| /* Target-dependent code for Renesas M32R, for GDB. | 
 |  | 
 |    Copyright (C) 1996-2025 Free Software Foundation, Inc. | 
 |  | 
 |    This file is part of GDB. | 
 |  | 
 |    This program is free software; you can redistribute it and/or modify | 
 |    it under the terms of the GNU General Public License as published by | 
 |    the Free Software Foundation; either version 3 of the License, or | 
 |    (at your option) any later version. | 
 |  | 
 |    This program is distributed in the hope that it will be useful, | 
 |    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |    GNU General Public License for more details. | 
 |  | 
 |    You should have received a copy of the GNU General Public License | 
 |    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */ | 
 |  | 
 | #include "extract-store-integer.h" | 
 | #include "frame.h" | 
 | #include "frame-unwind.h" | 
 | #include "frame-base.h" | 
 | #include "symtab.h" | 
 | #include "gdbtypes.h" | 
 | #include "cli/cli-cmds.h" | 
 | #include "gdbcore.h" | 
 | #include "value.h" | 
 | #include "inferior.h" | 
 | #include "symfile.h" | 
 | #include "objfiles.h" | 
 | #include "osabi.h" | 
 | #include "language.h" | 
 | #include "arch-utils.h" | 
 | #include "regcache.h" | 
 | #include "trad-frame.h" | 
 | #include "dis-asm.h" | 
 | #include "m32r-tdep.h" | 
 | #include <algorithm> | 
 |  | 
 | /* The size of the argument registers (r0 - r3) in bytes.  */ | 
 | #define M32R_ARG_REGISTER_SIZE 4 | 
 |  | 
 | /* Local functions */ | 
 |  | 
 | static CORE_ADDR | 
 | m32r_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) | 
 | { | 
 |   /* Align to the size of an instruction (so that they can safely be | 
 |      pushed onto the stack.  */ | 
 |   return sp & ~3; | 
 | } | 
 |  | 
 |  | 
 | /* Breakpoints | 
 |   | 
 |    The little endian mode of M32R is unique.  In most of architectures, | 
 |    two 16-bit instructions, A and B, are placed as the following: | 
 |    | 
 |    Big endian: | 
 |    A0 A1 B0 B1 | 
 |    | 
 |    Little endian: | 
 |    A1 A0 B1 B0 | 
 |    | 
 |    In M32R, they are placed like this: | 
 |    | 
 |    Big endian: | 
 |    A0 A1 B0 B1 | 
 |    | 
 |    Little endian: | 
 |    B1 B0 A1 A0 | 
 |    | 
 |    This is because M32R always fetches instructions in 32-bit. | 
 |    | 
 |    The following functions take care of this behavior.  */ | 
 |  | 
 | static int | 
 | m32r_memory_insert_breakpoint (struct gdbarch *gdbarch, | 
 | 			       struct bp_target_info *bp_tgt) | 
 | { | 
 |   CORE_ADDR addr = bp_tgt->placed_address = bp_tgt->reqstd_address; | 
 |   int val; | 
 |   gdb_byte buf[4]; | 
 |   gdb_byte contents_cache[4]; | 
 |   gdb_byte bp_entry[] = { 0x10, 0xf1 };	/* dpt */ | 
 |  | 
 |   /* Save the memory contents.  */ | 
 |   val = target_read_memory (addr & 0xfffffffc, contents_cache, 4); | 
 |   if (val != 0) | 
 |     return val;			/* return error */ | 
 |  | 
 |   memcpy (bp_tgt->shadow_contents, contents_cache, 4); | 
 |   bp_tgt->shadow_len = 4; | 
 |  | 
 |   /* Determine appropriate breakpoint contents and size for this address.  */ | 
 |   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
 |     { | 
 |       if ((addr & 3) == 0) | 
 | 	{ | 
 | 	  buf[0] = bp_entry[0]; | 
 | 	  buf[1] = bp_entry[1]; | 
 | 	  buf[2] = contents_cache[2] & 0x7f; | 
 | 	  buf[3] = contents_cache[3]; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  buf[0] = contents_cache[0]; | 
 | 	  buf[1] = contents_cache[1]; | 
 | 	  buf[2] = bp_entry[0]; | 
 | 	  buf[3] = bp_entry[1]; | 
 | 	} | 
 |     } | 
 |   else				/* little-endian */ | 
 |     { | 
 |       if ((addr & 3) == 0) | 
 | 	{ | 
 | 	  buf[0] = contents_cache[0]; | 
 | 	  buf[1] = contents_cache[1] & 0x7f; | 
 | 	  buf[2] = bp_entry[1]; | 
 | 	  buf[3] = bp_entry[0]; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  buf[0] = bp_entry[1]; | 
