X; |
| Output_segment* seg = |
| this->make_output_segment(elfcpp::PT_GNU_STACK, flags); |
| seg->set_size(parameters->options().stack_size()); |
| // BFD lets targets override this default alignment, but the only |
| // targets that do so are ones that Gold does not support so far. |
| seg->set_minimum_p_align(16); |
| } |
| } |
| |
| // If --build-id was used, set up the build ID note. |
| |
| void |
| Layout::create_build_id() |
| { |
| if (!parameters->options().user_set_build_id()) |
| return; |
| |
| const char* style = parameters->options().build_id(); |
| if (strcmp(style, "none") == 0) |
| return; |
| |
| // Set DESCSZ to the size of the note descriptor. When possible, |
| // set DESC to the note descriptor contents. |
| size_t descsz; |
| std::string desc; |
| if (strcmp(style, "md5") == 0) |
| descsz = 128 / 8; |
| else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0)) |
| descsz = 160 / 8; |
| else if (strcmp(style, "uuid") == 0) |
| { |
| #ifndef __MINGW32__ |
| const size_t uuidsz = 128 / 8; |
| |
| char buffer[uuidsz]; |
| memset(buffer, 0, uuidsz); |
| |
| int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY); |
| if (descriptor < 0) |
| gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"), |
| strerror(errno)); |
| else |
| { |
| ssize_t got = ::read(descriptor, buffer, uuidsz); |
| release_descriptor(descriptor, true); |
| if (got < 0) |
| gold_error(_("/dev/urandom: read failed: %s"), strerror(errno)); |
| else if (static_cast<size_t>(got) != uuidsz) |
| gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"), |
| uuidsz, got); |
| } |
| |
| desc.assign(buffer, uuidsz); |
| descsz = uuidsz; |
| #else // __MINGW32__ |
| UUID uuid; |
| typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid); |
| |
| HMODULE rpc_library = LoadLibrary("rpcrt4.dll"); |
| if (!rpc_library) |
| gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll")); |
| else |
| { |
| UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>( |
| GetProcAddress(rpc_library, "UuidCreate")); |
| if (!uuid_create) |
| gold_error(_("--build-id=uuid failed: could not find UuidCreate")); |
| else if (uuid_create(&uuid) != RPC_S_OK) |
| gold_error(_("__build_id=uuid failed: call UuidCreate() failed")); |
| FreeLibrary(rpc_library); |
| } |
| desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID)); |
| descsz = sizeof(UUID); |
| #endif // __MINGW32__ |
| } |
| else if (strncmp(style, "0x", 2) == 0) |
| { |
| hex_init(); |
| const char* p = style + 2; |
| while (*p != '\0') |
| { |
| if (hex_p(p[0]) && hex_p(p[1])) |
| { |
| char c = (hex_value(p[0]) << 4) | hex_value(p[1]); |
| desc += c; |
| p += 2; |
| } |
| else if (*p == '-' || *p == ':') |
| ++p; |
| else |
| gold_fatal(_("--build-id argument '%s' not a valid hex number"), |
| style); |
| } |
| descsz = desc.size(); |
| } |
| else |
| gold_fatal(_("unrecognized --build-id argument '%s'"), style); |
| |
| // Create the note. |
| size_t trailing_padding; |
| Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID, |
| ".note.gnu.build-id", descsz, true, |
| &trailing_padding); |
| if (os == NULL) |
| return; |
| |
| if (!desc.empty()) |
| { |
| // We know the value already, so we fill it in now. |
| gold_assert(desc.size() == descsz); |
| |
| Output_section_data* posd = new Output_data_const(desc, 4); |
| os->add_output_section_data(posd); |
| |
| if (trailing_padding != 0) |
| { |
| posd = new Output_data_zero_fill(trailing_padding, 0); |
| os->add_output_section_data(posd); |
| } |
| } |
| else |
| { |
| // We need to compute a checksum after we have completed the |
| // link. |
| gold_assert(trailing_padding == 0); |
| this->build_id_note_ = new Output_data_zero_fill(descsz, 4); |
| os->add_output_section_data(this->build_id_note_); |
| } |
| } |
| |
| // If --package-metadata was used, set up the package metadata note. |
| // https://systemd.io/ELF_PACKAGE_METADATA/ |
| |
| void |
| Layout::create_package_metadata() |
| { |
| if (!parameters->options().user_set_package_metadata()) |
| return; |
| |
| const char* desc = parameters->options().package_metadata(); |
| if (strcmp(desc, "") == 0) |
| return; |
| |
| #ifdef HAVE_JANSSON |
| json_error_t json_error; |
| json_t *json = json_loads(desc, 0, &json_error); |
| if (json) |
| json_decref(json); |
| else |
| { |
| gold_fatal(_("error: --package-metadata=%s does not contain valid " |
| "JSON: %s\n"), |
| desc, json_error.text); |
| } |
| #endif |
| |
| // Create the note. |
| size_t trailing_padding; |
| // Ensure the trailing NULL byte is always included, as per specification. |
| size_t descsz = strlen(desc) + 1; |
| Output_section* os = this->create_note("FDO", elfcpp::FDO_PACKAGING_METADATA, |
| ".note.package", descsz, true, |
| &trailing_padding); |
| if (os == NULL) |
| return; |
| |
| Output_section_data* posd = new Output_data_const(desc, descsz, 4); |
| os->add_output_section_data(posd); |
| |
| if (trailing_padding != 0) |
| { |
| posd = new Output_data_zero_fill(trailing_padding, 0); |
| os->add_output_section_data(posd); |
| } |
| } |
| |
| // If we have both .stabXX and .stabXXstr sections, then the sh_link |
| // field of the former should point to the latter. I'm not sure who |
| // started this, but the GNU linker does it, and some tools depend |
| // upon it. |
| |
| void |
| Layout::link_stabs_sections() |
| { |
| if (!this->have_stabstr_section_) |
| return; |
| |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() != elfcpp::SHT_STRTAB) |
| continue; |
| |
| const char* name = (*p)->name(); |
| if (strncmp(name, ".stab", 5) != 0) |
| continue; |
| |
| size_t len = strlen(name); |
| if (strcmp(name + len - 3, "str") != 0) |
| continue; |
| |
| std::string stab_name(name, len - 3); |
| Output_section* stab_sec; |
| stab_sec = this->find_output_section(stab_name.c_str()); |
| if (stab_sec != NULL) |
| stab_sec->set_link_section(*p); |
| } |
| } |
| |
| // Create .gnu_incremental_inputs and related sections needed |
| // for the next run of incremental linking to check what has changed. |
| |
| void |
| Layout::create_incremental_info_sections(Symbol_table* symtab) |
| { |
| Incremental_inputs* incr = this->incremental_inputs_; |
| |
| gold_assert(incr != NULL); |
| |
| // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections. |
| incr->create_data_sections(symtab); |
| |
| // Add the .gnu_incremental_inputs section. |
| const char* incremental_inputs_name = |
| this->namepool_.add(".gnu_incremental_inputs", false, NULL); |
| Output_section* incremental_inputs_os = |
| this->make_output_section(incremental_inputs_name, |
| elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0, |
| ORDER_INVALID, false); |
| incremental_inputs_os->add_output_section_data(incr->inputs_section()); |
| |
| // Add the .gnu_incremental_symtab section. |
| const char* incremental_symtab_name = |
| this->namepool_.add(".gnu_incremental_symtab", false, NULL); |
| Output_section* incremental_symtab_os = |
| this->make_output_section(incremental_symtab_name, |
| elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0, |
| ORDER_INVALID, false); |
| incremental_symtab_os->add_output_section_data(incr->symtab_section()); |
| incremental_symtab_os->set_entsize(4); |
| |
| // Add the .gnu_incremental_relocs section. |
| const char* incremental_relocs_name = |
| this->namepool_.add(".gnu_incremental_relocs", false, NULL); |
| Output_section* incremental_relocs_os = |
| this->make_output_section(incremental_relocs_name, |
| elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0, |
| ORDER_INVALID, false); |
| incremental_relocs_os->add_output_section_data(incr->relocs_section()); |
| incremental_relocs_os->set_entsize(incr->relocs_entsize()); |
| |
| // Add the .gnu_incremental_got_plt section. |
| const char* incremental_got_plt_name = |
| this->namepool_.add(".gnu_incremental_got_plt", false, NULL); |
| Output_section* incremental_got_plt_os = |
| this->make_output_section(incremental_got_plt_name, |
| elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0, |
| ORDER_INVALID, false); |
| incremental_got_plt_os->add_output_section_data(incr->got_plt_section()); |
| |
| // Add the .gnu_incremental_strtab section. |
| const char* incremental_strtab_name = |
| this->namepool_.add(".gnu_incremental_strtab", false, NULL); |
| Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name, |
| elfcpp::SHT_STRTAB, 0, |
| ORDER_INVALID, false); |
| Output_data_strtab* strtab_data = |
| new Output_data_strtab(incr->get_stringpool()); |
| incremental_strtab_os->add_output_section_data(strtab_data); |
| |
| incremental_inputs_os->set_after_input_sections(); |
| incremental_symtab_os->set_after_input_sections(); |
| incremental_relocs_os->set_after_input_sections(); |
| incremental_got_plt_os->set_after_input_sections(); |
| |
| incremental_inputs_os->set_link_section(incremental_strtab_os); |
| incremental_symtab_os->set_link_section(incremental_inputs_os); |
| incremental_relocs_os->set_link_section(incremental_inputs_os); |
| incremental_got_plt_os->set_link_section(incremental_inputs_os); |
| } |
| |
| // Return whether SEG1 should be before SEG2 in the output file. This |
| // is based entirely on the segment type and flags. When this is |
| // called the segment addresses have normally not yet been set. |
| |
| bool |
| Layout::segment_precedes(const Output_segment* seg1, |
| const Output_segment* seg2) |
| { |
| // In order to produce a stable ordering if we're called with the same pointer |
| // return false. |
| if (seg1 == seg2) |
| return false; |
| |
| elfcpp::Elf_Word type1 = seg1->type(); |
| elfcpp::Elf_Word type2 = seg2->type(); |
| |
| // The single PT_PHDR segment is required to precede any loadable |
| // segment. We simply make it always first. |
| if (type1 == elfcpp::PT_PHDR) |
| { |
| gold_assert(type2 != elfcpp::PT_PHDR); |
| return true; |
| } |
| if (type2 == elfcpp::PT_PHDR) |
| return false; |
| |
| // The single PT_INTERP segment is required to precede any loadable |
| // segment. We simply make it always second. |
| if (type1 == elfcpp::PT_INTERP) |
| { |
| gold_assert(type2 != elfcpp::PT_INTERP); |
| return true; |
| } |
| if (type2 == elfcpp::PT_INTERP) |
| return false; |
| |
| // We then put PT_LOAD segments before any other segments. |
| if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD) |
| return true; |
| if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD) |
| return false; |
| |
| // We put the PT_TLS segment last except for the PT_GNU_RELRO |
| // segment, because that is where the dynamic linker expects to find |
| // it (this is just for efficiency; other positions would also work |
| // correctly). |
| if (type1 == elfcpp::PT_TLS |
| && type2 != elfcpp::PT_TLS |
| && type2 != elfcpp::PT_GNU_RELRO) |
| return false; |
| if (type2 == elfcpp::PT_TLS |
| && type1 != elfcpp::PT_TLS |
| && type1 != elfcpp::PT_GNU_RELRO) |
| return true; |
| |
| // We put the PT_GNU_RELRO segment last, because that is where the |
| // dynamic linker expects to find it (as with PT_TLS, this is just |
| // for efficiency). |
| if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO) |
| return false; |
| if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO) |
| return true; |
| |
| const elfcpp::Elf_Word flags1 = seg1->flags(); |
| const elfcpp::Elf_Word flags2 = seg2->flags(); |
| |
| // The order of non-PT_LOAD segments is unimportant. We simply sort |
| // by the numeric segment type and flags values. There should not |
| // be more than one segment with the same type and flags, except |
| // when a linker script specifies such. |
| if (type1 != elfcpp::PT_LOAD) |
| { |
| if (type1 != type2) |
| return type1 < type2; |
| uint64_t align1 = seg1->align(); |
| uint64_t align2 = seg2->align(); |
