| /* frv trap support | 
 |    Copyright (C) 1999-2025 Free Software Foundation, Inc. | 
 |    Contributed by Red Hat. | 
 |  | 
 | This file is part of the GNU simulators. | 
 |  | 
 | This program is free software; you can redistribute it and/or modify | 
 | it under the terms of the GNU General Public License as published by | 
 | the Free Software Foundation; either version 3 of the License, or | 
 | (at your option) any later version. | 
 |  | 
 | This program is distributed in the hope that it will be useful, | 
 | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | GNU General Public License for more details. | 
 |  | 
 | You should have received a copy of the GNU General Public License | 
 | along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | /* This must come before any other includes.  */ | 
 | #include "defs.h" | 
 |  | 
 | #define WANT_CPU frvbf | 
 | #define WANT_CPU_FRVBF | 
 |  | 
 | #include "sim-main.h" | 
 | #include "cgen-engine.h" | 
 | #include "cgen-par.h" | 
 | #include "sim-fpu.h" | 
 | #include "sim-signal.h" | 
 | #include "sim/callback.h" | 
 |  | 
 | #include "bfd.h" | 
 | #include "libiberty.h" | 
 |  | 
 | #include <stdlib.h> | 
 |  | 
 | CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot; | 
 |  | 
 | /* The semantic code invokes this for invalid (unrecognized) instructions.  */ | 
 |  | 
 | SEM_PC | 
 | sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc) | 
 | { | 
 |   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |   return vpc; | 
 | } | 
 |  | 
 | /* Process an address exception.  */ | 
 |  | 
 | void | 
 | frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia, | 
 | 		  unsigned int map, int nr_bytes, address_word addr, | 
 | 		  transfer_type transfer, sim_core_signals sig) | 
 | { | 
 |   if (sig == sim_core_unaligned_signal) | 
 |     { | 
 |       if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400 | 
 | 	  || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450) | 
 | 	frv_queue_data_access_error_interrupt (current_cpu, addr); | 
 |       else | 
 | 	frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr); | 
 |     } | 
 |  | 
 |   frv_term (sd); | 
 |   sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig); | 
 | } | 
 |  | 
 | void | 
 | frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia) | 
 | { | 
 |   int i; | 
 |   if (current_cpu != NULL) | 
 |     CPU_PC_SET (current_cpu, cia); | 
 |  | 
 |   /* Invalidate the insn and data caches of all cpus.  */ | 
 |   for (i = 0; i < MAX_NR_PROCESSORS; ++i) | 
 |     { | 
 |       current_cpu = STATE_CPU (sd, i); | 
 |       frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0); | 
 |       frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1); | 
 |     } | 
 |   frv_term (sd); | 
 | } | 
 |  | 
 | /* Read/write functions for system call interface.  */ | 
 |  | 
 | static int | 
 | syscall_read_mem (host_callback *cb, struct cb_syscall *sc, | 
 | 		  unsigned long taddr, char *buf, int bytes) | 
 | { | 
 |   SIM_DESC sd = (SIM_DESC) sc->p1; | 
 |   SIM_CPU *cpu = (SIM_CPU *) sc->p2; | 
 |  | 
 |   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); | 
 |   return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes); | 
 | } | 
 |  | 
 | static int | 
 | syscall_write_mem (host_callback *cb, struct cb_syscall *sc, | 
 | 		   unsigned long taddr, const char *buf, int bytes) | 
 | { | 
 |   SIM_DESC sd = (SIM_DESC) sc->p1; | 
 |   SIM_CPU *cpu = (SIM_CPU *) sc->p2; | 
 |  | 
 |   frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0); | 
 |   frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1); | 
 |   return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes); | 
 | } | 
 |  | 
 | /* Handle TRA and TIRA insns.  */ | 
 | void | 
 | frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |   host_callback *cb = STATE_CALLBACK (sd); | 
 |   USI num = ((base + offset) & 0x7f) + 0x80; | 