 | 	  buf[1] = bp_entry[0]; | 
 | 	  buf[2] = contents_cache[2]; | 
 | 	  buf[3] = contents_cache[3]; | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Write the breakpoint.  */ | 
 |   val = target_write_memory (addr & 0xfffffffc, buf, 4); | 
 |   return val; | 
 | } | 
 |  | 
 | static int | 
 | m32r_memory_remove_breakpoint (struct gdbarch *gdbarch, | 
 | 			       struct bp_target_info *bp_tgt) | 
 | { | 
 |   CORE_ADDR addr = bp_tgt->placed_address; | 
 |   int val; | 
 |   gdb_byte buf[4]; | 
 |   gdb_byte *contents_cache = bp_tgt->shadow_contents; | 
 |  | 
 |   buf[0] = contents_cache[0]; | 
 |   buf[1] = contents_cache[1]; | 
 |   buf[2] = contents_cache[2]; | 
 |   buf[3] = contents_cache[3]; | 
 |  | 
 |   /* Remove parallel bit.  */ | 
 |   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
 |     { | 
 |       if ((buf[0] & 0x80) == 0 && (buf[2] & 0x80) != 0) | 
 | 	buf[2] &= 0x7f; | 
 |     } | 
 |   else				/* little-endian */ | 
 |     { | 
 |       if ((buf[3] & 0x80) == 0 && (buf[1] & 0x80) != 0) | 
 | 	buf[1] &= 0x7f; | 
 |     } | 
 |  | 
 |   /* Write contents.  */ | 
 |   val = target_write_raw_memory (addr & 0xfffffffc, buf, 4); | 
 |   return val; | 
 | } | 
 |  | 
 | /* Implement the breakpoint_kind_from_pc gdbarch method.  */ | 
 |  | 
 | static int | 
 | m32r_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) | 
 | { | 
 |   if ((*pcptr & 3) == 0) | 
 |     return 4; | 
 |   else | 
 |     return 2; | 
 | } | 
 |  | 
 | /* Implement the sw_breakpoint_from_kind gdbarch method.  */ | 
 |  | 
 | static const gdb_byte * | 
 | m32r_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) | 
 | { | 
 |   static gdb_byte be_bp_entry[] = { | 
 |     0x10, 0xf1, 0x70, 0x00 | 
 |   };	/* dpt -> nop */ | 
 |   static gdb_byte le_bp_entry[] = { | 
 |     0x00, 0x70, 0xf1, 0x10 | 
 |   };	/* dpt -> nop */ | 
 |  | 
 |   *size = kind; | 
 |  | 
 |   /* Determine appropriate breakpoint.  */ | 
 |   if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | 
 |     return be_bp_entry; | 
 |   else | 
 |     { | 
 |       if (kind == 4) | 
 | 	return le_bp_entry; | 
 |       else | 
 | 	return le_bp_entry + 2; | 
 |     } | 
 | } | 
 |  | 
 | static const char * const m32r_register_names[] = { | 
 |   "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | 
 |   "r8", "r9", "r10", "r11", "r12", "fp", "lr", "sp", | 
 |   "psw", "cbr", "spi", "spu", "bpc", "pc", "accl", "acch", | 
 |   "evb" | 
 | }; | 
 |  | 
 | static const char * | 
 | m32r_register_name (struct gdbarch *gdbarch, int reg_nr) | 
 | { | 
 |   static_assert (ARRAY_SIZE (m32r_register_names) == M32R_NUM_REGS); | 
 |   return m32r_register_names[reg_nr]; | 
 | } | 
 |  | 
 |  | 
 | /* Return the GDB type object for the "standard" data type | 
 |    of data in register N.  */ | 
 |  | 
 | static struct type * | 
 | m32r_register_type (struct gdbarch *gdbarch, int reg_nr) | 
 | { | 
 |   if (reg_nr == M32R_PC_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_func_ptr; | 
 |   else if (reg_nr == M32R_SP_REGNUM || reg_nr == M32R_FP_REGNUM) | 
 |     return builtin_type (gdbarch)->builtin_data_ptr; | 
 |   else | 
 |     return builtin_type (gdbarch)->builtin_int32; | 
 | } | 
 |  | 
 |  | 
 | /* Write into appropriate registers a function return value | 
 |    of type TYPE, given in virtual format. | 
 |  | 
 |    Things always get returned in RET1_REGNUM, RET2_REGNUM.  */ | 
 |  | 
 | static void | 
 | m32r_store_return_value (struct type *type, struct regcache *regcache, | 
 | 			 const gdb_byte *valbuf) | 
 | { | 
 |   struct gdbarch *gdbarch = regcache->arch (); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR regval; | 
 |   int len = type->length (); | 
 |  | 
 |   regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order); | 
 |   regcache_cooked_write_unsigned (regcache, RET1_REGNUM, regval); | 
 |  | 
