blob: a6e13a9a87b242bc72c32f0c50ffe3b48a0762bb [file] [log] [blame]
/* tc-arm.c -- Assemble for the ARM
Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001
Free Software Foundation, Inc.
Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org)
Modified by David Taylor (dtaylor@armltd.co.uk)
This file is part of GAS, the GNU Assembler.
GAS is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GAS is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GAS; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#include <ctype.h>
#include <string.h>
#define NO_RELOC 0
#include "as.h"
/* Need TARGET_CPU. */
#include "config.h"
#include "subsegs.h"
#include "obstack.h"
#include "symbols.h"
#include "listing.h"
#ifdef OBJ_ELF
#include "elf/arm.h"
#include "dwarf2dbg.h"
#endif
/* Types of processor to assemble for. */
#define ARM_1 0x00000001
#define ARM_2 0x00000002
#define ARM_3 0x00000004
#define ARM_250 ARM_3
#define ARM_6 0x00000008
#define ARM_7 ARM_6 /* Same core instruction set. */
#define ARM_8 ARM_6 /* Same core instruction set. */
#define ARM_9 ARM_6 /* Same core instruction set. */
#define ARM_CPU_MASK 0x0000000f
/* The following bitmasks control CPU extensions (ARM7 onwards): */
#define ARM_EXT_LONGMUL 0x00000010 /* Allow long multiplies. */
#define ARM_EXT_HALFWORD 0x00000020 /* Allow half word loads. */
#define ARM_EXT_THUMB 0x00000040 /* Allow BX instruction. */
#define ARM_EXT_V5 0x00000080 /* Allow CLZ, etc. */
#define ARM_EXT_V5E 0x00000100 /* "El Segundo". */
#define ARM_EXT_XSCALE 0x00000200 /* Allow MIA etc. */
/* Architectures are the sum of the base and extensions. */
#define ARM_ARCH_V3M ARM_EXT_LONGMUL
#define ARM_ARCH_V4 (ARM_ARCH_V3M | ARM_EXT_HALFWORD)
#define ARM_ARCH_V4T (ARM_ARCH_V4 | ARM_EXT_THUMB)
#define ARM_ARCH_V5 (ARM_ARCH_V4 | ARM_EXT_V5)
#define ARM_ARCH_V5T (ARM_ARCH_V5 | ARM_EXT_THUMB)
#define ARM_ARCH_V5TE (ARM_ARCH_V5T | ARM_EXT_V5E)
#define ARM_ARCH_XSCALE (ARM_ARCH_V5TE | ARM_EXT_XSCALE)
/* Some useful combinations: */
#define ARM_ANY 0x00ffffff
#define ARM_2UP (ARM_ANY - ARM_1)
#define ARM_ALL ARM_2UP /* Not arm1 only. */
#define ARM_3UP 0x00fffffc
#define ARM_6UP 0x00fffff8 /* Includes ARM7. */
#define FPU_CORE 0x80000000
#define FPU_FPA10 0x40000000
#define FPU_FPA11 0x40000000
#define FPU_NONE 0
/* Some useful combinations. */
#define FPU_ALL 0xff000000 /* Note this is ~ARM_ANY. */
#define FPU_MEMMULTI 0x7f000000 /* Not fpu_core. */
#ifndef CPU_DEFAULT
#if defined __XSCALE__
#define CPU_DEFAULT (ARM_9 | ARM_ARCH_XSCALE)
#else
#if defined __thumb__
#define CPU_DEFAULT (ARM_7 | ARM_ARCH_V4T)
#else
#define CPU_DEFAULT ARM_ALL
#endif
#endif
#endif
#ifndef FPU_DEFAULT
#define FPU_DEFAULT FPU_ALL
#endif
#define streq(a, b) (strcmp (a, b) == 0)
#define skip_whitespace(str) while (*(str) == ' ') ++(str)
static unsigned long cpu_variant = CPU_DEFAULT | FPU_DEFAULT;
static int target_oabi = 0;
#if defined OBJ_COFF || defined OBJ_ELF
/* Flags stored in private area of BFD structure. */
static boolean uses_apcs_26 = false;
static boolean atpcs = false;
static boolean support_interwork = false;
static boolean uses_apcs_float = false;
static boolean pic_code = false;
#endif
/* This array holds the chars that always start a comment. If the
pre-processor is disabled, these aren't very useful. */
CONST char comment_chars[] = "@";
/* This array holds the chars that only start a comment at the beginning of
a line. If the line seems to have the form '# 123 filename'
.line and .file directives will appear in the pre-processed output. */
/* Note that input_file.c hand checks for '#' at the beginning of the
first line of the input file. This is because the compiler outputs
#NO_APP at the beginning of its output. */
/* Also note that comments like this one will always work. */
CONST char line_comment_chars[] = "#";
CONST char line_separator_chars[] = ";";
/* Chars that can be used to separate mant
from exp in floating point numbers. */
CONST char EXP_CHARS[] = "eE";
/* Chars that mean this number is a floating point constant. */
/* As in 0f12.456 */
/* or 0d1.2345e12 */
CONST char FLT_CHARS[] = "rRsSfFdDxXeEpP";
/* Prefix characters that indicate the start of an immediate
value. */
#define is_immediate_prefix(C) ((C) == '#' || (C) == '$')
#ifdef OBJ_ELF
/* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
symbolS * GOT_symbol;
#endif
/* Size of relocation record. */
CONST int md_reloc_size = 8;
/* 0: assemble for ARM,
1: assemble for Thumb,
2: assemble for Thumb even though target CPU does not support thumb
instructions. */
static int thumb_mode = 0;
typedef struct arm_fix
{
int thumb_mode;
} arm_fix_data;
struct arm_it
{
CONST char * error;
unsigned long instruction;
int suffix;
int size;
struct
{
bfd_reloc_code_real_type type;
expressionS exp;
int pc_rel;
} reloc;
};
struct arm_it inst;
enum asm_shift_index
{
SHIFT_LSL = 0,
SHIFT_LSR,
SHIFT_ASR,
SHIFT_ROR,
SHIFT_RRX
};
struct asm_shift_properties
{
enum asm_shift_index index;
unsigned long bit_field;
unsigned int allows_0 : 1;
unsigned int allows_32 : 1;
};
static const struct asm_shift_properties shift_properties [] =
{
{ SHIFT_LSL, 0, 1, 0},
{ SHIFT_LSR, 0x20, 0, 1},
{ SHIFT_ASR, 0x40, 0, 1},
{ SHIFT_ROR, 0x60, 0, 0},
{ SHIFT_RRX, 0x60, 0, 0}
};
struct asm_shift_name
{
const char * name;
const struct asm_shift_properties * properties;
};
static const struct asm_shift_name shift_names [] =
{
{ "asl", shift_properties + SHIFT_LSL },
{ "lsl", shift_properties + SHIFT_LSL },
{ "lsr", shift_properties + SHIFT_LSR },
{ "asr", shift_properties + SHIFT_ASR },
{ "ror", shift_properties + SHIFT_ROR },
{ "rrx", shift_properties + SHIFT_RRX },
{ "ASL", shift_properties + SHIFT_LSL },
{ "LSL", shift_properties + SHIFT_LSL },
{ "LSR", shift_properties + SHIFT_LSR },
{ "ASR", shift_properties + SHIFT_ASR },
{ "ROR", shift_properties + SHIFT_ROR },
{ "RRX", shift_properties + SHIFT_RRX }
};
#define NO_SHIFT_RESTRICT 1
#define SHIFT_RESTRICT 0
#define NUM_FLOAT_VALS 8
CONST char * fp_const[] =
{
"0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0
};
/* Number of littlenums required to hold an extended precision number. */
#define MAX_LITTLENUMS 6
LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS];
#define FAIL (-1)
#define SUCCESS (0)
#define SUFF_S 1
#define SUFF_D 2
#define SUFF_E 3
#define SUFF_P 4
#define CP_T_X 0x00008000
#define CP_T_Y 0x00400000
#define CP_T_Pre 0x01000000
#define CP_T_UD 0x00800000
#define CP_T_WB 0x00200000
#define CONDS_BIT 0x00100000
#define LOAD_BIT 0x00100000
#define TRANS_BIT 0x00200000
#define DOUBLE_LOAD_FLAG 0x00000001
struct asm_cond
{
CONST char * template;
unsigned long value;
};
/* This is to save a hash look-up in the common case. */
#define COND_ALWAYS 0xe0000000
static CONST struct asm_cond conds[] =
{
{"eq", 0x00000000},
{"ne", 0x10000000},
{"cs", 0x20000000}, {"hs", 0x20000000},
{"cc", 0x30000000}, {"ul", 0x30000000}, {"lo", 0x30000000},
{"mi", 0x40000000},
{"pl", 0x50000000},
{"vs", 0x60000000},
{"vc", 0x70000000},
{"hi", 0x80000000},
{"ls", 0x90000000},
{"ge", 0xa0000000},
{"lt", 0xb0000000},
{"gt", 0xc0000000},
{"le", 0xd0000000},
{"al", 0xe0000000},
{"nv", 0xf0000000}
};
/* Warning: If the top bit of the set_bits is set, then the standard
instruction bitmask is ignored, and the new bitmask is taken from
the set_bits: */
struct asm_flg
{
CONST char * template; /* Basic flag string. */
unsigned long set_bits; /* Bits to set. */
};
static CONST struct asm_flg s_flag[] =
{
{"s", CONDS_BIT},
{NULL, 0}
};
static CONST struct asm_flg ldr_flags[] =
{
{"d", DOUBLE_LOAD_FLAG},
{"b", 0x00400000},
{"t", TRANS_BIT},
{"bt", 0x00400000 | TRANS_BIT},
{"h", 0x801000b0},
{"sh", 0x801000f0},
{"sb", 0x801000d0},
{NULL, 0}
};
static CONST struct asm_flg str_flags[] =
{
{"d", DOUBLE_LOAD_FLAG},
{"b", 0x00400000},
{"t", TRANS_BIT},
{"bt", 0x00400000 | TRANS_BIT},
{"h", 0x800000b0},
{NULL, 0}
};
static CONST struct asm_flg byte_flag[] =
{
{"b", 0x00400000},
{NULL, 0}
};
static CONST struct asm_flg cmp_flags[] =
{
{"s", CONDS_BIT},
{"p", 0x0010f000},
{NULL, 0}
};
static CONST struct asm_flg ldm_flags[] =
{
{"ed", 0x01800000},
{"fd", 0x00800000},
{"ea", 0x01000000},
{"fa", 0x00000000},
{"ib", 0x01800000},
{"ia", 0x00800000},
{"db", 0x01000000},
{"da", 0x00000000},
{NULL, 0}
};
static CONST struct asm_flg stm_flags[] =
{
{"ed", 0x00000000},
{"fd", 0x01000000},
{"ea", 0x00800000},
{"fa", 0x01800000},
{"ib", 0x01800000},
{"ia", 0x00800000},
{"db", 0x01000000},
{"da", 0x00000000},
{NULL, 0}
};
static CONST struct asm_flg lfm_flags[] =
{
{"fd", 0x00800000},
{"ea", 0x01000000},
{NULL, 0}
};
static CONST struct asm_flg sfm_flags[] =
{
{"fd", 0x01000000},
{"ea", 0x00800000},
{NULL, 0}
};
static CONST struct asm_flg round_flags[] =
{
{"p", 0x00000020},
{"m", 0x00000040},
{"z", 0x00000060},
{NULL, 0}
};
/* The implementation of the FIX instruction is broken on some assemblers,
in that it accepts a precision specifier as well as a rounding specifier,
despite the fact that this is meaningless. To be more compatible, we
accept it as well, though of course it does not set any bits. */
static CONST struct asm_flg fix_flags[] =
{
{"p", 0x00000020},
{"m", 0x00000040},
{"z", 0x00000060},
{"sp", 0x00000020},
{"sm", 0x00000040},
{"sz", 0x00000060},
{"dp", 0x00000020},
{"dm", 0x00000040},
{"dz", 0x00000060},
{"ep", 0x00000020},
{"em", 0x00000040},
{"ez", 0x00000060},
{NULL, 0}
};
static CONST struct asm_flg except_flag[] =
{
{"e", 0x00400000},
{NULL, 0}
};
static CONST struct asm_flg cplong_flag[] =
{
{"l", 0x00400000},
{NULL, 0}
};
struct asm_psr
{
CONST char * template;
boolean cpsr;
unsigned long field;
};
/* The bit that distnguishes CPSR and SPSR. */
#define SPSR_BIT (1 << 22)
/* How many bits to shift the PSR_xxx bits up by. */
#define PSR_SHIFT 16
#define PSR_c (1 << 0)
#define PSR_x (1 << 1)
#define PSR_s (1 << 2)
#define PSR_f (1 << 3)
static CONST struct asm_psr psrs[] =
{
{"CPSR", true, PSR_c | PSR_f},
{"CPSR_all", true, PSR_c | PSR_f},
{"SPSR", false, PSR_c | PSR_f},
{"SPSR_all", false, PSR_c | PSR_f},
{"CPSR_flg", true, PSR_f},
{"CPSR_f", true, PSR_f},
{"SPSR_flg", false, PSR_f},
{"SPSR_f", false, PSR_f},
{"CPSR_c", true, PSR_c},
{"CPSR_ctl", true, PSR_c},
{"SPSR_c", false, PSR_c},
{"SPSR_ctl", false, PSR_c},
{"CPSR_x", true, PSR_x},
{"CPSR_s", true, PSR_s},
{"SPSR_x", false, PSR_x},
{"SPSR_s", false, PSR_s},
/* Combinations of flags. */
{"CPSR_fs", true, PSR_f | PSR_s},
{"CPSR_fx", true, PSR_f | PSR_x},
{"CPSR_fc", true, PSR_f | PSR_c},
{"CPSR_sf", true, PSR_s | PSR_f},
{"CPSR_sx", true, PSR_s | PSR_x},
{"CPSR_sc", true, PSR_s | PSR_c},
{"CPSR_xf", true, PSR_x | PSR_f},
{"CPSR_xs", true, PSR_x | PSR_s},
{"CPSR_xc", true, PSR_x | PSR_c},
{"CPSR_cf", true, PSR_c | PSR_f},
{"CPSR_cs", true, PSR_c | PSR_s},
{"CPSR_cx", true, PSR_c | PSR_x},
{"CPSR_fsx", true, PSR_f | PSR_s | PSR_x},
{"CPSR_fsc", true, PSR_f | PSR_s | PSR_c},
{"CPSR_fxs", true, PSR_f | PSR_x | PSR_s},
{"CPSR_fxc", true, PSR_f | PSR_x | PSR_c},
{"CPSR_fcs", true, PSR_f | PSR_c | PSR_s},
{"CPSR_fcx", true, PSR_f | PSR_c | PSR_x},
{"CPSR_sfx", true, PSR_s | PSR_f | PSR_x},
{"CPSR_sfc", true, PSR_s | PSR_f | PSR_c},
{"CPSR_sxf", true, PSR_s | PSR_x | PSR_f},
{"CPSR_sxc", true, PSR_s | PSR_x | PSR_c},
{"CPSR_scf", true, PSR_s | PSR_c | PSR_f},
{"CPSR_scx", true, PSR_s | PSR_c | PSR_x},
{"CPSR_xfs", true, PSR_x | PSR_f | PSR_s},
{"CPSR_xfc", true, PSR_x | PSR_f | PSR_c},
{"CPSR_xsf", true, PSR_x | PSR_s | PSR_f},
{"CPSR_xsc", true, PSR_x | PSR_s | PSR_c},
{"CPSR_xcf", true, PSR_x | PSR_c | PSR_f},
{"CPSR_xcs", true, PSR_x | PSR_c | PSR_s},
{"CPSR_cfs", true, PSR_c | PSR_f | PSR_s},
{"CPSR_cfx", true, PSR_c | PSR_f | PSR_x},
{"CPSR_csf", true, PSR_c | PSR_s | PSR_f},
{"CPSR_csx", true, PSR_c | PSR_s | PSR_x},
{"CPSR_cxf", true, PSR_c | PSR_x | PSR_f},
{"CPSR_cxs", true, PSR_c | PSR_x | PSR_s},
{"CPSR_fsxc", true, PSR_f | PSR_s | PSR_x | PSR_c},
{"CPSR_fscx", true, PSR_f | PSR_s | PSR_c | PSR_x},
{"CPSR_fxsc", true, PSR_f | PSR_x | PSR_s | PSR_c},
{"CPSR_fxcs", true, PSR_f | PSR_x | PSR_c | PSR_s},
{"CPSR_fcsx", true, PSR_f | PSR_c | PSR_s | PSR_x},
{"CPSR_fcxs", true, PSR_f | PSR_c | PSR_x | PSR_s},
{"CPSR_sfxc", true, PSR_s | PSR_f | PSR_x | PSR_c},
{"CPSR_sfcx", true, PSR_s | PSR_f | PSR_c | PSR_x},
{"CPSR_sxfc", true, PSR_s | PSR_x | PSR_f | PSR_c},
{"CPSR_sxcf", true, PSR_s | PSR_x | PSR_c | PSR_f},
{"CPSR_scfx", true, PSR_s | PSR_c | PSR_f | PSR_x},
{"CPSR_scxf", true, PSR_s | PSR_c | PSR_x | PSR_f},
{"CPSR_xfsc", true, PSR_x | PSR_f | PSR_s | PSR_c},
{"CPSR_xfcs", true, PSR_x | PSR_f | PSR_c | PSR_s},
{"CPSR_xsfc", true, PSR_x | PSR_s | PSR_f | PSR_c},
{"CPSR_xscf", true, PSR_x | PSR_s | PSR_c | PSR_f},
{"CPSR_xcfs", true, PSR_x | PSR_c | PSR_f | PSR_s},
{"CPSR_xcsf", true, PSR_x | PSR_c | PSR_s | PSR_f},
{"CPSR_cfsx", true, PSR_c | PSR_f | PSR_s | PSR_x},
{"CPSR_cfxs", true, PSR_c | PSR_f | PSR_x | PSR_s},
{"CPSR_csfx", true, PSR_c | PSR_s | PSR_f | PSR_x},
{"CPSR_csxf", true, PSR_c | PSR_s | PSR_x | PSR_f},
{"CPSR_cxfs", true, PSR_c | PSR_x | PSR_f | PSR_s},
{"CPSR_cxsf", true, PSR_c | PSR_x | PSR_s | PSR_f},
{"SPSR_fs", false, PSR_f | PSR_s},
{"SPSR_fx", false, PSR_f | PSR_x},
{"SPSR_fc", false, PSR_f | PSR_c},
{"SPSR_sf", false, PSR_s | PSR_f},
{"SPSR_sx", false, PSR_s | PSR_x},
{"SPSR_sc", false, PSR_s | PSR_c},
{"SPSR_xf", false, PSR_x | PSR_f},
{"SPSR_xs", false, PSR_x | PSR_s},
{"SPSR_xc", false, PSR_x | PSR_c},
{"SPSR_cf", false, PSR_c | PSR_f},
{"SPSR_cs", false, PSR_c | PSR_s},
{"SPSR_cx", false, PSR_c | PSR_x},
{"SPSR_fsx", false, PSR_f | PSR_s | PSR_x},
{"SPSR_fsc", false, PSR_f | PSR_s | PSR_c},
{"SPSR_fxs", false, PSR_f | PSR_x | PSR_s},
{"SPSR_fxc", false, PSR_f | PSR_x | PSR_c},
{"SPSR_fcs", false, PSR_f | PSR_c | PSR_s},
{"SPSR_fcx", false, PSR_f | PSR_c | PSR_x},
{"SPSR_sfx", false, PSR_s | PSR_f | PSR_x},
{"SPSR_sfc", false, PSR_s | PSR_f | PSR_c},
{"SPSR_sxf", false, PSR_s | PSR_x | PSR_f},
{"SPSR_sxc", false, PSR_s | PSR_x | PSR_c},
{"SPSR_scf", false, PSR_s | PSR_c | PSR_f},
{"SPSR_scx", false, PSR_s | PSR_c | PSR_x},
{"SPSR_xfs", false, PSR_x | PSR_f | PSR_s},
{"SPSR_xfc", false, PSR_x | PSR_f | PSR_c},
{"SPSR_xsf", false, PSR_x | PSR_s | PSR_f},
{"SPSR_xsc", false, PSR_x | PSR_s | PSR_c},
{"SPSR_xcf", false, PSR_x | PSR_c | PSR_f},
{"SPSR_xcs", false, PSR_x | PSR_c | PSR_s},
{"SPSR_cfs", false, PSR_c | PSR_f | PSR_s},
{"SPSR_cfx", false, PSR_c | PSR_f | PSR_x},
{"SPSR_csf", false, PSR_c | PSR_s | PSR_f},
{"SPSR_csx", false, PSR_c | PSR_s | PSR_x},
{"SPSR_cxf", false, PSR_c | PSR_x | PSR_f},
{"SPSR_cxs", false, PSR_c | PSR_x | PSR_s},
{"SPSR_fsxc", false, PSR_f | PSR_s | PSR_x | PSR_c},
{"SPSR_fscx", false, PSR_f | PSR_s | PSR_c | PSR_x},
{"SPSR_fxsc", false, PSR_f | PSR_x | PSR_s | PSR_c},
{"SPSR_fxcs", false, PSR_f | PSR_x | PSR_c | PSR_s},
{"SPSR_fcsx", false, PSR_f | PSR_c | PSR_s | PSR_x},
{"SPSR_fcxs", false, PSR_f | PSR_c | PSR_x | PSR_s},
{"SPSR_sfxc", false, PSR_s | PSR_f | PSR_x | PSR_c},
{"SPSR_sfcx", false, PSR_s | PSR_f | PSR_c | PSR_x},
{"SPSR_sxfc", false, PSR_s | PSR_x | PSR_f | PSR_c},
{"SPSR_sxcf", false, PSR_s | PSR_x | PSR_c | PSR_f},
{"SPSR_scfx", false, PSR_s | PSR_c | PSR_f | PSR_x},
{"SPSR_scxf", false, PSR_s | PSR_c | PSR_x | PSR_f},
{"SPSR_xfsc", false, PSR_x | PSR_f | PSR_s | PSR_c},
{"SPSR_xfcs", false, PSR_x | PSR_f | PSR_c | PSR_s},
{"SPSR_xsfc", false, PSR_x | PSR_s | PSR_f | PSR_c},
{"SPSR_xscf", false, PSR_x | PSR_s | PSR_c | PSR_f},
{"SPSR_xcfs", false, PSR_x | PSR_c | PSR_f | PSR_s},
{"SPSR_xcsf", false, PSR_x | PSR_c | PSR_s | PSR_f},
{"SPSR_cfsx", false, PSR_c | PSR_f | PSR_s | PSR_x},
{"SPSR_cfxs", false, PSR_c | PSR_f | PSR_x | PSR_s},
{"SPSR_csfx", false, PSR_c | PSR_s | PSR_f | PSR_x},
{"SPSR_csxf", false, PSR_c | PSR_s | PSR_x | PSR_f},
{"SPSR_cxfs", false, PSR_c | PSR_x | PSR_f | PSR_s},
{"SPSR_cxsf", false, PSR_c | PSR_x | PSR_s | PSR_f},
};
/* Functions called by parser. */
/* ARM instructions. */
static void do_arit PARAMS ((char *, unsigned long));
static void do_cmp PARAMS ((char *, unsigned long));
static void do_mov PARAMS ((char *, unsigned long));
static void do_ldst PARAMS ((char *, unsigned long));
static void do_ldmstm PARAMS ((char *, unsigned long));
static void do_branch PARAMS ((char *, unsigned long));
static void do_swi PARAMS ((char *, unsigned long));
/* Pseudo Op codes. */
static void do_adr PARAMS ((char *, unsigned long));
static void do_adrl PARAMS ((char *, unsigned long));
static void do_nop PARAMS ((char *, unsigned long));
/* ARM 2. */
static void do_mul PARAMS ((char *, unsigned long));
static void do_mla PARAMS ((char *, unsigned long));
/* ARM 3. */
static void do_swap PARAMS ((char *, unsigned long));
/* ARM 6. */
static void do_msr PARAMS ((char *, unsigned long));
static void do_mrs PARAMS ((char *, unsigned long));
/* ARM 7M. */
static void do_mull PARAMS ((char *, unsigned long));
/* ARM THUMB. */
static void do_bx PARAMS ((char *, unsigned long));
/* ARM_EXT_XScale. */
static void do_mia PARAMS ((char *, unsigned long));
static void do_mar PARAMS ((char *, unsigned long));
static void do_mra PARAMS ((char *, unsigned long));
static void do_pld PARAMS ((char *, unsigned long));
static void do_ldrd PARAMS ((char *, unsigned long));
/* ARM_EXT_V5. */
static void do_blx PARAMS ((char *, unsigned long));
static void do_bkpt PARAMS ((char *, unsigned long));
static void do_clz PARAMS ((char *, unsigned long));
static void do_lstc2 PARAMS ((char *, unsigned long));
static void do_cdp2 PARAMS ((char *, unsigned long));
static void do_co_reg2 PARAMS ((char *, unsigned long));
static void do_t_blx PARAMS ((char *));
static void do_t_bkpt PARAMS ((char *));
/* ARM_EXT_V5E. */
static void do_smla PARAMS ((char *, unsigned long));
static void do_smlal PARAMS ((char *, unsigned long));
static void do_smul PARAMS ((char *, unsigned long));
static void do_qadd PARAMS ((char *, unsigned long));
static void do_co_reg2c PARAMS ((char *, unsigned long));
/* Coprocessor Instructions. */
static void do_cdp PARAMS ((char *, unsigned long));
static void do_lstc PARAMS ((char *, unsigned long));
static void do_co_reg PARAMS ((char *, unsigned long));
static void do_fp_ctrl PARAMS ((char *, unsigned long));
static void do_fp_ldst PARAMS ((char *, unsigned long));
static void do_fp_ldmstm PARAMS ((char *, unsigned long));
static void do_fp_dyadic PARAMS ((char *, unsigned long));
static void do_fp_monadic PARAMS ((char *, unsigned long));
static void do_fp_cmp PARAMS ((char *, unsigned long));
static void do_fp_from_reg PARAMS ((char *, unsigned long));
static void do_fp_to_reg PARAMS ((char *, unsigned long));
static void fix_new_arm PARAMS ((fragS *, int, short, expressionS *, int, int));
static int arm_reg_parse PARAMS ((char **));
static CONST struct asm_psr * arm_psr_parse PARAMS ((char **));
static void symbol_locate PARAMS ((symbolS *, CONST char *, segT, valueT, fragS *));
static int add_to_lit_pool PARAMS ((void));
static unsigned validate_immediate PARAMS ((unsigned));
static unsigned validate_immediate_twopart PARAMS ((unsigned int, unsigned int *));
static int validate_offset_imm PARAMS ((unsigned int, int));
static void opcode_select PARAMS ((int));
static void end_of_line PARAMS ((char *));
static int reg_required_here PARAMS ((char **, int));
static int psr_required_here PARAMS ((char **));
static int co_proc_number PARAMS ((char **));
static int cp_opc_expr PARAMS ((char **, int, int));
static int cp_reg_required_here PARAMS ((char **, int));
static int fp_reg_required_here PARAMS ((char **, int));
static int cp_address_offset PARAMS ((char **));
static int cp_address_required_here PARAMS ((char **));
static int my_get_float_expression PARAMS ((char **));
static int skip_past_comma PARAMS ((char **));
static int walk_no_bignums PARAMS ((symbolS *));
static int negate_data_op PARAMS ((unsigned long *, unsigned long));
static int data_op2 PARAMS ((char **));
static int fp_op2 PARAMS ((char **));
static long reg_list PARAMS ((char **));
static void thumb_load_store PARAMS ((char *, int, int));
static int decode_shift PARAMS ((char **, int));
static int ldst_extend PARAMS ((char **, int));
static void thumb_add_sub PARAMS ((char *, int));
static void insert_reg PARAMS ((int));
static void thumb_shift PARAMS ((char *, int));
static void thumb_mov_compare PARAMS ((char *, int));
static void set_constant_flonums PARAMS ((void));
static valueT md_chars_to_number PARAMS ((char *, int));
static void insert_reg_alias PARAMS ((char *, int));
static void output_inst PARAMS ((void));
#ifdef OBJ_ELF
static bfd_reloc_code_real_type arm_parse_reloc PARAMS ((void));
#endif
/* ARM instructions take 4bytes in the object file, Thumb instructions
take 2: */
#define INSN_SIZE 4
/* LONGEST_INST is the longest basic instruction name without
conditions or flags. ARM7M has 4 of length 5. El Segundo
has one basic instruction name of length 7 (SMLALxy). */
#define LONGEST_INST 7
struct asm_opcode
{
/* Basic string to match. */
CONST char * template;
/* Basic instruction code. */
unsigned long value;
/* Compulsory suffix that must follow conds. If "", then the
instruction is not conditional and must have no suffix. */
CONST char * comp_suffix;
/* Bits to toggle if flag 'n' set. */
CONST struct asm_flg * flags;
/* Which CPU variants this exists for. */
unsigned long variants;
/* Function to call to parse args. */
void (* parms) PARAMS ((char *, unsigned long));
};
static CONST struct asm_opcode insns[] =
{
/* Intel XScale extensions to ARM V5 ISA. */
{"mia", 0x0e200010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"miaph", 0x0e280010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"miabb", 0x0e2c0010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"miabt", 0x0e2d0010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"miatb", 0x0e2e0010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"miatt", 0x0e2f0010, NULL, NULL, ARM_EXT_XSCALE, do_mia},
{"mar", 0x0c400000, NULL, NULL, ARM_EXT_XSCALE, do_mar},
{"mra", 0x0c500000, NULL, NULL, ARM_EXT_XSCALE, do_mra},
{"pld", 0xf450f000, "", NULL, ARM_EXT_XSCALE, do_pld},
{"ldr", 0x000000d0, NULL, ldr_flags, ARM_ANY, do_ldrd},
{"str", 0x000000f0, NULL, str_flags, ARM_ANY, do_ldrd},
/* ARM Instructions. */
{"and", 0x00000000, NULL, s_flag, ARM_ANY, do_arit},
{"eor", 0x00200000, NULL, s_flag, ARM_ANY, do_arit},
{"sub", 0x00400000, NULL, s_flag, ARM_ANY, do_arit},
{"rsb", 0x00600000, NULL, s_flag, ARM_ANY, do_arit},
{"add", 0x00800000, NULL, s_flag, ARM_ANY, do_arit},
{"adc", 0x00a00000, NULL, s_flag, ARM_ANY, do_arit},
{"sbc", 0x00c00000, NULL, s_flag, ARM_ANY, do_arit},
{"rsc", 0x00e00000, NULL, s_flag, ARM_ANY, do_arit},
{"orr", 0x01800000, NULL, s_flag, ARM_ANY, do_arit},
{"bic", 0x01c00000, NULL, s_flag, ARM_ANY, do_arit},
{"tst", 0x01000000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"teq", 0x01200000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"cmp", 0x01400000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"cmn", 0x01600000, NULL, cmp_flags, ARM_ANY, do_cmp},
{"mov", 0x01a00000, NULL, s_flag, ARM_ANY, do_mov},
{"mvn", 0x01e00000, NULL, s_flag, ARM_ANY, do_mov},
{"str", 0x04000000, NULL, str_flags, ARM_ANY, do_ldst},
{"ldr", 0x04100000, NULL, ldr_flags, ARM_ANY, do_ldst},
{"stm", 0x08000000, NULL, stm_flags, ARM_ANY, do_ldmstm},
{"ldm", 0x08100000, NULL, ldm_flags, ARM_ANY, do_ldmstm},
{"swi", 0x0f000000, NULL, NULL, ARM_ANY, do_swi},
#ifdef TE_WINCE
{"bl", 0x0b000000, NULL, NULL, ARM_ANY, do_branch},
{"b", 0x0a000000, NULL, NULL, ARM_ANY, do_branch},
#else
{"bl", 0x0bfffffe, NULL, NULL, ARM_ANY, do_branch},
{"b", 0x0afffffe, NULL, NULL, ARM_ANY, do_branch},
#endif
/* Pseudo ops. */
{"adr", 0x028f0000, NULL, NULL, ARM_ANY, do_adr},
{"adrl", 0x028f0000, NULL, NULL, ARM_ANY, do_adrl},
{"nop", 0x01a00000, NULL, NULL, ARM_ANY, do_nop},
/* ARM 2 multiplies. */
{"mul", 0x00000090, NULL, s_flag, ARM_2UP, do_mul},
{"mla", 0x00200090, NULL, s_flag, ARM_2UP, do_mla},
/* ARM 3 - swp instructions. */
{"swp", 0x01000090, NULL, byte_flag, ARM_3UP, do_swap},
/* ARM 6 Coprocessor instructions. */
{"mrs", 0x010f0000, NULL, NULL, ARM_6UP, do_mrs},
{"msr", 0x0120f000, NULL, NULL, ARM_6UP, do_msr},
/* ScottB: our code uses 0x0128f000 for msr.
