| /**************************************************************************** |
| |
| THIS SOFTWARE IS NOT COPYRIGHTED |
| |
| HP offers the following for use in the public domain. HP makes no |
| warranty with regard to the software or it's performance and the |
| user accepts the software "AS IS" with all faults. |
| |
| HP DISCLAIMS ANY WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD |
| TO THIS SOFTWARE INCLUDING BUT NOT LIMITED TO THE WARRANTIES |
| OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. |
| |
| ****************************************************************************/ |
| |
| /**************************************************************************** |
| * Header: remcom.c,v 1.34 91/03/09 12:29:49 glenne Exp $ |
| * |
| * Module name: remcom.c $ |
| * Revision: 1.34 $ |
| * Date: 91/03/09 12:29:49 $ |
| * Contributor: Lake Stevens Instrument Division$ |
| * |
| * Description: low level support for gdb debugger. $ |
| * |
| * Considerations: only works on target hardware $ |
| * |
| * Written by: Glenn Engel $ |
| * ModuleState: Experimental $ |
| * |
| * NOTES: See Below $ |
| * |
| * Modified for SPARC by Stu Grossman, Cygnus Support. |
| * |
| * This code has been extensively tested on the Fujitsu SPARClite demo board. |
| * |
| * To enable debugger support, two things need to happen. One, a |
| * call to set_debug_traps() is necessary in order to allow any breakpoints |
| * or error conditions to be properly intercepted and reported to gdb. |
| * Two, a breakpoint needs to be generated to begin communication. This |
| * is most easily accomplished by a call to breakpoint(). Breakpoint() |
| * simulates a breakpoint by executing a trap #1. |
| * |
| ************* |
| * |
| * The following gdb commands are supported: |
| * |
| * command function Return value |
| * |
| * g return the value of the CPU registers hex data or ENN |
| * G set the value of the CPU registers OK or ENN |
| * |
| * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN |
| * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN |
| * |
| * c Resume at current address SNN ( signal NN) |
| * cAA..AA Continue at address AA..AA SNN |
| * |
| * s Step one instruction SNN |
| * sAA..AA Step one instruction from AA..AA SNN |
| * |
| * k kill |
| * |
| * ? What was the last sigval ? SNN (signal NN) |
| * |
| * All commands and responses are sent with a packet which includes a |
| * checksum. A packet consists of |
| * |
| * $<packet info>#<checksum>. |
| * |
| * where |
| * <packet info> :: <characters representing the command or response> |
| * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> |
| * |
| * When a packet is received, it is first acknowledged with either '+' or '-'. |
| * '+' indicates a successful transfer. '-' indicates a failed transfer. |
| * |
| * Example: |
| * |
| * Host: Reply: |
| * $m0,10#2a +$00010203040506070809101112131415#42 |
| * |
| ****************************************************************************/ |
| |
| #include <string.h> |
| #include <signal.h> |
| |
| /************************************************************************ |
| * |
| * external low-level support routines |
| */ |
| |
| extern void putDebugChar(); /* write a single character */ |
| extern int getDebugChar(); /* read and return a single char */ |
| |