 |   if (len > 4) | 
 |     { | 
 |       regval = extract_unsigned_integer (valbuf + 4, | 
 | 					 len - 4, byte_order); | 
 |       regcache_cooked_write_unsigned (regcache, RET1_REGNUM + 1, regval); | 
 |     } | 
 | } | 
 |  | 
 | /* This is required by skip_prologue.  The results of decoding a prologue | 
 |    should be cached because this thrashing is getting nuts.  */ | 
 |  | 
 | static int | 
 | decode_prologue (struct gdbarch *gdbarch, | 
 | 		 CORE_ADDR start_pc, CORE_ADDR scan_limit, | 
 | 		 CORE_ADDR *pl_endptr, unsigned long *framelength) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   unsigned long framesize; | 
 |   int insn; | 
 |   int op1; | 
 |   CORE_ADDR after_prologue = 0; | 
 |   CORE_ADDR after_push = 0; | 
 |   CORE_ADDR after_stack_adjust = 0; | 
 |   CORE_ADDR current_pc; | 
 |   LONGEST return_value; | 
 |  | 
 |   framesize = 0; | 
 |   after_prologue = 0; | 
 |  | 
 |   for (current_pc = start_pc; current_pc < scan_limit; current_pc += 2) | 
 |     { | 
 |       /* Check if current pc's location is readable.  */ | 
 |       if (!safe_read_memory_integer (current_pc, 2, byte_order, &return_value)) | 
 | 	return -1; | 
 |  | 
 |       insn = read_memory_unsigned_integer (current_pc, 2, byte_order); | 
 |  | 
 |       if (insn == 0x0000) | 
 | 	break; | 
 |  | 
 |       /* If this is a 32 bit instruction, we dont want to examine its | 
 | 	 immediate data as though it were an instruction.  */ | 
 |       if (current_pc & 0x02) | 
 | 	{ | 
 | 	  /* Decode this instruction further.  */ | 
 | 	  insn &= 0x7fff; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  if (insn & 0x8000) | 
 | 	    { | 
 | 	      if (current_pc == scan_limit) | 
 | 		scan_limit += 2;	/* extend the search */ | 
 |  | 
 | 	      current_pc += 2;	/* skip the immediate data */ | 
 |  | 
 | 	      /* Check if current pc's location is readable.  */ | 
 | 	      if (!safe_read_memory_integer (current_pc, 2, byte_order, | 
 | 					     &return_value)) | 
 | 		return -1; | 
 |  | 
 | 	      if (insn == 0x8faf)	/* add3 sp, sp, xxxx */ | 
 | 		/* add 16 bit sign-extended offset */ | 
 | 		{ | 
 | 		  framesize += | 
 | 		    -((short) read_memory_unsigned_integer (current_pc, | 
 | 							    2, byte_order)); | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  if (((insn >> 8) == 0xe4) /* ld24 r4, xxxxxx; sub sp, r4 */ | 
 | 		      && safe_read_memory_integer (current_pc + 2, | 
 | 						   2, byte_order, | 
 | 						   &return_value) | 
 | 		      && read_memory_unsigned_integer (current_pc + 2, | 
 | 						       2, byte_order) | 
 | 			 == 0x0f24) | 
 | 		    { | 
 | 		      /* Subtract 24 bit sign-extended negative-offset.  */ | 
 | 		      insn = read_memory_unsigned_integer (current_pc - 2, | 
 | 							   4, byte_order); | 
 | 		      if (insn & 0x00800000)	/* sign extend */ | 
 | 			insn |= 0xff000000;	/* negative */ | 
 | 		      else | 
 | 			insn &= 0x00ffffff;	/* positive */ | 
 | 		      framesize += insn; | 
 | 		    } | 
 | 		} | 
 | 	      after_push = current_pc + 2; | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |       op1 = insn & 0xf000;	/* Isolate just the first nibble.  */ | 
 |  | 
 |       if ((insn & 0xf0ff) == 0x207f) | 
 | 	{			/* st reg, @-sp */ | 
 | 	  framesize += 4; | 
 | 	  after_prologue = 0; | 
 | 	  continue; | 
 | 	} | 
 |       if ((insn >> 8) == 0x4f)	/* addi sp, xx */ | 
 | 	/* Add 8 bit sign-extended offset.  */ | 
 | 	{ | 
 | 	  int stack_adjust = (signed char) (insn & 0xff); | 
 |  | 
 | 	  /* there are probably two of these stack adjustments: | 
 | 	     1) A negative one in the prologue, and | 
 | 	     2) A positive one in the epilogue. | 
 | 	     We are only interested in the first one.  */ | 
 |  | 
 | 	  if (stack_adjust < 0) | 
 | 	    { | 
 | 	      framesize -= stack_adjust; | 
 | 	      after_prologue = 0; | 
 | 	      /* A frameless function may have no "mv fp, sp". | 