NickC: but this is wrong because the bits 16 through 19 are
handled by the PSR_xxx defines above. */
/* ARM 7M long multiplies - need signed/unsigned flags! */
{"smull", 0x00c00090, NULL, s_flag, ARM_EXT_LONGMUL, do_mull},
{"umull", 0x00800090, NULL, s_flag, ARM_EXT_LONGMUL, do_mull},
{"smlal", 0x00e00090, NULL, s_flag, ARM_EXT_LONGMUL, do_mull},
{"umlal", 0x00a00090, NULL, s_flag, ARM_EXT_LONGMUL, do_mull},
/* ARM THUMB interworking. */
{"bx", 0x012fff10, NULL, NULL, ARM_EXT_THUMB, do_bx},
/* Floating point instructions. */
{"wfs", 0x0e200110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"rfs", 0x0e300110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"wfc", 0x0e400110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"rfc", 0x0e500110, NULL, NULL, FPU_ALL, do_fp_ctrl},
{"ldf", 0x0c100100, "sdep", NULL, FPU_ALL, do_fp_ldst},
{"stf", 0x0c000100, "sdep", NULL, FPU_ALL, do_fp_ldst},
{"lfm", 0x0c100200, NULL, lfm_flags, FPU_MEMMULTI, do_fp_ldmstm},
{"sfm", 0x0c000200, NULL, sfm_flags, FPU_MEMMULTI, do_fp_ldmstm},
{"mvf", 0x0e008100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"mnf", 0x0e108100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"abs", 0x0e208100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"rnd", 0x0e308100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"sqt", 0x0e408100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"log", 0x0e508100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"lgn", 0x0e608100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"exp", 0x0e708100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"sin", 0x0e808100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"cos", 0x0e908100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"tan", 0x0ea08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"asn", 0x0eb08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"acs", 0x0ec08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"atn", 0x0ed08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"urd", 0x0ee08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"nrm", 0x0ef08100, "sde", round_flags, FPU_ALL, do_fp_monadic},
{"adf", 0x0e000100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"suf", 0x0e200100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rsf", 0x0e300100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"muf", 0x0e100100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"dvf", 0x0e400100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rdf", 0x0e500100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"pow", 0x0e600100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rpw", 0x0e700100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"rmf", 0x0e800100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"fml", 0x0e900100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"fdv", 0x0ea00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"frd", 0x0eb00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"pol", 0x0ec00100, "sde", round_flags, FPU_ALL, do_fp_dyadic},
{"cmf", 0x0e90f110, NULL, except_flag, FPU_ALL, do_fp_cmp},
{"cnf", 0x0eb0f110, NULL, except_flag, FPU_ALL, do_fp_cmp},
/* The FPA10 data sheet suggests that the 'E' of cmfe/cnfe should not
be an optional suffix, but part of the instruction. To be compatible,
we accept either. */
{"cmfe", 0x0ed0f110, NULL, NULL, FPU_ALL, do_fp_cmp},
{"cnfe", 0x0ef0f110, NULL, NULL, FPU_ALL, do_fp_cmp},
{"flt", 0x0e000110, "sde", round_flags, FPU_ALL, do_fp_from_reg},
{"fix", 0x0e100110, NULL, fix_flags, FPU_ALL, do_fp_to_reg},
/* Generic copressor instructions. */
{"cdp", 0x0e000000, NULL, NULL, ARM_2UP, do_cdp},
{"ldc", 0x0c100000, NULL, cplong_flag, ARM_2UP, do_lstc},
{"stc", 0x0c000000, NULL, cplong_flag, ARM_2UP, do_lstc},
{"mcr", 0x0e000010, NULL, NULL, ARM_2UP, do_co_reg},
{"mrc", 0x0e100010, NULL, NULL, ARM_2UP, do_co_reg},
/* ARM ISA extension 5. */
/* Note: blx is actually 2 opcodes, so the .value is set dynamically.
And it's sometimes conditional and sometimes not. */
{"blx", 0, NULL, NULL, ARM_EXT_V5, do_blx},
{"clz", 0x016f0f10, NULL, NULL, ARM_EXT_V5, do_clz},
{"bkpt", 0xe1200070, "", NULL, ARM_EXT_V5, do_bkpt},
{"ldc2", 0xfc100000, "", cplong_flag, ARM_EXT_V5, do_lstc2},
{"stc2", 0xfc000000, "", cplong_flag, ARM_EXT_V5, do_lstc2},
{"cdp2", 0xfe000000, "", NULL, ARM_EXT_V5, do_cdp2},
{"mcr2", 0xfe000010, "", NULL, ARM_EXT_V5, do_co_reg2},
{"mrc2", 0xfe100010, "", NULL, ARM_EXT_V5, do_co_reg2},
/* ARM ISA extension 5E, El Segundo. */
{"smlabb", 0x01000080, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlatb", 0x010000a0, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlabt", 0x010000c0, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlatt", 0x010000e0, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlawb", 0x01200080, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlawt", 0x012000c0, NULL, NULL, ARM_EXT_V5E, do_smla},
{"smlalbb",0x01400080, NULL, NULL, ARM_EXT_V5E, do_smlal},
{"smlaltb",0x014000a0, NULL, NULL, ARM_EXT_V5E, do_smlal},
{"smlalbt",0x014000c0, NULL, NULL, ARM_EXT_V5E, do_smlal},
{"smlaltt",0x014000e0, NULL, NULL, ARM_EXT_V5E, do_smlal},
{"smulbb", 0x01600080, NULL, NULL, ARM_EXT_V5E, do_smul},
{"smultb", 0x016000a0, NULL, NULL, ARM_EXT_V5E, do_smul},
{"smulbt", 0x016000c0, NULL, NULL, ARM_EXT_V5E, do_smul},
{"smultt", 0x016000e0, NULL, NULL, ARM_EXT_V5E, do_smul},
{"smulwb", 0x012000a0, NULL, NULL, ARM_EXT_V5E, do_smul},
{"smulwt", 0x012000e0, NULL, NULL, ARM_EXT_V5E, do_smul},
{"qadd", 0x01000050, NULL, NULL, ARM_EXT_V5E, do_qadd},
{"qdadd", 0x01400050, NULL, NULL, ARM_EXT_V5E, do_qadd},
{"qsub", 0x01200050, NULL, NULL, ARM_EXT_V5E, do_qadd},
{"qdsub", 0x01600050, NULL, NULL, ARM_EXT_V5E, do_qadd},
{"mcrr", 0x0c400000, NULL, NULL, ARM_EXT_V5E, do_co_reg2c},
{"mrrc", 0x0c500000, NULL, NULL, ARM_EXT_V5E, do_co_reg2c},
};
/* Defines for various bits that we will want to toggle. */
#define INST_IMMEDIATE 0x02000000
#define OFFSET_REG 0x02000000
#define HWOFFSET_IMM 0x00400000
#define SHIFT_BY_REG 0x00000010
#define PRE_INDEX 0x01000000
#define INDEX_UP 0x00800000
#define WRITE_BACK 0x00200000
#define LDM_TYPE_2_OR_3 0x00400000
#define LITERAL_MASK 0xf000f000
#define COND_MASK 0xf0000000
#define OPCODE_MASK 0xfe1fffff
#define DATA_OP_SHIFT 21
/* Codes to distinguish the arithmetic instructions. */
#define OPCODE_AND 0
#define OPCODE_EOR 1
#define OPCODE_SUB 2
#define OPCODE_RSB 3
#define OPCODE_ADD 4
#define OPCODE_ADC 5
#define OPCODE_SBC 6
#define OPCODE_RSC 7
#define OPCODE_TST 8
#define OPCODE_TEQ 9
#define OPCODE_CMP 10
#define OPCODE_CMN 11
#define OPCODE_ORR 12
#define OPCODE_MOV 13
#define OPCODE_BIC 14
#define OPCODE_MVN 15
static void do_t_nop PARAMS ((char *));
static void do_t_arit PARAMS ((char *));
static void do_t_add PARAMS ((char *));
static void do_t_asr PARAMS ((char *));
static void do_t_branch9 PARAMS ((char *));
static void do_t_branch12 PARAMS ((char *));
static void do_t_branch23 PARAMS ((char *));
static void do_t_bx PARAMS ((char *));
static void do_t_compare PARAMS ((char *));
static void do_t_ldmstm PARAMS ((char *));
static void do_t_ldr PARAMS ((char *));
static void do_t_ldrb PARAMS ((char *));
static void do_t_ldrh PARAMS ((char *));
static void do_t_lds PARAMS ((char *));
static void do_t_lsl PARAMS ((char *));
static void do_t_lsr PARAMS ((char *));
static void do_t_mov PARAMS ((char *));
static void do_t_push_pop PARAMS ((char *));
static void do_t_str PARAMS ((char *));
static void do_t_strb PARAMS ((char *));
static void do_t_strh PARAMS ((char *));
static void do_t_sub PARAMS ((char *));
static void do_t_swi PARAMS ((char *));
static void do_t_adr PARAMS ((char *));
#define T_OPCODE_MUL 0x4340
#define T_OPCODE_TST 0x4200
#define T_OPCODE_CMN 0x42c0
#define T_OPCODE_NEG 0x4240
#define T_OPCODE_MVN 0x43c0
#define T_OPCODE_ADD_R3 0x1800
#define T_OPCODE_SUB_R3 0x1a00
#define T_OPCODE_ADD_HI 0x4400
#define T_OPCODE_ADD_ST 0xb000
#define T_OPCODE_SUB_ST 0xb080
#define T_OPCODE_ADD_SP 0xa800
#define T_OPCODE_ADD_PC 0xa000
#define T_OPCODE_ADD_I8 0x3000
#define T_OPCODE_SUB_I8 0x3800
#define T_OPCODE_ADD_I3 0x1c00
#define T_OPCODE_SUB_I3 0x1e00
#define T_OPCODE_ASR_R 0x4100
#define T_OPCODE_LSL_R 0x4080
#define T_OPCODE_LSR_R 0x40c0
#define T_OPCODE_ASR_I 0x1000
#define T_OPCODE_LSL_I 0x0000
#define T_OPCODE_LSR_I 0x0800
#define T_OPCODE_MOV_I8 0x2000
#define T_OPCODE_CMP_I8 0x2800
#define T_OPCODE_CMP_LR 0x4280
#define T_OPCODE_MOV_HR 0x4600
#define T_OPCODE_CMP_HR 0x4500
#define T_OPCODE_LDR_PC 0x4800
#define T_OPCODE_LDR_SP 0x9800
#define T_OPCODE_STR_SP 0x9000
#define T_OPCODE_LDR_IW 0x6800
#define T_OPCODE_STR_IW 0x6000
#define T_OPCODE_LDR_IH 0x8800
#define T_OPCODE_STR_IH 0x8000
#define T_OPCODE_LDR_IB 0x7800
#define T_OPCODE_STR_IB 0x7000
#define T_OPCODE_LDR_RW 0x5800
#define T_OPCODE_STR_RW 0x5000
#define T_OPCODE_LDR_RH 0x5a00
#define T_OPCODE_STR_RH 0x5200
#define T_OPCODE_LDR_RB 0x5c00
#define T_OPCODE_STR_RB 0x5400
#define T_OPCODE_PUSH 0xb400
#define T_OPCODE_POP 0xbc00
#define T_OPCODE_BRANCH 0xe7fe
static int thumb_reg PARAMS ((char ** str, int hi_lo));
#define THUMB_SIZE 2 /* Size of thumb instruction. */
#define THUMB_REG_LO 0x1
#define THUMB_REG_HI 0x2
#define THUMB_REG_ANY 0x3
#define THUMB_H1 0x0080
#define THUMB_H2 0x0040
#define THUMB_ASR 0
#define THUMB_LSL 1
#define THUMB_LSR 2
#define THUMB_MOVE 0
#define THUMB_COMPARE 1
#define THUMB_LOAD 0
#define THUMB_STORE 1
#define THUMB_PP_PC_LR 0x0100
/* These three are used for immediate shifts, do not alter. */
#define THUMB_WORD 2
#define THUMB_HALFWORD 1
#define THUMB_BYTE 0
struct thumb_opcode
{
/* Basic string to match. */
CONST char * template;
/* Basic instruction code. */
unsigned long value;
int size;
/* Which CPU variants this exists for. */
unsigned long variants;
/* Function to call to parse args. */
void (* parms) PARAMS ((char *));
};
static CONST struct thumb_opcode tinsns[] =
{
{"adc", 0x4140, 2, ARM_EXT_THUMB, do_t_arit},
{"add", 0x0000, 2, ARM_EXT_THUMB, do_t_add},
{"and", 0x4000, 2, ARM_EXT_THUMB, do_t_arit},
{"asr", 0x0000, 2, ARM_EXT_THUMB, do_t_asr},
{"b", T_OPCODE_BRANCH, 2, ARM_EXT_THUMB, do_t_branch12},
{"beq", 0xd0fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bne", 0xd1fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bcs", 0xd2fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bhs", 0xd2fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bcc", 0xd3fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bul", 0xd3fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"blo", 0xd3fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bmi", 0xd4fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bpl", 0xd5fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bvs", 0xd6fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bvc", 0xd7fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bhi", 0xd8fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bls", 0xd9fe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bge", 0xdafe, 2, ARM_EXT_THUMB, do_t_branch9},
{"blt", 0xdbfe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bgt", 0xdcfe, 2, ARM_EXT_THUMB, do_t_branch9},
{"ble", 0xddfe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bal", 0xdefe, 2, ARM_EXT_THUMB, do_t_branch9},
{"bic", 0x4380, 2, ARM_EXT_THUMB, do_t_arit},
{"bl", 0xf7fffffe, 4, ARM_EXT_THUMB, do_t_branch23},
{"blx", 0, 0, ARM_EXT_V5, do_t_blx},
{"bkpt", 0xbe00, 2, ARM_EXT_V5, do_t_bkpt},
{"bx", 0x4700, 2, ARM_EXT_THUMB, do_t_bx},
{"cmn", T_OPCODE_CMN, 2, ARM_EXT_THUMB, do_t_arit},
{"cmp", 0x0000, 2, ARM_EXT_THUMB, do_t_compare},
{"eor", 0x4040, 2, ARM_EXT_THUMB, do_t_arit},
{"ldmia", 0xc800, 2, ARM_EXT_THUMB, do_t_ldmstm},
{"ldr", 0x0000, 2, ARM_EXT_THUMB, do_t_ldr},
{"ldrb", 0x0000, 2, ARM_EXT_THUMB, do_t_ldrb},
{"ldrh", 0x0000, 2, ARM_EXT_THUMB, do_t_ldrh},
{"ldrsb", 0x5600, 2, ARM_EXT_THUMB, do_t_lds},
{"ldrsh", 0x5e00, 2, ARM_EXT_THUMB, do_t_lds},
{"ldsb", 0x5600, 2, ARM_EXT_THUMB, do_t_lds},
{"ldsh", 0x5e00, 2, ARM_EXT_THUMB, do_t_lds},
{"lsl", 0x0000, 2, ARM_EXT_THUMB, do_t_lsl},
{"lsr", 0x0000, 2, ARM_EXT_THUMB, do_t_lsr},
{"mov", 0x0000, 2, ARM_EXT_THUMB, do_t_mov},
{"mul", T_OPCODE_MUL, 2, ARM_EXT_THUMB, do_t_arit},
{"mvn", T_OPCODE_MVN, 2, ARM_EXT_THUMB, do_t_arit},
{"neg", T_OPCODE_NEG, 2, ARM_EXT_THUMB, do_t_arit},
{"orr", 0x4300, 2, ARM_EXT_THUMB, do_t_arit},
{"pop", 0xbc00, 2, ARM_EXT_THUMB, do_t_push_pop},
{"push", 0xb400, 2, ARM_EXT_THUMB, do_t_push_pop},
{"ror", 0x41c0, 2, ARM_EXT_THUMB, do_t_arit},
{"sbc", 0x4180, 2, ARM_EXT_THUMB, do_t_arit},
{"stmia", 0xc000, 2, ARM_EXT_THUMB, do_t_ldmstm},
{"str", 0x0000, 2, ARM_EXT_THUMB, do_t_str},
{"strb", 0x0000, 2, ARM_EXT_THUMB, do_t_strb},
{"strh", 0x0000, 2, ARM_EXT_THUMB, do_t_strh},
{"swi", 0xdf00, 2, ARM_EXT_THUMB, do_t_swi},
{"sub", 0x0000, 2, ARM_EXT_THUMB, do_t_sub},
{"tst", T_OPCODE_TST, 2, ARM_EXT_THUMB, do_t_arit},
/* Pseudo ops: */
{"adr", 0x0000, 2, ARM_EXT_THUMB, do_t_adr},
{"nop", 0x46C0, 2, ARM_EXT_THUMB, do_t_nop}, /* mov r8,r8 */
};
struct reg_entry
{
CONST char * name;
int number;
};
#define int_register(reg) ((reg) >= 0 && (reg) <= 15)
#define cp_register(reg) ((reg) >= 32 && (reg) <= 47)
#define fp_register(reg) ((reg) >= 16 && (reg) <= 23)
#define REG_PC 15
#define REG_LR 14
#define REG_SP 13
/* These are the standard names. Users can add aliases with .req. */
static CONST struct reg_entry reg_table[] =
{
/* Processor Register Numbers. */
{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3},
{"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7},
{"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11},
{"r12", 12}, {"r13", REG_SP},{"r14", REG_LR},{"r15", REG_PC},
/* APCS conventions. */
{"a1", 0}, {"a2", 1}, {"a3", 2}, {"a4", 3},
{"v1", 4}, {"v2", 5}, {"v3", 6}, {"v4", 7}, {"v5", 8},
{"v6", 9}, {"sb", 9}, {"v7", 10}, {"sl", 10},
{"fp", 11}, {"ip", 12}, {"sp", REG_SP},{"lr", REG_LR},{"pc", REG_PC},
/* ATPCS additions to APCS conventions. */
{"wr", 7}, {"v8", 11},
/* FP Registers. */
{"f0", 16}, {"f1", 17}, {"f2", 18}, {"f3", 19},
{"f4", 20}, {"f5", 21}, {"f6", 22}, {"f7", 23},
{"c0", 32}, {"c1", 33}, {"c2", 34}, {"c3", 35},
{"c4", 36}, {"c5", 37}, {"c6", 38}, {"c7", 39},
{"c8", 40}, {"c9", 41}, {"c10", 42}, {"c11", 43},
{"c12", 44}, {"c13", 45}, {"c14", 46}, {"c15", 47},
{"cr0", 32}, {"cr1", 33}, {"cr2", 34}, {"cr3", 35},
{"cr4", 36}, {"cr5", 37}, {"cr6", 38}, {"cr7", 39},
{"cr8", 40}, {"cr9", 41}, {"cr10", 42}, {"cr11", 43},
{"cr12", 44}, {"cr13", 45}, {"cr14", 46}, {"cr15", 47},
/* ATPCS additions to float register names. */
{"s0",16}, {"s1",17}, {"s2",18}, {"s3",19},
{"s4",20}, {"s5",21}, {"s6",22}, {"s7",23},
{"d0",16}, {"d1",17}, {"d2",18}, {"d3",19},
{"d4",20}, {"d5",21}, {"d6",22}, {"d7",23},
/* FIXME: At some point we need to add VFP register names. */
/* Array terminator. */
{NULL, 0}
};
#define BAD_ARGS _("Bad arguments to instruction")
#define BAD_PC _("r15 not allowed here")
#define BAD_FLAGS _("Instruction should not have flags")
#define BAD_COND _("Instruction is not conditional")
#define ERR_NO_ACCUM _("acc0 expected")
static struct hash_control * arm_ops_hsh = NULL;
static struct hash_control * arm_tops_hsh = NULL;
static struct hash_control * arm_cond_hsh = NULL;
static struct hash_control * arm_shift_hsh = NULL;
static struct hash_control * arm_reg_hsh = NULL;
static struct hash_control * arm_psr_hsh = NULL;
/* This table describes all the machine specific pseudo-ops the assembler
has to support. The fields are:
pseudo-op name without dot
function to call to execute this pseudo-op
Integer arg to pass to the function. */
static void s_req PARAMS ((int));
static void s_align PARAMS ((int));
static void s_bss PARAMS ((int));
static void s_even PARAMS ((int));
static void s_ltorg PARAMS ((int));
static void s_arm PARAMS ((int));
static void s_thumb PARAMS ((int));
static void s_code PARAMS ((int));
static void s_force_thumb PARAMS ((int));
static void s_thumb_func PARAMS ((int));
static void s_thumb_set PARAMS ((int));
static void arm_s_text PARAMS ((int));
static void arm_s_data PARAMS ((int));
#ifdef OBJ_ELF
static void arm_s_section PARAMS ((int));
static void s_arm_elf_cons PARAMS ((int));
#endif
static int my_get_expression PARAMS ((expressionS *, char **));
CONST pseudo_typeS md_pseudo_table[] =
{
/* Never called becasue '.req' does not start line. */
{ "req", s_req, 0 },
{ "bss", s_bss, 0 },
{ "align", s_align, 0 },
{ "arm", s_arm, 0 },
{ "thumb", s_thumb, 0 },
{ "code", s_code, 0 },
{ "force_thumb", s_force_thumb, 0 },
{ "thumb_func", s_thumb_func, 0 },
{ "thumb_set", s_thumb_set, 0 },
{ "even", s_even, 0 },
{ "ltorg", s_ltorg, 0 },
{ "pool", s_ltorg, 0 },
/* Allow for the effect of section changes. */
{ "text", arm_s_text, 0 },
{ "data", arm_s_data, 0 },
#ifdef OBJ_ELF
{ "section", arm_s_section, 0 },
{ "section.s", arm_s_section, 0 },
{ "sect", arm_s_section, 0 },
{ "sect.s", arm_s_section, 0 },
{ "word", s_arm_elf_cons, 4 },
{ "long", s_arm_elf_cons, 4 },
{ "file", dwarf2_directive_file, 0 },
{ "loc", dwarf2_directive_loc, 0 },
#else
{ "word", cons, 4},
#endif
{ "extend", float_cons, 'x' },
{ "ldouble", float_cons, 'x' },
{ "packed", float_cons, 'p' },
{ 0, 0, 0 }
};
/* Stuff needed to resolve the label ambiguity
As:
...
