| /**************************************************************************** |
| |
| THIS SOFTWARE IS NOT COPYRIGHTED |
| |
| HP offers the following for use in the public domain. HP makes no |
| warranty with regard to the software or it's performance and the |
| user accepts the software "AS IS" with all faults. |
| |
| HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD |
| TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ |
| * |
| * Module name: remcom.c $ |
| * Revision: 1.34 $ |
| * Date: 91/03/09 12:29:49 $ |
| * Contributor: Lake Stevens Instrument Division$ |
| * |
| * Description: low level support for gdb debugger. $ |
| * |
| * Considerations: only works on target hardware $ |
| * |
| * Written by: Glenn Engel $ |
| * ModuleState: Experimental $ |
| * |
| * NOTES: See Below $ |
| * |
| * Modified for M32R by Michael Snyder, Cygnus Support. |
| * |
| * To enable debugger support, two things need to happen. One, a |
| * call to set_debug_traps() is necessary in order to allow any breakpoints |
| * or error conditions to be properly intercepted and reported to gdb. |
| * Two, a breakpoint needs to be generated to begin communication. This |
| * is most easily accomplished by a call to breakpoint(). Breakpoint() |
| * simulates a breakpoint by executing a trap #1. |
| * |
| * The external function exceptionHandler() is |
| * used to attach a specific handler to a specific M32R vector number. |
| * It should use the same privilege level it runs at. It should |
| * install it as an interrupt gate so that interrupts are masked |
| * while the handler runs. |
| * |
| * Because gdb will sometimes write to the stack area to execute function |
| * calls, this program cannot rely on using the supervisor stack so it |
| * uses its own stack area reserved in the int array remcomStack. |
| * |
| ************* |
| * |
| * The following gdb commands are supported: |
| * |
| * command function Return value |
| * |
| * g return the value of the CPU registers hex data or ENN |
| * G set the value of the CPU registers OK or ENN |
| * |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| * XAA..AA,LLLL: Write LLLL binary bytes at address OK or ENN |
| * AA..AA |
| * |
| * c Resume at current address SNN ( signal NN) |
| * cAA..AA Continue at address AA..AA SNN |
| * |
| * s Step one instruction SNN |
| * sAA..AA Step one instruction from AA..AA SNN |
| * |
| * k kill |
| * |
| * ? What was the last sigval ? SNN (signal NN) |
| * |
| * All commands and responses are sent with a packet which includes a |
| * checksum. A packet consists of |
| * |
| * $<packet info>#<checksum>. |
| * |
| * where |
| * <packet info> :: <characters representing the command or response> |
| * <checksum> :: <two hex digits computed as modulo 256 sum of <packetinfo>> |
| * |
| * When a packet is received, it is first acknowledged with either '+' or '-'. |
| * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| * |
| * Example: |
| * |
| * Host: Reply: |
| * $m0,10#2a +$00010203040506070809101112131415#42 |
| * |
| ****************************************************************************/ |
| |
| |
| /************************************************************************ |
| * |
| * external low-level support routines |
| */ |
| extern void putDebugChar (); /* write a single character */ |
| extern int getDebugChar (); /* read and return a single char */ |
| extern void exceptionHandler (); /* assign an exception handler */ |
| |
| /***************************************************************************** |
| * BUFMAX defines the maximum number of characters in inbound/outbound buffers |
| * at least NUMREGBYTES*2 are needed for register packets |
| */ |
| #define BUFMAX 400 |
| |
| static char initialized; /* boolean flag. != 0 means we've been initialized */ |
| |
| int remote_debug; |
| /* debug > 0 prints ill-formed commands in valid packets & checksum errors */ |
| |
| static const unsigned char hexchars[] = "0123456789abcdef"; |
| |
| #define NUMREGS 24 |
| |
| /* Number of bytes of registers. */ |
| #define NUMREGBYTES (NUMREGS * 4) |
| enum regnames |
| { R0, R1, R2, R3, R4, R5, R6, R7, |
| R8, R9, R10, R11, R12, R13, R14, R15, |
| PSW, CBR, SPI, SPU, BPC, PC, ACCL, ACCH |
| }; |
| |
| enum SYS_calls |
| { |
| SYS_null, |
| SYS_exit, |
| SYS_open, |
| SYS_close, |
| SYS_read, |
| SYS_write, |
| SYS_lseek, |
| SYS_unlink, |
| SYS_getpid, |
| SYS_kill, |
| SYS_fstat, |
| SYS_sbrk, |
| SYS_fork, |
| SYS_execve, |
| SYS_wait4, |
| SYS_link, |
| SYS_chdir, |
| SYS_stat, |
| SYS_utime, |
| SYS_chown, |
| SYS_chmod, |
| SYS_time, |
| SYS_pipe |
| }; |
| |
| static int registers[NUMREGS]; |
| |
| #define STACKSIZE 8096 |
| static unsigned char remcomInBuffer[BUFMAX]; |
| static unsigned char remcomOutBuffer[BUFMAX]; |
| static int remcomStack[STACKSIZE / sizeof (int)]; |
| static int *stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; |
| |
| static unsigned int save_vectors[18]; /* previous exception vectors */ |
| |
| /* Indicate to caller of mem2hex or hex2mem that there has been an error. */ |
| static volatile int mem_err = 0; |
| |
| /* Store the vector number here (since GDB only gets the signal |
| number through the usual means, and that's not very specific). */ |
| int gdb_m32r_vector = -1; |
| |
| #if 0 |
| #include "syscall.h" |
| #endif |
| |
| /* Global entry points: |
| */ |
| |
| extern void handle_exception (int); |
| extern void set_debug_traps (void); |
| extern void breakpoint (void); |
| |
| /* Local functions: |
| */ |
| |
| static int computeSignal (int); |
| static void putpacket (unsigned char *); |
| static unsigned char *getpacket (void); |
| |
| static unsigned char *mem2hex (unsigned char *, unsigned char *, int, int); |
| static unsigned char *hex2mem (unsigned char *, unsigned char *, int, int); |
| static int hexToInt (unsigned char **, int *); |
| static unsigned char *bin2mem (unsigned char *, unsigned char *, int, int); |