| /************************************************************************/ |
| /* BUFMAX defines the maximum number of characters in inbound/outbound buffers*/ |
| /* at least NUMREGBYTES*2 are needed for register packets */ |
| #define BUFMAX 2048 |
| |
| static int initialized = 0; /* !0 means we've been initialized */ |
| |
| static void set_mem_fault_trap(); |
| |
| static const char hexchars[]="0123456789abcdef"; |
| |
| #define NUMREGS 72 |
| |
| /* Number of bytes of registers. */ |
| #define NUMREGBYTES (NUMREGS * 4) |
| enum regnames {G0, G1, G2, G3, G4, G5, G6, G7, |
| O0, O1, O2, O3, O4, O5, SP, O7, |
| L0, L1, L2, L3, L4, L5, L6, L7, |
| I0, I1, I2, I3, I4, I5, FP, I7, |
| |
| F0, F1, F2, F3, F4, F5, F6, F7, |
| F8, F9, F10, F11, F12, F13, F14, F15, |
| F16, F17, F18, F19, F20, F21, F22, F23, |
| F24, F25, F26, F27, F28, F29, F30, F31, |
| Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR }; |
| |
| /*************************** ASSEMBLY CODE MACROS *************************/ |
| /* */ |
| |
| extern void trap_low(); |
| |
| asm(" |
| .reserve trapstack, 1000 * 4, \"bss\", 8 |
| |
| .data |
| .align 4 |
| |
| in_trap_handler: |
| .word 0 |
| |
| .text |
| .align 4 |
| |
| ! This function is called when any SPARC trap (except window overflow or |
| ! underflow) occurs. It makes sure that the invalid register window is still |
| ! available before jumping into C code. It will also restore the world if you |
| ! return from handle_exception. |
| |
| .globl _trap_low |
| _trap_low: |
| mov %psr, %l0 |
| mov %wim, %l3 |
| |
| srl %l3, %l0, %l4 ! wim >> cwp |
| cmp %l4, 1 |
| bne window_fine ! Branch if not in the invalid window |
| nop |
| |
| ! Handle window overflow |
| |
| mov %g1, %l4 ! Save g1, we use it to hold the wim |
| srl %l3, 1, %g1 ! Rotate wim right |
| tst %g1 |
| bg good_wim ! Branch if new wim is non-zero |
| nop |
| |
| ! At this point, we need to bring a 1 into the high order bit of the wim. |
| ! Since we don't want to make any assumptions about the number of register |
| ! windows, we figure it out dynamically so as to setup the wim correctly. |
| |
| not %g1 ! Fill g1 with ones |
| mov %g1, %wim ! Fill the wim with ones |
| nop |
| nop |
| nop |
| mov %wim, %g1 ! Read back the wim |
| inc %g1 ! Now g1 has 1 just to left of wim |
| srl %g1, 1, %g1 ! Now put 1 at top of wim |
| mov %g0, %wim ! Clear wim so that subsequent save |
| nop ! won't trap |
| nop |
| nop |
| |
| good_wim: |
| save %g0, %g0, %g0 ! Slip into next window |
| mov %g1, %wim ! Install the new wim |
| |
| std %l0, [%sp + 0 * 4] ! save L & I registers |
| std %l2, [%sp + 2 * 4] |
| std %l4, [%sp + 4 * 4] |
| std %l6, [%sp + 6 * 4] |
| |
| std %i0, [%sp + 8 * 4] |
| std %i2, [%sp + 10 * 4] |
| std %i4, [%sp + 12 * 4] |
| std %i6, [%sp + 14 * 4] |
| |
| restore ! Go back to trap window. |
| mov %l4, %g1 ! Restore %g1 |
| |
| window_fine: |
| sethi %hi(in_trap_handler), %l4 |
| ld [%lo(in_trap_handler) + %l4], %l5 |
| tst %l5 |
| bg recursive_trap |
| inc %l5 |
| |
| set trapstack+1000*4, %sp ! Switch to trap stack |
| |
| recursive_trap: |
| st %l5, [%lo(in_trap_handler) + %l4] |
| sub %sp,(16+1+6+1+72)*4,%sp ! Make room for input & locals |
| ! + hidden arg + arg spill |
| ! + doubleword alignment |
| ! + registers[72] local var |
| |
| std %g0, [%sp + (24 + 0) * 4] ! registers[Gx] |
| std %g2, [%sp + (24 + 2) * 4] |