| // Place segments with larger alignments first. |
| if (align1 != align2) |
| return align1 > align2; |
| gold_assert(flags1 != flags2 |
| || this->script_options_->saw_phdrs_clause()); |
| return flags1 < flags2; |
| } |
| |
| // If the addresses are set already, sort by load address. |
| if (seg1->are_addresses_set()) |
| { |
| if (!seg2->are_addresses_set()) |
| return true; |
| |
| unsigned int section_count1 = seg1->output_section_count(); |
| unsigned int section_count2 = seg2->output_section_count(); |
| if (section_count1 == 0 && section_count2 > 0) |
| return true; |
| if (section_count1 > 0 && section_count2 == 0) |
| return false; |
| |
| uint64_t paddr1 = (seg1->are_addresses_set() |
| ? seg1->paddr() |
| : seg1->first_section_load_address()); |
| uint64_t paddr2 = (seg2->are_addresses_set() |
| ? seg2->paddr() |
| : seg2->first_section_load_address()); |
| |
| if (paddr1 != paddr2) |
| return paddr1 < paddr2; |
| } |
| else if (seg2->are_addresses_set()) |
| return false; |
| |
| // A segment which holds large data comes after a segment which does |
| // not hold large data. |
| if (seg1->is_large_data_segment()) |
| { |
| if (!seg2->is_large_data_segment()) |
| return false; |
| } |
| else if (seg2->is_large_data_segment()) |
| return true; |
| |
| // Otherwise, we sort PT_LOAD segments based on the flags. Readonly |
| // segments come before writable segments. Then writable segments |
| // with data come before writable segments without data. Then |
| // executable segments come before non-executable segments. Then |
| // the unlikely case of a non-readable segment comes before the |
| // normal case of a readable segment. If there are multiple |
| // segments with the same type and flags, we require that the |
| // address be set, and we sort by virtual address and then physical |
| // address. |
| if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W)) |
| return (flags1 & elfcpp::PF_W) == 0; |
| if ((flags1 & elfcpp::PF_W) != 0 |
| && seg1->has_any_data_sections() != seg2->has_any_data_sections()) |
| return seg1->has_any_data_sections(); |
| if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X)) |
| return (flags1 & elfcpp::PF_X) != 0; |
| if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R)) |
| return (flags1 & elfcpp::PF_R) == 0; |
| |
| // We shouldn't get here--we shouldn't create segments which we |
| // can't distinguish. Unless of course we are using a weird linker |
| // script or overlapping --section-start options. We could also get |
| // here if plugins want unique segments for subsets of sections. |
| gold_assert(this->script_options_->saw_phdrs_clause() |
| || parameters->options().any_section_start() |
| || this->is_unique_segment_for_sections_specified() |
| || parameters->options().text_unlikely_segment()); |
| return false; |
| } |
| |
| // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE. |
| |
| static off_t |
| align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize) |
| { |
| uint64_t unsigned_off = off; |
| uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1)) |
| | (addr & (abi_pagesize - 1))); |
| if (aligned_off < unsigned_off) |
| aligned_off += abi_pagesize; |
| return aligned_off; |
| } |
| |
| // On targets where the text segment contains only executable code, |
| // a non-executable segment is never the text segment. |
| |
| static inline bool |
| is_text_segment(const Target* target, const Output_segment* seg) |
| { |
| elfcpp::Elf_Xword flags = seg->flags(); |
| if ((flags & elfcpp::PF_W) != 0) |
| return false; |
| if ((flags & elfcpp::PF_X) == 0) |
| return !target->isolate_execinstr(); |
| return true; |
| } |
| |
| // Set the file offsets of all the segments, and all the sections they |
| // contain. They have all been created. LOAD_SEG must be laid out |
| // first. Return the offset of the data to follow. |
| |
| off_t |
| Layout::set_segment_offsets(const Target* target, Output_segment* load_seg, |
| unsigned int* pshndx) |
| { |
| // Sort them into the final order. We use a stable sort so that we |
| // don't randomize the order of indistinguishable segments created |
| // by linker scripts. |
| std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(), |
| Layout::Compare_segments(this)); |
| |
| // Find the PT_LOAD segments, and set their addresses and offsets |
| // and their section's addresses and offsets. |
| uint64_t start_addr; |
| if (parameters->options().user_set_Ttext()) |
| start_addr = parameters->options().Ttext(); |
| else if (parameters->options().output_is_position_independent()) |
| start_addr = 0; |
| else |
| start_addr = target->default_text_segment_address(); |
| |
| uint64_t addr = start_addr; |
| off_t off = 0; |
| |
| // If LOAD_SEG is NULL, then the file header and segment headers |
| // will not be loadable. But they still need to be at offset 0 in |
| // the file. Set their offsets now. |
| if (load_seg == NULL) |
| { |
| for (Data_list::iterator p = this->special_output_list_.begin(); |
| p != this->special_output_list_.end(); |
| ++p) |
| { |
| off = align_address(off, (*p)->addralign()); |
| (*p)->set_address_and_file_offset(0, off); |
| off += (*p)->data_size(); |
| } |
| } |
| |
| unsigned int increase_relro = this->increase_relro_; |
| if (this->script_options_->saw_sections_clause()) |
| increase_relro = 0; |
| |
| const bool check_sections = parameters->options().check_sections(); |
| Output_segment* last_load_segment = NULL; |
| |
| unsigned int shndx_begin = *pshndx; |
| unsigned int shndx_load_seg = *pshndx; |
| |
| for (Segment_list::iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD) |
| { |
| if (target->isolate_execinstr()) |
| { |
| // When we hit the segment that should contain the |
| // file headers, reset the file offset so we place |
| // it and subsequent segments appropriately. |
| // We'll fix up the preceding segments below. |
| if (load_seg == *p) |
| { |
| if (off == 0) |
| load_seg = NULL; |
| else |
| { |
| off = 0; |
| shndx_load_seg = *pshndx; |
| } |
| } |
| } |
| else |
| { |
| // Verify that the file headers fall into the first segment. |
| if (load_seg != NULL && load_seg != *p) |
| gold_unreachable(); |
| load_seg = NULL; |
| } |
| |
| bool are_addresses_set = (*p)->are_addresses_set(); |
| if (are_addresses_set) |
| { |
| // When it comes to setting file offsets, we care about |
| // the physical address. |
| addr = (*p)->paddr(); |
| } |
| else if (parameters->options().user_set_Ttext() |
| && (parameters->options().omagic() |
| || is_text_segment(target, *p))) |
| { |
| are_addresses_set = true; |
| } |
| else if (parameters->options().user_set_Trodata_segment() |
| && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0) |
| { |
| addr = parameters->options().Trodata_segment(); |
| are_addresses_set = true; |
| } |
| else if (parameters->options().user_set_Tdata() |
| && ((*p)->flags() & elfcpp::PF_W) != 0 |
| && (!parameters->options().user_set_Tbss() |
| || (*p)->has_any_data_sections())) |
| { |
| addr = parameters->options().Tdata(); |
| are_addresses_set = true; |
| } |
| else if (parameters->options().user_set_Tbss() |
| && ((*p)->flags() & elfcpp::PF_W) != 0 |
| && !(*p)->has_any_data_sections()) |
| { |
| addr = parameters->options().Tbss(); |
| are_addresses_set = true; |
| } |
| |
| uint64_t orig_addr = addr; |
| uint64_t orig_off = off; |
| |
| uint64_t aligned_addr = 0; |
| uint64_t abi_pagesize = target->abi_pagesize(); |
| uint64_t common_pagesize = target->common_pagesize(); |
| |
| if (!parameters->options().nmagic() |
| && !parameters->options().omagic()) |
| (*p)->set_minimum_p_align(abi_pagesize); |
| |
| if (!are_addresses_set) |
| { |
| // Skip the address forward one page, maintaining the same |
| // position within the page. This lets us store both segments |
| // overlapping on a single page in the file, but the loader will |
| // put them on different pages in memory. We will revisit this |
| // decision once we know the size of the segment. |
| |
| uint64_t max_align = (*p)->maximum_alignment(); |
| if (max_align > abi_pagesize) |
| addr = align_address(addr, max_align); |
| aligned_addr = addr; |
| |
| if (load_seg == *p) |
| { |
| // This is the segment that will contain the file |
| // headers, so its offset will have to be exactly zero. |
| gold_assert(orig_off == 0); |
| |
| // If the target wants a fixed minimum distance from the |
| // text segment to the read-only segment, move up now. |
| uint64_t min_addr = |
| start_addr + (parameters->options().user_set_rosegment_gap() |
| ? parameters->options().rosegment_gap() |
| : target->rosegment_gap()); |
| if (addr < min_addr) |
| addr = min_addr; |
| |
| // But this is not the first segment! To make its |
| // address congruent with its offset, that address better |
| // be aligned to the ABI-mandated page size. |
| addr = align_address(addr, abi_pagesize); |
| aligned_addr = addr; |
| } |
| else |
| { |
| if ((addr & (abi_pagesize - 1)) != 0) |
| addr = addr + abi_pagesize; |
| |
| off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); |
| } |
| } |
| |
| if (!parameters->options().nmagic() |
| && !parameters->options().omagic()) |
| { |
| // Here we are also taking care of the case when |
| // the maximum segment alignment is larger than the page size. |
| off = align_file_offset(off, addr, |
| std::max(abi_pagesize, |
| (*p)->maximum_alignment())); |
| } |
| else |
| { |
| // This is -N or -n with a section script which prevents |
| // us from using a load segment. We need to ensure that |
| // the file offset is aligned to the alignment of the |
| // segment. This is because the linker script |
| // implicitly assumed a zero offset. If we don't align |
| // here, then the alignment of the sections in the |
| // linker script may not match the alignment of the |
| // sections in the set_section_addresses call below, |
| // causing an error about dot moving backward. |
| off = align_address(off, (*p)->maximum_alignment()); |
| } |
| |
| unsigned int shndx_hold = *pshndx; |
| bool has_relro = false; |
| uint64_t new_addr = (*p)->set_section_addresses(target, this, |
| false, addr, |
| &increase_relro, |
| &has_relro, |
| &off, pshndx); |
| |
| // Now that we know the size of this segment, we may be able |
| // to save a page in memory, at the cost of wasting some |
| // file space, by instead aligning to the start of a new |
| // page. Here we use the real machine page size rather than |
| // the ABI mandated page size. If the segment has been |
| // aligned so that the relro data ends at a page boundary, |
| // we do not try to realign it. |
| |
| if (!are_addresses_set |
| && !has_relro |
| && aligned_addr != addr |
| && !parameters->incremental()) |
| { |
| uint64_t first_off = (common_pagesize |
| - (aligned_addr |
| & (common_pagesize - 1))); |
| uint64_t last_off = new_addr & (common_pagesize - 1); |
| if (first_off > 0 |
| && last_off > 0 |
| && ((aligned_addr & ~ (common_pagesize - 1)) |
| != (new_addr & ~ (common_pagesize - 1))) |
| && first_off + last_off <= common_pagesize) |
| { |
| *pshndx = shndx_hold; |
| addr = align_address(aligned_addr, common_pagesize); |
| addr = align_address(addr, (*p)->maximum_alignment()); |
| if ((addr & (abi_pagesize - 1)) != 0) |
| addr = addr + abi_pagesize; |
| off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1)); |
| off = align_file_offset(off, addr, abi_pagesize); |
| |
| increase_relro = this->increase_relro_; |
| if (this->script_options_->saw_sections_clause()) |
| increase_relro = 0; |
| has_relro = false; |
| |
| new_addr = (*p)->set_section_addresses(target, this, |
| true, addr, |
| &increase_relro, |
| &has_relro, |
| &off, pshndx); |
| } |
| } |
| |
| addr = new_addr; |
| |
| // Implement --check-sections. We know that the segments |