 |  | 
 |   if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT) | 
 |     { | 
 |       frv_queue_software_interrupt (current_cpu, num); | 
 |       return; | 
 |     } | 
 |  | 
 |   switch (num) | 
 |     { | 
 |     case TRAP_SYSCALL : | 
 |       { | 
 | 	CB_SYSCALL s; | 
 | 	CB_SYSCALL_INIT (&s); | 
 | 	s.func = GET_H_GR (7); | 
 | 	s.arg1 = GET_H_GR (8); | 
 | 	s.arg2 = GET_H_GR (9); | 
 | 	s.arg3 = GET_H_GR (10); | 
 |  | 
 | 	if (cb_target_to_host_syscall (cb, s.func) == CB_SYS_exit) | 
 | 	  { | 
 | 	    sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1); | 
 | 	  } | 
 |  | 
 | 	s.p1 = sd; | 
 | 	s.p2 = current_cpu; | 
 | 	s.read_mem = syscall_read_mem; | 
 | 	s.write_mem = syscall_write_mem; | 
 | 	cb_syscall (cb, &s); | 
 | 	SET_H_GR (8, s.result); | 
 | 	SET_H_GR (9, s.result2); | 
 | 	SET_H_GR (10, s.errcode); | 
 | 	break; | 
 |       } | 
 |  | 
 |     case TRAP_BREAKPOINT: | 
 |       sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | 
 |       break; | 
 |  | 
 |       /* Add support for dumping registers, either at fixed traps, or all | 
 | 	 unknown traps if configured with --enable-sim-trapdump.  */ | 
 |     default: | 
 | #if !TRAPDUMP | 
 |       frv_queue_software_interrupt (current_cpu, num); | 
 |       return; | 
 | #endif | 
 |  | 
 | #ifdef TRAP_REGDUMP1 | 
 |     case TRAP_REGDUMP1: | 
 | #endif | 
 |  | 
 | #ifdef TRAP_REGDUMP2 | 
 |     case TRAP_REGDUMP2: | 
 | #endif | 
 |  | 
 | #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2)) | 
 |       { | 
 | 	char buf[256]; | 
 | 	int i; | 
 |  | 
 | 	buf[0] = 0; | 
 | 	if (STATE_TEXT_SECTION (sd) | 
 | 	    && pc >= STATE_TEXT_START (sd) | 
 | 	    && pc < STATE_TEXT_END (sd)) | 
 | 	  { | 
 | 	    const char *pc_filename = (const char *)0; | 
 | 	    const char *pc_function = (const char *)0; | 
 | 	    unsigned int pc_linenum = 0; | 
 |  | 
 | 	    if (bfd_find_nearest_line (STATE_PROG_BFD (sd), | 
 | 				       STATE_TEXT_SECTION (sd), | 
 | 				       (struct bfd_symbol **) 0, | 
 | 				       pc - STATE_TEXT_START (sd), | 
 | 				       &pc_filename, &pc_function, &pc_linenum) | 
 | 		&& (pc_function || pc_filename)) | 
 | 	      { | 
 | 		char *p = buf+2; | 
 | 		buf[0] = ' '; | 
 | 		buf[1] = '('; | 
 | 		if (pc_function) | 
 | 		  { | 
 | 		    strcpy (p, pc_function); | 
 | 		    p += strlen (p); | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    char *q = (char *) strrchr (pc_filename, '/'); | 
 | 		    strcpy (p, (q) ? q+1 : pc_filename); | 
 | 		    p += strlen (p); | 
 | 		  } | 
 |  | 
 | 		if (pc_linenum) | 
 | 		  { | 
 | 		    sprintf (p, " line %d", pc_linenum); | 
 | 		    p += strlen (p); | 
 | 		  } | 
 |  | 
 | 		p[0] = ')'; | 
 | 		p[1] = '\0'; | 
 | 		if ((p+1) - buf > sizeof (buf)) | 
 | 		  abort (); | 
 | 	      } | 
 | 	  } | 
 |  | 
 | 	sim_io_printf (sd, | 
 | 		       "\nRegister dump,    pc = 0x%.8x%s, base = %u, offset = %d\n", | 
 | 		       (unsigned)pc, buf, (unsigned)base, (int)offset); | 
 |  | 
 | 	for (i = 0; i < 64; i += 8) | 
 | 	  { | 
 | 	    long g0 = (long)GET_H_GR (i); | 
 | 	    long g1 = (long)GET_H_GR (i+1); | 
 | 	    long g2 = (long)GET_H_GR (i+2); | 
 | 	    long g3 = (long)GET_H_GR (i+3); | 
 | 	    long g4 = (long)GET_H_GR (i+4); | 
 | 	    long g5 = (long)GET_H_GR (i+5); | 
 | 	    long g6 = (long)GET_H_GR (i+6); | 
 | 	    long g7 = (long)GET_H_GR (i+7); | 
 |  | 
 | 	    if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0) | 
 | 	      sim_io_printf (sd, | 
 | 			     "\tgr%02d - gr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | 
 | 			     i, i+7, g0, g1, g2, g3, g4, g5, g6, g7); | 
 | 	  } | 
 |  | 
 | 	for (i = 0; i < 64; i += 8) | 
 | 	  { | 
 | 	    long f0 = (long)GET_H_FR (i); | 
 | 	    long f1 = (long)GET_H_FR (i+1); | 
 | 	    long f2 = (long)GET_H_FR (i+2); | 
 | 	    long f3 = (long)GET_H_FR (i+3); | 
 | 	    long f4 = (long)GET_H_FR (i+4); | 
