| ///////////////////////// ankerl::unordered_dense::{map, set} ///////////////////////// |
| |
| // A fast & densely stored hashmap and hashset based on robin-hood backward shift deletion. |
| // Version 4.4.0 |
| // https://github.com/martinus/unordered_dense |
| // |
| // Licensed under the MIT License <http://opensource.org/licenses/MIT>. |
| // SPDX-License-Identifier: MIT |
| // Copyright (c) 2022-2023 Martin Leitner-Ankerl <martin.ankerl@gmail.com> |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in all |
| // copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| // SOFTWARE. |
| |
| #ifndef ANKERL_UNORDERED_DENSE_H |
| #define ANKERL_UNORDERED_DENSE_H |
| |
| // see https://semver.org/spec/v2.0.0.html |
| #define ANKERL_UNORDERED_DENSE_VERSION_MAJOR 4 // NOLINT(cppcoreguidelines-macro-usage) incompatible API changes |
| #define ANKERL_UNORDERED_DENSE_VERSION_MINOR 4 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible functionality |
| #define ANKERL_UNORDERED_DENSE_VERSION_PATCH 0 // NOLINT(cppcoreguidelines-macro-usage) backwards compatible bug fixes |
| |
| // API versioning with inline namespace, see https://www.foonathan.net/2018/11/inline-namespaces/ |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) |
| #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) v##major##_##minor##_##patch |
| // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) |
| #define ANKERL_UNORDERED_DENSE_VERSION_CONCAT(major, minor, patch) ANKERL_UNORDERED_DENSE_VERSION_CONCAT1(major, minor, patch) |
| #define ANKERL_UNORDERED_DENSE_NAMESPACE \ |
| ANKERL_UNORDERED_DENSE_VERSION_CONCAT( \ |
| ANKERL_UNORDERED_DENSE_VERSION_MAJOR, ANKERL_UNORDERED_DENSE_VERSION_MINOR, ANKERL_UNORDERED_DENSE_VERSION_PATCH) |
| |
| #if defined(_MSVC_LANG) |
| # define ANKERL_UNORDERED_DENSE_CPP_VERSION _MSVC_LANG |
| #else |
| # define ANKERL_UNORDERED_DENSE_CPP_VERSION __cplusplus |
| #endif |
| |
| #if defined(__GNUC__) |
| // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) |
| # define ANKERL_UNORDERED_DENSE_PACK(decl) decl __attribute__((__packed__)) |
| #elif defined(_MSC_VER) |
| // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) |
| # define ANKERL_UNORDERED_DENSE_PACK(decl) __pragma(pack(push, 1)) decl __pragma(pack(pop)) |
| #endif |
| |
| // exceptions |
| #if defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND) |
| # define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 1 // NOLINT(cppcoreguidelines-macro-usage) |
| #else |
| # define ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() 0 // NOLINT(cppcoreguidelines-macro-usage) |
| #endif |
| #ifdef _MSC_VER |
| # define ANKERL_UNORDERED_DENSE_NOINLINE __declspec(noinline) |
| #else |
| # define ANKERL_UNORDERED_DENSE_NOINLINE __attribute__((noinline)) |
| #endif |
| |
| // defined in unordered_dense.cpp |
| #if !defined(ANKERL_UNORDERED_DENSE_EXPORT) |
| # define ANKERL_UNORDERED_DENSE_EXPORT |
| #endif |
| |
| #if ANKERL_UNORDERED_DENSE_CPP_VERSION < 201703L |
| # error ankerl::unordered_dense requires C++17 or higher |
| #else |
| # include <array> // for array |
| # include <cstdint> // for uint64_t, uint32_t, uint8_t, UINT64_C |
| # include <cstring> // for size_t, memcpy, memset |
| # include <functional> // for equal_to, hash |
| # include <initializer_list> // for initializer_list |
| # include <iterator> // for pair, distance |
| # include <limits> // for numeric_limits |
| # include <memory> // for allocator, allocator_traits, shared_ptr |
| # include <optional> // for optional |
| # include <stdexcept> // for out_of_range |
| # include <string> // for basic_string |
| # include <string_view> // for basic_string_view, hash |
| # include <tuple> // for forward_as_tuple |
| # include <type_traits> // for enable_if_t, declval, conditional_t, ena... |
| # include <utility> // for forward, exchange, pair, as_const, piece... |
| # include <vector> // for vector |
| # if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() == 0 |
| # include <cstdlib> // for abort |
| # endif |
| |
| # if defined(__has_include) |
| # if __has_include(<memory_resource>) |
| # define ANKERL_UNORDERED_DENSE_PMR std::pmr // NOLINT(cppcoreguidelines-macro-usage) |
| # include <memory_resource> // for polymorphic_allocator |
| # elif __has_include(<experimental/memory_resource>) |
| # define ANKERL_UNORDERED_DENSE_PMR std::experimental::pmr // NOLINT(cppcoreguidelines-macro-usage) |
| # include <experimental/memory_resource> // for polymorphic_allocator |
| # endif |
| # endif |
| |
| # if defined(_MSC_VER) && defined(_M_X64) |
| # include <intrin.h> |
| # pragma intrinsic(_umul128) |
| # endif |
| |
| # if defined(__GNUC__) || defined(__INTEL_COMPILER) || defined(__clang__) |
| # define ANKERL_UNORDERED_DENSE_LIKELY(x) __builtin_expect(x, 1) // NOLINT(cppcoreguidelines-macro-usage) |
| # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) __builtin_expect(x, 0) // NOLINT(cppcoreguidelines-macro-usage) |
| # else |
| # define ANKERL_UNORDERED_DENSE_LIKELY(x) (x) // NOLINT(cppcoreguidelines-macro-usage) |
| # define ANKERL_UNORDERED_DENSE_UNLIKELY(x) (x) // NOLINT(cppcoreguidelines-macro-usage) |
| # endif |
| |
| namespace ankerl::unordered_dense { |
| inline namespace ANKERL_UNORDERED_DENSE_NAMESPACE { |
| |
| namespace detail { |
| |
| # if ANKERL_UNORDERED_DENSE_HAS_EXCEPTIONS() |
| |
| // make sure this is not inlined as it is slow and dramatically enlarges code, thus making other |
| // inlinings more difficult. Throws are also generally the slow path. |
| [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_key_not_found() { |
| throw std::out_of_range("ankerl::unordered_dense::map::at(): key not found"); |
| } |
| [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_bucket_overflow() { |
| throw std::overflow_error("ankerl::unordered_dense: reached max bucket size, cannot increase size"); |
| } |
| [[noreturn]] inline ANKERL_UNORDERED_DENSE_NOINLINE void on_error_too_many_elements() { |
| throw std::out_of_range("ankerl::unordered_dense::map::replace(): too many elements"); |
| } |
| |
| # else |
| |
| [[noreturn]] inline void on_error_key_not_found() { |
| abort(); |
| } |
| [[noreturn]] inline void on_error_bucket_overflow() { |
| abort(); |
| } |
| [[noreturn]] inline void on_error_too_many_elements() { |
| abort(); |
| } |
| |
| # endif |
| |
| } // namespace detail |
| |
| // hash /////////////////////////////////////////////////////////////////////// |
| |
| // This is a stripped-down implementation of wyhash: https://github.com/wangyi-fudan/wyhash |
| // No big-endian support (because different values on different machines don't matter), |
| // hardcodes seed and the secret, reformats the code, and clang-tidy fixes. |
| namespace detail::wyhash { |
| |
| inline void mum(uint64_t* a, uint64_t* b) { |
| # if defined(__SIZEOF_INT128__) |
| __uint128_t r = *a; |
| r *= *b; |
| *a = static_cast<uint64_t>(r); |
| *b = static_cast<uint64_t>(r >> 64U); |
| # elif defined(_MSC_VER) && defined(_M_X64) |
| *a = _umul128(*a, *b, b); |
| # else |
| uint64_t ha = *a >> 32U; |
| uint64_t hb = *b >> 32U; |
| uint64_t la = static_cast<uint32_t>(*a); |
| uint64_t lb = static_cast<uint32_t>(*b); |
| uint64_t hi{}; |
| uint64_t lo{}; |
| uint64_t rh = ha * hb; |
| uint64_t rm0 = ha * lb; |
| uint64_t rm1 = hb * la; |
| uint64_t rl = la * lb; |
| uint64_t t = rl + (rm0 << 32U); |
| auto c = static_cast<uint64_t>(t < rl); |
| lo = t + (rm1 << 32U); |
| c += static_cast<uint64_t>(lo < t); |
| hi = rh + (rm0 >> 32U) + (rm1 >> 32U) + c; |
| *a = lo; |
| *b = hi; |
| # endif |
| } |
| |
| // multiply and xor mix function, aka MUM |
| [[nodiscard]] inline auto mix(uint64_t a, uint64_t b) -> uint64_t { |
| mum(&a, &b); |
| return a ^ b; |
| } |
| |
| // read functions. WARNING: we don't care about endianness, so results are different on big endian! |
| [[nodiscard]] inline auto r8(const uint8_t* p) -> uint64_t { |
| uint64_t v{}; |
| std::memcpy(&v, p, 8U); |
| return v; |
| } |
| |
| [[nodiscard]] inline auto r4(const uint8_t* p) -> uint64_t { |
| uint32_t v{}; |
| std::memcpy(&v, p, 4); |
| return v; |
| } |
| |
| // reads 1, 2, or 3 bytes |
| [[nodiscard]] inline auto r3(const uint8_t* p, size_t k) -> uint64_t { |
| return (static_cast<uint64_t>(p[0]) << 16U) | (static_cast<uint64_t>(p[k >> 1U]) << 8U) | p[k - 1]; |
| } |
| |
| [[maybe_unused]] [[nodiscard]] inline auto hash(void const* key, size_t len) -> uint64_t { |
| static constexpr auto secret = std::array{UINT64_C(0xa0761d6478bd642f), |
| UINT64_C(0xe7037ed1a0b428db), |
| UINT64_C(0x8ebc6af09c88c6e3), |
| UINT64_C(0x589965cc75374cc3)}; |
| |
| auto const* p = static_cast<uint8_t const*>(key); |
| uint64_t seed = secret[0]; |
| uint64_t a{}; |
| uint64_t b{}; |
