|  | // resolve.cc -- symbol resolution for gold | 
|  |  | 
|  | // Copyright (C) 2006-2023 Free Software Foundation, Inc. | 
|  | // Written by Ian Lance Taylor <iant@google.com>. | 
|  |  | 
|  | // This file is part of gold. | 
|  |  | 
|  | // This program is free software; you can redistribute it and/or modify | 
|  | // it under the terms of the GNU General Public License as published by | 
|  | // the Free Software Foundation; either version 3 of the License, or | 
|  | // (at your option) any later version. | 
|  |  | 
|  | // This program is distributed in the hope that it will be useful, | 
|  | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | // GNU General Public License for more details. | 
|  |  | 
|  | // You should have received a copy of the GNU General Public License | 
|  | // along with this program; if not, write to the Free Software | 
|  | // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, | 
|  | // MA 02110-1301, USA. | 
|  |  | 
|  | #include "gold.h" | 
|  |  | 
|  | #include "elfcpp.h" | 
|  | #include "target.h" | 
|  | #include "object.h" | 
|  | #include "symtab.h" | 
|  | #include "plugin.h" | 
|  |  | 
|  | namespace gold | 
|  | { | 
|  |  | 
|  | // Symbol methods used in this file. | 
|  |  | 
|  | // This symbol is being overridden by another symbol whose version is | 
|  | // VERSION.  Update the VERSION_ field accordingly. | 
|  |  | 
|  | inline void | 
|  | Symbol::override_version(const char* version) | 
|  | { | 
|  | if (version == NULL) | 
|  | { | 
|  | // This is the case where this symbol is NAME/VERSION, and the | 
|  | // version was not marked as hidden.  That makes it the default | 
|  | // version, so we create NAME/NULL.  Later we see another symbol | 
|  | // NAME/NULL, and that symbol is overriding this one.  In this | 
|  | // case, since NAME/VERSION is the default, we make NAME/NULL | 
|  | // override NAME/VERSION as well.  They are already the same | 
|  | // Symbol structure.  Setting the VERSION_ field to NULL ensures | 
|  | // that it will be output with the correct, empty, version. | 
|  | this->version_ = version; | 
|  | } | 
|  | else | 
|  | { | 
|  | // This is the case where this symbol is NAME/VERSION_ONE, and | 
|  | // now we see NAME/VERSION_TWO, and NAME/VERSION_TWO is | 
|  | // overriding NAME.  If VERSION_ONE and VERSION_TWO are | 
|  | // different, then this can only happen when VERSION_ONE is NULL | 
|  | // and VERSION_TWO is not hidden. | 
|  | gold_assert(this->version_ == version || this->version_ == NULL); | 
|  | this->version_ = version; | 
|  | } | 
|  | } | 
|  |  | 
|  | // This symbol is being overidden by another symbol whose visibility | 
|  | // is VISIBILITY.  Updated the VISIBILITY_ field accordingly. | 
|  |  | 
|  | inline void | 
|  | Symbol::override_visibility(elfcpp::STV visibility) | 
|  | { | 
|  | // The rule for combining visibility is that we always choose the | 
|  | // most constrained visibility.  In order of increasing constraint, | 
|  | // visibility goes PROTECTED, HIDDEN, INTERNAL.  This is the reverse | 
|  | // of the numeric values, so the effect is that we always want the | 
|  | // smallest non-zero value. | 
|  | if (visibility != elfcpp::STV_DEFAULT) | 
|  | { | 
|  | if (this->visibility_ == elfcpp::STV_DEFAULT) | 
|  | this->visibility_ = visibility; | 
|  | else if (this->visibility_ > visibility) | 
|  | this->visibility_ = visibility; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Override the fields in Symbol. | 
|  |  | 
|  | template<int size, bool big_endian> | 
|  | void | 
|  | Symbol::override_base(const elfcpp::Sym<size, big_endian>& sym, | 
|  | unsigned int st_shndx, bool is_ordinary, | 
|  | Object* object, const char* version) | 
|  | { | 
|  | gold_assert(this->source_ == FROM_OBJECT); | 
|  | this->u1_.object = object; | 
|  | this->override_version(version); | 
|  | this->u2_.shndx = st_shndx; | 
|  | this->is_ordinary_shndx_ = is_ordinary; | 
|  | // Don't override st_type from plugin placeholder symbols. | 
|  | if (object->pluginobj() == NULL) | 
|  | this->type_ = sym.get_st_type(); | 
|  | this->binding_ = sym.get_st_bind(); | 
|  | this->override_visibility(sym.get_st_visibility()); | 
|  | this->nonvis_ = sym.get_st_nonvis(); | 
|  | if (object->is_dynamic()) | 
|  | this->in_dyn_ = true; | 
|  | else | 
|  | this->in_reg_ = true; | 
|  | } | 
|  |  | 
|  | // Override the fields in Sized_symbol. | 
|  |  | 
|  | template<int size> | 
|  | template<bool big_endian> | 
|  | void | 
|  | Sized_symbol<size>::override(const elfcpp::Sym<size, big_endian>& sym, | 
|  | unsigned st_shndx, bool is_ordinary, | 
|  | Object* object, const char* version) | 
|  | { | 
|  | this->override_base(sym, st_shndx, is_ordinary, object, version); | 
|  | this->value_ = sym.get_st_value(); | 
|  | this->symsize_ = sym.get_st_size(); | 
|  | } | 
|  |  | 
|  | // Override TOSYM with symbol FROMSYM, defined in OBJECT, with version | 
|  | // VERSION.  This handles all aliases of TOSYM. | 
|  |  | 
|  | template<int size, bool big_endian> | 
|  | void | 
|  | Symbol_table::override(Sized_symbol<size>* tosym, | 
|  | const elfcpp::Sym<size, big_endian>& fromsym, | 
|  | unsigned int st_shndx, bool is_ordinary, | 
|  | Object* object, const char* version) | 
|  | { | 
|  | tosym->override(fromsym, st_shndx, is_ordinary, object, version); | 
|  | if (tosym->has_alias()) | 
|  | { | 
|  | Symbol* sym = this->weak_aliases_[tosym]; | 
|  | gold_assert(sym != NULL); | 
|  | Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym); | 
|  | do | 
|  | { | 
|  | ssym->override(fromsym, st_shndx, is_ordinary, object, version); | 
|  | sym = this->weak_aliases_[ssym]; | 
|  | gold_assert(sym != NULL); | 