| static void stash_registers (void); |
| static void restore_registers (void); |
| static int prepare_to_step (int); |
| static int finish_from_step (void); |
| static unsigned long crc32 (unsigned char *, int, unsigned long); |
| |
| static void gdb_error (char *, char *); |
| static int gdb_putchar (int), gdb_puts (char *), gdb_write (char *, int); |
| |
| static unsigned char *strcpy (unsigned char *, const unsigned char *); |
| static int strlen (const unsigned char *); |
| |
| /* |
| * This function does all command procesing for interfacing to gdb. |
| */ |
| |
| void |
| handle_exception (int exceptionVector) |
| { |
| int sigval, stepping; |
| int addr, length, i; |
| unsigned char *ptr; |
| unsigned char buf[16]; |
| int binary; |
| |
| if (!finish_from_step ()) |
| return; /* "false step": let the target continue */ |
| |
| gdb_m32r_vector = exceptionVector; |
| |
| if (remote_debug) |
| { |
| mem2hex ((unsigned char *) &exceptionVector, buf, 4, 0); |
| gdb_error ("Handle exception %s, ", buf); |
| mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); |
| gdb_error ("PC == 0x%s\n", buf); |
| } |
| |
| /* reply to host that an exception has occurred */ |
| sigval = computeSignal (exceptionVector); |
| |
| ptr = remcomOutBuffer; |
| |
| *ptr++ = 'T'; /* notify gdb with signo, PC, FP and SP */ |
| *ptr++ = hexchars[sigval >> 4]; |
| *ptr++ = hexchars[sigval & 0xf]; |
| |
| *ptr++ = hexchars[PC >> 4]; |
| *ptr++ = hexchars[PC & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); /* PC */ |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[R13 >> 4]; |
| *ptr++ = hexchars[R13 & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); /* FP */ |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[R15 >> 4]; |
| *ptr++ = hexchars[R15 & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); /* SP */ |
| *ptr++ = ';'; |
| *ptr++ = 0; |
| |
| if (exceptionVector == 0) /* simulated SYS call stuff */ |
| { |
| mem2hex ((unsigned char *) ®isters[PC], buf, 4, 0); |
| switch (registers[R0]) |
| { |
| case SYS_exit: |
| gdb_error ("Target program has exited at %s\n", buf); |
| ptr = remcomOutBuffer; |
| *ptr++ = 'W'; |
| sigval = registers[R1] & 0xff; |
| *ptr++ = hexchars[sigval >> 4]; |
| *ptr++ = hexchars[sigval & 0xf]; |
| *ptr++ = 0; |
| break; |
| case SYS_open: |
| gdb_error ("Target attempts SYS_open call at %s\n", buf); |
| break; |
| case SYS_close: |
| gdb_error ("Target attempts SYS_close call at %s\n", buf); |
| break; |
| case SYS_read: |
| gdb_error ("Target attempts SYS_read call at %s\n", buf); |
| break; |
| case SYS_write: |
| if (registers[R1] == 1 || /* write to stdout */ |
| registers[R1] == 2) /* write to stderr */ |
| { /* (we can do that) */ |
| registers[R0] = |
| gdb_write ((void *) registers[R2], registers[R3]); |
| return; |
| } |
| else |
| gdb_error ("Target attempts SYS_write call at %s\n", buf); |
| break; |
| case SYS_lseek: |
| gdb_error ("Target attempts SYS_lseek call at %s\n", buf); |
| break; |
| case SYS_unlink: |
| gdb_error ("Target attempts SYS_unlink call at %s\n", buf); |
| break; |
| case SYS_getpid: |
| gdb_error ("Target attempts SYS_getpid call at %s\n", buf); |
| break; |
| case SYS_kill: |
| gdb_error ("Target attempts SYS_kill call at %s\n", buf); |
| break; |
| case SYS_fstat: |
| gdb_error ("Target attempts SYS_fstat call at %s\n", buf); |
| break; |
| default: |
| gdb_error ("Target attempts unknown SYS call at %s\n", buf); |
| break; |
| } |
| } |
| |
| putpacket (remcomOutBuffer); |
| |
| stepping = 0; |
| |
| while (1 == 1) |
| { |
| remcomOutBuffer[0] = 0; |
| ptr = getpacket (); |
| binary = 0; |
| switch (*ptr++) |
| { |
| default: /* Unknown code. Return an empty reply message. */ |
| break; |
| case 'R': |
| if (hexToInt (&ptr, &addr)) |
| registers[PC] = addr; |
| strcpy (remcomOutBuffer, "OK"); |
| break; |
| case '!': |
| strcpy (remcomOutBuffer, "OK"); |
| break; |
| case 'X': /* XAA..AA,LLLL:<binary data>#cs */ |
| binary = 1; |
| case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ |
| /* TRY TO READ '%x,%x:'. IF SUCCEED, SET PTR = 0 */ |
| { |
| if (hexToInt (&ptr, &addr)) |
| if (*(ptr++) == ',') |
| if (hexToInt (&ptr, &length)) |
| if (*(ptr++) == ':') |
| { |
| mem_err = 0; |
| if (binary) |
| bin2mem (ptr, (unsigned char *) addr, length, 1); |
| else |
| hex2mem (ptr, (unsigned char *) addr, length, 1); |
| if (mem_err) |
| { |
| strcpy (remcomOutBuffer, "E03"); |
| gdb_error ("memory fault", ""); |
| } |
| else |
| { |
| strcpy (remcomOutBuffer, "OK"); |
| } |
| ptr = 0; |
| } |
| if (ptr) |
| { |
| strcpy (remcomOutBuffer, "E02"); |
| } |
| } |
| break; |
| case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| /* TRY TO READ %x,%x. IF SUCCEED, SET PTR = 0 */ |
| if (hexToInt (&ptr, &addr)) |
| if (*(ptr++) == ',') |
| if (hexToInt (&ptr, &length)) |
| { |
| ptr = 0; |
| mem_err = 0; |
| mem2hex ((unsigned char *) addr, remcomOutBuffer, length, |
| 1); |
| if (mem_err) |
| { |
| strcpy (remcomOutBuffer, "E03"); |
| gdb_error ("memory fault", ""); |
| } |
| } |
| if (ptr) |
| { |
| strcpy (remcomOutBuffer, "E01"); |
| } |
| break; |
| case '?': |
| remcomOutBuffer[0] = 'S'; |
| remcomOutBuffer[1] = hexchars[sigval >> 4]; |
| remcomOutBuffer[2] = hexchars[sigval % 16]; |
| remcomOutBuffer[3] = 0; |
| break; |
| case 'd': |
| remote_debug = !(remote_debug); /* toggle debug flag */ |
| break; |
| case 'g': /* return the value of the CPU registers */ |
| mem2hex ((unsigned char *) registers, remcomOutBuffer, NUMREGBYTES, |
| 0); |
| break; |
| case 'P': /* set the value of a single CPU register - return OK */ |
| { |
| int regno; |
| |
| if (hexToInt (&ptr, ®no) && *ptr++ == '=') |
| if (regno >= 0 && regno < NUMREGS) |
| { |
| int stackmode; |
| |
| hex2mem (ptr, (unsigned char *) ®isters[regno], 4, 0); |
| /* |
| * Since we just changed a single CPU register, let's |
| * make sure to keep the several stack pointers consistent. |
| */ |
