| // icf.cc -- Identical Code Folding. | 
 | // | 
 | // Copyright (C) 2009-2024 Free Software Foundation, Inc. | 
 | // Written by Sriraman Tallam <tmsriram@google.com>. | 
 |  | 
 | // This file is part of gold. | 
 |  | 
 | // This program is free software; you can redistribute it and/or modify | 
 | // it under the terms of the GNU General Public License as published by | 
 | // the Free Software Foundation; either version 3 of the License, or | 
 | // (at your option) any later version. | 
 |  | 
 | // This program is distributed in the hope that it will be useful, | 
 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | // GNU General Public License for more details. | 
 |  | 
 | // You should have received a copy of the GNU General Public License | 
 | // along with this program; if not, write to the Free Software | 
 | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
 | // MA 02110-1301, USA. | 
 |  | 
 | // Identical Code Folding Algorithm | 
 | // ---------------------------------- | 
 | // Detecting identical functions is done here and the basic algorithm | 
 | // is as follows.  A checksum is computed on each foldable section using | 
 | // its contents and relocations.  If the symbol name corresponding to | 
 | // a relocation is known it is used to compute the checksum.  If the | 
 | // symbol name is not known the stringified name of the object and the | 
 | // section number pointed to by the relocation is used.  The checksums | 
 | // are stored as keys in a hash map and a section is identical to some | 
 | // other section if its checksum is already present in the hash map. | 
 | // Checksum collisions are handled by using a multimap and explicitly | 
 | // checking the contents when two sections have the same checksum. | 
 | // | 
 | // However, two functions A and B with identical text but with | 
 | // relocations pointing to different foldable sections can be identical if | 
 | // the corresponding foldable sections to which their relocations point to | 
 | // turn out to be identical.  Hence, this checksumming process must be | 
 | // done repeatedly until convergence is obtained.  Here is an example for | 
 | // the following case : | 
 | // | 
 | // int funcA ()               int funcB () | 
 | // {                          { | 
 | //   return foo();              return goo(); | 
 | // }                          } | 
 | // | 
 | // The functions funcA and funcB are identical if functions foo() and | 
 | // goo() are identical. | 
 | // | 
 | // Hence, as described above, we repeatedly do the checksumming, | 
 | // assigning identical functions to the same group, until convergence is | 
 | // obtained.  Now, we have two different ways to do this depending on how | 
 | // we initialize. | 
 | // | 
 | // Algorithm I : | 
 | // ----------- | 
 | // We can start with marking all functions as different and repeatedly do | 
 | // the checksumming.  This has the advantage that we do not need to wait | 
 | // for convergence. We can stop at any point and correctness will be | 
 | // guaranteed although not all cases would have been found.  However, this | 
 | // has a problem that some cases can never be found even if it is run until | 
 | // convergence.  Here is an example with mutually recursive functions : | 
 | // | 
 | // int funcA (int a)            int funcB (int a) | 
 | // {                            { | 
 | //   if (a == 1)                  if (a == 1) | 
 | //     return 1;                    return 1; | 
 | //   return 1 + funcB(a - 1);     return 1 + funcA(a - 1); | 
 | // }                            } | 
 | // | 
 | // In this example funcA and funcB are identical and one of them could be | 
 | // folded into the other.  However, if we start with assuming that funcA | 
 | // and funcB are not identical, the algorithm, even after it is run to | 
 | // convergence, cannot detect that they are identical.  It should be noted | 
 | // that even if the functions were self-recursive, Algorithm I cannot catch | 
 | // that they are identical, at least as is. | 
 | // | 
 | // Algorithm II : | 
 | // ------------ | 
 | // Here we start with marking all functions as identical and then repeat | 
 | // the checksumming until convergence.  This can detect the above case | 
 | // mentioned above.  It can detect all cases that Algorithm I can and more. | 
 | // However, the caveat is that it has to be run to convergence.  It cannot | 
 | // be stopped arbitrarily like Algorithm I as correctness cannot be | 
 | // guaranteed.  Algorithm II is not implemented. | 
 | // | 
 | // Algorithm I is used because experiments show that about three | 
 | // iterations are more than enough to achieve convergence. Algorithm I can | 
 | // handle recursive calls if it is changed to use a special common symbol | 
 | // for recursive relocs.  This seems to be the most common case that | 
 | // Algorithm I could not catch as is.  Mutually recursive calls are not | 
 | // frequent and Algorithm I wins because of its ability to be stopped | 
 | // arbitrarily. | 
 | // | 
 | // Caveat with using function pointers : | 
 | // ------------------------------------ | 
 | // | 
 | // Programs using function pointer comparisons/checks should use function | 
 | // folding with caution as the result of such comparisons could be different | 
 | // when folding takes place.  This could lead to unexpected run-time | 
 | // behaviour. | 
 | // | 
 | // Safe Folding : | 
 | // ------------ | 
 | // | 
 | // ICF in safe mode folds only ctors and dtors if their function pointers can | 
 | // never be taken.  Also, for X86-64, safe folding uses the relocation | 
 | // type to determine if a function's pointer is taken or not and only folds | 
 | // functions whose pointers are definitely not taken. | 
 | // | 
 | // Caveat with safe folding : | 
 | // ------------------------ | 
 | // | 
 | // This applies only to x86_64. | 
 | // | 
 | // Position independent executables are created from PIC objects (compiled | 
 | // with -fPIC) and/or PIE objects (compiled with -fPIE).  For PIE objects, the | 
 | // relocation types for function pointer taken and a call are the same. | 
 | // Now, it is not always possible to tell if an object used in the link of | 