|  | ssym = this->get_sized_symbol<size>(sym); | 
|  | } | 
|  | while (ssym != tosym); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The resolve functions build a little code for each symbol. | 
|  | // Bit 0: 0 for global, 1 for weak. | 
|  | // Bit 1: 0 for regular object, 1 for shared object | 
|  | // Bits 2-3: 0 for normal, 1 for undefined, 2 for common | 
|  | // This gives us values from 0 to 11. | 
|  |  | 
|  | static const int global_or_weak_shift = 0; | 
|  | static const unsigned int global_flag = 0 << global_or_weak_shift; | 
|  | static const unsigned int weak_flag = 1 << global_or_weak_shift; | 
|  |  | 
|  | static const int regular_or_dynamic_shift = 1; | 
|  | static const unsigned int regular_flag = 0 << regular_or_dynamic_shift; | 
|  | static const unsigned int dynamic_flag = 1 << regular_or_dynamic_shift; | 
|  |  | 
|  | static const int def_undef_or_common_shift = 2; | 
|  | static const unsigned int def_flag = 0 << def_undef_or_common_shift; | 
|  | static const unsigned int undef_flag = 1 << def_undef_or_common_shift; | 
|  | static const unsigned int common_flag = 2 << def_undef_or_common_shift; | 
|  |  | 
|  | // This convenience function combines all the flags based on facts | 
|  | // about the symbol. | 
|  |  | 
|  | static unsigned int | 
|  | symbol_to_bits(elfcpp::STB binding, bool is_dynamic, | 
|  | unsigned int shndx, bool is_ordinary) | 
|  | { | 
|  | unsigned int bits; | 
|  |  | 
|  | switch (binding) | 
|  | { | 
|  | case elfcpp::STB_GLOBAL: | 
|  | case elfcpp::STB_GNU_UNIQUE: | 
|  | bits = global_flag; | 
|  | break; | 
|  |  | 
|  | case elfcpp::STB_WEAK: | 
|  | bits = weak_flag; | 
|  | break; | 
|  |  | 
|  | case elfcpp::STB_LOCAL: | 
|  | // We should only see externally visible symbols in the symbol | 
|  | // table. | 
|  | gold_error(_("invalid STB_LOCAL symbol in external symbols")); | 
|  | bits = global_flag; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | // Any target which wants to handle STB_LOOS, etc., needs to | 
|  | // define a resolve method. | 
|  | gold_error(_("unsupported symbol binding %d"), static_cast<int>(binding)); | 
|  | bits = global_flag; | 
|  | } | 
|  |  | 
|  | if (is_dynamic) | 
|  | bits |= dynamic_flag; | 
|  | else | 
|  | bits |= regular_flag; | 
|  |  | 
|  | switch (shndx) | 
|  | { | 
|  | case elfcpp::SHN_UNDEF: | 
|  | bits |= undef_flag; | 
|  | break; | 
|  |  | 
|  | case elfcpp::SHN_COMMON: | 
|  | if (!is_ordinary) | 
|  | bits |= common_flag; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | if (!is_ordinary && Symbol::is_common_shndx(shndx)) | 
|  | bits |= common_flag; | 
|  | else | 
|  | bits |= def_flag; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return bits; | 
|  | } | 
|  |  | 
|  | // Resolve a symbol.  This is called the second and subsequent times | 
|  | // we see a symbol.  TO is the pre-existing symbol.  ST_SHNDX is the | 
|  | // section index for SYM, possibly adjusted for many sections. | 
|  | // IS_ORDINARY is whether ST_SHNDX is a normal section index rather | 
|  | // than a special code.  ORIG_ST_SHNDX is the original section index, | 
|  | // before any munging because of discarded sections, except that all | 
|  | // non-ordinary section indexes are mapped to SHN_UNDEF.  VERSION is | 
|  | // the version of SYM. | 
|  |  | 
|  | template<int size, bool big_endian> | 
|  | void | 
|  | Symbol_table::resolve(Sized_symbol<size>* to, | 
|  | const elfcpp::Sym<size, big_endian>& sym, | 
|  | unsigned int st_shndx, bool is_ordinary, | 
|  | unsigned int orig_st_shndx, | 
|  | Object* object, const char* version, | 
|  | bool is_default_version) | 
|  | { | 
|  | bool to_is_ordinary; | 
|  | const unsigned int to_shndx = to->shndx(&to_is_ordinary); | 
|  |  | 
|  | // It's possible for a symbol to be defined in an object file | 
|  | // using .symver to give it a version, and for there to also be | 
|  | // a linker script giving that symbol the same version.  We | 
|  | // don't want to give a multiple-definition error for this | 
|  | // harmless redefinition. | 
|  | if (to->source() == Symbol::FROM_OBJECT | 
|  | && to->object() == object | 
|  | && to->is_defined() | 
|  | && is_ordinary | 
|  | && to_is_ordinary | 
|  | && to_shndx == st_shndx | 
|  | && to->value() == sym.get_st_value()) | 
|  | return; | 
|  |  | 
|  | // Likewise for an absolute symbol defined twice with the same value. | 
|  | if (!is_ordinary | 
|  | && st_shndx == elfcpp::SHN_ABS | 
|  | && !to_is_ordinary | 
|  | && to_shndx == elfcpp::SHN_ABS | 
|  | && to->value() == sym.get_st_value()) | 
|  | return; | 
|  |  | 
|  | if (parameters->target().has_resolve()) | 
|  | { | 
|  | Sized_target<size, big_endian>* sized_target; | 
|  | sized_target = parameters->sized_target<size, big_endian>(); | 
|  | if (sized_target->resolve(to, sym, object, version)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!object->is_dynamic()) | 
|  | { | 
|  | if (sym.get_st_type() == elfcpp::STT_COMMON | 
|  | && (is_ordinary || !Symbol::is_common_shndx(st_shndx))) | 
|  | { | 
|  | gold_warning(_("STT_COMMON symbol '%s' in %s " | 
|  | "is not in a common section"), | 
|  | to->demangled_name().c_str(), | 
|  | to->object()->name().c_str()); | 
|  | return; | 
|  | } | 
|  | // Record that we've seen this symbol in a regular object. | 
|  | to->set_in_reg(); | 
|  | } | 
|  | else if (st_shndx == elfcpp::SHN_UNDEF | 
|  | && (to->visibility() == elfcpp::STV_HIDDEN | 
|  | || to->visibility() == elfcpp::STV_INTERNAL)) | 
|  | { | 
|  | // The symbol is hidden, so a reference from a shared object | 
|  | // cannot bind to it.  We tried issuing a warning in this case, | 
|  | // but that produces false positives when the symbol is | 
|  | // actually resolved in a different shared object (PR 15574). | 