| stackmode = registers[PSW] & 0x80; |
| if (regno == R15) /* stack pointer changed */ |
| { /* need to change SPI or SPU */ |
| if (stackmode == 0) |
| registers[SPI] = registers[R15]; |
| else |
| registers[SPU] = registers[R15]; |
| } |
| else if (regno == SPU) /* "user" stack pointer changed */ |
| { |
| if (stackmode != 0) /* stack in user mode: copy SP */ |
| registers[R15] = registers[SPU]; |
| } |
| else if (regno == SPI) /* "interrupt" stack pointer changed */ |
| { |
| if (stackmode == 0) /* stack in interrupt mode: copy SP */ |
| registers[R15] = registers[SPI]; |
| } |
| else if (regno == PSW) /* stack mode may have changed! */ |
| { /* force SP to either SPU or SPI */ |
| if (stackmode == 0) /* stack in user mode */ |
| registers[R15] = registers[SPI]; |
| else /* stack in interrupt mode */ |
| registers[R15] = registers[SPU]; |
| } |
| strcpy (remcomOutBuffer, "OK"); |
| break; |
| } |
| strcpy (remcomOutBuffer, "E01"); |
| break; |
| } |
| case 'G': /* set the value of the CPU registers - return OK */ |
| hex2mem (ptr, (unsigned char *) registers, NUMREGBYTES, 0); |
| strcpy (remcomOutBuffer, "OK"); |
| break; |
| case 's': /* sAA..AA Step one instruction from AA..AA(optional) */ |
| stepping = 1; |
| case 'c': /* cAA..AA Continue from address AA..AA(optional) */ |
| /* try to read optional parameter, pc unchanged if no parm */ |
| if (hexToInt (&ptr, &addr)) |
| registers[PC] = addr; |
| |
| if (stepping) /* single-stepping */ |
| { |
| if (!prepare_to_step (0)) /* set up for single-step */ |
| { |
| /* prepare_to_step has already emulated the target insn: |
| Send SIGTRAP to gdb, don't resume the target at all. */ |
| ptr = remcomOutBuffer; |
| *ptr++ = 'T'; /* Simulate stopping with SIGTRAP */ |
| *ptr++ = '0'; |
| *ptr++ = '5'; |
| |
| *ptr++ = hexchars[PC >> 4]; /* send PC */ |
| *ptr++ = hexchars[PC & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex ((unsigned char *) ®isters[PC], ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[R13 >> 4]; /* send FP */ |
| *ptr++ = hexchars[R13 & 0xf]; |
| *ptr++ = ':'; |
| ptr = |
| mem2hex ((unsigned char *) ®isters[R13], ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[R15 >> 4]; /* send SP */ |
| *ptr++ = hexchars[R15 & 0xf]; |
| *ptr++ = ':'; |
| ptr = |
| mem2hex ((unsigned char *) ®isters[R15], ptr, 4, 0); |
| *ptr++ = ';'; |
| *ptr++ = 0; |
| |
| break; |
| } |
| } |
| else /* continuing, not single-stepping */ |
| { |
| /* OK, about to do a "continue". First check to see if the |
| target pc is on an odd boundary (second instruction in the |
| word). If so, we must do a single-step first, because |
| ya can't jump or return back to an odd boundary! */ |
| if ((registers[PC] & 2) != 0) |
| prepare_to_step (1); |
| } |
| |
| return; |
| |
| case 'D': /* Detach */ |
| #if 0 |
| /* I am interpreting this to mean, release the board from control |
| by the remote stub. To do this, I am restoring the original |
| (or at least previous) exception vectors. |
| */ |
| for (i = 0; i < 18; i++) |
| exceptionHandler (i, save_vectors[i]); |
| putpacket ("OK"); |
| return; /* continue the inferior */ |
| #else |
| strcpy (remcomOutBuffer, "OK"); |
| break; |
| #endif |
| case 'q': |
| if (*ptr++ == 'C' && |
| *ptr++ == 'R' && *ptr++ == 'C' && *ptr++ == ':') |
| { |
| unsigned long start, len, our_crc; |
| |
| if (hexToInt (&ptr, (int *) &start) && |
| *ptr++ == ',' && hexToInt (&ptr, (int *) &len)) |
| { |
| remcomOutBuffer[0] = 'C'; |
| our_crc = crc32 ((unsigned char *) start, len, 0xffffffff); |
| mem2hex ((char *) &our_crc, |
| &remcomOutBuffer[1], sizeof (long), 0); |
| } /* else do nothing */ |
| } /* else do nothing */ |
| break; |
| |
| case 'k': /* kill the program */ |
| continue; |
| } /* switch */ |
| |
| /* reply to the request */ |
| putpacket (remcomOutBuffer); |
| } |
| } |
| |
| /* qCRC support */ |
| |
| /* Table used by the crc32 function to calculate the checksum. */ |
| static unsigned long crc32_table[256] = { 0, 0 }; |
| |
| static unsigned long |
| crc32 (unsigned char *buf, int len, unsigned long crc) |
| { |
| if (!crc32_table[1]) |
| { |
| /* Initialize the CRC table and the decoding table. */ |
| int i, j; |
| unsigned long c; |
| |
| for (i = 0; i < 256; i++) |
| { |
| for (c = i << 24, j = 8; j > 0; --j) |
| c = c & 0x80000000 ? (c << 1) ^ 0x04c11db7 : (c << 1); |
| crc32_table[i] = c; |
| } |
| } |
| |
| while (len--) |
| { |
| crc = (crc << 8) ^ crc32_table[((crc >> 24) ^ *buf) & 255]; |
| buf++; |
| } |
| return crc; |
| } |
| |
| static int |
| hex (unsigned char ch) |
| { |
| if ((ch >= 'a') && (ch <= 'f')) |
| return (ch - 'a' + 10); |
| if ((ch >= '0') && (ch <= '9')) |
| return (ch - '0'); |
| if ((ch >= 'A') && (ch <= 'F')) |
| return (ch - 'A' + 10); |
| return (-1); |
| } |
| |
| /* scan for the sequence $<data>#<checksum> */ |
| |
| unsigned char * |
| getpacket (void) |
| { |
| unsigned char *buffer = &remcomInBuffer[0]; |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int count; |
| char ch; |
| |
| while (1) |
| { |
| /* wait around for the start character, ignore all other characters */ |
| while ((ch = getDebugChar ()) != '$') |
| ; |
| |
| retry: |
| checksum = 0; |
| xmitcsum = -1; |
| count = 0; |
| |
| /* now, read until a # or end of buffer is found */ |
| while (count < BUFMAX - 1) |
| { |
| ch = getDebugChar (); |
| if (ch == '$') |
| goto retry; |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| buffer[count] = 0; |
| |
| if (ch == '#') |
| { |
| ch = getDebugChar (); |
| xmitcsum = hex (ch) << 4; |
| ch = getDebugChar (); |
| xmitcsum += hex (ch); |
| |
| if (checksum != xmitcsum) |
| { |
| if (remote_debug) |
| { |
| unsigned char buf[16]; |
| |
| mem2hex ((unsigned char *) &checksum, buf, 4, 0); |
| gdb_error ("Bad checksum: my count = %s, ", buf); |
| mem2hex ((unsigned char *) &xmitcsum, buf, 4, 0); |
| gdb_error ("sent count = %s\n", buf); |
| gdb_error (" -- Bad buffer: \"%s\"\n", buffer); |
| } |