 | // a pie executable is a PIC object or a PIE object.  Hence, for pie | 
 | // executables, using relocation types to disambiguate function pointers is | 
 | // currently disabled. | 
 | // | 
 | // Further, it is not correct to use safe folding to build non-pie | 
 | // executables using PIC/PIE objects.  PIC/PIE objects have different | 
 | // relocation types for function pointers than non-PIC objects, and the | 
 | // current implementation of safe folding does not handle those relocation | 
 | // types.  Hence, if used, functions whose pointers are taken could still be | 
 | // folded causing unpredictable run-time behaviour if the pointers were used | 
 | // in comparisons. | 
 | // | 
 | // Notes regarding C++ exception handling : | 
 | // -------------------------------------- | 
 | // | 
 | // It is possible for two sections to have identical text, identical | 
 | // relocations, but different exception handling metadata (unwind | 
 | // information in the .eh_frame section, and/or handler information in | 
 | // a .gcc_except_table section).  Thus, if a foldable section is | 
 | // referenced from a .eh_frame FDE, we must include in its checksum | 
 | // the contents of that FDE as well as of the CIE that the FDE refers | 
 | // to.  The CIE and FDE in turn probably contain relocations to the | 
 | // personality routine and LSDA, which are handled like any other | 
 | // relocation for ICF purposes.  This logic is helped by the fact that | 
 | // gcc with -ffunction-sections puts each function's LSDA in its own | 
 | // .gcc_except_table.<functionname> section.  Given sections for two | 
 | // functions with nontrivial exception handling logic, we will | 
 | // determine on the first iteration that their .gcc_except_table | 
 | // sections are identical and can be folded, and on the second | 
 | // iteration that their .text and .eh_frame contents (including the | 
 | // now-merged .gcc_except_table relocations for the LSDA) are | 
 | // identical and can be folded. | 
 | // | 
 | // | 
 | // How to run  : --icf=[safe|all|none] | 
 | // Optional parameters : --icf-iterations <num> --print-icf-sections | 
 | // | 
 | // Performance : Less than 20 % link-time overhead on industry strength | 
 | // applications.  Up to 6 %  text size reductions. | 
 |  | 
 | #include "gold.h" | 
 | #include "object.h" | 
 | #include "gc.h" | 
 | #include "icf.h" | 
 | #include "symtab.h" | 
 | #include "libiberty.h" | 
 | #include "demangle.h" | 
 | #include "elfcpp.h" | 
 | #include "int_encoding.h" | 
 |  | 
 | #include <limits> | 
 |  | 
 | namespace gold | 
 | { | 
 |  | 
 | // This function determines if a section or a group of identical | 
 | // sections has unique contents.  Such unique sections or groups can be | 
 | // declared final and need not be processed any further. | 
 | // Parameters : | 
 | // ID_SECTION : Vector mapping a section index to a Section_id pair. | 
 | // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical | 
 | //                            sections is already known to be unique. | 
 | // SECTION_CONTENTS : Contains the section's text and relocs to sections | 
 | //                    that cannot be folded.   SECTION_CONTENTS are NULL | 
 | //                    implies that this function is being called for the | 
 | //                    first time before the first iteration of icf. | 
 |  | 
 | static void | 
 | preprocess_for_unique_sections(const std::vector<Section_id>& id_section, | 
 |                                std::vector<bool>* is_secn_or_group_unique, | 
 |                                std::vector<std::string>* section_contents) | 
 | { | 
 |   Unordered_map<uint32_t, unsigned int> uniq_map; | 
 |   std::pair<Unordered_map<uint32_t, unsigned int>::iterator, bool> | 
 |     uniq_map_insert; | 
 |  | 
 |   for (unsigned int i = 0; i < id_section.size(); i++) | 
 |     { | 
 |       if ((*is_secn_or_group_unique)[i]) | 
 |         continue; | 
 |  | 
 |       uint32_t cksum; | 
 |       Section_id secn = id_section[i]; | 
 |       section_size_type plen; | 
 |       if (section_contents == NULL) | 
 |         { | 
 |           // Lock the object so we can read from it.  This is only called | 
 |           // single-threaded from queue_middle_tasks, so it is OK to lock. | 
 |           // Unfortunately we have no way to pass in a Task token. | 
 |           const Task* dummy_task = reinterpret_cast<const Task*>(-1); | 
 |           Task_lock_obj<Object> tl(dummy_task, secn.first); | 
 |           const unsigned char* contents; | 
 |           contents = secn.first->section_contents(secn.second, | 
 |                                                   &plen, | 
 |                                                   false); | 
 |           cksum = xcrc32(contents, plen, 0xffffffff); | 
 |         } | 
 |       else | 
 |         { | 
 |           const unsigned char* contents_array = reinterpret_cast | 
 |             <const unsigned char*>((*section_contents)[i].c_str()); | 
 |           cksum = xcrc32(contents_array, (*section_contents)[i].length(), | 
 |                          0xffffffff); | 
 |         } | 
 |       uniq_map_insert = uniq_map.insert(std::make_pair(cksum, i)); | 
 |       if (uniq_map_insert.second) | 
 |         { | 
 |           (*is_secn_or_group_unique)[i] = true; | 
 |         } | 
 |       else | 
 |         { | 
 |           (*is_secn_or_group_unique)[i] = false; | 
 |           (*is_secn_or_group_unique)[uniq_map_insert.first->second] = false; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // For SHF_MERGE sections that use REL relocations, the addend is stored in | 
 | // the text section at the relocation offset.  Read  the addend value given | 
 | // the pointer to the addend in the text section and the addend size. | 
 | // Update the addend value if a valid addend is found. | 
 | // Parameters: | 
 | // RELOC_ADDEND_PTR   : Pointer to the addend in the text section. | 
 | // ADDEND_SIZE        : The size of the addend. | 
 | // RELOC_ADDEND_VALUE : Pointer to the addend that is updated. | 
 |  | 
 | inline void | 
 | get_rel_addend(const unsigned char* reloc_addend_ptr, | 
 | 	       const unsigned int addend_size, | 
 | 	       uint64_t* reloc_addend_value) | 
 | { | 
 |   switch (addend_size) | 
 |     { | 