 | 		 In that case, this is the end of the prologue.  */ | 
 | 	      after_stack_adjust = current_pc + 2; | 
 | 	    } | 
 | 	  continue; | 
 | 	} | 
 |       if (insn == 0x1d8f) | 
 | 	{			/* mv fp, sp */ | 
 | 	  after_prologue = current_pc + 2; | 
 | 	  break;		/* end of stack adjustments */ | 
 | 	} | 
 |  | 
 |       /* Nop looks like a branch, continue explicitly.  */ | 
 |       if (insn == 0x7000) | 
 | 	{ | 
 | 	  after_prologue = current_pc + 2; | 
 | 	  continue;		/* nop occurs between pushes.  */ | 
 | 	} | 
 |       /* End of prolog if any of these are trap instructions.  */ | 
 |       if ((insn & 0xfff0) == 0x10f0) | 
 | 	{ | 
 | 	  after_prologue = current_pc; | 
 | 	  break; | 
 | 	} | 
 |       /* End of prolog if any of these are branch instructions.  */ | 
 |       if ((op1 == 0x7000) || (op1 == 0xb000) || (op1 == 0xf000)) | 
 | 	{ | 
 | 	  after_prologue = current_pc; | 
 | 	  continue; | 
 | 	} | 
 |       /* Some of the branch instructions are mixed with other types.  */ | 
 |       if (op1 == 0x1000) | 
 | 	{ | 
 | 	  int subop = insn & 0x0ff0; | 
 | 	  if ((subop == 0x0ec0) || (subop == 0x0fc0)) | 
 | 	    { | 
 | 	      after_prologue = current_pc; | 
 | 	      continue;		/* jmp , jl */ | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   if (framelength) | 
 |     *framelength = framesize; | 
 |  | 
 |   if (current_pc >= scan_limit) | 
 |     { | 
 |       if (pl_endptr) | 
 | 	{ | 
 | 	  if (after_stack_adjust != 0) | 
 | 	    /* We did not find a "mv fp,sp", but we DID find | 
 | 	       a stack_adjust.  Is it safe to use that as the | 
 | 	       end of the prologue?  I just don't know.  */ | 
 | 	    { | 
 | 	      *pl_endptr = after_stack_adjust; | 
 | 	    } | 
 | 	  else if (after_push != 0) | 
 | 	    /* We did not find a "mv fp,sp", but we DID find | 
 | 	       a push.  Is it safe to use that as the | 
 | 	       end of the prologue?  I just don't know.  */ | 
 | 	    { | 
 | 	      *pl_endptr = after_push; | 
 | 	    } | 
 | 	  else | 
 | 	    /* We reached the end of the loop without finding the end | 
 | 	       of the prologue.  No way to win -- we should report | 
 | 	       failure.  The way we do that is to return the original | 
 | 	       start_pc.  GDB will set a breakpoint at the start of | 
 | 	       the function (etc.)  */ | 
 | 	    *pl_endptr = start_pc; | 
 | 	} | 
 |       return 0; | 
 |     } | 
 |  | 
 |   if (after_prologue == 0) | 
 |     after_prologue = current_pc; | 
 |  | 
 |   if (pl_endptr) | 
 |     *pl_endptr = after_prologue; | 
 |  | 
 |   return 0; | 
 | }				/*  decode_prologue */ | 
 |  | 
 | /* Function: skip_prologue | 
 |    Find end of function prologue.  */ | 
 |  | 
 | #define DEFAULT_SEARCH_LIMIT 128 | 
 |  | 
 | static CORE_ADDR | 
 | m32r_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   CORE_ADDR func_addr, func_end; | 
 |   struct symtab_and_line sal; | 
 |   LONGEST return_value; | 
 |  | 
 |   /* See what the symbol table says.  */ | 
 |  | 
 |   if (find_pc_partial_function (pc, NULL, &func_addr, &func_end)) | 
 |     { | 
 |       sal = find_pc_line (func_addr, 0); | 
 |  | 
 |       if (sal.line != 0 && sal.end <= func_end) | 
 | 	{ | 
 | 	  func_end = sal.end; | 
 | 	} | 
 |       else | 
 | 	/* Either there's no line info, or the line after the prologue is after | 
 | 	   the end of the function.  In this case, there probably isn't a | 
 | 	   prologue.  */ | 
 | 	{ | 
 | 	  func_end = std::min (func_end, func_addr + DEFAULT_SEARCH_LIMIT); | 
 | 	} | 
 |     } | 
 |   else | 
 |     func_end = pc + DEFAULT_SEARCH_LIMIT; | 
 |  | 
 |   /* If pc's location is not readable, just quit.  */ | 
 |   if (!safe_read_memory_integer (pc, 4, byte_order, &return_value)) | 
 |     return pc; | 
 |  | 
 |   /* Find the end of prologue.  */ | 
 |   if (decode_prologue (gdbarch, pc, func_end, &sal.end, NULL) < 0) | 