| putDebugChar ('-'); /* failed checksum */ |
| } |
| else |
| { |
| putDebugChar ('+'); /* successful transfer */ |
| |
| /* if a sequence char is present, reply the sequence ID */ |
| if (buffer[2] == ':') |
| { |
| putDebugChar (buffer[0]); |
| putDebugChar (buffer[1]); |
| |
| return &buffer[3]; |
| } |
| |
| return &buffer[0]; |
| } |
| } |
| } |
| } |
| |
| /* send the packet in buffer. */ |
| |
| static void |
| putpacket (unsigned char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| char ch; |
| |
| /* $<packet info>#<checksum>. */ |
| do |
| { |
| putDebugChar ('$'); |
| checksum = 0; |
| count = 0; |
| |
| while (ch = buffer[count]) |
| { |
| putDebugChar (ch); |
| checksum += ch; |
| count += 1; |
| } |
| putDebugChar ('#'); |
| putDebugChar (hexchars[checksum >> 4]); |
| putDebugChar (hexchars[checksum % 16]); |
| } |
| while (getDebugChar () != '+'); |
| } |
| |
| /* Address of a routine to RTE to if we get a memory fault. */ |
| |
| static void (*volatile mem_fault_routine) () = 0; |
| |
| static void |
| set_mem_err (void) |
| { |
| mem_err = 1; |
| } |
| |
| /* Check the address for safe access ranges. As currently defined, |
| this routine will reject the "expansion bus" address range(s). |
| To make those ranges useable, someone must implement code to detect |
| whether there's anything connected to the expansion bus. */ |
| |
| static int |
| mem_safe (unsigned char *addr) |
| { |
| #define BAD_RANGE_ONE_START ((unsigned char *) 0x600000) |
| #define BAD_RANGE_ONE_END ((unsigned char *) 0xa00000) |
| #define BAD_RANGE_TWO_START ((unsigned char *) 0xff680000) |
| #define BAD_RANGE_TWO_END ((unsigned char *) 0xff800000) |
| |
| if (addr < BAD_RANGE_ONE_START) |
| return 1; /* safe */ |
| if (addr < BAD_RANGE_ONE_END) |
| return 0; /* unsafe */ |
| if (addr < BAD_RANGE_TWO_START) |
| return 1; /* safe */ |
| if (addr < BAD_RANGE_TWO_END) |
| return 0; /* unsafe */ |
| } |
| |
| /* These are separate functions so that they are so short and sweet |
| that the compiler won't save any registers (if there is a fault |
| to mem_fault, they won't get restored, so there better not be any |
| saved). */ |
| static int |
| get_char (unsigned char *addr) |
| { |
| #if 1 |
| if (mem_fault_routine && !mem_safe (addr)) |
| { |
| mem_fault_routine (); |
| return 0; |
| } |
| #endif |
| return *addr; |
| } |
| |
| static void |
| set_char (unsigned char *addr, unsigned char val) |
| { |
| #if 1 |
| if (mem_fault_routine && !mem_safe (addr)) |
| { |
| mem_fault_routine (); |
| return; |
| } |
| #endif |
| *addr = val; |
| } |
| |
| /* Convert the memory pointed to by mem into hex, placing result in buf. |
| Return a pointer to the last char put in buf (null). |
| If MAY_FAULT is non-zero, then we should set mem_err in response to |
| a fault; if zero treat a fault like any other fault in the stub. */ |
| |
| static unsigned char * |
| mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) |
| { |
| int i; |
| unsigned char ch; |
| |
| if (may_fault) |
| mem_fault_routine = set_mem_err; |
| for (i = 0; i < count; i++) |
| { |
| ch = get_char (mem++); |
| if (may_fault && mem_err) |
| return (buf); |
| *buf++ = hexchars[ch >> 4]; |
| *buf++ = hexchars[ch % 16]; |
| } |
| *buf = 0; |
| if (may_fault) |
| mem_fault_routine = 0; |
| return (buf); |
| } |
| |
| /* Convert the hex array pointed to by buf into binary to be placed in mem. |
| Return a pointer to the character AFTER the last byte written. */ |
| |
| static unsigned char * |
| hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) |
| { |
| int i; |
| unsigned char ch; |
| |
| if (may_fault) |
| mem_fault_routine = set_mem_err; |
| for (i = 0; i < count; i++) |
| { |
| ch = hex (*buf++) << 4; |
| ch = ch + hex (*buf++); |
| set_char (mem++, ch); |
| if (may_fault && mem_err) |
| return (mem); |
| } |
| if (may_fault) |
| mem_fault_routine = 0; |
| return (mem); |
| } |
| |
| /* Convert the binary stream in BUF to memory. |
| |
| Gdb will escape $, #, and the escape char (0x7d). |
| COUNT is the total number of bytes to write into |
| memory. */ |
| static unsigned char * |
| bin2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) |
| { |
| int i; |
| unsigned char ch; |
| |
| if (may_fault) |
| mem_fault_routine = set_mem_err; |
| for (i = 0; i < count; i++) |
| { |
| /* Check for any escaped characters. Be paranoid and |
| only unescape chars that should be escaped. */ |
| if (*buf == 0x7d) |
| { |
| switch (*(buf + 1)) |
| { |
| case 0x3: /* # */ |
| case 0x4: /* $ */ |
| case 0x5d: /* escape char */ |
| buf++; |
| *buf |= 0x20; |
| break; |
| default: |
| /* nothing */ |
| break; |
| } |
| } |
| |
| set_char (mem++, *buf++); |
| |
| if (may_fault && mem_err) |
| return mem; |
| } |
| |
| if (may_fault) |
| mem_fault_routine = 0; |
| return mem; |
| } |
| |
| /* this function takes the m32r exception vector and attempts to |
| translate this number into a unix compatible signal value */ |
| |
| static int |
| computeSignal (int exceptionVector) |
| { |
| int sigval; |
| switch (exceptionVector) |
| { |
| case 0: |
| sigval = 23; |
| break; /* I/O trap */ |
| case 1: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 2: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 3: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 4: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 5: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 6: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 7: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 8: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 9: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 10: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 11: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 12: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 13: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 14: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 15: |
| sigval = 5; |
| break; /* breakpoint */ |