 |     case 0: | 
 |       break; | 
 |     case 1: | 
 |       *reloc_addend_value = | 
 |         read_from_pointer<8>(reloc_addend_ptr); | 
 |       break; | 
 |     case 2: | 
 |       *reloc_addend_value = | 
 |           read_from_pointer<16>(reloc_addend_ptr); | 
 |       break; | 
 |     case 4: | 
 |       *reloc_addend_value = | 
 |         read_from_pointer<32>(reloc_addend_ptr); | 
 |       break; | 
 |     case 8: | 
 |       *reloc_addend_value = | 
 |         read_from_pointer<64>(reloc_addend_ptr); | 
 |       break; | 
 |     default: | 
 |       gold_unreachable(); | 
 |     } | 
 | } | 
 |  | 
 | // This returns the buffer containing the section's contents, both | 
 | // text and relocs.  Relocs are differentiated as those pointing to | 
 | // sections that could be folded and those that cannot.  Only relocs | 
 | // pointing to sections that could be folded are recomputed on | 
 | // subsequent invocations of this function. | 
 | // Parameters  : | 
 | // FIRST_ITERATION    : true if it is the first invocation. | 
 | // FIXED_CACHE        : String that stores the portion of the result that | 
 | //                      does not change from iteration to iteration; | 
 | //                      written if first_iteration is true, read if it's false. | 
 | // SECN               : Section for which contents are desired. | 
 | // SELF_SECN          : Relocations that target this section will be | 
 | //                      considered "relocations to self" so that recursive | 
 | //                      functions can be folded. Should normally be the | 
 | //                      same as `secn` except when processing extra identity | 
 | //                      regions. | 
 | // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs | 
 | //                      to ICF sections. | 
 | // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections. | 
 | // START_OFFSET       : Only consider the part of the section at and after | 
 | //                      this offset. | 
 | // END_OFFSET         : Only consider the part of the section before this | 
 | //                      offset. | 
 |  | 
 | static std::string | 
 | get_section_contents(bool first_iteration, | 
 | 		     std::string* fixed_cache, | 
 |                      const Section_id& secn, | 
 | 		     const Section_id& self_secn, | 
 |                      unsigned int* num_tracked_relocs, | 
 |                      Symbol_table* symtab, | 
 |                      const std::vector<unsigned int>& kept_section_id, | 
 | 		     section_offset_type start_offset = 0, | 
 | 		     section_offset_type end_offset = | 
 | 		       std::numeric_limits<section_offset_type>::max()) | 
 | { | 
 |   section_size_type plen; | 
 |   const unsigned char* contents = NULL; | 
 |   if (first_iteration) | 
 |     contents = secn.first->section_contents(secn.second, &plen, false); | 
 |  | 
 |   // The buffer to hold all the contents including relocs.  A checksum | 
 |   // is then computed on this buffer. | 
 |   std::string buffer; | 
 |   std::string icf_reloc_buffer; | 
 |  | 
 |   Icf::Reloc_info_list& reloc_info_list =  | 
 |     symtab->icf()->reloc_info_list(); | 
 |  | 
 |   Icf::Reloc_info_list::iterator it_reloc_info_list = | 
 |     reloc_info_list.find(secn); | 
 |  | 
 |   buffer.clear(); | 
 |   icf_reloc_buffer.clear(); | 
 |  | 
 |   // Process relocs and put them into the buffer. | 
 |  | 
 |   if (it_reloc_info_list != reloc_info_list.end()) | 
 |     { | 
 |       Icf::Sections_reachable_info &v = | 
 |         (it_reloc_info_list->second).section_info; | 
 |       // Stores the information of the symbol pointed to by the reloc. | 
 |       const Icf::Symbol_info &s = (it_reloc_info_list->second).symbol_info; | 
 |       // Stores the addend and the symbol value. | 
 |       Icf::Addend_info &a = (it_reloc_info_list->second).addend_info; | 
 |       // Stores the offset of the reloc. | 
 |       const Icf::Offset_info &o = (it_reloc_info_list->second).offset_info; | 
 |       const Icf::Reloc_addend_size_info &reloc_addend_size_info = | 
 |         (it_reloc_info_list->second).reloc_addend_size_info; | 
 |       Icf::Sections_reachable_info::iterator it_v = v.begin(); | 
 |       Icf::Symbol_info::const_iterator it_s = s.begin(); | 
 |       Icf::Addend_info::iterator it_a = a.begin(); | 
 |       Icf::Offset_info::const_iterator it_o = o.begin(); | 
 |       Icf::Reloc_addend_size_info::const_iterator it_addend_size = | 
 |         reloc_addend_size_info.begin(); | 
 |  | 
 |       for (; it_v != v.end(); ++it_v, ++it_s, ++it_a, ++it_o, ++it_addend_size) | 
 |         { | 
 | 	  Symbol* gsym = *it_s; | 
 | 	  bool is_section_symbol = false; | 
 |  | 
 | 	  // Ignore relocations outside the region we were told to look at | 
 | 	  if (static_cast<section_offset_type>(*it_o) < start_offset | 
 | 	      || static_cast<section_offset_type>(*it_o) >= end_offset) | 
 | 	    continue; | 
 |  | 
 | 	  // A -1 value in the symbol vector indicates a local section symbol. | 
 | 	  if (gsym == reinterpret_cast<Symbol*>(-1)) | 
 | 	    { | 
 | 	      is_section_symbol = true; | 
 | 	      gsym = NULL; | 
 | 	    } | 
 |  | 
 | 	  if (first_iteration | 
 | 	      && it_v->first != NULL) | 
 | 	    { | 
 | 	      Symbol_location loc; | 
 | 	      loc.object = it_v->first; | 
 | 	      loc.shndx = it_v->second; | 
 | 	      loc.offset = convert_types<off_t, long long>(it_a->first | 
 | 							   + it_a->second); | 
 | 	      // Look through function descriptors | 
 | 	      parameters->target().function_location(&loc); | 
 | 	      if (loc.shndx != it_v->second) | 
 | 		{ | 
 | 		  it_v->second = loc.shndx; | 
 | 		  // Modify symvalue/addend to the code entry. | 
 | 		  it_a->first = loc.offset; | 
 | 		  it_a->second = 0; | 
 | 		} | 
 | 	    } | 
 |  | 
 |           // ADDEND_STR stores the symbol value and addend and offset, | 
 |           // each at most 16 hex digits long.  it_a points to a pair | 
 |           // where first is the symbol value and second is the | 
 |           // addend. | 
 |           char addend_str[50]; | 
 |  | 
 | 	  // It would be nice if we could use format macros in inttypes.h | 
 | 	  // here but there are not in ISO/IEC C++ 1998. | 