| if (ANKERL_UNORDERED_DENSE_LIKELY(len <= 16)) { |
| if (ANKERL_UNORDERED_DENSE_LIKELY(len >= 4)) { |
| a = (r4(p) << 32U) | r4(p + ((len >> 3U) << 2U)); |
| b = (r4(p + len - 4) << 32U) | r4(p + len - 4 - ((len >> 3U) << 2U)); |
| } else if (ANKERL_UNORDERED_DENSE_LIKELY(len > 0)) { |
| a = r3(p, len); |
| b = 0; |
| } else { |
| a = 0; |
| b = 0; |
| } |
| } else { |
| size_t i = len; |
| if (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 48)) { |
| uint64_t see1 = seed; |
| uint64_t see2 = seed; |
| do { |
| seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); |
| see1 = mix(r8(p + 16) ^ secret[2], r8(p + 24) ^ see1); |
| see2 = mix(r8(p + 32) ^ secret[3], r8(p + 40) ^ see2); |
| p += 48; |
| i -= 48; |
| } while (ANKERL_UNORDERED_DENSE_LIKELY(i > 48)); |
| seed ^= see1 ^ see2; |
| } |
| while (ANKERL_UNORDERED_DENSE_UNLIKELY(i > 16)) { |
| seed = mix(r8(p) ^ secret[1], r8(p + 8) ^ seed); |
| i -= 16; |
| p += 16; |
| } |
| a = r8(p + i - 16); |
| b = r8(p + i - 8); |
| } |
| |
| return mix(secret[1] ^ len, mix(a ^ secret[1], b ^ seed)); |
| } |
| |
| [[nodiscard]] inline auto hash(uint64_t x) -> uint64_t { |
| return detail::wyhash::mix(x, UINT64_C(0x9E3779B97F4A7C15)); |
| } |
| |
| } /* namespace detail::wyhash */ |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <typename T, typename Enable = void> |
| struct hash { |
| auto operator()(T const& obj) const noexcept(noexcept(std::declval<std::hash<T>>().operator()(std::declval<T const&>()))) |
| -> uint64_t { |
| return std::hash<T>{}(obj); |
| } |
| }; |
| |
| template <typename CharT> |
| struct hash<std::basic_string<CharT>> { |
| using is_avalanching = void; |
| auto operator()(std::basic_string<CharT> const& str) const noexcept -> uint64_t { |
| return detail::wyhash::hash(str.data(), sizeof(CharT) * str.size()); |
| } |
| }; |
| |
| template <typename CharT> |
| struct hash<std::basic_string_view<CharT>> { |
| using is_avalanching = void; |
| auto operator()(std::basic_string_view<CharT> const& sv) const noexcept -> uint64_t { |
| return detail::wyhash::hash(sv.data(), sizeof(CharT) * sv.size()); |
| } |
| }; |
| |
| template <class T> |
| struct hash<T*> { |
| using is_avalanching = void; |
| auto operator()(T* ptr) const noexcept -> uint64_t { |
| // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) |
| return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr)); |
| } |
| }; |
| |
| template <class T> |
| struct hash<std::unique_ptr<T>> { |
| using is_avalanching = void; |
| auto operator()(std::unique_ptr<T> const& ptr) const noexcept -> uint64_t { |
| // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) |
| return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); |
| } |
| }; |
| |
| template <class T> |
| struct hash<std::shared_ptr<T>> { |
| using is_avalanching = void; |
| auto operator()(std::shared_ptr<T> const& ptr) const noexcept -> uint64_t { |
| // NOLINTNEXTLINE(cppcoreguidelines-pro-type-reinterpret-cast) |
| return detail::wyhash::hash(reinterpret_cast<uintptr_t>(ptr.get())); |
| } |
| }; |
| |
| template <typename Enum> |
| struct hash<Enum, typename std::enable_if<std::is_enum<Enum>::value>::type> { |
| using is_avalanching = void; |
| auto operator()(Enum e) const noexcept -> uint64_t { |
| using underlying = typename std::underlying_type_t<Enum>; |
| return detail::wyhash::hash(static_cast<underlying>(e)); |
| } |
| }; |
| |
| template <typename... Args> |
| struct tuple_hash_helper { |
| // Converts the value into 64bit. If it is an integral type, just cast it. Mixing is doing the rest. |
| // If it isn't an integral we need to hash it. |
| template <typename Arg> |
| [[nodiscard]] constexpr static auto to64(Arg const& arg) -> uint64_t { |
| if constexpr (std::is_integral_v<Arg> || std::is_enum_v<Arg>) { |
| return static_cast<uint64_t>(arg); |
| } else { |
| return hash<Arg>{}(arg); |
| } |
| } |
| |
| [[nodiscard]] static auto mix64(uint64_t state, uint64_t v) -> uint64_t { |
| return detail::wyhash::mix(state + v, uint64_t{0x9ddfea08eb382d69}); |
| } |
| |
| // Creates a buffer that holds all the data from each element of the tuple. If possible we memcpy the data directly. If |
| // not, we hash the object and use this for the array. Size of the array is known at compile time, and memcpy is optimized |
| // away, so filling the buffer is highly efficient. Finally, call wyhash with this buffer. |
| template <typename T, std::size_t... Idx> |
| [[nodiscard]] static auto calc_hash(T const& t, std::index_sequence<Idx...>) noexcept -> uint64_t { |
| auto h = uint64_t{}; |
| ((h = mix64(h, to64(std::get<Idx>(t)))), ...); |
| return h; |
| } |
| }; |
| |
| template <typename... Args> |
| struct hash<std::tuple<Args...>> : tuple_hash_helper<Args...> { |
| using is_avalanching = void; |
| auto operator()(std::tuple<Args...> const& t) const noexcept -> uint64_t { |
| return tuple_hash_helper<Args...>::calc_hash(t, std::index_sequence_for<Args...>{}); |
| } |
| }; |
| |
| template <typename A, typename B> |
| struct hash<std::pair<A, B>> : tuple_hash_helper<A, B> { |
| using is_avalanching = void; |
| auto operator()(std::pair<A, B> const& t) const noexcept -> uint64_t { |
| return tuple_hash_helper<A, B>::calc_hash(t, std::index_sequence_for<A, B>{}); |
| } |
| }; |
| |
| // NOLINTNEXTLINE(cppcoreguidelines-macro-usage) |
| # define ANKERL_UNORDERED_DENSE_HASH_STATICCAST(T) \ |
| template <> \ |
| struct hash<T> { \ |
| using is_avalanching = void; \ |
| auto operator()(T const& obj) const noexcept -> uint64_t { \ |
| return detail::wyhash::hash(static_cast<uint64_t>(obj)); \ |
| } \ |
| } |
| |
| # if defined(__GNUC__) && !defined(__clang__) |
| # pragma GCC diagnostic push |
| # pragma GCC diagnostic ignored "-Wuseless-cast" |
| # endif |
| // see https://en.cppreference.com/w/cpp/utility/hash |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(bool); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(signed char); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned char); |
| # if ANKERL_UNORDERED_DENSE_CPP_VERSION >= 202002L && defined(__cpp_char8_t) |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char8_t); |
| # endif |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char16_t); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(char32_t); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(wchar_t); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(short); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned short); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(int); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned int); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(long long); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long); |
| ANKERL_UNORDERED_DENSE_HASH_STATICCAST(unsigned long long); |
| |
| # if defined(__GNUC__) && !defined(__clang__) |
| # pragma GCC diagnostic pop |
| # endif |
| |
| // bucket_type ////////////////////////////////////////////////////////// |
| |
| namespace bucket_type { |
| |
| struct standard { |
| static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint |
| static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint |
| |
| uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash |
| uint32_t m_value_idx; // index into the m_values vector. |
| }; |
| |
| ANKERL_UNORDERED_DENSE_PACK(struct big { |
| static constexpr uint32_t dist_inc = 1U << 8U; // skip 1 byte fingerprint |
| static constexpr uint32_t fingerprint_mask = dist_inc - 1; // mask for 1 byte of fingerprint |
| |
| uint32_t m_dist_and_fingerprint; // upper 3 byte: distance to original bucket. lower byte: fingerprint from hash |
| size_t m_value_idx; // index into the m_values vector. |
| }); |
| |
| } /* namespace bucket_type */ |
| |
| namespace detail { |
| |
| struct nonesuch {}; |
| |
| template <class Default, class AlwaysVoid, template <class...> class Op, class... Args> |
| struct detector { |
| using value_t = std::false_type; |
| using type = Default; |
| }; |
| |
| template <class Default, template <class...> class Op, class... Args> |
| struct detector<Default, std::void_t<Op<Args...>>, Op, Args...> { |
| using value_t = std::true_type; |
| using type = Op<Args...>; |
| }; |
| |
| template <template <class...> class Op, class... Args> |
| using is_detected = typename detail::detector<detail::nonesuch, void, Op, Args...>::value_t; |
| |
| template <template <class...> class Op, class... Args> |
| constexpr bool is_detected_v = is_detected<Op, Args...>::value; |
| |
| template <typename T> |
| using detect_avalanching = typename T::is_avalanching; |
| |
| template <typename T> |
| using detect_is_transparent = typename T::is_transparent; |
| |
| template <typename T> |
| using detect_iterator = typename T::iterator; |
| |