| case 16: |
| sigval = 10; |
| break; /* BUS ERROR (alignment) */ |
| case 17: |
| sigval = 2; |
| break; /* INTerrupt */ |
| default: |
| sigval = 7; |
| break; /* "software generated" */ |
| } |
| return (sigval); |
| } |
| |
| /**********************************************/ |
| /* WHILE WE FIND NICE HEX CHARS, BUILD AN INT */ |
| /* RETURN NUMBER OF CHARS PROCESSED */ |
| /**********************************************/ |
| static int |
| hexToInt (unsigned char **ptr, int *intValue) |
| { |
| int numChars = 0; |
| int hexValue; |
| |
| *intValue = 0; |
| while (**ptr) |
| { |
| hexValue = hex (**ptr); |
| if (hexValue >= 0) |
| { |
| *intValue = (*intValue << 4) | hexValue; |
| numChars++; |
| } |
| else |
| break; |
| (*ptr)++; |
| } |
| return (numChars); |
| } |
| |
| /* |
| Table of branch instructions: |
| |
| 10B6 RTE return from trap or exception |
| 1FCr JMP jump |
| 1ECr JL jump and link |
| 7Fxx BRA branch |
| FFxxxxxx BRA branch (long) |
| B09rxxxx BNEZ branch not-equal-zero |
| Br1rxxxx BNE branch not-equal |
| 7Dxx BNC branch not-condition |
| FDxxxxxx BNC branch not-condition (long) |
| B0Arxxxx BLTZ branch less-than-zero |
| B0Crxxxx BLEZ branch less-equal-zero |
| 7Exx BL branch and link |
| FExxxxxx BL branch and link (long) |
| B0Drxxxx BGTZ branch greater-than-zero |
| B0Brxxxx BGEZ branch greater-equal-zero |
| B08rxxxx BEQZ branch equal-zero |
| Br0rxxxx BEQ branch equal |
| 7Cxx BC branch condition |
| FCxxxxxx BC branch condition (long) |
| */ |
| |
| static int |
| isShortBranch (unsigned char *instr) |
| { |
| unsigned char instr0 = instr[0] & 0x7F; /* mask off high bit */ |
| |
| if (instr0 == 0x10 && instr[1] == 0xB6) /* RTE */ |
| return 1; /* return from trap or exception */ |
| |
| if (instr0 == 0x1E || instr0 == 0x1F) /* JL or JMP */ |
| if ((instr[1] & 0xF0) == 0xC0) |
| return 2; /* jump thru a register */ |
| |
| if (instr0 == 0x7C || instr0 == 0x7D || /* BC, BNC, BL, BRA */ |
| instr0 == 0x7E || instr0 == 0x7F) |
| return 3; /* eight bit PC offset */ |
| |
| return 0; |
| } |
| |
| static int |
| isLongBranch (unsigned char *instr) |
| { |
| if (instr[0] == 0xFC || instr[0] == 0xFD || /* BRA, BNC, BL, BC */ |
| instr[0] == 0xFE || instr[0] == 0xFF) /* 24 bit relative */ |
| return 4; |
| if ((instr[0] & 0xF0) == 0xB0) /* 16 bit relative */ |
| { |
| if ((instr[1] & 0xF0) == 0x00 || /* BNE, BEQ */ |
| (instr[1] & 0xF0) == 0x10) |
| return 5; |
| if (instr[0] == 0xB0) /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ, BEQZ */ |
| if ((instr[1] & 0xF0) == 0x80 || (instr[1] & 0xF0) == 0x90 || |
| (instr[1] & 0xF0) == 0xA0 || (instr[1] & 0xF0) == 0xB0 || |
| (instr[1] & 0xF0) == 0xC0 || (instr[1] & 0xF0) == 0xD0) |
| return 6; |
| } |
| return 0; |
| } |
| |
| /* if address is NOT on a 4-byte boundary, or high-bit of instr is zero, |
| then it's a 2-byte instruction, else it's a 4-byte instruction. */ |
| |
| #define INSTRUCTION_SIZE(addr) \ |
| ((((int) addr & 2) || (((unsigned char *) addr)[0] & 0x80) == 0) ? 2 : 4) |
| |
| static int |
| isBranch (unsigned char *instr) |
| { |
| if (INSTRUCTION_SIZE (instr) == 2) |
| return isShortBranch (instr); |
| else |
| return isLongBranch (instr); |
| } |
| |
| static int |
| willBranch (unsigned char *instr, int branchCode) |
| { |
| switch (branchCode) |
| { |
| case 0: |
| return 0; /* not a branch */ |
| case 1: |
| return 1; /* RTE */ |
| case 2: |
| return 1; /* JL or JMP */ |
| case 3: /* BC, BNC, BL, BRA (short) */ |
| case 4: /* BC, BNC, BL, BRA (long) */ |
| switch (instr[0] & 0x0F) |
| { |
| case 0xC: /* Branch if Condition Register */ |
| return (registers[CBR] != 0); |
| case 0xD: /* Branch if NOT Condition Register */ |
| return (registers[CBR] == 0); |
| case 0xE: /* Branch and Link */ |
| case 0xF: /* Branch (unconditional) */ |
| return 1; |
| default: /* oops? */ |
| return 0; |
| } |
| case 5: /* BNE, BEQ */ |
| switch (instr[1] & 0xF0) |
| { |
| case 0x00: /* Branch if r1 equal to r2 */ |
| return (registers[instr[0] & 0x0F] == registers[instr[1] & 0x0F]); |
| case 0x10: /* Branch if r1 NOT equal to r2 */ |
| return (registers[instr[0] & 0x0F] != registers[instr[1] & 0x0F]); |
| default: /* oops? */ |
| return 0; |
| } |
| case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ */ |
| switch (instr[1] & 0xF0) |
| { |
| case 0x80: /* Branch if reg equal to zero */ |
| return (registers[instr[1] & 0x0F] == 0); |
| case 0x90: /* Branch if reg NOT equal to zero */ |
| return (registers[instr[1] & 0x0F] != 0); |
| case 0xA0: /* Branch if reg less than zero */ |
| return (registers[instr[1] & 0x0F] < 0); |
| case 0xB0: /* Branch if reg greater or equal to zero */ |
| return (registers[instr[1] & 0x0F] >= 0); |
| case 0xC0: /* Branch if reg less than or equal to zero */ |
| return (registers[instr[1] & 0x0F] <= 0); |
| case 0xD0: /* Branch if reg greater than zero */ |
| return (registers[instr[1] & 0x0F] > 0); |
| default: /* oops? */ |
| return 0; |
| } |
| default: /* oops? */ |
| return 0; |
| } |
| } |
| |
| static int |
| branchDestination (unsigned char *instr, int branchCode) |
| { |
| switch (branchCode) |
| { |
| default: |
| case 0: /* not a branch */ |
| return 0; |
| case 1: /* RTE */ |
| return registers[BPC] & ~3; /* pop BPC into PC */ |
| case 2: /* JL or JMP */ |
| return registers[instr[1] & 0x0F] & ~3; /* jump thru a register */ |
| case 3: /* BC, BNC, BL, BRA (short, 8-bit relative offset) */ |
| return (((int) instr) & ~3) + ((char) instr[1] << 2); |
| case 4: /* BC, BNC, BL, BRA (long, 24-bit relative offset) */ |
| return ((int) instr + |
| ((((char) instr[1] << 16) | (instr[2] << 8) | (instr[3])) << |
| 2)); |
| case 5: /* BNE, BEQ (16-bit relative offset) */ |
| case 6: /* BNEZ, BLTZ, BLEZ, BGTZ, BGEZ ,BEQZ (ditto) */ |
| return ((int) instr + ((((char) instr[2] << 8) | (instr[3])) << 2)); |
| } |
| |
| /* An explanatory note: in the last three return expressions, I have |