 | 	    long f5 = (long)GET_H_FR (i+5); | 
 | 	    long f6 = (long)GET_H_FR (i+6); | 
 | 	    long f7 = (long)GET_H_FR (i+7); | 
 |  | 
 | 	    if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0) | 
 | 	      sim_io_printf (sd, | 
 | 			     "\tfr%02d - fr%02d:   0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | 
 | 			     i, i+7, f0, f1, f2, f3, f4, f5, f6, f7); | 
 | 	  } | 
 |  | 
 | 	sim_io_printf (sd, | 
 | 		       "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n", | 
 | 		       (long)GET_H_SPR (272), | 
 | 		       (long)GET_H_SPR (273), | 
 | 		       (long)GET_H_SPR (256), | 
 | 		       (long)GET_H_SPR (263)); | 
 |       } | 
 |       break; | 
 | #endif | 
 |     } | 
 | } | 
 |  | 
 | /* Handle the MTRAP insn.  */ | 
 | void | 
 | frv_mtrap (SIM_CPU *current_cpu) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |  | 
 |   /* Check the status of media exceptions in MSR0.  */ | 
 |   SI msr = GET_MSR (0); | 
 |   if (GET_MSR_AOVF (msr) | 
 |       || (GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)) | 
 |     frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION); | 
 | } | 
 |  | 
 | /* Handle the BREAK insn.  */ | 
 | void | 
 | frv_break (SIM_CPU *current_cpu) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |  | 
 |   if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT) | 
 |     { | 
 |       /* Invalidate the insn cache because the debugger will presumably | 
 | 	 replace the breakpoint insn with the real one.  */ | 
 |       sim_engine_halt (sd, current_cpu, NULL, NULL_CIA, sim_stopped, | 
 | 		       SIM_SIGTRAP); | 
 |     } | 
 |  | 
 |   frv_queue_break_interrupt (current_cpu); | 
 | } | 
 |  | 
 | /* Return from trap.  */ | 
 | USI | 
 | frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field) | 
 | { | 
 |   USI new_pc; | 
 |   /* if (normal running mode and debug_field==0 | 
 |        PC=PCSR | 
 |        PSR.ET=1 | 
 |        PSR.S=PSR.PS | 
 |      else if (debug running mode and debug_field==1) | 
 |        PC=(BPCSR) | 
 |        PSR.ET=BPSR.BET | 
 |        PSR.S=BPSR.BS | 
 |        change to normal running mode | 
 |   */ | 
 |   int psr_s = GET_H_PSR_S (); | 
 |   int psr_et = GET_H_PSR_ET (); | 
 |  | 
 |   /* Check for exceptions in the priority order listed in the FRV Architecture | 
 |      Volume 2.  */ | 
 |   if (! psr_s) | 
 |     { | 
 |       /* Halt if PSR.ET is not set.  See chapter 6 of the LSI.  */ | 
 |       if (! psr_et) | 
 | 	{ | 
 | 	  SIM_DESC sd = CPU_STATE (current_cpu); | 
 | 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | 
 | 	} | 
 |  | 
 |       /* privileged_instruction interrupt will have already been queued by | 
 | 	 frv_detect_insn_access_interrupts.  */ | 
 |       new_pc = pc + 4; | 
 |     } | 
 |   else if (psr_et) | 
 |     { | 
 |       /* Halt if PSR.S is set.  See chapter 6 of the LSI.  */ | 
 |       if (psr_s) | 
 | 	{ | 
 | 	  SIM_DESC sd = CPU_STATE (current_cpu); | 
 | 	  sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP); | 
 | 	} | 
 |  | 
 |       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |       new_pc = pc + 4; | 
 |     } | 
 |   else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0) | 
 |     { | 
 |       USI psr = GET_PSR (); | 
 |       /* Return from normal running state.  */ | 
 |       new_pc = GET_H_SPR (H_SPR_PCSR); | 
 |       SET_PSR_ET (psr, 1); | 
 |       SET_PSR_S (psr, GET_PSR_PS (psr)); | 
 |       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); | 
 |     } | 
 |   else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1) | 
 |     { | 
 |       USI psr = GET_PSR (); | 
 |       /* Return from debug state.  */ | 
 |       new_pc = GET_H_SPR (H_SPR_BPCSR); | 
 |       SET_PSR_ET (psr, GET_H_BPSR_BET ()); | 
 |       SET_PSR_S (psr, GET_H_BPSR_BS ()); | 
 |       sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr); | 
 |       CPU_DEBUG_STATE (current_cpu) = 0; | 