 |           snprintf(addend_str, sizeof(addend_str), "%llx %llx %llx", | 
 |                    static_cast<long long>((*it_a).first), | 
 | 		   static_cast<long long>((*it_a).second), | 
 | 		   static_cast<unsigned long long>(*it_o - start_offset)); | 
 |  | 
 | 	  // If the symbol pointed to by the reloc is not in an ordinary | 
 | 	  // section or if the symbol type is not FROM_OBJECT, then the | 
 | 	  // object is NULL. | 
 | 	  if (it_v->first == NULL) | 
 |             { | 
 | 	      if (first_iteration) | 
 |                 { | 
 | 		  // If the symbol name is available, use it. | 
 |                   if (gsym != NULL) | 
 |                       buffer.append(gsym->name()); | 
 |                   // Append the addend. | 
 |                   buffer.append(addend_str); | 
 |                   buffer.append("@"); | 
 | 		} | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 |           Section_id reloc_secn(it_v->first, it_v->second); | 
 |  | 
 |           // If this reloc turns back and points to the same section, | 
 |           // like a recursive call, use a special symbol to mark this. | 
 |           if (reloc_secn.first == self_secn.first | 
 |               && reloc_secn.second == self_secn.second) | 
 |             { | 
 |               if (first_iteration) | 
 |                 { | 
 |                   buffer.append("R"); | 
 |                   buffer.append(addend_str); | 
 |                   buffer.append("@"); | 
 |                 } | 
 |               continue; | 
 |             } | 
 |           Icf::Uniq_secn_id_map& section_id_map = | 
 |             symtab->icf()->section_to_int_map(); | 
 |           Icf::Uniq_secn_id_map::iterator section_id_map_it = | 
 |             section_id_map.find(reloc_secn); | 
 |           bool is_sym_preemptible = (gsym != NULL | 
 | 				     && !gsym->is_from_dynobj() | 
 | 				     && !gsym->is_undefined() | 
 | 				     && gsym->is_preemptible()); | 
 |           if (!is_sym_preemptible | 
 |               && section_id_map_it != section_id_map.end()) | 
 |             { | 
 |               // This is a reloc to a section that might be folded. | 
 |               if (num_tracked_relocs) | 
 |                 (*num_tracked_relocs)++; | 
 |  | 
 |               char kept_section_str[10]; | 
 |               unsigned int secn_id = section_id_map_it->second; | 
 |               snprintf(kept_section_str, sizeof(kept_section_str), "%u", | 
 |                        kept_section_id[secn_id]); | 
 |               if (first_iteration) | 
 |                 { | 
 |                   buffer.append("ICF_R"); | 
 |                   buffer.append(addend_str); | 
 |                 } | 
 |               icf_reloc_buffer.append(kept_section_str); | 
 |               // Append the addend. | 
 |               icf_reloc_buffer.append(addend_str); | 
 |               icf_reloc_buffer.append("@"); | 
 |             } | 
 |           else | 
 |             { | 
 |               // This is a reloc to a section that cannot be folded. | 
 |               // Process it only in the first iteration. | 
 |               if (!first_iteration) | 
 |                 continue; | 
 |  | 
 |               uint64_t secn_flags = (it_v->first)->section_flags(it_v->second); | 
 |               // This reloc points to a merge section.  Hash the | 
 |               // contents of this section. | 
 |               if ((secn_flags & elfcpp::SHF_MERGE) != 0 | 
 | 		  && parameters->target().can_icf_inline_merge_sections()) | 
 |                 { | 
 |                   uint64_t entsize = | 
 |                     (it_v->first)->section_entsize(it_v->second); | 
 | 		  long long offset = it_a->first; | 
 |  | 
 | 		  // Handle SHT_RELA and SHT_REL addends. Only one of these | 
 | 		  // addends exists. When pointing to a merge section, the | 
 | 		  // addend only matters if it's relative to a section | 
 | 		  // symbol. In order to unambiguously identify the target | 
 | 		  // of the relocation, the compiler (and assembler) must use | 
 | 		  // a local non-section symbol unless Symbol+Addend does in | 
 | 		  // fact point directly to the target. (In other words, | 
 | 		  // a bias for a pc-relative reference or a non-zero based | 
 | 		  // access forces the use of a local symbol, and the addend | 
 | 		  // is used only to provide that bias.) | 
 | 		  uint64_t reloc_addend_value = 0; | 
 | 		  if (is_section_symbol) | 
 | 		    { | 
 | 		      // Get the SHT_RELA addend.  For RELA relocations, | 
 | 		      // we have the addend from the relocation. | 
 | 		      reloc_addend_value = it_a->second; | 
 |  | 
 | 		      // Handle SHT_REL addends. | 
 | 		      // For REL relocations, we need to fetch the addend | 
 | 		      // from the section contents. | 
 | 		      const unsigned char* reloc_addend_ptr = | 
 | 			contents + static_cast<unsigned long long>(*it_o); | 
 |  | 
 | 		      // Update the addend value with the SHT_REL addend if | 
 | 		      // available. | 
 | 		      get_rel_addend(reloc_addend_ptr, *it_addend_size, | 
 | 				     &reloc_addend_value); | 
 |  | 
 | 		      // Ignore the addend when it is a negative value. | 
 | 		      // See the comments in Merged_symbol_value::value | 
 | 		      // in object.h. | 
 | 		      if (reloc_addend_value < 0xffffff00) | 
 | 			offset = offset + reloc_addend_value; | 
 | 		    } | 
 |  | 
 |                   section_size_type secn_len; | 
 |  | 
 |                   const unsigned char* str_contents = | 
 |                   (it_v->first)->section_contents(it_v->second, | 
 |                                                   &secn_len, | 
 |                                                   false) + offset; | 
 | 		  gold_assert (offset < (long long) secn_len); | 
 |  | 
 |                   if ((secn_flags & elfcpp::SHF_STRINGS) != 0) | 
 |                     { | 
 |                       // String merge section. | 
 |                       const char* str_char = | 
 |                         reinterpret_cast<const char*>(str_contents); | 
 |                       switch(entsize) | 
 |                         { | 
 |                         case 1: | 
 |                           { | 
 |                             buffer.append(str_char); | 
 |                             break; | 
 |                           } | 