| // are sorted by LMA. |
| if (check_sections && last_load_segment != NULL) |
| { |
| gold_assert(last_load_segment->paddr() <= (*p)->paddr()); |
| if (last_load_segment->paddr() + last_load_segment->memsz() |
| > (*p)->paddr()) |
| { |
| unsigned long long lb1 = last_load_segment->paddr(); |
| unsigned long long le1 = lb1 + last_load_segment->memsz(); |
| unsigned long long lb2 = (*p)->paddr(); |
| unsigned long long le2 = lb2 + (*p)->memsz(); |
| gold_error(_("load segment overlap [0x%llx -> 0x%llx] and " |
| "[0x%llx -> 0x%llx]"), |
| lb1, le1, lb2, le2); |
| } |
| } |
| last_load_segment = *p; |
| } |
| } |
| |
| if (load_seg != NULL && target->isolate_execinstr()) |
| { |
| // Process the early segments again, setting their file offsets |
| // so they land after the segments starting at LOAD_SEG. |
| off = align_file_offset(off, 0, target->abi_pagesize()); |
| |
| this->reset_relax_output(); |
| |
| for (Segment_list::iterator p = this->segment_list_.begin(); |
| *p != load_seg; |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD) |
| { |
| // We repeat the whole job of assigning addresses and |
| // offsets, but we really only want to change the offsets and |
| // must ensure that the addresses all come out the same as |
| // they did the first time through. |
| bool has_relro = false; |
| const uint64_t old_addr = (*p)->vaddr(); |
| const uint64_t old_end = old_addr + (*p)->memsz(); |
| uint64_t new_addr = (*p)->set_section_addresses(target, this, |
| true, old_addr, |
| &increase_relro, |
| &has_relro, |
| &off, |
| &shndx_begin); |
| gold_assert(new_addr == old_end); |
| } |
| } |
| |
| gold_assert(shndx_begin == shndx_load_seg); |
| } |
| |
| // Handle the non-PT_LOAD segments, setting their offsets from their |
| // section's offsets. |
| for (Segment_list::iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| // PT_GNU_STACK was set up correctly when it was created. |
| if ((*p)->type() != elfcpp::PT_LOAD |
| && (*p)->type() != elfcpp::PT_GNU_STACK) |
| (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO |
| ? increase_relro |
| : 0); |
| } |
| |
| // Set the TLS offsets for each section in the PT_TLS segment. |
| if (this->tls_segment_ != NULL) |
| this->tls_segment_->set_tls_offsets(); |
| |
| return off; |
| } |
| |
| // Set the offsets of all the allocated sections when doing a |
| // relocatable link. This does the same jobs as set_segment_offsets, |
| // only for a relocatable link. |
| |
| off_t |
| Layout::set_relocatable_section_offsets(Output_data* file_header, |
| unsigned int* pshndx) |
| { |
| off_t off = 0; |
| |
| file_header->set_address_and_file_offset(0, 0); |
| off += file_header->data_size(); |
| |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| // We skip unallocated sections here, except that group sections |
| // have to come first. |
| if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0 |
| && (*p)->type() != elfcpp::SHT_GROUP) |
| continue; |
| |
| off = align_address(off, (*p)->addralign()); |
| |
| // The linker script might have set the address. |
| if (!(*p)->is_address_valid()) |
| (*p)->set_address(0); |
| (*p)->set_file_offset(off); |
| (*p)->finalize_data_size(); |
| if ((*p)->type() != elfcpp::SHT_NOBITS) |
| off += (*p)->data_size(); |
| |
| (*p)->set_out_shndx(*pshndx); |
| ++*pshndx; |
| } |
| |
| return off; |
| } |
| |
| // Set the file offset of all the sections not associated with a |
| // segment. |
| |
| off_t |
| Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass) |
| { |
| off_t startoff = off; |
| off_t maxoff = off; |
| |
| for (Section_list::iterator p = this->unattached_section_list_.begin(); |
| p != this->unattached_section_list_.end(); |
| ++p) |
| { |
| // The symtab section is handled in create_symtab_sections. |
| if (*p == this->symtab_section_) |
| continue; |
| |
| // If we've already set the data size, don't set it again. |
| if ((*p)->is_offset_valid() && (*p)->is_data_size_valid()) |
| continue; |
| |
| if (pass == BEFORE_INPUT_SECTIONS_PASS |
| && (*p)->requires_postprocessing()) |
| { |
| (*p)->create_postprocessing_buffer(); |
| this->any_postprocessing_sections_ = true; |
| } |
| |
| if (pass == BEFORE_INPUT_SECTIONS_PASS |
| && (*p)->after_input_sections()) |
| continue; |
| else if (pass == POSTPROCESSING_SECTIONS_PASS |
| && (!(*p)->after_input_sections() |
| || (*p)->type() == elfcpp::SHT_STRTAB)) |
| continue; |
| else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS |
| && (!(*p)->after_input_sections() |
| || (*p)->type() != elfcpp::SHT_STRTAB)) |
| continue; |
| |
| if (!parameters->incremental_update()) |
| { |
| off = align_address(off, (*p)->addralign()); |
| (*p)->set_file_offset(off); |
| (*p)->finalize_data_size(); |
| } |
| else |
| { |
| // Incremental update: allocate file space from free list. |
| (*p)->pre_finalize_data_size(); |
| off_t current_size = (*p)->current_data_size(); |
| off = this->allocate(current_size, (*p)->addralign(), startoff); |
| if (off == -1) |
| { |
| if (is_debugging_enabled(DEBUG_INCREMENTAL)) |
| this->free_list_.dump(); |
| gold_assert((*p)->output_section() != NULL); |
| gold_fallback(_("out of patch space for section %s; " |
| "relink with --incremental-full"), |
| (*p)->output_section()->name()); |
| } |
| (*p)->set_file_offset(off); |
| (*p)->finalize_data_size(); |
| if ((*p)->data_size() > current_size) |
| { |
| gold_assert((*p)->output_section() != NULL); |
| gold_fallback(_("%s: section changed size; " |
| "relink with --incremental-full"), |
| (*p)->output_section()->name()); |
| } |
| gold_debug(DEBUG_INCREMENTAL, |
| "set_section_offsets: %08lx %08lx %s", |
| static_cast<long>(off), |
| static_cast<long>((*p)->data_size()), |
| ((*p)->output_section() != NULL |
| ? (*p)->output_section()->name() : "(special)")); |
| } |
| |
| off += (*p)->data_size(); |
| if (off > maxoff) |
| maxoff = off; |
| |
| // At this point the name must be set. |
| if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS) |
| this->namepool_.add((*p)->name(), false, NULL); |
| } |
| return maxoff; |
| } |
| |
| // Set the section indexes of all the sections not associated with a |
| // segment. |
| |
| unsigned int |
| Layout::set_section_indexes(unsigned int shndx) |
| { |
| for (Section_list::iterator p = this->unattached_section_list_.begin(); |
| p != this->unattached_section_list_.end(); |
| ++p) |
| { |
| if (!(*p)->has_out_shndx()) |
| { |
| (*p)->set_out_shndx(shndx); |
| ++shndx; |
| } |
| } |
| return shndx; |
| } |
| |
| // Set the section addresses according to the linker script. This is |
| // only called when we see a SECTIONS clause. This returns the |
| // program segment which should hold the file header and segment |
| // headers, if any. It will return NULL if they should not be in a |
| // segment. |
| |
| Output_segment* |
| Layout::set_section_addresses_from_script(Symbol_table* symtab) |
| { |
| Script_sections* ss = this->script_options_->script_sections(); |
| gold_assert(ss->saw_sections_clause()); |
| return this->script_options_->set_section_addresses(symtab, this); |
| } |
| |
| // Place the orphan sections in the linker script. |
| |
| void |
| Layout::place_orphan_sections_in_script() |
| { |
| Script_sections* ss = this->script_options_->script_sections(); |
| gold_assert(ss->saw_sections_clause()); |
| |
| // Place each orphaned output section in the script. |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if (!(*p)->found_in_sections_clause()) |
| ss->place_orphan(*p); |
| } |
| } |
| |
| // Count the local symbols in the regular symbol table and the dynamic |
| // symbol table, and build the respective string pools. |
| |
| void |
| Layout::count_local_symbols(const Task* task, |
| const Input_objects* input_objects) |
| { |
| // First, figure out an upper bound on the number of symbols we'll |
| // be inserting into each pool. This helps us create the pools with |
| // the right size, to avoid unnecessary hashtable resizing. |
| unsigned int symbol_count = 0; |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| symbol_count += (*p)->local_symbol_count(); |
| |
| // Go from "upper bound" to "estimate." We overcount for two |
| // reasons: we double-count symbols that occur in more than one |
| // object file, and we count symbols that are dropped from the |
| // output. Add it all together and assume we overcount by 100%. |
| symbol_count /= 2; |
| |
| // We assume all symbols will go into both the sympool and dynpool. |
| this->sympool_.reserve(symbol_count); |
| this->dynpool_.reserve(symbol_count); |
| |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| Task_lock_obj<Object> tlo(task, *p); |
| (*p)->count_local_symbols(&this->sympool_, &this->dynpool_); |
| } |
| } |
| |
| // Create the symbol table sections. Here we also set the final |
| // values of the symbols. At this point all the loadable sections are |
| // fully laid out. SHNUM is the number of sections so far. |
| |
| void |
| Layout::create_symtab_sections(const Input_objects* input_objects, |
| Symbol_table* symtab, |
| unsigned int shnum, |
| off_t* poff, |
| unsigned int local_dynamic_count) |
| { |
| int symsize; |
| unsigned int align; |
| if (parameters->target().get_size() == 32) |
| { |
| symsize = elfcpp::Elf_sizes<32>::sym_size; |
| align = 4; |
| } |
| else if (parameters->target().get_size() == 64) |
| { |
| symsize = elfcpp::Elf_sizes<64>::sym_size; |
| align = 8; |
| } |
| else |
| gold_unreachable(); |
| |
| // Compute file offsets relative to the start of the symtab section. |
| off_t off = 0; |
| |
| // Save space for the dummy symbol at the start of the section. We |
| // never bother to write this out--it will just be left as zero. |
| off += symsize; |
| unsigned int local_symbol_index = 1; |
| |
| // Add STT_SECTION symbols for each Output section which needs one. |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if (!(*p)->needs_symtab_index()) |
| (*p)->set_symtab_index(-1U); |
| else |
| { |
| (*p)->set_symtab_index(local_symbol_index); |
| ++local_symbol_index; |
| off += symsize; |
| } |
| } |
| |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| unsigned int index = (*p)->finalize_local_symbols(local_symbol_index, |
| off, symtab); |
| off += (index - local_symbol_index) * symsize; |
| local_symbol_index = index; |
| } |
| |
| unsigned int local_symcount = local_symbol_index; |
| gold_assert(static_cast<off_t>(local_symcount * symsize) == off); |
| |
| off_t dynoff; |
| size_t dyncount; |
| if (this->dynsym_section_ == NULL) |
| { |
| dynoff = 0; |
| dyncount = 0; |
| } |
| else |
| { |
| off_t locsize = local_dynamic_count * this->dynsym_section_->entsize(); |
| dynoff = this->dynsym_section_->offset() + locsize; |
| dyncount = (this->dynsym_section_->data_size() - locsize) / symsize; |
| gold_assert(static_cast<off_t>(dyncount * symsize) |
| == this->dynsym_section_->data_size() - locsize); |
| } |
| |
| off_t global_off = off; |
| off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount, |
| &this->sympool_, &local_symcount); |
| |
| if (!parameters->options().strip_all()) |
| { |
| this->sympool_.set_string_offsets(); |
| |
| const char* symtab_name = this->namepool_.add(".symtab", false, NULL); |
| Output_section* osymtab = this->make_output_section(symtab_name, |
| elfcpp::SHT_SYMTAB, |
| 0, ORDER_INVALID, |
| false); |
| this->symtab_section_ = osymtab; |
| |
| Output_section_data* pos = new Output_data_fixed_space(off, align, |
| "** symtab"); |
| osymtab->add_output_section_data(pos); |
| |
| // We generate a .symtab_shndx section if we have more than |
| // SHN_LORESERVE sections. Technically it is possible that we |
| // don't need one, because it is possible that there are no |
| // symbols in any of sections with indexes larger than |