|  | return; | 
|  | } | 
|  | else | 
|  | { | 
|  | // Record that we've seen this symbol in a dynamic object. | 
|  | to->set_in_dyn(); | 
|  | } | 
|  |  | 
|  | // Record if we've seen this symbol in a real ELF object (i.e., the | 
|  | // symbol is referenced from outside the world known to the plugin). | 
|  | if (object->pluginobj() == NULL && !object->is_dynamic()) | 
|  | to->set_in_real_elf(); | 
|  |  | 
|  | // If we're processing replacement files, allow new symbols to override | 
|  | // the placeholders from the plugin objects. | 
|  | // Treat common symbols specially since it is possible that an ELF | 
|  | // file increased the size of the alignment. | 
|  | if (to->source() == Symbol::FROM_OBJECT) | 
|  | { | 
|  | Pluginobj* obj = to->object()->pluginobj(); | 
|  | if (obj != NULL | 
|  | && parameters->options().plugins()->in_replacement_phase()) | 
|  | { | 
|  | bool adjust_common = false; | 
|  | typename Sized_symbol<size>::Size_type tosize = 0; | 
|  | typename Sized_symbol<size>::Value_type tovalue = 0; | 
|  | if (to->is_common() | 
|  | && !is_ordinary && Symbol::is_common_shndx(st_shndx)) | 
|  | { | 
|  | adjust_common = true; | 
|  | tosize = to->symsize(); | 
|  | tovalue = to->value(); | 
|  | } | 
|  | this->override(to, sym, st_shndx, is_ordinary, object, version); | 
|  | if (adjust_common) | 
|  | { | 
|  | if (tosize > to->symsize()) | 
|  | to->set_symsize(tosize); | 
|  | if (tovalue > to->value()) | 
|  | to->set_value(tovalue); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A new weak undefined reference, merging with an old weak | 
|  | // reference, could be a One Definition Rule (ODR) violation -- | 
|  | // especially if the types or sizes of the references differ.  We'll | 
|  | // store such pairs and look them up later to make sure they | 
|  | // actually refer to the same lines of code.  We also check | 
|  | // combinations of weak and strong, which might occur if one case is | 
|  | // inline and the other is not.  (Note: not all ODR violations can | 
|  | // be found this way, and not everything this finds is an ODR | 
|  | // violation.  But it's helpful to warn about.) | 
|  | if (parameters->options().detect_odr_violations() | 
|  | && (sym.get_st_bind() == elfcpp::STB_WEAK | 
|  | || to->binding() == elfcpp::STB_WEAK) | 
|  | && orig_st_shndx != elfcpp::SHN_UNDEF | 
|  | && to_is_ordinary | 
|  | && to_shndx != elfcpp::SHN_UNDEF | 
|  | && sym.get_st_size() != 0    // Ignore weird 0-sized symbols. | 
|  | && to->symsize() != 0 | 
|  | && (sym.get_st_type() != to->type() | 
|  | || sym.get_st_size() != to->symsize()) | 
|  | // C does not have a concept of ODR, so we only need to do this | 
|  | // on C++ symbols.  These have (mangled) names starting with _Z. | 
|  | && to->name()[0] == '_' && to->name()[1] == 'Z') | 
|  | { | 
|  | Symbol_location fromloc | 
|  | = { object, orig_st_shndx, static_cast<off_t>(sym.get_st_value()) }; | 
|  | Symbol_location toloc = { to->object(), to_shndx, | 
|  | static_cast<off_t>(to->value()) }; | 
|  | this->candidate_odr_violations_[to->name()].insert(fromloc); | 
|  | this->candidate_odr_violations_[to->name()].insert(toloc); | 
|  | } | 
|  |  | 
|  | // Plugins don't provide a symbol type, so adopt the existing type | 
|  | // if the FROM symbol is from a plugin. | 
|  | elfcpp::STT fromtype = (object->pluginobj() != NULL | 
|  | ? to->type() | 
|  | : sym.get_st_type()); | 
|  | unsigned int frombits = symbol_to_bits(sym.get_st_bind(), | 
|  | object->is_dynamic(), | 
|  | st_shndx, is_ordinary); | 
|  |  | 
|  | bool adjust_common_sizes; | 
|  | bool adjust_dyndef; | 
|  | typename Sized_symbol<size>::Size_type tosize = to->symsize(); | 
|  | if (Symbol_table::should_override(to, frombits, fromtype, OBJECT, | 
|  | object, &adjust_common_sizes, | 
|  | &adjust_dyndef, is_default_version)) | 
|  | { | 
|  | elfcpp::STB orig_tobinding = to->binding(); | 
|  | typename Sized_symbol<size>::Value_type tovalue = to->value(); | 
|  | this->override(to, sym, st_shndx, is_ordinary, object, version); | 
|  | if (adjust_common_sizes) | 
|  | { | 
|  | if (tosize > to->symsize()) | 
|  | to->set_symsize(tosize); | 
|  | if (tovalue > to->value()) | 
|  | to->set_value(tovalue); | 
|  | } | 
|  | if (adjust_dyndef) | 
|  | { | 
|  | // We are overriding an UNDEF or WEAK UNDEF with a DYN DEF. | 
|  | // Remember which kind of UNDEF it was for future reference. | 
|  | to->set_undef_binding(orig_tobinding); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | if (adjust_common_sizes) | 
|  | { | 
|  | if (sym.get_st_size() > tosize) | 
|  | to->set_symsize(sym.get_st_size()); | 
|  | if (sym.get_st_value() > to->value()) | 
|  | to->set_value(sym.get_st_value()); | 
|  | } | 
|  | if (adjust_dyndef) | 
|  | { | 
|  | // We are keeping a DYN DEF after seeing an UNDEF or WEAK UNDEF. | 
|  | // Remember which kind of UNDEF it was. | 
|  | to->set_undef_binding(sym.get_st_bind()); | 
|  | } | 
|  | // The ELF ABI says that even for a reference to a symbol we | 
|  | // merge the visibility. | 
|  | to->override_visibility(sym.get_st_visibility()); | 
|  | } | 
|  |  | 
|  | // If we have a non-WEAK reference from a regular object to a | 
|  | // dynamic object, mark the dynamic object as needed. | 
|  | if (to->is_from_dynobj() && to->in_reg() && !to->is_undef_binding_weak()) | 
|  | to->object()->set_is_needed(); | 
|  |  | 
|  | if (adjust_common_sizes && parameters->options().warn_common()) | 
|  | { | 
|  | if (tosize > sym.get_st_size()) | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("common of '%s' overriding " | 
|  | "smaller common"), | 
|  | to, OBJECT, object); | 