 |     } | 
 |   else | 
 |     new_pc = pc + 4; | 
 |  | 
 |   return new_pc; | 
 | } | 
 |  | 
 | /* Functions for handling non-excepting instruction side effects.  */ | 
 | static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index) | 
 | { | 
 |   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | 
 |   if (control->spr[H_SPR_NECR].implemented) | 
 |     { | 
 |       int limit; | 
 |       USI necr = GET_NECR (); | 
 |  | 
 |       /* See if any NESRs are implemented. First need to check the validity of | 
 | 	 the NECR.  */ | 
 |       if (! GET_NECR_VALID (necr)) | 
 | 	return NO_NESR; | 
 |  | 
 |       limit = GET_NECR_NEN (necr); | 
 |       for (++current_index; current_index < limit; ++current_index) | 
 | 	{ | 
 | 	  SI nesr = GET_NESR (current_index); | 
 | 	  if (! GET_NESR_VALID (nesr)) | 
 | 	    return current_index; | 
 | 	} | 
 |     } | 
 |   return NO_NESR; | 
 | } | 
 |  | 
 | static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index) | 
 | { | 
 |   FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu); | 
 |   if (control->spr[H_SPR_NECR].implemented) | 
 |     { | 
 |       int limit; | 
 |       USI necr = GET_NECR (); | 
 |  | 
 |       /* See if any NESRs are implemented. First need to check the validity of | 
 | 	 the NECR.  */ | 
 |       if (! GET_NECR_VALID (necr)) | 
 | 	return NO_NESR; | 
 |  | 
 |       limit = GET_NECR_NEN (necr); | 
 |       for (++current_index; current_index < limit; ++current_index) | 
 | 	{ | 
 | 	  SI nesr = GET_NESR (current_index); | 
 | 	  if (GET_NESR_VALID (nesr)) | 
 | 	    return current_index; | 
 | 	} | 
 |     } | 
 |   return NO_NESR; | 
 | } | 
 |  | 
 | BI | 
 | frvbf_check_non_excepting_load ( | 
 |   SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index, | 
 |   SI immediate_disp, QI data_size, BI is_float | 
 | ) | 
 | { | 
 |   BI rc = 1; /* perform the load.  */ | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |   int daec = 0; | 
 |   int rec  = 0; | 
 |   int ec   = 0; | 
 |   USI necr; | 
 |   int do_elos; | 
 |   SI NE_flags[2]; | 
 |   SI NE_base; | 
 |   SI nesr; | 
 |   SI ne_index; | 
 |   FRV_REGISTER_CONTROL *control; | 
 |  | 
 |   SI address = GET_H_GR (base_index); | 
 |   if (disp_index >= 0) | 
 |     address += GET_H_GR (disp_index); | 
 |   else | 
 |     address += immediate_disp; | 
 |  | 
 |   /* Check for interrupt factors.  */ | 
 |   switch (data_size) | 
 |     { | 
 |     case NESR_UQI_SIZE: | 
 |     case NESR_QI_SIZE: | 
 |       break; | 
 |     case NESR_UHI_SIZE: | 
 |     case NESR_HI_SIZE: | 
 |       if (address & 1) | 
 | 	ec = 1; | 
 |       break; | 
 |     case NESR_SI_SIZE: | 
 |       if (address & 3) | 
 | 	ec = 1; | 
 |       break; | 
 |     case NESR_DI_SIZE: | 
 |       if (address & 7) | 
 | 	ec = 1; | 
 |       if (target_index & 1) | 
 | 	rec = 1; | 
 |       break; | 
 |     case NESR_XI_SIZE: | 
 |       if (address & 0xf) | 
 | 	ec = 1; | 
 |       if (target_index & 3) | 
 | 	rec = 1; | 
 |       break; | 
 |     default: | 
 |       { | 
 | 	IADDR pc = GET_H_PC (); | 
 | 	sim_engine_abort (sd, current_cpu, pc,  | 
 | 			  "check_non_excepting_load: Incorrect data_size\n"); | 
 | 	break; | 
 |       } | 
 |     } | 
 |  | 
 |   control = CPU_REGISTER_CONTROL (current_cpu); | 
 |   if (control->spr[H_SPR_NECR].implemented) | 
 |     { | 
 |       necr = GET_NECR (); | 
 |       do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr); | 
 |     } | 
 |   else | 
 |     do_elos = 0; | 
 |  | 
 |   /* NECR, NESR, NEEAR are only implemented for the full frv machine.  */ | 
 |   if (do_elos) | 
 |     { | 
 |       ne_index = next_available_nesr (current_cpu, NO_NESR); | 
 |       if (ne_index == NO_NESR) | 
 | 	{ | 
 | 	  IADDR pc = GET_H_PC (); | 
 | 	  sim_engine_abort (sd, current_cpu, pc,  | 
 | 			    "No available NESR register\n"); | 
 | 	} | 
 |  | 