| // SHN_LORESERVE. That is probably unusual, though, and it is |
| // easier to always create one than to compute section indexes |
| // twice (once here, once when writing out the symbols). |
| if (shnum >= elfcpp::SHN_LORESERVE) |
| { |
| const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx", |
| false, NULL); |
| Output_section* osymtab_xindex = |
| this->make_output_section(symtab_xindex_name, |
| elfcpp::SHT_SYMTAB_SHNDX, 0, |
| ORDER_INVALID, false); |
| |
| size_t symcount = off / symsize; |
| this->symtab_xindex_ = new Output_symtab_xindex(symcount); |
| |
| osymtab_xindex->add_output_section_data(this->symtab_xindex_); |
| |
| osymtab_xindex->set_link_section(osymtab); |
| osymtab_xindex->set_addralign(4); |
| osymtab_xindex->set_entsize(4); |
| |
| osymtab_xindex->set_after_input_sections(); |
| |
| // This tells the driver code to wait until the symbol table |
| // has written out before writing out the postprocessing |
| // sections, including the .symtab_shndx section. |
| this->any_postprocessing_sections_ = true; |
| } |
| |
| const char* strtab_name = this->namepool_.add(".strtab", false, NULL); |
| Output_section* ostrtab = this->make_output_section(strtab_name, |
| elfcpp::SHT_STRTAB, |
| 0, ORDER_INVALID, |
| false); |
| |
| Output_section_data* pstr = new Output_data_strtab(&this->sympool_); |
| ostrtab->add_output_section_data(pstr); |
| |
| off_t symtab_off; |
| if (!parameters->incremental_update()) |
| symtab_off = align_address(*poff, align); |
| else |
| { |
| symtab_off = this->allocate(off, align, *poff); |
| if (off == -1) |
| gold_fallback(_("out of patch space for symbol table; " |
| "relink with --incremental-full")); |
| gold_debug(DEBUG_INCREMENTAL, |
| "create_symtab_sections: %08lx %08lx .symtab", |
| static_cast<long>(symtab_off), |
| static_cast<long>(off)); |
| } |
| |
| symtab->set_file_offset(symtab_off + global_off); |
| osymtab->set_file_offset(symtab_off); |
| osymtab->finalize_data_size(); |
| osymtab->set_link_section(ostrtab); |
| osymtab->set_info(local_symcount); |
| osymtab->set_entsize(symsize); |
| |
| if (symtab_off + off > *poff) |
| *poff = symtab_off + off; |
| } |
| } |
| |
| // Create the .shstrtab section, which holds the names of the |
| // sections. At the time this is called, we have created all the |
| // output sections except .shstrtab itself. |
| |
| Output_section* |
| Layout::create_shstrtab() |
| { |
| // FIXME: We don't need to create a .shstrtab section if we are |
| // stripping everything. |
| |
| const char* name = this->namepool_.add(".shstrtab", false, NULL); |
| |
| Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0, |
| ORDER_INVALID, false); |
| |
| if (strcmp(parameters->options().compress_debug_sections(), "none") != 0) |
| { |
| // We can't write out this section until we've set all the |
| // section names, and we don't set the names of compressed |
| // output sections until relocations are complete. FIXME: With |
| // the current names we use, this is unnecessary. |
| os->set_after_input_sections(); |
| } |
| |
| Output_section_data* posd = new Output_data_strtab(&this->namepool_); |
| os->add_output_section_data(posd); |
| |
| return os; |
| } |
| |
| // Create the section headers. SIZE is 32 or 64. OFF is the file |
| // offset. |
| |
| void |
| Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff) |
| { |
| Output_section_headers* oshdrs; |
| oshdrs = new Output_section_headers(this, |
| &this->segment_list_, |
| &this->section_list_, |
| &this->unattached_section_list_, |
| &this->namepool_, |
| shstrtab_section); |
| off_t off; |
| if (!parameters->incremental_update()) |
| off = align_address(*poff, oshdrs->addralign()); |
| else |
| { |
| oshdrs->pre_finalize_data_size(); |
| off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff); |
| if (off == -1) |
| gold_fallback(_("out of patch space for section header table; " |
| "relink with --incremental-full")); |
| gold_debug(DEBUG_INCREMENTAL, |
| "create_shdrs: %08lx %08lx (section header table)", |
| static_cast<long>(off), |
| static_cast<long>(off + oshdrs->data_size())); |
| } |
| oshdrs->set_address_and_file_offset(0, off); |
| off += oshdrs->data_size(); |
| if (off > *poff) |
| *poff = off; |
| this->section_headers_ = oshdrs; |
| } |
| |
| // Count the allocated sections. |
| |
| size_t |
| Layout::allocated_output_section_count() const |
| { |
| size_t section_count = 0; |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| section_count += (*p)->output_section_count(); |
| return section_count; |
| } |
| |
| // Create the dynamic symbol table. |
| // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols |
| // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set |
| // to the number of global symbols that have been forced local. |
| // We need to remember the former because the forced-local symbols are |
| // written along with the global symbols in Symtab::write_globals(). |
| |
| void |
| Layout::create_dynamic_symtab(const Input_objects* input_objects, |
| Symbol_table* symtab, |
| Output_section** pdynstr, |
| unsigned int* plocal_dynamic_count, |
| unsigned int* pforced_local_dynamic_count, |
| std::vector<Symbol*>* pdynamic_symbols, |
| Versions* pversions) |
| { |
| // Count all the symbols in the dynamic symbol table, and set the |
| // dynamic symbol indexes. |
| |
| // Skip symbol 0, which is always all zeroes. |
| unsigned int index = 1; |
| |
| // Add STT_SECTION symbols for each Output section which needs one. |
| for (Section_list::iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if (!(*p)->needs_dynsym_index()) |
| (*p)->set_dynsym_index(-1U); |
| else |
| { |
| (*p)->set_dynsym_index(index); |
| ++index; |
| } |
| } |
| |
| // Count the local symbols that need to go in the dynamic symbol table, |
| // and set the dynamic symbol indexes. |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| unsigned int new_index = (*p)->set_local_dynsym_indexes(index); |
| index = new_index; |
| } |
| |
| unsigned int local_symcount = index; |
| unsigned int forced_local_count = 0; |
| |
| index = symtab->set_dynsym_indexes(index, &forced_local_count, |
| pdynamic_symbols, &this->dynpool_, |
| pversions); |
| |
| *plocal_dynamic_count = local_symcount; |
| *pforced_local_dynamic_count = forced_local_count; |
| |
| int symsize; |
| unsigned int align; |
| const int size = parameters->target().get_size(); |
| if (size == 32) |
| { |
| symsize = elfcpp::Elf_sizes<32>::sym_size; |
| align = 4; |
| } |
| else if (size == 64) |
| { |
| symsize = elfcpp::Elf_sizes<64>::sym_size; |
| align = 8; |
| } |
| else |
| gold_unreachable(); |
| |
| // Create the dynamic symbol table section. |
| |
| Output_section* dynsym = this->choose_output_section(NULL, ".dynsym", |
| elfcpp::SHT_DYNSYM, |
| elfcpp::SHF_ALLOC, |
| false, |
| ORDER_DYNAMIC_LINKER, |
| false, false, false); |
| |
| // Check for NULL as a linker script may discard .dynsym. |
| if (dynsym != NULL) |
| { |
| Output_section_data* odata = new Output_data_fixed_space(index * symsize, |
| align, |
| "** dynsym"); |
| dynsym->add_output_section_data(odata); |
| |
| dynsym->set_info(local_symcount + forced_local_count); |
| dynsym->set_entsize(symsize); |
| dynsym->set_addralign(align); |
| |
| this->dynsym_section_ = dynsym; |
| } |
| |
| Output_data_dynamic* const odyn = this->dynamic_data_; |
| if (odyn != NULL) |
| { |
| odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym); |
| odyn->add_constant(elfcpp::DT_SYMENT, symsize); |
| } |
| |
| // If there are more than SHN_LORESERVE allocated sections, we |
| // create a .dynsym_shndx section. It is possible that we don't |
| // need one, because it is possible that there are no dynamic |
| // symbols in any of the sections with indexes larger than |
| // SHN_LORESERVE. This is probably unusual, though, and at this |
| // time we don't know the actual section indexes so it is |
| // inconvenient to check. |
| if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE) |
| { |
| Output_section* dynsym_xindex = |
| this->choose_output_section(NULL, ".dynsym_shndx", |
| elfcpp::SHT_SYMTAB_SHNDX, |
| elfcpp::SHF_ALLOC, |
| false, ORDER_DYNAMIC_LINKER, false, false, |
| false); |
| |
| if (dynsym_xindex != NULL) |
| { |
| this->dynsym_xindex_ = new Output_symtab_xindex(index); |
| |
| dynsym_xindex->add_output_section_data(this->dynsym_xindex_); |
| |
| dynsym_xindex->set_link_section(dynsym); |
| dynsym_xindex->set_addralign(4); |
| dynsym_xindex->set_entsize(4); |
| |
| dynsym_xindex->set_after_input_sections(); |
| |
| // This tells the driver code to wait until the symbol table |
| // has written out before writing out the postprocessing |
| // sections, including the .dynsym_shndx section. |
| this->any_postprocessing_sections_ = true; |
| } |
| } |
| |
| // Create the dynamic string table section. |
| |
| Output_section* dynstr = this->choose_output_section(NULL, ".dynstr", |
| elfcpp::SHT_STRTAB, |
| elfcpp::SHF_ALLOC, |
| false, |
| ORDER_DYNAMIC_LINKER, |
| false, false, false); |
| *pdynstr = dynstr; |
| if (dynstr != NULL) |
| { |
| Output_section_data* strdata = new Output_data_strtab(&this->dynpool_); |
| dynstr->add_output_section_data(strdata); |
| |
| if (dynsym != NULL) |
| dynsym->set_link_section(dynstr); |
| if (this->dynamic_section_ != NULL) |
| this->dynamic_section_->set_link_section(dynstr); |
| |
| if (odyn != NULL) |
| { |
| odyn->add_section_address(elfcpp::DT_STRTAB, dynstr); |
| odyn->add_section_size(elfcpp::DT_STRSZ, dynstr); |
| } |
| } |
| |
| // Create the hash tables. The Gnu-style hash table must be |
| // built first, because it changes the order of the symbols |
| // in the dynamic symbol table. |
| |
| if (strcmp(parameters->options().hash_style(), "gnu") == 0 |
| || strcmp(parameters->options().hash_style(), "both") == 0) |
| { |
| unsigned char* phash; |
| unsigned int hashlen; |
| Dynobj::create_gnu_hash_table(*pdynamic_symbols, |
| local_symcount + forced_local_count, |
| &phash, &hashlen); |
| |
| Output_section* hashsec = |
| this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_DYNAMIC_LINKER, false, false, |
| false); |
| |
| Output_section_data* hashdata = new Output_data_const_buffer(phash, |
| hashlen, |
| align, |
| "** hash"); |
| if (hashsec != NULL && hashdata != NULL) |
| hashsec->add_output_section_data(hashdata); |
| |
| if (hashsec != NULL) |
| { |
| if (dynsym != NULL) |
| hashsec->set_link_section(dynsym); |
| |
| // For a 64-bit target, the entries in .gnu.hash do not have |
| // a uniform size, so we only set the entry size for a |
| // 32-bit target. |
| if (parameters->target().get_size() == 32) |
| hashsec->set_entsize(4); |
| |
| if (odyn != NULL) |
| odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec); |
| } |
| } |
| |
| if (strcmp(parameters->options().hash_style(), "sysv") == 0 |
| || strcmp(parameters->options().hash_style(), "both") == 0) |
| { |
| unsigned char* phash; |
| unsigned int hashlen; |
| Dynobj::create_elf_hash_table(*pdynamic_symbols, |
| local_symcount + forced_local_count, |
| &phash, &hashlen); |
| |
| Output_section* hashsec = |
| this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH, |
| elfcpp::SHF_ALLOC, false, |
| ORDER_DYNAMIC_LINKER, false, false, |
| false); |
| |
| Output_section_data* hashdata = new Output_data_const_buffer(phash, |
| hashlen, |
| align, |
| "** hash"); |
| if (hashsec != NULL && hashdata != NULL) |
| hashsec->add_output_section_data(hashdata); |
| |
| if (hashsec != NULL) |
| { |
| if (dynsym != NULL) |
| hashsec->set_link_section(dynsym); |
| hashsec->set_entsize(parameters->target().hash_entry_size() / 8); |
| } |
| |
| if (odyn != NULL) |
| odyn->add_section_address(elfcpp::DT_HASH, hashsec); |
| } |
| } |