|  | else if (tosize < sym.get_st_size()) | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("common of '%s' overidden by " | 
|  | "larger common"), | 
|  | to, OBJECT, object); | 
|  | else | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("multiple common of '%s'"), | 
|  | to, OBJECT, object); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle the core of symbol resolution.  This is called with the | 
|  | // existing symbol, TO, and a bitflag describing the new symbol.  This | 
|  | // returns true if we should override the existing symbol with the new | 
|  | // one, and returns false otherwise.  It sets *ADJUST_COMMON_SIZES to | 
|  | // true if we should set the symbol size to the maximum of the TO and | 
|  | // FROM sizes.  It handles error conditions. | 
|  |  | 
|  | bool | 
|  | Symbol_table::should_override(const Symbol* to, unsigned int frombits, | 
|  | elfcpp::STT fromtype, Defined defined, | 
|  | Object* object, bool* adjust_common_sizes, | 
|  | bool* adjust_dyndef, bool is_default_version) | 
|  | { | 
|  | *adjust_common_sizes = false; | 
|  | *adjust_dyndef = false; | 
|  |  | 
|  | unsigned int tobits; | 
|  | if (to->source() == Symbol::IS_UNDEFINED) | 
|  | tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_UNDEF, true); | 
|  | else if (to->source() != Symbol::FROM_OBJECT) | 
|  | tobits = symbol_to_bits(to->binding(), false, elfcpp::SHN_ABS, false); | 
|  | else | 
|  | { | 
|  | bool is_ordinary; | 
|  | unsigned int shndx = to->shndx(&is_ordinary); | 
|  | tobits = symbol_to_bits(to->binding(), | 
|  | to->object()->is_dynamic(), | 
|  | shndx, | 
|  | is_ordinary); | 
|  | } | 
|  |  | 
|  | if ((to->type() == elfcpp::STT_TLS) ^ (fromtype == elfcpp::STT_TLS) | 
|  | && !to->is_placeholder()) | 
|  | Symbol_table::report_resolve_problem(true, | 
|  | _("symbol '%s' used as both __thread " | 
|  | "and non-__thread"), | 
|  | to, defined, object); | 
|  |  | 
|  | // We use a giant switch table for symbol resolution.  This code is | 
|  | // unwieldy, but: 1) it is efficient; 2) we definitely handle all | 
|  | // cases; 3) it is easy to change the handling of a particular case. | 
|  | // The alternative would be a series of conditionals, but it is easy | 
|  | // to get the ordering wrong.  This could also be done as a table, | 
|  | // but that is no easier to understand than this large switch | 
|  | // statement. | 
|  |  | 
|  | // These are the values generated by the bit codes. | 
|  | enum | 
|  | { | 
|  | DEF =              global_flag | regular_flag | def_flag, | 
|  | WEAK_DEF =         weak_flag   | regular_flag | def_flag, | 
|  | DYN_DEF =          global_flag | dynamic_flag | def_flag, | 
|  | DYN_WEAK_DEF =     weak_flag   | dynamic_flag | def_flag, | 
|  | UNDEF =            global_flag | regular_flag | undef_flag, | 
|  | WEAK_UNDEF =       weak_flag   | regular_flag | undef_flag, | 
|  | DYN_UNDEF =        global_flag | dynamic_flag | undef_flag, | 
|  | DYN_WEAK_UNDEF =   weak_flag   | dynamic_flag | undef_flag, | 
|  | COMMON =           global_flag | regular_flag | common_flag, | 
|  | WEAK_COMMON =      weak_flag   | regular_flag | common_flag, | 
|  | DYN_COMMON =       global_flag | dynamic_flag | common_flag, | 
|  | DYN_WEAK_COMMON =  weak_flag   | dynamic_flag | common_flag | 
|  | }; | 
|  |  | 
|  | switch (tobits * 16 + frombits) | 
|  | { | 
|  | case DEF * 16 + DEF: | 
|  | // Two definitions of the same symbol. | 
|  |  | 
|  | // If either symbol is defined by an object included using | 
|  | // --just-symbols, then don't warn.  This is for compatibility | 
|  | // with the GNU linker.  FIXME: This is a hack. | 
|  | if ((to->source() == Symbol::FROM_OBJECT && to->object()->just_symbols()) | 
|  | || (object != NULL && object->just_symbols())) | 
|  | return false; | 
|  |  | 
|  | if (!parameters->options().muldefs()) | 
|  | Symbol_table::report_resolve_problem(true, | 
|  | _("multiple definition of '%s'"), | 
|  | to, defined, object); | 
|  | return false; | 
|  |  | 
|  | case WEAK_DEF * 16 + DEF: | 
|  | // We've seen a weak definition, and now we see a strong | 
|  | // definition.  In the original SVR4 linker, this was treated as | 
|  | // a multiple definition error.  In the Solaris linker and the | 
|  | // GNU linker, a weak definition followed by a regular | 
|  | // definition causes the weak definition to be overridden.  We | 
|  | // are currently compatible with the GNU linker.  In the future | 
|  | // we should add a target specific option to change this. | 
|  | // FIXME. | 
|  | return true; | 
|  |  | 
|  | case DYN_DEF * 16 + DEF: | 
|  | case DYN_WEAK_DEF * 16 + DEF: | 
|  | // We've seen a definition in a dynamic object, and now we see a | 
|  | // definition in a regular object.  The definition in the | 
|  | // regular object overrides the definition in the dynamic | 
|  | // object. | 
|  | return true; | 
|  |  | 
|  | case UNDEF * 16 + DEF: | 
|  | case WEAK_UNDEF * 16 + DEF: | 
|  | case DYN_UNDEF * 16 + DEF: | 
|  | case DYN_WEAK_UNDEF * 16 + DEF: | 
|  | // We've seen an undefined reference, and now we see a | 
|  | // definition.  We use the definition. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + DEF: | 
|  | case WEAK_COMMON * 16 + DEF: | 
|  | case DYN_COMMON * 16 + DEF: | 
|  | case DYN_WEAK_COMMON * 16 + DEF: | 
|  | // We've seen a common symbol and now we see a definition.  The | 
|  | // definition overrides. | 
|  | if (parameters->options().warn_common()) | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("definition of '%s' overriding " | 
|  | "common"), | 
|  | to, defined, object); | 
|  | return true; | 
|  |  | 
|  | case DEF * 16 + WEAK_DEF: | 
|  | case WEAK_DEF * 16 + WEAK_DEF: | 
|  | // We've seen a definition and now we see a weak definition.  We | 
