| /* Target-dependent code for AMD64. |
| |
| Copyright (C) 2001-2024 Free Software Foundation, Inc. |
| |
| Contributed by Jiri Smid, SuSE Labs. |
| |
| This file is part of GDB. |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
| |
| #include "extract-store-integer.h" |
| #include "language.h" |
| #include "opcode/i386.h" |
| #include "dis-asm.h" |
| #include "arch-utils.h" |
| #include "dummy-frame.h" |
| #include "frame.h" |
| #include "frame-base.h" |
| #include "frame-unwind.h" |
| #include "inferior.h" |
| #include "infrun.h" |
| #include "cli/cli-cmds.h" |
| #include "gdbcore.h" |
| #include "objfiles.h" |
| #include "regcache.h" |
| #include "regset.h" |
| #include "symfile.h" |
| #include "disasm.h" |
| #include "amd64-tdep.h" |
| #include "i387-tdep.h" |
| #include "gdbsupport/x86-xstate.h" |
| #include <algorithm> |
| #include "target-descriptions.h" |
| #include "arch/amd64.h" |
| #include "producer.h" |
| #include "ax.h" |
| #include "ax-gdb.h" |
| #include "gdbsupport/byte-vector.h" |
| #include "osabi.h" |
| #include "x86-tdep.h" |
| #include "amd64-ravenscar-thread.h" |
| |
| /* Note that the AMD64 architecture was previously known as x86-64. |
| The latter is (forever) engraved into the canonical system name as |
| returned by config.guess, and used as the name for the AMD64 port |
| of GNU/Linux. The BSD's have renamed their ports to amd64; they |
| don't like to shout. For GDB we prefer the amd64_-prefix over the |
| x86_64_-prefix since it's so much easier to type. */ |
| |
| /* Register information. */ |
| |
| static const char * const amd64_register_names[] = |
| { |
| "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp", |
| |
| /* %r8 is indeed register number 8. */ |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs", |
| |
| /* %st0 is register number 24. */ |
| "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7", |
| "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop", |
| |
| /* %xmm0 is register number 40. */ |
| "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7", |
| "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15", |
| "mxcsr", |
| }; |
| |
| static const char * const amd64_ymm_names[] = |
| { |
| "ymm0", "ymm1", "ymm2", "ymm3", |
| "ymm4", "ymm5", "ymm6", "ymm7", |
| "ymm8", "ymm9", "ymm10", "ymm11", |
| "ymm12", "ymm13", "ymm14", "ymm15" |
| }; |
| |
| static const char * const amd64_ymm_avx512_names[] = |
| { |
| "ymm16", "ymm17", "ymm18", "ymm19", |
| "ymm20", "ymm21", "ymm22", "ymm23", |
| "ymm24", "ymm25", "ymm26", "ymm27", |
| "ymm28", "ymm29", "ymm30", "ymm31" |
| }; |
| |
| static const char * const amd64_ymmh_names[] = |
| { |
| "ymm0h", "ymm1h", "ymm2h", "ymm3h", |
| "ymm4h", "ymm5h", "ymm6h", "ymm7h", |
| "ymm8h", "ymm9h", "ymm10h", "ymm11h", |
| "ymm12h", "ymm13h", "ymm14h", "ymm15h" |
| }; |
| |
| static const char * const amd64_ymmh_avx512_names[] = |
| { |
| "ymm16h", "ymm17h", "ymm18h", "ymm19h", |
| "ymm20h", "ymm21h", "ymm22h", "ymm23h", |
| "ymm24h", "ymm25h", "ymm26h", "ymm27h", |
| "ymm28h", "ymm29h", "ymm30h", "ymm31h" |
| }; |
| |
| static const char * const amd64_mpx_names[] = |
| { |
| "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus" |
| }; |
| |
| static const char * const amd64_k_names[] = |
| { |
| "k0", "k1", "k2", "k3", |
| "k4", "k5", "k6", "k7" |
| }; |
| |
| static const char * const amd64_zmmh_names[] = |
| { |
| "zmm0h", "zmm1h", "zmm2h", "zmm3h", |
| "zmm4h", "zmm5h", "zmm6h", "zmm7h", |
| "zmm8h", "zmm9h", "zmm10h", "zmm11h", |
| "zmm12h", "zmm13h", "zmm14h", "zmm15h", |
| "zmm16h", "zmm17h", "zmm18h", "zmm19h", |
| "zmm20h", "zmm21h", "zmm22h", "zmm23h", |
| "zmm24h", "zmm25h", "zmm26h", "zmm27h", |
| "zmm28h", "zmm29h", "zmm30h", "zmm31h" |
| }; |
| |
| static const char * const amd64_zmm_names[] = |
| { |
| "zmm0", "zmm1", "zmm2", "zmm3", |
| "zmm4", "zmm5", "zmm6", "zmm7", |
| "zmm8", "zmm9", "zmm10", "zmm11", |
| "zmm12", "zmm13", "zmm14", "zmm15", |
| "zmm16", "zmm17", "zmm18", "zmm19", |
| "zmm20", "zmm21", "zmm22", "zmm23", |
| "zmm24", "zmm25", "zmm26", "zmm27", |
| "zmm28", "zmm29", "zmm30", "zmm31" |
| }; |
| |
| static const char * const amd64_xmm_avx512_names[] = { |
| "xmm16", "xmm17", "xmm18", "xmm19", |
| "xmm20", "xmm21", "xmm22", "xmm23", |
| "xmm24", "xmm25", "xmm26", "xmm27", |
| "xmm28", "xmm29", "xmm30", "xmm31" |
| }; |
| |
| static const char * const amd64_pkeys_names[] = { |
| "pkru" |
| }; |
| |
| /* DWARF Register Number Mapping as defined in the System V psABI, |
| section 3.6. */ |
| |
| static int amd64_dwarf_regmap[] = |
| { |
| /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */ |
| AMD64_RAX_REGNUM, AMD64_RDX_REGNUM, |
| AMD64_RCX_REGNUM, AMD64_RBX_REGNUM, |
| AMD64_RSI_REGNUM, AMD64_RDI_REGNUM, |
| |
| /* Frame Pointer Register RBP. */ |
| AMD64_RBP_REGNUM, |
| |
| /* Stack Pointer Register RSP. */ |
| AMD64_RSP_REGNUM, |
| |
| /* Extended Integer Registers 8 - 15. */ |
| AMD64_R8_REGNUM, /* %r8 */ |
| AMD64_R9_REGNUM, /* %r9 */ |
| AMD64_R10_REGNUM, /* %r10 */ |
| AMD64_R11_REGNUM, /* %r11 */ |
| AMD64_R12_REGNUM, /* %r12 */ |
| AMD64_R13_REGNUM, /* %r13 */ |
| AMD64_R14_REGNUM, /* %r14 */ |
| AMD64_R15_REGNUM, /* %r15 */ |
| |
| /* Return Address RA. Mapped to RIP. */ |
| AMD64_RIP_REGNUM, |
| |
| /* SSE Registers 0 - 7. */ |
| AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
| AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, |
| AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, |
| AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, |
| |
| /* Extended SSE Registers 8 - 15. */ |
| AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9, |
| AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11, |
| AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13, |
| AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15, |
| |
| /* Floating Point Registers 0-7. */ |
| AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1, |
| AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3, |
| AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5, |
| AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7, |
| |
| /* MMX Registers 0 - 7. |
| We have to handle those registers specifically, as their register |
| number within GDB depends on the target (or they may even not be |
| available at all). */ |
| -1, -1, -1, -1, -1, -1, -1, -1, |
| |
| /* Control and Status Flags Register. */ |
| AMD64_EFLAGS_REGNUM, |
| |
| /* Selector Registers. */ |
| AMD64_ES_REGNUM, |
| AMD64_CS_REGNUM, |
| AMD64_SS_REGNUM, |
| AMD64_DS_REGNUM, |
| AMD64_FS_REGNUM, |
| AMD64_GS_REGNUM, |
| -1, |
| -1, |
| |
| /* Segment Base Address Registers. */ |
| -1, |
| -1, |
| -1, |
| -1, |
| |
| /* Special Selector Registers. */ |
| -1, |
| -1, |
| |
| /* Floating Point Control Registers. */ |
| AMD64_MXCSR_REGNUM, |
| AMD64_FCTRL_REGNUM, |
| AMD64_FSTAT_REGNUM, |
| |
| /* XMM16-XMM31. */ |
| AMD64_XMM16_REGNUM + 0, AMD64_XMM16_REGNUM + 1, |
| AMD64_XMM16_REGNUM + 2, AMD64_XMM16_REGNUM + 3, |
| AMD64_XMM16_REGNUM + 4, AMD64_XMM16_REGNUM + 5, |
| AMD64_XMM16_REGNUM + 6, AMD64_XMM16_REGNUM + 7, |
| AMD64_XMM16_REGNUM + 8, AMD64_XMM16_REGNUM + 9, |
| AMD64_XMM16_REGNUM + 10, AMD64_XMM16_REGNUM + 11, |
| AMD64_XMM16_REGNUM + 12, AMD64_XMM16_REGNUM + 13, |
| AMD64_XMM16_REGNUM + 14, AMD64_XMM16_REGNUM + 15, |
| |
| /* Reserved. */ |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, |
| |
| /* Mask Registers. */ |
| AMD64_K0_REGNUM + 0, AMD64_K0_REGNUM + 1, |
| AMD64_K0_REGNUM + 2, AMD64_K0_REGNUM + 3, |
| AMD64_K0_REGNUM + 4, AMD64_K0_REGNUM + 5, |
| AMD64_K0_REGNUM + 6, AMD64_K0_REGNUM + 7 |
| }; |
| |
| static const int amd64_dwarf_regmap_len = |
| (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0])); |
| |
| /* Convert DWARF register number REG to the appropriate register |
| number used by GDB. */ |
| |
| static int |
| amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
| { |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| int ymm0_regnum = tdep->ymm0_regnum; |
| int regnum = -1; |
| |
| if (reg >= 0 && reg < amd64_dwarf_regmap_len) |
| regnum = amd64_dwarf_regmap[reg]; |
| |
| if (ymm0_regnum >= 0 && i386_xmm_regnum_p (gdbarch, regnum)) |
| regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep); |
| |
| return regnum; |
| } |
| |
| /* Map architectural register numbers to gdb register numbers. */ |
| |
| static const int amd64_arch_regmap[16] = |
| { |
| AMD64_RAX_REGNUM, /* %rax */ |
| AMD64_RCX_REGNUM, /* %rcx */ |
| AMD64_RDX_REGNUM, /* %rdx */ |
| AMD64_RBX_REGNUM, /* %rbx */ |
| AMD64_RSP_REGNUM, /* %rsp */ |
| AMD64_RBP_REGNUM, /* %rbp */ |
| AMD64_RSI_REGNUM, /* %rsi */ |
| AMD64_RDI_REGNUM, /* %rdi */ |
| AMD64_R8_REGNUM, /* %r8 */ |
| AMD64_R9_REGNUM, /* %r9 */ |
| AMD64_R10_REGNUM, /* %r10 */ |
| AMD64_R11_REGNUM, /* %r11 */ |
| AMD64_R12_REGNUM, /* %r12 */ |
| AMD64_R13_REGNUM, /* %r13 */ |
| AMD64_R14_REGNUM, /* %r14 */ |
| AMD64_R15_REGNUM /* %r15 */ |
| }; |
| |
| static const int amd64_arch_regmap_len = |
| (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0])); |
| |
| /* Convert architectural register number REG to the appropriate register |
| number used by GDB. */ |
| |
| static int |
| amd64_arch_reg_to_regnum (int reg) |
| { |
| gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len); |
| |
| return amd64_arch_regmap[reg]; |
| } |
| |
| /* Register names for byte pseudo-registers. */ |
| |
| static const char * const amd64_byte_names[] = |
| { |
| "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl", |
| "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l", |
| "ah", "bh", "ch", "dh" |
| }; |
| |
| /* Number of lower byte registers. */ |
| #define AMD64_NUM_LOWER_BYTE_REGS 16 |
| |
| /* Register names for word pseudo-registers. */ |
| |
| static const char * const amd64_word_names[] = |
| { |
| "ax", "bx", "cx", "dx", "si", "di", "bp", "", |
| "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" |
| }; |
| |
| /* Register names for dword pseudo-registers. */ |
| |
| static const char * const amd64_dword_names[] = |
| { |
| "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp", |
| "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d", |
| "eip" |
| }; |
| |
| /* Return the name of register REGNUM. */ |
| |
| static const char * |
| amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum) |
| { |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| if (i386_byte_regnum_p (gdbarch, regnum)) |
| return amd64_byte_names[regnum - tdep->al_regnum]; |
| else if (i386_zmm_regnum_p (gdbarch, regnum)) |
| return amd64_zmm_names[regnum - tdep->zmm0_regnum]; |
| else if (i386_ymm_regnum_p (gdbarch, regnum)) |
| return amd64_ymm_names[regnum - tdep->ymm0_regnum]; |
| else if (i386_ymm_avx512_regnum_p (gdbarch, regnum)) |
| return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum]; |
| else if (i386_word_regnum_p (gdbarch, regnum)) |
| return amd64_word_names[regnum - tdep->ax_regnum]; |
| else if (i386_dword_regnum_p (gdbarch, regnum)) |
| return amd64_dword_names[regnum - tdep->eax_regnum]; |
| else |
| return i386_pseudo_register_name (gdbarch, regnum); |
| } |
| |
| static value * |
| amd64_pseudo_register_read_value (gdbarch *gdbarch, const frame_info_ptr &next_frame, |