label: <insn>
may differ from:
...
label:
<insn>
*/
symbolS * last_label_seen;
static int label_is_thumb_function_name = false;
/* Literal stuff. */
#define MAX_LITERAL_POOL_SIZE 1024
typedef struct literalS
{
struct expressionS exp;
struct arm_it * inst;
} literalT;
literalT literals[MAX_LITERAL_POOL_SIZE];
/* Next free entry in the pool. */
int next_literal_pool_place = 0;
/* Next literal pool number. */
int lit_pool_num = 1;
symbolS * current_poolP = NULL;
static int
add_to_lit_pool ()
{
int lit_count = 0;
if (current_poolP == NULL)
current_poolP = symbol_create (FAKE_LABEL_NAME, undefined_section,
(valueT) 0, &zero_address_frag);
/* Check if this literal value is already in the pool: */
while (lit_count < next_literal_pool_place)
{
if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op
&& inst.reloc.exp.X_op == O_constant
&& (literals[lit_count].exp.X_add_number
== inst.reloc.exp.X_add_number)
&& literals[lit_count].exp.X_unsigned == inst.reloc.exp.X_unsigned)
break;
if (literals[lit_count].exp.X_op == inst.reloc.exp.X_op
&& inst.reloc.exp.X_op == O_symbol
&& (literals[lit_count].exp.X_add_number
== inst.reloc.exp.X_add_number)
&& (literals[lit_count].exp.X_add_symbol
== inst.reloc.exp.X_add_symbol)
&& (literals[lit_count].exp.X_op_symbol
== inst.reloc.exp.X_op_symbol))
break;
lit_count++;
}
if (lit_count == next_literal_pool_place) /* New entry. */
{
if (next_literal_pool_place >= MAX_LITERAL_POOL_SIZE)
{
inst.error = _("Literal Pool Overflow");
return FAIL;
}
literals[next_literal_pool_place].exp = inst.reloc.exp;
lit_count = next_literal_pool_place++;
}
inst.reloc.exp.X_op = O_symbol;
inst.reloc.exp.X_add_number = (lit_count) * 4 - 8;
inst.reloc.exp.X_add_symbol = current_poolP;
return SUCCESS;
}
/* Can't use symbol_new here, so have to create a symbol and then at
a later date assign it a value. Thats what these functions do. */
static void
symbol_locate (symbolP, name, segment, valu, frag)
symbolS * symbolP;
CONST char * name; /* It is copied, the caller can modify. */
segT segment; /* Segment identifier (SEG_<something>). */
valueT valu; /* Symbol value. */
fragS * frag; /* Associated fragment. */
{
unsigned int name_length;
char * preserved_copy_of_name;
name_length = strlen (name) + 1; /* +1 for \0. */
obstack_grow (&notes, name, name_length);
preserved_copy_of_name = obstack_finish (&notes);
#ifdef STRIP_UNDERSCORE
if (preserved_copy_of_name[0] == '_')
preserved_copy_of_name++;
#endif
#ifdef tc_canonicalize_symbol_name
preserved_copy_of_name =
tc_canonicalize_symbol_name (preserved_copy_of_name);
#endif
S_SET_NAME (symbolP, preserved_copy_of_name);
S_SET_SEGMENT (symbolP, segment);
S_SET_VALUE (symbolP, valu);
symbol_clear_list_pointers(symbolP);
symbol_set_frag (symbolP, frag);
/* Link to end of symbol chain. */
{
extern int symbol_table_frozen;
if (symbol_table_frozen)
abort ();
}
symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP);
obj_symbol_new_hook (symbolP);
#ifdef tc_symbol_new_hook
tc_symbol_new_hook (symbolP);
#endif
#ifdef DEBUG_SYMS
verify_symbol_chain (symbol_rootP, symbol_lastP);
#endif /* DEBUG_SYMS */
}
/* Check that an immediate is valid.
If so, convert it to the right format. */
static unsigned int
validate_immediate (val)
unsigned int val;
{
unsigned int a;
unsigned int i;
#define rotate_left(v, n) (v << n | v >> (32 - n))
for (i = 0; i < 32; i += 2)
if ((a = rotate_left (val, i)) <= 0xff)
return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */
return FAIL;
}
/* Check to see if an immediate can be computed as two seperate immediate
values, added together. We already know that this value cannot be
computed by just one ARM instruction. */
static unsigned int
validate_immediate_twopart (val, highpart)
unsigned int val;
unsigned int * highpart;
{
unsigned int a;
unsigned int i;
for (i = 0; i < 32; i += 2)
if (((a = rotate_left (val, i)) & 0xff) != 0)
{
if (a & 0xff00)
{
if (a & ~ 0xffff)
continue;
* highpart = (a >> 8) | ((i + 24) << 7);
}
else if (a & 0xff0000)
{
if (a & 0xff000000)
continue;
* highpart = (a >> 16) | ((i + 16) << 7);
}
else
{
assert (a & 0xff000000);
* highpart = (a >> 24) | ((i + 8) << 7);
}
return (a & 0xff) | (i << 7);
}
return FAIL;
}
static int
validate_offset_imm (val, hwse)
unsigned int val;
int hwse;
{
if ((hwse && val > 255) || val > 4095)
return FAIL;
return val;
}
static void
s_req (a)
int a ATTRIBUTE_UNUSED;
{
as_bad (_("Invalid syntax for .req directive."));
}
static void
s_bss (ignore)
int ignore ATTRIBUTE_UNUSED;
{
/* We don't support putting frags in the BSS segment, we fake it by
marking in_bss, then looking at s_skip for clues. */
subseg_set (bss_section, 0);
demand_empty_rest_of_line ();
}
static void
s_even (ignore)
int ignore ATTRIBUTE_UNUSED;
{
/* Never make frag if expect extra pass. */
if (!need_pass_2)
frag_align (1, 0, 0);
record_alignment (now_seg, 1);
demand_empty_rest_of_line ();
}
static void
s_ltorg (ignored)
int ignored ATTRIBUTE_UNUSED;
{
int lit_count = 0;
char sym_name[20];
if (current_poolP == NULL)
return;
/* Align pool as you have word accesses.
Only make a frag if we have to. */
if (!need_pass_2)
frag_align (2, 0, 0);
record_alignment (now_seg, 2);
sprintf (sym_name, "$$lit_\002%x", lit_pool_num++);
symbol_locate (current_poolP, sym_name, now_seg,
(valueT) frag_now_fix (), frag_now);
symbol_table_insert (current_poolP);
ARM_SET_THUMB (current_poolP, thumb_mode);
#if defined OBJ_COFF || defined OBJ_ELF
ARM_SET_INTERWORK (current_poolP, support_interwork);
#endif
while (lit_count < next_literal_pool_place)
/* First output the expression in the instruction to the pool. */
emit_expr (&(literals[lit_count++].exp), 4); /* .word */
next_literal_pool_place = 0;
current_poolP = NULL;
}
/* Same as s_align_ptwo but align 0 => align 2. */
static void
s_align (unused)
int unused ATTRIBUTE_UNUSED;
{
register int temp;
register long temp_fill;
long max_alignment = 15;
temp = get_absolute_expression ();
if (temp > max_alignment)
as_bad (_("Alignment too large: %d. assumed."), temp = max_alignment);
else if (temp < 0)
{
as_bad (_("Alignment negative. 0 assumed."));
temp = 0;
}
if (*input_line_pointer == ',')
{
input_line_pointer++;
temp_fill = get_absolute_expression ();
}
else
temp_fill = 0;
if (!temp)
temp = 2;
/* Only make a frag if we HAVE to. */
if (temp && !need_pass_2)
frag_align (temp, (int) temp_fill, 0);
demand_empty_rest_of_line ();
record_alignment (now_seg, temp);
}
static void
s_force_thumb (ignore)
int ignore ATTRIBUTE_UNUSED;
{
/* If we are not already in thumb mode go into it, EVEN if
the target processor does not support thumb instructions.
This is used by gcc/config/arm/lib1funcs.asm for example
to compile interworking support functions even if the
target processor should not support interworking. */
if (! thumb_mode)
{
thumb_mode = 2;
record_alignment (now_seg, 1);
}
demand_empty_rest_of_line ();
}
static void
s_thumb_func (ignore)
int ignore ATTRIBUTE_UNUSED;
{
if (! thumb_mode)
opcode_select (16);
/* The following label is the name/address of the start of a Thumb function.
We need to know this for the interworking support. */
label_is_thumb_function_name = true;
demand_empty_rest_of_line ();
}
/* Perform a .set directive, but also mark the alias as
being a thumb function. */
static void
s_thumb_set (equiv)
int equiv;
{
/* XXX the following is a duplicate of the code for s_set() in read.c
We cannot just call that code as we need to get at the symbol that
is created. */
register char * name;
register char delim;
register char * end_name;
register symbolS * symbolP;
/* Especial apologies for the random logic:
This just grew, and could be parsed much more simply!
Dean - in haste. */
name = input_line_pointer;
delim = get_symbol_end ();
end_name = input_line_pointer;
*end_name = delim;
SKIP_WHITESPACE ();
if (*input_line_pointer != ',')
{
*end_name = 0;
as_bad (_("Expected comma after name \"%s\""), name);
*end_name = delim;
ignore_rest_of_line ();
return;
}
input_line_pointer++;
*end_name = 0;
if (name[0] == '.' && name[1] == '\0')
{
/* XXX - this should not happen to .thumb_set. */
abort ();
}
if ((symbolP = symbol_find (name)) == NULL
&& (symbolP = md_undefined_symbol (name)) == NULL)
{
#ifndef NO_LISTING
/* When doing symbol listings, play games with dummy fragments living
outside the normal fragment chain to record the file and line info
for this symbol. */
if (listing & LISTING_SYMBOLS)
{
extern struct list_info_struct * listing_tail;
fragS * dummy_frag = (fragS *) xmalloc (sizeof (fragS));
memset (dummy_frag, 0, sizeof (fragS));
dummy_frag->fr_type = rs_fill;
dummy_frag->line = listing_tail;
symbolP = symbol_new (name, undefined_section, 0, dummy_frag);
dummy_frag->fr_symbol = symbolP;
}
else
#endif
symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag);
#ifdef OBJ_COFF
/* "set" symbols are local unless otherwise specified. */
SF_SET_LOCAL (symbolP);
#endif /* OBJ_COFF */
} /* Make a new symbol. */
symbol_table_insert (symbolP);
* end_name = delim;
if (equiv
&& S_IS_DEFINED (symbolP)
&& S_GET_SEGMENT (symbolP) != reg_section)
as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP));
pseudo_set (symbolP);
demand_empty_rest_of_line ();
/* XXX Now we come to the Thumb specific bit of code. */
THUMB_SET_FUNC (symbolP, 1);
ARM_SET_THUMB (symbolP, 1);
#if defined OBJ_ELF || defined OBJ_COFF
ARM_SET_INTERWORK (symbolP, support_interwork);
#endif
}
/* If we change section we must dump the literal pool first. */
static void
arm_s_text (ignore)
int ignore;
{
if (now_seg != text_section)
s_ltorg (0);
#ifdef OBJ_ELF
obj_elf_text (ignore);
#else
s_text (ignore);
#endif
}
static void
arm_s_data (ignore)
int ignore;
{
if (flag_readonly_data_in_text)
{
if (now_seg != text_section)
s_ltorg (0);
}
else if (now_seg != data_section)
s_ltorg (0);
#ifdef OBJ_ELF
obj_elf_data (ignore);
#else
s_data (ignore);
#endif
}
#ifdef OBJ_ELF
static void
arm_s_section (ignore)
int ignore;
{
s_ltorg (0);
obj_elf_section (ignore);
}
#endif
static void
opcode_select (width)
int width;
{
switch (width)
{
case 16:
if (! thumb_mode)
{
if (! (cpu_variant & ARM_EXT_THUMB))
as_bad (_("selected processor does not support THUMB opcodes"));
thumb_mode = 1;
/* No need to force the alignment, since we will have been
coming from ARM mode, which is word-aligned. */
record_alignment (now_seg, 1);
}
break;
case 32:
if (thumb_mode)
{
if ((cpu_variant & ARM_ANY) == ARM_EXT_THUMB)
as_bad (_("selected processor does not support ARM opcodes"));
thumb_mode = 0;
if (!need_pass_2)
frag_align (2, 0, 0);
record_alignment (now_seg, 1);
}
break;
default:
as_bad (_("invalid instruction size selected (%d)"), width);
}
}
static void
s_arm (ignore)
int ignore ATTRIBUTE_UNUSED;
{
opcode_select (32);
demand_empty_rest_of_line ();
}
static void
s_thumb (ignore)
int ignore ATTRIBUTE_UNUSED;
{
opcode_select (16);
demand_empty_rest_of_line ();
}
static void
s_code (unused)
int unused ATTRIBUTE_UNUSED;
{
register int temp;
temp = get_absolute_expression ();
switch (temp)
{
case 16:
case 32:
opcode_select (temp);
break;
default:
as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp);
}
}
static void
end_of_line (str)
char * str;
{
skip_whitespace (str);
if (* str != '\0')
inst.error = _("Garbage following instruction");
}
static int
skip_past_comma (str)
char ** str;
{
char * p = * str, c;
int comma = 0;
while ((c = *p) == ' ' || c == ',')
{
p++;
if (c == ',' && comma++)
return FAIL;
}
if (c == '\0')
return FAIL;
*str = p;
return comma ? SUCCESS : FAIL;
}
/* A standard register must be given at this point.
SHIFT is the place to put it in inst.instruction.
Restores input start point on error.
Returns the reg#, or FAIL. */
static int
reg_required_here (str, shift)
char ** str;
int shift;
{
static char buff [128]; /* XXX */
int reg;
char * start = * str;
if ((reg = arm_reg_parse (str)) != FAIL && int_register (reg))
{
if (shift >= 0)
inst.instruction |= reg << shift;
return reg;
}
/* Restore the start point, we may have got a reg of the wrong class. */
*str = start;
/* In the few cases where we might be able to accept something else
this error can be overridden. */
sprintf (buff, _("Register expected, not '%.100s'"), start);
inst.error = buff;
return FAIL;
}
static CONST struct asm_psr *
arm_psr_parse (ccp)
register char ** ccp;
{
char * start = * ccp;
char c;
char * p;
CONST struct asm_psr * psr;
p = start;
/* Skip to the end of the next word in the input stream. */
do
{
c = *p++;
}
while (isalpha (c) || c == '_');
/* Terminate the word. */
*--p = 0;
/* CPSR's and SPSR's can now be lowercase. This is just a convenience
feature for ease of use and backwards compatibility. */
if (!strncmp (start, "cpsr", 4))
strncpy (start, "CPSR", 4);
else if (!strncmp (start, "spsr", 4))
strncpy (start, "SPSR", 4);
/* Now locate the word in the psr hash table. */
psr = (CONST struct asm_psr *) hash_find (arm_psr_hsh, start);
/* Restore the input stream. */
*p = c;
/* If we found a valid match, advance the
stream pointer past the end of the word. */
*ccp = p;
return psr;
}
/* Parse the input looking for a PSR flag. */
static int
psr_required_here (str)
char ** str;
{
char * start = * str;
CONST struct asm_psr * psr;
psr = arm_psr_parse (str);
if (psr)
{
/* If this is the SPSR that is being modified, set the R bit. */
if (! psr->cpsr)
inst.instruction |= SPSR_BIT;
/* Set the psr flags in the MSR instruction. */
inst.instruction |= psr->field << PSR_SHIFT;
return SUCCESS;
}
/* In the few cases where we might be able to accept
something else this error can be overridden. */
inst.error = _("flag for {c}psr instruction expected");
/* Restore the start point. */
*str = start;
return FAIL;
}
static int
co_proc_number (str)
char ** str;
{
int processor, pchar;
skip_whitespace (* str);
/* The data sheet seems to imply that just a number on its own is valid
here, but the RISC iX assembler seems to accept a prefix 'p'. We will
accept either. */
if (**str == 'p' || **str == 'P')
(*str)++;
pchar = *(*str)++;
if (pchar >= '0' && pchar <= '9')
{
processor = pchar - '0';
if (**str >= '0' && **str <= '9')
{
processor = processor * 10 + *(*str)++ - '0';
if (processor > 15)
{
inst.error = _("Illegal co-processor number");
return FAIL;
}
}
}
else
{
inst.error = _("Bad or missing co-processor number");
return FAIL;
}
inst.instruction |= processor << 8;
return SUCCESS;
}
static int
cp_opc_expr (str, where, length)
char ** str;
int where;
int length;
{
expressionS expr;
skip_whitespace (* str);
memset (&expr, '\0', sizeof (expr));
if (my_get_expression (&expr, str))
return FAIL;
if (expr.X_op != O_constant)
{
inst.error = _("bad or missing expression");
return FAIL;
}
if ((expr.X_add_number & ((1 << length) - 1)) != expr.X_add_number)
{
inst.error = _("immediate co-processor expression too large");
return FAIL;
}
inst.instruction |= expr.X_add_number << where;
return SUCCESS;
}
static int
cp_reg_required_here (str, where)
char ** str;
int where;
{
int reg;
char * start = *str;
if ((reg = arm_reg_parse (str)) != FAIL && cp_register (reg))
{
reg &= 15;
inst.instruction |= reg << where;
return reg;
}
/* In the few cases where we might be able to accept something else
this error can be overridden. */
inst.error = _("Co-processor register expected");
/* Restore the start point. */
*str = start;
return FAIL;
}
static int
fp_reg_required_here (str, where)
char ** str;
int where;
{
int reg;
char * start = * str;
if ((reg = arm_reg_parse (str)) != FAIL && fp_register (reg))
{
reg &= 7;
inst.instruction |= reg << where;
return reg;
}
/* In the few cases where we might be able to accept something else
this error can be overridden. */
inst.error = _("Floating point register expected");
/* Restore the start point. */
*str = start;
return FAIL;
}
static int
cp_address_offset (str)
char ** str;
{
int offset;
skip_whitespace (* str);
if (! is_immediate_prefix (**str))
{
inst.error = _("immediate expression expected");
return FAIL;
}
(*str)++;
if (my_get_expression (& inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_op == O_constant)
{
offset = inst.reloc.exp.X_add_number;
if (offset & 3)
{
inst.error = _("co-processor address must be word aligned");
return FAIL;
}
if (offset > 1023 || offset < -1023)
{
inst.error = _("offset too large");
return FAIL;
}
if (offset >= 0)
inst.instruction |= INDEX_UP;
else
offset = -offset;
inst.instruction |= offset >> 2;
}
else
inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
return SUCCESS;
}
static int
cp_address_required_here (str)
char ** str;
{
char * p = * str;
int pre_inc = 0;
int write_back = 0;
if (*p == '[')
{
int reg;
p++;
skip_whitespace (p);
if ((reg = reg_required_here (& p, 16)) == FAIL)
return FAIL;
skip_whitespace (p);
if (*p == ']')
{
p++;
if (skip_past_comma (& p) == SUCCESS)
{
/* [Rn], #expr */
write_back = WRITE_BACK;
if (reg == REG_PC)
{
inst.error = _("pc may not be used in post-increment");
return FAIL;
}
if (cp_address_offset (& p) == FAIL)
return FAIL;
}
else
pre_inc = PRE_INDEX | INDEX_UP;
}
else
{
/* '['Rn, #expr']'[!] */
if (skip_past_comma (& p) == FAIL)
{
inst.error = _("pre-indexed expression expected");
return FAIL;
}
pre_inc = PRE_INDEX;
if (cp_address_offset (& p) == FAIL)
return FAIL;
skip_whitespace (p);
if (*p++ != ']')
{
inst.error = _("missing ]");
return FAIL;
}
skip_whitespace (p);
if (*p == '!')
{
if (reg == REG_PC)
{
inst.error = _("pc may not be used with write-back");
return FAIL;
}
p++;
write_back = WRITE_BACK;
}
}
}
else
{
if (my_get_expression (&inst.reloc.exp, &p))
return FAIL;
inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM;
inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = PRE_INDEX;
}
inst.instruction |= write_back | pre_inc;
*str = p;
return SUCCESS;
}
static void
do_nop (str, flags)
char * str;
unsigned long flags;
{
/* Do nothing really. */
inst.instruction |= flags; /* This is pointless. */
end_of_line (str);
return;
}
static void
do_mrs (str, flags)
char *str;
unsigned long flags;
{
int skip = 0;
/* Only one syntax. */
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL)
{
inst.error = _("comma expected after register name");
return;
}
skip_whitespace (str);
if ( strcmp (str, "CPSR") == 0
|| strcmp (str, "SPSR") == 0
/* Lower case versions for backwards compatability. */
|| strcmp (str, "cpsr") == 0
|| strcmp (str, "spsr") == 0)
skip = 4;
/* This is for backwards compatability with older toolchains. */
else if ( strcmp (str, "cpsr_all") == 0
|| strcmp (str, "spsr_all") == 0)
skip = 8;
else
{
inst.error = _("{C|S}PSR expected");
return;
}
if (* str == 's' || * str == 'S')
inst.instruction |= SPSR_BIT;
str += skip;
inst.instruction |= flags;
end_of_line (str);
}
/* Two possible forms:
"{C|S}PSR_<field>, Rm",
"{C|S}PSR_f, #expression". */
static void
do_msr (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (psr_required_here (& str) == FAIL)
return;
if (skip_past_comma (& str) == FAIL)
{
inst.error = _("comma missing after psr flags");
return;
}
skip_whitespace (str);
if (reg_required_here (& str, 0) != FAIL)
{
inst.error = NULL;
inst.instruction |= flags;
end_of_line (str);
return;
}
if (! is_immediate_prefix (* str))
{
inst.error =
_("only a register or immediate value can follow a psr flag");
return;
}
str ++;
inst.error = NULL;
if (my_get_expression (& inst.reloc.exp, & str))
{
inst.error =
_("only a register or immediate value can follow a psr flag");
return;
}
#if 0 /* The first edition of the ARM architecture manual stated that
writing anything other than the flags with an immediate operation
had UNPREDICTABLE effects. This constraint was removed in the
second edition of the specification. */
if ((cpu_variant & ARM_EXT_V5) != ARM_EXT_V5
&& inst.instruction & ((PSR_c | PSR_x | PSR_s) << PSR_SHIFT))
{
inst.error = _("immediate value cannot be used to set this field");
return;
}
#endif
flags |= INST_IMMEDIATE;
if (inst.reloc.exp.X_add_symbol)
{
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
}
else
{
unsigned value = validate_immediate (inst.reloc.exp.X_add_number);
if (value == (unsigned) FAIL)
{
inst.error = _("Invalid constant");
return;
}
inst.instruction |= value;
}
inst.error = NULL;
inst.instruction |= flags;
end_of_line (str);
}
/* Long Multiply Parser
UMULL RdLo, RdHi, Rm, Rs
SMULL RdLo, RdHi, Rm, Rs
UMLAL RdLo, RdHi, Rm, Rs
SMLAL RdLo, RdHi, Rm, Rs. */
static void
do_mull (str, flags)
char * str;
unsigned long flags;
{
int rdlo, rdhi, rm, rs;
/* Only one format "rdlo, rdhi, rm, rs". */
skip_whitespace (str);
if ((rdlo = reg_required_here (&str, 12)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rdhi = reg_required_here (&str, 16)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
/* rdhi, rdlo and rm must all be different. */
if (rdlo == rdhi || rdlo == rm || rdhi == rm)
as_tsktsk (_("rdhi, rdlo and rm must all be different"));
if (skip_past_comma (&str) == FAIL
|| (rs = reg_required_here (&str, 8)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC || rdhi == REG_PC)
{
inst.error = BAD_PC;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_mul (str, flags)
char * str;
unsigned long flags;
{
int rd, rm;
/* Only one format "rd, rm, rs". */
skip_whitespace (str);
if ((rd = reg_required_here (&str, 16)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rd == REG_PC)
{
inst.error = BAD_PC;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rm == REG_PC)
{
inst.error = BAD_PC;
return;
}
if (rm == rd)
as_tsktsk (_("rd and rm should be different in mul"));
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 8)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rm == REG_PC)
{
inst.error = BAD_PC;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_mla (str, flags)
char * str;
unsigned long flags;
{
int rd, rm;
/* Only one format "rd, rm, rs, rn". */
skip_whitespace (str);
if ((rd = reg_required_here (&str, 16)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rd == REG_PC)
{
inst.error = BAD_PC;
return;
}
if (skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 0)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rm == REG_PC)
{
inst.error = BAD_PC;
return;
}
if (rm == rd)
as_tsktsk (_("rd and rm should be different in mla"));
if (skip_past_comma (&str) == FAIL
|| (rd = reg_required_here (&str, 8)) == FAIL
|| skip_past_comma (&str) == FAIL
|| (rm = reg_required_here (&str, 12)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rd == REG_PC || rm == REG_PC)
{
inst.error = BAD_PC;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
/* Expects *str -> the characters "acc0", possibly with leading blanks.