|  | // ignore the new weak definition. | 
|  | return false; | 
|  |  | 
|  | case DYN_DEF * 16 + WEAK_DEF: | 
|  | case DYN_WEAK_DEF * 16 + WEAK_DEF: | 
|  | // We've seen a dynamic definition and now we see a regular weak | 
|  | // definition.  The regular weak definition overrides. | 
|  | return true; | 
|  |  | 
|  | case UNDEF * 16 + WEAK_DEF: | 
|  | case WEAK_UNDEF * 16 + WEAK_DEF: | 
|  | case DYN_UNDEF * 16 + WEAK_DEF: | 
|  | case DYN_WEAK_UNDEF * 16 + WEAK_DEF: | 
|  | // A weak definition of a currently undefined symbol. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + WEAK_DEF: | 
|  | case WEAK_COMMON * 16 + WEAK_DEF: | 
|  | // A weak definition does not override a common definition. | 
|  | return false; | 
|  |  | 
|  | case DYN_COMMON * 16 + WEAK_DEF: | 
|  | case DYN_WEAK_COMMON * 16 + WEAK_DEF: | 
|  | // A weak definition does override a definition in a dynamic | 
|  | // object. | 
|  | if (parameters->options().warn_common()) | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("definition of '%s' overriding " | 
|  | "dynamic common definition"), | 
|  | to, defined, object); | 
|  | return true; | 
|  |  | 
|  | case DEF * 16 + DYN_DEF: | 
|  | case WEAK_DEF * 16 + DYN_DEF: | 
|  | // Ignore a dynamic definition if we already have a definition. | 
|  | return false; | 
|  |  | 
|  | case DYN_DEF * 16 + DYN_DEF: | 
|  | case DYN_WEAK_DEF * 16 + DYN_DEF: | 
|  | // Ignore a dynamic definition if we already have a definition, | 
|  | // unless the existing definition is an unversioned definition | 
|  | // in the same dynamic object, and the new definition is a | 
|  | // default version. | 
|  | if (to->object() == object | 
|  | && to->version() == NULL | 
|  | && is_default_version) | 
|  | return true; | 
|  | // Or, if the existing definition is in an unused --as-needed library, | 
|  | // and the reference is weak, let the new definition override. | 
|  | if (to->in_reg() | 
|  | && to->is_undef_binding_weak() | 
|  | && to->object()->as_needed() | 
|  | && !to->object()->is_needed()) | 
|  | return true; | 
|  | return false; | 
|  |  | 
|  | case UNDEF * 16 + DYN_DEF: | 
|  | case DYN_UNDEF * 16 + DYN_DEF: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_DEF: | 
|  | // Use a dynamic definition if we have a reference. | 
|  | return true; | 
|  |  | 
|  | case WEAK_UNDEF * 16 + DYN_DEF: | 
|  | // When overriding a weak undef by a dynamic definition, | 
|  | // we need to remember that the original undef was weak. | 
|  | *adjust_dyndef = true; | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + DYN_DEF: | 
|  | case WEAK_COMMON * 16 + DYN_DEF: | 
|  | // Ignore a dynamic definition if we already have a common | 
|  | // definition. | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + DYN_WEAK_DEF: | 
|  | case WEAK_DEF * 16 + DYN_WEAK_DEF: | 
|  | // Ignore a weak dynamic definition if we already have a | 
|  | // definition. | 
|  | return false; | 
|  |  | 
|  | case UNDEF * 16 + DYN_WEAK_DEF: | 
|  | // When overriding an undef by a dynamic weak definition, | 
|  | // we need to remember that the original undef was not weak. | 
|  | *adjust_dyndef = true; | 
|  | return true; | 
|  |  | 
|  | case DYN_UNDEF * 16 + DYN_WEAK_DEF: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_WEAK_DEF: | 
|  | // Use a weak dynamic definition if we have a reference. | 
|  | return true; | 
|  |  | 
|  | case WEAK_UNDEF * 16 + DYN_WEAK_DEF: | 
|  | // When overriding a weak undef by a dynamic definition, | 
|  | // we need to remember that the original undef was weak. | 
|  | *adjust_dyndef = true; | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + DYN_WEAK_DEF: | 
|  | case WEAK_COMMON * 16 + DYN_WEAK_DEF: | 
|  | // Ignore a weak dynamic definition if we already have a common | 
|  | // definition. | 
|  | return false; | 
|  |  | 
|  | case DYN_COMMON * 16 + DYN_DEF: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_DEF: | 
|  | case DYN_DEF * 16 + DYN_WEAK_DEF: | 
|  | case DYN_WEAK_DEF * 16 + DYN_WEAK_DEF: | 
|  | case DYN_COMMON * 16 + DYN_WEAK_DEF: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_WEAK_DEF: | 
|  | // If the existing definition is in an unused --as-needed library, | 
|  | // and the reference is weak, let a new dynamic definition override. | 
|  | if (to->in_reg() | 
|  | && to->is_undef_binding_weak() | 
|  | && to->object()->as_needed() | 
|  | && !to->object()->is_needed()) | 
|  | return true; | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + UNDEF: | 
|  | case WEAK_DEF * 16 + UNDEF: | 
|  | case UNDEF * 16 + UNDEF: | 
|  | // A new undefined reference tells us nothing. | 
|  | return false; | 
|  |  | 
|  | case DYN_DEF * 16 + UNDEF: | 
|  | case DYN_WEAK_DEF * 16 + UNDEF: | 
|  | // For a dynamic def, we need to remember which kind of undef we see. | 
|  | *adjust_dyndef = true; | 
|  | return false; | 
|  |  | 
|  | case WEAK_UNDEF * 16 + UNDEF: | 
|  | case DYN_UNDEF * 16 + UNDEF: | 
|  | case DYN_WEAK_UNDEF * 16 + UNDEF: | 
|  | // A strong undef overrides a dynamic or weak undef. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + UNDEF: | 
|  | case WEAK_COMMON * 16 + UNDEF: | 
|  | case DYN_COMMON * 16 + UNDEF: | 
|  | case DYN_WEAK_COMMON * 16 + UNDEF: | 
|  | // A new undefined reference tells us nothing. | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + WEAK_UNDEF: | 
|  | case WEAK_DEF * 16 + WEAK_UNDEF: | 
|  | case UNDEF * 16 + WEAK_UNDEF: | 
|  | case WEAK_UNDEF * 16 + WEAK_UNDEF: | 
|  | case DYN_UNDEF * 16 + WEAK_UNDEF: | 
|  | case COMMON * 16 + WEAK_UNDEF: | 
|  | case WEAK_COMMON * 16 + WEAK_UNDEF: | 
|  | case DYN_COMMON * 16 + WEAK_UNDEF: | 
|  | case DYN_WEAK_COMMON * 16 + WEAK_UNDEF: | 
|  | // A new weak undefined reference tells us nothing unless the | 