| int regnum) |
| { |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| |
| if (i386_byte_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->al_regnum; |
| |
| /* Extract (always little endian). */ |
| if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
| { |
| gpnum -= AMD64_NUM_LOWER_BYTE_REGS; |
| |
| /* Special handling for AH, BH, CH, DH. */ |
| return pseudo_from_raw_part (next_frame, regnum, gpnum, 1); |
| } |
| else |
| return pseudo_from_raw_part (next_frame, regnum, gpnum, 0); |
| } |
| else if (i386_dword_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->eax_regnum; |
| |
| return pseudo_from_raw_part (next_frame, regnum, gpnum, 0); |
| } |
| else |
| return i386_pseudo_register_read_value (gdbarch, next_frame, regnum); |
| } |
| |
| static void |
| amd64_pseudo_register_write (gdbarch *gdbarch, const frame_info_ptr &next_frame, |
| int regnum, gdb::array_view<const gdb_byte> buf) |
| { |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| |
| if (i386_byte_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->al_regnum; |
| |
| if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
| { |
| gpnum -= AMD64_NUM_LOWER_BYTE_REGS; |
| pseudo_to_raw_part (next_frame, buf, gpnum, 1); |
| } |
| else |
| pseudo_to_raw_part (next_frame, buf, gpnum, 0); |
| } |
| else if (i386_dword_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->eax_regnum; |
| pseudo_to_raw_part (next_frame, buf, gpnum, 0); |
| } |
| else |
| i386_pseudo_register_write (gdbarch, next_frame, regnum, buf); |
| } |
| |
| /* Implement the 'ax_pseudo_register_collect' gdbarch method. */ |
| |
| static int |
| amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch, |
| struct agent_expr *ax, int regnum) |
| { |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| |
| if (i386_byte_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->al_regnum; |
| |
| if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS) |
| ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS); |
| else |
| ax_reg_mask (ax, gpnum); |
| return 0; |
| } |
| else if (i386_dword_regnum_p (gdbarch, regnum)) |
| { |
| int gpnum = regnum - tdep->eax_regnum; |
| |
| ax_reg_mask (ax, gpnum); |
| return 0; |
| } |
| else |
| return i386_ax_pseudo_register_collect (gdbarch, ax, regnum); |
| } |
| |
| |
| |
| /* Register classes as defined in the psABI. */ |
| |
| enum amd64_reg_class |
| { |
| AMD64_INTEGER, |
| AMD64_SSE, |
| AMD64_SSEUP, |
| AMD64_X87, |
| AMD64_X87UP, |
| AMD64_COMPLEX_X87, |
| AMD64_NO_CLASS, |
| AMD64_MEMORY |
| }; |
| |
| /* Return the union class of CLASS1 and CLASS2. See the psABI for |
| details. */ |
| |
| static enum amd64_reg_class |
| amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2) |
| { |
| /* Rule (a): If both classes are equal, this is the resulting class. */ |
| if (class1 == class2) |
| return class1; |
| |
| /* Rule (b): If one of the classes is NO_CLASS, the resulting class |
| is the other class. */ |
| if (class1 == AMD64_NO_CLASS) |
| return class2; |
| if (class2 == AMD64_NO_CLASS) |
| return class1; |
| |
| /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */ |
| if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY) |
| return AMD64_MEMORY; |
| |
| /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */ |
| if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER) |
| return AMD64_INTEGER; |
| |
| /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| MEMORY is used as class. */ |
| if (class1 == AMD64_X87 || class1 == AMD64_X87UP |
| || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87 |
| || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87) |
| return AMD64_MEMORY; |
| |
| /* Rule (f): Otherwise class SSE is used. */ |
| return AMD64_SSE; |
| } |
| |
| static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]); |
| |
| /* Return true if TYPE is a structure or union with unaligned fields. */ |
| |
| static bool |
| amd64_has_unaligned_fields (struct type *type) |
| { |
| if (type->code () == TYPE_CODE_STRUCT |
| || type->code () == TYPE_CODE_UNION) |
| { |
| for (int i = 0; i < type->num_fields (); i++) |
| { |
| struct type *subtype = check_typedef (type->field (i).type ()); |
| |
| /* Ignore static fields, empty fields (for example nested |
| empty structures), and bitfields (these are handled by |
| the caller). */ |
| if (type->field (i).is_static () |
| || (type->field (i).bitsize () == 0 |
| && subtype->length () == 0) |
| || type->field (i).is_packed ()) |
| continue; |
| |
| int bitpos = type->field (i).loc_bitpos (); |
| |
| if (bitpos % 8 != 0) |
| return true; |
| |
| int align = type_align (subtype); |
| if (align == 0) |
| error (_("could not determine alignment of type")); |
| |
| int bytepos = bitpos / 8; |
| if (bytepos % align != 0) |
| return true; |
| |
| if (amd64_has_unaligned_fields (subtype)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /* Classify field I of TYPE starting at BITOFFSET according to the rules for |
| structures and union types, and store the result in THECLASS. */ |
| |
| static void |
| amd64_classify_aggregate_field (struct type *type, int i, |
| enum amd64_reg_class theclass[2], |
| unsigned int bitoffset) |
| { |
| struct type *subtype = check_typedef (type->field (i).type ()); |
| enum amd64_reg_class subclass[2]; |
| int bitsize = type->field (i).bitsize (); |
| |
| if (bitsize == 0) |
| bitsize = subtype->length () * 8; |
| |
| /* Ignore static fields, or empty fields, for example nested |
| empty structures.*/ |
| if (type->field (i).is_static () || bitsize == 0) |
| return; |
| |
| int bitpos = bitoffset + type->field (i).loc_bitpos (); |
| int pos = bitpos / 64; |
| int endpos = (bitpos + bitsize - 1) / 64; |
| |
| if (subtype->code () == TYPE_CODE_STRUCT |
| || subtype->code () == TYPE_CODE_UNION) |
| { |
| /* Each field of an object is classified recursively. */ |
| int j; |
| for (j = 0; j < subtype->num_fields (); j++) |
| amd64_classify_aggregate_field (subtype, j, theclass, bitpos); |
| return; |
| } |
| |
| gdb_assert (pos == 0 || pos == 1); |
| |
| amd64_classify (subtype, subclass); |
| theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]); |
| if (bitsize <= 64 && pos == 0 && endpos == 1) |
| /* This is a bit of an odd case: We have a field that would |
| normally fit in one of the two eightbytes, except that |
| it is placed in a way that this field straddles them. |
| This has been seen with a structure containing an array. |
| |
| The ABI is a bit unclear in this case, but we assume that |
| this field's class (stored in subclass[0]) must also be merged |
| into class[1]. In other words, our field has a piece stored |
| in the second eight-byte, and thus its class applies to |
| the second eight-byte as well. |
| |
| In the case where the field length exceeds 8 bytes, |
| it should not be necessary to merge the field class |
| into class[1]. As LEN > 8, subclass[1] is necessarily |
| different from AMD64_NO_CLASS. If subclass[1] is equal |
| to subclass[0], then the normal class[1]/subclass[1] |
| merging will take care of everything. For subclass[1] |
| to be different from subclass[0], I can only see the case |
| where we have a SSE/SSEUP or X87/X87UP pair, which both |
| use up all 16 bytes of the aggregate, and are already |
| handled just fine (because each portion sits on its own |
| 8-byte). */ |
| theclass[1] = amd64_merge_classes (theclass[1], subclass[0]); |
| if (pos == 0) |
| theclass[1] = amd64_merge_classes (theclass[1], subclass[1]); |
| } |
| |
| /* Classify TYPE according to the rules for aggregate (structures and |
| arrays) and union types, and store the result in CLASS. */ |
| |
| static void |
| amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2]) |
| { |
| /* 1. If the size of an object is larger than two times eight bytes, or |
| it is a non-trivial C++ object, or it has unaligned fields, then it |
| has class memory. |
| |
| It is important that the trivially_copyable check is before the |
| unaligned fields check, as C++ classes with virtual base classes |
| will have fields (for the virtual base classes) with non-constant |
| loc_bitpos attributes, which will cause an assert to trigger within |
| the unaligned field check. As classes with virtual bases are not |
| trivially copyable, checking that first avoids this problem. */ |
| if (TYPE_HAS_DYNAMIC_LENGTH (type) |
| || type->length () > 16 |
| || !language_pass_by_reference (type).trivially_copyable |
| || amd64_has_unaligned_fields (type)) |
| { |
| theclass[0] = theclass[1] = AMD64_MEMORY; |
| return; |
| } |
| |
| /* 2. Both eightbytes get initialized to class NO_CLASS. */ |
| theclass[0] = theclass[1] = AMD64_NO_CLASS; |
| |
| /* 3. Each field of an object is classified recursively so that |
| always two fields are considered. The resulting class is |
| calculated according to the classes of the fields in the |
| eightbyte: */ |
| |
| if (type->code () == TYPE_CODE_ARRAY) |
| { |
| struct type *subtype = check_typedef (type->target_type ()); |
| |
| /* All fields in an array have the same type. */ |
| amd64_classify (subtype, theclass); |
| if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS) |
| theclass[1] = theclass[0]; |
| } |
| else |
| { |
| int i; |
| |
| /* Structure or union. */ |
| gdb_assert (type->code () == TYPE_CODE_STRUCT |
| || type->code () == TYPE_CODE_UNION); |
| |
| for (i = 0; i < type->num_fields (); i++) |
| amd64_classify_aggregate_field (type, i, theclass, 0); |
| } |
| |
| /* 4. Then a post merger cleanup is done: */ |
| |
| /* Rule (a): If one of the classes is MEMORY, the whole argument is |
| passed in memory. */ |
| if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY) |
| theclass[0] = theclass[1] = AMD64_MEMORY; |
| |
| /* Rule (b): If SSEUP is not preceded by SSE, it is converted to |
| SSE. */ |
| if (theclass[0] == AMD64_SSEUP) |
| theclass[0] = AMD64_SSE; |
| if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE) |
| theclass[1] = AMD64_SSE; |
| } |
| |
| /* Classify TYPE, and store the result in CLASS. */ |
| |
| static void |
| amd64_classify (struct type *type, enum amd64_reg_class theclass[2]) |
| { |
| enum type_code code = type->code (); |
| int len = type->length (); |
| |
| theclass[0] = theclass[1] = AMD64_NO_CLASS; |
| |
| /* Arguments of types (signed and unsigned) _Bool, char, short, int, |
| long, long long, and pointers are in the INTEGER class. Similarly, |
| range types, used by languages such as Ada, are also in the INTEGER |
| class. */ |
| if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM |
| || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE |
| || code == TYPE_CODE_CHAR |
| || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type)) |
| && (len == 1 || len == 2 || len == 4 || len == 8)) |
| theclass[0] = AMD64_INTEGER; |
| |
| /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and |
| __m64 are in class SSE. */ |
| else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT) |
| && (len == 2 || len == 4 || len == 8)) |
| /* FIXME: __m64 . */ |
| theclass[0] = AMD64_SSE; |
| |
| /* Arguments of types __float128, _Decimal128 and __m128 are split into |