 |     return pc; | 
 |  | 
 |   return sal.end; | 
 | } | 
 |  | 
 | struct m32r_unwind_cache | 
 | { | 
 |   /* The previous frame's inner most stack address.  Used as this | 
 |      frame ID's stack_addr.  */ | 
 |   CORE_ADDR prev_sp; | 
 |   /* The frame's base, optionally used by the high-level debug info.  */ | 
 |   CORE_ADDR base; | 
 |   int size; | 
 |   /* How far the SP and r13 (FP) have been offset from the start of | 
 |      the stack frame (as defined by the previous frame's stack | 
 |      pointer).  */ | 
 |   LONGEST sp_offset; | 
 |   LONGEST r13_offset; | 
 |   int uses_frame; | 
 |   /* Table indicating the location of each and every register.  */ | 
 |   trad_frame_saved_reg *saved_regs; | 
 | }; | 
 |  | 
 | /* Put here the code to store, into fi->saved_regs, the addresses of | 
 |    the saved registers of frame described by FRAME_INFO.  This | 
 |    includes special registers such as pc and fp saved in special ways | 
 |    in the stack frame.  sp is even more special: the address we return | 
 |    for it IS the sp for the next frame.  */ | 
 |  | 
 | static struct m32r_unwind_cache * | 
 | m32r_frame_unwind_cache (const frame_info_ptr &this_frame, | 
 | 			 void **this_prologue_cache) | 
 | { | 
 |   CORE_ADDR pc, scan_limit; | 
 |   ULONGEST prev_sp; | 
 |   ULONGEST this_base; | 
 |   unsigned long op; | 
 |   int i; | 
 |   struct m32r_unwind_cache *info; | 
 |  | 
 |  | 
 |   if ((*this_prologue_cache)) | 
 |     return (struct m32r_unwind_cache *) (*this_prologue_cache); | 
 |  | 
 |   info = FRAME_OBSTACK_ZALLOC (struct m32r_unwind_cache); | 
 |   (*this_prologue_cache) = info; | 
 |   info->saved_regs = trad_frame_alloc_saved_regs (this_frame); | 
 |  | 
 |   info->size = 0; | 
 |   info->sp_offset = 0; | 
 |   info->uses_frame = 0; | 
 |  | 
 |   scan_limit = get_frame_pc (this_frame); | 
 |   for (pc = get_frame_func (this_frame); | 
 |        pc > 0 && pc < scan_limit; pc += 2) | 
 |     { | 
 |       if ((pc & 2) == 0) | 
 | 	{ | 
 | 	  op = get_frame_memory_unsigned (this_frame, pc, 4); | 
 | 	  if ((op & 0x80000000) == 0x80000000) | 
 | 	    { | 
 | 	      /* 32-bit instruction */ | 
 | 	      if ((op & 0xffff0000) == 0x8faf0000) | 
 | 		{ | 
 | 		  /* add3 sp,sp,xxxx */ | 
 | 		  short n = op & 0xffff; | 
 | 		  info->sp_offset += n; | 
 | 		} | 
 | 	      else if (((op >> 8) == 0xe4) | 
 | 		       && get_frame_memory_unsigned (this_frame, pc + 2, | 
 | 						     2) == 0x0f24) | 
 | 		{ | 
 | 		  /* ld24 r4, xxxxxx; sub sp, r4 */ | 
 | 		  unsigned long n = op & 0xffffff; | 
 | 		  info->sp_offset += n; | 
 | 		  pc += 2;	/* skip sub instruction */ | 
 | 		} | 
 |  | 
 | 	      if (pc == scan_limit) | 
 | 		scan_limit += 2;	/* extend the search */ | 
 | 	      pc += 2;		/* skip the immediate data */ | 
 | 	      continue; | 
 | 	    } | 
 | 	} | 
 |  | 
 |       /* 16-bit instructions */ | 
 |       op = get_frame_memory_unsigned (this_frame, pc, 2) & 0x7fff; | 
 |       if ((op & 0xf0ff) == 0x207f) | 
 | 	{ | 
 | 	  /* st rn, @-sp */ | 
 | 	  int regno = ((op >> 8) & 0xf); | 
 | 	  info->sp_offset -= 4; | 
 | 	  info->saved_regs[regno].set_addr (info->sp_offset); | 
 | 	} | 
 |       else if ((op & 0xff00) == 0x4f00) | 
 | 	{ | 
 | 	  /* addi sp, xx */ | 
 | 	  int n = (signed char) (op & 0xff); | 
 | 	  info->sp_offset += n; | 
 | 	} | 
 |       else if (op == 0x1d8f) | 
 | 	{ | 
 | 	  /* mv fp, sp */ | 
 | 	  info->uses_frame = 1; | 
 | 	  info->r13_offset = info->sp_offset; | 
 | 	  break;		/* end of stack adjustments */ | 
 | 	} | 
 |       else if ((op & 0xfff0) == 0x10f0) | 
 | 	{ | 
 | 	  /* End of prologue if this is a trap instruction.  */ | 
 | 	  break;		/* End of stack adjustments.  */ | 
 | 	} | 
 |     } | 
 |  | 
 |   info->size = -info->sp_offset; | 
 |  | 
 |   /* Compute the previous frame's stack pointer (which is also the | 