|  | // exisiting symbol is a dynamic weak reference. | 
|  | return false; | 
|  |  | 
|  | case DYN_WEAK_UNDEF * 16 + WEAK_UNDEF: | 
|  | // A new weak reference overrides an existing dynamic weak reference. | 
|  | // This is necessary because a dynamic weak reference remembers | 
|  | // the old binding, which may not be weak.  If we keeps the existing | 
|  | // dynamic weak reference, the weakness may be dropped in the output. | 
|  | return true; | 
|  |  | 
|  | case DYN_DEF * 16 + WEAK_UNDEF: | 
|  | case DYN_WEAK_DEF * 16 + WEAK_UNDEF: | 
|  | // For a dynamic def, we need to remember which kind of undef we see. | 
|  | *adjust_dyndef = true; | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + DYN_UNDEF: | 
|  | case WEAK_DEF * 16 + DYN_UNDEF: | 
|  | case DYN_DEF * 16 + DYN_UNDEF: | 
|  | case DYN_WEAK_DEF * 16 + DYN_UNDEF: | 
|  | case UNDEF * 16 + DYN_UNDEF: | 
|  | case WEAK_UNDEF * 16 + DYN_UNDEF: | 
|  | case DYN_UNDEF * 16 + DYN_UNDEF: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_UNDEF: | 
|  | case COMMON * 16 + DYN_UNDEF: | 
|  | case WEAK_COMMON * 16 + DYN_UNDEF: | 
|  | case DYN_COMMON * 16 + DYN_UNDEF: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_UNDEF: | 
|  | // A new dynamic undefined reference tells us nothing. | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + DYN_WEAK_UNDEF: | 
|  | case WEAK_DEF * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_DEF * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_WEAK_DEF * 16 + DYN_WEAK_UNDEF: | 
|  | case UNDEF * 16 + DYN_WEAK_UNDEF: | 
|  | case WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_UNDEF * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_WEAK_UNDEF: | 
|  | case COMMON * 16 + DYN_WEAK_UNDEF: | 
|  | case WEAK_COMMON * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_COMMON * 16 + DYN_WEAK_UNDEF: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_WEAK_UNDEF: | 
|  | // A new weak dynamic undefined reference tells us nothing. | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + COMMON: | 
|  | // A common symbol does not override a definition. | 
|  | if (parameters->options().warn_common()) | 
|  | Symbol_table::report_resolve_problem(false, | 
|  | _("common '%s' overridden by " | 
|  | "previous definition"), | 
|  | to, defined, object); | 
|  | return false; | 
|  |  | 
|  | case WEAK_DEF * 16 + COMMON: | 
|  | case DYN_DEF * 16 + COMMON: | 
|  | case DYN_WEAK_DEF * 16 + COMMON: | 
|  | // A common symbol does override a weak definition or a dynamic | 
|  | // definition. | 
|  | return true; | 
|  |  | 
|  | case UNDEF * 16 + COMMON: | 
|  | case WEAK_UNDEF * 16 + COMMON: | 
|  | case DYN_UNDEF * 16 + COMMON: | 
|  | case DYN_WEAK_UNDEF * 16 + COMMON: | 
|  | // A common symbol is a definition for a reference. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + COMMON: | 
|  | // Set the size to the maximum. | 
|  | *adjust_common_sizes = true; | 
|  | return false; | 
|  |  | 
|  | case WEAK_COMMON * 16 + COMMON: | 
|  | // I'm not sure just what a weak common symbol means, but | 
|  | // presumably it can be overridden by a regular common symbol. | 
|  | return true; | 
|  |  | 
|  | case DYN_COMMON * 16 + COMMON: | 
|  | case DYN_WEAK_COMMON * 16 + COMMON: | 
|  | // Use the real common symbol, but adjust the size if necessary. | 
|  | *adjust_common_sizes = true; | 
|  | return true; | 
|  |  | 
|  | case DEF * 16 + WEAK_COMMON: | 
|  | case WEAK_DEF * 16 + WEAK_COMMON: | 
|  | case DYN_DEF * 16 + WEAK_COMMON: | 
|  | case DYN_WEAK_DEF * 16 + WEAK_COMMON: | 
|  | // Whatever a weak common symbol is, it won't override a | 
|  | // definition. | 
|  | return false; | 
|  |  | 
|  | case UNDEF * 16 + WEAK_COMMON: | 
|  | case WEAK_UNDEF * 16 + WEAK_COMMON: | 
|  | case DYN_UNDEF * 16 + WEAK_COMMON: | 
|  | case DYN_WEAK_UNDEF * 16 + WEAK_COMMON: | 
|  | // A weak common symbol is better than an undefined symbol. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + WEAK_COMMON: | 
|  | case WEAK_COMMON * 16 + WEAK_COMMON: | 
|  | case DYN_COMMON * 16 + WEAK_COMMON: | 
|  | case DYN_WEAK_COMMON * 16 + WEAK_COMMON: | 
|  | // Ignore a weak common symbol in the presence of a real common | 
|  | // symbol. | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + DYN_COMMON: | 
|  | case WEAK_DEF * 16 + DYN_COMMON: | 
|  | case DYN_DEF * 16 + DYN_COMMON: | 
|  | case DYN_WEAK_DEF * 16 + DYN_COMMON: | 
|  | // Ignore a dynamic common symbol in the presence of a | 
|  | // definition. | 
|  | return false; | 
|  |  | 
|  | case UNDEF * 16 + DYN_COMMON: | 
|  | case WEAK_UNDEF * 16 + DYN_COMMON: | 
|  | case DYN_UNDEF * 16 + DYN_COMMON: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_COMMON: | 
|  | // A dynamic common symbol is a definition of sorts. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + DYN_COMMON: | 
|  | case WEAK_COMMON * 16 + DYN_COMMON: | 
|  | case DYN_COMMON * 16 + DYN_COMMON: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_COMMON: | 
|  | // Set the size to the maximum. | 
|  | *adjust_common_sizes = true; | 
|  | return false; | 
|  |  | 
|  | case DEF * 16 + DYN_WEAK_COMMON: | 
|  | case WEAK_DEF * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_DEF * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_WEAK_DEF * 16 + DYN_WEAK_COMMON: | 
|  | // A common symbol is ignored in the face of a definition. | 
|  | return false; | 
|  |  | 
|  | case UNDEF * 16 + DYN_WEAK_COMMON: | 
|  | case WEAK_UNDEF * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_UNDEF * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_WEAK_UNDEF * 16 + DYN_WEAK_COMMON: | 
|  | // I guess a weak common symbol is better than a definition. | 
|  | return true; | 
|  |  | 
|  | case COMMON * 16 + DYN_WEAK_COMMON: | 