| two halves. The least significant ones belong to class SSE, the most |
| significant one to class SSEUP. */ |
| else if (code == TYPE_CODE_DECFLOAT && len == 16) |
| /* FIXME: __float128, __m128. */ |
| theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP; |
| |
| /* The 64-bit mantissa of arguments of type long double belongs to |
| class X87, the 16-bit exponent plus 6 bytes of padding belongs to |
| class X87UP. */ |
| else if (code == TYPE_CODE_FLT && len == 16) |
| /* Class X87 and X87UP. */ |
| theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP; |
| |
| /* Arguments of complex T - where T is one of the types _Float16, float or |
| double - get treated as if they are implemented as: |
| |
| struct complexT { |
| T real; |
| T imag; |
| }; |
| |
| */ |
| else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4)) |
| theclass[0] = AMD64_SSE; |
| else if (code == TYPE_CODE_COMPLEX && len == 16) |
| theclass[0] = theclass[1] = AMD64_SSE; |
| |
| /* A variable of type complex long double is classified as type |
| COMPLEX_X87. */ |
| else if (code == TYPE_CODE_COMPLEX && len == 32) |
| theclass[0] = AMD64_COMPLEX_X87; |
| |
| /* Aggregates. */ |
| else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT |
| || code == TYPE_CODE_UNION) |
| amd64_classify_aggregate (type, theclass); |
| } |
| |
| static enum return_value_convention |
| amd64_return_value (struct gdbarch *gdbarch, struct value *function, |
| struct type *type, struct regcache *regcache, |
| struct value **read_value, const gdb_byte *writebuf) |
| { |
| enum amd64_reg_class theclass[2]; |
| int len = type->length (); |
| static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM }; |
| static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM }; |
| int integer_reg = 0; |
| int sse_reg = 0; |
| int i; |
| |
| gdb_assert (!(read_value && writebuf)); |
| |
| /* 1. Classify the return type with the classification algorithm. */ |
| amd64_classify (type, theclass); |
| |
| /* 2. If the type has class MEMORY, then the caller provides space |
| for the return value and passes the address of this storage in |
| %rdi as if it were the first argument to the function. In effect, |
| this address becomes a hidden first argument. |
| |
| On return %rax will contain the address that has been passed in |
| by the caller in %rdi. */ |
| if (theclass[0] == AMD64_MEMORY) |
| { |
| /* As indicated by the comment above, the ABI guarantees that we |
| can always find the return value just after the function has |
| returned. */ |
| |
| if (read_value != nullptr) |
| { |
| ULONGEST addr; |
| |
| regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr); |
| *read_value = value_at_non_lval (type, addr); |
| } |
| |
| return RETURN_VALUE_ABI_RETURNS_ADDRESS; |
| } |
| |
| gdb_byte *readbuf = nullptr; |
| if (read_value != nullptr) |
| { |
| *read_value = value::allocate (type); |
| readbuf = (*read_value)->contents_raw ().data (); |
| } |
| |
| /* 8. If the class is COMPLEX_X87, the real part of the value is |
| returned in %st0 and the imaginary part in %st1. */ |
| if (theclass[0] == AMD64_COMPLEX_X87) |
| { |
| if (readbuf) |
| { |
| regcache->raw_read (AMD64_ST0_REGNUM, readbuf); |
| regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16); |
| } |
| |
| if (writebuf) |
| { |
| i387_return_value (gdbarch, regcache); |
| regcache->raw_write (AMD64_ST0_REGNUM, writebuf); |
| regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16); |
| |
| /* Fix up the tag word such that both %st(0) and %st(1) are |
| marked as valid. */ |
| regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| gdb_assert (theclass[1] != AMD64_MEMORY); |
| gdb_assert (len <= 16); |
| |
| for (i = 0; len > 0; i++, len -= 8) |
| { |
| int regnum = -1; |
| int offset = 0; |
| |
| switch (theclass[i]) |
| { |
| case AMD64_INTEGER: |
| /* 3. If the class is INTEGER, the next available register |
| of the sequence %rax, %rdx is used. */ |
| regnum = integer_regnum[integer_reg++]; |
| break; |
| |
| case AMD64_SSE: |
| /* 4. If the class is SSE, the next available SSE register |
| of the sequence %xmm0, %xmm1 is used. */ |
| regnum = sse_regnum[sse_reg++]; |
| break; |
| |
| case AMD64_SSEUP: |
| /* 5. If the class is SSEUP, the eightbyte is passed in the |
| upper half of the last used SSE register. */ |
| gdb_assert (sse_reg > 0); |
| regnum = sse_regnum[sse_reg - 1]; |
| offset = 8; |
| break; |
| |
| case AMD64_X87: |
| /* 6. If the class is X87, the value is returned on the X87 |
| stack in %st0 as 80-bit x87 number. */ |
| regnum = AMD64_ST0_REGNUM; |
| if (writebuf) |
| i387_return_value (gdbarch, regcache); |
| break; |
| |
| case AMD64_X87UP: |
| /* 7. If the class is X87UP, the value is returned together |
| with the previous X87 value in %st0. */ |
| gdb_assert (i > 0 && theclass[0] == AMD64_X87); |
| regnum = AMD64_ST0_REGNUM; |
| offset = 8; |
| len = 2; |
| break; |
| |
| case AMD64_NO_CLASS: |
| continue; |
| |
| default: |
| gdb_assert (!"Unexpected register class."); |
| } |
| |
| gdb_assert (regnum != -1); |
| |
| if (readbuf) |
| regcache->raw_read_part (regnum, offset, std::min (len, 8), |
| readbuf + i * 8); |
| if (writebuf) |
| regcache->raw_write_part (regnum, offset, std::min (len, 8), |
| writebuf + i * 8); |
| } |
| |
| return RETURN_VALUE_REGISTER_CONVENTION; |
| } |
| |
| |
| static CORE_ADDR |
| amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args, |
| CORE_ADDR sp, function_call_return_method return_method) |
| { |
| static int integer_regnum[] = |
| { |
| AMD64_RDI_REGNUM, /* %rdi */ |
| AMD64_RSI_REGNUM, /* %rsi */ |
| AMD64_RDX_REGNUM, /* %rdx */ |
| AMD64_RCX_REGNUM, /* %rcx */ |
| AMD64_R8_REGNUM, /* %r8 */ |
| AMD64_R9_REGNUM /* %r9 */ |
| }; |
| static int sse_regnum[] = |
| { |
| /* %xmm0 ... %xmm7 */ |
| AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM, |
| AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3, |
| AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5, |
| AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7, |
| }; |
| struct value **stack_args = XALLOCAVEC (struct value *, nargs); |
| int num_stack_args = 0; |
| int num_elements = 0; |
| int element = 0; |
| int integer_reg = 0; |
| int sse_reg = 0; |
| int i; |
| |
| /* Reserve a register for the "hidden" argument. */ |
| if (return_method == return_method_struct) |
| integer_reg++; |
| |
| for (i = 0; i < nargs; i++) |
| { |
| struct type *type = args[i]->type (); |
| int len = type->length (); |
| enum amd64_reg_class theclass[2]; |
| int needed_integer_regs = 0; |
| int needed_sse_regs = 0; |
| int j; |
| |
| /* Classify argument. */ |
| amd64_classify (type, theclass); |
| |
| /* Calculate the number of integer and SSE registers needed for |
| this argument. */ |
| for (j = 0; j < 2; j++) |
| { |
| if (theclass[j] == AMD64_INTEGER) |
| needed_integer_regs++; |
| else if (theclass[j] == AMD64_SSE) |
| needed_sse_regs++; |
| } |
| |
| /* Check whether enough registers are available, and if the |
| argument should be passed in registers at all. */ |
| if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum) |
| || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum) |
| || (needed_integer_regs == 0 && needed_sse_regs == 0)) |
| { |
| /* The argument will be passed on the stack. */ |
| num_elements += ((len + 7) / 8); |
| stack_args[num_stack_args++] = args[i]; |
| } |
| else |
| { |
| /* The argument will be passed in registers. */ |
| const gdb_byte *valbuf = args[i]->contents ().data (); |
| gdb_byte buf[8]; |
| |
| gdb_assert (len <= 16); |
| |
| for (j = 0; len > 0; j++, len -= 8) |
| { |
| int regnum = -1; |
| int offset = 0; |
| |
| switch (theclass[j]) |
| { |
| case AMD64_INTEGER: |
| regnum = integer_regnum[integer_reg++]; |
| break; |
| |
| case AMD64_SSE: |
| regnum = sse_regnum[sse_reg++]; |
| break; |
| |
| case AMD64_SSEUP: |
| gdb_assert (sse_reg > 0); |
| regnum = sse_regnum[sse_reg - 1]; |
| offset = 8; |
| break; |
| |
| case AMD64_NO_CLASS: |
| continue; |
| |
| default: |
| gdb_assert (!"Unexpected register class."); |
| } |
| |
| gdb_assert (regnum != -1); |
| memset (buf, 0, sizeof buf); |
| memcpy (buf, valbuf + j * 8, std::min (len, 8)); |
| regcache->raw_write_part (regnum, offset, 8, buf); |
| } |
| } |
| } |
| |
| /* Allocate space for the arguments on the stack. */ |
| sp -= num_elements * 8; |
| |
| /* The psABI says that "The end of the input argument area shall be |
| aligned on a 16 byte boundary." */ |
| sp &= ~0xf; |
| |
| /* Write out the arguments to the stack. */ |
| for (i = 0; i < num_stack_args; i++) |
| { |
| struct type *type = stack_args[i]->type (); |
| const gdb_byte *valbuf = stack_args[i]->contents ().data (); |
| int len = type->length (); |
| |
| write_memory (sp + element * 8, valbuf, len); |
| element += ((len + 7) / 8); |
| } |
| |
| /* The psABI says that "For calls that may call functions that use |
| varargs or stdargs (prototype-less calls or calls to functions |
| containing ellipsis (...) in the declaration) %al is used as |
| hidden argument to specify the number of SSE registers used. */ |
| regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg); |
| return sp; |
| } |
| |
| static CORE_ADDR |
| amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
| struct regcache *regcache, CORE_ADDR bp_addr, |
| int nargs, struct value **args, CORE_ADDR sp, |
| function_call_return_method return_method, |
| CORE_ADDR struct_addr) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| |
| /* BND registers can be in arbitrary values at the moment of the |
| inferior call. This can cause boundary violations that are not |
| due to a real bug or even desired by the user. The best to be done |
| is set the BND registers to allow access to the whole memory, INIT |
| state, before pushing the inferior call. */ |
| i387_reset_bnd_regs (gdbarch, regcache); |
| |
| /* Pass arguments. */ |
| sp = amd64_push_arguments (regcache, nargs, args, sp, return_method); |
| |
| /* Pass "hidden" argument". */ |
| if (return_method == return_method_struct) |
| { |
| store_unsigned_integer (buf, 8, byte_order, struct_addr); |
| regcache->cooked_write (AMD64_RDI_REGNUM, buf); |
| } |
| |
| /* Store return address. */ |
| sp -= 8; |
| store_unsigned_integer (buf, 8, byte_order, bp_addr); |
| write_memory (sp, buf, 8); |
| |
| /* Finally, update the stack pointer... */ |
| store_unsigned_integer (buf, 8, byte_order, sp); |
| regcache->cooked_write (AMD64_RSP_REGNUM, buf); |
| |
| /* ...and fake a frame pointer. */ |
| regcache->cooked_write (AMD64_RBP_REGNUM, buf); |
| |
| return sp + 16; |
| } |
| |
| /* Displaced instruction handling. */ |
| |
| /* A partially decoded instruction. |
| This contains enough details for displaced stepping purposes. */ |
| |
| struct amd64_insn |
| { |
| /* The number of opcode bytes. */ |
| int opcode_len; |
| /* The offset of the REX/VEX instruction encoding prefix or -1 if |
| not present. */ |
| int enc_prefix_offset; |
| /* The offset to the first opcode byte. */ |
| int opcode_offset; |
| /* The offset to the modrm byte or -1 if not present. */ |
| int modrm_offset; |
| |
| /* The raw instruction. */ |
| gdb_byte *raw_insn; |
| }; |
| |
| struct amd64_displaced_step_copy_insn_closure |