| cast the most-significant byte of the return offset to char. |
| What this accomplishes is sign extension. If the other |
| less-significant bytes were signed as well, they would get sign |
| extended too and, if negative, their leading bits would clobber |
| the bits of the more-significant bytes ahead of them. There are |
| other ways I could have done this, but sign extension from |
| odd-sized integers is always a pain. */ |
| } |
| |
| static void |
| branchSideEffects (unsigned char *instr, int branchCode) |
| { |
| switch (branchCode) |
| { |
| case 1: /* RTE */ |
| return; /* I <THINK> this is already handled... */ |
| case 2: /* JL (or JMP) */ |
| case 3: /* BL (or BC, BNC, BRA) */ |
| case 4: |
| if ((instr[0] & 0x0F) == 0x0E) /* branch/jump and link */ |
| registers[R14] = (registers[PC] & ~3) + 4; |
| return; |
| default: /* any other branch has no side effects */ |
| return; |
| } |
| } |
| |
| static struct STEPPING_CONTEXT |
| { |
| int stepping; /* true when we've started a single-step */ |
| unsigned long target_addr; /* the instr we're trying to execute */ |
| unsigned long target_size; /* the size of the target instr */ |
| unsigned long noop_addr; /* where we've inserted a no-op, if any */ |
| unsigned long trap1_addr; /* the trap following the target instr */ |
| unsigned long trap2_addr; /* the trap at a branch destination, if any */ |
| unsigned short noop_save; /* instruction overwritten by our no-op */ |
| unsigned short trap1_save; /* instruction overwritten by trap1 */ |
| unsigned short trap2_save; /* instruction overwritten by trap2 */ |
| unsigned short continue_p; /* true if NOT returning to gdb after step */ |
| } stepping; |
| |
| /* Function: prepare_to_step |
| Called from handle_exception to prepare the user program to single-step. |
| Places a trap instruction after the target instruction, with special |
| extra handling for branch instructions and for instructions in the |
| second half-word of a word. |
| |
| Returns: True if we should actually execute the instruction; |
| False if we are going to emulate executing the instruction, |
| in which case we simply report to GDB that the instruction |
| has already been executed. */ |
| |
| #define TRAP1 0x10f1; /* trap #1 instruction */ |
| #define NOOP 0x7000; /* noop instruction */ |
| |
| static unsigned short trap1 = TRAP1; |
| static unsigned short noop = NOOP; |
| |
| static int |
| prepare_to_step (continue_p) |
| int continue_p; /* if this isn't REALLY a single-step (see below) */ |
| { |
| unsigned long pc = registers[PC]; |
| int branchCode = isBranch ((unsigned char *) pc); |
| unsigned char *p; |
| |
| /* zero out the stepping context |
| (paranoia -- it should already be zeroed) */ |
| for (p = (unsigned char *) &stepping; |
| p < ((unsigned char *) &stepping) + sizeof (stepping); p++) |
| *p = 0; |
| |
| if (branchCode != 0) /* next instruction is a branch */ |
| { |
| branchSideEffects ((unsigned char *) pc, branchCode); |
| if (willBranch ((unsigned char *) pc, branchCode)) |
| registers[PC] = branchDestination ((unsigned char *) pc, branchCode); |
| else |
| registers[PC] = pc + INSTRUCTION_SIZE (pc); |
| return 0; /* branch "executed" -- just notify GDB */ |
| } |
| else if (((int) pc & 2) != 0) /* "second-slot" instruction */ |
| { |
| /* insert no-op before pc */ |
| stepping.noop_addr = pc - 2; |
| stepping.noop_save = *(unsigned short *) stepping.noop_addr; |
| *(unsigned short *) stepping.noop_addr = noop; |
| /* insert trap after pc */ |
| stepping.trap1_addr = pc + 2; |
| stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; |
| *(unsigned short *) stepping.trap1_addr = trap1; |
| } |
| else /* "first-slot" instruction */ |
| { |
| /* insert trap after pc */ |
| stepping.trap1_addr = pc + INSTRUCTION_SIZE (pc); |
| stepping.trap1_save = *(unsigned short *) stepping.trap1_addr; |
| *(unsigned short *) stepping.trap1_addr = trap1; |
| } |
| /* "continue_p" means that we are actually doing a continue, and not |
| being requested to single-step by GDB. Sometimes we have to do |
| one single-step before continuing, because the PC is on a half-word |
| boundary. There's no way to simply resume at such an address. */ |
| stepping.continue_p = continue_p; |
| stepping.stepping = 1; /* starting a single-step */ |
| return 1; |
| } |
| |
| /* Function: finish_from_step |
| Called from handle_exception to finish up when the user program |
| returns from a single-step. Replaces the instructions that had |
| been overwritten by traps or no-ops, |
| |
| Returns: True if we should notify GDB that the target stopped. |
| False if we only single-stepped because we had to before we |
| could continue (ie. we were trying to continue at a |
| half-word boundary). In that case don't notify GDB: |
| just "continue continuing". */ |
| |
| static int |
| finish_from_step (void) |
| { |
| if (stepping.stepping) /* anything to do? */ |
| { |
| int continue_p = stepping.continue_p; |
| unsigned char *p; |
| |
| if (stepping.noop_addr) /* replace instr "under" our no-op */ |
| *(unsigned short *) stepping.noop_addr = stepping.noop_save; |
| if (stepping.trap1_addr) /* replace instr "under" our trap */ |
| *(unsigned short *) stepping.trap1_addr = stepping.trap1_save; |
| if (stepping.trap2_addr) /* ditto our other trap, if any */ |
| *(unsigned short *) stepping.trap2_addr = stepping.trap2_save; |
| |
| for (p = (unsigned char *) &stepping; /* zero out the stepping context */ |
| p < ((unsigned char *) &stepping) + sizeof (stepping); p++) |
| *p = 0; |
| |
| return !(continue_p); |
| } |
| else /* we didn't single-step, therefore this must be a legitimate stop */ |
| return 1; |
| } |
| |
| struct PSWreg |
| { /* separate out the bit flags in the PSW register */ |
| int pad1:16; |
| int bsm:1; |
| int bie:1; |
| int pad2:5; |
| int bc:1; |
| int sm:1; |
| int ie:1; |
| int pad3:5; |
| int c:1; |
| } *psw; |
| |
| /* Upon entry the value for LR to save has been pushed. |