| std %g4, [%sp + (24 + 4) * 4] |
| std %g6, [%sp + (24 + 6) * 4] |
| |
| std %i0, [%sp + (24 + 8) * 4] ! registers[Ox] |
| std %i2, [%sp + (24 + 10) * 4] |
| std %i4, [%sp + (24 + 12) * 4] |
| std %i6, [%sp + (24 + 14) * 4] |
| ! F0->F31 not implemented |
| mov %y, %l4 |
| mov %tbr, %l5 |
| st %l4, [%sp + (24 + 64) * 4] ! Y |
| st %l0, [%sp + (24 + 65) * 4] ! PSR |
| st %l3, [%sp + (24 + 66) * 4] ! WIM |
| st %l5, [%sp + (24 + 67) * 4] ! TBR |
| st %l1, [%sp + (24 + 68) * 4] ! PC |
| st %l2, [%sp + (24 + 69) * 4] ! NPC |
| |
| ! CPSR and FPSR not impl |
| |
| or %l0, 0xf20, %l4 |
| mov %l4, %psr ! Turn on traps, disable interrupts |
| |
| call _handle_exception |
| add %sp, 24 * 4, %o0 ! Pass address of registers |
| |
| ! Reload all of the registers that aren't on the stack |
| |
| ld [%sp + (24 + 1) * 4], %g1 ! registers[Gx] |
| ldd [%sp + (24 + 2) * 4], %g2 |
| ldd [%sp + (24 + 4) * 4], %g4 |
| ldd [%sp + (24 + 6) * 4], %g6 |
| |
| ldd [%sp + (24 + 8) * 4], %i0 ! registers[Ox] |
| ldd [%sp + (24 + 10) * 4], %i2 |
| ldd [%sp + (24 + 12) * 4], %i4 |
| ldd [%sp + (24 + 14) * 4], %i6 |
| |
| ldd [%sp + (24 + 64) * 4], %l0 ! Y & PSR |
| ldd [%sp + (24 + 68) * 4], %l2 ! PC & NPC |
| |
| restore ! Ensure that previous window is valid |
| save %g0, %g0, %g0 ! by causing a window_underflow trap |
| |
| mov %l0, %y |
| mov %l1, %psr ! Make sure that traps are disabled |
| ! for rett |
| |
| sethi %hi(in_trap_handler), %l4 |
| ld [%lo(in_trap_handler) + %l4], %l5 |
| dec %l5 |
| st %l5, [%lo(in_trap_handler) + %l4] |
| |
| jmpl %l2, %g0 ! Restore old PC |
| rett %l3 ! Restore old nPC |
| "); |
| |
| /* Convert ch from a hex digit to an int */ |
| |
| static int |
| hex (unsigned char ch) |
| { |
| if (ch >= 'a' && ch <= 'f') |
| return ch-'a'+10; |
| if (ch >= '0' && ch <= '9') |
| return ch-'0'; |
| if (ch >= 'A' && ch <= 'F') |
| return ch-'A'+10; |
| return -1; |
| } |
| |
| static char remcomInBuffer[BUFMAX]; |
| static char remcomOutBuffer[BUFMAX]; |
| |
| /* scan for the sequence $<data>#<checksum> */ |
| |
| unsigned char * |
| getpacket (void) |
| { |
| unsigned char *buffer = &remcomInBuffer[0]; |
| unsigned char checksum; |
| unsigned char xmitcsum; |
| int count; |
| char ch; |
| |
| while (1) |
| { |
| /* wait around for the start character, ignore all other characters */ |
| while ((ch = getDebugChar ()) != '$') |
| ; |
| |
| retry: |
| checksum = 0; |
| xmitcsum = -1; |
| count = 0; |
| |
| /* now, read until a # or end of buffer is found */ |
| while (count < BUFMAX - 1) |
| { |
| ch = getDebugChar (); |
| if (ch == '$') |
| goto retry; |
| if (ch == '#') |
| break; |
| checksum = checksum + ch; |
| buffer[count] = ch; |
| count = count + 1; |
| } |
| buffer[count] = 0; |
| |
| if (ch == '#') |
| { |
| ch = getDebugChar (); |
| xmitcsum = hex (ch) << 4; |
| ch = getDebugChar (); |
| xmitcsum += hex (ch); |
| |
| if (checksum != xmitcsum) |
| { |
| putDebugChar ('-'); /* failed checksum */ |
| } |
| else |
| { |
| putDebugChar ('+'); /* successful transfer */ |
| |
| /* if a sequence char is present, reply the sequence ID */ |
| if (buffer[2] == ':') |
| { |
| putDebugChar (buffer[0]); |
| putDebugChar (buffer[1]); |
| |
| return &buffer[3]; |
| } |
| |
| return &buffer[0]; |
| } |
| } |
| } |
| } |
| |
| /* send the packet in buffer. */ |
| |
| static void |
| putpacket (unsigned char *buffer) |
| { |