| : public displaced_step_copy_insn_closure |
| { |
| amd64_displaced_step_copy_insn_closure (int insn_buf_len) |
| : insn_buf (insn_buf_len, 0) |
| {} |
| |
| /* For rip-relative insns, saved copy of the reg we use instead of %rip. */ |
| int tmp_used = 0; |
| int tmp_regno; |
| ULONGEST tmp_save; |
| |
| /* Details of the instruction. */ |
| struct amd64_insn insn_details; |
| |
| /* The possibly modified insn. */ |
| gdb::byte_vector insn_buf; |
| }; |
| |
| /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with |
| ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative, |
| at which point delete these in favor of libopcodes' versions). */ |
| |
| static const unsigned char onebyte_has_modrm[256] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ------------------------------- */ |
| /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */ |
| /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */ |
| /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */ |
| /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */ |
| /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */ |
| /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */ |
| /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */ |
| /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */ |
| /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */ |
| /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */ |
| /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */ |
| /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */ |
| /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */ |
| /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */ |
| /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */ |
| /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */ |
| /* ------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| |
| static const unsigned char twobyte_has_modrm[256] = { |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| /* ------------------------------- */ |
| /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */ |
| /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */ |
| /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */ |
| /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */ |
| /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */ |
| /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */ |
| /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */ |
| /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */ |
| /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */ |
| /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */ |
| /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */ |
| /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */ |
| /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */ |
| /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */ |
| /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */ |
| /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */ |
| /* ------------------------------- */ |
| /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */ |
| }; |
| |
| static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp); |
| |
| static int |
| rex_prefix_p (gdb_byte pfx) |
| { |
| return REX_PREFIX_P (pfx); |
| } |
| |
| /* True if PFX is the start of the 2-byte VEX prefix. */ |
| |
| static bool |
| vex2_prefix_p (gdb_byte pfx) |
| { |
| return pfx == 0xc5; |
| } |
| |
| /* True if PFX is the start of the 3-byte VEX prefix. */ |
| |
| static bool |
| vex3_prefix_p (gdb_byte pfx) |
| { |
| return pfx == 0xc4; |
| } |
| |
| /* Skip the legacy instruction prefixes in INSN. |
| We assume INSN is properly sentineled so we don't have to worry |
| about falling off the end of the buffer. */ |
| |
| static gdb_byte * |
| amd64_skip_prefixes (gdb_byte *insn) |
| { |
| while (1) |
| { |
| switch (*insn) |
| { |
| case DATA_PREFIX_OPCODE: |
| case ADDR_PREFIX_OPCODE: |
| case CS_PREFIX_OPCODE: |
| case DS_PREFIX_OPCODE: |
| case ES_PREFIX_OPCODE: |
| case FS_PREFIX_OPCODE: |
| case GS_PREFIX_OPCODE: |
| case SS_PREFIX_OPCODE: |
| case LOCK_PREFIX_OPCODE: |
| case REPE_PREFIX_OPCODE: |
| case REPNE_PREFIX_OPCODE: |
| ++insn; |
| continue; |
| default: |
| break; |
| } |
| break; |
| } |
| |
| return insn; |
| } |
| |
| /* Return an integer register (other than RSP) that is unused as an input |
| operand in INSN. |
| In order to not require adding a rex prefix if the insn doesn't already |
| have one, the result is restricted to RAX ... RDI, sans RSP. |
| The register numbering of the result follows architecture ordering, |
| e.g. RDI = 7. */ |
| |
| static int |
| amd64_get_unused_input_int_reg (const struct amd64_insn *details) |
| { |
| /* 1 bit for each reg */ |
| int used_regs_mask = 0; |
| |
| /* There can be at most 3 int regs used as inputs in an insn, and we have |
| 7 to choose from (RAX ... RDI, sans RSP). |
| This allows us to take a conservative approach and keep things simple. |
| E.g. By avoiding RAX, we don't have to specifically watch for opcodes |
| that implicitly specify RAX. */ |
| |
| /* Avoid RAX. */ |
| used_regs_mask |= 1 << EAX_REG_NUM; |
| /* Similarily avoid RDX, implicit operand in divides. */ |
| used_regs_mask |= 1 << EDX_REG_NUM; |
| /* Avoid RSP. */ |
| used_regs_mask |= 1 << ESP_REG_NUM; |
| |
| /* If the opcode is one byte long and there's no ModRM byte, |
| assume the opcode specifies a register. */ |
| if (details->opcode_len == 1 && details->modrm_offset == -1) |
| used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7); |
| |
| /* Mark used regs in the modrm/sib bytes. */ |
| if (details->modrm_offset != -1) |
| { |
| int modrm = details->raw_insn[details->modrm_offset]; |
| int mod = MODRM_MOD_FIELD (modrm); |
| int reg = MODRM_REG_FIELD (modrm); |
| int rm = MODRM_RM_FIELD (modrm); |
| int have_sib = mod != 3 && rm == 4; |
| |
| /* Assume the reg field of the modrm byte specifies a register. */ |
| used_regs_mask |= 1 << reg; |
| |
| if (have_sib) |
| { |
| int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]); |
| int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]); |
| used_regs_mask |= 1 << base; |
| used_regs_mask |= 1 << idx; |
| } |
| else |
| { |
| used_regs_mask |= 1 << rm; |
| } |
| } |
| |
| gdb_assert (used_regs_mask < 256); |
| gdb_assert (used_regs_mask != 255); |
| |
| /* Finally, find a free reg. */ |
| { |
| int i; |
| |
| for (i = 0; i < 8; ++i) |
| { |
| if (! (used_regs_mask & (1 << i))) |
| return i; |
| } |
| |
| /* We shouldn't get here. */ |
| internal_error (_("unable to find free reg")); |
| } |
| } |
| |
| /* Extract the details of INSN that we need. */ |
| |
| static void |
| amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details) |
| { |
| gdb_byte *start = insn; |
| int need_modrm; |
| |
| details->raw_insn = insn; |
| |
| details->opcode_len = -1; |
| details->enc_prefix_offset = -1; |
| details->opcode_offset = -1; |
| details->modrm_offset = -1; |
| |
| /* Skip legacy instruction prefixes. */ |
| insn = amd64_skip_prefixes (insn); |
| |
| /* Skip REX/VEX instruction encoding prefixes. */ |
| if (rex_prefix_p (*insn)) |
| { |
| details->enc_prefix_offset = insn - start; |
| ++insn; |
| } |
| else if (vex2_prefix_p (*insn)) |
| { |
| /* Don't record the offset in this case because this prefix has |
| no REX.B equivalent. */ |
| insn += 2; |
| } |
| else if (vex3_prefix_p (*insn)) |
| { |
| details->enc_prefix_offset = insn - start; |
| insn += 3; |
| } |
| |
| details->opcode_offset = insn - start; |
| |
| if (*insn == TWO_BYTE_OPCODE_ESCAPE) |
| { |
| /* Two or three-byte opcode. */ |
| ++insn; |
| need_modrm = twobyte_has_modrm[*insn]; |
| |
| /* Check for three-byte opcode. */ |
| switch (*insn) |
| { |
| case 0x24: |
| case 0x25: |
| case 0x38: |
| case 0x3a: |
| case 0x7a: |
| case 0x7b: |
| ++insn; |
| details->opcode_len = 3; |
| break; |
| default: |
| details->opcode_len = 2; |
| break; |
| } |
| } |
| else |
| { |
| /* One-byte opcode. */ |
| need_modrm = onebyte_has_modrm[*insn]; |
| details->opcode_len = 1; |
| } |
| |
| if (need_modrm) |
| { |
| ++insn; |
| details->modrm_offset = insn - start; |
| } |
| } |
| |
| /* Update %rip-relative addressing in INSN. |
| |
| %rip-relative addressing only uses a 32-bit displacement. |
| 32 bits is not enough to be guaranteed to cover the distance between where |
| the real instruction is and where its copy is. |
| Convert the insn to use base+disp addressing. |
| We set base = pc + insn_length so we can leave disp unchanged. */ |
| |
| static void |
| fixup_riprel (struct gdbarch *gdbarch, |
| amd64_displaced_step_copy_insn_closure *dsc, |
| CORE_ADDR from, CORE_ADDR to, struct regcache *regs) |
| { |
| const struct amd64_insn *insn_details = &dsc->insn_details; |
| int modrm_offset = insn_details->modrm_offset; |
| CORE_ADDR rip_base; |
| int insn_length; |
| int arch_tmp_regno, tmp_regno; |
| ULONGEST orig_value; |
| |
| /* Compute the rip-relative address. */ |
| insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (), |
| dsc->insn_buf.size (), from); |
| rip_base = from + insn_length; |
| |
| /* We need a register to hold the address. |
| Pick one not used in the insn. |
| NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */ |
| arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details); |
| tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno); |
| |
| /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */ |
| static constexpr gdb_byte VEX3_NOT_B = 0x20; |
| |
| /* REX.B should be unset (VEX.!B set) as we were using rip-relative |
| addressing, but ensure it's unset (set for VEX) anyway, tmp_regno |
| is not r8-r15. */ |
| if (insn_details->enc_prefix_offset != -1) |
| { |
| gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset]; |
| if (rex_prefix_p (pfx[0])) |
| pfx[0] &= ~REX_B; |
| else if (vex3_prefix_p (pfx[0])) |
| pfx[1] |= VEX3_NOT_B; |
| else |
| gdb_assert_not_reached ("unhandled prefix"); |
| } |
| |
| regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value); |
| dsc->tmp_regno = tmp_regno; |
| dsc->tmp_save = orig_value; |
| dsc->tmp_used = 1; |
| |
| /* Convert the ModRM field to be base+disp. */ |
| dsc->insn_buf[modrm_offset] &= ~0xc7; |
| dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno; |
| |
| regcache_cooked_write_unsigned (regs, tmp_regno, rip_base); |
| |
| displaced_debug_printf ("%%rip-relative addressing used."); |
| displaced_debug_printf ("using temp reg %d, old value %s, new value %s", |
| dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save), |
| paddress (gdbarch, rip_base)); |
| } |
| |
| static void |
| fixup_displaced_copy (struct gdbarch *gdbarch, |
| amd64_displaced_step_copy_insn_closure *dsc, |
| CORE_ADDR from, CORE_ADDR to, struct regcache *regs) |
| { |
| const struct amd64_insn *details = &dsc->insn_details; |
| |
| if (details->modrm_offset != -1) |
| { |
| gdb_byte modrm = details->raw_insn[details->modrm_offset]; |
| |
| if ((modrm & 0xc7) == 0x05) |
| { |
| /* The insn uses rip-relative addressing. |
| Deal with it. */ |
| fixup_riprel (gdbarch, dsc, from, to, regs); |
| } |
| } |
| } |
| |
| displaced_step_copy_insn_closure_up |