| We unpush that so that the value for the stack pointer saved is correct. |
| Upon entry, all other registers are assumed to have not been modified |
| since the interrupt/trap occurred. */ |
| |
| asm ("\n\ |
| stash_registers:\n\ |
| push r0\n\ |
| push r1\n\ |
| seth r1, #shigh(registers)\n\ |
| add3 r1, r1, #low(registers)\n\ |
| pop r0 ; r1\n\ |
| st r0, @(4,r1)\n\ |
| pop r0 ; r0\n\ |
| st r0, @r1\n\ |
| addi r1, #4 ; only add 4 as subsequent saves are `pre inc'\n\ |
| st r2, @+r1\n\ |
| st r3, @+r1\n\ |
| st r4, @+r1\n\ |
| st r5, @+r1\n\ |
| st r6, @+r1\n\ |
| st r7, @+r1\n\ |
| st r8, @+r1\n\ |
| st r9, @+r1\n\ |
| st r10, @+r1\n\ |
| st r11, @+r1\n\ |
| st r12, @+r1\n\ |
| st r13, @+r1 ; fp\n\ |
| pop r0 ; lr (r14)\n\ |
| st r0, @+r1\n\ |
| st sp, @+r1 ; sp contains right value at this point\n\ |
| mvfc r0, cr0\n\ |
| st r0, @+r1 ; cr0 == PSW\n\ |
| mvfc r0, cr1\n\ |
| st r0, @+r1 ; cr1 == CBR\n\ |
| mvfc r0, cr2\n\ |
| st r0, @+r1 ; cr2 == SPI\n\ |
| mvfc r0, cr3\n\ |
| st r0, @+r1 ; cr3 == SPU\n\ |
| mvfc r0, cr6\n\ |
| st r0, @+r1 ; cr6 == BPC\n\ |
| st r0, @+r1 ; PC == BPC\n\ |
| mvfaclo r0\n\ |
| st r0, @+r1 ; ACCL\n\ |
| mvfachi r0\n\ |
| st r0, @+r1 ; ACCH\n\ |
| jmp lr"); |
| |
| /* C routine to clean up what stash_registers did. |
| It is called after calling stash_registers. |
| This is separate from stash_registers as we want to do this in C |
| but doing stash_registers in C isn't straightforward. */ |
| |
| static void |
| cleanup_stash (void) |
| { |
| psw = (struct PSWreg *) ®isters[PSW]; /* fields of PSW register */ |
| psw->sm = psw->bsm; /* fix up pre-trap values of psw fields */ |
| psw->ie = psw->bie; |
| psw->c = psw->bc; |
| registers[CBR] = psw->bc; /* fix up pre-trap "C" register */ |
| |
| #if 0 /* FIXME: Was in previous version. Necessary? |
| (Remember that we use the "rte" insn to return from the |
| trap/interrupt so the values of bsm, bie, bc are important. */ |
| psw->bsm = psw->bie = psw->bc = 0; /* zero post-trap values */ |
| #endif |
| |
| /* FIXME: Copied from previous version. This can probably be deleted |
| since methinks stash_registers has already done this. */ |
| registers[PC] = registers[BPC]; /* pre-trap PC */ |
| |
| /* FIXME: Copied from previous version. Necessary? */ |
| if (psw->sm) /* copy R15 into (psw->sm ? SPU : SPI) */ |
| registers[SPU] = registers[R15]; |
| else |
| registers[SPI] = registers[R15]; |
| } |
| |
| asm ("\n\ |
| restore_and_return:\n\ |
| seth r0, #shigh(registers+8)\n\ |
| add3 r0, r0, #low(registers+8)\n\ |
| ld r2, @r0+ ; restore r2\n\ |
| ld r3, @r0+ ; restore r3\n\ |
| ld r4, @r0+ ; restore r4\n\ |
| ld r5, @r0+ ; restore r5\n\ |
| ld r6, @r0+ ; restore r6\n\ |
| ld r7, @r0+ ; restore r7\n\ |
| ld r8, @r0+ ; restore r8\n\ |
| ld r9, @r0+ ; restore r9\n\ |
| ld r10, @r0+ ; restore r10\n\ |
| ld r11, @r0+ ; restore r11\n\ |
| ld r12, @r0+ ; restore r12\n\ |
| ld r13, @r0+ ; restore r13\n\ |
| ld r14, @r0+ ; restore r14\n\ |
| ld r15, @r0+ ; restore r15\n\ |
| ld r1, @r0+ ; restore cr0 == PSW\n\ |
| mvtc r1, cr0\n\ |
| ld r1, @r0+ ; restore cr1 == CBR (no-op, because it's read only)\n\ |
| mvtc r1, cr1\n\ |
| ld r1, @r0+ ; restore cr2 == SPI\n\ |
| mvtc r1, cr2\n\ |
| ld r1, @r0+ ; restore cr3 == SPU\n\ |
| mvtc r1, cr3\n\ |
| addi r0, #4 ; skip BPC\n\ |
| ld r1, @r0+ ; restore cr6 (BPC) == PC\n\ |
| mvtc r1, cr6\n\ |
| ld r1, @r0+ ; restore ACCL\n\ |
| mvtaclo r1\n\ |
| ld r1, @r0+ ; restore ACCH\n\ |
| mvtachi r1\n\ |
| seth r0, #shigh(registers)\n\ |
| add3 r0, r0, #low(registers)\n\ |
| ld r1, @(4,r0) ; restore r1\n\ |
| ld r0, @r0 ; restore r0\n\ |
| rte"); |
| |
| /* General trap handler, called after the registers have been stashed. |
| NUM is the trap/exception number. */ |
| |
| static void |
| process_exception (int num) |
| { |
| cleanup_stash (); |
| asm volatile ("\n\ |
| seth r1, #shigh(stackPtr)\n\ |
| add3 r1, r1, #low(stackPtr)\n\ |
| ld r15, @r1 ; setup local stack (protect user stack)\n\ |
| mv r0, %0\n\ |
| bl handle_exception\n\ |
| bl restore_and_return"::"r" (num):"r0", "r1"); |
| } |
| |
| void _catchException0 (); |
| |
| asm ("\n\ |
| _catchException0:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #0\n\ |
| bl process_exception"); |
| |
| void _catchException1 (); |
| |
| asm ("\n\ |
| _catchException1:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| bl cleanup_stash\n\ |
| seth r1, #shigh(stackPtr)\n\ |
| add3 r1, r1, #low(stackPtr)\n\ |
| ld r15, @r1 ; setup local stack (protect user stack)\n\ |
| seth r1, #shigh(registers + 21*4) ; PC\n\ |
| add3 r1, r1, #low(registers + 21*4)\n\ |
| ld r0, @r1\n\ |
| addi r0, #-4 ; back up PC for breakpoint trap.\n\ |
| st r0, @r1 ; FIXME: what about bp in right slot?\n\ |
| ldi r0, #1\n\ |
| bl handle_exception\n\ |
| bl restore_and_return"); |
| |
| void _catchException2 (); |
| |
| asm ("\n\ |
| _catchException2:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #2\n\ |
| bl process_exception"); |
| |
| void _catchException3 (); |
| |
| asm ("\n\ |
| _catchException3:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #3\n\ |
| bl process_exception"); |
| |
| void _catchException4 (); |
| |
| asm ("\n\ |
| _catchException4:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #4\n\ |
| bl process_exception"); |
| |
| void _catchException5 (); |
| |
| asm ("\n\ |
| _catchException5:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #5\n\ |
| bl process_exception"); |
| |
| void _catchException6 (); |
| |
| asm ("\n\ |
| _catchException6:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #6\n\ |
| bl process_exception"); |
| |
| void _catchException7 (); |
| |
| asm ("\n\ |
| _catchException7:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #7\n\ |
| bl process_exception"); |
| |
| void _catchException8 (); |
| |
| asm ("\n\ |
| _catchException8:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #8\n\ |
| bl process_exception"); |
| |
| void _catchException9 (); |
| |
| asm ("\n\ |