| unsigned char checksum; |
| int count; |
| unsigned char ch; |
| |
| /* $<packet info>#<checksum>. */ |
| do |
| { |
| putDebugChar('$'); |
| checksum = 0; |
| count = 0; |
| |
| while (ch = buffer[count]) |
| { |
| putDebugChar(ch); |
| checksum += ch; |
| count += 1; |
| } |
| |
| putDebugChar('#'); |
| putDebugChar(hexchars[checksum >> 4]); |
| putDebugChar(hexchars[checksum & 0xf]); |
| |
| } |
| while (getDebugChar() != '+'); |
| } |
| |
| /* Indicate to caller of mem2hex or hex2mem that there has been an |
| error. */ |
| static volatile int mem_err = 0; |
| |
| /* Convert the memory pointed to by mem into hex, placing result in buf. |
| * Return a pointer to the last char put in buf (null), in case of mem fault, |
| * return 0. |
| * If MAY_FAULT is non-zero, then we will handle memory faults by returning |
| * a 0, else treat a fault like any other fault in the stub. |
| */ |
| |
| static unsigned char * |
| mem2hex (unsigned char *mem, unsigned char *buf, int count, int may_fault) |
| { |
| unsigned char ch; |
| |
| set_mem_fault_trap(may_fault); |
| |
| while (count-- > 0) |
| { |
| ch = *mem++; |
| if (mem_err) |
| return 0; |
| *buf++ = hexchars[ch >> 4]; |
| *buf++ = hexchars[ch & 0xf]; |
| } |
| |
| *buf = 0; |
| |
| set_mem_fault_trap(0); |
| |
| return buf; |
| } |
| |
| /* convert the hex array pointed to by buf into binary to be placed in mem |
| * return a pointer to the character AFTER the last byte written */ |
| |
| static char * |
| hex2mem (unsigned char *buf, unsigned char *mem, int count, int may_fault) |
| { |
| int i; |
| unsigned char ch; |
| |
| set_mem_fault_trap(may_fault); |
| |
| for (i=0; i<count; i++) |
| { |
| ch = hex(*buf++) << 4; |
| ch |= hex(*buf++); |
| *mem++ = ch; |
| if (mem_err) |
| return 0; |
| } |
| |
| set_mem_fault_trap(0); |
| |
| return mem; |
| } |
| |
| /* This table contains the mapping between SPARC hardware trap types, and |
| signals, which are primarily what GDB understands. It also indicates |
| which hardware traps we need to commandeer when initializing the stub. */ |
| |
| static struct hard_trap_info |
| { |
| unsigned char tt; /* Trap type code for SPARClite */ |
| unsigned char signo; /* Signal that we map this trap into */ |
| } hard_trap_info[] = { |
| {1, SIGSEGV}, /* instruction access error */ |
| {2, SIGILL}, /* privileged instruction */ |
| {3, SIGILL}, /* illegal instruction */ |
| {4, SIGEMT}, /* fp disabled */ |
| {36, SIGEMT}, /* cp disabled */ |
| {7, SIGBUS}, /* mem address not aligned */ |
| {9, SIGSEGV}, /* data access exception */ |
| {10, SIGEMT}, /* tag overflow */ |
| {128+1, SIGTRAP}, /* ta 1 - normal breakpoint instruction */ |
| {0, 0} /* Must be last */ |
| }; |
| |
| /* Set up exception handlers for tracing and breakpoints */ |
| |
| void |
| set_debug_traps (void) |
| { |
| struct hard_trap_info *ht; |
| |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| exceptionHandler(ht->tt, trap_low); |
| |
| initialized = 1; |
| } |
| |
| asm (" |
| ! Trap handler for memory errors. This just sets mem_err to be non-zero. It |
| ! assumes that %l1 is non-zero. This should be safe, as it is doubtful that |
| ! 0 would ever contain code that could mem fault. This routine will skip |
| ! past the faulting instruction after setting mem_err. |
| |
| .text |
| .align 4 |
| |
| _fltr_set_mem_err: |
| sethi %hi(_mem_err), %l0 |