| amd64_displaced_step_copy_insn (struct gdbarch *gdbarch, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs) |
| { |
| int len = gdbarch_max_insn_length (gdbarch); |
| /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to |
| continually watch for running off the end of the buffer. */ |
| int fixup_sentinel_space = len; |
| std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc |
| (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space)); |
| gdb_byte *buf = &dsc->insn_buf[0]; |
| struct amd64_insn *details = &dsc->insn_details; |
| |
| read_memory (from, buf, len); |
| |
| /* Set up the sentinel space so we don't have to worry about running |
| off the end of the buffer. An excessive number of leading prefixes |
| could otherwise cause this. */ |
| memset (buf + len, 0, fixup_sentinel_space); |
| |
| amd64_get_insn_details (buf, details); |
| |
| /* GDB may get control back after the insn after the syscall. |
| Presumably this is a kernel bug. |
| If this is a syscall, make sure there's a nop afterwards. */ |
| { |
| int syscall_length; |
| |
| if (amd64_syscall_p (details, &syscall_length)) |
| buf[details->opcode_offset + syscall_length] = NOP_OPCODE; |
| } |
| |
| /* Modify the insn to cope with the address where it will be executed from. |
| In particular, handle any rip-relative addressing. */ |
| fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs); |
| |
| write_memory (to, buf, len); |
| |
| displaced_debug_printf ("copy %s->%s: %s", |
| paddress (gdbarch, from), paddress (gdbarch, to), |
| bytes_to_string (buf, len).c_str ()); |
| |
| /* This is a work around for a problem with g++ 4.8. */ |
| return displaced_step_copy_insn_closure_up (dsc.release ()); |
| } |
| |
| static int |
| amd64_absolute_jmp_p (const struct amd64_insn *details) |
| { |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| if (insn[0] == 0xff) |
| { |
| /* jump near, absolute indirect (/4) */ |
| if ((insn[1] & 0x38) == 0x20) |
| return 1; |
| |
| /* jump far, absolute indirect (/5) */ |
| if ((insn[1] & 0x38) == 0x28) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */ |
| |
| static int |
| amd64_jmp_p (const struct amd64_insn *details) |
| { |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| /* jump short, relative. */ |
| if (insn[0] == 0xeb) |
| return 1; |
| |
| /* jump near, relative. */ |
| if (insn[0] == 0xe9) |
| return 1; |
| |
| return amd64_absolute_jmp_p (details); |
| } |
| |
| static int |
| amd64_absolute_call_p (const struct amd64_insn *details) |
| { |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| if (insn[0] == 0xff) |
| { |
| /* Call near, absolute indirect (/2) */ |
| if ((insn[1] & 0x38) == 0x10) |
| return 1; |
| |
| /* Call far, absolute indirect (/3) */ |
| if ((insn[1] & 0x38) == 0x18) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int |
| amd64_ret_p (const struct amd64_insn *details) |
| { |
| /* NOTE: gcc can emit "repz ; ret". */ |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| switch (insn[0]) |
| { |
| case 0xc2: /* ret near, pop N bytes */ |
| case 0xc3: /* ret near */ |
| case 0xca: /* ret far, pop N bytes */ |
| case 0xcb: /* ret far */ |
| case 0xcf: /* iret */ |
| return 1; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| static int |
| amd64_call_p (const struct amd64_insn *details) |
| { |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| if (amd64_absolute_call_p (details)) |
| return 1; |
| |
| /* call near, relative */ |
| if (insn[0] == 0xe8) |
| return 1; |
| |
| return 0; |
| } |
| |
| /* Return non-zero if INSN is a system call, and set *LENGTHP to its |
| length in bytes. Otherwise, return zero. */ |
| |
| static int |
| amd64_syscall_p (const struct amd64_insn *details, int *lengthp) |
| { |
| const gdb_byte *insn = &details->raw_insn[details->opcode_offset]; |
| |
| if (insn[0] == 0x0f && insn[1] == 0x05) |
| { |
| *lengthp = 2; |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* Classify the instruction at ADDR using PRED. |
| Throw an error if the memory can't be read. */ |
| |
| static int |
| amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr, |
| int (*pred) (const struct amd64_insn *)) |
| { |
| struct amd64_insn details; |
| |
| gdb::byte_vector buf (gdbarch_max_insn_length (gdbarch)); |
| |
| read_code (addr, buf.data (), buf.size ()); |
| amd64_get_insn_details (buf.data (), &details); |
| |
| int classification = pred (&details); |
| |
| return classification; |
| } |
| |
| /* The gdbarch insn_is_call method. */ |
| |
| static int |
| amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| return amd64_classify_insn_at (gdbarch, addr, amd64_call_p); |
| } |
| |
| /* The gdbarch insn_is_ret method. */ |
| |
| static int |
| amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p); |
| } |
| |
| /* The gdbarch insn_is_jump method. */ |
| |
| static int |
| amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr) |
| { |
| return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p); |
| } |
| |
| /* Fix up the state of registers and memory after having single-stepped |
| a displaced instruction. */ |
| |
| void |
| amd64_displaced_step_fixup (struct gdbarch *gdbarch, |
| struct displaced_step_copy_insn_closure *dsc_, |
| CORE_ADDR from, CORE_ADDR to, |
| struct regcache *regs, bool completed_p) |
| { |
| amd64_displaced_step_copy_insn_closure *dsc |
| = (amd64_displaced_step_copy_insn_closure *) dsc_; |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| /* The offset we applied to the instruction's address. */ |
| ULONGEST insn_offset = to - from; |
| gdb_byte *insn = dsc->insn_buf.data (); |
| const struct amd64_insn *insn_details = &dsc->insn_details; |
| |
| displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...", |
| paddress (gdbarch, from), paddress (gdbarch, to), |
| insn[0], insn[1]); |
| |
| /* If we used a tmp reg, restore it. */ |
| |
| if (dsc->tmp_used) |
| { |
| displaced_debug_printf ("restoring reg %d to %s", |
| dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save)); |
| regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save); |
| } |
| |
| /* The list of issues to contend with here is taken from |
| resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28. |
| Yay for Free Software! */ |
| |
| /* Relocate the %rip back to the program's instruction stream, |
| if necessary. */ |
| |
| /* Except in the case of absolute or indirect jump or call |
| instructions, or a return instruction, the new rip is relative to |
| the displaced instruction; make it relative to the original insn. |
| Well, signal handler returns don't need relocation either, but we use the |
| value of %rip to recognize those; see below. */ |
| if (!completed_p |
| || (!amd64_absolute_jmp_p (insn_details) |
| && !amd64_absolute_call_p (insn_details) |
| && !amd64_ret_p (insn_details))) |
| { |
| int insn_len; |
| |
| CORE_ADDR pc = regcache_read_pc (regs); |
| |
| /* A signal trampoline system call changes the %rip, resuming |
| execution of the main program after the signal handler has |
| returned. That makes them like 'return' instructions; we |
| shouldn't relocate %rip. |
| |
| But most system calls don't, and we do need to relocate %rip. |
| |
| Our heuristic for distinguishing these cases: if stepping |
| over the system call instruction left control directly after |
| the instruction, the we relocate --- control almost certainly |
| doesn't belong in the displaced copy. Otherwise, we assume |
| the instruction has put control where it belongs, and leave |
| it unrelocated. Goodness help us if there are PC-relative |
| system calls. */ |
| if (amd64_syscall_p (insn_details, &insn_len) |
| /* GDB can get control back after the insn after the syscall. |
| Presumably this is a kernel bug. Fixup ensures it's a nop, we |
| add one to the length for it. */ |
| && (pc < to || pc > (to + insn_len + 1))) |
| displaced_debug_printf ("syscall changed %%rip; not relocating"); |
| else |
| { |
| CORE_ADDR rip = pc - insn_offset; |
| |
| /* If we just stepped over a breakpoint insn, we don't backup |
| the pc on purpose; this is to match behaviour without |
| stepping. */ |
| |
| regcache_write_pc (regs, rip); |
| |
| displaced_debug_printf ("relocated %%rip from %s to %s", |
| paddress (gdbarch, pc), |
| paddress (gdbarch, rip)); |
| } |
| } |
| |
| /* If the instruction was PUSHFL, then the TF bit will be set in the |
| pushed value, and should be cleared. We'll leave this for later, |
| since GDB already messes up the TF flag when stepping over a |
| pushfl. */ |
| |
| /* If the instruction was a call, the return address now atop the |
| stack is the address following the copied instruction. We need |
| to make it the address following the original instruction. */ |
| if (completed_p && amd64_call_p (insn_details)) |
| { |
| ULONGEST rsp; |
| ULONGEST retaddr; |
| const ULONGEST retaddr_len = 8; |
| |
| regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp); |
| retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order); |
| retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL; |
| write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr); |
| |
| displaced_debug_printf ("relocated return addr at %s to %s", |
| paddress (gdbarch, rsp), |
| paddress (gdbarch, retaddr)); |
| } |
| } |
| |
| /* If the instruction INSN uses RIP-relative addressing, return the |
| offset into the raw INSN where the displacement to be adjusted is |
| found. Returns 0 if the instruction doesn't use RIP-relative |
| addressing. */ |
| |
| static int |
| rip_relative_offset (struct amd64_insn *insn) |
| { |
| if (insn->modrm_offset != -1) |
| { |
| gdb_byte modrm = insn->raw_insn[insn->modrm_offset]; |
| |
| if ((modrm & 0xc7) == 0x05) |
| { |
| /* The displacement is found right after the ModRM byte. */ |
| return insn->modrm_offset + 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static void |
| append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf) |
| { |
| target_write_memory (*to, buf, len); |
| *to += len; |
| } |
| |
| static void |
| amd64_relocate_instruction (struct gdbarch *gdbarch, |
| CORE_ADDR *to, CORE_ADDR oldloc) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| int len = gdbarch_max_insn_length (gdbarch); |
| /* Extra space for sentinels. */ |
| int fixup_sentinel_space = len; |
| gdb::byte_vector buf (len + fixup_sentinel_space); |
| struct amd64_insn insn_details; |
| int offset = 0; |
| LONGEST rel32, newrel; |
| gdb_byte *insn; |
| int insn_length; |
| |
| read_memory (oldloc, buf.data (), len); |
| |
| /* Set up the sentinel space so we don't have to worry about running |
| off the end of the buffer. An excessive number of leading prefixes |
| could otherwise cause this. */ |
| memset (buf.data () + len, 0, fixup_sentinel_space); |
| |
| insn = buf.data (); |
| amd64_get_insn_details (insn, &insn_details); |
| |
| insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc); |
| |
| /* Skip legacy instruction prefixes. */ |
| insn = amd64_skip_prefixes (insn); |
| |
| /* Adjust calls with 32-bit relative addresses as push/jump, with |
| the address pushed being the location where the original call in |
| the user program would return to. */ |