 |       /* Fill in the basic fields of the NESR.  */ | 
 |       nesr = GET_NESR (ne_index); | 
 |       SET_NESR_VALID (nesr); | 
 |       SET_NESR_EAV (nesr); | 
 |       SET_NESR_DRN (nesr, target_index); | 
 |       SET_NESR_SIZE (nesr, data_size); | 
 |       SET_NESR_NEAN (nesr, ne_index); | 
 |       if (is_float) | 
 | 	SET_NESR_FR (nesr); | 
 |       else | 
 | 	CLEAR_NESR_FR (nesr); | 
 |  | 
 |       /* Set the corresponding NEEAR.  */ | 
 |       SET_NEEAR (ne_index, address); | 
 |    | 
 |       SET_NESR_DAEC (nesr, 0); | 
 |       SET_NESR_REC (nesr, 0); | 
 |       SET_NESR_EC (nesr, 0); | 
 |     } | 
 |  | 
 |   /* Set the NE flag corresponding to the target register if an interrupt | 
 |      factor was detected.  | 
 |      daec is not checked here yet, but is declared for future reference.  */ | 
 |   if (is_float) | 
 |     NE_base = H_SPR_FNER0; | 
 |   else | 
 |     NE_base = H_SPR_GNER0; | 
 |  | 
 |   GET_NE_FLAGS (NE_flags, NE_base); | 
 |   if (rec) | 
 |     { | 
 |       SET_NE_FLAG (NE_flags, target_index); | 
 |       if (do_elos) | 
 | 	SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED); | 
 |     } | 
 |  | 
 |   if (ec) | 
 |     { | 
 |       SET_NE_FLAG (NE_flags, target_index); | 
 |       if (do_elos) | 
 | 	SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED); | 
 |     } | 
 |  | 
 |   if (do_elos) | 
 |     SET_NESR (ne_index, nesr); | 
 |  | 
 |   /* If no interrupt factor was detected then set the NE flag on the | 
 |      target register if the NE flag on one of the input registers | 
 |      is already set.  */ | 
 |   if (! rec && ! ec && ! daec) | 
 |     { | 
 |       BI ne_flag = GET_NE_FLAG (NE_flags, base_index); | 
 |       if (disp_index >= 0) | 
 | 	ne_flag |= GET_NE_FLAG (NE_flags, disp_index); | 
 |       if (ne_flag) | 
 | 	{ | 
 | 	  SET_NE_FLAG (NE_flags, target_index); | 
 | 	  rc = 0; /* Do not perform the load.  */ | 
 | 	} | 
 |       else | 
 | 	CLEAR_NE_FLAG (NE_flags, target_index); | 
 |     } | 
 |  | 
 |   SET_NE_FLAGS (NE_base, NE_flags); | 
 |  | 
 |   return rc; /* perform the load?  */ | 
 | } | 
 |  | 
 | /* Record state for media exception: media_cr_not_aligned.  */ | 
 | void | 
 | frvbf_media_cr_not_aligned (SIM_CPU *current_cpu) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |  | 
 |   /* On some machines this generates an illegal_instruction interrupt.  */ | 
 |   switch (STATE_ARCHITECTURE (sd)->mach) | 
 |     { | 
 |       /* Note: there is a discrepancy between V2.2 of the FR400 | 
 | 	 instruction manual and the various FR4xx LSI specs.  The former | 
 | 	 claims that unaligned registers cause an mp_exception while the | 
 | 	 latter say it's an illegal_instruction.  The LSI specs appear | 
 | 	 to be correct since MTT is fixed at 1.  */ | 
 |     case bfd_mach_fr400: | 
 |     case bfd_mach_fr450: | 
 |     case bfd_mach_fr550: | 
 |       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |       break; | 
 |     default: | 
 |       frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | /* Record state for media exception: media_acc_not_aligned.  */ | 
 | void | 
 | frvbf_media_acc_not_aligned (SIM_CPU *current_cpu) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |  | 
 |   /* On some machines this generates an illegal_instruction interrupt.  */ | 
 |   switch (STATE_ARCHITECTURE (sd)->mach) | 
 |     { | 
 |       /* See comment in frvbf_cr_not_aligned().  */ | 
 |     case bfd_mach_fr400: | 
 |     case bfd_mach_fr450: | 
 |     case bfd_mach_fr550: | 
 |       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |       break; | 
 |     default: | 
 |       frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | /* Record state for media exception: media_register_not_aligned.  */ | 
 | void | 
 | frvbf_media_register_not_aligned (SIM_CPU *current_cpu) | 
 | { | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |  | 