Advances *str to the next non-alphanumeric.
Returns 0, or else FAIL (in which case sets inst.error).
(In a future XScale, there may be accumulators other than zero.
At that time this routine and its callers can be upgraded to suit.) */
static int
accum0_required_here (str)
char ** str;
{
static char buff [128]; /* Note the address is taken. Hence, static. */
char * p = * str;
char c;
int result = 0; /* The accum number. */
skip_whitespace (p);
*str = p; /* Advance caller's string pointer too. */
c = *p++;
while (isalnum (c))
c = *p++;
*--p = 0; /* Aap nul into input buffer at non-alnum. */
if (! ( streq (*str, "acc0") || streq (*str, "ACC0")))
{
sprintf (buff, _("acc0 expected, not '%.100s'"), *str);
inst.error = buff;
result = FAIL;
}
*p = c; /* Unzap. */
*str = p; /* Caller's string pointer to after match. */
return result;
}
/* Expects **str -> after a comma. May be leading blanks.
Advances *str, recognizing a load mode, and setting inst.instruction.
Returns rn, or else FAIL (in which case may set inst.error
and not advance str)
Note: doesn't know Rd, so no err checks that require such knowledge. */
static int
ld_mode_required_here (string)
char ** string;
{
char * str = * string;
int rn;
int pre_inc = 0;
skip_whitespace (str);
if (* str == '[')
{
str++;
skip_whitespace (str);
if ((rn = reg_required_here (& str, 16)) == FAIL)
return FAIL;
skip_whitespace (str);
if (* str == ']')
{
str ++;
if (skip_past_comma (& str) == SUCCESS)
{
/* [Rn],... (post inc) */
if (ldst_extend (& str, 1) == FAIL)
return FAIL;
}
else /* [Rn] */
{
skip_whitespace (str);
if (* str == '!')
{
str ++;
inst.instruction |= WRITE_BACK;
}
inst.instruction |= INDEX_UP | HWOFFSET_IMM;
pre_inc = 1;
}
}
else /* [Rn,...] */
{
if (skip_past_comma (& str) == FAIL)
{
inst.error = _("pre-indexed expression expected");
return FAIL;
}
pre_inc = 1;
if (ldst_extend (& str, 1) == FAIL)
return FAIL;
skip_whitespace (str);
if (* str ++ != ']')
{
inst.error = _("missing ]");
return FAIL;
}
skip_whitespace (str);
if (* str == '!')
{
str ++;
inst.instruction |= WRITE_BACK;
}
}
}
else if (* str == '=') /* ldr's "r,=label" syntax */
/* We should never reach here, because <text> = <expression> is
caught gas/read.c read_a_source_file() as a .set operation. */
return FAIL;
else /* PC +- 8 bit immediate offset. */
{
if (my_get_expression (& inst.reloc.exp, & str))
return FAIL;
inst.instruction |= HWOFFSET_IMM; /* The I bit. */
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
inst.reloc.exp.X_add_number -= 8; /* PC rel adjust. */
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
rn = REG_PC;
pre_inc = 1;
}
inst.instruction |= (pre_inc ? PRE_INDEX : 0);
* string = str;
return rn;
}
/* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse)
SMLAxy{cond} Rd,Rm,Rs,Rn
SMLAWy{cond} Rd,Rm,Rs,Rn
Error if any register is R15. */
static void
do_smla (str, flags)
char * str;
unsigned long flags;
{
int rd, rm, rs, rn;
skip_whitespace (str);
if ((rd = reg_required_here (& str, 16)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rm = reg_required_here (& str, 0)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rs = reg_required_here (& str, 8)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rn = reg_required_here (& str, 12)) == FAIL)
inst.error = BAD_ARGS;
else if (rd == REG_PC || rm == REG_PC || rs == REG_PC || rn == REG_PC)
inst.error = BAD_PC;
else if (flags)
inst.error = BAD_FLAGS;
else
end_of_line (str);
}
/* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse)
SMLALxy{cond} Rdlo,Rdhi,Rm,Rs
Error if any register is R15.
Warning if Rdlo == Rdhi. */
static void
do_smlal (str, flags)
char * str;
unsigned long flags;
{
int rdlo, rdhi, rm, rs;
skip_whitespace (str);
if ((rdlo = reg_required_here (& str, 12)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rdhi = reg_required_here (& str, 16)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rm = reg_required_here (& str, 0)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rs = reg_required_here (& str, 8)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (rdlo == REG_PC || rdhi == REG_PC || rm == REG_PC || rs == REG_PC)
{
inst.error = BAD_PC;
return;
}
if (rdlo == rdhi)
as_tsktsk (_("rdhi and rdlo must be different"));
if (flags)
inst.error = BAD_FLAGS;
else
end_of_line (str);
}
/* ARM V5E (El Segundo) signed-multiply (argument parse)
SMULxy{cond} Rd,Rm,Rs
Error if any register is R15. */
static void
do_smul (str, flags)
char * str;
unsigned long flags;
{
int rd, rm, rs;
skip_whitespace (str);
if ((rd = reg_required_here (& str, 16)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rm = reg_required_here (& str, 0)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rs = reg_required_here (& str, 8)) == FAIL)
inst.error = BAD_ARGS;
else if (rd == REG_PC || rm == REG_PC || rs == REG_PC)
inst.error = BAD_PC;
else if (flags)
inst.error = BAD_FLAGS;
else
end_of_line (str);
}
/* ARM V5E (El Segundo) saturating-add/subtract (argument parse)
Q[D]{ADD,SUB}{cond} Rd,Rm,Rn
Error if any register is R15. */
static void
do_qadd (str, flags)
char * str;
unsigned long flags;
{
int rd, rm, rn;
skip_whitespace (str);
if ((rd = reg_required_here (& str, 12)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rm = reg_required_here (& str, 0)) == FAIL
|| skip_past_comma (& str) == FAIL
|| (rn = reg_required_here (& str, 16)) == FAIL)
inst.error = BAD_ARGS;
else if (rd == REG_PC || rm == REG_PC || rn == REG_PC)
inst.error = BAD_PC;
else if (flags)
inst.error = BAD_FLAGS;
else
end_of_line (str);
}
/* ARM V5E (el Segundo)
MCRRcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
MRRCcc <coproc>, <opcode>, <Rd>, <Rn>, <CRm>.
These are equivalent to the XScale instructions MAR and MRA,
respectively, when coproc == 0, opcode == 0, and CRm == 0.
Result unpredicatable if Rd or Rn is R15. */
static void
do_co_reg2c (str, flags)
char * str;
unsigned long flags;
{
int rd, rn;
skip_whitespace (str);
if (co_proc_number (& str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_opc_expr (& str, 4, 4) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| (rd = reg_required_here (& str, 12)) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| (rn = reg_required_here (& str, 16)) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
/* Unpredictable result if rd or rn is R15. */
if (rd == REG_PC || rn == REG_PC)
as_tsktsk
(_("Warning: Instruction unpredictable when using r15"));
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 0) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (flags)
inst.error = BAD_COND;
end_of_line (str);
}
/* ARM V5 count-leading-zeroes instruction (argument parse)
CLZ{<cond>} <Rd>, <Rm>
Condition defaults to COND_ALWAYS.
Error if Rd or Rm are R15. */
static void
do_clz (str, flags)
char * str;
unsigned long flags;
{
int rd, rm;
if (flags)
{
as_bad (BAD_FLAGS);
return;
}
skip_whitespace (str);
if (((rd = reg_required_here (& str, 12)) == FAIL)
|| (skip_past_comma (& str) == FAIL)
|| ((rm = reg_required_here (& str, 0)) == FAIL))
inst.error = BAD_ARGS;
else if (rd == REG_PC || rm == REG_PC )
inst.error = BAD_PC;
else
end_of_line (str);
}
/* ARM V5 (argument parse)
LDC2{L} <coproc>, <CRd>, <addressing mode>
STC2{L} <coproc>, <CRd>, <addressing mode>
Instruction is not conditional, and has 0xf in the codition field.
Otherwise, it's the same as LDC/STC. */
static void
do_lstc2 (str, flags)
char * str;
unsigned long flags;
{
if (flags)
inst.error = BAD_COND;
skip_whitespace (str);
if (co_proc_number (& str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
}
else if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
}
else if (skip_past_comma (& str) == FAIL
|| cp_address_required_here (& str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
}
else
end_of_line (str);
}
/* ARM V5 (argument parse)
CDP2 <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>
Instruction is not conditional, and has 0xf in the condition field.
Otherwise, it's the same as CDP. */
static void
do_cdp2 (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (co_proc_number (& str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_opc_expr (& str, 20,4) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 16) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 0) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == SUCCESS)
{
if (cp_opc_expr (& str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
}
if (flags)
inst.error = BAD_FLAGS;
end_of_line (str);
}
/* ARM V5 (argument parse)
MCR2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
MRC2 <coproc>, <opcode_1>, <Rd>, <CRn>, <CRm>, <opcode_2>
Instruction is not conditional, and has 0xf in the condition field.
Otherwise, it's the same as MCR/MRC. */
static void
do_co_reg2 (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (co_proc_number (& str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_opc_expr (& str, 21, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| reg_required_here (& str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 16) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| cp_reg_required_here (& str, 0) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == SUCCESS)
{
if (cp_opc_expr (& str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
}
if (flags)
inst.error = BAD_COND;
end_of_line (str);
}
/* THUMB V5 breakpoint instruction (argument parse)
BKPT <immed_8>. */
static void
do_t_bkpt (str)
char * str;
{
expressionS expr;
unsigned long number;
skip_whitespace (str);
/* Allow optional leading '#'. */
if (is_immediate_prefix (*str))
str ++;
memset (& expr, '\0', sizeof (expr));
if (my_get_expression (& expr, & str) || (expr.X_op != O_constant))
{
inst.error = _("bad or missing expression");
return;
}
number = expr.X_add_number;
/* Check it fits an 8 bit unsigned. */
if (number != (number & 0xff))
{
inst.error = _("immediate value out of range");
return;
}
inst.instruction |= number;
end_of_line (str);
}
/* ARM V5 branch-link-exchange (argument parse) for BLX(1) only.
Expects inst.instruction is set for BLX(1).
Note: this is cloned from do_branch, and the reloc changed to be a
new one that can cope with setting one extra bit (the H bit). */
static void
do_branch25 (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
if (my_get_expression (& inst.reloc.exp, & str))
return;
#ifdef OBJ_ELF
{
char * save_in;
/* ScottB: February 5, 1998 */
/* Check to see of PLT32 reloc required for the instruction. */
/* arm_parse_reloc() works on input_line_pointer.
We actually want to parse the operands to the branch instruction
passed in 'str'. Save the input pointer and restore it later. */
save_in = input_line_pointer;
input_line_pointer = str;
if (inst.reloc.exp.X_op == O_symbol
&& *str == '('
&& arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
{
inst.reloc.type = BFD_RELOC_ARM_PLT32;
inst.reloc.pc_rel = 0;
/* Modify str to point to after parsed operands, otherwise
end_of_line() will complain about the (PLT) left in str. */
str = input_line_pointer;
}
else
{
inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX;
inst.reloc.pc_rel = 1;
}
input_line_pointer = save_in;
}
#else
inst.reloc.type = BFD_RELOC_ARM_PCREL_BLX;
inst.reloc.pc_rel = 1;
#endif /* OBJ_ELF */
end_of_line (str);
}
/* ARM V5 branch-link-exchange instruction (argument parse)
BLX <target_addr> ie BLX(1)
BLX{<condition>} <Rm> ie BLX(2)
Unfortunately, there are two different opcodes for this mnemonic.
So, the insns[].value is not used, and the code here zaps values
into inst.instruction.
Also, the <target_addr> can be 25 bits, hence has its own reloc. */
static void
do_blx (str, flags)
char * str;
unsigned long flags;
{
char * mystr = str;
int rm;
if (flags)
{
as_bad (BAD_FLAGS);
return;
}
skip_whitespace (mystr);
rm = reg_required_here (& mystr, 0);
/* The above may set inst.error. Ignore his opinion. */
inst.error = 0;
if (rm != FAIL)
{
/* Arg is a register.
Use the condition code our caller put in inst.instruction.
Pass ourselves off as a BX with a funny opcode. */
inst.instruction |= 0x012fff30;
do_bx (str, flags);
}
else
{
/* This must be is BLX <target address>, no condition allowed. */
if (inst.instruction != COND_ALWAYS)
{
inst.error = BAD_COND;
return;
}
inst.instruction = 0xfafffffe;
/* Process like a B/BL, but with a different reloc.
Note that B/BL expecte fffffe, not 0, offset in the opcode table. */
do_branch25 (str, flags);
}
}
/* ARM V5 Thumb BLX (argument parse)
BLX <target_addr> which is BLX(1)
BLX <Rm> which is BLX(2)
Unfortunately, there are two different opcodes for this mnemonic.
So, the tinsns[].value is not used, and the code here zaps values
into inst.instruction. */
static void
do_t_blx (str)
char * str;
{
char * mystr = str;
int rm;
skip_whitespace (mystr);
inst.instruction = 0x4780;
/* Note that this call is to the ARM register recognizer. BLX(2)
uses the ARM register space, not the Thumb one, so a call to
thumb_reg() would be wrong. */
rm = reg_required_here (& mystr, 3);
inst.error = 0;
if (rm != FAIL)
{
/* It's BLX(2). The .instruction was zapped with rm & is final. */
inst.size = 2;
}
else
{
/* No ARM register. This must be BLX(1). Change the .instruction. */
inst.instruction = 0xf7ffeffe;
inst.size = 4;
if (my_get_expression (& inst.reloc.exp, & mystr))
return;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX;
inst.reloc.pc_rel = 1;
}
end_of_line (mystr);
}
/* ARM V5 breakpoint instruction (argument parse)
BKPT <16 bit unsigned immediate>
Instruction is not conditional.
The bit pattern given in insns[] has the COND_ALWAYS condition,
and it is an error if the caller tried to override that.
Note "flags" is nonzero if a flag was supplied (which is an error). */
static void
do_bkpt (str, flags)
char * str;
unsigned long flags;
{
expressionS expr;
unsigned long number;
skip_whitespace (str);
/* Allow optional leading '#'. */
if (is_immediate_prefix (* str))
str++;
memset (& expr, '\0', sizeof (expr));
if (my_get_expression (& expr, & str) || (expr.X_op != O_constant))
{
inst.error = _("bad or missing expression");
return;
}
number = expr.X_add_number;
/* Check it fits a 16 bit unsigned. */
if (number != (number & 0xffff))
{
inst.error = _("immediate value out of range");
return;
}
/* Top 12 of 16 bits to bits 19:8. */
inst.instruction |= (number & 0xfff0) << 4;
/* Bottom 4 of 16 bits to bits 3:0. */
inst.instruction |= number & 0xf;
end_of_line (str);
if (flags)
inst.error = BAD_FLAGS;
}
/* Xscale multiply-accumulate (argument parse)
MIAcc acc0,Rm,Rs
MIAPHcc acc0,Rm,Rs
MIAxycc acc0,Rm,Rs. */
static void
do_mia (str, flags)
char * str;
unsigned long flags;
{
int rs;
int rm;
if (flags)
as_bad (BAD_FLAGS);
else if (accum0_required_here (& str) == FAIL)
inst.error = ERR_NO_ACCUM;
else if (skip_past_comma (& str) == FAIL
|| (rm = reg_required_here (& str, 0)) == FAIL)
inst.error = BAD_ARGS;
else if (skip_past_comma (& str) == FAIL
|| (rs = reg_required_here (& str, 12)) == FAIL)
inst.error = BAD_ARGS;
/* inst.instruction has now been zapped with both rm and rs. */
else if (rm == REG_PC || rs == REG_PC)
inst.error = BAD_PC; /* Undefined result if rm or rs is R15. */
else
end_of_line (str);
}
/* Xscale move-accumulator-register (argument parse)
MARcc acc0,RdLo,RdHi. */
static void
do_mar (str, flags)
char * str;
unsigned long flags;
{
int rdlo, rdhi;
if (flags)
as_bad (BAD_FLAGS);
else if (accum0_required_here (& str) == FAIL)
inst.error = ERR_NO_ACCUM;
else if (skip_past_comma (& str) == FAIL
|| (rdlo = reg_required_here (& str, 12)) == FAIL)
inst.error = BAD_ARGS;
else if (skip_past_comma (& str) == FAIL
|| (rdhi = reg_required_here (& str, 16)) == FAIL)
inst.error = BAD_ARGS;
/* inst.instruction has now been zapped with both rdlo and rdhi. */
else if (rdlo == REG_PC || rdhi == REG_PC)
inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */
else
end_of_line (str);
}
/* Xscale move-register-accumulator (argument parse)
MRAcc RdLo,RdHi,acc0. */
static void
do_mra (str, flags)
char * str;
unsigned long flags;
{
int rdlo;
int rdhi;
if (flags)
{
as_bad (BAD_FLAGS);
return;
}
skip_whitespace (str);
if ((rdlo = reg_required_here (& str, 12)) == FAIL)
inst.error = BAD_ARGS;
else if (skip_past_comma (& str) == FAIL
|| (rdhi = reg_required_here (& str, 16)) == FAIL)
inst.error = BAD_ARGS;
else if (skip_past_comma (& str) == FAIL
|| accum0_required_here (& str) == FAIL)
inst.error = ERR_NO_ACCUM;
/* inst.instruction has now been zapped with both rdlo and rdhi. */
else if (rdlo == rdhi)
inst.error = BAD_ARGS; /* Undefined result if 2 writes to same reg. */
else if (rdlo == REG_PC || rdhi == REG_PC)
inst.error = BAD_PC; /* Undefined result if rdlo or rdhi is R15. */
else
end_of_line (str);
}
/* Xscale: Preload-Cache
PLD <addr_mode>
Syntactically, like LDR with B=1, W=0, L=1. */
static void
do_pld (str, flags)
char * str;
unsigned long flags;
{
int rd;
if (flags)
{
as_bad (BAD_FLAGS);
return;
}
skip_whitespace (str);
if (* str != '[')
{
inst.error = _("'[' expected after PLD mnemonic");
return;
}
++ str;
skip_whitespace (str);
if ((rd = reg_required_here (& str, 16)) == FAIL)
return;
skip_whitespace (str);
if (* str == ']')
{
/* [Rn], ... ? */
++ str;
skip_whitespace (str);
if (skip_past_comma (& str) == SUCCESS)
{
if (ldst_extend (& str, 0) == FAIL)
return;
}
else if (* str == '!') /* [Rn]! */
{
inst.error = _("writeback used in preload instruction");
++ str;
}
else /* [Rn] */
inst.instruction |= INDEX_UP | PRE_INDEX;
}
else /* [Rn, ...] */
{
if (skip_past_comma (& str) == FAIL)
{
inst.error = _("pre-indexed expression expected");
return;
}
if (ldst_extend (& str, 0) == FAIL)
return;
skip_whitespace (str);
if (* str != ']')
{
inst.error = _("missing ]");
return;
}
++ str;
skip_whitespace (str);
if (* str == '!') /* [Rn]! */
{
inst.error = _("writeback used in preload instruction");
++ str;
}
inst.instruction |= PRE_INDEX;
}
end_of_line (str);
}
/* Xscale load-consecutive (argument parse)
Mode is like LDRH.
LDRccD R, mode
STRccD R, mode. */
static void
do_ldrd (str, flags)
char * str;
unsigned long flags;
{
int rd;
int rn;
if (flags != DOUBLE_LOAD_FLAG)
{
/* Change instruction pattern to normal ldr/str. */
if (inst.instruction & 0x20)
inst.instruction = (inst.instruction & COND_MASK) | 0x04000000; /* str */
else
inst.instruction = (inst.instruction & COND_MASK) | 0x04100000; /* ldr */
/* Perform a normal load/store instruction parse. */
do_ldst (str, flags);
return;
}
if ((cpu_variant & ARM_EXT_XSCALE) != ARM_EXT_XSCALE)
{
static char buff[128];
--str;
while (isspace (*str))
--str;
str -= 4;
/* Deny all knowledge. */
sprintf (buff, _("bad instruction '%.100s'"), str);
inst.error = buff;
return;
}
skip_whitespace (str);
if ((rd = reg_required_here (& str, 12)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL
|| (rn = ld_mode_required_here (& str)) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
/* inst.instruction has now been zapped with Rd and the addressing mode. */
if (rd & 1) /* Unpredictable result if Rd is odd. */
{
inst.error = _("Destination register must be even");
return;
}
if (rd == REG_LR || rd == 12)
{
inst.error = _("r12 or r14 not allowed here");
return;
}
if (((rd == rn) || (rd + 1 == rn))
&&
((inst.instruction & WRITE_BACK)
|| (!(inst.instruction & PRE_INDEX))))
as_warn (_("pre/post-indexing used when modified address register is destination"));
end_of_line (str);
}
/* Returns the index into fp_values of a floating point number,
or -1 if not in the table. */
static int
my_get_float_expression (str)
char ** str;
{
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char * save_in;
expressionS exp;
int i;
int j;
memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE));
/* Look for a raw floating point number. */
if ((save_in = atof_ieee (*str, 'x', words)) != NULL
&& is_end_of_line[(unsigned char) *save_in])
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = save_in;
return i;
}
}
}
/* Try and parse a more complex expression, this will probably fail
unless the code uses a floating point prefix (eg "0f"). */
save_in = input_line_pointer;
input_line_pointer = *str;
if (expression (&exp) == absolute_section
&& exp.X_op == O_big
&& exp.X_add_number < 0)
{
/* FIXME: 5 = X_PRECISION, should be #define'd where we can use it.
Ditto for 15. */
if (gen_to_words (words, 5, (long) 15) == 0)
{
for (i = 0; i < NUM_FLOAT_VALS; i++)
{
for (j = 0; j < MAX_LITTLENUMS; j++)
{
if (words[j] != fp_values[i][j])
break;
}
if (j == MAX_LITTLENUMS)
{
*str = input_line_pointer;
input_line_pointer = save_in;
return i;
}
}
}
}
*str = input_line_pointer;
input_line_pointer = save_in;
return -1;
}
/* Return true if anything in the expression is a bignum. */
static int
walk_no_bignums (sp)
symbolS * sp;
{
if (symbol_get_value_expression (sp)->X_op == O_big)
return 1;
if (symbol_get_value_expression (sp)->X_add_symbol)
{
return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol)
|| (symbol_get_value_expression (sp)->X_op_symbol
&& walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol)));
}
return 0;
}
static int
my_get_expression (ep, str)
expressionS * ep;
char ** str;
{
char * save_in;
segT seg;
save_in = input_line_pointer;
input_line_pointer = *str;
seg = expression (ep);
#ifdef OBJ_AOUT
if (seg != absolute_section
&& seg != text_section
&& seg != data_section
&& seg != bss_section
&& seg != undefined_section)
{
inst.error = _("bad_segment");
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
#endif
/* Get rid of any bignums now, so that we don't generate an error for which
we can't establish a line number later on. Big numbers are never valid
in instructions, which is where this routine is always called. */
if (ep->X_op == O_big
|| (ep->X_add_symbol
&& (walk_no_bignums (ep->X_add_symbol)
|| (ep->X_op_symbol
&& walk_no_bignums (ep->X_op_symbol)))))
{
inst.error = _("Invalid constant");
*str = input_line_pointer;
input_line_pointer = save_in;
return 1;
}
*str = input_line_pointer;
input_line_pointer = save_in;
return 0;
}
/* UNRESTRICT should be one if <shift> <register> is permitted for this
instruction. */
static int
decode_shift (str, unrestrict)
char ** str;
int unrestrict;
{
const struct asm_shift_name * shift;
char * p;
char c;
skip_whitespace (* str);
for (p = * str; isalpha (* p); p ++)
;
if (p == * str)
{
inst.error = _("Shift expression expected");
return FAIL;
}
c = * p;
* p = '\0';
shift = (const struct asm_shift_name *) hash_find (arm_shift_hsh, * str);
* p = c;
if (shift == NULL)
{
inst.error = _("Shift expression expected");
return FAIL;
}
assert (shift->properties->index == shift_properties[shift->properties->index].index);
if (shift->properties->index == SHIFT_RRX)
{
* str = p;
inst.instruction |= shift->properties->bit_field;
return SUCCESS;
}
skip_whitespace (p);
if (unrestrict && reg_required_here (& p, 8) != FAIL)
{
inst.instruction |= shift->properties->bit_field | SHIFT_BY_REG;
* str = p;
return SUCCESS;
}
else if (! is_immediate_prefix (* p))
{
inst.error = (unrestrict
? _("shift requires register or #expression")
: _("shift requires #expression"));
* str = p;
return FAIL;
}
inst.error = NULL;
p ++;
if (my_get_expression (& inst.reloc.exp, & p))
return FAIL;
/* Validate some simple #expressions. */
if (inst.reloc.exp.X_op == O_constant)
{
unsigned num = inst.reloc.exp.X_add_number;
/* Reject operations greater than 32. */
if (num > 32
/* Reject a shift of 0 unless the mode allows it. */
|| (num == 0 && shift->properties->allows_0 == 0)
/* Reject a shift of 32 unless the mode allows it. */
|| (num == 32 && shift->properties->allows_32 == 0)
)
{
/* As a special case we allow a shift of zero for
modes that do not support it to be recoded as an
logical shift left of zero (ie nothing). We warn
about this though. */
if (num == 0)
{
as_warn (_("Shift of 0 ignored."));
shift = & shift_names[0];
assert (shift->properties->index == SHIFT_LSL);
}
else
{
inst.error = _("Invalid immediate shift");
return FAIL;
}
}
/* Shifts of 32 are encoded as 0, for those shifts that
support it. */
if (num == 32)
num = 0;
inst.instruction |= (num << 7) | shift->properties->bit_field;
}
else
{
inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM;
inst.reloc.pc_rel = 0;
inst.instruction |= shift->properties->bit_field;
}
* str = p;
return SUCCESS;
}
/* Do those data_ops which can take a negative immediate constant
by altering the instuction. A bit of a hack really.