 |                         case 2: | 
 |                           { | 
 |                             const uint16_t* ptr_16 = | 
 |                               reinterpret_cast<const uint16_t*>(str_char); | 
 |                             unsigned int strlen_16 = 0; | 
 |                             // Find the NULL character. | 
 |                             while(*(ptr_16 + strlen_16) != 0) | 
 |                                 strlen_16++; | 
 |                             buffer.append(str_char, strlen_16 * 2); | 
 |                           } | 
 |                           break; | 
 |                         case 4: | 
 |                           { | 
 |                             const uint32_t* ptr_32 = | 
 |                               reinterpret_cast<const uint32_t*>(str_char); | 
 |                             unsigned int strlen_32 = 0; | 
 |                             // Find the NULL character. | 
 |                             while(*(ptr_32 + strlen_32) != 0) | 
 |                                 strlen_32++; | 
 |                             buffer.append(str_char, strlen_32 * 4); | 
 |                           } | 
 |                           break; | 
 |                         default: | 
 |                           gold_unreachable(); | 
 |                         } | 
 |                     } | 
 |                   else | 
 |                     { | 
 |                       // Use the entsize to determine the length to copy. | 
 | 		      uint64_t bufsize = entsize; | 
 | 		      // If entsize is too big, copy all the remaining bytes. | 
 | 		      if ((offset + entsize) > secn_len) | 
 | 			bufsize = secn_len - offset; | 
 |                       buffer.append(reinterpret_cast<const | 
 |                                                      char*>(str_contents), | 
 |                                     bufsize); | 
 |                     } | 
 | 		  buffer.append("@"); | 
 |                 } | 
 |               else if (gsym != NULL) | 
 |                 { | 
 |                   // If symbol name is available use that. | 
 |                   buffer.append(gsym->name()); | 
 |                   // Append the addend. | 
 |                   buffer.append(addend_str); | 
 |                   buffer.append("@"); | 
 |                 } | 
 |               else | 
 |                 { | 
 |                   // Symbol name is not available, like for a local symbol, | 
 |                   // use object and section id. | 
 |                   buffer.append(it_v->first->name()); | 
 |                   char secn_id[10]; | 
 |                   snprintf(secn_id, sizeof(secn_id), "%u",it_v->second); | 
 |                   buffer.append(secn_id); | 
 |                   // Append the addend. | 
 |                   buffer.append(addend_str); | 
 |                   buffer.append("@"); | 
 |                 } | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |   if (first_iteration) | 
 |     { | 
 |       buffer.append("Contents = "); | 
 |  | 
 |       const unsigned char* slice_end = | 
 | 	contents + std::min<section_offset_type>(plen, end_offset); | 
 |  | 
 |       if (contents + start_offset < slice_end) | 
 | 	{ | 
 | 	  buffer.append(reinterpret_cast<const char*>(contents + start_offset), | 
 | 			slice_end - (contents + start_offset)); | 
 | 	} | 
 |     } | 
 |  | 
 |   // Add any extra identity regions. | 
 |   std::pair<Icf::Extra_identity_list::const_iterator, | 
 | 	    Icf::Extra_identity_list::const_iterator> | 
 |     extra_range = symtab->icf()->extra_identity_list().equal_range(secn); | 
 |   for (Icf::Extra_identity_list::const_iterator it_ext = extra_range.first; | 
 |        it_ext != extra_range.second; ++it_ext) | 
 |     { | 
 |       std::string external_fixed; | 
 |       std::string external_all = | 
 | 	get_section_contents(first_iteration, &external_fixed, | 
 | 			     it_ext->second.section, self_secn, | 
 | 			     num_tracked_relocs, symtab, | 
 | 			     kept_section_id, it_ext->second.offset, | 
 | 			     it_ext->second.offset + it_ext->second.length); | 
 |       buffer.append(external_fixed); | 
 |       icf_reloc_buffer.append(external_all, external_fixed.length(), | 
 | 			      std::string::npos); | 
 |     } | 
 |  | 
 |   if (first_iteration) | 
 |     { | 
 |       // Store the section contents that don't change to avoid recomputing | 
 |       // during the next call to this function. | 
 |       *fixed_cache = buffer; | 
 |     } | 
 |   else | 
 |     { | 
 |       gold_assert(buffer.empty()); | 
 |  | 
 |       // Reuse the contents computed in the previous iteration. | 
 |       buffer.append(*fixed_cache); | 
 |     } | 
 |  | 
 |   buffer.append(icf_reloc_buffer); | 
 |   return buffer; | 
 | } | 
 |  | 
 | // This function computes a checksum on each section to detect and form | 
 | // groups of identical sections.  The first iteration does this for all  | 
 | // sections. | 
 | // Further iterations do this only for the kept sections from each group to | 
 | // determine if larger groups of identical sections could be formed.  The | 
 | // first section in each group is the kept section for that group. | 
 | // | 
 | // CRC32 is the checksumming algorithm and can have collisions.  That is, | 
 | // two sections with different contents can have the same checksum. Hence, | 
 | // a multimap is used to maintain more than one group of checksum | 
 | // identical sections.  A section is added to a group only after its | 
 | // contents are explicitly compared with the kept section of the group. | 
 | // | 
 | // Parameters  : | 
 | // ITERATION_NUM           : Invocation instance of this function. | 
 | // NUM_TRACKED_RELOCS : Vector reference to store the number of relocs | 
 | //                      to ICF sections. | 
 | // KEPT_SECTION_ID    : Vector which maps folded sections to kept sections. | 
 | // ID_SECTION         : Vector mapping a section to an unique integer. | 
 | // IS_SECN_OR_GROUP_UNIQUE : To check if a section or a group of identical | 
 | //                            sections is already known to be unique. | 
 | // SECTION_CONTENTS   : Store the section's text and relocs to non-ICF | 
 | //                      sections. | 
 |  | 
 | static bool | 