 |      frame's ID's stack address), and this frame's base pointer.  */ | 
 |   if (info->uses_frame) | 
 |     { | 
 |       /* The SP was moved to the FP.  This indicates that a new frame | 
 | 	 was created.  Get THIS frame's FP value by unwinding it from | 
 | 	 the next frame.  */ | 
 |       this_base = get_frame_register_unsigned (this_frame, M32R_FP_REGNUM); | 
 |       /* The FP points at the last saved register.  Adjust the FP back | 
 | 	 to before the first saved register giving the SP.  */ | 
 |       prev_sp = this_base + info->size; | 
 |     } | 
 |   else | 
 |     { | 
 |       /* Assume that the FP is this frame's SP but with that pushed | 
 | 	 stack space added back.  */ | 
 |       this_base = get_frame_register_unsigned (this_frame, M32R_SP_REGNUM); | 
 |       prev_sp = this_base + info->size; | 
 |     } | 
 |  | 
 |   /* Convert that SP/BASE into real addresses.  */ | 
 |   info->prev_sp = prev_sp; | 
 |   info->base = this_base; | 
 |  | 
 |   /* Adjust all the saved registers so that they contain addresses and | 
 |      not offsets.  */ | 
 |   for (i = 0; i < gdbarch_num_regs (get_frame_arch (this_frame)) - 1; i++) | 
 |     if (info->saved_regs[i].is_addr ()) | 
 |       info->saved_regs[i].set_addr (info->prev_sp | 
 | 				    + info->saved_regs[i].addr ()); | 
 |  | 
 |   /* The call instruction moves the caller's PC in the callee's LR. | 
 |      Since this is an unwind, do the reverse.  Copy the location of LR | 
 |      into PC (the address / regnum) so that a request for PC will be | 
 |      converted into a request for the LR.  */ | 
 |   info->saved_regs[M32R_PC_REGNUM] = info->saved_regs[LR_REGNUM]; | 
 |  | 
 |   /* The previous frame's SP needed to be computed.  Save the computed | 
 |      value.  */ | 
 |   info->saved_regs[M32R_SP_REGNUM].set_value (prev_sp); | 
 |  | 
 |   return info; | 
 | } | 
 |  | 
 | static CORE_ADDR | 
 | m32r_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | 
 | 		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | 
 | 		      struct value **args, CORE_ADDR sp, | 
 | 		      function_call_return_method return_method, | 
 | 		      CORE_ADDR struct_addr) | 
 | { | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   int stack_offset, stack_alloc; | 
 |   int argreg = ARG1_REGNUM; | 
 |   int argnum; | 
 |   struct type *type; | 
 |   enum type_code typecode; | 
 |   CORE_ADDR regval; | 
 |   gdb_byte *val; | 
 |   gdb_byte valbuf[M32R_ARG_REGISTER_SIZE]; | 
 |   int len; | 
 |  | 
 |   /* First force sp to a 4-byte alignment.  */ | 
 |   sp = sp & ~3; | 
 |  | 
 |   /* Set the return address.  For the m32r, the return breakpoint is | 
 |      always at BP_ADDR.  */ | 
 |   regcache_cooked_write_unsigned (regcache, LR_REGNUM, bp_addr); | 
 |  | 
 |   /* If STRUCT_RETURN is true, then the struct return address (in | 
 |      STRUCT_ADDR) will consume the first argument-passing register. | 
 |      Both adjust the register count and store that value.  */ | 
 |   if (return_method == return_method_struct) | 
 |     { | 
 |       regcache_cooked_write_unsigned (regcache, argreg, struct_addr); | 
 |       argreg++; | 
 |     } | 
 |  | 
 |   /* Now make sure there's space on the stack.  */ | 
 |   for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++) | 
 |     stack_alloc += ((args[argnum]->type ()->length () + 3) & ~3); | 
 |   sp -= stack_alloc;		/* Make room on stack for args.  */ | 
 |  | 
 |   for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++) | 
 |     { | 
 |       type = args[argnum]->type (); | 
 |       typecode = type->code (); | 
 |       len = type->length (); | 
 |  | 
 |       memset (valbuf, 0, sizeof (valbuf)); | 
 |  | 
 |       /* Passes structures that do not fit in 2 registers by reference.  */ | 
 |       if (len > 8 | 
 | 	  && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) | 