| |
| // Assign offsets to each local portion of the dynamic symbol table. |
| |
| void |
| Layout::assign_local_dynsym_offsets(const Input_objects* input_objects) |
| { |
| Output_section* dynsym = this->dynsym_section_; |
| if (dynsym == NULL) |
| return; |
| |
| off_t off = dynsym->offset(); |
| |
| // Skip the dummy symbol at the start of the section. |
| off += dynsym->entsize(); |
| |
| for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); |
| p != input_objects->relobj_end(); |
| ++p) |
| { |
| unsigned int count = (*p)->set_local_dynsym_offset(off); |
| off += count * dynsym->entsize(); |
| } |
| } |
| |
| // Create the version sections. |
| |
| void |
| Layout::create_version_sections(const Versions* versions, |
| const Symbol_table* symtab, |
| unsigned int local_symcount, |
| const std::vector<Symbol*>& dynamic_symbols, |
| const Output_section* dynstr) |
| { |
| if (!versions->any_defs() && !versions->any_needs()) |
| return; |
| |
| switch (parameters->size_and_endianness()) |
| { |
| #ifdef HAVE_TARGET_32_LITTLE |
| case Parameters::TARGET_32_LITTLE: |
| this->sized_create_version_sections<32, false>(versions, symtab, |
| local_symcount, |
| dynamic_symbols, dynstr); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_32_BIG |
| case Parameters::TARGET_32_BIG: |
| this->sized_create_version_sections<32, true>(versions, symtab, |
| local_symcount, |
| dynamic_symbols, dynstr); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_LITTLE |
| case Parameters::TARGET_64_LITTLE: |
| this->sized_create_version_sections<64, false>(versions, symtab, |
| local_symcount, |
| dynamic_symbols, dynstr); |
| break; |
| #endif |
| #ifdef HAVE_TARGET_64_BIG |
| case Parameters::TARGET_64_BIG: |
| this->sized_create_version_sections<64, true>(versions, symtab, |
| local_symcount, |
| dynamic_symbols, dynstr); |
| break; |
| #endif |
| default: |
| gold_unreachable(); |
| } |
| } |
| |
| // Create the version sections, sized version. |
| |
| template<int size, bool big_endian> |
| void |
| Layout::sized_create_version_sections( |
| const Versions* versions, |
| const Symbol_table* symtab, |
| unsigned int local_symcount, |
| const std::vector<Symbol*>& dynamic_symbols, |
| const Output_section* dynstr) |
| { |
| Output_section* vsec = this->choose_output_section(NULL, ".gnu.version", |
| elfcpp::SHT_GNU_versym, |
| elfcpp::SHF_ALLOC, |
| false, |
| ORDER_DYNAMIC_LINKER, |
| false, false, false); |
| |
| // Check for NULL since a linker script may discard this section. |
| if (vsec != NULL) |
| { |
| unsigned char* vbuf; |
| unsigned int vsize; |
| versions->symbol_section_contents<size, big_endian>(symtab, |
| &this->dynpool_, |
| local_symcount, |
| dynamic_symbols, |
| &vbuf, &vsize); |
| |
| Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2, |
| "** versions"); |
| |
| vsec->add_output_section_data(vdata); |
| vsec->set_entsize(2); |
| vsec->set_link_section(this->dynsym_section_); |
| } |
| |
| Output_data_dynamic* const odyn = this->dynamic_data_; |
| if (odyn != NULL && vsec != NULL) |
| odyn->add_section_address(elfcpp::DT_VERSYM, vsec); |
| |
| if (versions->any_defs()) |
| { |
| Output_section* vdsec; |
| vdsec = this->choose_output_section(NULL, ".gnu.version_d", |
| elfcpp::SHT_GNU_verdef, |
| elfcpp::SHF_ALLOC, |
| false, ORDER_DYNAMIC_LINKER, false, |
| false, false); |
| |
| if (vdsec != NULL) |
| { |
| unsigned char* vdbuf; |
| unsigned int vdsize; |
| unsigned int vdentries; |
| versions->def_section_contents<size, big_endian>(&this->dynpool_, |
| &vdbuf, &vdsize, |
| &vdentries); |
| |
| Output_section_data* vddata = |
| new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs"); |
| |
| vdsec->add_output_section_data(vddata); |
| vdsec->set_link_section(dynstr); |
| vdsec->set_info(vdentries); |
| |
| if (odyn != NULL) |
| { |
| odyn->add_section_address(elfcpp::DT_VERDEF, vdsec); |
| odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries); |
| } |
| } |
| } |
| |
| if (versions->any_needs()) |
| { |
| Output_section* vnsec; |
| vnsec = this->choose_output_section(NULL, ".gnu.version_r", |
| elfcpp::SHT_GNU_verneed, |
| elfcpp::SHF_ALLOC, |
| false, ORDER_DYNAMIC_LINKER, false, |
| false, false); |
| |
| if (vnsec != NULL) |
| { |
| unsigned char* vnbuf; |
| unsigned int vnsize; |
| unsigned int vnentries; |
| versions->need_section_contents<size, big_endian>(&this->dynpool_, |
| &vnbuf, &vnsize, |
| &vnentries); |
| |
| Output_section_data* vndata = |
| new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs"); |
| |
| vnsec->add_output_section_data(vndata); |
| vnsec->set_link_section(dynstr); |
| vnsec->set_info(vnentries); |
| |
| if (odyn != NULL) |
| { |
| odyn->add_section_address(elfcpp::DT_VERNEED, vnsec); |
| odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries); |
| } |
| } |
| } |
| } |
| |
| // Create the .interp section and PT_INTERP segment. |
| |
| void |
| Layout::create_interp(const Target* target) |
| { |
| gold_assert(this->interp_segment_ == NULL); |
| |
| const char* interp = parameters->options().dynamic_linker(); |
| if (interp == NULL) |
| { |
| interp = target->dynamic_linker(); |
| gold_assert(interp != NULL); |
| } |
| |
| size_t len = strlen(interp) + 1; |
| |
| Output_section_data* odata = new Output_data_const(interp, len, 1); |
| |
| Output_section* osec = this->choose_output_section(NULL, ".interp", |
| elfcpp::SHT_PROGBITS, |
| elfcpp::SHF_ALLOC, |
| false, ORDER_INTERP, |
| false, false, false); |
| if (osec != NULL) |
| osec->add_output_section_data(odata); |
| } |
| |
| // Add dynamic tags for the PLT and the dynamic relocs. This is |
| // called by the target-specific code. This does nothing if not doing |
| // a dynamic link. |
| |
| // USE_REL is true for REL relocs rather than RELA relocs. |
| |
| // If PLT_GOT is not NULL, then DT_PLTGOT points to it. |
| |
| // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL, |
| // and we also set DT_PLTREL. We use PLT_REL's output section, since |
| // some targets have multiple reloc sections in PLT_REL. |
| |
| // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA, |
| // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output |
| // section. |
| |
| // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an |
| // executable. |
| |
| void |
| Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got, |
| const Output_data* plt_rel, |
| const Output_data_reloc_generic* dyn_rel, |
| bool add_debug, bool dynrel_includes_plt, |
| bool custom_relcount) |
| { |
| Output_data_dynamic* odyn = this->dynamic_data_; |
| if (odyn == NULL) |
| return; |
| |
| if (plt_got != NULL && plt_got->output_section() != NULL) |
| odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got); |
| |
| if (plt_rel != NULL && plt_rel->output_section() != NULL) |
| { |
| odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section()); |
| odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section()); |
| odyn->add_constant(elfcpp::DT_PLTREL, |
| use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA); |
| } |
| |
| if ((dyn_rel != NULL && dyn_rel->output_section() != NULL) |
| || (dynrel_includes_plt |
| && plt_rel != NULL |
| && plt_rel->output_section() != NULL)) |
| { |
| bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL; |
| bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL; |
| odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA, |
| (have_dyn_rel |
| ? dyn_rel->output_section() |
| : plt_rel->output_section())); |
| elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ; |
| if (have_dyn_rel && have_plt_rel && dynrel_includes_plt) |
| odyn->add_section_size(size_tag, |
| dyn_rel->output_section(), |
| plt_rel->output_section()); |
| else if (have_dyn_rel) |
| odyn->add_section_size(size_tag, dyn_rel->output_section()); |
| else |
| odyn->add_section_size(size_tag, plt_rel->output_section()); |
| const int size = parameters->target().get_size(); |
| elfcpp::DT rel_tag; |
| int rel_size; |
| if (use_rel) |
| { |
| rel_tag = elfcpp::DT_RELENT; |
| if (size == 32) |
| rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size; |
| else if (size == 64) |
| rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size; |
| else |
| gold_unreachable(); |
| } |
| else |
| { |
| rel_tag = elfcpp::DT_RELAENT; |
| if (size == 32) |
| rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size; |
| else if (size == 64) |
| rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size; |
| else |
| gold_unreachable(); |
| } |
| odyn->add_constant(rel_tag, rel_size); |
| |
| if (parameters->options().combreloc() && have_dyn_rel) |
| { |
| size_t c = dyn_rel->relative_reloc_count(); |
| if (c != 0) |
| { |
| elfcpp::DT tag |
| = use_rel ? elfcpp::DT_RELCOUNT : elfcpp::DT_RELACOUNT; |
| if (custom_relcount) |
| odyn->add_custom(tag); |
| else |
| odyn->add_constant(tag, c); |
| } |
| } |
| } |
| |
| if (add_debug && !parameters->options().shared()) |
| { |
| // The value of the DT_DEBUG tag is filled in by the dynamic |
| // linker at run time, and used by the debugger. |
| odyn->add_constant(elfcpp::DT_DEBUG, 0); |
| } |
| } |
| |
| void |
| Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val) |
| { |
| Output_data_dynamic* odyn = this->dynamic_data_; |
| if (odyn == NULL) |
| return; |
| odyn->add_constant(tag, val); |
| } |
| |
| // Finish the .dynamic section and PT_DYNAMIC segment. |
| |
| void |
| Layout::finish_dynamic_section(const Input_objects* input_objects, |
| const Symbol_table* symtab) |
| { |
| if (!this->script_options_->saw_phdrs_clause() |
| && this->dynamic_section_ != NULL) |
| { |
| Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC, |
| (elfcpp::PF_R |
| | elfcpp::PF_W)); |
| oseg->add_output_section_to_nonload(this->dynamic_section_, |
| elfcpp::PF_R | elfcpp::PF_W); |
| } |
| |
| Output_data_dynamic* const odyn = this->dynamic_data_; |
| if (odyn == NULL) |
| return; |
| |
| for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin(); |
| p != input_objects->dynobj_end(); |
| ++p) |
| { |
| if (!(*p)->is_needed() && (*p)->as_needed()) |
| { |
| // This dynamic object was linked with --as-needed, but it |
| // is not needed. |
| continue; |
| } |
| |
| odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname()); |
| } |
| |
| if (parameters->options().shared()) |
| { |
| const char* soname = parameters->options().soname(); |
| if (soname != NULL) |
| odyn->add_string(elfcpp::DT_SONAME, soname); |
| } |
| |
| Symbol* sym = symtab->lookup(parameters->options().init()); |
| if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj()) |
| odyn->add_symbol(elfcpp::DT_INIT, sym); |
| |
| sym = symtab->lookup(parameters->options().fini()); |
| if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj()) |
| odyn->add_symbol(elfcpp::DT_FINI, sym); |
| |
| // Look for .init_array, .preinit_array and .fini_array by checking |
| // section types. |
| for(Layout::Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| switch((*p)->type()) |
| { |
| case elfcpp::SHT_FINI_ARRAY: |
| odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p); |
| odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p); |
| break; |
| case elfcpp::SHT_INIT_ARRAY: |
| odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p); |
| odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p); |
| break; |
| case elfcpp::SHT_PREINIT_ARRAY: |
| odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p); |
| odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p); |
| break; |
| default: |
| break; |
| } |
| |
| // Add a DT_RPATH entry if needed. |
| const General_options::Dir_list& rpath(parameters->options().rpath()); |
| if (!rpath.empty()) |
| { |
| std::string rpath_val; |
| for (General_options::Dir_list::const_iterator p = rpath.begin(); |