| template <typename T> |
| using detect_reserve = decltype(std::declval<T&>().reserve(size_t{})); |
| |
| // enable_if helpers |
| |
| template <typename Mapped> |
| constexpr bool is_map_v = !std::is_void_v<Mapped>; |
| |
| // clang-format off |
| template <typename Hash, typename KeyEqual> |
| constexpr bool is_transparent_v = is_detected_v<detect_is_transparent, Hash> && is_detected_v<detect_is_transparent, KeyEqual>; |
| // clang-format on |
| |
| template <typename From, typename To1, typename To2> |
| constexpr bool is_neither_convertible_v = !std::is_convertible_v<From, To1> && !std::is_convertible_v<From, To2>; |
| |
| template <typename T> |
| constexpr bool has_reserve = is_detected_v<detect_reserve, T>; |
| |
| // base type for map has mapped_type |
| template <class T> |
| struct base_table_type_map { |
| using mapped_type = T; |
| }; |
| |
| // base type for set doesn't have mapped_type |
| struct base_table_type_set {}; |
| |
| } /* namespace detail */ |
| |
| // Very much like std::deque, but faster for indexing (in most cases). As of now this doesn't implement the full std::vector |
| // API, but merely what's necessary to work as an underlying container for ankerl::unordered_dense::{map, set}. |
| // It allocates blocks of equal size and puts them into the m_blocks vector. That means it can grow simply by adding a new |
| // block to the back of m_blocks, and doesn't double its size like an std::vector. The disadvantage is that memory is not |
| // linear and thus there is one more indirection necessary for indexing. |
| template <typename T, typename Allocator = std::allocator<T>, size_t MaxSegmentSizeBytes = 4096> |
| class segmented_vector { |
| template <bool IsConst> |
| class iter_t; |
| |
| public: |
| using allocator_type = Allocator; |
| using pointer = typename std::allocator_traits<allocator_type>::pointer; |
| using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer; |
| using difference_type = typename std::allocator_traits<allocator_type>::difference_type; |
| using value_type = T; |
| using size_type = std::size_t; |
| using reference = T&; |
| using const_reference = T const&; |
| using iterator = iter_t<false>; |
| using const_iterator = iter_t<true>; |
| |
| private: |
| using vec_alloc = typename std::allocator_traits<Allocator>::template rebind_alloc<pointer>; |
| std::vector<pointer, vec_alloc> m_blocks{}; |
| size_t m_size{}; |
| |
| // Calculates the maximum number for x in (s << x) <= max_val |
| static constexpr auto num_bits_closest(size_t max_val, size_t s) -> size_t { |
| auto f = size_t{0}; |
| while (s << (f + 1) <= max_val) { |
| ++f; |
| } |
| return f; |
| } |
| |
| using self_t = segmented_vector<T, Allocator, MaxSegmentSizeBytes>; |
| static constexpr auto num_bits = num_bits_closest(MaxSegmentSizeBytes, sizeof(T)); |
| static constexpr auto num_elements_in_block = 1U << num_bits; |
| static constexpr auto mask = num_elements_in_block - 1U; |
| |
| /** |
| * Iterator class doubles as const_iterator and iterator |
| */ |
| template <bool IsConst> |
| class iter_t { |
| using ptr_t = typename std::conditional_t<IsConst, segmented_vector::const_pointer const*, segmented_vector::pointer*>; |
| ptr_t m_data{}; |
| size_t m_idx{}; |
| |
| template <bool B> |
| friend class iter_t; |
| |
| public: |
| using difference_type = segmented_vector::difference_type; |
| using value_type = T; |
| using reference = typename std::conditional_t<IsConst, value_type const&, value_type&>; |
| using pointer = typename std::conditional_t<IsConst, segmented_vector::const_pointer, segmented_vector::pointer>; |
| using iterator_category = std::forward_iterator_tag; |
| |
| iter_t() noexcept = default; |
| |
| template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> |
| // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) |
| constexpr iter_t(iter_t<OtherIsConst> const& other) noexcept |
| : m_data(other.m_data) |
| , m_idx(other.m_idx) {} |
| |
| constexpr iter_t(ptr_t data, size_t idx) noexcept |
| : m_data(data) |
| , m_idx(idx) {} |
| |
| template <bool OtherIsConst, typename = typename std::enable_if<IsConst && !OtherIsConst>::type> |
| constexpr auto operator=(iter_t<OtherIsConst> const& other) noexcept -> iter_t& { |
| m_data = other.m_data; |
| m_idx = other.m_idx; |
| return *this; |
| } |
| |
| constexpr auto operator++() noexcept -> iter_t& { |
| ++m_idx; |
| return *this; |
| } |
| |
| constexpr auto operator+(difference_type diff) noexcept -> iter_t { |
| return {m_data, static_cast<size_t>(static_cast<difference_type>(m_idx) + diff)}; |
| } |
| |
| template <bool OtherIsConst> |
| constexpr auto operator-(iter_t<OtherIsConst> const& other) noexcept -> difference_type { |
| return static_cast<difference_type>(m_idx) - static_cast<difference_type>(other.m_idx); |
| } |
| |
| constexpr auto operator*() const noexcept -> reference { |
| return m_data[m_idx >> num_bits][m_idx & mask]; |
| } |
| |
| constexpr auto operator->() const noexcept -> pointer { |
| return &m_data[m_idx >> num_bits][m_idx & mask]; |
| } |
| |
| template <bool O> |
| constexpr auto operator==(iter_t<O> const& o) const noexcept -> bool { |
| return m_idx == o.m_idx; |
| } |
| |
| template <bool O> |
| constexpr auto operator!=(iter_t<O> const& o) const noexcept -> bool { |
| return !(*this == o); |
| } |
| }; |
| |
| // slow path: need to allocate a new segment every once in a while |
| void increase_capacity() { |
| auto ba = Allocator(m_blocks.get_allocator()); |
| pointer block = std::allocator_traits<Allocator>::allocate(ba, num_elements_in_block); |
| m_blocks.push_back(block); |
| } |
| |
| // Moves everything from other |
| void append_everything_from(segmented_vector&& other) { |
| reserve(size() + other.size()); |
| for (auto&& o : other) { |
| emplace_back(std::move(o)); |
| } |
| } |
| |
| // Copies everything from other |
| void append_everything_from(segmented_vector const& other) { |
| reserve(size() + other.size()); |
| for (auto const& o : other) { |
| emplace_back(o); |
| } |
| } |
| |
| void dealloc() { |
| auto ba = Allocator(m_blocks.get_allocator()); |
| for (auto ptr : m_blocks) { |
| std::allocator_traits<Allocator>::deallocate(ba, ptr, num_elements_in_block); |
| } |
| } |
| |
| [[nodiscard]] static constexpr auto calc_num_blocks_for_capacity(size_t capacity) { |
| return (capacity + num_elements_in_block - 1U) / num_elements_in_block; |
| } |
| |
| public: |
| segmented_vector() = default; |
| |
| // NOLINTNEXTLINE(google-explicit-constructor,hicpp-explicit-conversions) |
| segmented_vector(Allocator alloc) |
| : m_blocks(vec_alloc(alloc)) {} |
| |
| segmented_vector(segmented_vector&& other, Allocator alloc) |
| : segmented_vector(alloc) { |
| *this = std::move(other); |
| } |
| |
| segmented_vector(segmented_vector const& other, Allocator alloc) |
| : m_blocks(vec_alloc(alloc)) { |
| append_everything_from(other); |
| } |
| |
| segmented_vector(segmented_vector&& other) noexcept |
| : segmented_vector(std::move(other), get_allocator()) {} |
| |
| segmented_vector(segmented_vector const& other) { |
| append_everything_from(other); |
| } |
| |
| auto operator=(segmented_vector const& other) -> segmented_vector& { |
| if (this == &other) { |
| return *this; |
| } |
| clear(); |
| append_everything_from(other); |
| return *this; |
| } |
| |
| auto operator=(segmented_vector&& other) noexcept -> segmented_vector& { |
| clear(); |
| dealloc(); |
| if (other.get_allocator() == get_allocator()) { |
| m_blocks = std::move(other.m_blocks); |
| m_size = std::exchange(other.m_size, {}); |
| } else { |
| // make sure to construct with other's allocator! |
| m_blocks = std::vector<pointer, vec_alloc>(vec_alloc(other.get_allocator())); |
| append_everything_from(std::move(other)); |
| } |
| return *this; |
| } |
| |
| ~segmented_vector() { |
| clear(); |
| dealloc(); |
| } |
| |
| [[nodiscard]] constexpr auto size() const -> size_t { |
| return m_size; |
| } |
| |
| [[nodiscard]] constexpr auto capacity() const -> size_t { |
| return m_blocks.size() * num_elements_in_block; |
| } |
| |
| // Indexing is highly performance critical |
| [[nodiscard]] constexpr auto operator[](size_t i) const noexcept -> T const& { |
| return m_blocks[i >> num_bits][i & mask]; |
| } |
| |
| [[nodiscard]] constexpr auto operator[](size_t i) noexcept -> T& { |
| return m_blocks[i >> num_bits][i & mask]; |
| } |
| |
| [[nodiscard]] constexpr auto begin() -> iterator { |
| return {m_blocks.data(), 0U}; |
| } |
| [[nodiscard]] constexpr auto begin() const -> const_iterator { |
| return {m_blocks.data(), 0U}; |
| } |
| [[nodiscard]] constexpr auto cbegin() const -> const_iterator { |
| return {m_blocks.data(), 0U}; |
| } |
| |
| [[nodiscard]] constexpr auto end() -> iterator { |