| if (insn[0] == 0xe8) |
| { |
| gdb_byte push_buf[32]; |
| CORE_ADDR ret_addr; |
| int i = 0; |
| |
| /* Where "ret" in the original code will return to. */ |
| ret_addr = oldloc + insn_length; |
| |
| /* If pushing an address higher than or equal to 0x80000000, |
| avoid 'pushq', as that sign extends its 32-bit operand, which |
| would be incorrect. */ |
| if (ret_addr <= 0x7fffffff) |
| { |
| push_buf[0] = 0x68; /* pushq $... */ |
| store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr); |
| i = 5; |
| } |
| else |
| { |
| push_buf[i++] = 0x48; /* sub $0x8,%rsp */ |
| push_buf[i++] = 0x83; |
| push_buf[i++] = 0xec; |
| push_buf[i++] = 0x08; |
| |
| push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */ |
| push_buf[i++] = 0x04; |
| push_buf[i++] = 0x24; |
| store_unsigned_integer (&push_buf[i], 4, byte_order, |
| ret_addr & 0xffffffff); |
| i += 4; |
| |
| push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */ |
| push_buf[i++] = 0x44; |
| push_buf[i++] = 0x24; |
| push_buf[i++] = 0x04; |
| store_unsigned_integer (&push_buf[i], 4, byte_order, |
| ret_addr >> 32); |
| i += 4; |
| } |
| gdb_assert (i <= sizeof (push_buf)); |
| /* Push the push. */ |
| append_insns (to, i, push_buf); |
| |
| /* Convert the relative call to a relative jump. */ |
| insn[0] = 0xe9; |
| |
| /* Adjust the destination offset. */ |
| rel32 = extract_signed_integer (insn + 1, 4, byte_order); |
| newrel = (oldloc - *to) + rel32; |
| store_signed_integer (insn + 1, 4, byte_order, newrel); |
| |
| displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", |
| hex_string (rel32), paddress (gdbarch, oldloc), |
| hex_string (newrel), paddress (gdbarch, *to)); |
| |
| /* Write the adjusted jump into its displaced location. */ |
| append_insns (to, 5, insn); |
| return; |
| } |
| |
| offset = rip_relative_offset (&insn_details); |
| if (!offset) |
| { |
| /* Adjust jumps with 32-bit relative addresses. Calls are |
| already handled above. */ |
| if (insn[0] == 0xe9) |
| offset = 1; |
| /* Adjust conditional jumps. */ |
| else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80) |
| offset = 2; |
| } |
| |
| if (offset) |
| { |
| rel32 = extract_signed_integer (insn + offset, 4, byte_order); |
| newrel = (oldloc - *to) + rel32; |
| store_signed_integer (insn + offset, 4, byte_order, newrel); |
| displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s", |
| hex_string (rel32), paddress (gdbarch, oldloc), |
| hex_string (newrel), paddress (gdbarch, *to)); |
| } |
| |
| /* Write the adjusted instruction into its displaced location. */ |
| append_insns (to, insn_length, buf.data ()); |
| } |
| |
| |
| /* The maximum number of saved registers. This should include %rip. */ |
| #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS |
| |
| struct amd64_frame_cache |
| { |
| /* Base address. */ |
| CORE_ADDR base; |
| int base_p; |
| CORE_ADDR sp_offset; |
| CORE_ADDR pc; |
| |
| /* Saved registers. */ |
| CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS]; |
| CORE_ADDR saved_sp; |
| int saved_sp_reg; |
| |
| /* Do we have a frame? */ |
| int frameless_p; |
| }; |
| |
| /* Initialize a frame cache. */ |
| |
| static void |
| amd64_init_frame_cache (struct amd64_frame_cache *cache) |
| { |
| int i; |
| |
| /* Base address. */ |
| cache->base = 0; |
| cache->base_p = 0; |
| cache->sp_offset = -8; |
| cache->pc = 0; |
| |
| /* Saved registers. We initialize these to -1 since zero is a valid |
| offset (that's where %rbp is supposed to be stored). |
| The values start out as being offsets, and are later converted to |
| addresses (at which point -1 is interpreted as an address, still meaning |
| "invalid"). */ |
| for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
| cache->saved_regs[i] = -1; |
| cache->saved_sp = 0; |
| cache->saved_sp_reg = -1; |
| |
| /* Frameless until proven otherwise. */ |
| cache->frameless_p = 1; |
| } |
| |
| /* Allocate and initialize a frame cache. */ |
| |
| static struct amd64_frame_cache * |
| amd64_alloc_frame_cache (void) |
| { |
| struct amd64_frame_cache *cache; |
| |
| cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache); |
| amd64_init_frame_cache (cache); |
| return cache; |
| } |
| |
| /* GCC 4.4 and later, can put code in the prologue to realign the |
| stack pointer. Check whether PC points to such code, and update |
| CACHE accordingly. Return the first instruction after the code |
| sequence or CURRENT_PC, whichever is smaller. If we don't |
| recognize the code, return PC. */ |
| |
| static CORE_ADDR |
| amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, |
| struct amd64_frame_cache *cache) |
| { |
| /* There are 2 code sequences to re-align stack before the frame |
| gets set up: |
| |
| 1. Use a caller-saved saved register: |
| |
| leaq 8(%rsp), %reg |
| andq $-XXX, %rsp |
| pushq -8(%reg) |
| |
| 2. Use a callee-saved saved register: |
| |
| pushq %reg |
| leaq 16(%rsp), %reg |
| andq $-XXX, %rsp |
| pushq -8(%reg) |
| |
| "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: |
| |
| 0x48 0x83 0xe4 0xf0 andq $-16, %rsp |
| 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp |
| */ |
| |
| gdb_byte buf[18]; |
| int reg, r; |
| int offset, offset_and; |
| |
| if (target_read_code (pc, buf, sizeof buf)) |
| return pc; |
| |
| /* Check caller-saved saved register. The first instruction has |
| to be "leaq 8(%rsp), %reg". */ |
| if ((buf[0] & 0xfb) == 0x48 |
| && buf[1] == 0x8d |
| && buf[3] == 0x24 |
| && buf[4] == 0x8) |
| { |
| /* MOD must be binary 10 and R/M must be binary 100. */ |
| if ((buf[2] & 0xc7) != 0x44) |
| return pc; |
| |
| /* REG has register number. */ |
| reg = (buf[2] >> 3) & 7; |
| |
| /* Check the REX.R bit. */ |
| if (buf[0] == 0x4c) |
| reg += 8; |
| |
| offset = 5; |
| } |
| else |
| { |
| /* Check callee-saved saved register. The first instruction |
| has to be "pushq %reg". */ |
| reg = 0; |
| if ((buf[0] & 0xf8) == 0x50) |
| offset = 0; |
| else if ((buf[0] & 0xf6) == 0x40 |
| && (buf[1] & 0xf8) == 0x50) |
| { |
| /* Check the REX.B bit. */ |
| if ((buf[0] & 1) != 0) |
| reg = 8; |
| |
| offset = 1; |
| } |
| else |
| return pc; |
| |
| /* Get register. */ |
| reg += buf[offset] & 0x7; |
| |
| offset++; |
| |
| /* The next instruction has to be "leaq 16(%rsp), %reg". */ |
| if ((buf[offset] & 0xfb) != 0x48 |
| || buf[offset + 1] != 0x8d |
| || buf[offset + 3] != 0x24 |
| || buf[offset + 4] != 0x10) |
| return pc; |
| |
| /* MOD must be binary 10 and R/M must be binary 100. */ |
| if ((buf[offset + 2] & 0xc7) != 0x44) |
| return pc; |
| |
| /* REG has register number. */ |
| r = (buf[offset + 2] >> 3) & 7; |
| |
| /* Check the REX.R bit. */ |
| if (buf[offset] == 0x4c) |
| r += 8; |
| |
| /* Registers in pushq and leaq have to be the same. */ |
| if (reg != r) |
| return pc; |
| |
| offset += 5; |
| } |
| |
| /* Rigister can't be %rsp nor %rbp. */ |
| if (reg == 4 || reg == 5) |
| return pc; |
| |
| /* The next instruction has to be "andq $-XXX, %rsp". */ |
| if (buf[offset] != 0x48 |
| || buf[offset + 2] != 0xe4 |
| || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) |
| return pc; |
| |
| offset_and = offset; |
| offset += buf[offset + 1] == 0x81 ? 7 : 4; |
| |
| /* The next instruction has to be "pushq -8(%reg)". */ |
| r = 0; |
| if (buf[offset] == 0xff) |
| offset++; |
| else if ((buf[offset] & 0xf6) == 0x40 |
| && buf[offset + 1] == 0xff) |
| { |
| /* Check the REX.B bit. */ |
| if ((buf[offset] & 0x1) != 0) |
| r = 8; |
| offset += 2; |
| } |
| else |
| return pc; |
| |
| /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary |
| 01. */ |
| if (buf[offset + 1] != 0xf8 |
| || (buf[offset] & 0xf8) != 0x70) |
| return pc; |
| |
| /* R/M has register. */ |
| r += buf[offset] & 7; |
| |
| /* Registers in leaq and pushq have to be the same. */ |
| if (reg != r) |
| return pc; |
| |
| if (current_pc > pc + offset_and) |
| cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); |
| |
| return std::min (pc + offset + 2, current_pc); |
| } |
| |
| /* Similar to amd64_analyze_stack_align for x32. */ |
| |
| static CORE_ADDR |
| amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc, |
| struct amd64_frame_cache *cache) |
| { |
| /* There are 2 code sequences to re-align stack before the frame |
| gets set up: |
| |
| 1. Use a caller-saved saved register: |
| |
| leaq 8(%rsp), %reg |
| andq $-XXX, %rsp |
| pushq -8(%reg) |
| |
| or |
| |
| [addr32] leal 8(%rsp), %reg |
| andl $-XXX, %esp |
| [addr32] pushq -8(%reg) |
| |
| 2. Use a callee-saved saved register: |
| |
| pushq %reg |
| leaq 16(%rsp), %reg |
| andq $-XXX, %rsp |
| pushq -8(%reg) |
| |
| or |
| |
| pushq %reg |
| [addr32] leal 16(%rsp), %reg |
| andl $-XXX, %esp |
| [addr32] pushq -8(%reg) |
| |
| "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes: |
| |
| 0x48 0x83 0xe4 0xf0 andq $-16, %rsp |
| 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp |
| |
| "andl $-XXX, %esp" can be either 3 bytes or 6 bytes: |
| |
| 0x83 0xe4 0xf0 andl $-16, %esp |
| 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp |
| */ |
| |
| gdb_byte buf[19]; |
| int reg, r; |
| int offset, offset_and; |
| |
| if (target_read_memory (pc, buf, sizeof buf)) |
| return pc; |
| |
| /* Skip optional addr32 prefix. */ |
| offset = buf[0] == 0x67 ? 1 : 0; |
| |
| /* Check caller-saved saved register. The first instruction has |
| to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */ |
| if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40) |
| && buf[offset + 1] == 0x8d |
| && buf[offset + 3] == 0x24 |
| && buf[offset + 4] == 0x8) |
| { |
| /* MOD must be binary 10 and R/M must be binary 100. */ |
| if ((buf[offset + 2] & 0xc7) != 0x44) |
| return pc; |
| |
| /* REG has register number. */ |
| reg = (buf[offset + 2] >> 3) & 7; |
| |
| /* Check the REX.R bit. */ |
| if ((buf[offset] & 0x4) != 0) |
| reg += 8; |
| |
| offset += 5; |
| } |
| else |
| { |
| /* Check callee-saved saved register. The first instruction |
| has to be "pushq %reg". */ |
| reg = 0; |
| if ((buf[offset] & 0xf6) == 0x40 |
| && (buf[offset + 1] & 0xf8) == 0x50) |
| { |
| /* Check the REX.B bit. */ |
| if ((buf[offset] & 1) != 0) |
| reg = 8; |
| |
| offset += 1; |
| } |
| else if ((buf[offset] & 0xf8) != 0x50) |
| return pc; |
| |
| /* Get register. */ |
| reg += buf[offset] & 0x7; |
| |
| offset++; |
| |
| /* Skip optional addr32 prefix. */ |
| if (buf[offset] == 0x67) |
| offset++; |
| |
| /* The next instruction has to be "leaq 16(%rsp), %reg" or |
| "leal 16(%rsp), %reg". */ |
| if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40) |
| || buf[offset + 1] != 0x8d |
| || buf[offset + 3] != 0x24 |
| || buf[offset + 4] != 0x10) |
| return pc; |
| |
| /* MOD must be binary 10 and R/M must be binary 100. */ |
| if ((buf[offset + 2] & 0xc7) != 0x44) |
| return pc; |
| |
| /* REG has register number. */ |
| r = (buf[offset + 2] >> 3) & 7; |
| |
| /* Check the REX.R bit. */ |
| if ((buf[offset] & 0x4) != 0) |
| r += 8; |
| |
| /* Registers in pushq and leaq have to be the same. */ |
| if (reg != r) |
| return pc; |
| |
| offset += 5; |
| } |
| |
| /* Rigister can't be %rsp nor %rbp. */ |
| if (reg == 4 || reg == 5) |
| return pc; |
| |
| /* The next instruction may be "andq $-XXX, %rsp" or |