MOV <-> MVN
AND <-> BIC
ADC <-> SBC
by inverting the second operand, and
ADD <-> SUB
CMP <-> CMN
by negating the second operand. */
static int
negate_data_op (instruction, value)
unsigned long * instruction;
unsigned long value;
{
int op, new_inst;
unsigned long negated, inverted;
negated = validate_immediate (-value);
inverted = validate_immediate (~value);
op = (*instruction >> DATA_OP_SHIFT) & 0xf;
switch (op)
{
/* First negates. */
case OPCODE_SUB: /* ADD <-> SUB */
new_inst = OPCODE_ADD;
value = negated;
break;
case OPCODE_ADD:
new_inst = OPCODE_SUB;
value = negated;
break;
case OPCODE_CMP: /* CMP <-> CMN */
new_inst = OPCODE_CMN;
value = negated;
break;
case OPCODE_CMN:
new_inst = OPCODE_CMP;
value = negated;
break;
/* Now Inverted ops. */
case OPCODE_MOV: /* MOV <-> MVN */
new_inst = OPCODE_MVN;
value = inverted;
break;
case OPCODE_MVN:
new_inst = OPCODE_MOV;
value = inverted;
break;
case OPCODE_AND: /* AND <-> BIC */
new_inst = OPCODE_BIC;
value = inverted;
break;
case OPCODE_BIC:
new_inst = OPCODE_AND;
value = inverted;
break;
case OPCODE_ADC: /* ADC <-> SBC */
new_inst = OPCODE_SBC;
value = inverted;
break;
case OPCODE_SBC:
new_inst = OPCODE_ADC;
value = inverted;
break;
/* We cannot do anything. */
default:
return FAIL;
}
if (value == (unsigned) FAIL)
return FAIL;
*instruction &= OPCODE_MASK;
*instruction |= new_inst << DATA_OP_SHIFT;
return value;
}
static int
data_op2 (str)
char ** str;
{
int value;
expressionS expr;
skip_whitespace (* str);
if (reg_required_here (str, 0) != FAIL)
{
if (skip_past_comma (str) == SUCCESS)
/* Shift operation on register. */
return decode_shift (str, NO_SHIFT_RESTRICT);
return SUCCESS;
}
else
{
/* Immediate expression. */
if (is_immediate_prefix (**str))
{
(*str)++;
inst.error = NULL;
if (my_get_expression (&inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_add_symbol)
{
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.pc_rel = 0;
}
else
{
if (skip_past_comma (str) == SUCCESS)
{
/* #x, y -- ie explicit rotation by Y. */
if (my_get_expression (&expr, str))
return FAIL;
if (expr.X_op != O_constant)
{
inst.error = _("Constant expression expected");
return FAIL;
}
/* Rotate must be a multiple of 2. */
if (((unsigned) expr.X_add_number) > 30
|| (expr.X_add_number & 1) != 0
|| ((unsigned) inst.reloc.exp.X_add_number) > 255)
{
inst.error = _("Invalid constant");
return FAIL;
}
inst.instruction |= INST_IMMEDIATE;
inst.instruction |= inst.reloc.exp.X_add_number;
inst.instruction |= expr.X_add_number << 7;
return SUCCESS;
}
/* Implicit rotation, select a suitable one. */
value = validate_immediate (inst.reloc.exp.X_add_number);
if (value == FAIL)
{
/* Can't be done. Perhaps the code reads something like
"add Rd, Rn, #-n", where "sub Rd, Rn, #n" would be OK. */
if ((value = negate_data_op (&inst.instruction,
inst.reloc.exp.X_add_number))
== FAIL)
{
inst.error = _("Invalid constant");
return FAIL;
}
}
inst.instruction |= value;
}
inst.instruction |= INST_IMMEDIATE;
return SUCCESS;
}
(*str)++;
inst.error = _("Register or shift expression expected");
return FAIL;
}
}
static int
fp_op2 (str)
char ** str;
{
skip_whitespace (* str);
if (fp_reg_required_here (str, 0) != FAIL)
return SUCCESS;
else
{
/* Immediate expression. */
if (*((*str)++) == '#')
{
int i;
inst.error = NULL;
skip_whitespace (* str);
/* First try and match exact strings, this is to guarantee
that some formats will work even for cross assembly. */
for (i = 0; fp_const[i]; i++)
{
if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0)
{
char *start = *str;
*str += strlen (fp_const[i]);
if (is_end_of_line[(unsigned char) **str])
{
inst.instruction |= i + 8;
return SUCCESS;
}
*str = start;
}
}
/* Just because we didn't get a match doesn't mean that the
constant isn't valid, just that it is in a format that we
don't automatically recognize. Try parsing it with
the standard expression routines. */
if ((i = my_get_float_expression (str)) >= 0)
{
inst.instruction |= i + 8;
return SUCCESS;
}
inst.error = _("Invalid floating point immediate expression");
return FAIL;
}
inst.error =
_("Floating point register or immediate expression expected");
return FAIL;
}
}
static void
do_arit (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL
|| skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 16) == FAIL
|| skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_adr (str, flags)
char * str;
unsigned long flags;
{
/* This is a pseudo-op of the form "adr rd, label" to be converted
into a relative address of the form "add rd, pc, #label-.-8". */
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL
|| skip_past_comma (&str) == FAIL
|| my_get_expression (&inst.reloc.exp, &str))
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
/* Frag hacking will turn this into a sub instruction if the offset turns
out to be negative. */
inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE;
inst.reloc.exp.X_add_number -= 8; /* PC relative adjust. */
inst.reloc.pc_rel = 1;
inst.instruction |= flags;
end_of_line (str);
}
static void
do_adrl (str, flags)
char * str;
unsigned long flags;
{
/* This is a pseudo-op of the form "adrl rd, label" to be converted
into a relative address of the form:
add rd, pc, #low(label-.-8)"
add rd, rd, #high(label-.-8)" */
skip_whitespace (str);
if (reg_required_here (& str, 12) == FAIL
|| skip_past_comma (& str) == FAIL
|| my_get_expression (& inst.reloc.exp, & str))
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
end_of_line (str);
/* Frag hacking will turn this into a sub instruction if the offset turns
out to be negative. */
inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE;
inst.reloc.exp.X_add_number -= 8; /* PC relative adjust */
inst.reloc.pc_rel = 1;
inst.instruction |= flags;
inst.size = INSN_SIZE * 2;
return;
}
static void
do_cmp (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
if ((flags & 0x0000f000) == 0)
inst.instruction |= CONDS_BIT;
end_of_line (str);
return;
}
static void
do_mov (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| data_op2 (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static int
ldst_extend (str, hwse)
char ** str;
int hwse;
{
int add = INDEX_UP;
switch (**str)
{
case '#':
case '$':
(*str)++;
if (my_get_expression (& inst.reloc.exp, str))
return FAIL;
if (inst.reloc.exp.X_op == O_constant)
{
int value = inst.reloc.exp.X_add_number;
if ((hwse && (value < -255 || value > 255))
|| (value < -4095 || value > 4095))
{
inst.error = _("address offset too large");
return FAIL;
}
if (value < 0)
{
value = -value;
add = 0;
}
/* Halfword and signextension instructions have the
immediate value split across bits 11..8 and bits 3..0. */
if (hwse)
inst.instruction |= (add | HWOFFSET_IMM
| ((value >> 4) << 8) | (value & 0xF));
else
inst.instruction |= add | value;
}
else
{
if (hwse)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
}
else
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
inst.reloc.pc_rel = 0;
}
return SUCCESS;
case '-':
add = 0;
/* Fall through. */
case '+':
(*str)++;
/* Fall through. */
default:
if (reg_required_here (str, 0) == FAIL)
return FAIL;
if (hwse)
inst.instruction |= add;
else
{
inst.instruction |= add | OFFSET_REG;
if (skip_past_comma (str) == SUCCESS)
return decode_shift (str, SHIFT_RESTRICT);
}
return SUCCESS;
}
}
static void
do_ldst (str, flags)
char * str;
unsigned long flags;
{
int halfword = 0;
int pre_inc = 0;
int conflict_reg;
int value;
/* This is not ideal, but it is the simplest way of dealing with the
ARM7T halfword instructions (since they use a different
encoding, but the same mnemonic): */
halfword = (flags & 0x80000000) != 0;
if (halfword)
{
/* This is actually a load/store of a halfword, or a
signed-extension load. */
if ((cpu_variant & ARM_EXT_HALFWORD) == 0)
{
inst.error
= _("Processor does not support halfwords or signed bytes");
return;
}
inst.instruction = ((inst.instruction & COND_MASK)
| (flags & ~COND_MASK));
flags = 0;
}
skip_whitespace (str);
if ((conflict_reg = reg_required_here (& str, 12)) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (& str) == FAIL)
{
inst.error = _("Address expected");
return;
}
if (*str == '[')
{
int reg;
str++;
skip_whitespace (str);
if ((reg = reg_required_here (&str, 16)) == FAIL)
return;
/* Conflicts can occur on stores as well as loads. */
conflict_reg = (conflict_reg == reg);
skip_whitespace (str);
if (*str == ']')
{
str ++;
if (skip_past_comma (&str) == SUCCESS)
{
/* [Rn],... (post inc) */
if (ldst_extend (&str, halfword) == FAIL)
return;
if (conflict_reg)
{
if (flags & TRANS_BIT)
as_warn (_("Rn and Rd must be different in %s"),
((inst.instruction & LOAD_BIT)
? "LDRT" : "STRT"));
else
as_warn (_("%s register same as write-back base"),
((inst.instruction & LOAD_BIT)
? _("destination") : _("source")));
}
}
else
{
/* [Rn] */
if (halfword)
inst.instruction |= HWOFFSET_IMM;
skip_whitespace (str);
if (*str == '!')
{
if (conflict_reg)
as_warn (_("%s register same as write-back base"),
((inst.instruction & LOAD_BIT)
? _("destination") : _("source")));
str++;
inst.instruction |= WRITE_BACK;
}
flags |= INDEX_UP;
if (flags & TRANS_BIT)
{
if (conflict_reg)
as_warn (_("Rn and Rd must be different in %s"),
((inst.instruction & LOAD_BIT)
? "LDRT" : "STRT"));
}
else
pre_inc = 1;
}
}
else
{
/* [Rn,...] */
if (skip_past_comma (&str) == FAIL)
{
inst.error = _("pre-indexed expression expected");
return;
}
pre_inc = 1;
if (ldst_extend (&str, halfword) == FAIL)
return;
skip_whitespace (str);
if (*str++ != ']')
{
inst.error = _("missing ]");
return;
}
skip_whitespace (str);
if (*str == '!')
{
if (conflict_reg)
as_warn (_("%s register same as write-back base"),
((inst.instruction & LOAD_BIT)
? _("destination") : _("source")));
str++;
inst.instruction |= WRITE_BACK;
}
}
}
else if (*str == '=')
{
/* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */
str++;
skip_whitespace (str);
if (my_get_expression (&inst.reloc.exp, &str))
return;
if (inst.reloc.exp.X_op != O_constant
&& inst.reloc.exp.X_op != O_symbol)
{
inst.error = _("Constant expression expected");
return;
}
if (inst.reloc.exp.X_op == O_constant)
{
value = validate_immediate (inst.reloc.exp.X_add_number);
if (value != FAIL)
{
/* This can be done with a mov instruction. */
inst.instruction &= LITERAL_MASK;
inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT);
inst.instruction |= (flags & COND_MASK) | (value & 0xfff);
end_of_line (str);
return;
}
value = validate_immediate (~ inst.reloc.exp.X_add_number);
if (value != FAIL)
{
/* This can be done with a mvn instruction. */
inst.instruction &= LITERAL_MASK;
inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT);
inst.instruction |= (flags & COND_MASK) | (value & 0xfff);
end_of_line (str);
return;
}
}
/* Insert into literal pool. */
if (add_to_lit_pool () == FAIL)
{
if (!inst.error)
inst.error = _("literal pool insertion failed");
return;
}
/* Change the instruction exp to point to the pool. */
if (halfword)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_HWLITERAL;
}
else
inst.reloc.type = BFD_RELOC_ARM_LITERAL;
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = 1;
}
else
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
if (halfword)
{
inst.instruction |= HWOFFSET_IMM;
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8;
}
else
inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM;
#ifndef TE_WINCE
/* PC rel adjust. */
inst.reloc.exp.X_add_number -= 8;
#endif
inst.reloc.pc_rel = 1;
inst.instruction |= (REG_PC << 16);
pre_inc = 1;
}
if (pre_inc && (flags & TRANS_BIT))
inst.error = _("Pre-increment instruction with translate");
inst.instruction |= flags | (pre_inc ? PRE_INDEX : 0);
end_of_line (str);
return;
}
static long
reg_list (strp)
char ** strp;
{
char * str = * strp;
long range = 0;
int another_range;
/* We come back here if we get ranges concatenated by '+' or '|'. */
do
{
another_range = 0;
if (*str == '{')
{
int in_range = 0;
int cur_reg = -1;
str++;
do
{
int reg;
skip_whitespace (str);
if ((reg = reg_required_here (& str, -1)) == FAIL)
return FAIL;
if (in_range)
{
int i;
if (reg <= cur_reg)
{
inst.error = _("Bad range in register list");
return FAIL;
}
for (i = cur_reg + 1; i < reg; i++)
{
if (range & (1 << i))
as_tsktsk
(_("Warning: Duplicated register (r%d) in register list"),
i);
else
range |= 1 << i;
}
in_range = 0;
}
if (range & (1 << reg))
as_tsktsk (_("Warning: Duplicated register (r%d) in register list"),
reg);
else if (reg <= cur_reg)
as_tsktsk (_("Warning: Register range not in ascending order"));
range |= 1 << reg;
cur_reg = reg;
}
while (skip_past_comma (&str) != FAIL
|| (in_range = 1, *str++ == '-'));
str--;
skip_whitespace (str);
if (*str++ != '}')
{
inst.error = _("Missing `}'");
return FAIL;
}
}
else
{
expressionS expr;
if (my_get_expression (&expr, &str))
return FAIL;
if (expr.X_op == O_constant)
{
if (expr.X_add_number
!= (expr.X_add_number & 0x0000ffff))
{
inst.error = _("invalid register mask");
return FAIL;
}
if ((range & expr.X_add_number) != 0)
{
int regno = range & expr.X_add_number;
regno &= -regno;
regno = (1 << regno) - 1;
as_tsktsk
(_("Warning: Duplicated register (r%d) in register list"),
regno);
}
range |= expr.X_add_number;
}
else
{
if (inst.reloc.type != 0)
{
inst.error = _("expression too complex");
return FAIL;
}
memcpy (&inst.reloc.exp, &expr, sizeof (expressionS));
inst.reloc.type = BFD_RELOC_ARM_MULTI;
inst.reloc.pc_rel = 0;
}
}
skip_whitespace (str);
if (*str == '|' || *str == '+')
{
str++;
another_range = 1;
}
}
while (another_range);
*strp = str;
return range;
}
static void
do_ldmstm (str, flags)
char * str;
unsigned long flags;
{
int base_reg;
long range;
skip_whitespace (str);
if ((base_reg = reg_required_here (&str, 16)) == FAIL)
return;
if (base_reg == REG_PC)
{
inst.error = _("r15 not allowed as base register");
return;
}
skip_whitespace (str);
if (*str == '!')
{
flags |= WRITE_BACK;
str++;
}
if (skip_past_comma (&str) == FAIL
|| (range = reg_list (&str)) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (*str == '^')
{
str++;
flags |= LDM_TYPE_2_OR_3;
}
inst.instruction |= flags | range;
end_of_line (str);
return;
}
static void
do_swi (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
/* Allow optional leading '#'. */
if (is_immediate_prefix (*str))
str++;
if (my_get_expression (& inst.reloc.exp, & str))
return;
inst.reloc.type = BFD_RELOC_ARM_SWI;
inst.reloc.pc_rel = 0;
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_swap (str, flags)
char * str;
unsigned long flags;
{
int reg;
skip_whitespace (str);
if ((reg = reg_required_here (&str, 12)) == FAIL)
return;
if (reg == REG_PC)
{
inst.error = _("r15 not allowed in swap");
return;
}
if (skip_past_comma (&str) == FAIL
|| (reg = reg_required_here (&str, 0)) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (reg == REG_PC)
{
inst.error = _("r15 not allowed in swap");
return;
}
if (skip_past_comma (&str) == FAIL
|| *str++ != '[')
{
inst.error = BAD_ARGS;
return;
}
skip_whitespace (str);
if ((reg = reg_required_here (&str, 16)) == FAIL)
return;
if (reg == REG_PC)
{
inst.error = BAD_PC;
return;
}
skip_whitespace (str);
if (*str++ != ']')
{
inst.error = _("missing ]");
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_branch (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
#ifdef OBJ_ELF
{
char * save_in;
/* ScottB: February 5, 1998 - Check to see of PLT32 reloc
required for the instruction. */
/* arm_parse_reloc () works on input_line_pointer.
We actually want to parse the operands to the branch instruction
passed in 'str'. Save the input pointer and restore it later. */
save_in = input_line_pointer;
input_line_pointer = str;
if (inst.reloc.exp.X_op == O_symbol
&& *str == '('
&& arm_parse_reloc () == BFD_RELOC_ARM_PLT32)
{
inst.reloc.type = BFD_RELOC_ARM_PLT32;
inst.reloc.pc_rel = 0;
/* Modify str to point to after parsed operands, otherwise
end_of_line() will complain about the (PLT) left in str. */
str = input_line_pointer;
}
else
{
inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH;
inst.reloc.pc_rel = 1;
}
input_line_pointer = save_in;
}
#else
inst.reloc.type = BFD_RELOC_ARM_PCREL_BRANCH;
inst.reloc.pc_rel = 1;
#endif /* OBJ_ELF */
end_of_line (str);
return;
}
static void
do_bx (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
int reg;
skip_whitespace (str);
if ((reg = reg_required_here (&str, 0)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
/* Note - it is not illegal to do a "bx pc". Useless, but not illegal. */
if (reg == REG_PC)
as_tsktsk (_("Use of r15 in bx in ARM mode is not really useful"));
end_of_line (str);
}
static void
do_cdp (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
/* Co-processor data operation.
Format: CDP{cond} CP#,<expr>,CRd,CRn,CRm{,<expr>} */
skip_whitespace (str);
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_opc_expr (&str, 20,4) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 0) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == SUCCESS)
{
if (cp_opc_expr (&str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
}
end_of_line (str);
return;
}
static void
do_lstc (str, flags)
char * str;
unsigned long flags;
{
/* Co-processor register load/store.
Format: <LDC|STC{cond}[L] CP#,CRd,<address> */
skip_whitespace (str);
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_co_reg (str, flags)
char * str;
unsigned long flags;
{
/* Co-processor register transfer.
Format: <MCR|MRC>{cond} CP#,<expr1>,Rd,CRn,CRm{,<expr2>} */
skip_whitespace (str);
if (co_proc_number (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_opc_expr (&str, 21, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 16) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_reg_required_here (&str, 0) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == SUCCESS)
{
if (cp_opc_expr (&str, 5, 3) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
}
if (flags)
{
inst.error = BAD_COND;
}
end_of_line (str);
return;
}
static void
do_fp_ctrl (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
/* FP control registers.
Format: <WFS|RFS|WFC|RFC>{cond} Rn */
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
end_of_line (str);
return;
}
static void
do_fp_ldst (str, flags)
char * str;
unsigned long flags ATTRIBUTE_UNUSED;
{
skip_whitespace (str);
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= CP_T_X;
break;
case SUFF_E:
inst.instruction |= CP_T_Y;
break;
case SUFF_P:
inst.instruction |= CP_T_X | CP_T_Y;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
end_of_line (str);
}
static void
do_fp_ldmstm (str, flags)
char * str;
unsigned long flags;
{
int num_regs;
skip_whitespace (str);
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
/* Get Number of registers to transfer. */
if (skip_past_comma (&str) == FAIL
|| my_get_expression (&inst.reloc.exp, &str))
{
if (! inst.error)
inst.error = _("constant expression expected");
return;
}
if (inst.reloc.exp.X_op != O_constant)
{
inst.error = _("Constant value required for number of registers");
return;
}
num_regs = inst.reloc.exp.X_add_number;
if (num_regs < 1 || num_regs > 4)
{
inst.error = _("number of registers must be in the range [1:4]");
return;
}
switch (num_regs)
{
case 1:
inst.instruction |= CP_T_X;
break;
case 2:
inst.instruction |= CP_T_Y;
break;
case 3:
inst.instruction |= CP_T_Y | CP_T_X;
break;
case 4:
break;
default:
abort ();
}
if (flags)
{
int reg;
int write_back;
int offset;
/* The instruction specified "ea" or "fd", so we can only accept
[Rn]{!}. The instruction does not really support stacking or
unstacking, so we have to emulate these by setting appropriate
bits and offsets. */
if (skip_past_comma (&str) == FAIL
|| *str != '[')
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
str++;
skip_whitespace (str);
if ((reg = reg_required_here (&str, 16)) == FAIL)
return;
skip_whitespace (str);
if (*str != ']')
{
inst.error = BAD_ARGS;
return;
}
str++;
if (*str == '!')
{
write_back = 1;
str++;
if (reg == REG_PC)
{
inst.error =
_("R15 not allowed as base register with write-back");
return;
}
}
else
write_back = 0;
if (flags & CP_T_Pre)
{
/* Pre-decrement. */
offset = 3 * num_regs;
if (write_back)
flags |= CP_T_WB;
}
else
{
/* Post-increment. */
if (write_back)
{
flags |= CP_T_WB;
offset = 3 * num_regs;
}
else
{
/* No write-back, so convert this into a standard pre-increment
instruction -- aesthetically more pleasing. */
flags = CP_T_Pre | CP_T_UD;
offset = 0;
}
}
inst.instruction |= flags | offset;
}
else if (skip_past_comma (&str) == FAIL
|| cp_address_required_here (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
end_of_line (str);
}
static void
do_fp_dyadic (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_monadic (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_cmp (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| fp_op2 (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_from_reg (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
switch (inst.suffix)
{
case SUFF_S:
break;
case SUFF_D:
inst.instruction |= 0x00000080;
break;
case SUFF_E:
inst.instruction |= 0x00080000;
break;
default:
abort ();
}
if (fp_reg_required_here (&str, 16) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) == FAIL
|| reg_required_here (&str, 12) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
static void
do_fp_to_reg (str, flags)
char * str;
unsigned long flags;
{
skip_whitespace (str);
if (reg_required_here (&str, 12) == FAIL)
return;
if (skip_past_comma (&str) == FAIL
|| fp_reg_required_here (&str, 0) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
inst.instruction |= flags;
end_of_line (str);
return;
}
/* Thumb specific routines. */
/* Parse and validate that a register is of the right form, this saves
repeated checking of this information in many similar cases.