| return {m_blocks.data(), m_size}; |
| } |
| [[nodiscard]] constexpr auto end() const -> const_iterator { |
| return {m_blocks.data(), m_size}; |
| } |
| [[nodiscard]] constexpr auto cend() const -> const_iterator { |
| return {m_blocks.data(), m_size}; |
| } |
| |
| [[nodiscard]] constexpr auto back() -> reference { |
| return operator[](m_size - 1); |
| } |
| [[nodiscard]] constexpr auto back() const -> const_reference { |
| return operator[](m_size - 1); |
| } |
| |
| void pop_back() { |
| back().~T(); |
| --m_size; |
| } |
| |
| [[nodiscard]] auto empty() const { |
| return 0 == m_size; |
| } |
| |
| void reserve(size_t new_capacity) { |
| m_blocks.reserve(calc_num_blocks_for_capacity(new_capacity)); |
| while (new_capacity > capacity()) { |
| increase_capacity(); |
| } |
| } |
| |
| [[nodiscard]] auto get_allocator() const -> allocator_type { |
| return allocator_type{m_blocks.get_allocator()}; |
| } |
| |
| template <class... Args> |
| auto emplace_back(Args&&... args) -> reference { |
| if (m_size == capacity()) { |
| increase_capacity(); |
| } |
| auto* ptr = static_cast<void*>(&operator[](m_size)); |
| auto& ref = *new (ptr) T(std::forward<Args>(args)...); |
| ++m_size; |
| return ref; |
| } |
| |
| void clear() { |
| if constexpr (!std::is_trivially_destructible_v<T>) { |
| for (size_t i = 0, s = size(); i < s; ++i) { |
| operator[](i).~T(); |
| } |
| } |
| m_size = 0; |
| } |
| |
| void shrink_to_fit() { |
| auto ba = Allocator(m_blocks.get_allocator()); |
| auto num_blocks_required = calc_num_blocks_for_capacity(m_size); |
| while (m_blocks.size() > num_blocks_required) { |
| std::allocator_traits<Allocator>::deallocate(ba, m_blocks.back(), num_elements_in_block); |
| m_blocks.pop_back(); |
| } |
| m_blocks.shrink_to_fit(); |
| } |
| }; |
| |
| namespace detail { |
| |
| // This is it, the table. Doubles as map and set, and uses `void` for T when its used as a set. |
| template <class Key, |
| class T, // when void, treat it as a set. |
| class Hash, |
| class KeyEqual, |
| class AllocatorOrContainer, |
| class Bucket, |
| bool IsSegmented> |
| class table : public std::conditional_t<is_map_v<T>, base_table_type_map<T>, base_table_type_set> { |
| using underlying_value_type = typename std::conditional_t<is_map_v<T>, std::pair<Key, T>, Key>; |
| using underlying_container_type = std::conditional_t<IsSegmented, |
| segmented_vector<underlying_value_type, AllocatorOrContainer>, |
| std::vector<underlying_value_type, AllocatorOrContainer>>; |
| |
| public: |
| using value_container_type = std:: |
| conditional_t<is_detected_v<detect_iterator, AllocatorOrContainer>, AllocatorOrContainer, underlying_container_type>; |
| |
| private: |
| using bucket_alloc = |
| typename std::allocator_traits<typename value_container_type::allocator_type>::template rebind_alloc<Bucket>; |
| using bucket_alloc_traits = std::allocator_traits<bucket_alloc>; |
| |
| static constexpr uint8_t initial_shifts = 64 - 2; // 2^(64-m_shift) number of buckets |
| static constexpr float default_max_load_factor = 0.8F; |
| |
| public: |
| using key_type = Key; |
| using value_type = typename value_container_type::value_type; |
| using size_type = typename value_container_type::size_type; |
| using difference_type = typename value_container_type::difference_type; |
| using hasher = Hash; |
| using key_equal = KeyEqual; |
| using allocator_type = typename value_container_type::allocator_type; |
| using reference = typename value_container_type::reference; |
| using const_reference = typename value_container_type::const_reference; |
| using pointer = typename value_container_type::pointer; |
| using const_pointer = typename value_container_type::const_pointer; |
| using const_iterator = typename value_container_type::const_iterator; |
| using iterator = std::conditional_t<is_map_v<T>, typename value_container_type::iterator, const_iterator>; |
| using bucket_type = Bucket; |
| |
| private: |
| using value_idx_type = decltype(Bucket::m_value_idx); |
| using dist_and_fingerprint_type = decltype(Bucket::m_dist_and_fingerprint); |
| |
| static_assert(std::is_trivially_destructible_v<Bucket>, "assert there's no need to call destructor / std::destroy"); |
| static_assert(std::is_trivially_copyable_v<Bucket>, "assert we can just memset / memcpy"); |
| |
| value_container_type m_values{}; // Contains all the key-value pairs in one densely stored container. No holes. |
| using bucket_pointer = typename std::allocator_traits<bucket_alloc>::pointer; |
| bucket_pointer m_buckets{}; |
| size_t m_num_buckets = 0; |
| size_t m_max_bucket_capacity = 0; |
| float m_max_load_factor = default_max_load_factor; |
| Hash m_hash{}; |
| KeyEqual m_equal{}; |
| uint8_t m_shifts = initial_shifts; |
| |
| [[nodiscard]] auto next(value_idx_type bucket_idx) const -> value_idx_type { |
| return ANKERL_UNORDERED_DENSE_UNLIKELY(bucket_idx + 1U == m_num_buckets) |
| ? 0 |
| : static_cast<value_idx_type>(bucket_idx + 1U); |
| } |
| |
| // Helper to access bucket through pointer types |
| [[nodiscard]] static constexpr auto at(bucket_pointer bucket_ptr, size_t offset) -> Bucket& { |
| return *(bucket_ptr + static_cast<typename std::allocator_traits<bucket_alloc>::difference_type>(offset)); |
| } |
| |
| // use the dist_inc and dist_dec functions so that uint16_t types work without warning |
| [[nodiscard]] static constexpr auto dist_inc(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { |
| return static_cast<dist_and_fingerprint_type>(x + Bucket::dist_inc); |
| } |
| |
| [[nodiscard]] static constexpr auto dist_dec(dist_and_fingerprint_type x) -> dist_and_fingerprint_type { |
| return static_cast<dist_and_fingerprint_type>(x - Bucket::dist_inc); |
| } |
| |
| // The goal of mixed_hash is to always produce a high quality 64bit hash. |
| template <typename K> |
| [[nodiscard]] constexpr auto mixed_hash(K const& key) const -> uint64_t { |
| if constexpr (is_detected_v<detect_avalanching, Hash>) { |
| // we know that the hash is good because is_avalanching. |
| if constexpr (sizeof(decltype(m_hash(key))) < sizeof(uint64_t)) { |
| // 32bit hash and is_avalanching => multiply with a constant to avalanche bits upwards |
| return m_hash(key) * UINT64_C(0x9ddfea08eb382d69); |
| } else { |
| // 64bit and is_avalanching => only use the hash itself. |
| return m_hash(key); |
| } |
| } else { |
| // not is_avalanching => apply wyhash |
| return wyhash::hash(m_hash(key)); |
| } |
| } |
| |
| [[nodiscard]] constexpr auto dist_and_fingerprint_from_hash(uint64_t hash) const -> dist_and_fingerprint_type { |
| return Bucket::dist_inc | (static_cast<dist_and_fingerprint_type>(hash) & Bucket::fingerprint_mask); |
| } |
| |
| [[nodiscard]] constexpr auto bucket_idx_from_hash(uint64_t hash) const -> value_idx_type { |
| return static_cast<value_idx_type>(hash >> m_shifts); |
| } |
| |
| [[nodiscard]] static constexpr auto get_key(value_type const& vt) -> key_type const& { |
| if constexpr (is_map_v<T>) { |
| return vt.first; |
| } else { |
| return vt; |
| } |
| } |
| |
| template <typename K> |
| [[nodiscard]] auto next_while_less(K const& key) const -> Bucket { |
| auto hash = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| while (dist_and_fingerprint < at(m_buckets, bucket_idx).m_dist_and_fingerprint) { |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| return {dist_and_fingerprint, bucket_idx}; |
| } |
| |
| void place_and_shift_up(Bucket bucket, value_idx_type place) { |
| while (0 != at(m_buckets, place).m_dist_and_fingerprint) { |
| bucket = std::exchange(at(m_buckets, place), bucket); |
| bucket.m_dist_and_fingerprint = dist_inc(bucket.m_dist_and_fingerprint); |
| place = next(place); |
| } |
| at(m_buckets, place) = bucket; |
| } |
| |
| [[nodiscard]] static constexpr auto calc_num_buckets(uint8_t shifts) -> size_t { |
| return (std::min)(max_bucket_count(), size_t{1} << (64U - shifts)); |
| } |
| |
| [[nodiscard]] constexpr auto calc_shifts_for_size(size_t s) const -> uint8_t { |
| auto shifts = initial_shifts; |
| while (shifts > 0 && static_cast<size_t>(static_cast<float>(calc_num_buckets(shifts)) * max_load_factor()) < s) { |
| --shifts; |
| } |
| return shifts; |
| } |
| |
| // assumes m_values has data, m_buckets=m_buckets_end=nullptr, m_shifts is INITIAL_SHIFTS |
| void copy_buckets(table const& other) { |
| // assumes m_values has already the correct data copied over. |
| if (empty()) { |
| // when empty, at least allocate an initial buckets and clear them. |
| allocate_buckets_from_shift(); |
| clear_buckets(); |
| } else { |
| m_shifts = other.m_shifts; |
| allocate_buckets_from_shift(); |
| std::memcpy(m_buckets, other.m_buckets, sizeof(Bucket) * bucket_count()); |
| } |
| } |
| |
| /** |
| * True when no element can be added any more without increasing the size |