| "andl $-XXX, %esp". */ |
| if (buf[offset] != 0x48) |
| offset--; |
| |
| if (buf[offset + 2] != 0xe4 |
| || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83)) |
| return pc; |
| |
| offset_and = offset; |
| offset += buf[offset + 1] == 0x81 ? 7 : 4; |
| |
| /* Skip optional addr32 prefix. */ |
| if (buf[offset] == 0x67) |
| offset++; |
| |
| /* The next instruction has to be "pushq -8(%reg)". */ |
| r = 0; |
| if (buf[offset] == 0xff) |
| offset++; |
| else if ((buf[offset] & 0xf6) == 0x40 |
| && buf[offset + 1] == 0xff) |
| { |
| /* Check the REX.B bit. */ |
| if ((buf[offset] & 0x1) != 0) |
| r = 8; |
| offset += 2; |
| } |
| else |
| return pc; |
| |
| /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary |
| 01. */ |
| if (buf[offset + 1] != 0xf8 |
| || (buf[offset] & 0xf8) != 0x70) |
| return pc; |
| |
| /* R/M has register. */ |
| r += buf[offset] & 7; |
| |
| /* Registers in leaq and pushq have to be the same. */ |
| if (reg != r) |
| return pc; |
| |
| if (current_pc > pc + offset_and) |
| cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg); |
| |
| return std::min (pc + offset + 2, current_pc); |
| } |
| |
| /* Do a limited analysis of the prologue at PC and update CACHE |
| accordingly. Bail out early if CURRENT_PC is reached. Return the |
| address where the analysis stopped. |
| |
| We will handle only functions beginning with: |
| |
| pushq %rbp 0x55 |
| movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec) |
| |
| or (for the X32 ABI): |
| |
| pushq %rbp 0x55 |
| movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec) |
| |
| The `endbr64` instruction can be found before these sequences, and will be |
| skipped if found. |
| |
| Any function that doesn't start with one of these sequences will be |
| assumed to have no prologue and thus no valid frame pointer in |
| %rbp. */ |
| |
| static CORE_ADDR |
| amd64_analyze_prologue (struct gdbarch *gdbarch, |
| CORE_ADDR pc, CORE_ADDR current_pc, |
| struct amd64_frame_cache *cache) |
| { |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| /* The `endbr64` instruction. */ |
| static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa }; |
| /* There are two variations of movq %rsp, %rbp. */ |
| static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 }; |
| static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec }; |
| /* Ditto for movl %esp, %ebp. */ |
| static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 }; |
| static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec }; |
| |
| gdb_byte buf[3]; |
| gdb_byte op; |
| |
| if (current_pc <= pc) |
| return current_pc; |
| |
| if (gdbarch_ptr_bit (gdbarch) == 32) |
| pc = amd64_x32_analyze_stack_align (pc, current_pc, cache); |
| else |
| pc = amd64_analyze_stack_align (pc, current_pc, cache); |
| |
| op = read_code_unsigned_integer (pc, 1, byte_order); |
| |
| /* Check for the `endbr64` instruction, skip it if found. */ |
| if (op == endbr64[0]) |
| { |
| read_code (pc + 1, buf, 3); |
| |
| if (memcmp (buf, &endbr64[1], 3) == 0) |
| pc += 4; |
| |
| op = read_code_unsigned_integer (pc, 1, byte_order); |
| } |
| |
| if (current_pc <= pc) |
| return current_pc; |
| |
| if (op == 0x55) /* pushq %rbp */ |
| { |
| /* Take into account that we've executed the `pushq %rbp' that |
| starts this instruction sequence. */ |
| cache->saved_regs[AMD64_RBP_REGNUM] = 0; |
| cache->sp_offset += 8; |
| |
| /* If that's all, return now. */ |
| if (current_pc <= pc + 1) |
| return current_pc; |
| |
| read_code (pc + 1, buf, 3); |
| |
| /* Check for `movq %rsp, %rbp'. */ |
| if (memcmp (buf, mov_rsp_rbp_1, 3) == 0 |
| || memcmp (buf, mov_rsp_rbp_2, 3) == 0) |
| { |
| /* OK, we actually have a frame. */ |
| cache->frameless_p = 0; |
| return pc + 4; |
| } |
| |
| /* For X32, also check for `movl %esp, %ebp'. */ |
| if (gdbarch_ptr_bit (gdbarch) == 32) |
| { |
| if (memcmp (buf, mov_esp_ebp_1, 2) == 0 |
| || memcmp (buf, mov_esp_ebp_2, 2) == 0) |
| { |
| /* OK, we actually have a frame. */ |
| cache->frameless_p = 0; |
| return pc + 3; |
| } |
| } |
| |
| return pc + 1; |
| } |
| |
| return pc; |
| } |
| |
| /* Work around false termination of prologue - GCC PR debug/48827. |
| |
| START_PC is the first instruction of a function, PC is its minimal already |
| determined advanced address. Function returns PC if it has nothing to do. |
| |
| 84 c0 test %al,%al |
| 74 23 je after |
| <-- here is 0 lines advance - the false prologue end marker. |
| 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp) |
| 0f 29 4d 80 movaps %xmm1,-0x80(%rbp) |
| 0f 29 55 90 movaps %xmm2,-0x70(%rbp) |
| 0f 29 5d a0 movaps %xmm3,-0x60(%rbp) |
| 0f 29 65 b0 movaps %xmm4,-0x50(%rbp) |
| 0f 29 6d c0 movaps %xmm5,-0x40(%rbp) |
| 0f 29 75 d0 movaps %xmm6,-0x30(%rbp) |
| 0f 29 7d e0 movaps %xmm7,-0x20(%rbp) |
| after: */ |
| |
| static CORE_ADDR |
| amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc) |
| { |
| struct symtab_and_line start_pc_sal, next_sal; |
| gdb_byte buf[4 + 8 * 7]; |
| int offset, xmmreg; |
| |
| if (pc == start_pc) |
| return pc; |
| |
| start_pc_sal = find_pc_sect_line (start_pc, NULL, 0); |
| if (start_pc_sal.symtab == NULL |
| || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit () |
| ->producer ()) < 6 |
| || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end) |
| return pc; |
| |
| next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0); |
| if (next_sal.line != start_pc_sal.line) |
| return pc; |
| |
| /* START_PC can be from overlayed memory, ignored here. */ |
| if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0) |
| return pc; |
| |
| /* test %al,%al */ |
| if (buf[0] != 0x84 || buf[1] != 0xc0) |
| return pc; |
| /* je AFTER */ |
| if (buf[2] != 0x74) |
| return pc; |
| |
| offset = 4; |
| for (xmmreg = 0; xmmreg < 8; xmmreg++) |
| { |
| /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */ |
| if (buf[offset] != 0x0f || buf[offset + 1] != 0x29 |
| || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5)) |
| return pc; |
| |
| /* 0b01?????? */ |
| if ((buf[offset + 2] & 0xc0) == 0x40) |
| { |
| /* 8-bit displacement. */ |
| offset += 4; |
| } |
| /* 0b10?????? */ |
| else if ((buf[offset + 2] & 0xc0) == 0x80) |
| { |
| /* 32-bit displacement. */ |
| offset += 7; |
| } |
| else |
| return pc; |
| } |
| |
| /* je AFTER */ |
| if (offset - 4 != buf[3]) |
| return pc; |
| |
| return next_sal.end; |
| } |
| |
| /* Return PC of first real instruction. */ |
| |
| static CORE_ADDR |
| amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) |
| { |
| struct amd64_frame_cache cache; |
| CORE_ADDR pc; |
| CORE_ADDR func_addr; |
| |
| if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) |
| { |
| CORE_ADDR post_prologue_pc |
| = skip_prologue_using_sal (gdbarch, func_addr); |
| struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr); |
| |
| /* LLVM backend (Clang/Flang) always emits a line note before the |
| prologue and another one after. We trust clang and newer Intel |
| compilers to emit usable line notes. */ |
| if (post_prologue_pc |
| && (cust != NULL |
| && cust->producer () != nullptr |
| && (producer_is_llvm (cust->producer ()) |
| || producer_is_icc_ge_19 (cust->producer ())))) |
| return std::max (start_pc, post_prologue_pc); |
| } |
| |
| amd64_init_frame_cache (&cache); |
| pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL, |
| &cache); |
| if (cache.frameless_p) |
| return start_pc; |
| |
| return amd64_skip_xmm_prologue (pc, start_pc); |
| } |
| |
| |
| /* Normal frames. */ |
| |
| static void |
| amd64_frame_cache_1 (const frame_info_ptr &this_frame, |
| struct amd64_frame_cache *cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| gdb_byte buf[8]; |
| int i; |
| |
| cache->pc = get_frame_func (this_frame); |
| if (cache->pc != 0) |
| amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame), |
| cache); |
| |
| if (cache->frameless_p) |
| { |
| /* We didn't find a valid frame. If we're at the start of a |
| function, or somewhere half-way its prologue, the function's |
| frame probably hasn't been fully setup yet. Try to |
| reconstruct the base address for the stack frame by looking |
| at the stack pointer. For truly "frameless" functions this |
| might work too. */ |
| |
| if (cache->saved_sp_reg != -1) |
| { |
| /* Stack pointer has been saved. */ |
| get_frame_register (this_frame, cache->saved_sp_reg, buf); |
| cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order); |
| |
| /* We're halfway aligning the stack. */ |
| cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8; |
| cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8; |
| |
| /* This will be added back below. */ |
| cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base; |
| } |
| else |
| { |
| get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
| cache->base = extract_unsigned_integer (buf, 8, byte_order) |
| + cache->sp_offset; |
| } |
| } |
| else |
| { |
| get_frame_register (this_frame, AMD64_RBP_REGNUM, buf); |
| cache->base = extract_unsigned_integer (buf, 8, byte_order); |
| } |
| |
| /* Now that we have the base address for the stack frame we can |
| calculate the value of %rsp in the calling frame. */ |
| cache->saved_sp = cache->base + 16; |
| |
| /* For normal frames, %rip is stored at 8(%rbp). If we don't have a |
| frame we find it at the same offset from the reconstructed base |
| address. If we're halfway aligning the stack, %rip is handled |
| differently (see above). */ |
| if (!cache->frameless_p || cache->saved_sp_reg == -1) |
| cache->saved_regs[AMD64_RIP_REGNUM] = 8; |
| |
| /* Adjust all the saved registers such that they contain addresses |
| instead of offsets. */ |
| for (i = 0; i < AMD64_NUM_SAVED_REGS; i++) |
| if (cache->saved_regs[i] != -1) |
| cache->saved_regs[i] += cache->base; |
| |
| cache->base_p = 1; |
| } |
| |
| static struct amd64_frame_cache * |
| amd64_frame_cache (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct amd64_frame_cache *cache; |
| |
| if (*this_cache) |
| return (struct amd64_frame_cache *) *this_cache; |
| |
| cache = amd64_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| try |
| { |
| amd64_frame_cache_1 (this_frame, cache); |
| } |
| catch (const gdb_exception_error &ex) |
| { |
| if (ex.error != NOT_AVAILABLE_ERROR) |
| throw; |
| } |
| |
| return cache; |
| } |
| |
| static enum unwind_stop_reason |
| amd64_frame_unwind_stop_reason (const frame_info_ptr &this_frame, |
| void **this_cache) |
| { |
| struct amd64_frame_cache *cache = |
| amd64_frame_cache (this_frame, this_cache); |
| |
| if (!cache->base_p) |
| return UNWIND_UNAVAILABLE; |
| |
| /* This marks the outermost frame. */ |
| if (cache->base == 0) |
| return UNWIND_OUTERMOST; |
| |
| return UNWIND_NO_REASON; |
| } |
| |
| static void |
| amd64_frame_this_id (const frame_info_ptr &this_frame, void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct amd64_frame_cache *cache = |
| amd64_frame_cache (this_frame, this_cache); |
| |
| if (!cache->base_p) |
| (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
| else if (cache->base == 0) |
| { |
| /* This marks the outermost frame. */ |
| return; |
| } |
| else |