|  | case WEAK_COMMON * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_COMMON * 16 + DYN_WEAK_COMMON: | 
|  | case DYN_WEAK_COMMON * 16 + DYN_WEAK_COMMON: | 
|  | // Set the size to the maximum. | 
|  | *adjust_common_sizes = true; | 
|  | return false; | 
|  |  | 
|  | default: | 
|  | gold_unreachable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Issue an error or warning due to symbol resolution.  IS_ERROR | 
|  | // indicates an error rather than a warning.  MSG is the error | 
|  | // message; it is expected to have a %s for the symbol name.  TO is | 
|  | // the existing symbol.  DEFINED/OBJECT is where the new symbol was | 
|  | // found. | 
|  |  | 
|  | // FIXME: We should have better location information here.  When the | 
|  | // symbol is defined, we should be able to pull the location from the | 
|  | // debug info if there is any. | 
|  |  | 
|  | void | 
|  | Symbol_table::report_resolve_problem(bool is_error, const char* msg, | 
|  | const Symbol* to, Defined defined, | 
|  | Object* object) | 
|  | { | 
|  | std::string demangled(to->demangled_name()); | 
|  | size_t len = strlen(msg) + demangled.length() + 10; | 
|  | char* buf = new char[len]; | 
|  | snprintf(buf, len, msg, demangled.c_str()); | 
|  |  | 
|  | const char* objname; | 
|  | switch (defined) | 
|  | { | 
|  | case OBJECT: | 
|  | objname = object->name().c_str(); | 
|  | break; | 
|  | case COPY: | 
|  | objname = _("COPY reloc"); | 
|  | break; | 
|  | case DEFSYM: | 
|  | case UNDEFINED: | 
|  | objname = _("command line"); | 
|  | break; | 
|  | case SCRIPT: | 
|  | objname = _("linker script"); | 
|  | break; | 
|  | case PREDEFINED: | 
|  | case INCREMENTAL_BASE: | 
|  | objname = _("linker defined"); | 
|  | break; | 
|  | default: | 
|  | gold_unreachable(); | 
|  | } | 
|  |  | 
|  | if (is_error) | 
|  | gold_error("%s: %s", objname, buf); | 
|  | else | 
|  | gold_warning("%s: %s", objname, buf); | 
|  |  | 
|  | delete[] buf; | 
|  |  | 
|  | if (to->source() == Symbol::FROM_OBJECT) | 
|  | objname = to->object()->name().c_str(); | 
|  | else | 
|  | objname = _("command line"); | 
|  | gold_info("%s: %s: previous definition here", program_name, objname); | 
|  | } | 
|  |  | 
|  | // Completely override existing symbol.  Everything bar name_, | 
|  | // version_, and is_forced_local_ flag are copied.  version_ is | 
|  | // cleared if from->version_ is clear.  Returns true if this symbol | 
|  | // should be forced local. | 
|  | bool | 
|  | Symbol::clone(const Symbol* from) | 
|  | { | 
|  | // Don't allow cloning after dynamic linking info is attached to symbols. | 
|  | // We aren't prepared to merge such. | 
|  | gold_assert(!this->has_symtab_index() && !from->has_symtab_index()); | 
|  | gold_assert(!this->has_dynsym_index() && !from->has_dynsym_index()); | 
|  | gold_assert(this->got_offset_list() == NULL | 
|  | && from->got_offset_list() == NULL); | 
|  | gold_assert(!this->has_plt_offset() && !from->has_plt_offset()); | 
|  |  | 
|  | if (!from->version_) | 
|  | this->version_ = from->version_; | 
|  | this->u1_ = from->u1_; | 
|  | this->u2_ = from->u2_; | 
|  | this->type_ = from->type_; | 
|  | this->binding_ = from->binding_; | 
|  | this->visibility_ = from->visibility_; | 
|  | this->nonvis_ = from->nonvis_; | 
|  | this->source_ = from->source_; | 
|  | this->is_def_ = from->is_def_; | 
|  | this->is_forwarder_ = from->is_forwarder_; | 
|  | this->has_alias_ = from->has_alias_; | 
|  | this->needs_dynsym_entry_ = from->needs_dynsym_entry_; | 
|  | this->in_reg_ = from->in_reg_; | 
|  | this->in_dyn_ = from->in_dyn_; | 
|  | this->needs_dynsym_value_ = from->needs_dynsym_value_; | 
|  | this->has_warning_ = from->has_warning_; | 
|  | this->is_copied_from_dynobj_ = from->is_copied_from_dynobj_; | 
|  | this->is_ordinary_shndx_ = from->is_ordinary_shndx_; | 
|  | this->in_real_elf_ = from->in_real_elf_; | 
|  | this->is_defined_in_discarded_section_ | 
|  | = from->is_defined_in_discarded_section_; | 
|  | this->undef_binding_set_ = from->undef_binding_set_; | 
|  | this->undef_binding_weak_ = from->undef_binding_weak_; | 
|  | this->is_predefined_ = from->is_predefined_; | 
|  | this->is_protected_ = from->is_protected_; | 
|  | this->non_zero_localentry_ = from->non_zero_localentry_; | 
|  |  | 
|  | return !this->is_forced_local_ && from->is_forced_local_; | 
|  | } | 
|  |  | 
|  | template <int size> | 
|  | bool | 
|  | Sized_symbol<size>::clone(const Sized_symbol<size>* from) | 
|  | { | 
|  | this->value_ = from->value_; | 
|  | this->symsize_ = from->symsize_; | 
|  | return Symbol::clone(from); | 
|  | } | 
|  |  | 
|  | // A special case of should_override which is only called for a strong | 
|  | // defined symbol from a regular object file.  This is used when | 
|  | // defining special symbols. | 
|  |  | 
|  | bool | 
|  | Symbol_table::should_override_with_special(const Symbol* to, | 
|  | elfcpp::STT fromtype, | 
|  | Defined defined) | 
|  | { | 
|  | bool adjust_common_sizes; | 
|  | bool adjust_dyn_def; | 
|  | unsigned int frombits = global_flag | regular_flag | def_flag; | 
|  | bool ret = Symbol_table::should_override(to, frombits, fromtype, defined, | 
|  | NULL, &adjust_common_sizes, | 
|  | &adjust_dyn_def, false); | 
|  | gold_assert(!adjust_common_sizes && !adjust_dyn_def); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Override symbol base with a special symbol. | 
|  |  | 
|  | void | 
|  | Symbol::override_base_with_special(const Symbol* from) | 
|  | { | 
|  | bool same_name = this->name_ == from->name_; | 
|  | gold_assert(same_name || this->has_alias()); | 
|  |  | 
|  | // If we are overriding an undef, remember the original binding. | 
|  | if (this->is_undefined()) | 