| */ |
| [[nodiscard]] auto is_full() const -> bool { |
| return size() > m_max_bucket_capacity; |
| } |
| |
| void deallocate_buckets() { |
| auto ba = bucket_alloc(m_values.get_allocator()); |
| if (nullptr != m_buckets) { |
| bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); |
| m_buckets = nullptr; |
| } |
| m_num_buckets = 0; |
| m_max_bucket_capacity = 0; |
| } |
| |
| void allocate_buckets_from_shift() { |
| auto ba = bucket_alloc(m_values.get_allocator()); |
| m_num_buckets = calc_num_buckets(m_shifts); |
| m_buckets = bucket_alloc_traits::allocate(ba, m_num_buckets); |
| if (m_num_buckets == max_bucket_count()) { |
| // reached the maximum, make sure we can use each bucket |
| m_max_bucket_capacity = max_bucket_count(); |
| } else { |
| m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(m_num_buckets) * max_load_factor()); |
| } |
| } |
| |
| void clear_buckets() { |
| if (m_buckets != nullptr) { |
| std::memset(&*m_buckets, 0, sizeof(Bucket) * bucket_count()); |
| } |
| } |
| |
| void clear_and_fill_buckets_from_values() { |
| clear_buckets(); |
| for (value_idx_type value_idx = 0, end_idx = static_cast<value_idx_type>(m_values.size()); value_idx < end_idx; |
| ++value_idx) { |
| auto const& key = get_key(m_values[value_idx]); |
| auto [dist_and_fingerprint, bucket] = next_while_less(key); |
| |
| // we know for certain that key has not yet been inserted, so no need to check it. |
| place_and_shift_up({dist_and_fingerprint, value_idx}, bucket); |
| } |
| } |
| |
| void increase_size() { |
| if (m_max_bucket_capacity == max_bucket_count()) { |
| // remove the value again, we can't add it! |
| m_values.pop_back(); |
| on_error_bucket_overflow(); |
| } |
| --m_shifts; |
| deallocate_buckets(); |
| allocate_buckets_from_shift(); |
| clear_and_fill_buckets_from_values(); |
| } |
| |
| template <typename Op> |
| void do_erase(value_idx_type bucket_idx, Op handle_erased_value) { |
| auto const value_idx_to_remove = at(m_buckets, bucket_idx).m_value_idx; |
| |
| // shift down until either empty or an element with correct spot is found |
| auto next_bucket_idx = next(bucket_idx); |
| while (at(m_buckets, next_bucket_idx).m_dist_and_fingerprint >= Bucket::dist_inc * 2) { |
| at(m_buckets, bucket_idx) = {dist_dec(at(m_buckets, next_bucket_idx).m_dist_and_fingerprint), |
| at(m_buckets, next_bucket_idx).m_value_idx}; |
| bucket_idx = std::exchange(next_bucket_idx, next(next_bucket_idx)); |
| } |
| at(m_buckets, bucket_idx) = {}; |
| handle_erased_value(std::move(m_values[value_idx_to_remove])); |
| |
| // update m_values |
| if (value_idx_to_remove != m_values.size() - 1) { |
| // no luck, we'll have to replace the value with the last one and update the index accordingly |
| auto& val = m_values[value_idx_to_remove]; |
| val = std::move(m_values.back()); |
| |
| // update the values_idx of the moved entry. No need to play the info game, just look until we find the values_idx |
| auto mh = mixed_hash(get_key(val)); |
| bucket_idx = bucket_idx_from_hash(mh); |
| |
| auto const values_idx_back = static_cast<value_idx_type>(m_values.size() - 1); |
| while (values_idx_back != at(m_buckets, bucket_idx).m_value_idx) { |
| bucket_idx = next(bucket_idx); |
| } |
| at(m_buckets, bucket_idx).m_value_idx = value_idx_to_remove; |
| } |
| m_values.pop_back(); |
| } |
| |
| template <typename K, typename Op> |
| auto do_erase_key(K&& key, Op handle_erased_value) -> size_t { |
| if (empty()) { |
| return 0; |
| } |
| |
| auto [dist_and_fingerprint, bucket_idx] = next_while_less(key); |
| |
| while (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && |
| !m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| |
| if (dist_and_fingerprint != at(m_buckets, bucket_idx).m_dist_and_fingerprint) { |
| return 0; |
| } |
| do_erase(bucket_idx, handle_erased_value); |
| return 1; |
| } |
| |
| template <class K, class M> |
| auto do_insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { |
| auto it_isinserted = try_emplace(std::forward<K>(key), std::forward<M>(mapped)); |
| if (!it_isinserted.second) { |
| it_isinserted.first->second = std::forward<M>(mapped); |
| } |
| return it_isinserted; |
| } |
| |
| template <typename... Args> |
| auto do_place_element(dist_and_fingerprint_type dist_and_fingerprint, value_idx_type bucket_idx, Args&&... args) |
| -> std::pair<iterator, bool> { |
| |
| // emplace the new value. If that throws an exception, no harm done; index is still in a valid state |
| m_values.emplace_back(std::forward<Args>(args)...); |
| |
| auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); |
| if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { |
| increase_size(); |
| } else { |
| place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); |
| } |
| |
| // place element and shift up until we find an empty spot |
| return {begin() + static_cast<difference_type>(value_idx), true}; |
| } |
| |
| template <typename K, typename... Args> |
| auto do_try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { |
| auto hash = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| while (true) { |
| auto* bucket = &at(m_buckets, bucket_idx); |
| if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { |
| if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { |
| return {begin() + static_cast<difference_type>(bucket->m_value_idx), false}; |
| } |
| } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { |
| return do_place_element(dist_and_fingerprint, |
| bucket_idx, |
| std::piecewise_construct, |
| std::forward_as_tuple(std::forward<K>(key)), |
| std::forward_as_tuple(std::forward<Args>(args)...)); |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| } |
| |
| template <typename K> |
| auto do_find(K const& key) -> iterator { |
| if (ANKERL_UNORDERED_DENSE_UNLIKELY(empty())) { |
| return end(); |
| } |
| |
| auto mh = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(mh); |
| auto bucket_idx = bucket_idx_from_hash(mh); |
| auto* bucket = &at(m_buckets, bucket_idx); |
| |
| // unrolled loop. *Always* check a few directly, then enter the loop. This is faster. |
| if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { |
| return begin() + static_cast<difference_type>(bucket->m_value_idx); |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| bucket = &at(m_buckets, bucket_idx); |
| |
| if (dist_and_fingerprint == bucket->m_dist_and_fingerprint && m_equal(key, get_key(m_values[bucket->m_value_idx]))) { |
| return begin() + static_cast<difference_type>(bucket->m_value_idx); |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| bucket = &at(m_buckets, bucket_idx); |
| |
| while (true) { |
| if (dist_and_fingerprint == bucket->m_dist_and_fingerprint) { |
| if (m_equal(key, get_key(m_values[bucket->m_value_idx]))) { |
| return begin() + static_cast<difference_type>(bucket->m_value_idx); |
| } |
| } else if (dist_and_fingerprint > bucket->m_dist_and_fingerprint) { |
| return end(); |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| bucket = &at(m_buckets, bucket_idx); |
| } |
| } |
| |
| template <typename K> |
| auto do_find(K const& key) const -> const_iterator { |
| return const_cast<table*>(this)->do_find(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) |
| } |
| |
| template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto do_at(K const& key) -> Q& { |
| if (auto it = find(key); ANKERL_UNORDERED_DENSE_LIKELY(end() != it)) { |
| return it->second; |
| } |
| on_error_key_not_found(); |
| } |
| |
| template <typename K, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto do_at(K const& key) const -> Q const& { |
| return const_cast<table*>(this)->at(key); // NOLINT(cppcoreguidelines-pro-type-const-cast) |
| } |
| |
| public: |
| explicit table(size_t bucket_count, |
| Hash const& hash = Hash(), |
| KeyEqual const& equal = KeyEqual(), |
| allocator_type const& alloc_or_container = allocator_type()) |
| : m_values(alloc_or_container) |
| , m_hash(hash) |
| , m_equal(equal) { |
| if (0 != bucket_count) { |
| reserve(bucket_count); |
| } else { |
| allocate_buckets_from_shift(); |
| clear_buckets(); |
| } |
| } |
| |
| table() |
| : table(0) {} |
| |
| table(size_t bucket_count, allocator_type const& alloc) |
| : table(bucket_count, Hash(), KeyEqual(), alloc) {} |
| |
| table(size_t bucket_count, Hash const& hash, allocator_type const& alloc) |
| : table(bucket_count, hash, KeyEqual(), alloc) {} |
| |
| explicit table(allocator_type const& alloc) |
| : table(0, Hash(), KeyEqual(), alloc) {} |
| |
| template <class InputIt> |
| table(InputIt first, |
| InputIt last, |
| size_type bucket_count = 0, |
| Hash const& hash = Hash(), |
| KeyEqual const& equal = KeyEqual(), |
| allocator_type const& alloc = allocator_type()) |