 | 	{ | 
 | 	  store_unsigned_integer (valbuf, 4, byte_order, | 
 | 				  args[argnum]->address ()); | 
 | 	  typecode = TYPE_CODE_PTR; | 
 | 	  len = 4; | 
 | 	  val = valbuf; | 
 | 	} | 
 |       else if (len < 4) | 
 | 	{ | 
 | 	  /* Value gets right-justified in the register or stack word.  */ | 
 | 	  memcpy (valbuf + (register_size (gdbarch, argreg) - len), | 
 | 		  (gdb_byte *) args[argnum]->contents ().data (), len); | 
 | 	  val = valbuf; | 
 | 	} | 
 |       else | 
 | 	val = (gdb_byte *) args[argnum]->contents ().data (); | 
 |  | 
 |       while (len > 0) | 
 | 	{ | 
 | 	  if (argreg > ARGN_REGNUM) | 
 | 	    { | 
 | 	      /* Must go on the stack.  */ | 
 | 	      write_memory (sp + stack_offset, val, 4); | 
 | 	      stack_offset += 4; | 
 | 	    } | 
 | 	  else if (argreg <= ARGN_REGNUM) | 
 | 	    { | 
 | 	      /* There's room in a register.  */ | 
 | 	      regval = | 
 | 		extract_unsigned_integer (val, | 
 | 					  register_size (gdbarch, argreg), | 
 | 					  byte_order); | 
 | 	      regcache_cooked_write_unsigned (regcache, argreg++, regval); | 
 | 	    } | 
 |  | 
 | 	  /* Store the value 4 bytes at a time.  This means that things | 
 | 	     larger than 4 bytes may go partly in registers and partly | 
 | 	     on the stack.  */ | 
 | 	  len -= register_size (gdbarch, argreg); | 
 | 	  val += register_size (gdbarch, argreg); | 
 | 	} | 
 |     } | 
 |  | 
 |   /* Finally, update the SP register.  */ | 
 |   regcache_cooked_write_unsigned (regcache, M32R_SP_REGNUM, sp); | 
 |  | 
 |   return sp; | 
 | } | 
 |  | 
 |  | 
 | /* Given a return value in `regbuf' with a type `valtype',  | 
 |    extract and copy its value into `valbuf'.  */ | 
 |  | 
 | static void | 
 | m32r_extract_return_value (struct type *type, struct regcache *regcache, | 
 | 			   gdb_byte *dst) | 
 | { | 
 |   struct gdbarch *gdbarch = regcache->arch (); | 
 |   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | 
 |   int len = type->length (); | 
 |   ULONGEST tmp; | 
 |  | 
 |   /* By using store_unsigned_integer we avoid having to do | 
 |      anything special for small big-endian values.  */ | 
 |   regcache_cooked_read_unsigned (regcache, RET1_REGNUM, &tmp); | 
 |   store_unsigned_integer (dst, (len > 4 ? len - 4 : len), byte_order, tmp); | 
 |  | 
 |   /* Ignore return values more than 8 bytes in size because the m32r | 
 |      returns anything more than 8 bytes in the stack.  */ | 
 |   if (len > 4) | 
 |     { | 
 |       regcache_cooked_read_unsigned (regcache, RET1_REGNUM + 1, &tmp); | 
 |       store_unsigned_integer (dst + len - 4, 4, byte_order, tmp); | 
 |     } | 
 | } | 
 |  | 
 | static enum return_value_convention | 
 | m32r_return_value (struct gdbarch *gdbarch, struct value *function, | 
 | 		   struct type *valtype, struct regcache *regcache, | 
 | 		   gdb_byte *readbuf, const gdb_byte *writebuf) | 
 | { | 
 |   if (valtype->length () > 8) | 
 |     return RETURN_VALUE_STRUCT_CONVENTION; | 
 |   else | 
 |     { | 
 |       if (readbuf != NULL) | 
 | 	m32r_extract_return_value (valtype, regcache, readbuf); | 
 |       if (writebuf != NULL) | 
 | 	m32r_store_return_value (valtype, regcache, writebuf); | 
 |       return RETURN_VALUE_REGISTER_CONVENTION; | 
 |     } | 
 | } | 
 |  | 
 | /* Given a GDB frame, determine the address of the calling function's | 
 |    frame.  This will be used to create a new GDB frame struct.  */ | 
 |  | 
 | static void | 
 | m32r_frame_this_id (const frame_info_ptr &this_frame, | 
 | 		    void **this_prologue_cache, struct frame_id *this_id) | 
 | { | 
 |   struct m32r_unwind_cache *info | 
 |     = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | 
 |   CORE_ADDR base; | 
 |   CORE_ADDR func; | 
 |   struct frame_id id; | 
 |  | 
 |   /* The FUNC is easy.  */ | 
 |   func = get_frame_func (this_frame); | 
 |  | 
 |   /* Check if the stack is empty.  */ | 