 |   /* On some machines this generates an illegal_instruction interrupt.  */ | 
 |   switch (STATE_ARCHITECTURE (sd)->mach) | 
 |     { | 
 |       /* See comment in frvbf_cr_not_aligned().  */ | 
 |     case bfd_mach_fr400: | 
 |     case bfd_mach_fr450: | 
 |     case bfd_mach_fr550: | 
 |       frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |       break; | 
 |     default: | 
 |       frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0); | 
 |       break; | 
 |     } | 
 | } | 
 |  | 
 | /* Record state for media exception: media_overflow.  */ | 
 | void | 
 | frvbf_media_overflow (SIM_CPU *current_cpu, int sie) | 
 | { | 
 |   frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie); | 
 | } | 
 |  | 
 | /* Queue a division exception.  */ | 
 | enum frv_dtt | 
 | frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt, | 
 | 			  int target_index, int non_excepting) | 
 | { | 
 |   /* If there was an overflow and it is masked, then record it in | 
 |      ISR.AEXC.  */ | 
 |   USI isr = GET_ISR (); | 
 |   if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr)) | 
 |     { | 
 |       dtt &= ~FRV_DTT_OVERFLOW; | 
 |       SET_ISR_AEXC (isr); | 
 |       SET_ISR (isr); | 
 |     } | 
 |   if (dtt != FRV_DTT_NO_EXCEPTION) | 
 |     { | 
 |       if (non_excepting) | 
 | 	{ | 
 | 	  /* Non excepting instruction, simply set the NE flag for the target | 
 | 	     register.  */ | 
 | 	  SI NE_flags[2]; | 
 | 	  GET_NE_FLAGS (NE_flags, H_SPR_GNER0); | 
 | 	  SET_NE_FLAG (NE_flags, target_index); | 
 | 	  SET_NE_FLAGS (H_SPR_GNER0, NE_flags); | 
 | 	} | 
 |       else | 
 | 	frv_queue_division_exception_interrupt (current_cpu, dtt); | 
 |     } | 
 |   return dtt; | 
 | } | 
 |  | 
 | void | 
 | frvbf_check_recovering_store ( | 
 |   SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float | 
 | ) | 
 | { | 
 |   FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu); | 
 |   int reg_ix; | 
 |  | 
 |   CPU_RSTR_INVALIDATE(current_cpu) = 0; | 
 |  | 
 |   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); | 
 |        reg_ix != NO_NESR; | 
 |        reg_ix = next_valid_nesr (current_cpu, reg_ix)) | 
 |     { | 
 |       if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix)) | 
 | 	{ | 
 | 	  SI nesr = GET_NESR (reg_ix); | 
 | 	  int nesr_drn = GET_NESR_DRN (nesr); | 
 | 	  BI nesr_fr = GET_NESR_FR (nesr); | 
 | 	  SI remain; | 
 |  | 
 | 	  /* Invalidate cache block containing this address. | 
 | 	     If we need to count cycles, then the cache operation will be | 
 | 	     initiated from the model profiling functions. | 
 | 	     See frvbf_model_....  */ | 
 | 	  if (model_insn) | 
 | 	    { | 
 | 	      CPU_RSTR_INVALIDATE(current_cpu) = 1; | 
 | 	      CPU_LOAD_ADDRESS (current_cpu) = address; | 
 | 	    } | 
 | 	  else | 
 | 	    frv_cache_invalidate (cache, address, 1/* flush */); | 
 |  | 
 | 	  /* Copy the stored value to the register indicated by NESR.DRN.  */ | 
 | 	  for (remain = size; remain > 0; remain -= 4) | 
 | 	    { | 
 | 	      SI value; | 
 |  | 
 | 	      if (is_float) | 
 | 		value = GET_H_FR (regno); | 
 | 	      else | 
 | 		value = GET_H_GR (regno); | 
 |  | 
 | 	      switch (size) | 
 | 		{ | 
 | 		case 1: | 
 | 		  value &= 0xff; | 
 | 		  break; | 
 | 		case 2: | 
 | 		  value &= 0xffff; | 
 | 		  break; | 
 | 		default: | 
 | 		  break; | 
 | 		} | 
 |  | 
 | 	      if (nesr_fr) | 
 | 		sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn, | 
 | 				       value); | 
 | 	      else | 
 | 		sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn, | 
 | 				       value); | 
 |  | 
 | 	      nesr_drn++; | 
 | 	      regno++; | 
 | 	    } | 
 | 	  break; /* Only consider the first matching register.  */ | 
 | 	} | 
 |     } /* loop over active neear registers.  */ | 
 | } | 
 |  | 
 | SI | 
 | frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno) | 
 | { | 