| : table(bucket_count, hash, equal, alloc) { |
| insert(first, last); |
| } |
| |
| template <class InputIt> |
| table(InputIt first, InputIt last, size_type bucket_count, allocator_type const& alloc) |
| : table(first, last, bucket_count, Hash(), KeyEqual(), alloc) {} |
| |
| template <class InputIt> |
| table(InputIt first, InputIt last, size_type bucket_count, Hash const& hash, allocator_type const& alloc) |
| : table(first, last, bucket_count, hash, KeyEqual(), alloc) {} |
| |
| table(table const& other) |
| : table(other, other.m_values.get_allocator()) {} |
| |
| table(table const& other, allocator_type const& alloc) |
| : m_values(other.m_values, alloc) |
| , m_max_load_factor(other.m_max_load_factor) |
| , m_hash(other.m_hash) |
| , m_equal(other.m_equal) { |
| copy_buckets(other); |
| } |
| |
| table(table&& other) noexcept |
| : table(std::move(other), other.m_values.get_allocator()) {} |
| |
| table(table&& other, allocator_type const& alloc) noexcept |
| : m_values(alloc) { |
| *this = std::move(other); |
| } |
| |
| table(std::initializer_list<value_type> ilist, |
| size_t bucket_count = 0, |
| Hash const& hash = Hash(), |
| KeyEqual const& equal = KeyEqual(), |
| allocator_type const& alloc = allocator_type()) |
| : table(bucket_count, hash, equal, alloc) { |
| insert(ilist); |
| } |
| |
| table(std::initializer_list<value_type> ilist, size_type bucket_count, allocator_type const& alloc) |
| : table(ilist, bucket_count, Hash(), KeyEqual(), alloc) {} |
| |
| table(std::initializer_list<value_type> init, size_type bucket_count, Hash const& hash, allocator_type const& alloc) |
| : table(init, bucket_count, hash, KeyEqual(), alloc) {} |
| |
| ~table() { |
| if (nullptr != m_buckets) { |
| auto ba = bucket_alloc(m_values.get_allocator()); |
| bucket_alloc_traits::deallocate(ba, m_buckets, bucket_count()); |
| } |
| } |
| |
| auto operator=(table const& other) -> table& { |
| if (&other != this) { |
| deallocate_buckets(); // deallocate before m_values is set (might have another allocator) |
| m_values = other.m_values; |
| m_max_load_factor = other.m_max_load_factor; |
| m_hash = other.m_hash; |
| m_equal = other.m_equal; |
| m_shifts = initial_shifts; |
| copy_buckets(other); |
| } |
| return *this; |
| } |
| |
| auto operator=(table&& other) noexcept(noexcept(std::is_nothrow_move_assignable_v<value_container_type> && |
| std::is_nothrow_move_assignable_v<Hash> && |
| std::is_nothrow_move_assignable_v<KeyEqual>)) -> table& { |
| if (&other != this) { |
| deallocate_buckets(); // deallocate before m_values is set (might have another allocator) |
| m_values = std::move(other.m_values); |
| other.m_values.clear(); |
| |
| // we can only reuse m_buckets when both maps have the same allocator! |
| if (get_allocator() == other.get_allocator()) { |
| m_buckets = std::exchange(other.m_buckets, nullptr); |
| m_num_buckets = std::exchange(other.m_num_buckets, 0); |
| m_max_bucket_capacity = std::exchange(other.m_max_bucket_capacity, 0); |
| m_shifts = std::exchange(other.m_shifts, initial_shifts); |
| m_max_load_factor = std::exchange(other.m_max_load_factor, default_max_load_factor); |
| m_hash = std::exchange(other.m_hash, {}); |
| m_equal = std::exchange(other.m_equal, {}); |
| other.allocate_buckets_from_shift(); |
| other.clear_buckets(); |
| } else { |
| // set max_load_factor *before* copying the other's buckets, so we have the same |
| // behavior |
| m_max_load_factor = other.m_max_load_factor; |
| |
| // copy_buckets sets m_buckets, m_num_buckets, m_max_bucket_capacity, m_shifts |
| copy_buckets(other); |
| // clear's the other's buckets so other is now already usable. |
| other.clear_buckets(); |
| m_hash = other.m_hash; |
| m_equal = other.m_equal; |
| } |
| // map "other" is now already usable, it's empty. |
| } |
| return *this; |
| } |
| |
| auto operator=(std::initializer_list<value_type> ilist) -> table& { |
| clear(); |
| insert(ilist); |
| return *this; |
| } |
| |
| auto get_allocator() const noexcept -> allocator_type { |
| return m_values.get_allocator(); |
| } |
| |
| // iterators ////////////////////////////////////////////////////////////// |
| |
| auto begin() noexcept -> iterator { |
| return m_values.begin(); |
| } |
| |
| auto begin() const noexcept -> const_iterator { |
| return m_values.begin(); |
| } |
| |
| auto cbegin() const noexcept -> const_iterator { |
| return m_values.cbegin(); |
| } |
| |
| auto end() noexcept -> iterator { |
| return m_values.end(); |
| } |
| |
| auto cend() const noexcept -> const_iterator { |
| return m_values.cend(); |
| } |
| |
| auto end() const noexcept -> const_iterator { |
| return m_values.end(); |
| } |
| |
| // capacity /////////////////////////////////////////////////////////////// |
| |
| [[nodiscard]] auto empty() const noexcept -> bool { |
| return m_values.empty(); |
| } |
| |
| [[nodiscard]] auto size() const noexcept -> size_t { |
| return m_values.size(); |
| } |
| |
| [[nodiscard]] static constexpr auto max_size() noexcept -> size_t { |
| if constexpr ((std::numeric_limits<value_idx_type>::max)() == (std::numeric_limits<size_t>::max)()) { |
| return size_t{1} << (sizeof(value_idx_type) * 8 - 1); |
| } else { |
| return size_t{1} << (sizeof(value_idx_type) * 8); |
| } |
| } |
| |
| // modifiers ////////////////////////////////////////////////////////////// |
| |
| void clear() { |
| m_values.clear(); |
| clear_buckets(); |
| } |
| |
| auto insert(value_type const& value) -> std::pair<iterator, bool> { |
| return emplace(value); |
| } |
| |
| auto insert(value_type&& value) -> std::pair<iterator, bool> { |
| return emplace(std::move(value)); |
| } |
| |
| template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> |
| auto insert(P&& value) -> std::pair<iterator, bool> { |
| return emplace(std::forward<P>(value)); |
| } |
| |
| auto insert(const_iterator /*hint*/, value_type const& value) -> iterator { |
| return insert(value).first; |
| } |
| |
| auto insert(const_iterator /*hint*/, value_type&& value) -> iterator { |
| return insert(std::move(value)).first; |
| } |
| |
| template <class P, std::enable_if_t<std::is_constructible_v<value_type, P&&>, bool> = true> |
| auto insert(const_iterator /*hint*/, P&& value) -> iterator { |
| return insert(std::forward<P>(value)).first; |
| } |
| |
| template <class InputIt> |
| void insert(InputIt first, InputIt last) { |
| while (first != last) { |
| insert(*first); |
| ++first; |
| } |
| } |
| |
| void insert(std::initializer_list<value_type> ilist) { |
| insert(ilist.begin(), ilist.end()); |
| } |
| |
| // nonstandard API: *this is emptied. |
| // Also see "A Standard flat_map" https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0429r9.pdf |
| auto extract() && -> value_container_type { |
| return std::move(m_values); |
| } |
| |
| // nonstandard API: |
| // Discards the internally held container and replaces it with the one passed. Erases non-unique elements. |
| auto replace(value_container_type&& container) { |
| if (ANKERL_UNORDERED_DENSE_UNLIKELY(container.size() > max_size())) { |
| on_error_too_many_elements(); |
| } |
| auto shifts = calc_shifts_for_size(container.size()); |
| if (0 == m_num_buckets || shifts < m_shifts || container.get_allocator() != m_values.get_allocator()) { |
| m_shifts = shifts; |
| deallocate_buckets(); |
| allocate_buckets_from_shift(); |
| } |
| clear_buckets(); |
| |
| m_values = std::move(container); |
| |
| // can't use clear_and_fill_buckets_from_values() because container elements might not be unique |
| auto value_idx = value_idx_type{}; |
| |
| // loop until we reach the end of the container. duplicated entries will be replaced with back(). |
| while (value_idx != static_cast<value_idx_type>(m_values.size())) { |
| auto const& key = get_key(m_values[value_idx]); |
| |
| auto hash = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| bool key_found = false; |
| while (true) { |
| auto const& bucket = at(m_buckets, bucket_idx); |
| if (dist_and_fingerprint > bucket.m_dist_and_fingerprint) { |
| break; |
| } |
| if (dist_and_fingerprint == bucket.m_dist_and_fingerprint && |
| m_equal(key, get_key(m_values[bucket.m_value_idx]))) { |
| key_found = true; |
| break; |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| |
| if (key_found) { |
| if (value_idx != static_cast<value_idx_type>(m_values.size() - 1)) { |
| m_values[value_idx] = std::move(m_values.back()); |
| } |
| m_values.pop_back(); |
| } else { |
| place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); |
| ++value_idx; |
| } |
| } |
| } |
| |
| template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto insert_or_assign(Key const& key, M&& mapped) -> std::pair<iterator, bool> { |
| return do_insert_or_assign(key, std::forward<M>(mapped)); |
| } |
| |