|  | this->set_undef_binding(this->binding_); | 
|  |  | 
|  | this->source_ = from->source_; | 
|  | switch (from->source_) | 
|  | { | 
|  | case FROM_OBJECT: | 
|  | case IN_OUTPUT_DATA: | 
|  | case IN_OUTPUT_SEGMENT: | 
|  | this->u1_ = from->u1_; | 
|  | this->u2_ = from->u2_; | 
|  | break; | 
|  | case IS_CONSTANT: | 
|  | case IS_UNDEFINED: | 
|  | break; | 
|  | default: | 
|  | gold_unreachable(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (same_name) | 
|  | { | 
|  | // When overriding a versioned symbol with a special symbol, we | 
|  | // may be changing the version.  This will happen if we see a | 
|  | // special symbol such as "_end" defined in a shared object with | 
|  | // one version (from a version script), but we want to define it | 
|  | // here with a different version (from a different version | 
|  | // script). | 
|  | this->version_ = from->version_; | 
|  | } | 
|  | this->type_ = from->type_; | 
|  | this->binding_ = from->binding_; | 
|  | this->override_visibility(from->visibility_); | 
|  | this->nonvis_ = from->nonvis_; | 
|  |  | 
|  | // Special symbols are always considered to be regular symbols. | 
|  | this->in_reg_ = true; | 
|  |  | 
|  | if (from->needs_dynsym_entry_) | 
|  | this->needs_dynsym_entry_ = true; | 
|  | if (from->needs_dynsym_value_) | 
|  | this->needs_dynsym_value_ = true; | 
|  |  | 
|  | this->is_predefined_ = from->is_predefined_; | 
|  |  | 
|  | // We shouldn't see these flags.  If we do, we need to handle them | 
|  | // somehow. | 
|  | gold_assert(!from->is_forwarder_); | 
|  | gold_assert(!from->has_plt_offset()); | 
|  | gold_assert(!from->has_warning_); | 
|  | gold_assert(!from->is_copied_from_dynobj_); | 
|  | gold_assert(!from->is_forced_local_); | 
|  | } | 
|  |  | 
|  | // Override a symbol with a special symbol. | 
|  |  | 
|  | template<int size> | 
|  | void | 
|  | Sized_symbol<size>::override_with_special(const Sized_symbol<size>* from) | 
|  | { | 
|  | this->override_base_with_special(from); | 
|  | this->value_ = from->value_; | 
|  | this->symsize_ = from->symsize_; | 
|  | } | 
|  |  | 
|  | // Override TOSYM with the special symbol FROMSYM.  This handles all | 
|  | // aliases of TOSYM. | 
|  |  | 
|  | template<int size> | 
|  | void | 
|  | Symbol_table::override_with_special(Sized_symbol<size>* tosym, | 
|  | const Sized_symbol<size>* fromsym) | 
|  | { | 
|  | tosym->override_with_special(fromsym); | 
|  | if (tosym->has_alias()) | 
|  | { | 
|  | Symbol* sym = this->weak_aliases_[tosym]; | 
|  | gold_assert(sym != NULL); | 
|  | Sized_symbol<size>* ssym = this->get_sized_symbol<size>(sym); | 
|  | do | 
|  | { | 
|  | ssym->override_with_special(fromsym); | 
|  | sym = this->weak_aliases_[ssym]; | 
|  | gold_assert(sym != NULL); | 
|  | ssym = this->get_sized_symbol<size>(sym); | 
|  | } | 
|  | while (ssym != tosym); | 
|  | } | 
|  | if (tosym->binding() == elfcpp::STB_LOCAL | 
|  | || ((tosym->visibility() == elfcpp::STV_HIDDEN | 
|  | || tosym->visibility() == elfcpp::STV_INTERNAL) | 
|  | && (tosym->binding() == elfcpp::STB_GLOBAL | 
|  | || tosym->binding() == elfcpp::STB_GNU_UNIQUE | 
|  | || tosym->binding() == elfcpp::STB_WEAK) | 
|  | && !parameters->options().relocatable())) | 
|  | this->force_local(tosym); | 
|  | } | 
|  |  | 
|  | // Instantiate the templates we need.  We could use the configure | 
|  | // script to restrict this to only the ones needed for implemented | 
|  | // targets. | 
|  |  | 
|  | // We have to instantiate both big and little endian versions because | 
|  | // these are used by other templates that depends on size only. | 
|  |  | 
|  | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) | 
|  | template | 
|  | void | 
|  | Symbol_table::resolve<32, false>( | 
|  | Sized_symbol<32>* to, | 
|  | const elfcpp::Sym<32, false>& sym, | 
|  | unsigned int st_shndx, | 
|  | bool is_ordinary, | 
|  | unsigned int orig_st_shndx, | 
|  | Object* object, | 
|  | const char* version, | 
|  | bool is_default_version); | 
|  |  | 
|  | template | 
|  | void | 
|  | Symbol_table::resolve<32, true>( | 
|  | Sized_symbol<32>* to, | 
|  | const elfcpp::Sym<32, true>& sym, | 
|  | unsigned int st_shndx, | 
|  | bool is_ordinary, | 
|  | unsigned int orig_st_shndx, | 
|  | Object* object, | 
|  | const char* version, | 
|  | bool is_default_version); | 
|  | #endif | 
|  |  | 
|  | #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) | 
|  | template | 
|  | void | 
|  | Symbol_table::resolve<64, false>( | 
|  | Sized_symbol<64>* to, | 
|  | const elfcpp::Sym<64, false>& sym, | 
|  | unsigned int st_shndx, | 
|  | bool is_ordinary, | 
|  | unsigned int orig_st_shndx, | 
|  | Object* object, | 
|  | const char* version, | 
|  | bool is_default_version); | 
|  |  | 
|  | template | 
|  | void | 
|  | Symbol_table::resolve<64, true>( | 
|  | Sized_symbol<64>* to, | 
|  | const elfcpp::Sym<64, true>& sym, | 
|  | unsigned int st_shndx, | 
|  | bool is_ordinary, | 
|  | unsigned int orig_st_shndx, | 
|  | Object* object, | 
|  | const char* version, | 
|  | bool is_default_version); | 
|  | #endif | 
|  |  | 
|  | #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG) | 
|  | template | 
|  | void | 
|  | Symbol_table::override_with_special<32>(Sized_symbol<32>*, | 
|  | const Sized_symbol<32>*); | 
|  | #endif | 
|  |  | 
|  | #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG) | 
|  | template | 
|  | void | 
|  | Symbol_table::override_with_special<64>(Sized_symbol<64>*, | 
|  | const Sized_symbol<64>*); | 
|  | #endif | 
|  |  | 
|  | template | 
|  | bool | 
|  | Sized_symbol<32>::clone(const Sized_symbol<32>*); | 
|  |  | 
|  | template | 
|  | bool | 
|  | Sized_symbol<64>::clone(const Sized_symbol<64>*); | 
|  | } // End namespace gold. |