| st %l1, [%l0 + %lo(_mem_err)] |
| jmpl %l2, %g0 |
| rett %l2+4 |
| "); |
| |
| static void |
| set_mem_fault_trap (int enable) |
| { |
| extern void fltr_set_mem_err(); |
| mem_err = 0; |
| |
| if (enable) |
| exceptionHandler(9, fltr_set_mem_err); |
| else |
| exceptionHandler(9, trap_low); |
| } |
| |
| /* Convert the SPARC hardware trap type code to a unix signal number. */ |
| |
| static int |
| computeSignal (int tt) |
| { |
| struct hard_trap_info *ht; |
| |
| for (ht = hard_trap_info; ht->tt && ht->signo; ht++) |
| if (ht->tt == tt) |
| return ht->signo; |
| |
| return SIGHUP; /* default for things we don't know about */ |
| } |
| |
| /* |
| * While we find nice hex chars, build an int. |
| * Return number of chars processed. |
| */ |
| |
| static int |
| hexToInt(char **ptr, int *intValue) |
| { |
| int numChars = 0; |
| int hexValue; |
| |
| *intValue = 0; |
| |
| while (**ptr) |
| { |
| hexValue = hex(**ptr); |
| if (hexValue < 0) |
| break; |
| |
| *intValue = (*intValue << 4) | hexValue; |
| numChars ++; |
| |
| (*ptr)++; |
| } |
| |
| return (numChars); |
| } |
| |
| /* |
| * This function does all command procesing for interfacing to gdb. It |
| * returns 1 if you should skip the instruction at the trap address, 0 |
| * otherwise. |
| */ |
| |
| extern void breakinst(); |
| |
| static void |
| handle_exception (unsigned long *registers) |
| { |
| int tt; /* Trap type */ |
| int sigval; |
| int addr; |
| int length; |
| char *ptr; |
| unsigned long *sp; |
| |
| /* First, we must force all of the windows to be spilled out */ |
| |
| asm(" save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| save %sp, -64, %sp |
| restore |
| restore |
| restore |
| restore |
| restore |
| restore |
| restore |
| restore |
| "); |
| |
| if (registers[PC] == (unsigned long)breakinst) |
| { |
| registers[PC] = registers[NPC]; |
| registers[NPC] += 4; |
| } |
| |
| sp = (unsigned long *)registers[SP]; |
| |
| tt = (registers[TBR] >> 4) & 0xff; |
| |
| /* reply to host that an exception has occurred */ |
| sigval = computeSignal(tt); |
| ptr = remcomOutBuffer; |
| |
| *ptr++ = 'T'; |
| *ptr++ = hexchars[sigval >> 4]; |
| *ptr++ = hexchars[sigval & 0xf]; |
| |
| *ptr++ = hexchars[PC >> 4]; |
| *ptr++ = hexchars[PC & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®isters[PC], ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[FP >> 4]; |
| *ptr++ = hexchars[FP & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex(sp + 8 + 6, ptr, 4, 0); /* FP */ |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[SP >> 4]; |
| *ptr++ = hexchars[SP & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)&sp, ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[NPC >> 4]; |
| *ptr++ = hexchars[NPC & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®isters[NPC], ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = hexchars[O7 >> 4]; |
| *ptr++ = hexchars[O7 & 0xf]; |
| *ptr++ = ':'; |
| ptr = mem2hex((char *)®isters[O7], ptr, 4, 0); |
| *ptr++ = ';'; |
| |
| *ptr++ = 0; |
| |
| putpacket(remcomOutBuffer); |
| |
| while (1) |
| { |
| remcomOutBuffer[0] = 0; |
| |
| ptr = getpacket(); |
| switch (*ptr++) |
| { |
| case '?': |
| remcomOutBuffer[0] = 'S'; |
| remcomOutBuffer[1] = hexchars[sigval >> 4]; |
| remcomOutBuffer[2] = hexchars[sigval & 0xf]; |
| remcomOutBuffer[3] = 0; |
| break; |
| |