| p != rpath.end(); |
| ++p) |
| { |
| if (rpath_val.empty()) |
| rpath_val = p->name(); |
| else |
| { |
| // Eliminate duplicates. |
| General_options::Dir_list::const_iterator q; |
| for (q = rpath.begin(); q != p; ++q) |
| if (q->name() == p->name()) |
| break; |
| if (q == p) |
| { |
| rpath_val += ':'; |
| rpath_val += p->name(); |
| } |
| } |
| } |
| |
| if (!parameters->options().enable_new_dtags()) |
| odyn->add_string(elfcpp::DT_RPATH, rpath_val); |
| else |
| odyn->add_string(elfcpp::DT_RUNPATH, rpath_val); |
| } |
| |
| // Look for text segments that have dynamic relocations. |
| bool have_textrel = false; |
| if (!this->script_options_->saw_sections_clause()) |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD |
| && ((*p)->flags() & elfcpp::PF_W) == 0 |
| && (*p)->has_dynamic_reloc()) |
| { |
| have_textrel = true; |
| break; |
| } |
| } |
| } |
| else |
| { |
| // We don't know the section -> segment mapping, so we are |
| // conservative and just look for readonly sections with |
| // relocations. If those sections wind up in writable segments, |
| // then we have created an unnecessary DT_TEXTREL entry. |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0 |
| && ((*p)->flags() & elfcpp::SHF_WRITE) == 0 |
| && (*p)->has_dynamic_reloc()) |
| { |
| have_textrel = true; |
| break; |
| } |
| } |
| } |
| |
| if (parameters->options().filter() != NULL) |
| odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter()); |
| if (parameters->options().any_auxiliary()) |
| { |
| for (options::String_set::const_iterator p = |
| parameters->options().auxiliary_begin(); |
| p != parameters->options().auxiliary_end(); |
| ++p) |
| odyn->add_string(elfcpp::DT_AUXILIARY, *p); |
| } |
| |
| // Add a DT_FLAGS entry if necessary. |
| unsigned int flags = 0; |
| if (have_textrel) |
| { |
| // Add a DT_TEXTREL for compatibility with older loaders. |
| odyn->add_constant(elfcpp::DT_TEXTREL, 0); |
| flags |= elfcpp::DF_TEXTREL; |
| |
| if (parameters->options().text()) |
| gold_error(_("read-only segment has dynamic relocations")); |
| else if (parameters->options().warn_shared_textrel() |
| && parameters->options().shared()) |
| gold_warning(_("shared library text segment is not shareable")); |
| } |
| if (parameters->options().shared() && this->has_static_tls()) |
| flags |= elfcpp::DF_STATIC_TLS; |
| if (parameters->options().origin()) |
| flags |= elfcpp::DF_ORIGIN; |
| if (parameters->options().Bsymbolic() |
| && !parameters->options().have_dynamic_list()) |
| { |
| flags |= elfcpp::DF_SYMBOLIC; |
| // Add DT_SYMBOLIC for compatibility with older loaders. |
| odyn->add_constant(elfcpp::DT_SYMBOLIC, 0); |
| } |
| if (parameters->options().now()) |
| flags |= elfcpp::DF_BIND_NOW; |
| if (flags != 0) |
| odyn->add_constant(elfcpp::DT_FLAGS, flags); |
| |
| flags = 0; |
| if (parameters->options().global()) |
| flags |= elfcpp::DF_1_GLOBAL; |
| if (parameters->options().initfirst()) |
| flags |= elfcpp::DF_1_INITFIRST; |
| if (parameters->options().interpose()) |
| flags |= elfcpp::DF_1_INTERPOSE; |
| if (parameters->options().loadfltr()) |
| flags |= elfcpp::DF_1_LOADFLTR; |
| if (parameters->options().nodefaultlib()) |
| flags |= elfcpp::DF_1_NODEFLIB; |
| if (parameters->options().nodelete()) |
| flags |= elfcpp::DF_1_NODELETE; |
| if (parameters->options().nodlopen()) |
| flags |= elfcpp::DF_1_NOOPEN; |
| if (parameters->options().nodump()) |
| flags |= elfcpp::DF_1_NODUMP; |
| if (!parameters->options().shared()) |
| flags &= ~(elfcpp::DF_1_INITFIRST |
| | elfcpp::DF_1_NODELETE |
| | elfcpp::DF_1_NOOPEN); |
| if (parameters->options().origin()) |
| flags |= elfcpp::DF_1_ORIGIN; |
| if (parameters->options().now()) |
| flags |= elfcpp::DF_1_NOW; |
| if (parameters->options().Bgroup()) |
| flags |= elfcpp::DF_1_GROUP; |
| if (parameters->options().pie()) |
| flags |= elfcpp::DF_1_PIE; |
| if (flags != 0) |
| odyn->add_constant(elfcpp::DT_FLAGS_1, flags); |
| |
| flags = 0; |
| if (parameters->options().unique()) |
| flags |= elfcpp::DF_GNU_1_UNIQUE; |
| if (flags != 0) |
| odyn->add_constant(elfcpp::DT_GNU_FLAGS_1, flags); |
| } |
| |
| // Set the size of the _DYNAMIC symbol table to be the size of the |
| // dynamic data. |
| |
| void |
| Layout::set_dynamic_symbol_size(const Symbol_table* symtab) |
| { |
| Output_data_dynamic* const odyn = this->dynamic_data_; |
| if (odyn == NULL) |
| return; |
| odyn->finalize_data_size(); |
| if (this->dynamic_symbol_ == NULL) |
| return; |
| off_t data_size = odyn->data_size(); |
| const int size = parameters->target().get_size(); |
| if (size == 32) |
| symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size); |
| else if (size == 64) |
| symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size); |
| else |
| gold_unreachable(); |
| } |
| |
| // The mapping of input section name prefixes to output section names. |
| // In some cases one prefix is itself a prefix of another prefix; in |
| // such a case the longer prefix must come first. These prefixes are |
| // based on the GNU linker default ELF linker script. |
| |
| #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 } |
| #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 } |
| const Layout::Section_name_mapping Layout::section_name_mapping[] = |
| { |
| MAPPING_INIT(".text.", ".text"), |
| MAPPING_INIT(".rodata.", ".rodata"), |
| MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"), |
| MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"), |
| MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"), |
| MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"), |
| MAPPING_INIT(".data.", ".data"), |
| MAPPING_INIT(".bss.", ".bss"), |
| MAPPING_INIT(".tdata.", ".tdata"), |
| MAPPING_INIT(".tbss.", ".tbss"), |
| MAPPING_INIT(".init_array.", ".init_array"), |
| MAPPING_INIT(".fini_array.", ".fini_array"), |
| MAPPING_INIT(".sdata.", ".sdata"), |
| MAPPING_INIT(".sbss.", ".sbss"), |
| // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled |
| // differently depending on whether it is creating a shared library. |
| MAPPING_INIT(".sdata2.", ".sdata"), |
| MAPPING_INIT(".sbss2.", ".sbss"), |
| MAPPING_INIT(".lrodata.", ".lrodata"), |
| MAPPING_INIT(".ldata.", ".ldata"), |
| MAPPING_INIT(".lbss.", ".lbss"), |
| MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"), |
| MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"), |
| MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"), |
| MAPPING_INIT(".gnu.linkonce.t.", ".text"), |
| MAPPING_INIT(".gnu.linkonce.r.", ".rodata"), |
| MAPPING_INIT(".gnu.linkonce.d.", ".data"), |
| MAPPING_INIT(".gnu.linkonce.b.", ".bss"), |
| MAPPING_INIT(".gnu.linkonce.s.", ".sdata"), |
| MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"), |
| MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"), |
| MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"), |
| MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"), |
| MAPPING_INIT(".gnu.linkonce.td.", ".tdata"), |
| MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"), |
| MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"), |
| MAPPING_INIT(".gnu.linkonce.l.", ".ldata"), |
| MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"), |
| MAPPING_INIT(".ARM.extab", ".ARM.extab"), |
| MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"), |
| MAPPING_INIT(".ARM.exidx", ".ARM.exidx"), |
| MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"), |
| MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"), |
| }; |
| |
| // Mapping for ".text" section prefixes with -z,keep-text-section-prefix. |
| const Layout::Section_name_mapping Layout::text_section_name_mapping[] = |
| { |
| MAPPING_INIT(".text.hot.", ".text.hot"), |
| MAPPING_INIT_EXACT(".text.hot", ".text.hot"), |
| MAPPING_INIT(".text.unlikely.", ".text.unlikely"), |
| MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"), |
| MAPPING_INIT(".text.startup.", ".text.startup"), |
| MAPPING_INIT_EXACT(".text.startup", ".text.startup"), |
| MAPPING_INIT(".text.exit.", ".text.exit"), |
| MAPPING_INIT_EXACT(".text.exit", ".text.exit"), |
| MAPPING_INIT(".text.", ".text"), |
| }; |
| #undef MAPPING_INIT |
| #undef MAPPING_INIT_EXACT |
| |
| const int Layout::section_name_mapping_count = |
| (sizeof(Layout::section_name_mapping) |
| / sizeof(Layout::section_name_mapping[0])); |
| |
| const int Layout::text_section_name_mapping_count = |
| (sizeof(Layout::text_section_name_mapping) |
| / sizeof(Layout::text_section_name_mapping[0])); |
| |
| // Find section name NAME in PSNM and return the mapped name if found |
| // with the length set in PLEN. |
| const char * |
| Layout::match_section_name(const Layout::Section_name_mapping* psnm, |
| const int count, |
| const char* name, size_t* plen) |
| { |
| for (int i = 0; i < count; ++i, ++psnm) |
| { |
| if (psnm->fromlen > 0) |
| { |
| if (strncmp(name, psnm->from, psnm->fromlen) == 0) |
| { |
| *plen = psnm->tolen; |
| return psnm->to; |
| } |
| } |
| else |
| { |
| if (strcmp(name, psnm->from) == 0) |
| { |
| *plen = psnm->tolen; |
| return psnm->to; |
| } |
| } |
| } |
| return NULL; |
| } |
| |
| // Choose the output section name to use given an input section name. |
| // Set *PLEN to the length of the name. *PLEN is initialized to the |
| // length of NAME. |
| |
| const char* |
| Layout::output_section_name(const Relobj* relobj, const char* name, |
| size_t* plen) |
| { |
| // gcc 4.3 generates the following sorts of section names when it |
| // needs a section name specific to a function: |
| // .text.FN |
| // .rodata.FN |
| // .sdata2.FN |
| // .data.FN |
| // .data.rel.FN |
| // .data.rel.local.FN |
| // .data.rel.ro.FN |
| // .data.rel.ro.local.FN |
| // .sdata.FN |
| // .bss.FN |
| // .sbss.FN |
| // .tdata.FN |
| // .tbss.FN |
| |
| // The GNU linker maps all of those to the part before the .FN, |
| // except that .data.rel.local.FN is mapped to .data, and |
| // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections |
| // beginning with .data.rel.ro.local are grouped together. |
| |
| // For an anonymous namespace, the string FN can contain a '.'. |
| |
| // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the |
| // GNU linker maps to .rodata. |
| |
| // The .data.rel.ro sections are used with -z relro. The sections |
| // are recognized by name. We use the same names that the GNU |
| // linker does for these sections. |
| |
| // It is hard to handle this in a principled way, so we don't even |
| // try. We use a table of mappings. If the input section name is |
| // not found in the table, we simply use it as the output section |
| // name. |
| |
| if (parameters->options().keep_text_section_prefix() |
| && is_prefix_of(".text", name)) |
| { |
| const char* match = match_section_name(text_section_name_mapping, |
| text_section_name_mapping_count, |
| name, plen); |
| if (match != NULL) |
| return match; |
| } |
| |
| const char* match = match_section_name(section_name_mapping, |
| section_name_mapping_count, name, plen); |
| if (match != NULL) |
| return match; |
| |
| // As an additional complication, .ctors sections are output in |
| // either .ctors or .init_array sections, and .dtors sections are |
| // output in either .dtors or .fini_array sections. |
| if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name)) |
| { |
| if (parameters->options().ctors_in_init_array()) |
| { |
| *plen = 11; |
| return name[1] == 'c' ? ".init_array" : ".fini_array"; |
| } |
| else |
| { |
| *plen = 6; |
| return name[1] == 'c' ? ".ctors" : ".dtors"; |
| } |
| } |
| if (parameters->options().ctors_in_init_array() |
| && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0)) |
| { |
| // To make .init_array/.fini_array work with gcc we must exclude |