 | match_sections(unsigned int iteration_num, | 
 |                Symbol_table* symtab, | 
 |                std::vector<unsigned int>* num_tracked_relocs, | 
 |                std::vector<unsigned int>* kept_section_id, | 
 |                const std::vector<Section_id>& id_section, | 
 | 	       const std::vector<uint64_t>& section_addraligns, | 
 |                std::vector<bool>* is_secn_or_group_unique, | 
 |                std::vector<std::string>* section_contents) | 
 | { | 
 |   Unordered_multimap<uint32_t, unsigned int> section_cksum; | 
 |   std::pair<Unordered_multimap<uint32_t, unsigned int>::iterator, | 
 |             Unordered_multimap<uint32_t, unsigned int>::iterator> key_range; | 
 |   bool converged = true; | 
 |  | 
 |   if (iteration_num == 1) | 
 |     preprocess_for_unique_sections(id_section, | 
 |                                    is_secn_or_group_unique, | 
 |                                    NULL); | 
 |   else | 
 |     preprocess_for_unique_sections(id_section, | 
 |                                    is_secn_or_group_unique, | 
 |                                    section_contents); | 
 |  | 
 |   std::vector<std::string> full_section_contents; | 
 |  | 
 |   for (unsigned int i = 0; i < id_section.size(); i++) | 
 |     { | 
 |       full_section_contents.push_back(""); | 
 |       if ((*is_secn_or_group_unique)[i]) | 
 |         continue; | 
 |  | 
 |       Section_id secn = id_section[i]; | 
 |  | 
 |       // Lock the object so we can read from it.  This is only called | 
 |       // single-threaded from queue_middle_tasks, so it is OK to lock. | 
 |       // Unfortunately we have no way to pass in a Task token. | 
 |       const Task* dummy_task = reinterpret_cast<const Task*>(-1); | 
 |       Task_lock_obj<Object> tl(dummy_task, secn.first); | 
 |  | 
 |       std::string this_secn_contents; | 
 |       uint32_t cksum; | 
 |       std::string* this_secn_cache = &((*section_contents)[i]); | 
 |       if (iteration_num == 1) | 
 |         { | 
 |           unsigned int num_relocs = 0; | 
 |           this_secn_contents = get_section_contents(true, this_secn_cache, | 
 | 						    secn, secn, &num_relocs, | 
 | 						    symtab, (*kept_section_id)); | 
 |           (*num_tracked_relocs)[i] = num_relocs; | 
 |         } | 
 |       else | 
 |         { | 
 |           if ((*kept_section_id)[i] != i) | 
 |             { | 
 |               // This section is already folded into something. | 
 |               continue; | 
 |             } | 
 |           this_secn_contents = get_section_contents(false, this_secn_cache, | 
 | 						    secn, secn, NULL, | 
 | 						    symtab, (*kept_section_id)); | 
 |         } | 
 |  | 
 |       const unsigned char* this_secn_contents_array = | 
 |             reinterpret_cast<const unsigned char*>(this_secn_contents.c_str()); | 
 |       cksum = xcrc32(this_secn_contents_array, this_secn_contents.length(), | 
 |                      0xffffffff); | 
 |       size_t count = section_cksum.count(cksum); | 
 |  | 
 |       if (count == 0) | 
 |         { | 
 |           // Start a group with this cksum. | 
 |           section_cksum.insert(std::make_pair(cksum, i)); | 
 |           full_section_contents[i] = this_secn_contents; | 
 |         } | 
 |       else | 
 |         { | 
 |           key_range = section_cksum.equal_range(cksum); | 
 |           Unordered_multimap<uint32_t, unsigned int>::iterator it; | 
 |           // Search all the groups with this cksum for a match. | 
 |           for (it = key_range.first; it != key_range.second; ++it) | 
 |             { | 
 |               unsigned int kept_section = it->second; | 
 |               if (full_section_contents[kept_section].length() | 
 |                   != this_secn_contents.length()) | 
 |                   continue; | 
 |               if (memcmp(full_section_contents[kept_section].c_str(), | 
 |                          this_secn_contents.c_str(), | 
 |                          this_secn_contents.length()) != 0) | 
 |                   continue; | 
 |  | 
 | 	      // Check section alignment here. | 
 | 	      // The section with the larger alignment requirement | 
 | 	      // should be kept.  We assume alignment can only be  | 
 | 	      // zero or positive integral powers of two. | 
 | 	      uint64_t align_i = section_addraligns[i]; | 
 | 	      uint64_t align_kept = section_addraligns[kept_section]; | 
 | 	      if (align_i <= align_kept) | 
 | 		{ | 
 | 		  (*kept_section_id)[i] = kept_section; | 
 | 		} | 
 | 	      else | 
 | 		{ | 
 | 		  (*kept_section_id)[kept_section] = i; | 
 | 		  it->second = i; | 
 | 		  full_section_contents[kept_section].swap( | 
 | 		      full_section_contents[i]); | 
 | 		} | 
 |  | 
 |               converged = false; | 
 |               break; | 
 |             } | 
 |           if (it == key_range.second) | 
 |             { | 
 |               // Create a new group for this cksum. | 
 |               section_cksum.insert(std::make_pair(cksum, i)); | 
 |               full_section_contents[i] = this_secn_contents; | 
 |             } | 
 |         } | 
 |       // If there are no relocs to foldable sections do not process | 
 |       // this section any further. | 
 |       if (iteration_num == 1 && (*num_tracked_relocs)[i] == 0) | 
 |         (*is_secn_or_group_unique)[i] = true; | 
 |     } | 
 |  | 
 |   // If a section was folded into another section that was later folded | 
 |   // again then the former has to be updated. | 
 |   for (unsigned int i = 0; i < id_section.size(); i++) | 
 |     { | 
 |       // Find the end of the folding chain | 
 |       unsigned int kept = i; | 
 |       while ((*kept_section_id)[kept] != kept) | 
 |         { | 
 |           kept = (*kept_section_id)[kept]; | 
 |         } | 
 |       // Update every element of the chain | 
 |       unsigned int current = i; | 
 |       while ((*kept_section_id)[current] != kept) | 
 |         { | 
 |           unsigned int next = (*kept_section_id)[current]; | 
 |           (*kept_section_id)[current] = kept; | 
 |           current = next; | 
 |         } | 
 |     } | 
 |  | 
 |   return converged; | 
 | } | 
 |  | 
 | // During safe icf (--icf=safe), only fold functions that are ctors or dtors. | 