 |   /* Only applicable to fr550 */ | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) | 
 |     return 1; | 
 |  | 
 |   /* On the fr550, media insns in slots 0 and 2 can only access | 
 |      accumulators acc0-acc3. Insns in slots 1 and 3 can only access | 
 |      accumulators acc4-acc7 */ | 
 |   switch (frv_current_fm_slot) | 
 |     { | 
 |     case UNIT_FM0: | 
 |     case UNIT_FM2: | 
 |       if (regno <= 3) | 
 | 	return 1; /* all is ok */ | 
 |       break; | 
 |     case UNIT_FM1: | 
 |     case UNIT_FM3: | 
 |       if (regno >= 4) | 
 | 	return 1; /* all is ok */ | 
 |       break; | 
 |     } | 
 |    | 
 |   /* The specified accumulator is out of range. Queue an illegal_instruction | 
 |      interrupt.  */ | 
 |   frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION); | 
 |   return 0; | 
 | } | 
 |  | 
 | void | 
 | frvbf_check_swap_address (SIM_CPU *current_cpu, SI address) | 
 | { | 
 |   /* Only applicable to fr550 */ | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550) | 
 |     return; | 
 |  | 
 |   /* Address must be aligned on a word boundary.  */ | 
 |   if (address & 0x3) | 
 |     frv_queue_data_access_exception_interrupt (current_cpu); | 
 | } | 
 |  | 
 | static void | 
 | clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float) | 
 | { | 
 |   int reg_ix; | 
 |  | 
 |   /* Only implemented for full frv.  */ | 
 |   SIM_DESC sd = CPU_STATE (current_cpu); | 
 |   if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv) | 
 |     return; | 
 |  | 
 |   /* Clear the appropriate NESR and NEEAR registers.  */ | 
 |   for (reg_ix = next_valid_nesr (current_cpu, NO_NESR); | 
 |        reg_ix != NO_NESR; | 
 |        reg_ix = next_valid_nesr (current_cpu, reg_ix)) | 
 |     { | 
 |       SI nesr; | 
 |       /* The register is available, now check if it is active.  */ | 
 |       nesr = GET_NESR (reg_ix); | 
 |       if (GET_NESR_FR (nesr) == is_float) | 
 | 	{ | 
 | 	  if (target_index < 0 || GET_NESR_DRN (nesr) == target_index) | 
 | 	    { | 
 | 	      SET_NESR (reg_ix, 0); | 
 | 	      SET_NEEAR (reg_ix, 0); | 
 | 	    } | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | static void | 
 | clear_ne_flags ( | 
 |   SIM_CPU *current_cpu, | 
 |   SI target_index, | 
 |   int hi_available, | 
 |   int lo_available, | 
 |   SI NE_base | 
 | ) | 
 | { | 
 |   SI NE_flags[2]; | 
 |  | 
 |   GET_NE_FLAGS (NE_flags, NE_base); | 
 |   if (target_index >= 0) | 
 |     CLEAR_NE_FLAG (NE_flags, target_index); | 
 |   else | 
 |     { | 
 |       if (lo_available) | 
 | 	NE_flags[1] = 0; | 
 |       if (hi_available) | 
 | 	NE_flags[0] = 0; | 
 |     } | 
 |   SET_NE_FLAGS (NE_base, NE_flags); | 
 | } | 
 |  | 
 | /* Return 1 if the given register is available, 0 otherwise.  TARGET_INDEX==-1 | 
 |    means to check for any register available.  */ | 
 | static void | 
 | which_registers_available ( | 
 |   SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float | 
 | ) | 
 | { | 
 |   if (is_float) | 
 |     frv_fr_registers_available (current_cpu, hi_available, lo_available); | 
 |   else | 
 |     frv_gr_registers_available (current_cpu, hi_available, lo_available); | 
 | } | 
 |  | 
 | void | 
 | frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float) | 
 | { | 
 |   int hi_available; | 
 |   int lo_available; | 
 |   SI NE_base; | 
 |   USI necr; | 
 |   FRV_REGISTER_CONTROL *control; | 
 |  | 
 |   /* Check for availability of the target register(s).  */ | 
 |   which_registers_available (current_cpu, & hi_available, & lo_available, | 
 | 			     is_float); | 
 |  | 
 |   /* Check to make sure that the target register is available.  */ | 
 |   if (! frv_check_register_access (current_cpu, target_index, | 
 | 				   hi_available, lo_available)) | 
 |     return; | 
 |  | 
 |   /* Determine whether we're working with GR or FR registers.  */ | 
 |   if (is_float) | 
 |     NE_base = H_SPR_FNER0; | 
 |   else | 