| (*this_id) = frame_id_build (cache->base + 16, cache->pc); |
| } |
| |
| static struct value * |
| amd64_frame_prev_register (const frame_info_ptr &this_frame, void **this_cache, |
| int regnum) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| struct amd64_frame_cache *cache = |
| amd64_frame_cache (this_frame, this_cache); |
| |
| gdb_assert (regnum >= 0); |
| |
| if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp) |
| return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp); |
| |
| if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1) |
| return frame_unwind_got_memory (this_frame, regnum, |
| cache->saved_regs[regnum]); |
| |
| return frame_unwind_got_register (this_frame, regnum, regnum); |
| } |
| |
| static const struct frame_unwind amd64_frame_unwind = |
| { |
| "amd64 prologue", |
| NORMAL_FRAME, |
| amd64_frame_unwind_stop_reason, |
| amd64_frame_this_id, |
| amd64_frame_prev_register, |
| NULL, |
| default_frame_sniffer |
| }; |
| |
| /* Generate a bytecode expression to get the value of the saved PC. */ |
| |
| static void |
| amd64_gen_return_address (struct gdbarch *gdbarch, |
| struct agent_expr *ax, struct axs_value *value, |
| CORE_ADDR scope) |
| { |
| /* The following sequence assumes the traditional use of the base |
| register. */ |
| ax_reg (ax, AMD64_RBP_REGNUM); |
| ax_const_l (ax, 8); |
| ax_simple (ax, aop_add); |
| value->type = register_type (gdbarch, AMD64_RIP_REGNUM); |
| value->kind = axs_lvalue_memory; |
| } |
| |
| |
| /* Signal trampolines. */ |
| |
| /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and |
| 64-bit variants. This would require using identical frame caches |
| on both platforms. */ |
| |
| static struct amd64_frame_cache * |
| amd64_sigtramp_frame_cache (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct amd64_frame_cache *cache; |
| CORE_ADDR addr; |
| gdb_byte buf[8]; |
| int i; |
| |
| if (*this_cache) |
| return (struct amd64_frame_cache *) *this_cache; |
| |
| cache = amd64_alloc_frame_cache (); |
| |
| try |
| { |
| get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
| cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8; |
| |
| addr = tdep->sigcontext_addr (this_frame); |
| gdb_assert (tdep->sc_reg_offset); |
| gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS); |
| for (i = 0; i < tdep->sc_num_regs; i++) |
| if (tdep->sc_reg_offset[i] != -1) |
| cache->saved_regs[i] = addr + tdep->sc_reg_offset[i]; |
| |
| cache->base_p = 1; |
| } |
| catch (const gdb_exception_error &ex) |
| { |
| if (ex.error != NOT_AVAILABLE_ERROR) |
| throw; |
| } |
| |
| *this_cache = cache; |
| return cache; |
| } |
| |
| static enum unwind_stop_reason |
| amd64_sigtramp_frame_unwind_stop_reason (const frame_info_ptr &this_frame, |
| void **this_cache) |
| { |
| struct amd64_frame_cache *cache = |
| amd64_sigtramp_frame_cache (this_frame, this_cache); |
| |
| if (!cache->base_p) |
| return UNWIND_UNAVAILABLE; |
| |
| return UNWIND_NO_REASON; |
| } |
| |
| static void |
| amd64_sigtramp_frame_this_id (const frame_info_ptr &this_frame, |
| void **this_cache, struct frame_id *this_id) |
| { |
| struct amd64_frame_cache *cache = |
| amd64_sigtramp_frame_cache (this_frame, this_cache); |
| |
| if (!cache->base_p) |
| (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame)); |
| else if (cache->base == 0) |
| { |
| /* This marks the outermost frame. */ |
| return; |
| } |
| else |
| (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame)); |
| } |
| |
| static struct value * |
| amd64_sigtramp_frame_prev_register (const frame_info_ptr &this_frame, |
| void **this_cache, int regnum) |
| { |
| /* Make sure we've initialized the cache. */ |
| amd64_sigtramp_frame_cache (this_frame, this_cache); |
| |
| return amd64_frame_prev_register (this_frame, this_cache, regnum); |
| } |
| |
| static int |
| amd64_sigtramp_frame_sniffer (const struct frame_unwind *self, |
| const frame_info_ptr &this_frame, |
| void **this_cache) |
| { |
| gdbarch *arch = get_frame_arch (this_frame); |
| i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch); |
| |
| /* We shouldn't even bother if we don't have a sigcontext_addr |
| handler. */ |
| if (tdep->sigcontext_addr == NULL) |
| return 0; |
| |
| if (tdep->sigtramp_p != NULL) |
| { |
| if (tdep->sigtramp_p (this_frame)) |
| return 1; |
| } |
| |
| if (tdep->sigtramp_start != 0) |
| { |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| gdb_assert (tdep->sigtramp_end != 0); |
| if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static const struct frame_unwind amd64_sigtramp_frame_unwind = |
| { |
| "amd64 sigtramp", |
| SIGTRAMP_FRAME, |
| amd64_sigtramp_frame_unwind_stop_reason, |
| amd64_sigtramp_frame_this_id, |
| amd64_sigtramp_frame_prev_register, |
| NULL, |
| amd64_sigtramp_frame_sniffer |
| }; |
| |
| |
| static CORE_ADDR |
| amd64_frame_base_address (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct amd64_frame_cache *cache = |
| amd64_frame_cache (this_frame, this_cache); |
| |
| return cache->base; |
| } |
| |
| static const struct frame_base amd64_frame_base = |
| { |
| &amd64_frame_unwind, |
| amd64_frame_base_address, |
| amd64_frame_base_address, |
| amd64_frame_base_address |
| }; |
| |
| /* Implement core of the stack_frame_destroyed_p gdbarch method. */ |
| |
| static int |
| amd64_stack_frame_destroyed_p_1 (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| gdb_byte insn; |
| |
| std::optional<CORE_ADDR> epilogue = find_epilogue_using_linetable (pc); |
| |
| /* PC is pointing at the next instruction to be executed. If it is |
| equal to the epilogue start, it means we're right before it starts, |
| so the stack is still valid. */ |
| if (epilogue) |
| return pc > epilogue; |
| |
| if (target_read_memory (pc, &insn, 1)) |
| return 0; /* Can't read memory at pc. */ |
| |
| if (insn != 0xc3) /* 'ret' instruction. */ |
| return 0; |
| |
| return 1; |
| } |
| |
| /* Normal frames, but in a function epilogue. */ |
| |
| /* Implement the stack_frame_destroyed_p gdbarch method. |
| |
| The epilogue is defined here as the 'ret' instruction, which will |
| follow any instruction such as 'leave' or 'pop %ebp' that destroys |
| the function's stack frame. */ |
| |
| static int |
| amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
| { |
| struct compunit_symtab *cust = find_pc_compunit_symtab (pc); |
| |
| if (cust != nullptr && cust->producer () != nullptr |
| && producer_is_llvm (cust->producer ())) |
| return amd64_stack_frame_destroyed_p_1 (gdbarch, pc); |
| |
| return 0; |
| } |
| |
| static int |
| amd64_epilogue_frame_sniffer_1 (const struct frame_unwind *self, |
| const frame_info_ptr &this_frame, |
| void **this_prologue_cache, bool override_p) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| CORE_ADDR pc = get_frame_pc (this_frame); |
| |
| if (frame_relative_level (this_frame) != 0) |
| /* We're not in the inner frame, so assume we're not in an epilogue. */ |
| return 0; |
| |
| bool unwind_valid_p |
| = compunit_epilogue_unwind_valid (find_pc_compunit_symtab (pc)); |
| if (override_p) |
| { |
| if (unwind_valid_p) |
| /* Don't override the symtab unwinders, skip |
| "amd64 epilogue override". */ |
| return 0; |
| } |
| else |
| { |
| if (!unwind_valid_p) |
| /* "amd64 epilogue override" unwinder already ran, skip |
| "amd64 epilogue". */ |
| return 0; |
| } |
| |
| /* Check whether we're in an epilogue. */ |
| return amd64_stack_frame_destroyed_p_1 (gdbarch, pc); |
| } |
| |
| static int |
| amd64_epilogue_override_frame_sniffer (const struct frame_unwind *self, |
| const frame_info_ptr &this_frame, |
| void **this_prologue_cache) |
| { |
| return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache, |
| true); |
| } |
| |
| static int |
| amd64_epilogue_frame_sniffer (const struct frame_unwind *self, |
| const frame_info_ptr &this_frame, |
| void **this_prologue_cache) |
| { |
| return amd64_epilogue_frame_sniffer_1 (self, this_frame, this_prologue_cache, |
| false); |
| } |
| |
| static struct amd64_frame_cache * |
| amd64_epilogue_frame_cache (const frame_info_ptr &this_frame, void **this_cache) |
| { |
| struct gdbarch *gdbarch = get_frame_arch (this_frame); |
| enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
| struct amd64_frame_cache *cache; |
| gdb_byte buf[8]; |
| |
| if (*this_cache) |
| return (struct amd64_frame_cache *) *this_cache; |
| |
| cache = amd64_alloc_frame_cache (); |
| *this_cache = cache; |
| |
| try |
| { |
| /* Cache base will be %rsp plus cache->sp_offset (-8). */ |
| get_frame_register (this_frame, AMD64_RSP_REGNUM, buf); |
| cache->base = extract_unsigned_integer (buf, 8, |
| byte_order) + cache->sp_offset; |
| |
| /* Cache pc will be the frame func. */ |
| cache->pc = get_frame_func (this_frame); |
| |
| /* The previous value of %rsp is cache->base plus 16. */ |
| cache->saved_sp = cache->base + 16; |
| |
| /* The saved %rip will be at cache->base plus 8. */ |
| cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8; |
| |
| cache->base_p = 1; |
| } |
| catch (const gdb_exception_error &ex) |
| { |
| if (ex.error != NOT_AVAILABLE_ERROR) |
| throw; |
| } |
| |
| return cache; |
| } |
| |
| static enum unwind_stop_reason |
| amd64_epilogue_frame_unwind_stop_reason (const frame_info_ptr &this_frame, |
| void **this_cache) |
| { |
| struct amd64_frame_cache *cache |
| = amd64_epilogue_frame_cache (this_frame, this_cache); |
| |
| if (!cache->base_p) |
| return UNWIND_UNAVAILABLE; |
| |
| return UNWIND_NO_REASON; |
| } |
| |
| static void |
| amd64_epilogue_frame_this_id (const frame_info_ptr &this_frame, |
| void **this_cache, |
| struct frame_id *this_id) |
| { |
| struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame, |
| this_cache); |
| |
| if (!cache->base_p) |
| (*this_id) = frame_id_build_unavailable_stack (cache->pc); |
| else |
| (*this_id) = frame_id_build (cache->base + 16, cache->pc); |
| } |
| |
| static const struct frame_unwind amd64_epilogue_override_frame_unwind = |
| { |
| "amd64 epilogue override", |
| NORMAL_FRAME, |
| amd64_epilogue_frame_unwind_stop_reason, |
| amd64_epilogue_frame_this_id, |
| amd64_frame_prev_register, |
| NULL, |
| amd64_epilogue_override_frame_sniffer |
| }; |
| |
| static const struct frame_unwind amd64_epilogue_frame_unwind = |
| { |
| "amd64 epilogue", |
| NORMAL_FRAME, |
| amd64_epilogue_frame_unwind_stop_reason, |
| amd64_epilogue_frame_this_id, |
| amd64_frame_prev_register, |
| NULL, |
| amd64_epilogue_frame_sniffer |
| }; |
| |
| static struct frame_id |
| amd64_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame) |
| { |
| CORE_ADDR fp; |
| |
| fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM); |
| |
| return frame_id_build (fp + 16, get_frame_pc (this_frame)); |
| } |
| |
| /* 16 byte align the SP per frame requirements. */ |
| |
| static CORE_ADDR |
| amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
| { |
| return sp & -(CORE_ADDR)16; |
| } |
| |
| |
| /* Supply register REGNUM from the buffer specified by FPREGS and LEN |
| in the floating-point register set REGSET to register cache |
| REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ |
| |
| static void |
| amd64_supply_fpregset (const struct regset *regset, struct regcache * |