| // .ctors and .dtors sections from the crtbegin and crtend |
| // files. |
| if (relobj == NULL |
| || (!Layout::match_file_name(relobj, "crtbegin") |
| && !Layout::match_file_name(relobj, "crtend"))) |
| { |
| *plen = 11; |
| return name[1] == 'c' ? ".init_array" : ".fini_array"; |
| } |
| } |
| |
| return name; |
| } |
| |
| // Return true if RELOBJ is an input file whose base name matches |
| // FILE_NAME. The base name must have an extension of ".o", and must |
| // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is |
| // to match crtbegin.o as well as crtbeginS.o without getting confused |
| // by other possibilities. Overall matching the file name this way is |
| // a dreadful hack, but the GNU linker does it in order to better |
| // support gcc, and we need to be compatible. |
| |
| bool |
| Layout::match_file_name(const Relobj* relobj, const char* match) |
| { |
| const std::string& file_name(relobj->name()); |
| const char* base_name = lbasename(file_name.c_str()); |
| size_t match_len = strlen(match); |
| if (strncmp(base_name, match, match_len) != 0) |
| return false; |
| size_t base_len = strlen(base_name); |
| if (base_len != match_len + 2 && base_len != match_len + 3) |
| return false; |
| return memcmp(base_name + base_len - 2, ".o", 2) == 0; |
| } |
| |
| // Check if a comdat group or .gnu.linkonce section with the given |
| // NAME is selected for the link. If there is already a section, |
| // *KEPT_SECTION is set to point to the existing section and the |
| // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and |
| // IS_GROUP_NAME are recorded for this NAME in the layout object, |
| // *KEPT_SECTION is set to the internal copy and the function returns |
| // true. |
| |
| bool |
| Layout::find_or_add_kept_section(const std::string& name, |
| Relobj* object, |
| unsigned int shndx, |
| bool is_comdat, |
| bool is_group_name, |
| Kept_section** kept_section) |
| { |
| // It's normal to see a couple of entries here, for the x86 thunk |
| // sections. If we see more than a few, we're linking a C++ |
| // program, and we resize to get more space to minimize rehashing. |
| if (this->signatures_.size() > 4 |
| && !this->resized_signatures_) |
| { |
| reserve_unordered_map(&this->signatures_, |
| this->number_of_input_files_ * 64); |
| this->resized_signatures_ = true; |
| } |
| |
| Kept_section candidate; |
| std::pair<Signatures::iterator, bool> ins = |
| this->signatures_.insert(std::make_pair(name, candidate)); |
| |
| if (kept_section != NULL) |
| *kept_section = &ins.first->second; |
| if (ins.second) |
| { |
| // This is the first time we've seen this signature. |
| ins.first->second.set_object(object); |
| ins.first->second.set_shndx(shndx); |
| if (is_comdat) |
| ins.first->second.set_is_comdat(); |
| if (is_group_name) |
| ins.first->second.set_is_group_name(); |
| return true; |
| } |
| |
| // We have already seen this signature. |
| |
| if (ins.first->second.is_group_name()) |
| { |
| // We've already seen a real section group with this signature. |
| // If the kept group is from a plugin object, and we're in the |
| // replacement phase, accept the new one as a replacement. |
| if (ins.first->second.object() == NULL |
| && parameters->options().plugins()->in_replacement_phase()) |
| { |
| ins.first->second.set_object(object); |
| ins.first->second.set_shndx(shndx); |
| return true; |
| } |
| return false; |
| } |
| else if (is_group_name) |
| { |
| // This is a real section group, and we've already seen a |
| // linkonce section with this signature. Record that we've seen |
| // a section group, and don't include this section group. |
| ins.first->second.set_is_group_name(); |
| return false; |
| } |
| else |
| { |
| // We've already seen a linkonce section and this is a linkonce |
| // section. These don't block each other--this may be the same |
| // symbol name with different section types. |
| return true; |
| } |
| } |
| |
| // Store the allocated sections into the section list. |
| |
| void |
| Layout::get_allocated_sections(Section_list* section_list) const |
| { |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0) |
| section_list->push_back(*p); |
| } |
| |
| // Store the executable sections into the section list. |
| |
| void |
| Layout::get_executable_sections(Section_list* section_list) const |
| { |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) |
| == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) |
| section_list->push_back(*p); |
| } |
| |
| // Create an output segment. |
| |
| Output_segment* |
| Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags) |
| { |
| gold_assert(!parameters->options().relocatable()); |
| Output_segment* oseg = new Output_segment(type, flags); |
| this->segment_list_.push_back(oseg); |
| |
| if (type == elfcpp::PT_TLS) |
| this->tls_segment_ = oseg; |
| else if (type == elfcpp::PT_GNU_RELRO) |
| this->relro_segment_ = oseg; |
| else if (type == elfcpp::PT_INTERP) |
| this->interp_segment_ = oseg; |
| |
| return oseg; |
| } |
| |
| // Return the file offset of the normal symbol table. |
| |
| off_t |
| Layout::symtab_section_offset() const |
| { |
| if (this->symtab_section_ != NULL) |
| return this->symtab_section_->offset(); |
| return 0; |
| } |
| |
| // Return the section index of the normal symbol table. It may have |
| // been stripped by the -s/--strip-all option. |
| |
| unsigned int |
| Layout::symtab_section_shndx() const |
| { |
| if (this->symtab_section_ != NULL) |
| return this->symtab_section_->out_shndx(); |
| return 0; |
| } |
| |
| // Write out the Output_sections. Most won't have anything to write, |
| // since most of the data will come from input sections which are |
| // handled elsewhere. But some Output_sections do have Output_data. |
| |
| void |
| Layout::write_output_sections(Output_file* of) const |
| { |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if (!(*p)->after_input_sections()) |
| (*p)->write(of); |
| } |
| } |
| |
| // Write out data not associated with a section or the symbol table. |
| |
| void |
| Layout::write_data(const Symbol_table* symtab, Output_file* of) const |
| { |
| if (!parameters->options().strip_all()) |
| { |
| const Output_section* symtab_section = this->symtab_section_; |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if ((*p)->needs_symtab_index()) |
| { |
| gold_assert(symtab_section != NULL); |
| unsigned int index = (*p)->symtab_index(); |
| gold_assert(index > 0 && index != -1U); |
| off_t off = (symtab_section->offset() |
| + index * symtab_section->entsize()); |
| symtab->write_section_symbol(*p, this->symtab_xindex_, of, off); |
| } |
| } |
| } |
| |
| const Output_section* dynsym_section = this->dynsym_section_; |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if ((*p)->needs_dynsym_index()) |
| { |
| gold_assert(dynsym_section != NULL); |
| unsigned int index = (*p)->dynsym_index(); |
| gold_assert(index > 0 && index != -1U); |
| off_t off = (dynsym_section->offset() |
| + index * dynsym_section->entsize()); |
| symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off); |
| } |
| } |
| |
| // Write out the Output_data which are not in an Output_section. |
| for (Data_list::const_iterator p = this->special_output_list_.begin(); |
| p != this->special_output_list_.end(); |
| ++p) |
| (*p)->write(of); |
| |
| // Write out the Output_data which are not in an Output_section |
| // and are regenerated in each iteration of relaxation. |
| for (Data_list::const_iterator p = this->relax_output_list_.begin(); |
| p != this->relax_output_list_.end(); |
| ++p) |
| (*p)->write(of); |
| } |
| |
| // Write out the Output_sections which can only be written after the |
| // input sections are complete. |
| |
| void |
| Layout::write_sections_after_input_sections(Output_file* of) |
| { |
| // Determine the final section offsets, and thus the final output |
| // file size. Note we finalize the .shstrab last, to allow the |
| // after_input_section sections to modify their section-names before |
| // writing. |
| if (this->any_postprocessing_sections_) |
| { |
| off_t off = this->output_file_size_; |
| off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS); |
| |
| // Now that we've finalized the names, we can finalize the shstrab. |
| off = |
| this->set_section_offsets(off, |
| STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS); |
| |
| if (off > this->output_file_size_) |
| { |
| of->resize(off); |
| this->output_file_size_ = off; |
| } |
| } |
| |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| { |
| if ((*p)->after_input_sections()) |
| (*p)->write(of); |
| } |
| |
| this->section_headers_->write(of); |
| } |
| |
| // If a tree-style build ID was requested, the parallel part of that computation |
| // is already done, and the final hash-of-hashes is computed here. For other |
| // types of build IDs, all the work is done here. |
| |
| void |
| Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes, |
| size_t size_of_hashes) const |
| { |
| if (this->build_id_note_ == NULL) |
| return; |
| |
| unsigned char* ov = of->get_output_view(this->build_id_note_->offset(), |
| this->build_id_note_->data_size()); |
| |
| if (array_of_hashes == NULL) |
| { |
| const size_t output_file_size = this->output_file_size(); |
| const unsigned char* iv = of->get_input_view(0, output_file_size); |
| const char* style = parameters->options().build_id(); |
| |
| // If we get here with style == "tree" then the output must be |
| // too small for chunking, and we use SHA-1 in that case. |
| if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0)) |
| sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov); |
| else if (strcmp(style, "md5") == 0) |
| md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov); |
| else |
| gold_unreachable(); |
| |
| of->free_input_view(0, output_file_size, iv); |
| } |
| else |
| { |
| // Non-overlapping substrings of the output file have been hashed. |
| // Compute SHA-1 hash of the hashes. |
| sha1_buffer(reinterpret_cast<const char*>(array_of_hashes), |
| size_of_hashes, ov); |
| delete[] array_of_hashes; |
| } |
| |
| of->write_output_view(this->build_id_note_->offset(), |
| this->build_id_note_->data_size(), |
| ov); |
| } |
| |
| // Write out a binary file. This is called after the link is |
| // complete. IN is the temporary output file we used to generate the |
| // ELF code. We simply walk through the segments, read them from |
| // their file offset in IN, and write them to their load address in |
| // the output file. FIXME: with a bit more work, we could support |
| // S-records and/or Intel hex format here. |
| |
| void |
| Layout::write_binary(Output_file* in) const |
| { |
| gold_assert(parameters->options().oformat_enum() |
| == General_options::OBJECT_FORMAT_BINARY); |
| |
| // Get the size of the binary file. |
| uint64_t max_load_address = 0; |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0) |
| { |
| uint64_t max_paddr = (*p)->paddr() + (*p)->filesz(); |
| if (max_paddr > max_load_address) |
| max_load_address = max_paddr; |
| } |
| } |
| |
| Output_file out(parameters->options().output_file_name()); |
| out.open(max_load_address); |
| |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| { |
| if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0) |
| { |
| const unsigned char* vin = in->get_input_view((*p)->offset(), |
| (*p)->filesz()); |
| unsigned char* vout = out.get_output_view((*p)->paddr(), |
| (*p)->filesz()); |
| memcpy(vout, vin, (*p)->filesz()); |
| out.write_output_view((*p)->paddr(), (*p)->filesz(), vout); |
| in->free_input_view((*p)->offset(), (*p)->filesz(), vin); |
| } |
| } |
| |
| out.close(); |
| } |
| |
| // Print the output sections to the map file. |
| |
| void |
| Layout::print_to_mapfile(Mapfile* mapfile) const |