 |     NE_base = H_SPR_GNER0; | 
 |  | 
 |   /* Always clear the appropriate NE flags.  */ | 
 |   clear_ne_flags (current_cpu, target_index, hi_available, lo_available, | 
 | 		  NE_base); | 
 |  | 
 |   /* Clear the appropriate NESR and NEEAR registers.  */ | 
 |   control = CPU_REGISTER_CONTROL (current_cpu); | 
 |   if (control->spr[H_SPR_NECR].implemented) | 
 |     { | 
 |       necr = GET_NECR (); | 
 |       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr)) | 
 | 	clear_nesr_neear (current_cpu, target_index, is_float); | 
 |     } | 
 | } | 
 |  | 
 | void | 
 | frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float) | 
 | { | 
 |   SI NE_base; | 
 |   SI NE_flags[2]; | 
 |   BI NE_flag; | 
 |   int hi_available; | 
 |   int lo_available; | 
 |   USI necr; | 
 |   FRV_REGISTER_CONTROL *control; | 
 |  | 
 |   /* Check for availability of the target register(s).  */ | 
 |   which_registers_available (current_cpu, & hi_available, & lo_available, | 
 | 			     is_float); | 
 |  | 
 |   /* Check to make sure that the target register is available.  */ | 
 |   if (! frv_check_register_access (current_cpu, target_index, | 
 | 				   hi_available, lo_available)) | 
 |     return; | 
 |  | 
 |   /* Determine whether we're working with GR or FR registers.  */ | 
 |   if (is_float) | 
 |     NE_base = H_SPR_FNER0; | 
 |   else | 
 |     NE_base = H_SPR_GNER0; | 
 |  | 
 |   /* Determine whether a ne exception is pending.  */ | 
 |   GET_NE_FLAGS (NE_flags, NE_base); | 
 |   if (target_index >= 0) | 
 |     NE_flag = GET_NE_FLAG (NE_flags, target_index); | 
 |   else | 
 |     { | 
 |       NE_flag = (hi_available && NE_flags[0] != 0) | 
 | 		|| (lo_available && NE_flags[1] != 0); | 
 |     } | 
 |  | 
 |   /* Always clear the appropriate NE flags.  */ | 
 |   clear_ne_flags (current_cpu, target_index, hi_available, lo_available, | 
 | 		  NE_base); | 
 |  | 
 |   control = CPU_REGISTER_CONTROL (current_cpu); | 
 |   if (control->spr[H_SPR_NECR].implemented) | 
 |     { | 
 |       necr = GET_NECR (); | 
 |       if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag) | 
 | 	{ | 
 | 	  /* Clear the appropriate NESR and NEEAR registers.  */ | 
 | 	  clear_nesr_neear (current_cpu, target_index, is_float); | 
 | 	  frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION); | 
 | 	} | 
 |     } | 
 | } | 
 |  | 
 | /* Generate the appropriate fp_exception(s) based on the given status code.  */ | 
 | void | 
 | frvbf_fpu_error (CGEN_FPU* fpu, int status) | 
 | { | 
 |   struct frv_fp_exception_info fp_info = { | 
 |     FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION | 
 |   }; | 
 |  | 
 |   if (status & | 
 |       (sim_fpu_status_invalid_snan | | 
 |        sim_fpu_status_invalid_qnan | | 
 |        sim_fpu_status_invalid_isi | | 
 |        sim_fpu_status_invalid_idi | | 
 |        sim_fpu_status_invalid_zdz | | 
 |        sim_fpu_status_invalid_imz | | 
 |        sim_fpu_status_invalid_cvi | | 
 |        sim_fpu_status_invalid_cmp | | 
 |        sim_fpu_status_invalid_sqrt)) | 
 |     fp_info.fsr_mask |= FSR_INVALID_OPERATION; | 
 |  | 
 |   if (status & sim_fpu_status_invalid_div0) | 
 |     fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO; | 
 |  | 
 |   if (status & sim_fpu_status_inexact) | 
 |     fp_info.fsr_mask |= FSR_INEXACT; | 
 |  | 
 |   if (status & sim_fpu_status_overflow) | 
 |     fp_info.fsr_mask |= FSR_OVERFLOW; | 
 |  | 
 |   if (status & sim_fpu_status_underflow) | 
 |     fp_info.fsr_mask |= FSR_UNDERFLOW; | 
 |  | 
 |   if (status & sim_fpu_status_denorm) | 
 |     { | 
 |       fp_info.fsr_mask |= FSR_DENORMAL_INPUT; | 
 |       fp_info.ftt = FTT_DENORMAL_INPUT; | 
 |     } | 
 |  | 
 |   if (fp_info.fsr_mask != FSR_NO_EXCEPTION) | 
 |     { | 
 |       SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner; | 
 |       frv_queue_fp_exception_interrupt (current_cpu, & fp_info); | 
 |     } | 
 | } |