| template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto insert_or_assign(Key&& key, M&& mapped) -> std::pair<iterator, bool> { |
| return do_insert_or_assign(std::move(key), std::forward<M>(mapped)); |
| } |
| |
| template <typename K, |
| typename M, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto insert_or_assign(K&& key, M&& mapped) -> std::pair<iterator, bool> { |
| return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)); |
| } |
| |
| template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto insert_or_assign(const_iterator /*hint*/, Key const& key, M&& mapped) -> iterator { |
| return do_insert_or_assign(key, std::forward<M>(mapped)).first; |
| } |
| |
| template <class M, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto insert_or_assign(const_iterator /*hint*/, Key&& key, M&& mapped) -> iterator { |
| return do_insert_or_assign(std::move(key), std::forward<M>(mapped)).first; |
| } |
| |
| template <typename K, |
| typename M, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto insert_or_assign(const_iterator /*hint*/, K&& key, M&& mapped) -> iterator { |
| return do_insert_or_assign(std::forward<K>(key), std::forward<M>(mapped)).first; |
| } |
| |
| // Single arguments for unordered_set can be used without having to construct the value_type |
| template <class K, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<!is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto emplace(K&& key) -> std::pair<iterator, bool> { |
| auto hash = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { |
| if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && |
| m_equal(key, m_values[at(m_buckets, bucket_idx).m_value_idx])) { |
| // found it, return without ever actually creating anything |
| return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| |
| // value is new, insert element first, so when exception happens we are in a valid state |
| return do_place_element(dist_and_fingerprint, bucket_idx, std::forward<K>(key)); |
| } |
| |
| template <class... Args> |
| auto emplace(Args&&... args) -> std::pair<iterator, bool> { |
| // we have to instantiate the value_type to be able to access the key. |
| // 1. emplace_back the object so it is constructed. 2. If the key is already there, pop it later in the loop. |
| auto& key = get_key(m_values.emplace_back(std::forward<Args>(args)...)); |
| auto hash = mixed_hash(key); |
| auto dist_and_fingerprint = dist_and_fingerprint_from_hash(hash); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| while (dist_and_fingerprint <= at(m_buckets, bucket_idx).m_dist_and_fingerprint) { |
| if (dist_and_fingerprint == at(m_buckets, bucket_idx).m_dist_and_fingerprint && |
| m_equal(key, get_key(m_values[at(m_buckets, bucket_idx).m_value_idx]))) { |
| m_values.pop_back(); // value was already there, so get rid of it |
| return {begin() + static_cast<difference_type>(at(m_buckets, bucket_idx).m_value_idx), false}; |
| } |
| dist_and_fingerprint = dist_inc(dist_and_fingerprint); |
| bucket_idx = next(bucket_idx); |
| } |
| |
| // value is new, place the bucket and shift up until we find an empty spot |
| auto value_idx = static_cast<value_idx_type>(m_values.size() - 1); |
| if (ANKERL_UNORDERED_DENSE_UNLIKELY(is_full())) { |
| // increase_size just rehashes all the data we have in m_values |
| increase_size(); |
| } else { |
| // place element and shift up until we find an empty spot |
| place_and_shift_up({dist_and_fingerprint, value_idx}, bucket_idx); |
| } |
| return {begin() + static_cast<difference_type>(value_idx), true}; |
| } |
| |
| template <class... Args> |
| auto emplace_hint(const_iterator /*hint*/, Args&&... args) -> iterator { |
| return emplace(std::forward<Args>(args)...).first; |
| } |
| |
| template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto try_emplace(Key const& key, Args&&... args) -> std::pair<iterator, bool> { |
| return do_try_emplace(key, std::forward<Args>(args)...); |
| } |
| |
| template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto try_emplace(Key&& key, Args&&... args) -> std::pair<iterator, bool> { |
| return do_try_emplace(std::move(key), std::forward<Args>(args)...); |
| } |
| |
| template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto try_emplace(const_iterator /*hint*/, Key const& key, Args&&... args) -> iterator { |
| return do_try_emplace(key, std::forward<Args>(args)...).first; |
| } |
| |
| template <class... Args, typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto try_emplace(const_iterator /*hint*/, Key&& key, Args&&... args) -> iterator { |
| return do_try_emplace(std::move(key), std::forward<Args>(args)...).first; |
| } |
| |
| template < |
| typename K, |
| typename... Args, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, |
| bool> = true> |
| auto try_emplace(K&& key, Args&&... args) -> std::pair<iterator, bool> { |
| return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...); |
| } |
| |
| template < |
| typename K, |
| typename... Args, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE> && is_neither_convertible_v<K&&, iterator, const_iterator>, |
| bool> = true> |
| auto try_emplace(const_iterator /*hint*/, K&& key, Args&&... args) -> iterator { |
| return do_try_emplace(std::forward<K>(key), std::forward<Args>(args)...).first; |
| } |
| |
| auto erase(iterator it) -> iterator { |
| auto hash = mixed_hash(get_key(*it)); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); |
| while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { |
| bucket_idx = next(bucket_idx); |
| } |
| |
| do_erase(bucket_idx, [](value_type&& /*unused*/) { |
| }); |
| return begin() + static_cast<difference_type>(value_idx_to_remove); |
| } |
| |
| auto extract(iterator it) -> value_type { |
| auto hash = mixed_hash(get_key(*it)); |
| auto bucket_idx = bucket_idx_from_hash(hash); |
| |
| auto const value_idx_to_remove = static_cast<value_idx_type>(it - cbegin()); |
| while (at(m_buckets, bucket_idx).m_value_idx != value_idx_to_remove) { |
| bucket_idx = next(bucket_idx); |
| } |
| |
| auto tmp = std::optional<value_type>{}; |
| do_erase(bucket_idx, [&tmp](value_type&& val) { |
| tmp = std::move(val); |
| }); |
| return std::move(tmp).value(); |
| } |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto erase(const_iterator it) -> iterator { |
| return erase(begin() + (it - cbegin())); |
| } |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto extract(const_iterator it) -> value_type { |
| return extract(begin() + (it - cbegin())); |
| } |
| |
| auto erase(const_iterator first, const_iterator last) -> iterator { |
| auto const idx_first = first - cbegin(); |
| auto const idx_last = last - cbegin(); |
| auto const first_to_last = std::distance(first, last); |
| auto const last_to_end = std::distance(last, cend()); |
| |
| // remove elements from left to right which moves elements from the end back |
| auto const mid = idx_first + (std::min)(first_to_last, last_to_end); |
| auto idx = idx_first; |
| while (idx != mid) { |
| erase(begin() + idx); |
| ++idx; |
| } |
| |
| // all elements from the right are moved, now remove the last element until all done |
| idx = idx_last; |
| while (idx != mid) { |
| --idx; |
| erase(begin() + idx); |
| } |
| |
| return begin() + idx_first; |
| } |
| |
| auto erase(Key const& key) -> size_t { |
| return do_erase_key(key, [](value_type&& /*unused*/) { |
| }); |
| } |
| |
| auto extract(Key const& key) -> std::optional<value_type> { |
| auto tmp = std::optional<value_type>{}; |
| do_erase_key(key, [&tmp](value_type&& val) { |
| tmp = std::move(val); |
| }); |
| return tmp; |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto erase(K&& key) -> size_t { |
| return do_erase_key(std::forward<K>(key), [](value_type&& /*unused*/) { |
| }); |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto extract(K&& key) -> std::optional<value_type> { |
| auto tmp = std::optional<value_type>{}; |
| do_erase_key(std::forward<K>(key), [&tmp](value_type&& val) { |
| tmp = std::move(val); |
| }); |
| return tmp; |
| } |
| |
| void swap(table& other) noexcept(noexcept(std::is_nothrow_swappable_v<value_container_type> && |
| std::is_nothrow_swappable_v<Hash> && std::is_nothrow_swappable_v<KeyEqual>)) { |
| using std::swap; |
| swap(other, *this); |
| } |
| |
| // lookup ///////////////////////////////////////////////////////////////// |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto at(key_type const& key) -> Q& { |
| return do_at(key); |
| } |
| |
| template <typename K, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto at(K const& key) -> Q& { |
| return do_at(key); |
| } |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto at(key_type const& key) const -> Q const& { |
| return do_at(key); |
| } |
| |