Unlike the 32-bit case we do not insert the register into the opcode
here, since the position is often unknown until the full instruction
has been parsed. */
static int
thumb_reg (strp, hi_lo)
char ** strp;
int hi_lo;
{
int reg;
if ((reg = reg_required_here (strp, -1)) == FAIL)
return FAIL;
switch (hi_lo)
{
case THUMB_REG_LO:
if (reg > 7)
{
inst.error = _("lo register required");
return FAIL;
}
break;
case THUMB_REG_HI:
if (reg < 8)
{
inst.error = _("hi register required");
return FAIL;
}
break;
default:
break;
}
return reg;
}
/* Parse an add or subtract instruction, SUBTRACT is non-zero if the opcode
was SUB. */
static void
thumb_add_sub (str, subtract)
char * str;
int subtract;
{
int Rd, Rs, Rn = FAIL;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
|| skip_past_comma (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (is_immediate_prefix (*str))
{
Rs = Rd;
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else
{
if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
return;
if (skip_past_comma (&str) == FAIL)
{
/* Two operand format, shuffle the registers
and pretend there are 3. */
Rn = Rs;
Rs = Rd;
}
else if (is_immediate_prefix (*str))
{
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else if ((Rn = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
return;
}
/* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
for the latter case, EXPR contains the immediate that was found. */
if (Rn != FAIL)
{
/* All register format. */
if (Rd > 7 || Rs > 7 || Rn > 7)
{
if (Rs != Rd)
{
inst.error = _("dest and source1 must be the same register");
return;
}
/* Can't do this for SUB. */
if (subtract)
{
inst.error = _("subtract valid only on lo regs");
return;
}
inst.instruction = (T_OPCODE_ADD_HI
| (Rd > 7 ? THUMB_H1 : 0)
| (Rn > 7 ? THUMB_H2 : 0));
inst.instruction |= (Rd & 7) | ((Rn & 7) << 3);
}
else
{
inst.instruction = subtract ? T_OPCODE_SUB_R3 : T_OPCODE_ADD_R3;
inst.instruction |= Rd | (Rs << 3) | (Rn << 6);
}
}
else
{
/* Immediate expression, now things start to get nasty. */
/* First deal with HI regs, only very restricted cases allowed:
Adjusting SP, and using PC or SP to get an address. */
if ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP))
|| (Rs > 7 && Rs != REG_SP && Rs != REG_PC))
{
inst.error = _("invalid Hi register with immediate");
return;
}
if (inst.reloc.exp.X_op != O_constant)
{
/* Value isn't known yet, all we can do is store all the fragments
we know about in the instruction and let the reloc hacking
work it all out. */
inst.instruction = (subtract ? 0x8000 : 0) | (Rd << 4) | Rs;
inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
}
else
{
int offset = inst.reloc.exp.X_add_number;
if (subtract)
offset = -offset;
if (offset < 0)
{
offset = -offset;
subtract = 1;
/* Quick check, in case offset is MIN_INT. */
if (offset < 0)
{
inst.error = _("immediate value out of range");
return;
}
}
else
subtract = 0;
if (Rd == REG_SP)
{
if (offset & ~0x1fc)
{
inst.error = _("invalid immediate value for stack adjust");
return;
}
inst.instruction = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
inst.instruction |= offset >> 2;
}
else if (Rs == REG_PC || Rs == REG_SP)
{
if (subtract
|| (offset & ~0x3fc))
{
inst.error = _("invalid immediate for address calculation");
return;
}
inst.instruction = (Rs == REG_PC ? T_OPCODE_ADD_PC
: T_OPCODE_ADD_SP);
inst.instruction |= (Rd << 8) | (offset >> 2);
}
else if (Rs == Rd)
{
if (offset & ~0xff)
{
inst.error = _("immediate value out of range");
return;
}
inst.instruction = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
inst.instruction |= (Rd << 8) | offset;
}
else
{
if (offset & ~0x7)
{
inst.error = _("immediate value out of range");
return;
}
inst.instruction = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
inst.instruction |= Rd | (Rs << 3) | (offset << 6);
}
}
}
end_of_line (str);
}
static void
thumb_shift (str, shift)
char * str;
int shift;
{
int Rd, Rs, Rn = FAIL;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| skip_past_comma (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (is_immediate_prefix (*str))
{
/* Two operand immediate format, set Rs to Rd. */
Rs = Rd;
str ++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else
{
if ((Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
return;
if (skip_past_comma (&str) == FAIL)
{
/* Two operand format, shuffle the registers
and pretend there are 3. */
Rn = Rs;
Rs = Rd;
}
else if (is_immediate_prefix (*str))
{
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
return;
}
/* We now have Rd and Rs set to registers, and Rn set to a register or FAIL;
for the latter case, EXPR contains the immediate that was found. */
if (Rn != FAIL)
{
if (Rs != Rd)
{
inst.error = _("source1 and dest must be same register");
return;
}
switch (shift)
{
case THUMB_ASR: inst.instruction = T_OPCODE_ASR_R; break;
case THUMB_LSL: inst.instruction = T_OPCODE_LSL_R; break;
case THUMB_LSR: inst.instruction = T_OPCODE_LSR_R; break;
}
inst.instruction |= Rd | (Rn << 3);
}
else
{
switch (shift)
{
case THUMB_ASR: inst.instruction = T_OPCODE_ASR_I; break;
case THUMB_LSL: inst.instruction = T_OPCODE_LSL_I; break;
case THUMB_LSR: inst.instruction = T_OPCODE_LSR_I; break;
}
if (inst.reloc.exp.X_op != O_constant)
{
/* Value isn't known yet, create a dummy reloc and let reloc
hacking fix it up. */
inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT;
}
else
{
unsigned shift_value = inst.reloc.exp.X_add_number;
if (shift_value > 32 || (shift_value == 32 && shift == THUMB_LSL))
{
inst.error = _("Invalid immediate for shift");
return;
}
/* Shifts of zero are handled by converting to LSL. */
if (shift_value == 0)
inst.instruction = T_OPCODE_LSL_I;
/* Shifts of 32 are encoded as a shift of zero. */
if (shift_value == 32)
shift_value = 0;
inst.instruction |= shift_value << 6;
}
inst.instruction |= Rd | (Rs << 3);
}
end_of_line (str);
}
static void
thumb_mov_compare (str, move)
char * str;
int move;
{
int Rd, Rs = FAIL;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_ANY)) == FAIL
|| skip_past_comma (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (is_immediate_prefix (*str))
{
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else if ((Rs = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
return;
if (Rs != FAIL)
{
if (Rs < 8 && Rd < 8)
{
if (move == THUMB_MOVE)
/* A move of two lowregs is encoded as ADD Rd, Rs, #0
since a MOV instruction produces unpredictable results. */
inst.instruction = T_OPCODE_ADD_I3;
else
inst.instruction = T_OPCODE_CMP_LR;
inst.instruction |= Rd | (Rs << 3);
}
else
{
if (move == THUMB_MOVE)
inst.instruction = T_OPCODE_MOV_HR;
else
inst.instruction = T_OPCODE_CMP_HR;
if (Rd > 7)
inst.instruction |= THUMB_H1;
if (Rs > 7)
inst.instruction |= THUMB_H2;
inst.instruction |= (Rd & 7) | ((Rs & 7) << 3);
}
}
else
{
if (Rd > 7)
{
inst.error = _("only lo regs allowed with immediate");
return;
}
if (move == THUMB_MOVE)
inst.instruction = T_OPCODE_MOV_I8;
else
inst.instruction = T_OPCODE_CMP_I8;
inst.instruction |= Rd << 8;
if (inst.reloc.exp.X_op != O_constant)
inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM;
else
{
unsigned value = inst.reloc.exp.X_add_number;
if (value > 255)
{
inst.error = _("invalid immediate");
return;
}
inst.instruction |= value;
}
}
end_of_line (str);
}
static void
thumb_load_store (str, load_store, size)
char * str;
int load_store;
int size;
{
int Rd, Rb, Ro = FAIL;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| skip_past_comma (&str) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (*str == '[')
{
str++;
if ((Rb = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
return;
if (skip_past_comma (&str) != FAIL)
{
if (is_immediate_prefix (*str))
{
str++;
if (my_get_expression (&inst.reloc.exp, &str))
return;
}
else if ((Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
return;
}
else
{
inst.reloc.exp.X_op = O_constant;
inst.reloc.exp.X_add_number = 0;
}
if (*str != ']')
{
inst.error = _("expected ']'");
return;
}
str++;
}
else if (*str == '=')
{
/* Parse an "ldr Rd, =expr" instruction; this is another pseudo op. */
str++;
skip_whitespace (str);
if (my_get_expression (& inst.reloc.exp, & str))
return;
end_of_line (str);
if ( inst.reloc.exp.X_op != O_constant
&& inst.reloc.exp.X_op != O_symbol)
{
inst.error = "Constant expression expected";
return;
}
if (inst.reloc.exp.X_op == O_constant
&& ((inst.reloc.exp.X_add_number & ~0xFF) == 0))
{
/* This can be done with a mov instruction. */
inst.instruction = T_OPCODE_MOV_I8 | (Rd << 8);
inst.instruction |= inst.reloc.exp.X_add_number;
return;
}
/* Insert into literal pool. */
if (add_to_lit_pool () == FAIL)
{
if (!inst.error)
inst.error = "literal pool insertion failed";
return;
}
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
inst.reloc.pc_rel = 1;
inst.instruction = T_OPCODE_LDR_PC | (Rd << 8);
/* Adjust ARM pipeline offset to Thumb. */
inst.reloc.exp.X_add_number += 4;
return;
}
else
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.instruction = T_OPCODE_LDR_PC | (Rd << 8);
inst.reloc.pc_rel = 1;
inst.reloc.exp.X_add_number -= 4; /* Pipeline offset. */
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
end_of_line (str);
return;
}
if (Rb == REG_PC || Rb == REG_SP)
{
if (size != THUMB_WORD)
{
inst.error = _("byte or halfword not valid for base register");
return;
}
else if (Rb == REG_PC && load_store != THUMB_LOAD)
{
inst.error = _("R15 based store not allowed");
return;
}
else if (Ro != FAIL)
{
inst.error = _("Invalid base register for register offset");
return;
}
if (Rb == REG_PC)
inst.instruction = T_OPCODE_LDR_PC;
else if (load_store == THUMB_LOAD)
inst.instruction = T_OPCODE_LDR_SP;
else
inst.instruction = T_OPCODE_STR_SP;
inst.instruction |= Rd << 8;
if (inst.reloc.exp.X_op == O_constant)
{
unsigned offset = inst.reloc.exp.X_add_number;
if (offset & ~0x3fc)
{
inst.error = _("invalid offset");
return;
}
inst.instruction |= offset >> 2;
}
else
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
}
else if (Rb > 7)
{
inst.error = _("invalid base register in load/store");
return;
}
else if (Ro == FAIL)
{
/* Immediate offset. */
if (size == THUMB_WORD)
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_IW : T_OPCODE_STR_IW);
else if (size == THUMB_HALFWORD)
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_IH : T_OPCODE_STR_IH);
else
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_IB : T_OPCODE_STR_IB);
inst.instruction |= Rd | (Rb << 3);
if (inst.reloc.exp.X_op == O_constant)
{
unsigned offset = inst.reloc.exp.X_add_number;
if (offset & ~(0x1f << size))
{
inst.error = _("Invalid offset");
return;
}
inst.instruction |= (offset >> size) << 6;
}
else
inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET;
}
else
{
/* Register offset. */
if (size == THUMB_WORD)
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_RW : T_OPCODE_STR_RW);
else if (size == THUMB_HALFWORD)
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_RH : T_OPCODE_STR_RH);
else
inst.instruction = (load_store == THUMB_LOAD
? T_OPCODE_LDR_RB : T_OPCODE_STR_RB);
inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
}
end_of_line (str);
}
static void
do_t_nop (str)
char * str;
{
/* Do nothing. */
end_of_line (str);
return;
}
/* Handle the Format 4 instructions that do not have equivalents in other
formats. That is, ADC, AND, EOR, SBC, ROR, TST, NEG, CMN, ORR, MUL,
BIC and MVN. */
static void
do_t_arit (str)
char * str;
{
int Rd, Rs, Rn;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| skip_past_comma (&str) == FAIL
|| (Rs = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
{
inst.error = BAD_ARGS;
return;
}
if (skip_past_comma (&str) != FAIL)
{
/* Three operand format not allowed for TST, CMN, NEG and MVN.
(It isn't allowed for CMP either, but that isn't handled by this
function.) */
if (inst.instruction == T_OPCODE_TST
|| inst.instruction == T_OPCODE_CMN
|| inst.instruction == T_OPCODE_NEG
|| inst.instruction == T_OPCODE_MVN)
{
inst.error = BAD_ARGS;
return;
}
if ((Rn = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
return;
if (Rs != Rd)
{
inst.error = _("dest and source1 must be the same register");
return;
}
Rs = Rn;
}
if (inst.instruction == T_OPCODE_MUL
&& Rs == Rd)
as_tsktsk (_("Rs and Rd must be different in MUL"));
inst.instruction |= Rd | (Rs << 3);
end_of_line (str);
}
static void
do_t_add (str)
char * str;
{
thumb_add_sub (str, 0);
}
static void
do_t_asr (str)
char * str;
{
thumb_shift (str, THUMB_ASR);
}
static void
do_t_branch9 (str)
char * str;
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9;
inst.reloc.pc_rel = 1;
end_of_line (str);
}
static void
do_t_branch12 (str)
char * str;
{
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12;
inst.reloc.pc_rel = 1;
end_of_line (str);
}
/* Find the real, Thumb encoded start of a Thumb function. */
static symbolS *
find_real_start (symbolP)
symbolS * symbolP;
{
char * real_start;
const char * name = S_GET_NAME (symbolP);
symbolS * new_target;
/* This definiton must agree with the one in gcc/config/arm/thumb.c. */
#define STUB_NAME ".real_start_of"
if (name == NULL)
abort ();
/* Names that start with '.' are local labels, not function entry points.
The compiler may generate BL instructions to these labels because it
needs to perform a branch to a far away location. */
if (name[0] == '.')
return symbolP;
real_start = malloc (strlen (name) + strlen (STUB_NAME) + 1);
sprintf (real_start, "%s%s", STUB_NAME, name);
new_target = symbol_find (real_start);
if (new_target == NULL)
{
as_warn ("Failed to find real start of function: %s\n", name);
new_target = symbolP;
}
free (real_start);
return new_target;
}
static void
do_t_branch23 (str)
char * str;
{
if (my_get_expression (& inst.reloc.exp, & str))
return;
inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23;
inst.reloc.pc_rel = 1;
end_of_line (str);
/* If the destination of the branch is a defined symbol which does not have
the THUMB_FUNC attribute, then we must be calling a function which has
the (interfacearm) attribute. We look for the Thumb entry point to that
function and change the branch to refer to that function instead. */
if ( inst.reloc.exp.X_op == O_symbol
&& inst.reloc.exp.X_add_symbol != NULL
&& S_IS_DEFINED (inst.reloc.exp.X_add_symbol)
&& ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol))
inst.reloc.exp.X_add_symbol =
find_real_start (inst.reloc.exp.X_add_symbol);
}
static void
do_t_bx (str)
char * str;
{
int reg;
skip_whitespace (str);
if ((reg = thumb_reg (&str, THUMB_REG_ANY)) == FAIL)
return;
/* This sets THUMB_H2 from the top bit of reg. */
inst.instruction |= reg << 3;
/* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc
should cause the alignment to be checked once it is known. This is
because BX PC only works if the instruction is word aligned. */
end_of_line (str);
}
static void
do_t_compare (str)
char * str;
{
thumb_mov_compare (str, THUMB_COMPARE);
}
static void
do_t_ldmstm (str)
char * str;
{
int Rb;
long range;
skip_whitespace (str);
if ((Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL)
return;
if (*str != '!')
as_warn (_("Inserted missing '!': load/store multiple always writes back base register"));
else
str++;
if (skip_past_comma (&str) == FAIL
|| (range = reg_list (&str)) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (inst.reloc.type != BFD_RELOC_NONE)
{
/* This really doesn't seem worth it. */
inst.reloc.type = BFD_RELOC_NONE;
inst.error = _("Expression too complex");
return;
}
if (range & ~0xff)
{
inst.error = _("only lo-regs valid in load/store multiple");
return;
}
inst.instruction |= (Rb << 8) | range;
end_of_line (str);
}
static void
do_t_ldr (str)
char * str;
{
thumb_load_store (str, THUMB_LOAD, THUMB_WORD);
}
static void
do_t_ldrb (str)
char * str;
{
thumb_load_store (str, THUMB_LOAD, THUMB_BYTE);
}
static void
do_t_ldrh (str)
char * str;
{
thumb_load_store (str, THUMB_LOAD, THUMB_HALFWORD);
}
static void
do_t_lds (str)
char * str;
{
int Rd, Rb, Ro;
skip_whitespace (str);
if ((Rd = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| skip_past_comma (&str) == FAIL
|| *str++ != '['
|| (Rb = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| skip_past_comma (&str) == FAIL
|| (Ro = thumb_reg (&str, THUMB_REG_LO)) == FAIL
|| *str++ != ']')
{
if (! inst.error)
inst.error = _("Syntax: ldrs[b] Rd, [Rb, Ro]");
return;
}
inst.instruction |= Rd | (Rb << 3) | (Ro << 6);
end_of_line (str);
}
static void
do_t_lsl (str)
char * str;
{
thumb_shift (str, THUMB_LSL);
}
static void
do_t_lsr (str)
char * str;
{
thumb_shift (str, THUMB_LSR);
}
static void
do_t_mov (str)
char * str;
{
thumb_mov_compare (str, THUMB_MOVE);
}
static void
do_t_push_pop (str)
char * str;
{
long range;
skip_whitespace (str);
if ((range = reg_list (&str)) == FAIL)
{
if (! inst.error)
inst.error = BAD_ARGS;
return;
}
if (inst.reloc.type != BFD_RELOC_NONE)
{
/* This really doesn't seem worth it. */
inst.reloc.type = BFD_RELOC_NONE;
inst.error = _("Expression too complex");
return;
}
if (range & ~0xff)
{
if ((inst.instruction == T_OPCODE_PUSH
&& (range & ~0xff) == 1 << REG_LR)
|| (inst.instruction == T_OPCODE_POP
&& (range & ~0xff) == 1 << REG_PC))
{
inst.instruction |= THUMB_PP_PC_LR;
range &= 0xff;
}
else
{
inst.error = _("invalid register list to push/pop instruction");
return;
}
}
inst.instruction |= range;
end_of_line (str);
}
static void
do_t_str (str)
char * str;
{
thumb_load_store (str, THUMB_STORE, THUMB_WORD);
}
static void
do_t_strb (str)
char * str;
{
thumb_load_store (str, THUMB_STORE, THUMB_BYTE);
}
static void
do_t_strh (str)
char * str;
{
thumb_load_store (str, THUMB_STORE, THUMB_HALFWORD);
}
static void
do_t_sub (str)
char * str;
{
thumb_add_sub (str, 1);
}
static void
do_t_swi (str)
char * str;
{
skip_whitespace (str);
if (my_get_expression (&inst.reloc.exp, &str))
return;
inst.reloc.type = BFD_RELOC_ARM_SWI;
end_of_line (str);
return;
}
static void
do_t_adr (str)
char * str;
{
int reg;
/* This is a pseudo-op of the form "adr rd, label" to be converted
into a relative address of the form "add rd, pc, #label-.-4". */
skip_whitespace (str);
/* Store Rd in temporary location inside instruction. */
if ((reg = reg_required_here (&str, 4)) == FAIL
|| (reg > 7) /* For Thumb reg must be r0..r7. */
|| skip_past_comma (&str) == FAIL
|| my_get_expression (&inst.reloc.exp, &str))
{
if (!inst.error)
inst.error = BAD_ARGS;
return;
}
inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD;
inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */
inst.reloc.pc_rel = 1;
inst.instruction |= REG_PC; /* Rd is already placed into the instruction. */
end_of_line (str);
}
static void
insert_reg (entry)
int entry;
{
int len = strlen (reg_table[entry].name) + 2;
char * buf = (char *) xmalloc (len);
char * buf2 = (char *) xmalloc (len);
int i = 0;
#ifdef REGISTER_PREFIX
buf[i++] = REGISTER_PREFIX;
#endif
strcpy (buf + i, reg_table[entry].name);
for (i = 0; buf[i]; i++)
buf2[i] = islower (buf[i]) ? toupper (buf[i]) : buf[i];
buf2[i] = '\0';
hash_insert (arm_reg_hsh, buf, (PTR) & reg_table[entry]);
hash_insert (arm_reg_hsh, buf2, (PTR) & reg_table[entry]);
}
static void
insert_reg_alias (str, regnum)
char *str;
int regnum;
{
struct reg_entry *new =
(struct reg_entry *) xmalloc (sizeof (struct reg_entry));
char *name = xmalloc (strlen (str) + 1);
strcpy (name, str);
new->name = name;
new->number = regnum;
hash_insert (arm_reg_hsh, name, (PTR) new);
}
static void
set_constant_flonums ()
{
int i;
for (i = 0; i < NUM_FLOAT_VALS; i++)
if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL)
abort ();
}
void
md_begin ()
{
unsigned mach;
unsigned int i;
if ( (arm_ops_hsh = hash_new ()) == NULL
|| (arm_tops_hsh = hash_new ()) == NULL
|| (arm_cond_hsh = hash_new ()) == NULL
|| (arm_shift_hsh = hash_new ()) == NULL
|| (arm_reg_hsh = hash_new ()) == NULL
|| (arm_psr_hsh = hash_new ()) == NULL)
as_fatal (_("Virtual memory exhausted"));
for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++)
hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i));
for (i = 0; i < sizeof (tinsns) / sizeof (struct thumb_opcode); i++)
hash_insert (arm_tops_hsh, tinsns[i].template, (PTR) (tinsns + i));
for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++)
hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i));
for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++)
hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i));
for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++)
hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i));
for (i = 0; reg_table[i].name; i++)
insert_reg (i);
set_constant_flonums ();
#if defined OBJ_COFF || defined OBJ_ELF
{
unsigned int flags = 0;
/* Set the flags in the private structure. */
if (uses_apcs_26) flags |= F_APCS26;
if (support_interwork) flags |= F_INTERWORK;
if (uses_apcs_float) flags |= F_APCS_FLOAT;
if (pic_code) flags |= F_PIC;
if ((cpu_variant & FPU_ALL) == FPU_NONE) flags |= F_SOFT_FLOAT;
bfd_set_private_flags (stdoutput, flags);
/* We have run out flags in the COFF header to encode the
status of ATPCS support, so instead we create a dummy,
empty, debug section called .arm.atpcs. */
if (atpcs)
{
asection * sec;
sec = bfd_make_section (stdoutput, ".arm.atpcs");
if (sec != NULL)
{
bfd_set_section_flags
(stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */);
bfd_set_section_size (stdoutput, sec, 0);
bfd_set_section_contents (stdoutput, sec, NULL, 0, 0);
}
}
}
#endif
/* Record the CPU type as well. */
switch (cpu_variant & ARM_CPU_MASK)
{
case ARM_2:
mach = bfd_mach_arm_2;
break;
case ARM_3: /* Also ARM_250. */
mach = bfd_mach_arm_2a;
break;
default:
case ARM_6 | ARM_3 | ARM_2: /* Actually no CPU type defined. */
mach = bfd_mach_arm_4;
break;
case ARM_7: /* Also ARM_6. */
mach = bfd_mach_arm_3;
break;
}
/* Catch special cases. */
if (cpu_variant & ARM_EXT_XSCALE)
mach = bfd_mach_arm_XScale;
else if (cpu_variant & ARM_EXT_V5E)
mach = bfd_mach_arm_5TE;
else if (cpu_variant & ARM_EXT_V5)
{
if (cpu_variant & ARM_EXT_THUMB)
mach = bfd_mach_arm_5T;
else
mach = bfd_mach_arm_5;
}
else if (cpu_variant & ARM_EXT_HALFWORD)
{
if (cpu_variant & ARM_EXT_THUMB)
mach = bfd_mach_arm_4T;
else
mach = bfd_mach_arm_4;
}
else if (cpu_variant & ARM_EXT_LONGMUL)
mach = bfd_mach_arm_3M;
bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach);
}
/* Turn an integer of n bytes (in val) into a stream of bytes appropriate
for use in the a.out file, and stores them in the array pointed to by buf.
This knows about the endian-ness of the target machine and does
THE RIGHT THING, whatever it is. Possible values for n are 1 (byte)
2 (short) and 4 (long) Floating numbers are put out as a series of
LITTLENUMS (shorts, here at least). */
void
md_number_to_chars (buf, val, n)
char * buf;
valueT val;
int n;
{
if (target_big_endian)
number_to_chars_bigendian (buf, val, n);
else
number_to_chars_littleendian (buf, val, n);
}
static valueT
md_chars_to_number (buf, n)
char * buf;
int n;
{
valueT result = 0;
unsigned char * where = (unsigned char *) buf;
if (target_big_endian)
{
while (n--)
{
result <<= 8;
result |= (*where++ & 255);
}
}
else
{
while (n--)
{
result <<= 8;
result |= (where[n] & 255);
}
}
return result;
}
/* Turn a string in input_line_pointer into a floating point constant
of type TYPE, and store the appropriate bytes in *LITP. The number
of LITTLENUMS emitted is stored in *SIZEP. An error message is
returned, or NULL on OK.
Note that fp constants aren't represent in the normal way on the ARM.
In big endian mode, things are as expected. However, in little endian
mode fp constants are big-endian word-wise, and little-endian byte-wise
within the words. For example, (double) 1.1 in big endian mode is
the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is
the byte sequence 99 99 f1 3f 9a 99 99 99.