 |   bound_minimal_symbol msym_stack | 
 |     = lookup_minimal_symbol (current_program_space, "_stack"); | 
 |   if (msym_stack.minsym && info->base == msym_stack.value_address ()) | 
 |     return; | 
 |  | 
 |   /* Hopefully the prologue analysis either correctly determined the | 
 |      frame's base (which is the SP from the previous frame), or set | 
 |      that base to "NULL".  */ | 
 |   base = info->prev_sp; | 
 |   if (base == 0) | 
 |     return; | 
 |  | 
 |   id = frame_id_build (base, func); | 
 |   (*this_id) = id; | 
 | } | 
 |  | 
 | static struct value * | 
 | m32r_frame_prev_register (const frame_info_ptr &this_frame, | 
 | 			  void **this_prologue_cache, int regnum) | 
 | { | 
 |   struct m32r_unwind_cache *info | 
 |     = m32r_frame_unwind_cache (this_frame, this_prologue_cache); | 
 |   return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | 
 | } | 
 |  | 
 | static const struct frame_unwind_legacy m32r_frame_unwind ( | 
 |   "m32r prologue", | 
 |   NORMAL_FRAME, | 
 |   FRAME_UNWIND_ARCH, | 
 |   default_frame_unwind_stop_reason, | 
 |   m32r_frame_this_id, | 
 |   m32r_frame_prev_register, | 
 |   NULL, | 
 |   default_frame_sniffer | 
 | ); | 
 |  | 
 | static CORE_ADDR | 
 | m32r_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) | 
 | { | 
 |   struct m32r_unwind_cache *info | 
 |     = m32r_frame_unwind_cache (this_frame, this_cache); | 
 |   return info->base; | 
 | } | 
 |  | 
 | static const struct frame_base m32r_frame_base = { | 
 |   &m32r_frame_unwind, | 
 |   m32r_frame_base_address, | 
 |   m32r_frame_base_address, | 
 |   m32r_frame_base_address | 
 | }; | 
 |  | 
 | static gdbarch_init_ftype m32r_gdbarch_init; | 
 |  | 
 | static struct gdbarch * | 
 | m32r_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | 
 | { | 
 |   /* If there is already a candidate, use it.  */ | 
 |   arches = gdbarch_list_lookup_by_info (arches, &info); | 
 |   if (arches != NULL) | 
 |     return arches->gdbarch; | 
 |  | 
 |   /* Allocate space for the new architecture.  */ | 
 |   gdbarch *gdbarch | 
 |     = gdbarch_alloc (&info, gdbarch_tdep_up (new m32r_gdbarch_tdep)); | 
 |  | 
 |   set_gdbarch_wchar_bit (gdbarch, 16); | 
 |   set_gdbarch_wchar_signed (gdbarch, 0); | 
 |  | 
 |   set_gdbarch_num_regs (gdbarch, M32R_NUM_REGS); | 
 |   set_gdbarch_pc_regnum (gdbarch, M32R_PC_REGNUM); | 
 |   set_gdbarch_sp_regnum (gdbarch, M32R_SP_REGNUM); | 
 |   set_gdbarch_register_name (gdbarch, m32r_register_name); | 
 |   set_gdbarch_register_type (gdbarch, m32r_register_type); | 
 |  | 
 |   set_gdbarch_push_dummy_call (gdbarch, m32r_push_dummy_call); | 
 |   set_gdbarch_return_value (gdbarch, m32r_return_value); | 
 |  | 
 |   set_gdbarch_skip_prologue (gdbarch, m32r_skip_prologue); | 
 |   set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | 
 |   set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32r_breakpoint_kind_from_pc); | 
 |   set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32r_sw_breakpoint_from_kind); | 
 |   set_gdbarch_memory_insert_breakpoint (gdbarch, | 
 | 					m32r_memory_insert_breakpoint); | 
 |   set_gdbarch_memory_remove_breakpoint (gdbarch, | 
 | 					m32r_memory_remove_breakpoint); | 
 |  | 
 |   set_gdbarch_frame_align (gdbarch, m32r_frame_align); | 
 |  | 
 |   frame_base_set_default (gdbarch, &m32r_frame_base); | 
 |  | 
 |   /* Hook in ABI-specific overrides, if they have been registered.  */ | 
 |   gdbarch_init_osabi (info, gdbarch); | 
 |  | 
 |   /* Hook in the default unwinders.  */ | 
 |   frame_unwind_append_unwinder (gdbarch, &m32r_frame_unwind); | 
 |  | 
 |   /* Support simple overlay manager.  */ | 
 |   set_gdbarch_overlay_update (gdbarch, simple_overlay_update); | 
 |  | 
 |   return gdbarch; | 
 | } | 
 |  | 
 | INIT_GDB_FILE (m32r_tdep) | 
 | { | 
 |   gdbarch_register (bfd_arch_m32r, m32r_gdbarch_init); | 
 | } |