| { |
| for (Segment_list::const_iterator p = this->segment_list_.begin(); |
| p != this->segment_list_.end(); |
| ++p) |
| (*p)->print_sections_to_mapfile(mapfile); |
| for (Section_list::const_iterator p = this->unattached_section_list_.begin(); |
| p != this->unattached_section_list_.end(); |
| ++p) |
| (*p)->print_to_mapfile(mapfile); |
| } |
| |
| // Print statistical information to stderr. This is used for --stats. |
| |
| void |
| Layout::print_stats() const |
| { |
| this->namepool_.print_stats("section name pool"); |
| this->sympool_.print_stats("output symbol name pool"); |
| this->dynpool_.print_stats("dynamic name pool"); |
| |
| for (Section_list::const_iterator p = this->section_list_.begin(); |
| p != this->section_list_.end(); |
| ++p) |
| (*p)->print_merge_stats(); |
| } |
| |
| // Write_sections_task methods. |
| |
| // We can always run this task. |
| |
| Task_token* |
| Write_sections_task::is_runnable() |
| { |
| return NULL; |
| } |
| |
| // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER |
| // when finished. |
| |
| void |
| Write_sections_task::locks(Task_locker* tl) |
| { |
| tl->add(this, this->output_sections_blocker_); |
| if (this->input_sections_blocker_ != NULL) |
| tl->add(this, this->input_sections_blocker_); |
| tl->add(this, this->final_blocker_); |
| } |
| |
| // Run the task--write out the data. |
| |
| void |
| Write_sections_task::run(Workqueue*) |
| { |
| this->layout_->write_output_sections(this->of_); |
| } |
| |
| // Write_data_task methods. |
| |
| // We can always run this task. |
| |
| Task_token* |
| Write_data_task::is_runnable() |
| { |
| return NULL; |
| } |
| |
| // We need to unlock FINAL_BLOCKER when finished. |
| |
| void |
| Write_data_task::locks(Task_locker* tl) |
| { |
| tl->add(this, this->final_blocker_); |
| } |
| |
| // Run the task--write out the data. |
| |
| void |
| Write_data_task::run(Workqueue*) |
| { |
| this->layout_->write_data(this->symtab_, this->of_); |
| } |
| |
| // Write_symbols_task methods. |
| |
| // We can always run this task. |
| |
| Task_token* |
| Write_symbols_task::is_runnable() |
| { |
| return NULL; |
| } |
| |
| // We need to unlock FINAL_BLOCKER when finished. |
| |
| void |
| Write_symbols_task::locks(Task_locker* tl) |
| { |
| tl->add(this, this->final_blocker_); |
| } |
| |
| // Run the task--write out the symbols. |
| |
| void |
| Write_symbols_task::run(Workqueue*) |
| { |
| this->symtab_->write_globals(this->sympool_, this->dynpool_, |
| this->layout_->symtab_xindex(), |
| this->layout_->dynsym_xindex(), this->of_); |
| } |
| |
| // Write_after_input_sections_task methods. |
| |
| // We can only run this task after the input sections have completed. |
| |
| Task_token* |
| Write_after_input_sections_task::is_runnable() |
| { |
| if (this->input_sections_blocker_->is_blocked()) |
| return this->input_sections_blocker_; |
| return NULL; |
| } |
| |
| // We need to unlock FINAL_BLOCKER when finished. |
| |
| void |
| Write_after_input_sections_task::locks(Task_locker* tl) |
| { |
| tl->add(this, this->final_blocker_); |
| } |
| |
| // Run the task. |
| |
| void |
| Write_after_input_sections_task::run(Workqueue*) |
| { |
| this->layout_->write_sections_after_input_sections(this->of_); |
| } |
| |
| // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes, |
| // or as a "tree" where each chunk of the string is hashed and then those |
| // hashes are put into a (much smaller) string which is hashed with sha1. |
| // We compute a checksum over the entire file because that is simplest. |
| |
| void |
| Build_id_task_runner::run(Workqueue* workqueue, const Task*) |
| { |
| Task_token* post_hash_tasks_blocker = new Task_token(true); |
| const Layout* layout = this->layout_; |
| Output_file* of = this->of_; |
| const size_t filesize = (layout->output_file_size() <= 0 ? 0 |
| : static_cast<size_t>(layout->output_file_size())); |
| unsigned char* array_of_hashes = NULL; |
| size_t size_of_hashes = 0; |
| |
| if (strcmp(this->options_->build_id(), "tree") == 0 |
| && this->options_->build_id_chunk_size_for_treehash() > 0 |
| && filesize > 0 |
| && (filesize >= this->options_->build_id_min_file_size_for_treehash())) |
| { |
| static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16; |
| const size_t chunk_size = |
| this->options_->build_id_chunk_size_for_treehash(); |
| const size_t num_hashes = ((filesize - 1) / chunk_size) + 1; |
| post_hash_tasks_blocker->add_blockers(num_hashes); |
| size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES; |
| array_of_hashes = new unsigned char[size_of_hashes]; |
| unsigned char *dst = array_of_hashes; |
| for (size_t i = 0, src_offset = 0; i < num_hashes; |
| i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size) |
| { |
| size_t size = std::min(chunk_size, filesize - src_offset); |
| workqueue->queue(new Hash_task(of, |
| src_offset, |
| size, |
| dst, |
| post_hash_tasks_blocker)); |
| } |
| } |
| |
| // Queue the final task to write the build id and close the output file. |
| workqueue->queue(new Task_function(new Close_task_runner(this->options_, |
| layout, |
| of, |
| array_of_hashes, |
| size_of_hashes), |
| post_hash_tasks_blocker, |
| "Task_function Close_task_runner")); |
| } |
| |
| // Close_task_runner methods. |
| |
| // Finish up the build ID computation, if necessary, and write a binary file, |
| // if necessary. Then close the output file. |
| |
| void |
| Close_task_runner::run(Workqueue*, const Task*) |
| { |
| // At this point the multi-threaded part of the build ID computation, |
| // if any, is done. See Build_id_task_runner. |
| this->layout_->write_build_id(this->of_, this->array_of_hashes_, |
| this->size_of_hashes_); |
| |
| // If we've been asked to create a binary file, we do so here. |
| if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF) |
| this->layout_->write_binary(this->of_); |
| |
| if (this->options_->dependency_file()) |
| File_read::write_dependency_file(this->options_->dependency_file(), |
| this->options_->output_file_name()); |
| |
| this->of_->close(); |
| } |
| |
| // Instantiate the templates we need. We could use the configure |
| // script to restrict this to only the ones for implemented targets. |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| Output_section* |
| Layout::init_fixed_output_section<32, false>( |
| const char* name, |
| elfcpp::Shdr<32, false>& shdr); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| Output_section* |
| Layout::init_fixed_output_section<32, true>( |
| const char* name, |
| elfcpp::Shdr<32, true>& shdr); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| Output_section* |
| Layout::init_fixed_output_section<64, false>( |
| const char* name, |
| elfcpp::Shdr<64, false>& shdr); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| Output_section* |
| Layout::init_fixed_output_section<64, true>( |
| const char* name, |
| elfcpp::Shdr<64, true>& shdr); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| Output_section* |
| Layout::layout<32, false>(Sized_relobj_file<32, false>* object, |
| unsigned int shndx, |
| const char* name, |
| const elfcpp::Shdr<32, false>& shdr, |
| unsigned int, unsigned int, unsigned int, off_t*); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| Output_section* |
| Layout::layout<32, true>(Sized_relobj_file<32, true>* object, |
| unsigned int shndx, |
| const char* name, |
| const elfcpp::Shdr<32, true>& shdr, |
| unsigned int, unsigned int, unsigned int, off_t*); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| Output_section* |
| Layout::layout<64, false>(Sized_relobj_file<64, false>* object, |
| unsigned int shndx, |
| const char* name, |
| const elfcpp::Shdr<64, false>& shdr, |
| unsigned int, unsigned int, unsigned int, off_t*); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| Output_section* |
| Layout::layout<64, true>(Sized_relobj_file<64, true>* object, |
| unsigned int shndx, |
| const char* name, |
| const elfcpp::Shdr<64, true>& shdr, |
| unsigned int, unsigned int, unsigned int, off_t*); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| Output_section* |
| Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object, |
| unsigned int reloc_shndx, |
| const elfcpp::Shdr<32, false>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| Output_section* |
| Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object, |
| unsigned int reloc_shndx, |
| const elfcpp::Shdr<32, true>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| Output_section* |
| Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object, |
| unsigned int reloc_shndx, |
| const elfcpp::Shdr<64, false>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| Output_section* |
| Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object, |
| unsigned int reloc_shndx, |
| const elfcpp::Shdr<64, true>& shdr, |
| Output_section* data_section, |
| Relocatable_relocs* rr); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| void |
| Layout::layout_group<32, false>(Symbol_table* symtab, |
| Sized_relobj_file<32, false>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<32, false>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| void |
| Layout::layout_group<32, true>(Symbol_table* symtab, |
| Sized_relobj_file<32, true>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<32, true>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| void |
| Layout::layout_group<64, false>(Symbol_table* symtab, |
| Sized_relobj_file<64, false>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<64, false>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| void |
| Layout::layout_group<64, true>(Symbol_table* symtab, |
| Sized_relobj_file<64, true>* object, |
| unsigned int, |
| const char* group_section_name, |
| const char* signature, |
| const elfcpp::Shdr<64, true>& shdr, |
| elfcpp::Elf_Word flags, |
| std::vector<unsigned int>* shndxes); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| Output_section* |
| Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<32, false>& shdr, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type, |
| off_t* off); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| Output_section* |
| Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<32, true>& shdr, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type, |
| off_t* off); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| Output_section* |
| Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<64, false>& shdr, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type, |
| off_t* off); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| Output_section* |
| Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| const unsigned char* symbol_names, |
| off_t symbol_names_size, |
| unsigned int shndx, |
| const elfcpp::Shdr<64, true>& shdr, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type, |
| off_t* off); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_LITTLE |
| template |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<32, false>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type); |
| #endif |
| |
| #ifdef HAVE_TARGET_32_BIG |
| template |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<32, true>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_LITTLE |
| template |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<64, false>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type); |
| #endif |
| |
| #ifdef HAVE_TARGET_64_BIG |
| template |
| void |
| Layout::add_to_gdb_index(bool is_type_unit, |
| Sized_relobj<64, true>* object, |
| const unsigned char* symbols, |
| off_t symbols_size, |
| unsigned int shndx, |
| unsigned int reloc_shndx, |
| unsigned int reloc_type); |
| #endif |
| |
| } // End namespace gold. |