??? The format of 12 byte floats is uncertain according to gcc's arm.h. */
char *
md_atof (type, litP, sizeP)
char type;
char * litP;
int * sizeP;
{
int prec;
LITTLENUM_TYPE words[MAX_LITTLENUMS];
char *t;
int i;
switch (type)
{
case 'f':
case 'F':
case 's':
case 'S':
prec = 2;
break;
case 'd':
case 'D':
case 'r':
case 'R':
prec = 4;
break;
case 'x':
case 'X':
prec = 6;
break;
case 'p':
case 'P':
prec = 6;
break;
default:
*sizeP = 0;
return _("Bad call to MD_ATOF()");
}
t = atof_ieee (input_line_pointer, type, words);
if (t)
input_line_pointer = t;
*sizeP = prec * 2;
if (target_big_endian)
{
for (i = 0; i < prec; i++)
{
md_number_to_chars (litP, (valueT) words[i], 2);
litP += 2;
}
}
else
{
/* For a 4 byte float the order of elements in `words' is 1 0. For an
8 byte float the order is 1 0 3 2. */
for (i = 0; i < prec; i += 2)
{
md_number_to_chars (litP, (valueT) words[i + 1], 2);
md_number_to_chars (litP + 2, (valueT) words[i], 2);
litP += 4;
}
}
return 0;
}
/* The knowledge of the PC's pipeline offset is built into the insns
themselves. */
long
md_pcrel_from (fixP)
fixS * fixP;
{
if (fixP->fx_addsy
&& S_GET_SEGMENT (fixP->fx_addsy) == undefined_section
&& fixP->fx_subsy == NULL)
return 0;
if (fixP->fx_pcrel && (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_ADD))
{
/* PC relative addressing on the Thumb is slightly odd
as the bottom two bits of the PC are forced to zero
for the calculation. */
return (fixP->fx_where + fixP->fx_frag->fr_address) & ~3;
}
#ifdef TE_WINCE
/* The pattern was adjusted to accomodate CE's off-by-one fixups,
so we un-adjust here to compensate for the accomodation. */
return fixP->fx_where + fixP->fx_frag->fr_address + 8;
#else
return fixP->fx_where + fixP->fx_frag->fr_address;
#endif
}
/* Round up a section size to the appropriate boundary. */
valueT
md_section_align (segment, size)
segT segment ATTRIBUTE_UNUSED;
valueT size;
{
#ifdef OBJ_ELF
return size;
#else
/* Round all sects to multiple of 4. */
return (size + 3) & ~3;
#endif
}
/* Under ELF we need to default _GLOBAL_OFFSET_TABLE.
Otherwise we have no need to default values of symbols. */
symbolS *
md_undefined_symbol (name)
char * name ATTRIBUTE_UNUSED;
{
#ifdef OBJ_ELF
if (name[0] == '_' && name[1] == 'G'
&& streq (name, GLOBAL_OFFSET_TABLE_NAME))
{
if (!GOT_symbol)
{
if (symbol_find (name))
as_bad ("GOT already in the symbol table");
GOT_symbol = symbol_new (name, undefined_section,
(valueT) 0, & zero_address_frag);
}
return GOT_symbol;
}
#endif
return 0;
}
/* arm_reg_parse () := if it looks like a register, return its token and
advance the pointer. */
static int
arm_reg_parse (ccp)
register char ** ccp;
{
char * start = * ccp;
char c;
char * p;
struct reg_entry * reg;
#ifdef REGISTER_PREFIX
if (*start != REGISTER_PREFIX)
return FAIL;
p = start + 1;
#else
p = start;
#ifdef OPTIONAL_REGISTER_PREFIX
if (*p == OPTIONAL_REGISTER_PREFIX)
p++, start++;
#endif
#endif
if (!isalpha (*p) || !is_name_beginner (*p))
return FAIL;
c = *p++;
while (isalpha (c) || isdigit (c) || c == '_')
c = *p++;
*--p = 0;
reg = (struct reg_entry *) hash_find (arm_reg_hsh, start);
*p = c;
if (reg)
{
*ccp = p;
return reg->number;
}
return FAIL;
}
int
md_apply_fix3 (fixP, val, seg)
fixS * fixP;
valueT * val;
segT seg;
{
offsetT value = * val;
offsetT newval;
unsigned int newimm;
unsigned long temp;
int sign;
char * buf = fixP->fx_where + fixP->fx_frag->fr_literal;
arm_fix_data * arm_data = (arm_fix_data *) fixP->tc_fix_data;
assert (fixP->fx_r_type < BFD_RELOC_UNUSED);
/* Note whether this will delete the relocation. */
#if 0
/* Patch from REarnshaw to JDavis (disabled for the moment, since it
doesn't work fully.) */
if ((fixP->fx_addsy == 0 || symbol_constant_p (fixP->fx_addsy))
&& !fixP->fx_pcrel)
#else
if (fixP->fx_addsy == 0 && !fixP->fx_pcrel)
#endif
fixP->fx_done = 1;
/* If this symbol is in a different section then we need to leave it for
the linker to deal with. Unfortunately, md_pcrel_from can't tell,
so we have to undo it's effects here. */
if (fixP->fx_pcrel)
{
if (fixP->fx_addsy != NULL
&& S_IS_DEFINED (fixP->fx_addsy)
&& S_GET_SEGMENT (fixP->fx_addsy) != seg)
{
if (target_oabi
&& (fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
|| fixP->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
))
value = 0;
else
value += md_pcrel_from (fixP);
}
}
/* Remember value for emit_reloc. */
fixP->fx_addnumber = value;
switch (fixP->fx_r_type)
{
case BFD_RELOC_ARM_IMMEDIATE:
newimm = validate_immediate (value);
temp = md_chars_to_number (buf, INSN_SIZE);
/* If the instruction will fail, see if we can fix things up by
changing the opcode. */
if (newimm == (unsigned int) FAIL
&& (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid constant (%lx) after fixup"),
(unsigned long) value);
break;
}
newimm |= (temp & 0xfffff000);
md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
break;
case BFD_RELOC_ARM_ADRL_IMMEDIATE:
{
unsigned int highpart = 0;
unsigned int newinsn = 0xe1a00000; /* nop. */
newimm = validate_immediate (value);
temp = md_chars_to_number (buf, INSN_SIZE);
/* If the instruction will fail, see if we can fix things up by
changing the opcode. */
if (newimm == (unsigned int) FAIL
&& (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL)
{
/* No ? OK - try using two ADD instructions to generate
the value. */
newimm = validate_immediate_twopart (value, & highpart);
/* Yes - then make sure that the second instruction is
also an add. */
if (newimm != (unsigned int) FAIL)
newinsn = temp;
/* Still No ? Try using a negated value. */
else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL)
temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT;
/* Otherwise - give up. */
else
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Unable to compute ADRL instructions for PC offset of 0x%lx"),
value);
break;
}
/* Replace the first operand in the 2nd instruction (which
is the PC) with the destination register. We have
already added in the PC in the first instruction and we
do not want to do it again. */
newinsn &= ~ 0xf0000;
newinsn |= ((newinsn & 0x0f000) << 4);
}
newimm |= (temp & 0xfffff000);
md_number_to_chars (buf, (valueT) newimm, INSN_SIZE);
highpart |= (newinsn & 0xfffff000);
md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE);
}
break;
case BFD_RELOC_ARM_OFFSET_IMM:
sign = value >= 0;
if (value < 0)
value = - value;
if (validate_offset_imm (value, 0) == FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("bad immediate value for offset (%ld)"),
(long) value);
break;
}
newval = md_chars_to_number (buf, INSN_SIZE);
newval &= 0xff7ff000;
newval |= value | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_OFFSET_IMM8:
case BFD_RELOC_ARM_HWLITERAL:
sign = value >= 0;
if (value < 0)
value = - value;
if (validate_offset_imm (value, 1) == FAIL)
{
if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid literal constant: pool needs to be closer"));
else
as_bad (_("bad immediate value for half-word offset (%ld)"),
(long) value);
break;
}
newval = md_chars_to_number (buf, INSN_SIZE);
newval &= 0xff7ff0f0;
newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_LITERAL:
sign = value >= 0;
if (value < 0)
value = - value;
if (validate_offset_imm (value, 0) == FAIL)
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("invalid literal constant: pool needs to be closer"));
break;
}
newval = md_chars_to_number (buf, INSN_SIZE);
newval &= 0xff7ff000;
newval |= value | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_SHIFT_IMM:
newval = md_chars_to_number (buf, INSN_SIZE);
if (((unsigned long) value) > 32
|| (value == 32
&& (((newval & 0x60) == 0) || (newval & 0x60) == 0x60)))
{
as_bad_where (fixP->fx_file, fixP->fx_line,
_("shift expression is too large"));
break;
}
if (value == 0)
/* Shifts of zero must be done as lsl. */
newval &= ~0x60;
else if (value == 32)
value = 0;
newval &= 0xfffff07f;
newval |= (value & 0x1f) << 7;
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_SWI:
if (arm_data->thumb_mode)
{
if (((unsigned long) value) > 0xff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid swi expression"));
newval = md_chars_to_number (buf, THUMB_SIZE) & 0xff00;
newval |= value;
md_number_to_chars (buf, newval, THUMB_SIZE);
}
else
{
if (((unsigned long) value) > 0x00ffffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid swi expression"));
newval = md_chars_to_number (buf, INSN_SIZE) & 0xff000000;
newval |= value;
md_number_to_chars (buf, newval, INSN_SIZE);
}
break;
case BFD_RELOC_ARM_MULTI:
if (((unsigned long) value) > 0xffff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid expression in load/store multiple"));
newval = value | md_chars_to_number (buf, INSN_SIZE);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_PCREL_BRANCH:
newval = md_chars_to_number (buf, INSN_SIZE);
/* Sign-extend a 24-bit number. */
#define SEXT24(x) ((((x) & 0xffffff) ^ (~ 0x7fffff)) + 0x800000)
#ifdef OBJ_ELF
if (! target_oabi)
value = fixP->fx_offset;
#endif
/* We are going to store value (shifted right by two) in the
instruction, in a 24 bit, signed field. Thus we need to check
that none of the top 8 bits of the shifted value (top 7 bits of
the unshifted, unsigned value) are set, or that they are all set. */
if ((value & ~ ((offsetT) 0x1ffffff)) != 0
&& ((value & ~ ((offsetT) 0x1ffffff)) != ~ ((offsetT) 0x1ffffff)))
{
#ifdef OBJ_ELF
/* Normally we would be stuck at this point, since we cannot store
the absolute address that is the destination of the branch in the
24 bits of the branch instruction. If however, we happen to know
that the destination of the branch is in the same section as the
branch instruciton itself, then we can compute the relocation for
ourselves and not have to bother the linker with it.
FIXME: The tests for OBJ_ELF and ! target_oabi are only here
because I have not worked out how to do this for OBJ_COFF or
target_oabi. */
if (! target_oabi
&& fixP->fx_addsy != NULL
&& S_IS_DEFINED (fixP->fx_addsy)
&& S_GET_SEGMENT (fixP->fx_addsy) == seg)
{
/* Get pc relative value to go into the branch. */
value = * val;
/* Permit a backward branch provided that enough bits
are set. Allow a forwards branch, provided that
enough bits are clear. */
if ( (value & ~ ((offsetT) 0x1ffffff)) == ~ ((offsetT) 0x1ffffff)
|| (value & ~ ((offsetT) 0x1ffffff)) == 0)
fixP->fx_done = 1;
}
if (! fixP->fx_done)
#endif
as_bad_where (fixP->fx_file, fixP->fx_line,
_("gas can't handle same-section branch dest >= 0x04000000"));
}
value >>= 2;
value += SEXT24 (newval);
if ( (value & ~ ((offsetT) 0xffffff)) != 0
&& ((value & ~ ((offsetT) 0xffffff)) != ~ ((offsetT) 0xffffff)))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("out of range branch"));
newval = (value & 0x00ffffff) | (newval & 0xff000000);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_PCREL_BLX:
{
offsetT hbit;
newval = md_chars_to_number (buf, INSN_SIZE);
#ifdef OBJ_ELF
if (! target_oabi)
value = fixP->fx_offset;
#endif
hbit = (value >> 1) & 1;
value = (value >> 2) & 0x00ffffff;
value = (value + (newval & 0x00ffffff)) & 0x00ffffff;
newval = value | (newval & 0xfe000000) | (hbit << 24);
md_number_to_chars (buf, newval, INSN_SIZE);
}
break;
case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */
newval = md_chars_to_number (buf, THUMB_SIZE);
{
addressT diff = (newval & 0xff) << 1;
if (diff & 0x100)
diff |= ~0xff;
value += diff;
if ((value & ~0xff) && ((value & ~0xff) != ~0xff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Branch out of range"));
newval = (newval & 0xff00) | ((value & 0x1ff) >> 1);
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */
newval = md_chars_to_number (buf, THUMB_SIZE);
{
addressT diff = (newval & 0x7ff) << 1;
if (diff & 0x800)
diff |= ~0x7ff;
value += diff;
if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Branch out of range"));
newval = (newval & 0xf800) | ((value & 0xfff) >> 1);
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_THUMB_PCREL_BLX:
case BFD_RELOC_THUMB_PCREL_BRANCH23:
{
offsetT newval2;
addressT diff;
newval = md_chars_to_number (buf, THUMB_SIZE);
newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE);
diff = ((newval & 0x7ff) << 12) | ((newval2 & 0x7ff) << 1);
if (diff & 0x400000)
diff |= ~0x3fffff;
#ifdef OBJ_ELF
value = fixP->fx_offset;
#endif
value += diff;
if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Branch with link out of range"));
newval = (newval & 0xf800) | ((value & 0x7fffff) >> 12);
newval2 = (newval2 & 0xf800) | ((value & 0xfff) >> 1);
if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX)
/* Remove bit zero of the adjusted offset. Bit zero can only be
set if the upper insn is at a half-word boundary, since the
destination address, an ARM instruction, must always be on a
word boundary. The semantics of the BLX (1) instruction, however,
are that bit zero in the offset must always be zero, and the
corresponding bit one in the target address will be set from bit
one of the source address. */
newval2 &= ~1;
md_number_to_chars (buf, newval, THUMB_SIZE);
md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE);
}
break;
case BFD_RELOC_8:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 1);
#ifdef OBJ_ELF
else if (!target_oabi)
{
value = fixP->fx_offset;
md_number_to_chars (buf, value, 1);
}
#endif
break;
case BFD_RELOC_16:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 2);
#ifdef OBJ_ELF
else if (!target_oabi)
{
value = fixP->fx_offset;
md_number_to_chars (buf, value, 2);
}
#endif
break;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_GOT32:
case BFD_RELOC_ARM_GOTOFF:
md_number_to_chars (buf, 0, 4);
break;
#endif
case BFD_RELOC_RVA:
case BFD_RELOC_32:
if (fixP->fx_done || fixP->fx_pcrel)
md_number_to_chars (buf, value, 4);
#ifdef OBJ_ELF
else if (!target_oabi)
{
value = fixP->fx_offset;
md_number_to_chars (buf, value, 4);
}
#endif
break;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_PLT32:
/* It appears the instruction is fully prepared at this point. */
break;
#endif
case BFD_RELOC_ARM_GOTPC:
md_number_to_chars (buf, value, 4);
break;
case BFD_RELOC_ARM_CP_OFF_IMM:
sign = value >= 0;
if (value < -1023 || value > 1023 || (value & 3))
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Illegal value for co-processor offset"));
if (value < 0)
value = -value;
newval = md_chars_to_number (buf, INSN_SIZE) & 0xff7fff00;
newval |= (value >> 2) | (sign ? INDEX_UP : 0);
md_number_to_chars (buf, newval, INSN_SIZE);
break;
case BFD_RELOC_ARM_THUMB_OFFSET:
newval = md_chars_to_number (buf, THUMB_SIZE);
/* Exactly what ranges, and where the offset is inserted depends
on the type of instruction, we can establish this from the
top 4 bits. */
switch (newval >> 12)
{
case 4: /* PC load. */
/* Thumb PC loads are somewhat odd, bit 1 of the PC is
forced to zero for these loads, so we will need to round
up the offset if the instruction address is not word
aligned (since the final address produced must be, and
we can only describe word-aligned immediate offsets). */
if ((fixP->fx_frag->fr_address + fixP->fx_where + value) & 3)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, target not word aligned (0x%08X)"),
(unsigned int) (fixP->fx_frag->fr_address
+ fixP->fx_where + value));
if ((value + 2) & ~0x3fe)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, value too big (0x%08lX)"), value);
/* Round up, since pc will be rounded down. */
newval |= (value + 2) >> 2;
break;
case 9: /* SP load/store. */
if (value & ~0x3fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, value too big (0x%08lX)"), value);
newval |= value >> 2;
break;
case 6: /* Word load/store. */
if (value & ~0x7c)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, value too big (0x%08lX)"), value);
newval |= value << 4; /* 6 - 2. */
break;
case 7: /* Byte load/store. */
if (value & ~0x1f)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, value too big (0x%08lX)"), value);
newval |= value << 6;
break;
case 8: /* Halfword load/store. */
if (value & ~0x3e)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid offset, value too big (0x%08lX)"), value);
newval |= value << 5; /* 6 - 1. */
break;
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
"Unable to process relocation for thumb opcode: %lx",
(unsigned long) newval);
break;
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_ADD:
/* This is a complicated relocation, since we use it for all of
the following immediate relocations:
3bit ADD/SUB
8bit ADD/SUB
9bit ADD/SUB SP word-aligned
10bit ADD PC/SP word-aligned
The type of instruction being processed is encoded in the
instruction field:
0x8000 SUB
0x00F0 Rd
0x000F Rs
*/
newval = md_chars_to_number (buf, THUMB_SIZE);
{
int rd = (newval >> 4) & 0xf;
int rs = newval & 0xf;
int subtract = newval & 0x8000;
if (rd == REG_SP)
{
if (value & ~0x1fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid immediate for stack address calculation"));
newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST;
newval |= value >> 2;
}
else if (rs == REG_PC || rs == REG_SP)
{
if (subtract ||
value & ~0x3fc)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid immediate for address calculation (value = 0x%08lX)"),
(unsigned long) value);
newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP);
newval |= rd << 8;
newval |= value >> 2;
}
else if (rs == rd)
{
if (value & ~0xff)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid 8bit immediate"));
newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8;
newval |= (rd << 8) | value;
}
else
{
if (value & ~0x7)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid 3bit immediate"));
newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3;
newval |= rd | (rs << 3) | (value << 6);
}
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_IMM:
newval = md_chars_to_number (buf, THUMB_SIZE);
switch (newval >> 11)
{
case 0x04: /* 8bit immediate MOV. */
case 0x05: /* 8bit immediate CMP. */
if (value < 0 || value > 255)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Invalid immediate: %ld is too large"),
(long) value);
newval |= value;
break;
default:
abort ();
}
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_ARM_THUMB_SHIFT:
/* 5bit shift value (0..31). */
if (value < 0 || value > 31)
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Illegal Thumb shift value: %ld"), (long) value);
newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf03f;
newval |= value << 6;
md_number_to_chars (buf, newval, THUMB_SIZE);
break;
case BFD_RELOC_VTABLE_INHERIT:
case BFD_RELOC_VTABLE_ENTRY:
fixP->fx_done = 0;
return 1;
case BFD_RELOC_NONE:
default:
as_bad_where (fixP->fx_file, fixP->fx_line,
_("Bad relocation fixup type (%d)"), fixP->fx_r_type);
}
return 1;
}
/* Translate internal representation of relocation info to BFD target
format. */
arelent *
tc_gen_reloc (section, fixp)
asection * section ATTRIBUTE_UNUSED;
fixS * fixp;
{
arelent * reloc;
bfd_reloc_code_real_type code;
reloc = (arelent *) xmalloc (sizeof (arelent));
reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
*reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
/* @@ Why fx_addnumber sometimes and fx_offset other times? */
#ifndef OBJ_ELF
if (fixp->fx_pcrel == 0)
reloc->addend = fixp->fx_offset;
else
reloc->addend = fixp->fx_offset = reloc->address;
#else /* OBJ_ELF */
reloc->addend = fixp->fx_offset;
#endif
switch (fixp->fx_r_type)
{
case BFD_RELOC_8:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_8_PCREL;
break;
}
case BFD_RELOC_16:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_16_PCREL;
break;
}
case BFD_RELOC_32:
if (fixp->fx_pcrel)
{
code = BFD_RELOC_32_PCREL;
break;
}
case BFD_RELOC_ARM_PCREL_BRANCH:
case BFD_RELOC_ARM_PCREL_BLX:
case BFD_RELOC_RVA:
case BFD_RELOC_THUMB_PCREL_BRANCH9:
case BFD_RELOC_THUMB_PCREL_BRANCH12:
case BFD_RELOC_THUMB_PCREL_BRANCH23:
case BFD_RELOC_THUMB_PCREL_BLX:
case BFD_RELOC_VTABLE_ENTRY:
case BFD_RELOC_VTABLE_INHERIT:
code = fixp->fx_r_type;
break;
case BFD_RELOC_ARM_LITERAL:
case BFD_RELOC_ARM_HWLITERAL:
/* If this is called then the a literal has been referenced across
a section boundary - possibly due to an implicit dump. */
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Literal referenced across section boundary (Implicit dump?)"));
return NULL;
#ifdef OBJ_ELF
case BFD_RELOC_ARM_GOT32:
case BFD_RELOC_ARM_GOTOFF:
case BFD_RELOC_ARM_PLT32:
code = fixp->fx_r_type;
break;
#endif
case BFD_RELOC_ARM_IMMEDIATE:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Internal_relocation (type %d) not fixed up (IMMEDIATE)"),
fixp->fx_r_type);
return NULL;
case BFD_RELOC_ARM_ADRL_IMMEDIATE:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("ADRL used for a symbol not defined in the same file"));
return NULL;
case BFD_RELOC_ARM_OFFSET_IMM:
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Internal_relocation (type %d) not fixed up (OFFSET_IMM)"),
fixp->fx_r_type);
return NULL;
default:
{
char * type;
switch (fixp->fx_r_type)
{
case BFD_RELOC_ARM_IMMEDIATE: type = "IMMEDIATE"; break;
case BFD_RELOC_ARM_OFFSET_IMM: type = "OFFSET_IMM"; break;
case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break;
case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break;
case BFD_RELOC_ARM_SWI: type = "SWI"; break;
case BFD_RELOC_ARM_MULTI: type = "MULTI"; break;
case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break;
case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break;
case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break;
case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break;
case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break;
default: type = _("<unknown>"); break;
}
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Cannot represent %s relocation in this object file format"),
type);
return NULL;
}
}
#ifdef OBJ_ELF
if (code == BFD_RELOC_32_PCREL
&& GOT_symbol
&& fixp->fx_addsy == GOT_symbol)
{
code = BFD_RELOC_ARM_GOTPC;
reloc->addend = fixp->fx_offset = reloc->address;
}
#endif
reloc->howto = bfd_reloc_type_lookup (stdoutput, code);
if (reloc->howto == NULL)
{
as_bad_where (fixp->fx_file, fixp->fx_line,
_("Can not represent %s relocation in this object file format"),
bfd_get_reloc_code_name (code));
return NULL;
}
/* HACK: Since arm ELF uses Rel instead of Rela, encode the
vtable entry to be used in the relocation's section offset. */
if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
reloc->address = fixp->fx_offset;
return reloc;
}
int
md_estimate_size_before_relax (fragP, segtype)
fragS * fragP ATTRIBUTE_UNUSED;
segT segtype ATTRIBUTE_UNUSED;
{
as_fatal (_("md_estimate_size_before_relax\n"));
return 1;
}
static void
output_inst PARAMS ((void))
{
char * to = NULL;
if (inst.error)
{
as_bad (inst.error);
return;
}
to = frag_more (inst.size);
if (thumb_mode && (inst.size > THUMB_SIZE))
{
assert (inst.size == (2 * THUMB_SIZE));
md_number_to_chars (to, inst.instruction >> 16, THUMB_SIZE);
md_number_to_chars (to + THUMB_SIZE, inst.instruction, THUMB_SIZE);
}
else if (inst.size > INSN_SIZE)
{
assert (inst.size == (2 * INSN_SIZE));
md_number_to_chars (to, inst.instruction, INSN_SIZE);
md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE);
}
else
md_number_to_chars (to, inst.instruction, inst.size);
if (inst.reloc.type != BFD_RELOC_NONE)
fix_new_arm (frag_now, to - frag_now->fr_literal,
inst.size, & inst.reloc.exp, inst.reloc.pc_rel,
inst.reloc.type);
#ifdef OBJ_ELF
dwarf2_emit_insn (inst.size);
#endif
}
void
md_assemble (str)
char * str;
{
char c;
char * p;
char * q;
char * start;
/* Align the instruction.