| _catchException9:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #9\n\ |
| bl process_exception"); |
| |
| void _catchException10 (); |
| |
| asm ("\n\ |
| _catchException10:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #10\n\ |
| bl process_exception"); |
| |
| void _catchException11 (); |
| |
| asm ("\n\ |
| _catchException11:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #11\n\ |
| bl process_exception"); |
| |
| void _catchException12 (); |
| |
| asm ("\n\ |
| _catchException12:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #12\n\ |
| bl process_exception"); |
| |
| void _catchException13 (); |
| |
| asm ("\n\ |
| _catchException13:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #13\n\ |
| bl process_exception"); |
| |
| void _catchException14 (); |
| |
| asm ("\n\ |
| _catchException14:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #14\n\ |
| bl process_exception"); |
| |
| void _catchException15 (); |
| |
| asm ("\n\ |
| _catchException15:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #15\n\ |
| bl process_exception"); |
| |
| void _catchException16 (); |
| |
| asm ("\n\ |
| _catchException16:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #16\n\ |
| bl process_exception"); |
| |
| void _catchException17 (); |
| |
| asm ("\n\ |
| _catchException17:\n\ |
| push lr\n\ |
| bl stash_registers\n\ |
| ; Note that at this point the pushed value of `lr' has been popped\n\ |
| ldi r0, #17\n\ |
| bl process_exception"); |
| |
| |
| /* this function is used to set up exception handlers for tracing and |
| breakpoints */ |
| void |
| set_debug_traps (void) |
| { |
| /* extern void remcomHandler(); */ |
| int i; |
| |
| for (i = 0; i < 18; i++) /* keep a copy of old vectors */ |
| if (save_vectors[i] == 0) /* only copy them the first time */ |
| save_vectors[i] = getExceptionHandler (i); |
| |
| stackPtr = &remcomStack[STACKSIZE / sizeof (int) - 1]; |
| |
| exceptionHandler (0, _catchException0); |
| exceptionHandler (1, _catchException1); |
| exceptionHandler (2, _catchException2); |
| exceptionHandler (3, _catchException3); |
| exceptionHandler (4, _catchException4); |
| exceptionHandler (5, _catchException5); |
| exceptionHandler (6, _catchException6); |
| exceptionHandler (7, _catchException7); |
| exceptionHandler (8, _catchException8); |
| exceptionHandler (9, _catchException9); |
| exceptionHandler (10, _catchException10); |
| exceptionHandler (11, _catchException11); |
| exceptionHandler (12, _catchException12); |
| exceptionHandler (13, _catchException13); |
| exceptionHandler (14, _catchException14); |
| exceptionHandler (15, _catchException15); |
| exceptionHandler (16, _catchException16); |
| /* exceptionHandler (17, _catchException17); */ |
| |
| initialized = 1; |
| } |
| |
| /* This function will generate a breakpoint exception. It is used at the |
| beginning of a program to sync up with a debugger and can be used |
| otherwise as a quick means to stop program execution and "break" into |
| the debugger. */ |
| |
| #define BREAKPOINT() asm volatile (" trap #2"); |
| |
| void |
| breakpoint (void) |
| { |
| if (initialized) |
| BREAKPOINT (); |
| } |
| |
| /* STDOUT section: |
| Stuff pertaining to simulating stdout by sending chars to gdb to be echoed. |
| Functions: gdb_putchar(char ch) |
| gdb_puts(char *str) |
| gdb_write(char *str, int len) |
| gdb_error(char *format, char *parm) |
| */ |
| |
| /* Function: gdb_putchar(int) |
| Make gdb write a char to stdout. |
| Returns: the char */ |
| |
| static int |
| gdb_putchar (int ch) |
| { |
| char buf[4]; |
| |
| buf[0] = 'O'; |
| buf[1] = hexchars[ch >> 4]; |
| buf[2] = hexchars[ch & 0x0F]; |
| buf[3] = 0; |
| putpacket (buf); |
| return ch; |
| } |
| |
| /* Function: gdb_write(char *, int) |
| Make gdb write n bytes to stdout (not assumed to be null-terminated). |
| Returns: number of bytes written */ |
| |
| static int |
| gdb_write (char *data, int len) |
| { |
| char *buf, *cpy; |
| int i; |
| |
| buf = remcomOutBuffer; |
| buf[0] = 'O'; |
| i = 0; |
| while (i < len) |
| { |
| for (cpy = buf + 1; |
| i < len && cpy < buf + sizeof (remcomOutBuffer) - 3; i++) |
| { |
| *cpy++ = hexchars[data[i] >> 4]; |
| *cpy++ = hexchars[data[i] & 0x0F]; |
| } |
| *cpy = 0; |
| putpacket (buf); |
| } |
| return len; |
| } |
| |
| /* Function: gdb_puts(char *) |
| Make gdb write a null-terminated string to stdout. |
| Returns: the length of the string */ |
| |
| static int |
| gdb_puts (char *str) |
| { |
| return gdb_write (str, strlen (str)); |
| } |
| |
| /* Function: gdb_error(char *, char *) |
| Send an error message to gdb's stdout. |
| First string may have 1 (one) optional "%s" in it, which |
| will cause the optional second string to be inserted. */ |
| |
| static void |
| gdb_error (char *format, char *parm) |
| { |
| char buf[400], *cpy; |
| int len; |
| |
| if (remote_debug) |
| { |
| if (format && *format) |
| len = strlen (format); |
| else |
| return; /* empty input */ |
| |
| if (parm && *parm) |
| len += strlen (parm); |
| |
| for (cpy = buf; *format;) |
| { |
| if (format[0] == '%' && format[1] == 's') /* include second string */ |
| { |
| format += 2; /* advance two chars instead of just one */ |
| while (parm && *parm) |
| *cpy++ = *parm++; |
| } |
| else |
| *cpy++ = *format++; |
| } |
| *cpy = '\0'; |
| gdb_puts (buf); |
| } |
| } |
| |
| static unsigned char * |
| strcpy (unsigned char *dest, const unsigned char *src) |
| { |
| unsigned char *ret = dest; |
| |
| if (dest && src) |
| { |
| while (*src) |
| *dest++ = *src++; |
| *dest = 0; |
| } |
| return ret; |
| } |
| |
| static int |
| strlen (const unsigned char *src) |
| { |
| int ret; |
| |
| for (ret = 0; *src; src++) |
| ret++; |
| |
| return ret; |
| } |
| |
| #if 0 |
| void |
| exit (code) |
| int code; |
| { |
| _exit (code); |
| } |
| |
| int |
| atexit (void *p) |
| { |
| return 0; |
| } |
| |
| void |
| abort (void) |
| { |
| _exit (1); |
| } |
| #endif |