| template <typename K, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto at(K const& key) const -> Q const& { |
| return do_at(key); |
| } |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto operator[](Key const& key) -> Q& { |
| return try_emplace(key).first->second; |
| } |
| |
| template <typename Q = T, std::enable_if_t<is_map_v<Q>, bool> = true> |
| auto operator[](Key&& key) -> Q& { |
| return try_emplace(std::move(key)).first->second; |
| } |
| |
| template <typename K, |
| typename Q = T, |
| typename H = Hash, |
| typename KE = KeyEqual, |
| std::enable_if_t<is_map_v<Q> && is_transparent_v<H, KE>, bool> = true> |
| auto operator[](K&& key) -> Q& { |
| return try_emplace(std::forward<K>(key)).first->second; |
| } |
| |
| auto count(Key const& key) const -> size_t { |
| return find(key) == end() ? 0 : 1; |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto count(K const& key) const -> size_t { |
| return find(key) == end() ? 0 : 1; |
| } |
| |
| auto find(Key const& key) -> iterator { |
| return do_find(key); |
| } |
| |
| auto find(Key const& key) const -> const_iterator { |
| return do_find(key); |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto find(K const& key) -> iterator { |
| return do_find(key); |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto find(K const& key) const -> const_iterator { |
| return do_find(key); |
| } |
| |
| auto contains(Key const& key) const -> bool { |
| return find(key) != end(); |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto contains(K const& key) const -> bool { |
| return find(key) != end(); |
| } |
| |
| auto equal_range(Key const& key) -> std::pair<iterator, iterator> { |
| auto it = do_find(key); |
| return {it, it == end() ? end() : it + 1}; |
| } |
| |
| auto equal_range(const Key& key) const -> std::pair<const_iterator, const_iterator> { |
| auto it = do_find(key); |
| return {it, it == end() ? end() : it + 1}; |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto equal_range(K const& key) -> std::pair<iterator, iterator> { |
| auto it = do_find(key); |
| return {it, it == end() ? end() : it + 1}; |
| } |
| |
| template <class K, class H = Hash, class KE = KeyEqual, std::enable_if_t<is_transparent_v<H, KE>, bool> = true> |
| auto equal_range(K const& key) const -> std::pair<const_iterator, const_iterator> { |
| auto it = do_find(key); |
| return {it, it == end() ? end() : it + 1}; |
| } |
| |
| // bucket interface /////////////////////////////////////////////////////// |
| |
| auto bucket_count() const noexcept -> size_t { // NOLINT(modernize-use-nodiscard) |
| return m_num_buckets; |
| } |
| |
| static constexpr auto max_bucket_count() noexcept -> size_t { // NOLINT(modernize-use-nodiscard) |
| return max_size(); |
| } |
| |
| // hash policy //////////////////////////////////////////////////////////// |
| |
| [[nodiscard]] auto load_factor() const -> float { |
| return bucket_count() ? static_cast<float>(size()) / static_cast<float>(bucket_count()) : 0.0F; |
| } |
| |
| [[nodiscard]] auto max_load_factor() const -> float { |
| return m_max_load_factor; |
| } |
| |
| void max_load_factor(float ml) { |
| m_max_load_factor = ml; |
| if (m_num_buckets != max_bucket_count()) { |
| m_max_bucket_capacity = static_cast<value_idx_type>(static_cast<float>(bucket_count()) * max_load_factor()); |
| } |
| } |
| |
| void rehash(size_t count) { |
| count = (std::min)(count, max_size()); |
| auto shifts = calc_shifts_for_size((std::max)(count, size())); |
| if (shifts != m_shifts) { |
| m_shifts = shifts; |
| deallocate_buckets(); |
| m_values.shrink_to_fit(); |
| allocate_buckets_from_shift(); |
| clear_and_fill_buckets_from_values(); |
| } |
| } |
| |
| void reserve(size_t capa) { |
| capa = (std::min)(capa, max_size()); |
| if constexpr (has_reserve<value_container_type>) { |
| // std::deque doesn't have reserve(). Make sure we only call when available |
| m_values.reserve(capa); |
| } |
| auto shifts = calc_shifts_for_size((std::max)(capa, size())); |
| if (0 == m_num_buckets || shifts < m_shifts) { |
| m_shifts = shifts; |
| deallocate_buckets(); |
| allocate_buckets_from_shift(); |
| clear_and_fill_buckets_from_values(); |
| } |
| } |
| |
| // observers ////////////////////////////////////////////////////////////// |
| |
| auto hash_function() const -> hasher { |
| return m_hash; |
| } |
| |
| auto key_eq() const -> key_equal { |
| return m_equal; |
| } |
| |
| // nonstandard API: expose the underlying values container |
| [[nodiscard]] auto values() const noexcept -> value_container_type const& { |
| return m_values; |
| } |
| |
| // non-member functions /////////////////////////////////////////////////// |
| |
| friend auto operator==(table const& a, table const& b) -> bool { |
| if (&a == &b) { |
| return true; |
| } |
| if (a.size() != b.size()) { |
| return false; |
| } |
| for (auto const& b_entry : b) { |
| auto it = a.find(get_key(b_entry)); |
| if constexpr (is_map_v<T>) { |
| // map: check that key is here, then also check that value is the same |
| if (a.end() == it || !(b_entry.second == it->second)) { |
| return false; |
| } |
| } else { |
| // set: only check that the key is here |
| if (a.end() == it) { |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| friend auto operator!=(table const& a, table const& b) -> bool { |
| return !(a == b); |
| } |
| }; |
| |
| } /* namespace detail */ |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class T, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, |
| class Bucket = bucket_type::standard> |
| using map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class T, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class AllocatorOrContainer = std::allocator<std::pair<Key, T>>, |
| class Bucket = bucket_type::standard> |
| using segmented_map = detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class AllocatorOrContainer = std::allocator<Key>, |
| class Bucket = bucket_type::standard> |
| using set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, false>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class AllocatorOrContainer = std::allocator<Key>, |
| class Bucket = bucket_type::standard> |
| using segmented_set = detail::table<Key, void, Hash, KeyEqual, AllocatorOrContainer, Bucket, true>; |
| |
| # if defined(ANKERL_UNORDERED_DENSE_PMR) |
| |
| namespace pmr { |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class T, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class Bucket = bucket_type::standard> |
| using map = |
| detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, false>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class T, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class Bucket = bucket_type::standard> |
| using segmented_map = |
| detail::table<Key, T, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<std::pair<Key, T>>, Bucket, true>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class Bucket = bucket_type::standard> |
| using set = detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, false>; |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class Hash = hash<Key>, |
| class KeyEqual = std::equal_to<Key>, |
| class Bucket = bucket_type::standard> |
| using segmented_set = |
| detail::table<Key, void, Hash, KeyEqual, ANKERL_UNORDERED_DENSE_PMR::polymorphic_allocator<Key>, Bucket, true>; |
| |
| } /* namespace pmr */ |
| |
| # endif |
| |
| // deduction guides /////////////////////////////////////////////////////////// |
| |
| // deduction guides for alias templates are only possible since C++20 |
| // see https://en.cppreference.com/w/cpp/language/class_template_argument_deduction |
| |
| } /* namespace ANKERL_UNORDERED_DENSE_NAMESPACE */ |
| } /* namespace ankerl::unordered_dense */ |
| |
| // std extensions ///////////////////////////////////////////////////////////// |
| |
| namespace std { // NOLINT(cert-dcl58-cpp) |
| |
| ANKERL_UNORDERED_DENSE_EXPORT template <class Key, |
| class T, |
| class Hash, |
| class KeyEqual, |
| class AllocatorOrContainer, |
| class Bucket, |
| class Pred, |
| bool IsSegmented> |
| // NOLINTNEXTLINE(cert-dcl58-cpp) |
| auto erase_if(ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>& map, |
| Pred pred) -> size_t { |
| using map_t = ankerl::unordered_dense::detail::table<Key, T, Hash, KeyEqual, AllocatorOrContainer, Bucket, IsSegmented>; |
| |
| // going back to front because erase() invalidates the end iterator |
| auto const old_size = map.size(); |
| auto idx = old_size; |
| while (idx) { |
| --idx; |
| auto it = map.begin() + static_cast<typename map_t::difference_type>(idx); |
| if (pred(*it)) { |
| map.erase(it); |
| } |
| } |
| |
| return old_size - map.size(); |
| } |
| |
| } /* namespace std */ |
| |
| #endif |
| #endif |