 | // This function returns true if the section name is that of a ctor or a dtor. | 
 |  | 
 | static bool | 
 | is_function_ctor_or_dtor(const std::string& section_name) | 
 | { | 
 |   const char* mangled_func_name = strrchr(section_name.c_str(), '.'); | 
 |   gold_assert(mangled_func_name != NULL); | 
 |   if ((is_prefix_of("._ZN", mangled_func_name) | 
 |        || is_prefix_of("._ZZ", mangled_func_name)) | 
 |       && (is_gnu_v3_mangled_ctor(mangled_func_name + 1) | 
 |           || is_gnu_v3_mangled_dtor(mangled_func_name + 1))) | 
 |     { | 
 |       return true; | 
 |     } | 
 |   return false; | 
 | } | 
 |  | 
 | // Iterate through the .eh_frame section that has index | 
 | // `ehframe_shndx` in `object`, adding entries to extra_identity_list_ | 
 | // that will cause the contents of each FDE and its CIE to be included | 
 | // in the logical ICF identity of the function that the FDE refers to. | 
 |  | 
 | bool | 
 | Icf::add_ehframe_links(Relobj* object, unsigned int ehframe_shndx, | 
 | 		       Reloc_info& relocs) | 
 | { | 
 |   section_size_type contents_len; | 
 |   const unsigned char* pcontents = object->section_contents(ehframe_shndx, | 
 | 							    &contents_len, | 
 | 							    false); | 
 |   const unsigned char* p = pcontents; | 
 |   const unsigned char* pend = pcontents + contents_len; | 
 |  | 
 |   Sections_reachable_info::iterator it_target = relocs.section_info.begin(); | 
 |   Sections_reachable_info::iterator it_target_end = relocs.section_info.end(); | 
 |   Offset_info::iterator it_offset = relocs.offset_info.begin(); | 
 |   Offset_info::iterator it_offset_end = relocs.offset_info.end(); | 
 |  | 
 |   // Maps section offset to the length of the CIE defined at that offset. | 
 |   typedef Unordered_map<section_offset_type, section_size_type> Cie_map; | 
 |   Cie_map cies; | 
 |  | 
 |   uint32_t (*read_swap_32)(const unsigned char*); | 
 |   if (object->is_big_endian()) | 
 |     read_swap_32 = &elfcpp::Swap<32, true>::readval; | 
 |   else | 
 |     read_swap_32 = &elfcpp::Swap<32, false>::readval; | 
 |  | 
 |   // TODO: The logic for parsing the CIE/FDE framing is copied from | 
 |   // Eh_frame::do_add_ehframe_input_section() and might want to be | 
 |   // factored into a shared helper function. | 
 |   while (p < pend) | 
 |     { | 
 |       if (pend - p < 4) | 
 | 	return false; | 
 |  | 
 |       unsigned int len = read_swap_32(p); | 
 |       p += 4; | 
 |       if (len == 0) | 
 | 	{ | 
 | 	  // We should only find a zero-length entry at the end of the | 
 | 	  // section. | 
 | 	  if (p < pend) | 
 | 	    return false; | 
 | 	  break; | 
 | 	} | 
 |       // We don't support a 64-bit .eh_frame. | 
 |       if (len == 0xffffffff) | 
 | 	return false; | 
 |       if (static_cast<unsigned int>(pend - p) < len) | 
 | 	return false; | 
 |  | 
 |       const unsigned char* const pentend = p + len; | 
 |  | 
 |       if (pend - p < 4) | 
 | 	return false; | 
 |  | 
 |       unsigned int id = read_swap_32(p); | 
 |       p += 4; | 
 |  | 
 |       if (id == 0) | 
 | 	{ | 
 | 	  // CIE. | 
 | 	  cies.insert(std::make_pair(p - pcontents, len - 4)); | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  // FDE. | 
 | 	  Cie_map::const_iterator it; | 
 | 	  it = cies.find((p - pcontents) - (id - 4)); | 
 | 	  if (it == cies.end()) | 
 | 	    return false; | 
 |  | 
 | 	  // Figure out which section this FDE refers into. The word at `p` | 
 | 	  // is an address, and we expect to see a relocation there. If not, | 
 | 	  // this FDE isn't ICF-relevant. | 
 | 	  while (it_offset != it_offset_end | 
 | 		 && it_target != it_target_end | 
 | 		 && static_cast<ptrdiff_t>(*it_offset) < (p - pcontents)) | 
 | 	    { | 
 | 	      ++it_offset; | 
 | 	      ++it_target; | 
 | 	    } | 
 | 	  if (it_offset != it_offset_end | 
 | 	      && it_target != it_target_end | 
 | 	      && static_cast<ptrdiff_t>(*it_offset) == (p - pcontents)) | 
 | 	    { | 
 | 	      // Found a reloc. Add this FDE and its CIE as extra identity | 
 | 	      // info for the section it refers to. | 
 | 	      Extra_identity_info rec_fde = {Section_id(object, ehframe_shndx), | 
 | 					     p - pcontents, len - 4}; | 
 | 	      Extra_identity_info rec_cie = {Section_id(object, ehframe_shndx), | 
 | 					     it->first, it->second}; | 
 | 	      extra_identity_list_.insert(std::make_pair(*it_target, rec_fde)); | 
 | 	      extra_identity_list_.insert(std::make_pair(*it_target, rec_cie)); | 
 | 	    } | 
 | 	} | 
 |  | 
 |       p = pentend; | 
 |     } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // This is the main ICF function called in gold.cc.  This does the | 
 | // initialization and calls match_sections repeatedly (thrice by default) | 
 | // which computes the crc checksums and detects identical functions. | 
 |  | 
 | void | 
 | Icf::find_identical_sections(const Input_objects* input_objects, | 
 |                              Symbol_table* symtab) | 
 | { | 
 |   unsigned int section_num = 0; | 
 |   std::vector<unsigned int> num_tracked_relocs; | 
 |   std::vector<uint64_t> section_addraligns; | 
 |   std::vector<bool> is_secn_or_group_unique; | 
 |   std::vector<std::string> section_contents; | 
 |   const Target& target = parameters->target(); | 
 |  | 
 |   // Decide which sections are possible candidates first. | 
 |  | 
 |   for (Input_objects::Relobj_iterator p = input_objects->relobj_begin(); | 
 |        p != input_objects->relobj_end(); | 
 |        ++p) | 
 |     { | 
 |       // Lock the object so we can read from it.  This is only called | 
 |       // single-threaded from queue_middle_tasks, so it is OK to lock. | 
 |       // Unfortunately we have no way to pass in a Task token. | 
 |       const Task* dummy_task = reinterpret_cast<const Task*>(-1); | 
 |       Task_lock_obj<Object> tl(dummy_task, *p); | 
 |       std::vector<unsigned int> eh_frame_ind; | 
 |  | 
 |       for (unsigned int i = 0; i < (*p)->shnum(); ++i) | 
 |         { | 
 |           if ((*p)->section_size(i) == 0) | 
 |             continue; | 
 | 	  const std::string section_name = (*p)->section_name(i); | 
 |           if (!is_section_foldable_candidate(section_name)) | 
 | 	    { | 
 | 	      if (is_prefix_of(".eh_frame", section_name.c_str())) | 
 | 		eh_frame_ind.push_back(i); | 