| case 'd': /* toggle debug flag */ |
| break; |
| |
| case 'g': /* return the value of the CPU registers */ |
| { |
| ptr = remcomOutBuffer; |
| ptr = mem2hex((char *)registers, ptr, 16 * 4, 0); /* G & O regs */ |
| ptr = mem2hex(sp + 0, ptr, 16 * 4, 0); /* L & I regs */ |
| memset(ptr, '0', 32 * 8); /* Floating point */ |
| mem2hex((char *)®isters[Y], |
| ptr + 32 * 4 * 2, |
| 8 * 4, |
| 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| } |
| break; |
| |
| case 'G': /* set the value of the CPU registers - return OK */ |
| { |
| unsigned long *newsp, psr; |
| |
| psr = registers[PSR]; |
| |
| hex2mem(ptr, (char *)registers, 16 * 4, 0); /* G & O regs */ |
| hex2mem(ptr + 16 * 4 * 2, sp + 0, 16 * 4, 0); /* L & I regs */ |
| hex2mem(ptr + 64 * 4 * 2, (char *)®isters[Y], |
| 8 * 4, 0); /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */ |
| |
| /* See if the stack pointer has moved. If so, then copy the saved |
| locals and ins to the new location. This keeps the window |
| overflow and underflow routines happy. */ |
| |
| newsp = (unsigned long *)registers[SP]; |
| if (sp != newsp) |
| sp = memcpy(newsp, sp, 16 * 4); |
| |
| /* Don't allow CWP to be modified. */ |
| |
| if (psr != registers[PSR]) |
| registers[PSR] = (psr & 0x1f) | (registers[PSR] & ~0x1f); |
| |
| strcpy(remcomOutBuffer,"OK"); |
| } |
| break; |
| |
| case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */ |
| /* Try to read %x,%x. */ |
| |
| if (hexToInt(&ptr, &addr) |
| && *ptr++ == ',' |
| && hexToInt(&ptr, &length)) |
| { |
| if (mem2hex((char *)addr, remcomOutBuffer, length, 1)) |
| break; |
| |
| strcpy (remcomOutBuffer, "E03"); |
| } |
| else |
| strcpy(remcomOutBuffer,"E01"); |
| break; |
| |
| case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA.AA return OK */ |
| /* Try to read '%x,%x:'. */ |
| |
| if (hexToInt(&ptr, &addr) |
| && *ptr++ == ',' |
| && hexToInt(&ptr, &length) |
| && *ptr++ == ':') |
| { |
| if (hex2mem(ptr, (char *)addr, length, 1)) |
| strcpy(remcomOutBuffer, "OK"); |
| else |
| strcpy(remcomOutBuffer, "E03"); |
| } |
| else |
| strcpy(remcomOutBuffer, "E02"); |
| break; |
| |
| case 'c': /* cAA..AA Continue at address AA..AA(optional) */ |
| /* try to read optional parameter, pc unchanged if no parm */ |
| |
| if (hexToInt(&ptr, &addr)) |
| { |
| registers[PC] = addr; |
| registers[NPC] = addr + 4; |
| } |
| |
| /* Need to flush the instruction cache here, as we may have deposited a |
| breakpoint, and the icache probably has no way of knowing that a data ref to |
| some location may have changed something that is in the instruction cache. |
| */ |
| |
| flush_i_cache(); |
| return; |
| |
| /* kill the program */ |
| case 'k' : /* do nothing */ |
| break; |
| #if 0 |
| case 't': /* Test feature */ |
| asm (" std %f30,[%sp]"); |
| break; |
| #endif |
| case 'r': /* Reset */ |
| asm ("call 0 |
| nop "); |
| break; |
| } /* switch */ |
| |
| /* reply to the request */ |
| putpacket(remcomOutBuffer); |
| } |
| } |
| |
| /* This function will generate a breakpoint exception. It is used at the |
| beginning of a program to sync up with a debugger and can be used |
| otherwise as a quick means to stop program execution and "break" into |
| the debugger. */ |
| |
| void |
| breakpoint (void) |
| { |
| if (!initialized) |
| return; |
| |
| asm(" .globl _breakinst |
| |
| _breakinst: ta 1 |
| "); |
| } |