This may not be the right thing to do but ... */
#if 0
arm_align (2, 0);
#endif
listing_prev_line (); /* Defined in listing.h. */
/* Align the previous label if needed. */
if (last_label_seen != NULL)
{
symbol_set_frag (last_label_seen, frag_now);
S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ());
S_SET_SEGMENT (last_label_seen, now_seg);
}
memset (&inst, '\0', sizeof (inst));
inst.reloc.type = BFD_RELOC_NONE;
skip_whitespace (str);
/* Scan up to the end of the op-code, which must end in white space or
end of string. */
for (start = p = str; *p != '\0'; p++)
if (*p == ' ')
break;
if (p == str)
{
as_bad (_("No operator -- statement `%s'\n"), str);
return;
}
if (thumb_mode)
{
CONST struct thumb_opcode * opcode;
c = *p;
*p = '\0';
opcode = (CONST struct thumb_opcode *) hash_find (arm_tops_hsh, str);
*p = c;
if (opcode)
{
/* Check that this instruction is supported for this CPU. */
if (thumb_mode == 1 && (opcode->variants & cpu_variant) == 0)
{
as_bad (_("selected processor does not support this opcode"));
return;
}
inst.instruction = opcode->value;
inst.size = opcode->size;
(*opcode->parms) (p);
output_inst ();
return;
}
}
else
{
CONST struct asm_opcode * opcode;
unsigned long cond_code;
inst.size = INSN_SIZE;
/* P now points to the end of the opcode, probably white space, but we
have to break the opcode up in case it contains condionals and flags;
keep trying with progressively smaller basic instructions until one
matches, or we run out of opcode. */
q = (p - str > LONGEST_INST) ? str + LONGEST_INST : p;
for (; q != str; q--)
{
c = *q;
*q = '\0';
opcode = (CONST struct asm_opcode *) hash_find (arm_ops_hsh, str);
*q = c;
if (opcode && opcode->template)
{
unsigned long flag_bits = 0;
char * r;
/* Check that this instruction is supported for this CPU. */
if ((opcode->variants & cpu_variant) == 0)
goto try_shorter;
inst.instruction = opcode->value;
if (q == p) /* Just a simple opcode. */
{
if (opcode->comp_suffix)
{
if (*opcode->comp_suffix != '\0')
as_bad (_("Opcode `%s' must have suffix from list: <%s>"),
str, opcode->comp_suffix);
else
/* Not a conditional instruction. */
(*opcode->parms) (q, 0);
}
else
{
/* A conditional instruction with default condition. */
inst.instruction |= COND_ALWAYS;
(*opcode->parms) (q, 0);
}
output_inst ();
return;
}
/* Not just a simple opcode. Check if extra is a
conditional. */
r = q;
if (p - r >= 2)
{
CONST struct asm_cond *cond;
char d = *(r + 2);
*(r + 2) = '\0';
cond = (CONST struct asm_cond *) hash_find (arm_cond_hsh, r);
*(r + 2) = d;
if (cond)
{
if (cond->value == 0xf0000000)
as_tsktsk (
_("Warning: Use of the 'nv' conditional is deprecated\n"));
cond_code = cond->value;
r += 2;
}
else
cond_code = COND_ALWAYS;
}
else
cond_code = COND_ALWAYS;
/* Apply the conditional, or complain it's not allowed. */
if (opcode->comp_suffix && *opcode->comp_suffix == '\0')
{
/* Instruction isn't conditional. */
if (cond_code != COND_ALWAYS)
{
as_bad (_("Opcode `%s' is unconditional\n"), str);
return;
}
}
else
/* Instruction is conditional: set the condition into it. */
inst.instruction |= cond_code;
/* If there is a compulsory suffix, it should come here
before any optional flags. */
if (opcode->comp_suffix && *opcode->comp_suffix != '\0')
{
CONST char *s = opcode->comp_suffix;
while (*s)
{
inst.suffix++;
if (*r == *s)
break;
s++;
}
if (*s == '\0')
{
as_bad (_("Opcode `%s' must have suffix from <%s>\n"),
str, opcode->comp_suffix);
return;
}
r++;
}
/* The remainder, if any should now be flags for the instruction;
Scan these checking each one found with the opcode. */
if (r != p)
{
char d;
CONST struct asm_flg *flag = opcode->flags;
if (flag)
{
int flagno;
d = *p;
*p = '\0';
for (flagno = 0; flag[flagno].template; flagno++)
{
if (streq (r, flag[flagno].template))
{
flag_bits |= flag[flagno].set_bits;
break;
}
}
*p = d;
if (! flag[flagno].template)
goto try_shorter;
}
else
goto try_shorter;
}
(*opcode->parms) (p, flag_bits);
output_inst ();
return;
}
try_shorter:
;
}
}
/* It wasn't an instruction, but it might be a register alias of the form
alias .req reg. */
q = p;
skip_whitespace (q);
c = *p;
*p = '\0';
if (*q && !strncmp (q, ".req ", 4))
{
int reg;
char * copy_of_str;
char * r;
#ifdef IGNORE_OPCODE_CASE
str = original_case_string;
#endif
copy_of_str = str;
q += 4;
skip_whitespace (q);
for (r = q; *r != '\0'; r++)
if (*r == ' ')
break;
if (r != q)
{
int regnum;
char d = *r;
*r = '\0';
regnum = arm_reg_parse (& q);
*r = d;
reg = arm_reg_parse (& str);
if (reg == FAIL)
{
if (regnum != FAIL)
insert_reg_alias (str, regnum);
else
as_warn (_("register '%s' does not exist\n"), q);
}
else if (regnum != FAIL)
{
if (reg != regnum)
as_warn (_("ignoring redefinition of register alias '%s'"),
copy_of_str);
/* Do not warn about redefinitions to the same alias. */
}
else
as_warn (_("ignoring redefinition of register alias '%s' to non-existant register '%s'"),
copy_of_str, q);
}
else
as_warn (_("ignoring incomplete .req pseuso op"));
*p = c;
return;
}
*p = c;
as_bad (_("bad instruction `%s'"), start);
}
/* md_parse_option
Invocation line includes a switch not recognized by the base assembler.
See if it's a processor-specific option. These are:
Cpu variants, the arm part is optional:
-m[arm]1 Currently not supported.
-m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor
-m[arm]3 Arm 3 processor
-m[arm]6[xx], Arm 6 processors
-m[arm]7[xx][t][[d]m] Arm 7 processors
-m[arm]8[10] Arm 8 processors
-m[arm]9[20][tdmi] Arm 9 processors
-mstrongarm[110[0]] StrongARM processors
-mxscale XScale processors
-m[arm]v[2345[t[e]]] Arm architectures
-mall All (except the ARM1)
FP variants:
-mfpa10, -mfpa11 FPA10 and 11 co-processor instructions
-mfpe-old (No float load/store multiples)
-mno-fpu Disable all floating point instructions
Run-time endian selection:
-EB big endian cpu
-EL little endian cpu
ARM Procedure Calling Standard:
-mapcs-32 32 bit APCS
-mapcs-26 26 bit APCS
-mapcs-float Pass floats in float regs
-mapcs-reentrant Position independent code
-mthumb-interwork Code supports Arm/Thumb interworking
-matpcs ARM/Thumb Procedure Call Standard
-moabi Old ELF ABI */
CONST char * md_shortopts = "m:k";
struct option md_longopts[] =
{
#ifdef ARM_BI_ENDIAN
#define OPTION_EB (OPTION_MD_BASE + 0)
{"EB", no_argument, NULL, OPTION_EB},
#define OPTION_EL (OPTION_MD_BASE + 1)
{"EL", no_argument, NULL, OPTION_EL},
#ifdef OBJ_ELF
#define OPTION_OABI (OPTION_MD_BASE +2)
{"oabi", no_argument, NULL, OPTION_OABI},
#endif
#endif
{NULL, no_argument, NULL, 0}
};
size_t md_longopts_size = sizeof (md_longopts);
int
md_parse_option (c, arg)
int c;
char * arg;
{
char * str = arg;
switch (c)
{
#ifdef ARM_BI_ENDIAN
case OPTION_EB:
target_big_endian = 1;
break;
case OPTION_EL:
target_big_endian = 0;
break;
#endif
case 'm':
switch (*str)
{
case 'f':
if (streq (str, "fpa10"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA10;
else if (streq (str, "fpa11"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_FPA11;
else if (streq (str, "fpe-old"))
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_CORE;
else
goto bad;
break;
case 'n':
if (streq (str, "no-fpu"))
cpu_variant &= ~FPU_ALL;
break;
#ifdef OBJ_ELF
case 'o':
if (streq (str, "oabi"))
target_oabi = true;
break;
#endif
case 't':
/* Limit assembler to generating only Thumb instructions: */
if (streq (str, "thumb"))
{
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_EXT_THUMB;
cpu_variant = (cpu_variant & ~FPU_ALL) | FPU_NONE;
thumb_mode = 1;
}
else if (streq (str, "thumb-interwork"))
{
if ((cpu_variant & ARM_EXT_THUMB) == 0)
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_ARCH_V4T;
#if defined OBJ_COFF || defined OBJ_ELF
support_interwork = true;
#endif
}
else
goto bad;
break;
default:
if (streq (str, "all"))
{
cpu_variant = ARM_ALL | FPU_ALL;
return 1;
}
#if defined OBJ_COFF || defined OBJ_ELF
if (! strncmp (str, "apcs-", 5))
{
/* GCC passes on all command line options starting "-mapcs-..."
to us, so we must parse them here. */
str += 5;
if (streq (str, "32"))
{
uses_apcs_26 = false;
return 1;
}
else if (streq (str, "26"))
{
uses_apcs_26 = true;
return 1;
}
else if (streq (str, "frame"))
{
/* Stack frames are being generated - does not affect
linkage of code. */
return 1;
}
else if (streq (str, "stack-check"))
{
/* Stack checking is being performed - does not affect
linkage, but does require that the functions
__rt_stkovf_split_small and __rt_stkovf_split_big be
present in the final link. */
return 1;
}
else if (streq (str, "float"))
{
/* Floating point arguments are being passed in the floating
point registers. This does affect linking, since this
version of the APCS is incompatible with the version that
passes floating points in the integer registers. */
uses_apcs_float = true;
return 1;
}
else if (streq (str, "reentrant"))
{
/* Reentrant code has been generated. This does affect
linking, since there is no point in linking reentrant/
position independent code with absolute position code. */
pic_code = true;
return 1;
}
as_bad (_("Unrecognised APCS switch -m%s"), arg);
return 0;
}
if (! strcmp (str, "atpcs"))
{
atpcs = true;
return 1;
}
#endif
/* Strip off optional "arm". */
if (! strncmp (str, "arm", 3))
str += 3;
switch (*str)
{
case '1':
if (streq (str, "1"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_1;
else
goto bad;
break;
case '2':
if (streq (str, "2"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2;
else if (streq (str, "250"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_250;
else
goto bad;
break;
case '3':
if (streq (str, "3"))
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3;
else
goto bad;
break;
case '6':
switch (strtol (str, NULL, 10))
{
case 6:
case 60:
case 600:
case 610:
case 620:
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_6;
break;
default:
goto bad;
}
break;
case '7':
/* Eat the processor name. */
switch (strtol (str, & str, 10))
{
case 7:
case 70:
case 700:
case 710:
case 720:
case 7100:
case 7500:
break;
default:
goto bad;
}
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7;
for (; *str; str++)
{
switch (*str)
{
case 't':
cpu_variant |= ARM_ARCH_V4T;
break;
case 'm':
cpu_variant |= ARM_EXT_LONGMUL;
break;
case 'f': /* fe => fp enabled cpu. */
if (str[1] == 'e')
++ str;
else
goto bad;
case 'c': /* Left over from 710c processor name. */
case 'd': /* Debug. */
case 'i': /* Embedded ICE. */
/* Included for completeness in ARM processor naming. */
break;
default:
goto bad;
}
}
break;
case '8':
if (streq (str, "8") || streq (str, "810"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_8 | ARM_ARCH_V4;
else
goto bad;
break;
case '9':
if (streq (str, "9"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_9 | ARM_ARCH_V4T;
else if (streq (str, "920"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_9 | ARM_ARCH_V4;
else if (streq (str, "920t"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_9 | ARM_ARCH_V4T;
else if (streq (str, "9tdmi"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_9 | ARM_ARCH_V4T;
else
goto bad;
break;
case 's':
if (streq (str, "strongarm")
|| streq (str, "strongarm110")
|| streq (str, "strongarm1100"))
cpu_variant = (cpu_variant & ~ARM_ANY)
| ARM_8 | ARM_ARCH_V4;
else
goto bad;
break;
case 'x':
if (streq (str, "xscale"))
cpu_variant = ARM_9 | ARM_ARCH_XSCALE;
else
goto bad;
break;
case 'v':
/* Select variant based on architecture rather than
processor. */
switch (*++str)
{
case '2':
switch (*++str)
{
case 'a':
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_3;
break;
case 0:
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_2;
break;
default:
as_bad (_("Invalid architecture variant -m%s"), arg);
break;
}
break;
case '3':
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7;
switch (*++str)
{
case 'm': cpu_variant |= ARM_EXT_LONGMUL; break;
case 0: break;
default:
as_bad (_("Invalid architecture variant -m%s"), arg);
break;
}
break;
case '4':
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_7 | ARM_ARCH_V4;
switch (*++str)
{
case 't': cpu_variant |= ARM_EXT_THUMB; break;
case 0: break;
default:
as_bad (_("Invalid architecture variant -m%s"), arg);
break;
}
break;
case '5':
cpu_variant = (cpu_variant & ~ARM_ANY) | ARM_9 | ARM_ARCH_V5;
switch (*++str)
{
case 't': cpu_variant |= ARM_EXT_THUMB; break;
case 'e': cpu_variant |= ARM_EXT_V5E; break;
case 0: break;
default:
as_bad (_("Invalid architecture variant -m%s"), arg);
break;
}
break;
default:
as_bad (_("Invalid architecture variant -m%s"), arg);
break;
}
break;
default:
bad:
as_bad (_("Invalid processor variant -m%s"), arg);
return 0;
}
}
break;
#if defined OBJ_ELF || defined OBJ_COFF
case 'k':
pic_code = 1;
break;
#endif
default:
return 0;
}
return 1;
}
void
md_show_usage (fp)
FILE * fp;
{
fprintf (fp, _("\
ARM Specific Assembler Options:\n\
-m[arm][<processor name>] select processor variant\n\
-m[arm]v[2|2a|3|3m|4|4t|5[t][e]] select architecture variant\n\
-mthumb only allow Thumb instructions\n\
-mthumb-interwork mark the assembled code as supporting interworking\n\
-mall allow any instruction\n\
-mfpa10, -mfpa11 select floating point architecture\n\
-mfpe-old don't allow floating-point multiple instructions\n\
-mno-fpu don't allow any floating-point instructions.\n\
-k generate PIC code.\n"));
#if defined OBJ_COFF || defined OBJ_ELF
fprintf (fp, _("\
-mapcs-32, -mapcs-26 specify which ARM Procedure Calling Standard to use\n\
-matpcs use ARM/Thumb Procedure Calling Standard\n\
-mapcs-float floating point args are passed in FP regs\n\
-mapcs-reentrant the code is position independent/reentrant\n"));
#endif
#ifdef OBJ_ELF
fprintf (fp, _("\
-moabi support the old ELF ABI\n"));
#endif
#ifdef ARM_BI_ENDIAN
fprintf (fp, _("\
-EB assemble code for a big endian cpu\n\
-EL assemble code for a little endian cpu\n"));
#endif
}
/* We need to be able to fix up arbitrary expressions in some statements.
This is so that we can handle symbols that are an arbitrary distance from
the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask),
which returns part of an address in a form which will be valid for
a data instruction. We do this by pushing the expression into a symbol
in the expr_section, and creating a fix for that. */
static void
fix_new_arm (frag, where, size, exp, pc_rel, reloc)
fragS * frag;
int where;
short int size;
expressionS * exp;
int pc_rel;
int reloc;
{
fixS * new_fix;
arm_fix_data * arm_data;
switch (exp->X_op)
{
case O_constant:
case O_symbol:
case O_add:
case O_subtract:
new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc);
break;
default:
new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0,
pc_rel, reloc);
break;
}
/* Mark whether the fix is to a THUMB instruction, or an ARM
instruction. */
arm_data = (arm_fix_data *) obstack_alloc (& notes, sizeof (arm_fix_data));
new_fix->tc_fix_data = (PTR) arm_data;
arm_data->thumb_mode = thumb_mode;
return;
}
/* This fix_new is called by cons via TC_CONS_FIX_NEW. */
void
cons_fix_new_arm (frag, where, size, exp)
fragS * frag;
int where;
int size;
expressionS * exp;
{
bfd_reloc_code_real_type type;
int pcrel = 0;
/* Pick a reloc.
FIXME: @@ Should look at CPU word size. */
switch (size)
{
case 1:
type = BFD_RELOC_8;
break;
case 2:
type = BFD_RELOC_16;
break;
case 4:
default:
type = BFD_RELOC_32;
break;
case 8:
type = BFD_RELOC_64;
break;
}
fix_new_exp (frag, where, (int) size, exp, pcrel, type);
}
/* A good place to do this, although this was probably not intended
for this kind of use. We need to dump the literal pool before
references are made to a null symbol pointer. */
void
arm_cleanup ()
{
if (current_poolP == NULL)
return;
/* Put it at the end of text section. */
subseg_set (text_section, 0);
s_ltorg (0);
listing_prev_line ();
}
void
arm_start_line_hook ()
{
last_label_seen = NULL;
}
void
arm_frob_label (sym)
symbolS * sym;
{
last_label_seen = sym;
ARM_SET_THUMB (sym, thumb_mode);
#if defined OBJ_COFF || defined OBJ_ELF
ARM_SET_INTERWORK (sym, support_interwork);
#endif
/* Note - do not allow local symbols (.Lxxx) to be labeled
as Thumb functions. This is because these labels, whilst
they exist inside Thumb code, are not the entry points for
possible ARM->Thumb calls. Also, these labels can be used
as part of a computed goto or switch statement. eg gcc
can generate code that looks like this:
ldr r2, [pc, .Laaa]
lsl r3, r3, #2
ldr r2, [r3, r2]
mov pc, r2
.Lbbb: .word .Lxxx
.Lccc: .word .Lyyy
..etc...
.Laaa: .word Lbbb
The first instruction loads the address of the jump table.
The second instruction converts a table index into a byte offset.
The third instruction gets the jump address out of the table.
The fourth instruction performs the jump.
If the address stored at .Laaa is that of a symbol which has the
Thumb_Func bit set, then the linker will arrange for this address
to have the bottom bit set, which in turn would mean that the
address computation performed by the third instruction would end
up with the bottom bit set. Since the ARM is capable of unaligned
word loads, the instruction would then load the incorrect address
out of the jump table, and chaos would ensue. */
if (label_is_thumb_function_name
&& (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L')
&& (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0)
{
/* When the address of a Thumb function is taken the bottom
bit of that address should be set. This will allow
interworking between Arm and Thumb functions to work
correctly. */
THUMB_SET_FUNC (sym, 1);
label_is_thumb_function_name = false;
}
}
/* Adjust the symbol table. This marks Thumb symbols as distinct from
ARM ones. */
void
arm_adjust_symtab ()
{
#ifdef OBJ_COFF
symbolS * sym;
for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
{
if (ARM_IS_THUMB (sym))
{
if (THUMB_IS_FUNC (sym))
{
/* Mark the symbol as a Thumb function. */
if ( S_GET_STORAGE_CLASS (sym) == C_STAT
|| S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */
S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC);
else if (S_GET_STORAGE_CLASS (sym) == C_EXT)
S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC);
else
as_bad (_("%s: unexpected function type: %d"),
S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym));
}
else switch (S_GET_STORAGE_CLASS (sym))
{
case C_EXT:
S_SET_STORAGE_CLASS (sym, C_THUMBEXT);
break;
case C_STAT:
S_SET_STORAGE_CLASS (sym, C_THUMBSTAT);
break;
case C_LABEL:
S_SET_STORAGE_CLASS (sym, C_THUMBLABEL);
break;
default:
/* Do nothing. */
break;
}
}
if (ARM_IS_INTERWORK (sym))
coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF;
}
#endif
#ifdef OBJ_ELF
symbolS * sym;
char bind;
for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym))
{
if (ARM_IS_THUMB (sym))
{
elf_symbol_type * elf_sym;
elf_sym = elf_symbol (symbol_get_bfdsym (sym));
bind = ELF_ST_BIND (elf_sym);
/* If it's a .thumb_func, declare it as so,
otherwise tag label as .code 16. */
if (THUMB_IS_FUNC (sym))
elf_sym->internal_elf_sym.st_info =
ELF_ST_INFO (bind, STT_ARM_TFUNC);
else
elf_sym->internal_elf_sym.st_info =
ELF_ST_INFO (bind, STT_ARM_16BIT);
}
}
#endif
}
int
arm_data_in_code ()
{
if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5))
{
*input_line_pointer = '/';
input_line_pointer += 5;
*input_line_pointer = 0;
return 1;
}
return 0;
}
char *
arm_canonicalize_symbol_name (name)
char * name;
{
int len;
if (thumb_mode && (len = strlen (name)) > 5
&& streq (name + len - 5, "/data"))
*(name + len - 5) = 0;
return name;
}
boolean
arm_validate_fix (fixP)
fixS * fixP;
{
/* If the destination of the branch is a defined symbol which does not have
the THUMB_FUNC attribute, then we must be calling a function which has
the (interfacearm) attribute. We look for the Thumb entry point to that
function and change the branch to refer to that function instead. */
if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23
&& fixP->fx_addsy != NULL
&& S_IS_DEFINED (fixP->fx_addsy)
&& ! THUMB_IS_FUNC (fixP->fx_addsy))
{
fixP->fx_addsy = find_real_start (fixP->fx_addsy);
return true;
}
return false;
}
#ifdef OBJ_COFF
/* This is a little hack to help the gas/arm/adrl.s test. It prevents
local labels from being added to the output symbol table when they
are used with the ADRL pseudo op. The ADRL relocation should always
be resolved before the binbary is emitted, so it is safe to say that
it is adjustable. */
boolean
arm_fix_adjustable (fixP)
fixS * fixP;
{
if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE)
return 1;
return 0;
}
#endif
#ifdef OBJ_ELF
/* Relocations against Thumb function names must be left unadjusted,
so that the linker can use this information to correctly set the
bottom bit of their addresses. The MIPS version of this function
also prevents relocations that are mips-16 specific, but I do not
know why it does this.
FIXME:
There is one other problem that ought to be addressed here, but
which currently is not: Taking the address of a label (rather
than a function) and then later jumping to that address. Such
addresses also ought to have their bottom bit set (assuming that
they reside in Thumb code), but at the moment they will not. */
boolean
arm_fix_adjustable (fixP)
fixS * fixP;
{
if (fixP->fx_addsy == NULL)
return 1;
/* Prevent all adjustments to global symbols. */
if (S_IS_EXTERN (fixP->fx_addsy))
return 0;
if (S_IS_WEAK (fixP->fx_addsy))
return 0;
if (THUMB_IS_FUNC (fixP->fx_addsy)
&& fixP->fx_subsy == NULL)
return 0;
/* We need the symbol name for the VTABLE entries. */
if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
return 0;
return 1;
}
const char *
elf32_arm_target_format ()
{
if (target_big_endian)
{
if (target_oabi)
return "elf32-bigarm-oabi";
else
return "elf32-bigarm";
}
else
{
if (target_oabi)
return "elf32-littlearm-oabi";
else
return "elf32-littlearm";
}
}
void
armelf_frob_symbol (symp, puntp)
symbolS * symp;
int * puntp;
{
elf_frob_symbol (symp, puntp);
}
int
arm_force_relocation (fixp)
struct fix * fixp;
{
if ( fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
|| fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY
|| fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BRANCH
|| fixp->fx_r_type == BFD_RELOC_ARM_PCREL_BLX
|| fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX
|| fixp->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23)
return 1;
return 0;
}
static bfd_reloc_code_real_type
arm_parse_reloc ()
{
char id [16];
char * ip;
unsigned int i;
static struct
{
char * str;
int len;
bfd_reloc_code_real_type reloc;
}
reloc_map[] =
{
#define MAP(str,reloc) { str, sizeof (str) - 1, reloc }
MAP ("(got)", BFD_RELOC_ARM_GOT32),
MAP ("(gotoff)", BFD_RELOC_ARM_GOTOFF),
/* ScottB: Jan 30, 1998 - Added support for parsing "var(PLT)"
branch instructions generated by GCC for PLT relocs. */
MAP ("(plt)", BFD_RELOC_ARM_PLT32),
{ NULL, 0, BFD_RELOC_UNUSED }
#undef MAP
};
for (i = 0, ip = input_line_pointer;
i < sizeof (id) && (isalnum (*ip) || ispunct (*ip));
i++, ip++)
id[i] = tolower (*ip);
for (i = 0; reloc_map[i].str; i++)
if (strncmp (id, reloc_map[i].str, reloc_map[i].len) == 0)
break;
input_line_pointer += reloc_map[i].len;
return reloc_map[i].reloc;
}
static void
s_arm_elf_cons (nbytes)
int nbytes;
{
expressionS exp;
#ifdef md_flush_pending_output
md_flush_pending_output ();
#endif
if (is_it_end_of_statement ())
{
demand_empty_rest_of_line ();
return;
}
#ifdef md_cons_align
md_cons_align (nbytes);
#endif
do
{
bfd_reloc_code_real_type reloc;
expression (& exp);
if (exp.X_op == O_symbol
&& * input_line_pointer == '('
&& (reloc = arm_parse_reloc ()) != BFD_RELOC_UNUSED)
{
reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc);
int size = bfd_get_reloc_size (howto);
if (size > nbytes)
as_bad ("%s relocations do not fit in %d bytes",
howto->name, nbytes);
else
{
register char *p = frag_more ((int) nbytes);
int offset = nbytes - size;
fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size,
&exp, 0, reloc);
}
}
else
emit_expr (&exp, (unsigned int) nbytes);
}
while (*input_line_pointer++ == ',');
/* Put terminator back into stream. */
input_line_pointer --;
demand_empty_rest_of_line ();
}
#endif /* OBJ_ELF */
/* This is called from HANDLE_ALIGN in write.c. Fill in the contents
of an rs_align_code fragment. */
void
arm_handle_align (fragP)
fragS *fragP;
{
static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 };
static char const thumb_noop[2] = { 0xc0, 0x46 };
static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 };
static char const thumb_bigend_noop[2] = { 0x46, 0xc0 };
int bytes, fix, noop_size;
char * p;
const char * noop;
if (fragP->fr_type != rs_align_code)
return;
bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix;
p = fragP->fr_literal + fragP->fr_fix;
fix = 0;
if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE)
bytes &= MAX_MEM_FOR_RS_ALIGN_CODE;
if (fragP->tc_frag_data)
{
if (target_big_endian)
noop = thumb_bigend_noop;
else
noop = thumb_noop;
noop_size = sizeof (thumb_noop);
}
else
{
if (target_big_endian)
noop = arm_bigend_noop;
else
noop = arm_noop;
noop_size = sizeof (arm_noop);
}
if (bytes & (noop_size - 1))
{
fix = bytes & (noop_size - 1);
memset (p, 0, fix);
p += fix;
bytes -= fix;
}
while (bytes >= noop_size)
{
memcpy (p, noop, noop_size);
p += noop_size;
bytes -= noop_size;
fix += noop_size;
}
fragP->fr_fix += fix;
fragP->fr_var = noop_size;
}
/* Called from md_do_align. Used to create an alignment
frag in a code section. */
void
arm_frag_align_code (n, max)
int n;
int max;
{
char * p;
/* We assume that there will never be a requirment
to support alignments greater than 32 bytes. */
if (max > MAX_MEM_FOR_RS_ALIGN_CODE)
as_fatal (_("alignments greater than 32 bytes not supported in .text sections."));
p = frag_var (rs_align_code,
MAX_MEM_FOR_RS_ALIGN_CODE,
1,
(relax_substateT) max,
(symbolS *) NULL,
(offsetT) n,
(char *) NULL);
*p = 0;
}
/* Perform target specific initialisation of a frag. */
void
arm_init_frag (fragP)
fragS *fragP;
{
/* Record whether this frag is in an ARM or a THUMB area. */
fragP->tc_frag_data = thumb_mode;
}