 | 	      continue; | 
 | 	    } | 
 |  | 
 |           if (!(*p)->is_section_included(i)) | 
 |             continue; | 
 |           if (parameters->options().gc_sections() | 
 |               && symtab->gc()->is_section_garbage(*p, i)) | 
 |               continue; | 
 | 	  // With --icf=safe, check if the mangled function name is a ctor | 
 | 	  // or a dtor.  The mangled function name can be obtained from the | 
 | 	  // section name by stripping the section prefix. | 
 | 	  if (parameters->options().icf_safe_folding() | 
 |               && !is_function_ctor_or_dtor(section_name) | 
 | 	      && (!target.can_check_for_function_pointers() | 
 |                   || section_has_function_pointers(*p, i))) | 
 |             { | 
 | 	      continue; | 
 |             } | 
 |           this->id_section_.push_back(Section_id(*p, i)); | 
 |           this->section_id_[Section_id(*p, i)] = section_num; | 
 |           this->kept_section_id_.push_back(section_num); | 
 |           num_tracked_relocs.push_back(0); | 
 | 	  section_addraligns.push_back((*p)->section_addralign(i)); | 
 |           is_secn_or_group_unique.push_back(false); | 
 |           section_contents.push_back(""); | 
 |           section_num++; | 
 |         } | 
 |  | 
 |       for (std::vector<unsigned int>::iterator it_eh_ind = eh_frame_ind.begin(); | 
 | 	   it_eh_ind != eh_frame_ind.end(); ++it_eh_ind) | 
 | 	{ | 
 | 	  // gc_process_relocs() recorded relocations for this | 
 | 	  // section even though we can't fold it. We need to | 
 | 	  // use those relocations to associate other foldable | 
 | 	  // sections with the FDEs and CIEs that are relevant | 
 | 	  // to them, so we can avoid merging sections that | 
 | 	  // don't have identical exception-handling behavior. | 
 |  | 
 | 	  Section_id sect(*p, *it_eh_ind); | 
 | 	  Reloc_info_list::iterator it_rel = this->reloc_info_list().find(sect); | 
 | 	  if (it_rel != this->reloc_info_list().end()) | 
 | 	    { | 
 | 	      if (!add_ehframe_links(*p, *it_eh_ind, it_rel->second)) | 
 | 		{ | 
 | 		  gold_warning(_("could not parse eh_frame section %s(%s); ICF " | 
 | 				 "might not preserve exception handling " | 
 | 				 "behavior"), | 
 | 			       (*p)->name().c_str(), | 
 | 			       (*p)->section_name(*it_eh_ind).c_str()); | 
 | 		} | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |   unsigned int num_iterations = 0; | 
 |  | 
 |   // Default number of iterations to run ICF is 3. | 
 |   unsigned int max_iterations = (parameters->options().icf_iterations() > 0) | 
 |                             ? parameters->options().icf_iterations() | 
 |                             : 3; | 
 |  | 
 |   bool converged = false; | 
 |  | 
 |   while (!converged && (num_iterations < max_iterations)) | 
 |     { | 
 |       num_iterations++; | 
 |       converged = match_sections(num_iterations, symtab, | 
 |                                  &num_tracked_relocs, &this->kept_section_id_, | 
 |                                  this->id_section_, section_addraligns, | 
 |                                  &is_secn_or_group_unique, §ion_contents); | 
 |     } | 
 |  | 
 |   if (parameters->options().print_icf_sections()) | 
 |     { | 
 |       if (converged) | 
 |         gold_info(_("%s: ICF Converged after %u iteration(s)"), | 
 |                   program_name, num_iterations); | 
 |       else | 
 |         gold_info(_("%s: ICF stopped after %u iteration(s)"), | 
 |                   program_name, num_iterations); | 
 |     } | 
 |  | 
 |   // Unfold --keep-unique symbols. | 
 |   for (options::String_set::const_iterator p = | 
 | 	 parameters->options().keep_unique_begin(); | 
 |        p != parameters->options().keep_unique_end(); | 
 |        ++p) | 
 |     { | 
 |       const char* name = p->c_str(); | 
 |       Symbol* sym = symtab->lookup(name); | 
 |       if (sym == NULL) | 
 | 	{ | 
 | 	  gold_warning(_("Could not find symbol %s to unfold\n"), name); | 
 | 	} | 
 |       else if (sym->source() == Symbol::FROM_OBJECT  | 
 |                && !sym->object()->is_dynamic()) | 
 |         { | 
 |           Relobj* obj = static_cast<Relobj*>(sym->object()); | 
 |           bool is_ordinary; | 
 |           unsigned int shndx = sym->shndx(&is_ordinary); | 
 |           if (is_ordinary) | 
 |             { | 
 | 	      this->unfold_section(obj, shndx); | 
 |             } | 
 |         } | 
 |  | 
 |     } | 
 |  | 
 |   this->icf_ready(); | 
 | } | 
 |  | 
 | // Unfolds the section denoted by OBJ and SHNDX if folded. | 
 |  | 
 | void | 
 | Icf::unfold_section(Relobj* obj, unsigned int shndx) | 
 | { | 
 |   Section_id secn(obj, shndx); | 
 |   Uniq_secn_id_map::iterator it = this->section_id_.find(secn); | 
 |   if (it == this->section_id_.end()) | 
 |     return; | 
 |   unsigned int section_num = it->second; | 
 |   unsigned int kept_section_id = this->kept_section_id_[section_num]; | 
 |   if (kept_section_id != section_num) | 
 |     this->kept_section_id_[section_num] = section_num; | 
 | } | 
 |  | 
 | // This function determines if the section corresponding to the | 
 | // given object and index is folded based on if the kept section | 
 | // is different from this section. | 
 |  | 
 | bool | 
 | Icf::is_section_folded(Relobj* obj, unsigned int shndx) | 
 | { | 
 |   Section_id secn(obj, shndx); | 
 |   Uniq_secn_id_map::iterator it = this->section_id_.find(secn); | 
 |   if (it == this->section_id_.end()) | 
 |     return false; | 
 |   unsigned int section_num = it->second; | 
 |   unsigned int kept_section_id = this->kept_section_id_[section_num]; | 
 |   return kept_section_id != section_num; | 
 | } | 
 |  | 
 | // This function returns the folded section for the given section. | 
 |  | 
 | Section_id | 
 | Icf::get_folded_section(Relobj* dup_obj, unsigned int dup_shndx) | 
 | { | 
 |   Section_id dup_secn(dup_obj, dup_shndx); | 
 |   Uniq_secn_id_map::iterator it = this->section_id_.find(dup_secn); | 
 |   gold_assert(it != this->section_id_.end()); | 
 |   unsigned int section_num = it->second; | 
 |   unsigned int kept_section_id = this->kept_section_id_[section_num]; | 
 |   Section_id folded_section = this->id_section_[kept_section_id]; | 
 |   return folded_section; | 
 | } | 
 |  | 
 | } // End of namespace gold. |